[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017101163A1 - 一种显示面板及其制造工艺 - Google Patents

一种显示面板及其制造工艺 Download PDF

Info

Publication number
WO2017101163A1
WO2017101163A1 PCT/CN2015/099740 CN2015099740W WO2017101163A1 WO 2017101163 A1 WO2017101163 A1 WO 2017101163A1 CN 2015099740 W CN2015099740 W CN 2015099740W WO 2017101163 A1 WO2017101163 A1 WO 2017101163A1
Authority
WO
WIPO (PCT)
Prior art keywords
color resist
resist layer
sub
reflective
layer
Prior art date
Application number
PCT/CN2015/099740
Other languages
English (en)
French (fr)
Inventor
唐岳军
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to RU2018126194A priority Critical patent/RU2688809C1/ru
Priority to KR1020187020478A priority patent/KR20180094092A/ko
Priority to GB1811678.0A priority patent/GB2562186A/en
Priority to US14/902,418 priority patent/US20160377917A1/en
Publication of WO2017101163A1 publication Critical patent/WO2017101163A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display panel and a manufacturing process thereof.
  • Liquid crystal displays are one of the most widely used flat panel displays.
  • the LCD is classified into a transmissive LCD or a reflective LCD depending on the light source used in the LCD.
  • the transmissive LCD uses the backlight as the light source. After passing through the polarizing plate and the liquid crystal panel, only about 5% of the light is utilized. To increase the brightness of the transmissive LCD, it is necessary to increase the power consumption of the backlight; and the external light intensity is greater than the LCD transmission. When the light is out, the human eye will not be able to see what is displayed on the LCD.
  • the reflective LCD relies on external light to achieve normal display. It can only be used during the day or in the presence of external light, and cannot be used at night or in low light. Therefore, a transflective LCD has emerged, and a transflective LCD uses both a backlight and an external light source as a light source depending on the environment.
  • the light emitted by the backlight of the transmissive area passes through the primary color resist layer, and in the reflective area, the ambient light passes through the color resist layer twice during the incident and reflection processes, thereby The color saturation of the reflective region is too high and the light transmittance of the reflective region is lowered.
  • the color saturation of the transmissive region and the reflective region are not matched, that is, the color saturation of the transmissive region and the reflective region cannot simultaneously meet product specifications and usage requirements.
  • the invention provides a display panel and a manufacturing process thereof to solve the problem that the color saturation of the light emitted from the transmissive area and the reflective area in the transflective display panel of the prior art is inconsistent.
  • the present invention provides a display panel including an upper substrate, a lower substrate, and a color resist layer disposed between the upper substrate and the lower substrate; the display panel is divided into a transmissive area and a reflective area, and the reflective area is further A reflective layer is disposed inside the color resist layer, and the reflective layer divides the color resist layer into a first sub-color resist layer and a second sub-color resist layer, wherein the first sub-color resist layer is located between the reflective layer and the lower substrate, and the second The sub-color resist layer is located between the reflective layer and the upper substrate; the light in the transmissive region passes through the color resist layer, and the light in the reflective region passes through the first sub-color resist layer twice or through the second sub-color resist layer; the display panel is displayed on one side
  • the panel further includes a light source disposed on a side of the lower substrate facing the upper substrate; the color resist layer is disposed on the lower substrate, the reflective surface of the reflective layer is disposed toward the upper substrate; and the reflective layer is disposed
  • the first sub-color resist layer is the same as the second sub-color resist layer, and the second sub-color resist layer has a thickness equal to half the thickness of the color resist layer.
  • the present invention provides a display panel including an upper substrate, a lower substrate, and a color resist layer disposed between the upper substrate and the lower substrate; the display panel is divided into a transmissive area and a reflective area, and the reflective area is further A reflective layer is disposed inside the color resist layer, and the reflective layer divides the color resist layer into a first sub-color resist layer and a second sub-color resist layer, wherein the first sub-color resist layer is located between the reflective layer and the lower substrate, and the second The sub-color resist layer is located between the reflective layer and the upper substrate; the light in the transmissive region passes through the color resist layer, and the light in the reflective region passes through the first sub-color resist layer twice or through the second sub-color resist layer.
  • the display panel is a single-sided display panel, and further includes a light source disposed on a side of the lower substrate facing the upper substrate; the color resist layer is disposed on the lower substrate, and the reflective surface of the reflective layer is disposed toward the upper substrate.
  • the first sub-color resist layer is the same as the second sub-color resist layer, and the second sub-color resist layer has a thickness equal to half the thickness of the color resist layer.
  • the display panel is a double-sided display panel, and further includes a light source disposed on a side of the lower substrate facing the upper substrate; the color resist layer is disposed on the upper substrate, and the reflective surface of the reflective layer is disposed toward the lower substrate.
  • the first sub-color resist layer is the same as the second sub-color resist layer, and the first sub-color resist layer has a thickness equal to half the thickness of the color resist layer.
  • the present invention further provides a manufacturing process of a display panel, the manufacturing process comprising: forming a first substrate, the first substrate is divided into a transmissive area and a reflective area; and forming a first sub-color resist on the first substrate Forming a reflective layer on the first sub-color resist layer of the reflective region; forming a second sub-color resist layer on the first sub-color resist layer and the reflective layer of the transmissive region, the first sub-color resist layer and the second sub-color layer
  • the resist layer forms a color resist layer; the second substrate is disposed corresponding to the first substrate, and the color resist layer is located between the first substrate and the second substrate; wherein the light of the transmissive region passes through the color resist layer, and the light of the reflective region passes through the second sub-color twice Resistance layer.
  • the manufacturing process further comprises: providing a light source on an outer side of the first substrate or outside the second substrate.
  • the step of forming a reflective layer on the first sub-color resist layer of the reflective region further includes: forming a reflective layer having a reflective surface away from the first sub-color resist layer on the first sub-color resist layer of the reflective region.
  • the step of forming the second sub-color resist layer further includes: forming a second sub-color resist layer on the first sub-color resist layer and the reflective layer of the transmissive region, such that the first sub-color resist layer and the second sub-color resist layer
  • the thickness of the formed color resist layer is twice the thickness of the second sub-color resist layer, and the first sub-color resist layer and the second sub-color resist layer are made of the same material.
  • the step of forming the second sub-color resist layer further comprises: the first sub-color resist layer in the transmissive region And forming a second sub-color resist layer on the reflective layer, wherein the thickness of the first sub-color resist layer and the second sub-color resist layer are different, the color saturation of the light passing through the color resist layer, and the light of the reflective area The color saturation after the second sub-color resist layer is the same.
  • the display panel of the present invention comprises an upper substrate, a lower substrate, and a color resist layer disposed between the upper substrate and the lower substrate; the display panel is divided into a transmissive area and a reflective area, and the reflection is different from the prior art.
  • the region is further provided with a reflective layer located inside the color resist layer, and the reflective layer divides the color resist layer into a first sub-color resist layer and a second sub-color resist layer, and the first sub-color resist layer is located between the reflective layer and the lower substrate.
  • the second sub-color resist layer is located between the reflective layer and the upper substrate; the light in the transmissive region passes through the color resist layer, and the light in the reflective region passes through the first sub-color resist layer twice or through the second sub-color resist layer.
  • the reflective layer divides the color resist layer into two sub-color resist layers, and the light in the transmissive region passes through the color resist layer, and the light in the reflective region passes through the two sub-color resist layers, and the thickness of the sub-color resist layer is smaller than the thickness of the resist layer. Therefore, the color saturation of the transmissive region tends to be consistent with the color saturation of the reflective region.
  • FIG. 1 is a schematic structural view of a first embodiment of a display panel of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of the display panel of the present invention.
  • FIG. 3 is a schematic flow chart of an embodiment of a manufacturing process of a display panel of the present invention.
  • FIG. 4 is a schematic structural view of a display panel prepared by the manufacturing process shown in FIG. 3;
  • FIG. 5 is a schematic structural view of another display panel produced by the manufacturing process shown in FIG.
  • the display panel 100 of the present embodiment includes an upper substrate 11 and a lower substrate 12, and a color resist layer disposed between the upper substrate 11 and the lower substrate 12. 13 and a reflective layer 14.
  • the substrate in the display panel includes a glass substrate, a TFT thin film transistor disposed on the glass substrate, and the like; the color resist layer is also referred to as a color filter layer in the art; the reflective layer is generally applied to a reflective display panel. . Therefore, the following description is omitted, and those skilled in the art can directly derive the parts that are common in the display panel 100, and will not be described in the present invention.
  • the display panel 100 is a transflective display panel, that is, includes a transmissive area 101 and a reflective area 102.
  • the reflective layer 14 is disposed in the reflective region 102, is located inside the color resist layer 13, and divides the color resist layer 13 into a first sub-color resist layer 131 and a second sub-color resist layer 132, and the first sub-color resist layer 131 is located Reflecting layer 14 and lower substrate 12 Between the second sub-color resist layer 132 is located between the reflective layer 14 and the upper substrate 11.
  • the reflective layer 14 is made of a reflective material, generally adopts a metal material such as aluminum (Al), silver (Ag), or copper (Cu), and the metal material is simple in preparation process, and can ensure a good reflective effect; Aluminum foil, aluminum has good gloss, good reflection effect, and high ductility of aluminum, which is beneficial to the processing and manufacturing of metal reflective layer.
  • a metal material such as aluminum (Al), silver (Ag), or copper (Cu)
  • the light of the transmissive area 101 passes through the color resist layer 13.
  • the reflective surface 141 of the reflective layer 14 faces the first sub-color resist layer 131
  • the light of the reflective area 102 passes through the first sub-color resist layer 131 twice;
  • the reflective layer 14 faces the second sub-color resist layer 132
  • the light of the reflective region 102 passes through the second sub-color resist layer 132 twice.
  • the light of the reflective region 102 passes through two sub-color resist layers, and the thickness of the sub-color resist layer is smaller than the thickness of the color resist layer 13, so the color saturation of the reflective region 102 and the color saturation of the transmissive region 101. It tends to be consistent.
  • the display panel 100 is a single-sided display panel, wherein the light source 15 is disposed on a side of the lower substrate 12 facing the upper substrate 11, the color resist layer 13 is disposed on the lower substrate 12, and the reflective surface 141 of the reflective layer 14 faces the upper substrate. 11 settings.
  • the light source 15 provides a rear light source for the transmissive area 101.
  • the light emitted by the light source 15 passes through the color resist layer 13 and is observed by the human eye; the light emitted by the light source 15 does not pass through the reflective area 102, and the reflective area 102 illuminates by the external light.
  • the external light passes through the second sub-color resist layer 132 and reaches the reflective layer 14 to be reflected.
  • the reflected light passes through the second sub-color resist layer 132 again and is observed by the human eye.
  • the color saturation of the transmissive region 101 and the reflective region 102 is improved in order to improve the uniformity of the color saturation of the reflective region 102 and the color saturation of the transmissive region 101.
  • the first sub-color resist layer 131 is the same material as the second sub-color resist layer 132, and the thickness H 2 of the second sub-color resist layer 132 is half the thickness H 0 of the color resist layer 13.
  • the thickness H of the reflective layer 14 When the thickness H of the reflective layer 14 is much smaller than the thickness H 0 of the color resist layer 13, the thickness H of the reflective layer 14 may be neglected, that is, the thickness H 0 of the color resist layer is the thickness H 1 and the second sub-color of the first sub-color resist layer 131.
  • first sub-color resist layer 131 and the second sub-color resist layer 132 may also be selected to form the first sub-color resist layer 131 and the second sub-color resist layer 132, and Different thicknesses are set corresponding to the respective materials, so that the color saturation of the light passing through the color resist layer 13 in the transmissive region 101 is the same as the color saturation of the light in the reflective region 102 after passing through the second sub-color resist layer 132 twice.
  • the thickness of the display panel 100 in the reflective region 102 and the transmissive region 101 is equal, but in practical applications, the thicknesses of the two are not necessarily equal.
  • the present invention is conveniently described, and the thickness of the display panel 100 in the reflective region 102 and the transmissive region 101 is not limited.
  • the invention can be used to set the color resist layer.
  • FIG. 2 is a schematic structural view of a second embodiment of a display panel according to the present invention.
  • the display panel 200 includes an upper substrate 21 and a lower substrate 22, and a color resistance disposed between the upper substrate 21 and the lower substrate 22. Layer 23 and reflective layer 24.
  • the display panel 200 is divided into a transmissive area 201 and a reflective area 202.
  • the reflective layer is disposed in the reflective area 202, and is located inside the color resist layer 23.
  • the color resist layer is divided into a first sub-color resist layer 231 and a second sub-color resist layer. 232, the first sub-color resist layer 231 is located between the reflective layer 24 and the lower substrate 22, and the second sub-color resist layer 232 is located between the reflective layer 24 and the upper substrate 21.
  • the structure of the display panel 200 is substantially the same as that of the display panel 100, except that the display panel 200 is a double-sided display panel, wherein the light source 25 is disposed on a side of the lower substrate 22 facing the substrate 21; the color resist layer 23 is disposed on the upper substrate. 21, the reflective surface 241 of the reflective layer 24 is disposed toward the lower substrate 22, and the light of the reflective region 202 passes through the first sub-color resist layer 231 twice.
  • the light source 25 belongs to the rear light source for the transmissive area 201, that is, the light is incident from the lower substrate 22, and is observed by the human eye after passing through the color resist layer 23; and for the reflective area 202, the light source 25 belongs to The front light source, that is, the light is incident from the lower substrate 22, is reflected by the first sub-color resist layer 231 and reaches the reflective layer 24, and the reflected light passes through the first sub-color resist layer 231 again and is observed by the human eye.
  • the first sub-color resist layer 231 is the same material as the second sub-color resist layer 232, and the thickness H 1 of the first sub-color resist layer 231 is the thickness of the color resist layer 23. Half of H 0 .
  • different materials may be selected to form the first sub-color resist layer 231 and the second sub-color resist layer 232, and different thicknesses are set corresponding to the respective materials, so that the light of the transmissive region 101 passes through the color saturation layer 23, The light saturation with the light of the reflective region 102 is the same after passing through the first sub-color resist layer 231 twice.
  • the display panel of the present invention comprises an upper substrate, a lower substrate, and a color resist layer disposed between the upper substrate and the lower substrate; the display panel is divided into a transmissive area and a reflective area, and the reflective area is further provided with a color resist a reflective layer inside the layer, the reflective layer dividing the color resist layer into a first sub-color resist layer and a second sub-color resist a layer, the first sub-color resist layer is located between the reflective layer and the lower substrate, the second sub-color resist layer is located between the reflective layer and the upper substrate; the light of the transmissive region passes through the color resist layer, and the light of the reflective region passes through the first two times.
  • the sub-color resist layer or the second sub-color resist layer is dividing the color resist layer into a first sub-color resist layer and a second sub-color resist a layer, the first sub-color resist layer is located between the reflective layer and the lower substrate, the second sub-color resist layer is located between the reflective layer and the upper substrate; the light of the transmissive
  • the reflective layer divides the color resist layer into two sub-color resist layers, and the light in the transmissive region passes through the color resist layer, and the light in the reflective region passes through the two sub-color resist layers, and the thickness of the sub-color resist layer is smaller than the thickness of the resist layer. Therefore, the color saturation of the transmissive region tends to be consistent with the color saturation of the reflective region.
  • FIG. 3 is a schematic flow chart of an embodiment of a manufacturing process of the display panel of the present invention
  • FIG. 4 is a schematic structural view of a display panel prepared by the manufacturing process of FIG. It is a schematic structural view of another display panel which is produced by the manufacturing process shown in FIG.
  • the difference between FIG. 4 and FIG. 5 is only the setting of the light source, and therefore the display panels of the two figures are given the same reference numerals.
  • the embodiment of the manufacturing process shown in Figure 3 includes the following steps:
  • the first substrate 31 is divided into a transmissive area 301 and a reflective area 302, that is, the corresponding finally formed display panel 300 includes a transmissive area 301 and a reflective area 302.
  • a first sub-color resist layer 321 is formed on the first substrate 31.
  • a reflective layer 33 is formed on the first sub-color resist layer 321 of the reflective region 302.
  • S304 forming a second sub-color resist layer on the first sub-color resist layer and the reflective layer of the transmissive region, and the first sub-color resist layer and the second sub-color resist layer form a color resist layer.
  • a second sub-color resist layer 322 is formed on the first sub-color resist layer 321 and the reflective layer 33 of the transmissive region 301.
  • the first sub-color resist layer 321 and the second sub-color resist layer 322 form a color resist layer 32.
  • the thickness of the color resist layer 32 formed is twice the thickness of the second sub-color resist layer 322.
  • first sub-color resist layer 321 and the second sub-color resist layer 322 are made of different materials, different thicknesses are set corresponding to different materials, so that the light of the transmissive region 301 passes through the color resist layer 32 after color saturation and reflection.
  • the light of the region 302 passes through the second sub-color resist layer 322 twice after the color saturation is the same.
  • a second substrate is disposed corresponding to the first substrate, and the color resist layer is located between the first substrate and the second substrate.
  • the second substrate 34 is disposed corresponding to the first substrate 31, that is, the first substrate 31 and the second substrate 34 are disposed to the cartridge, and the liquid crystal is filled between the substrates.
  • the color resist layer 32 is located between the first substrate 31 and the second substrate 34.
  • a light source is disposed outside the first substrate or outside the second substrate.
  • the display panel 300 When the light source 35 is disposed outside the first substrate 31, as shown in FIG. 4, the display panel 300 is single-sided. It is shown that the light of the transmissive region 301 enters from the first substrate 31, passes through the color resist layer 32, and is emitted by the second substrate 34; the light of the reflective region 302 enters from the second substrate 34, and the second sub-color resist is reflected by the reflective layer 33. Layer 322 is emitted by second substrate 34. Due to the arrangement of the second sub-color resist layer 322 in step S304, the color saturations of the transmissive area 301 and the reflective area 302 are made uniform.
  • the display panel 300 shown in FIG. 4 corresponds to the aforementioned display panel 100.
  • the display panel 300 When the light source 35 is disposed outside the second substrate 34, as shown in FIG. 5, the display panel 300 is displayed on both sides, and the light sub-substrate 34 of the transmissive region 301 enters through the color resist layer 32 and is emitted by the first substrate 31. The light from the reflective region 302 enters from the second substrate 34.
  • the reflective layer 33 reflects the second sub-color resist layer 322 twice, and is emitted by the light source 35 to display the color saturation of the transmissive region 301 and the reflective region 302.
  • the display panel 300 shown in FIG. 5 corresponds to the aforementioned display panel 200.
  • the first sub-color resist layer, the reflective layer and the second sub-color resist layer are sequentially formed in the manufacturing process of the display panel of the present invention, and the first sub-color resist layer and the second sub-color resist layer form a color resist layer. So that the reflective layer is located inside the color resist layer, the obtained light in the transmissive area of the display panel passes through the color resist layer, and the light in the reflective area passes through the second sub-color resist layer twice, and the thickness of the second sub-color resist layer is smaller than the color resist layer. The color saturation of the transmissive and reflective regions tends to be uniform.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

一种显示面板(100)及其制造工艺,其中显示面板(100)包括上基板(11)、下基板(12),以及设置在上基板(11)和下基板(12)之间的色阻层(13);显示面板(100)分为透射区(101)和反射区(102),反射区(102)进一步设置有位于色阻层(13)内部的反射层(14),反射层(14)将色阻层(13)分为第一子色阻层(131)和第二子色阻层(132),第一子色阻层(131)位于反射层(14)与下基板(12)之间,第二子色阻层(132)位于反射层(14)与上基板(11)之间;透射区(101)的光线经过色阻层(13),反射区(102)的光线经过两次第一子色阻层(131)或经过两次第二子色阻层(132)。显示面板(100)透射区(101)和反射区(102)的色饱和度趋向于一致。

Description

一种显示面板及其制造工艺 【技术领域】
本发明涉及显示技术领域,特别涉及一种显示面板及其制造工艺。
【背景技术】
液晶显示器(LCD)是使用最广泛的平板显示器之一。依据LCD使用的光源,LCD被划分为透射式LCD或反射式LCD。透射式LCD使用背光作为光源,经过偏正片与液晶面板后,只有约5%的光被利用,若要提高透射式LCD的亮度,则需要增加背光的电力消耗;并且在外界光线强度大于LCD透射出的光线时,人眼会看不清LCD上所显示的内容。反射式LCD依靠外界光线来实现正常显示,仅能在白天或有外界光存在的情况下使用,无法在夜晚或微光下使用。因此,半透半反式LCD应运而生,半透半反式LCD依据环境,既使用背光又使用外部光源作为光源。
然而现有技术中的半透半反式LCD中,透射区背光源发出的光线经过一次色阻层,而在反射区,环境光线在入射和反射的过程中经过两次色阻层,从而使得反射区的色饱和度过高且降低了反射区的光透过率,透射区和反射区的色饱和度不匹配,即透射区和反射区的色饱和度不能同时满足产品规格和使用需要。
【发明内容】
本发明提出一种显示面板及其制造工艺以解决现有技术的半透半反式显示面板中透射区和反射区射出的光线色饱和度不一致的问题。
为解决上述技术问题,本发明提供一种显示面板,其包括上基板、下基板,以及设置在上基板和下基板之间的色阻层;显示面板分为透射区和反射区,反射区进一步设置有位于色阻层内部的反射层,反射层将色阻层分为第一子色阻层和第二子色阻层,第一子色阻层位于反射层与下基板之间,第二子色阻层位于反射层与上基板之间;透射区的光线经过色阻层,反射区的光线经过两次第一子色阻层或经过两次第二子色阻层;显示面板为单面显示面板,进一步包括光源,光源设置在下基板背向上基板的一侧;色阻层设置在下基板上,反射层的反射面朝向上基板设置;反射层为金属反射层。
其中,第一子色阻层与第二子色阻层材料相同,第二子色阻层的厚度为色阻层厚度的一半。
为解决上述技术问题,本发明提供一种显示面板,其包括上基板、下基板,以及设置在上基板和下基板之间的色阻层;显示面板分为透射区和反射区,反射区进一步设置有位于色阻层内部的反射层,反射层将色阻层分为第一子色阻层和第二子色阻层,第一子色阻层位于反射层与下基板之间,第二子色阻层位于反射层与上基板之间;透射区的光线经过色阻层,反射区的光线经过两次第一子色阻层或经过两次第二子色阻层。
其中,显示面板为单面显示面板,进一步包括光源,光源设置在下基板背向上基板的一侧;色阻层设置在下基板上,反射层的反射面朝向上基板设置。
其中,第一子色阻层与第二子色阻层材料相同,第二子色阻层的厚度为色阻层厚度的一半。
其中,显示面板为双面显示面板,进一步包括光源,光源设置在下基板背向上基板的一侧;色阻层设置在上基板上,反射层的反射面朝向下基板设置。
其中,第一子色阻层与第二子色阻层材料相同,第一子色阻层的厚度为色阻层厚度的一半。
为解决上述技术问题,本发明还提供一种显示面板的制造工艺,该制造工艺包括:形成第一基板,第一基板分为透射区和反射区;在第一基板上形成第一子色阻层;在反射区的第一子色阻层上形成反射层;在透射区的第一子色阻层以及反射层上形成第二子色阻层,第一子色阻层与第二子色阻层构成色阻层;对应第一基板设置第二基板,色阻层位于第一基板和第二基板之间;其中,透射区的光线经过色阻层,反射区的光线经过两次第二子色阻层。
其中,制造工艺进一步包括:在第一基板的外侧或第二基板的外侧设置光源。
其中,在反射区的第一子色阻层上形成反射层的步骤进一步包括:在反射区的第一子色阻层上形成反射面背离第一子色阻层的反射层。
其中,形成第二子色阻层的步骤进一步包括:在透射区的第一子色阻层以及反射层上形成第二子色阻层,使得第一子色阻层与第二子色阻层构成的色阻层的厚度为第二子色阻层的厚度的两倍,第一子色阻层与第二子色阻层采用相同材料。
其中,形成第二子色阻层的步骤进一步包括:在透射区的第一子色阻层以 及反射层上形成第二子色阻层,第一子色阻层与第二子色阻层的厚度材料均不同,透射区的光线经过色阻层后的色饱和度,与反射区的光线经过两次第二子色阻层后的色饱和度相同。
本发明的有益效果是,区别于现有技术,本发明显示面板包括上基板、下基板,以及设置在上基板和下基板之间的色阻层;显示面板分为透射区和反射区,反射区进一步设置有位于色阻层内部的反射层,反射层将色阻层分为第一子色阻层和第二子色阻层,第一子色阻层位于反射层与下基板之间,第二子色阻层位于反射层与上基板之间;透射区的光线经过色阻层,反射区的光线经过两次第一子色阻层或经过两次第二子色阻层。本发明显示面板中反射层将色阻层分为两个子色阻层,透射区光线经过色阻层,而反射区光线经过两次子色阻层,而子色阻层厚度小于色阻层厚度,因此透射区色饱和度与反射区色饱和度趋向于一致。
【附图说明】
图1是本发明显示面板第一实施方式的结构示意图;
图2是本发明显示面板第二实施方式的结构示意图;
图3是本发明显示面板的制造工艺一实施方式的流程示意图;
图4是由图3所示制造工艺制得的一显示面板的结构示意图;
图5是由图3所示制造工艺制得的另一显示面板的结构示意图。
【具体实施方式】
参阅图1,图1是本发明显示面板第一实施方式的结构示意图,本实施方式显示面板100,包括上基板11、下基板12,设置在上基板11和下基板12之间的色阻层13以及反射层14。
一般来说,显示面板中的基板包括玻璃基底、设置在玻璃基底上的TFT薄膜晶体管等;色阻层在本技术领域也被称为彩色滤光层;反射层通常应用在反射式显示面板中。因此除去以下描述,对于显示面板100中常见的部分,本领域技术人员能直接得出,本发明中不再进行说明。
显示面板100为半透半反显示面板,即包括透射区101和反射区102。反射层14设置在反射区102中,位于色阻层13的内部,并将色阻层13分为第一子色阻层131和第二子色阻层132,第一子色阻层131位于反射层14与下基板12 之间,第二子色阻层132位于反射层14与上基板11之间。其中,反射层14由反射材料制成,一般采用铝(Al)、银(Ag)、铜(Cu)等金属材料,金属材料制备工艺简单,能够保证良好的反光效果;在本实施方式中采用铝箔,铝的光泽度较好,反射效果好,并且铝的延展性高,利于金属反射层的加工制造。
透射区101的光线经过色阻层13,当反射层14的反射面141朝向第一子色阻层131时,反射区102的光线经过两次第一子色阻层131;当反射层14的反射面141朝向第二子色阻层132时,反射区102的光线经过两次第二子色阻层132。两种情况下,反射区102的光线均是经过两次子色阻层,子色阻层的厚度小于色阻层13的厚度,因此反射区102的色饱和度与透射区101的色饱和度趋向于一致。
在本实施方式中,显示面板100为单面显示面板,其中光源15设置在下基板12背向上基板11的一侧,色阻层13设置在下基板12上,反射层14的反射面141朝向上基板11设置。光源15为透射区101提供后置光源,光源15发出的光线经过色阻层13后被人眼观测到;光源15发出的光线未穿过反射区102,反射区102依靠外界的光线进行发光,具体为,外界光线穿过第二子色阻层132后到达反射层14被反射,反射光再次经过第二子色阻层132后被人眼观测到。
由于色阻层的材料及厚度会影响经过其光线的色饱和度,因此为提高反射区102色饱和度与透射区101色饱和度的一致性,使透射区101和反射区102的色饱和度尽量一样,第一子色阻层131与第二子色阻层132材料相同,第二子色阻层132的厚度H2为色阻层13厚度H0的一半。
当反射层14厚度H远小于色阻层13厚度H0时,可忽略反射层14的厚度H,即色阻层厚度H0为第一子色阻层131的厚度H1与第二子色阻层132的厚度H2之和,H0=H1+H2,将第一子色阻层131的厚度H1设置为等于第二子色阻层132的厚度H2,即H1=H2;使得第二子色阻层132的厚度H2为色阻层13厚度H0的一半。
当反射层14厚度H较大,不可忽略时,色阻层13厚度H0=H1+H2+H;最终得到第二子色阻层132的厚度H2为色阻层13厚度H0的一半,即H0=2×H2,可得到H1和H2需要满足的关系式:2×H2=H1+H2+H,即H2=H1+H;依据该关系式形成第一子色阻层131和第二子色阻层132,使得第二子色阻层132的厚度H2为色阻层13厚度H0的一半。
当然,也可选择不同材料形成第一子色阻层131和第二子色阻层132,并且 对应各自材料设置不同的厚度,使得透射区101的光线经过色阻层13后的色饱和度,与反射区102的光线经过两次第二子色阻层132后的色饱和度相同。
对于图1,需要说明的是,图示中显示面板100在反射区102和透射区101的盒厚相等,但在实际应用中,两者厚度并不一定相等,图中厚度相等的表示只是为了方便对本发明进行描述,对显示面板100在反射区102和透射区101的厚度并不形成限制。对于实际应用中反射区和透射区厚度不同的显示面板,均可采用本发明思路进行色阻层的设置。
请参阅图2,图2是本发明显示面板第二实施方式的结构示意图,本实施方式显示面板200,包括上基板21、下基板22,设置在上基板21和下基板22之间的色阻层23以及反射层24。
显示面板200分为透射区201和反射区202,反射层设置在反射区202中,位于色阻层23的内部,将色阻层分为第一子色阻层231和第二子色阻层232,第一子色阻层231位于反射层24与下基板22之间,第二子色阻层232位于反射层24与上基板21之间。
显示面板200的结构与显示面板100的结构大致相同,不同之处在于显示面板200为双面显示面板,其中光源25设置在下基板22背向上基板21的一侧;色阻层23设置在上基板21上,反射层24的反射面241朝向下基板22设置,反射区202的光线经过两次第一子色阻层231。
本显示面板200中,光源25对于透射区201来说属于后置光源,即光线自下基板22射入,经过色阻层23后被人眼观测到;而对于反射区202来说光源25属于前置光源,即光线自下基板22射入,经第一子色阻层231后到达反射层24被反射,反射光线再次经过第一子色阻层231后被人眼观测到。
与显示面板100中类似,本实施方式显示面板200中,第一子色阻层231与第二子色阻层232材料相同,第一子色阻层231的厚度H1为色阻层23厚度H0的一半。
同样,也可选择不同材料形成第一子色阻层231和第二子色阻层232,并且对应各自材料设置不同的厚度,使得透射区101的光线经过色阻层23后的色饱和度,与反射区102的光线经过两次第一子色阻层231后的色饱和度相同。
区别于现有技术,本发明显示面板包括上基板、下基板,以及设置在上基板和下基板之间的色阻层;显示面板分为透射区和反射区,反射区进一步设置有位于色阻层内部的反射层,反射层将色阻层分为第一子色阻层和第二子色阻 层,第一子色阻层位于反射层与下基板之间,第二子色阻层位于反射层与上基板之间;透射区的光线经过色阻层,反射区的光线经过两次第一子色阻层或经过两次第二子色阻层。本发明显示面板中反射层将色阻层分为两个子色阻层,透射区光线经过色阻层,而反射区光线经过两次子色阻层,而子色阻层厚度小于色阻层厚度,因此透射区色饱和度与反射区色饱和度趋向于一致。
请参阅图3、图4和图5,图3是本发明显示面板的制造工艺一实施方式的流程示意图,图4是由图3所示制造工艺制得的一显示面板的结构示意图;图5是由图3所示制造工艺制得的另一显示面板的结构示意图。图4和图5的区别仅在于光源的设置,因此两图的显示面板采用相同的标号。
图3所示制造工艺的实施方式包括以下步骤:
S301:形成第一基板。
第一基板31分为透射区301和反射区302,即对应的最终形成的显示面板300包括透射区301和反射区302。
S302:在第一基板上形成第一子色阻层。
在第一基板31上形成第一子色阻层321。
S303:在反射区的第一子色阻层上形成反射层。
在反射区302的第一子色阻层321上形成反射层33。
S304:在透射区的第一子色阻层以及反射层上形成第二子色阻层,第一子色阻层与第二子色阻层构成色阻层。
在透射区301的第一子色阻层321以及反射层33上形成第二子色阻层322。第一子色阻层321和第二子色阻层322形成色阻层32。
若第一子色阻层321和第二子色阻层322采用相同的材料,则所形成色阻层32的厚度为第二子色阻层322厚度的两倍。
若第一子色阻层321和第二子色阻层322采用不同的材料,则对应于不同的材料设置不同厚度,使得透射区301的光线经过色阻层32后的色饱和度,与反射区302的光线经过两次第二子色阻层322后的色饱和度相同。
S305:对应第一基板设置第二基板,色阻层位于第一基板和第二基板之间。
对应于第一基板31设置第二基板34,即第一基板31和第二基板34对盒设置,两基板之间填充有液晶。色阻层32位于第一基板31和第二基板34之间。
S306:在第一基板的外侧或第二基板的外侧设置光源。
光源35设置在第一基板31外侧时,如图4所示,显示面板300为单面显 示,透射区301的光线自第一基板31进入,经过色阻层32,由第二基板34射出;反射区302的光线自第二基板34进入,因反射层33反射经过两次第二子色阻层322,由第二基板34射出。由于步骤S304中第二子色阻层322的设置,使得透射区301和反射区302的色饱和度一致。图4中所示的显示面板300对应于前述显示面板100。
光源35设置在第二基板34外侧时,如图5所示,显示面板300为双面显示,透射区301的光线子第二基板34进入,经过色阻层32,由第一基板31射出实现显示;反射区302的光线自第二基板34进入,因反射层33反射经过两次第二子色阻层322,由光源35射出实现显示,透射区301和反射区302的色饱和度一致。图5中所示的显示面板300对应于前述显示面板200。
区别于现有技术,本发明显示面板的制造工艺中依次形成第一子色阻层、反射层和第二子色阻层,第一子色阻层和第二子色阻层构成色阻层,使得反射层位于色阻层内部,所得到的显示面板透射区的光线经过色阻层,而反射区的光线经过两次第二子色阻层,第二子色阻层厚度小于色阻层,因此透射区和反射区的色饱和度趋向于一致。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种显示面板,其中,所述显示面板包括上基板、下基板,以及设置在所述上基板和所述下基板之间的色阻层;所述显示面板分为透射区和反射区,所述反射区进一步设置有位于所述色阻层内部的反射层,所述反射层将所述色阻层分为第一子色阻层和第二子色阻层,所述第一子色阻层位于所述反射层与所述下基板之间,所述第二子色阻层位于所述反射层与所述上基板之间;所述透射区的光线经过所述色阻层,所述反射区的光线经过两次第一子色阻层或经过两次第二子色阻层;所述显示面板为单面显示面板,进一步包括光源,所述光源设置在所述下基板背向所述上基板的一侧;所述色阻层设置在所述下基板上,所述反射层的反射面朝向所述上基板设置;所述反射层为金属反射层。
  2. 根据权利要求1所述的显示面板,其中,所述第一子色阻层与所述第二子色阻层材料相同,所述第二子色阻层的厚度为所述色阻层厚度的一半。
  3. 一种显示面板,其中,所述显示面板包括上基板、下基板,以及设置在所述上基板和所述下基板之间的色阻层;所述显示面板分为透射区和反射区,所述反射区进一步设置有位于所述色阻层内部的反射层,所述反射层将所述色阻层分为第一子色阻层和第二子色阻层,所述第一子色阻层位于所述反射层与所述下基板之间,所述第二子色阻层位于所述反射层与所述上基板之间;所述透射区的光线经过所述色阻层,所述反射区的光线经过两次第一子色阻层或经过两次第二子色阻层。
  4. 根据权利要求3所述的显示面板,其中,所述显示面板为单面显示面板,进一步包括光源,所述光源设置在所述下基板背向所述上基板的一侧;所述色阻层设置在所述下基板上,所述反射层的反射面朝向所述上基板设置。
  5. 根据权利要求4所述的显示面板,其中,所述第一子色阻层与所述第二子色阻层材料相同,所述第二子色阻层的厚度为所述色阻层厚度的一半。
  6. 根据权利要求3所述的显示面板,其中,所述显示面板为双面显示面板,进一步包括光源,所述光源设置在所述下基板背向所述上基板的一侧;所述色阻层设置在所述上基板上,所述反射层的反射面朝向所述下基板设置。
  7. 根据权利要求6所述的显示面板,其中,所述第一子色阻层与所述第二子色阻层材料相同,所述第一子色阻层的厚度为所述色阻层厚度的一半。
  8. 一种显示面板的制造工艺,其中,所述制造工艺包括:
    形成第一基板,所述第一基板分为透射区和反射区;
    在所述第一基板上形成第一子色阻层;
    在所述反射区的第一子色阻层上形成反射层;
    在所述透射区的第一子色阻层以及所述反射层上形成第二子色阻层,所述第一子色阻层与第二子色阻层构成色阻层;
    对应所述第一基板设置第二基板,所述色阻层位于所述第一基板和所述第二基板之间;
    其中,所述透射区的光线经过所述色阻层,所述反射区的光线经过两次第二子色阻层。
  9. 根据权利要求8所述的制造工艺,其中,所述制造工艺进一步包括:
    在所述第一基板的外侧或所述第二基板的外侧设置光源。
  10. 根据权利要求8所述的制造工艺,其中,
    所述在所述反射区的第一子色阻层上形成反射层的步骤进一步包括:在所述反射区的第一子色阻层上形成反射面背离所述第一子色阻层的反射层。
  11. 根据权利要求8所述的制造工艺,其中,形成所述第二子色阻层的步骤进一步包括:
    在所述透射区的第一子色阻层以及所述反射层上形成第二子色阻层,使得所述第一子色阻层与所述第二子色阻层构成的色阻层的厚度为所述第二子色阻层的厚度的两倍,所述第一子色阻层与所述第二子色阻层采用相同材料。
  12. 根据权利要求8所述的制造工艺,其中,形成所述第二子色阻层的步骤进一步包括:
    在所述透射区的第一子色阻层以及所述反射层上形成第二子色阻层,所述第一子色阻层与第二子色阻层的厚度材料均不同,所述透射区的光线经过所述色阻层后的色饱和度,与所述反射区的光线经过两次第二子色阻层后的色饱和度相同。
PCT/CN2015/099740 2014-06-12 2015-12-30 一种显示面板及其制造工艺 WO2017101163A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2018126194A RU2688809C1 (ru) 2015-12-18 2015-12-30 Жидкокристаллическая панель и способ ее изготовления
KR1020187020478A KR20180094092A (ko) 2015-12-18 2015-12-30 디스플레이 패널 및 그 제조 공정
GB1811678.0A GB2562186A (en) 2015-12-18 2015-12-30 Display panel and process for manufacturing same
US14/902,418 US20160377917A1 (en) 2014-06-12 2015-12-30 Liquid crystal panel and the manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510967826.XA CN105467656A (zh) 2015-12-18 2015-12-18 一种显示面板及其制造工艺
CN201510967826.X 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017101163A1 true WO2017101163A1 (zh) 2017-06-22

Family

ID=55605519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099740 WO2017101163A1 (zh) 2014-06-12 2015-12-30 一种显示面板及其制造工艺

Country Status (5)

Country Link
KR (1) KR20180094092A (zh)
CN (1) CN105467656A (zh)
GB (1) GB2562186A (zh)
RU (1) RU2688809C1 (zh)
WO (1) WO2017101163A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608380B (zh) * 2021-07-30 2022-09-27 惠科股份有限公司 双面显示面板、显示装置和驱动方法
CN113741087B (zh) * 2021-08-31 2022-09-02 惠科股份有限公司 双面显示面板
CN113741096B (zh) * 2021-08-31 2022-03-22 惠科股份有限公司 双面显示面板
CN113741088B (zh) * 2021-08-31 2022-08-05 惠科股份有限公司 双面显示面板
CN115167029B (zh) * 2022-07-01 2023-11-28 Tcl华星光电技术有限公司 显示模组及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791643B2 (en) * 2002-10-25 2004-09-14 Toppoly Optoelectronics Corp. Dual-display liquid crystal display
CN1928661A (zh) * 2006-09-21 2007-03-14 友达光电股份有限公司 半穿透反射式显示器
CN200941140Y (zh) * 2005-11-22 2007-08-29 比亚迪股份有限公司 一种半反射式彩色滤光片、彩色滤光膜及液晶显示器
CN101551543A (zh) * 2008-04-03 2009-10-07 群康科技(深圳)有限公司 半透射半反射式液晶显示面板
CN202748576U (zh) * 2012-09-06 2013-02-20 北京京东方光电科技有限公司 一种半透半反型液晶面板及显示装置
CN104199213A (zh) * 2014-08-18 2014-12-10 京东方科技集团股份有限公司 一种半透半反式液晶显示面板及液晶显示器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627728B2 (ja) * 2001-09-19 2005-03-09 セイコーエプソン株式会社 液晶パネル、液晶パネルの製造方法、液晶装置、並びに電子機器
KR100790357B1 (ko) * 2002-02-26 2008-01-02 엘지.필립스 엘시디 주식회사 반사투과형 액정표시장치용 컬러필터기판 및 그 제조방법
US6909482B2 (en) * 2002-12-11 2005-06-21 General Electric Company Display substrate with reflective color filters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791643B2 (en) * 2002-10-25 2004-09-14 Toppoly Optoelectronics Corp. Dual-display liquid crystal display
CN200941140Y (zh) * 2005-11-22 2007-08-29 比亚迪股份有限公司 一种半反射式彩色滤光片、彩色滤光膜及液晶显示器
CN1928661A (zh) * 2006-09-21 2007-03-14 友达光电股份有限公司 半穿透反射式显示器
CN101551543A (zh) * 2008-04-03 2009-10-07 群康科技(深圳)有限公司 半透射半反射式液晶显示面板
CN202748576U (zh) * 2012-09-06 2013-02-20 北京京东方光电科技有限公司 一种半透半反型液晶面板及显示装置
CN104199213A (zh) * 2014-08-18 2014-12-10 京东方科技集团股份有限公司 一种半透半反式液晶显示面板及液晶显示器

Also Published As

Publication number Publication date
GB201811678D0 (en) 2018-08-29
KR20180094092A (ko) 2018-08-22
CN105467656A (zh) 2016-04-06
RU2688809C1 (ru) 2019-05-22
GB2562186A (en) 2018-11-07

Similar Documents

Publication Publication Date Title
US9612374B2 (en) Color filter, display panel and display device
WO2017101163A1 (zh) 一种显示面板及其制造工艺
CN104360534A (zh) 彩膜基板的制作方法、彩膜基板及显示装置
CN103995390B (zh) 显示面板、显示装置及显示面板的制造方法
WO2014206018A1 (zh) 半透半反显示面板及其制备方法、显示装置
WO2015109817A1 (zh) 半透半反液晶显示面板及其制作方法、显示装置
CN104280811B (zh) 偏光片、液晶面板以及液晶显示器
TW538268B (en) Liquid crystal display device
WO2014169519A1 (zh) 显示面板及显示装置
US20070070270A1 (en) Display
US9891468B2 (en) Reflective liquid crystal display panel and display device
CN100405169C (zh) 半穿透反射式显示器
US20150346418A1 (en) Backlight module and lcd using the same
CN202033561U (zh) 一种半透半反式的像素结构及半透半反式液晶显示器
US20130141659A1 (en) Liquid crystal display panel and method for driving the same
JP2004354818A (ja) 表示装置
CN2914134Y (zh) 一种微反射液晶显示器
WO2019029036A1 (zh) 半穿透半反射式液晶显示器
TWI325071B (en) Transflective liquid crystal display device
CN206348561U (zh) 一种改进的液晶显示屏
WO2019001002A1 (zh) 显示面板及其制作方法、显示装置
CN108227280A (zh) 一种基于寻常光模式的宽视角液晶显示屏
TW564383B (en) A liquid crystal display comprises color filters with recess structures
US20170248819A1 (en) Liquid crystal panels and liquid crystal displays
EP1582912A4 (en) LIQUID CRYSTAL DISPLAY UNIT

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14902418

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187020478

Country of ref document: KR

Kind code of ref document: A

Ref document number: 201811678

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151230

WWE Wipo information: entry into national phase

Ref document number: 1811678.0

Country of ref document: GB

Ref document number: 1020187020478

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2018126194

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 15910632

Country of ref document: EP

Kind code of ref document: A1