[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017199821A1 - Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery - Google Patents

Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery Download PDF

Info

Publication number
WO2017199821A1
WO2017199821A1 PCT/JP2017/017757 JP2017017757W WO2017199821A1 WO 2017199821 A1 WO2017199821 A1 WO 2017199821A1 JP 2017017757 W JP2017017757 W JP 2017017757W WO 2017199821 A1 WO2017199821 A1 WO 2017199821A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solid
group
secondary battery
active material
Prior art date
Application number
PCT/JP2017/017757
Other languages
French (fr)
Japanese (ja)
Inventor
雅臣 牧野
宏顕 望月
智則 三村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018518242A priority Critical patent/JP6684901B2/en
Publication of WO2017199821A1 publication Critical patent/WO2017199821A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte composition, a solid electrolyte-containing sheet and an all-solid secondary battery, and a method for producing a solid electrolyte-containing sheet and an all-solid secondary battery.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charging and discharging by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolyte is liable to leak, and there is a possibility that a short circuit occurs inside the battery due to overcharge or overdischarge, resulting in ignition, and further improvements in reliability and safety are required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention.
  • All-solid-state secondary batteries are composed of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which is a problem of batteries using organic electrolytes, and can also extend the life. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which electrodes and an electrolyte are directly arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolyte, and application to an electric vehicle, a large storage battery, and the like is expected.
  • Patent Document 1 describes an all-solid-state secondary battery that can prevent generation of hydrogen sulfide due to reaction with moisture in the atmosphere while ensuring conductivity using a sulfide-based inorganic solid electrolyte. ing. In this all solid state secondary battery, the sulfide-based inorganic solid electrolyte is coated with a liquid substance.
  • the all-solid-state secondary battery described in Patent Document 1 can prevent functional deterioration of the sulfide-based inorganic solid electrolyte depending on the production method, and can improve the performance of the all-solid-state secondary battery such as battery voltage to some extent. it can.
  • an all-solid secondary battery is manufactured using a solid electrolyte composition comprising a sulfide-based inorganic solid electrolyte coated with a liquid material and a dispersion medium, the dispersion medium and the liquid material are compatible.
  • the sulfide-based inorganic solid electrolyte coating may be removed.
  • the sulfide-based inorganic solid electrolyte comes into contact with moisture in the dispersion medium, and the function as the electrolyte and the performance of the all-solid secondary battery are reduced.
  • an object of the present invention is to provide a solid electrolyte composition in which the reaction between an inorganic solid electrolyte and moisture is suppressed and an excellent battery voltage can be realized in an all-solid secondary battery.
  • the present invention provides a solid electrolyte-containing sheet capable of realizing an excellent battery voltage in an all-solid secondary battery in which the reaction between the inorganic solid electrolyte and moisture is suppressed, and an all-solid secondary battery using the solid electrolyte-containing sheet. The issue is to provide.
  • this invention makes it a subject to provide the manufacturing method of the said solid electrolyte containing sheet and an all-solid-state secondary battery.
  • Solid electrolyte composition containing an inorganic solid electrolyte (A) having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, a dehydrating agent (B), and a dispersion medium (C) object.
  • A inorganic solid electrolyte
  • B dehydrating agent
  • C dispersion medium
  • the dehydrating agent (B) is an organic compound that reacts with water to form a product having a partial structure represented by any one of the following general formulas (1) to (3) ⁇ 1> to ⁇ 3>
  • R 1 , R 2 , R 31 and R 32 each independently represent a hydrogen atom, an alkyl group or an aryl group.
  • X 1 , X 2 , X 31 and X 32 each independently represent a single bond, an oxygen atom, a sulfur atom or —N (R 3 ) —.
  • R 3 represents a hydrogen atom, an alkyl group or an aryl group.
  • Y 1 represents a carbon atom or a sulfur atom.
  • Y 2 represents a sulfur atom.
  • Y 3 represents a phosphorus atom. * Indicates a linking site in the product.
  • ⁇ 5> The solid according to any one of ⁇ 1> to ⁇ 4>, wherein the dehydrating agent (B) is at least one selected from the group consisting of acid anhydrides, acid halides, acetals, and orthoesters.
  • ⁇ 6> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 5>, wherein the dehydrating agent (B) is an organic compound having a fluorine atom.
  • ⁇ 7> The solid according to any one of ⁇ 1> to ⁇ 6>, wherein the content of the dehydrating agent (B) is 1% by mass or more and 50% by mass or less in the total solid content of the solid electrolyte composition. Electrolyte composition.
  • ⁇ 11> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 10>, containing a binder (E).
  • a binder (E) is at least one selected from the group consisting of an acrylic resin, a polyurethane resin, a polyurea resin, a polyimide resin, a fluorine-containing resin, and a hydrocarbon-based thermoplastic resin.
  • An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer
  • An all-solid-state secondary battery wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is the solid electrolyte-containing sheet according to ⁇ 14>.
  • a method for producing an all-solid secondary battery wherein an all-solid secondary battery is produced through the production method according to ⁇ 15>.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • acryl or “(meth) acryl” is simply described, it means methacryl and / or acryl.
  • acryloyl or “(meth) acryloyl” simply means methacryloyl and / or acryloyl.
  • the mass average molecular weight (Mw) can be measured as a molecular weight in terms of polystyrene by GPC.
  • GPC device HLC-8220 manufactured by Tosoh Corporation
  • G3000HXL + G2000HXL is used as the column
  • the flow rate is 1 mL / min at 23 ° C.
  • detection is performed by RI.
  • the eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.) and dissolves. If present, use THF.
  • the reaction between the inorganic solid electrolyte and moisture is suppressed, and an excellent battery voltage can be realized in an all-solid secondary battery produced using this solid electrolyte composition.
  • the reaction between the inorganic solid electrolyte and moisture is suppressed, and an excellent battery voltage can be realized in an all-solid secondary battery.
  • the all-solid-state secondary battery of this invention is excellent in a battery voltage.
  • seat and all-solid-state secondary battery of this invention can be manufactured.
  • FIG. 1 is a longitudinal sectional view schematically showing an all solid state secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing the test apparatus used in the examples.
  • FIG. 3 is a longitudinal sectional view schematically showing an all solid state secondary battery (coin battery) produced in the example.
  • FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of this embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. .
  • Each layer is in contact with each other and has a laminated structure.
  • the solid electrolyte composition of the present invention can be preferably used as a molding material for the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
  • the solid electrolyte-containing sheet of the present invention is suitable as the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
  • a positive electrode active material layer (hereinafter also referred to as a positive electrode layer) and a negative electrode active material layer (hereinafter also referred to as a negative electrode layer) may be collectively referred to as an electrode layer or an active material layer.
  • the all-solid-state secondary battery having the layer configuration shown in FIG. 1 when putting the all-solid-state secondary battery having the layer configuration shown in FIG. 1 into a 2032 type coin case, the all-solid-state secondary battery having the layer configuration shown in FIG. A battery produced by placing an electrode sheet for an all-solid secondary battery in a 2032 type coin case may be referred to as an all-solid secondary battery.
  • the thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. In consideration of general battery dimensions, the thickness is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 is 50 ⁇ m or more and less than 500 ⁇ m.
  • the solid electrolyte composition of the present invention includes an inorganic solid electrolyte (A) having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, a dehydrating agent (B), and a dispersion medium (C). Containing.
  • the inorganic solid electrolyte (A), the dehydrating agent (B), and the dispersion medium (C) may be referred to as an inorganic solid electrolyte, a dehydrating agent, and a dispersion medium, respectively.
  • the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). In addition, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions.
  • organic solid electrolytes polymer electrolytes typified by polyethylene oxide (PEO), etc.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • inorganic electrolyte salts such as LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
  • a solid electrolyte material applied to this type of product can be appropriately selected and used.
  • Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes.
  • a sulfide-based inorganic solid electrolyte is preferably used.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S and P may be used. An element may be included.
  • a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (I) is exemplified.
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is further preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3.
  • d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, and more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
  • glass glass
  • glass ceramic glass ceramic
  • Li—PS system glass containing Li, P and S, or Li—PS system glass ceramics containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of an element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • simple phosphorus simple sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • a sulfide of an element represented by M for example, SiS 2 , SnS, GeS 2
  • the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2 —LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2
  • Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • Oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and A compound having an electronic insulating property is preferable.
  • Li xc B yc M cc zc Onc (M cc is C, S, Al, Si, Ga, Ge, In, Sn are at least one element, xc satisfies 0 ⁇ xc ⁇ 5, yc satisfies 0 ⁇ yc ⁇ 1, and zc satisfies 0 ⁇ zc ⁇ met 1, nc satisfies 0 ⁇ nc ⁇ 6.), Li xd ( l, Ga) yd (Ti, Ge) zd Si ad P md O nd ( provided that, 1 ⁇ xd ⁇ 3,0 ⁇ yd ⁇ 1,0 ⁇ zd ⁇ 2,0 ⁇ ad ⁇ 1,1 ⁇ md
  • D ee represents a halogen atom or Represents a combination of two or more halogen atoms.
  • Li 3 BO 3 —Li 2 SO 4 Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 6 BaLa 2 ta 2 O 12, Li 3 PO (4-3 / 2w) N w (w is w ⁇ 1), LI ICON (Lithium super ionic conductor) type Li 3.5 Zn 0.25 GeO 4 having a crystal structure, La 0.55 Li 0.35 TiO 3 having a perovskite crystal structure, NASICON (Natrium super ionic conductor) type crystal structure
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the measurement of the average particle diameter of an inorganic solid electrolyte particle is performed in the following procedures.
  • the inorganic solid electrolyte particles are diluted and adjusted in a 20 ml sample bottle using water (heptane in the case of a substance unstable to water).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • the content of the solid component in the solid electrolyte composition of the inorganic solid electrolyte is 100% by mass of the solid component when considering the reduction of the interface resistance when used in an all-solid secondary battery and the maintenance of the reduced interface resistance. It is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass or more. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
  • the said inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
  • solid content refers to a component that does not disappear by evaporation or evaporation when subjected to a drying treatment at 170 ° C. for 6 hours in a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium described below.
  • the solid electrolyte composition of the present invention contains a dehydrating agent in order to suppress alteration of the inorganic solid electrolyte due to reaction with water.
  • the dehydrating agent used in the present invention means a compound that adsorbs water or reacts with water, and includes a desiccant and a water absorbing agent.
  • the dehydrating agent is not particularly limited and may be either an organic compound or an inorganic compound. In the present invention, the dehydrating agent may be used alone or in combination of two or more.
  • inorganic compounds include diphosphorus pentoxide, phosphorus trichloride, molecular sieves (3A, 4A, 5A, 13X), silica gel, zeolite, lithium chloride, calcium chloride, sodium sulfate, magnesium sulfate, Examples include aluminum oxide, calcium oxide, metal Na, metal Li, and metal hydride.
  • metal hydrides include lithium hydride, lithium borohydride, sodium hydride, calcium hydride, sodium borohydride, and lithium aluminum hydride.
  • molecular sieves adsorb water, and others exhibit a dehydrating function by reacting with water.
  • the inorganic compound dehydrating agent may be referred to as an inorganic dehydrating agent. What is necessary is just to use the said inorganic type dehydrating agent in the aspect normally used as a dehydrating agent. For example, molecular sieves that are sufficiently dried are used.
  • the inorganic dehydrating agent As the inorganic dehydrating agent, a chemical desiccant that uses the intrinsic properties of chemical substances (chemical reaction, deliquescence) and a physical desiccant that uses the property that water molecules are easily adsorbed on the porous surface should be used. it can.
  • organic compounds exhibit a dehydrating function by reacting with water.
  • the organic compound dehydrating agent may be referred to as an organic dehydrating agent.
  • an organic compound having a heteroatom-containing double bond is preferable because it has an electrophilic property capable of reacting with water.
  • the hetero atom include an oxygen atom, a sulfur atom, a phosphorus atom and a nitrogen atom.
  • Specific examples of the heteroatom-containing double bond include C ⁇ O, S ⁇ O, P ⁇ O and C ⁇ N.
  • an organic dehydrating agent an organic compound having a partial structure in which two or more oxygen atoms are bonded to the same carbon atom or the same sulfur atom in order to rapidly react with water and consume water by being highly reactive with water Is preferred.
  • Specific examples of the partial structure in which two or more oxygen atoms are bonded to the same carbon atom include> C (—O—) 2 and —C ( ⁇ O) O—.
  • organic dehydrating agent when the hydrolysis by-product is an acidic compound, it is difficult to lower the ionic conductivity with respect to the inorganic solid electrolyte, so that it reacts with water and the following general formulas (1) to (3)
  • the organic compound which forms the product which has the partial structure represented by either of these is preferable.
  • R 1 , R 2 , R 31 and R 32 each independently represent a hydrogen atom, an alkyl group or an aryl group.
  • X 1 , X 2 , X 31 and X 32 each independently represent a single bond, an oxygen atom, a sulfur atom or —N (R 3 ) —.
  • R 3 represents a hydrogen atom, an alkyl group or an aryl group.
  • Y 1 represents a carbon atom or a sulfur atom.
  • Y 2 represents a sulfur atom.
  • Y 3 represents a phosphorus atom. * Indicates a linking site in the product.
  • alkyl group for R 1 to R 3 , R 31 and R 32 an alkyl group for the substituent P described later is preferable.
  • aryl group of R 1 to R 3 , R 31 and R 32 an aryl group in the substituent P described later is preferable.
  • organic compound forming the product having the partial structure represented by the general formula (1) include formic acid, acetic acid, propionic acid, pivalic acid, trifluoroacetic acid, acrylic acid, methacrylic acid, and esters thereof. Can be mentioned.
  • Specific examples of the organic compound forming the product having the partial structure represented by the general formula (2) include methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, vinylsulfonic acid, and esters thereof.
  • organic compound forming the product having the partial structure represented by the general formula (3) include methylphosphonic acid, ethylphosphonic acid, vinylphosphonic acid, phenylphosphonic acid and esters thereof. The present invention is not limited to the above specific examples.
  • Acetal is a compound having a structure> C (OR) 2 (R represents an arbitrary organic group), and includes both a compound obtained from an aldehyde and a compound (ketal) obtained from a ketone.
  • the dehydrating agent used in the present invention is preferably an organic compound having a fluorine atom, and more preferably a perfluoro organic compound. This is because by having a fluorine atom, in addition to the original dehydrating effect of the dehydrating agent, it has the effect of suppressing the entry of water into the composition due to the presence of the dehydrating agent.
  • organic dehydrating agent examples include alkyl lithium (for example, normal butyl lithium, sec-butyl lithium, tert-butyl lithium, methyl lithium and phenyl lithium), metal amide (for example, lithium diisopropylamide, lithium-2,2, 6,6-tetramethylpiperidide, lithium hexamethyldisilazide, lithium amide and sodium amide), silane coupling agents, carboxylic anhydrides (eg acetic anhydride, trifluoroacetic anhydride, succinic anhydride), sulfones Acid anhydride (for example, trifluoromethanesulfonic anhydride), carboxylic acid halide (carboxylic acid chloride is preferable, for example, acetic acid chloride), sulfonic acid halide (sulfonic acid chloride is preferable, for example, trifluoromethanesulfonic acid chloride) De) Orutoiso acid trimethyl and the following exemplified compound
  • the content of the dehydrating agent in the solid electrolyte composition is not particularly limited, but in order to exert a sufficient drying capacity while excluding adverse effects on the inorganic solid electrolyte, the total solid content is 1% by mass or more and 50% by mass or less. It is preferably 2% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 20% by mass or less.
  • the dehydrating agent may be dissolved in the solid electrolyte composition or insoluble. When insoluble, it may exist evenly in the solid electrolyte composition or may be unevenly distributed. In the case of uneven distribution, the dehydrating agent may be present at the upper interface or the lower interface in the solid electrolyte composition. In particular, it is preferable that a dehydrating agent exists between the solid electrolyte composition and an interface with which moisture can come into contact.
  • the molecular weight and boiling point of the dehydrating agent used in the present invention are not particularly limited, but the boiling point at a molecular weight of 300 or less or 760 mmHg may be 300 ° C. or less in order to efficiently remove excess dehydrating agent when preparing the solid electrolyte-containing sheet. preferable. It is practical that the lower limit of the molecular weight is 50 or more. On the other hand, the lower limit of the boiling point at 760 mmHg is practically 25 ° C. or higher.
  • the dehydrating agent (B) used in the present invention is a liquid at 25 ° C. and exhibits a mass ratio (B) / weight to the dispersion medium (C) in order to exhibit a sufficient drying ability while excluding adverse effects on the inorganic solid electrolyte.
  • (C) is preferably 1/99 to 99/1, more preferably 5/95 to 50/5, and particularly preferably 10/90 to 30/70.
  • a compound, partial structure or group for which substitution or non-substitution is not clearly specified means that the compound, partial structure or group may have an appropriate substituent. This is also synonymous for compounds that do not specify substituted or unsubstituted.
  • Preferable substituents include the following substituent P. Examples of the substituent P include the following.
  • alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., but in this specification,
  • an aryloyl group (preferably an aryloyl group having 7 to 23 carbon atoms, such as benzoyl, etc., but an acyl group in this specification usually means an aryloyl group).
  • An acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy), an aryloyloxy group (preferably an aryloyloxy group having 7 to 23 carbon atoms, such as benzoyloxy, etc., provided that In this specification, an acyloxy group usually means an aryloyloxy group), a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.), an alkylsulfanyl group (preferably an alkylsulfanyl group having 1 to 20 carbon atoms, such as methylsulfanyl, ethyl Sulfanyl, isopropyl Sulfanyl, benzylsulfanyl, etc.), arylsulfanyl groups (preferably arylsulfanyl groups having 6 to 26 carbon atoms, such as phenylsulfanyl, 1-naphthylsulfanyl, 3-methylphenylsulfanyl, 4-methoxyphenylsulfanyl, etc.), alkylsulfonyl A group (preferably an alkylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl or ethyls
  • a silyl group (preferably an alkylsilyl group having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.), an arylsilyl group (preferably 6 to 4 carbon atoms)
  • Arylsilyl groups such as triphenylsilyl
  • alkoxysilyl groups preferably alkoxysilyl groups having 1 to 20 carbon atoms such as monomethoxysilyl, dimethoxysilyl, trimethoxysilyl, triethoxysilyl, etc.
  • aryl An oxysilyl group (preferably an aryloxysilyl group having 6 to 42 carbon atoms, such as triphenyloxysilyl), a phosphoryl group (preferably a phosphoryl group having 0 to 20 carbon atoms, such as —OP ( ⁇ O) (R P ) 2 ), a phosphonyl group (preferably a phosphonyl
  • Groups such as -P (R P ) 2 ), (meth) acryloyl groups, (meth) acryloyloxy groups, ( (Meth) acryloylumimino group ((meth) acrylamide group), hydroxy group, sulfanyl group, carboxy group, phosphoric acid group, phosphonic acid group, sulfonic acid group, cyano group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, Iodine atom).
  • each of the groups listed as the substituent P may be further substituted with the substituent P described above.
  • substituent, linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and / or an alkynylene group, these may be cyclic or linear, and may be linear or branched. It may be substituted as described above or unsubstituted.
  • the solid electrolyte composition of the present invention contains a dispersion medium for dispersing solid components.
  • Specific examples of the dispersion medium include the following.
  • alcohol compound solvent examples include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4-butane. Diols are mentioned.
  • ether compound solvents include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol monomethyl ether, Propylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, etc.), dialkyl ether (dimethyl ether, diethyl ether, dibutyl ether, etc.), alkyl aryl ether (anisole), tetrahydrofuran, dioxane (1,2-, 1,3) And 1,4-isomers), diethoxyethane, tetraethylene glycol dimethyl ether (tetraglyme), triethylene glycol dimethyl ether (triglyme), tetraethylene glycol monomethyl ether, triethylene glycol di
  • amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • amino compound solvent examples include triethylamine and tributylamine.
  • ketone compound solvent examples include acetone, methyl ethyl ketone, diethyl ketone, ethyl propyl ketone, dipropyl ketone, dibutyl ketone, dipentyl ketone, dihexyl ketone, and cyclohexanone.
  • ester compound solvents include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate.
  • Examples of the carbonate compound solvent include ethylene carbonate, dimethyl carbonate, and diethyl carbonate.
  • aromatic compound solvent examples include benzene, toluene, xylene, mesitylene and the like.
  • Examples of the aliphatic compound solvent include hexane, heptane, cyclohexane, methylcyclohexane, octane, pentane, and cyclopentane.
  • nitrile compound solvent examples include acetonitrile, propyronitrile, butyronitrile, and the like.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher at normal pressure (1 atm).
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
  • ether compound solvents aromatic compound solvents, and aliphatic compound solvents are preferably used.
  • a combination of an inorganic dehydrating agent and an ether compound solvent, an aromatic compound solvent or an aliphatic compound solvent is preferable because the dehydrating agent can be maintained without being fixed.
  • the combination of an organic type dehydrating agent and an ether compound solvent, a ketone compound solvent, an ester solvent, an aromatic compound solvent or an aliphatic compound solvent is preferable.
  • the ether compound solvents diethyl ether, dimethoxyethane, ethylphenyl ether, tetrahydrofuran and 1,4-dioxane are preferred.
  • toluene and xylene are preferred as the aromatic compound solvent.
  • heptane and octane are preferable as the aliphatic compound solvent.
  • the content of the dispersion medium in the solid electrolyte composition of the present invention is not particularly limited, but is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
  • the dispersion medium is contained in the solid electrolyte composition, but is preferably removed in the process of producing the solid electrolyte-containing sheet or the all-solid secondary battery and does not remain in the solid electrolyte-containing sheet or the all-solid-state secondary battery. A part of the dispersion medium may remain in the solid electrolyte-containing sheet or the all-solid secondary battery.
  • the allowable amount of the residual amount in the solid electrolyte-containing sheet or the all-solid secondary battery of these dispersion media is 5% by mass or less, more preferably 1% by mass or less, and more preferably 0.1% by mass or less. More preferred is 0.05% by mass or less.
  • the lower limit is not particularly defined, it is practical that it is 1 ppb or more (mass basis).
  • the solid electrolyte composition of the present invention may contain an active material (D) capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the Periodic Table.
  • the active material (D) is also simply referred to as an active material.
  • the active material include a positive electrode active material and a negative electrode active material, and a transition metal oxide that is a positive electrode active material or a metal oxide that is a negative electrode active material is preferable.
  • a solid electrolyte composition containing an active material positive electrode active material, negative electrode active material
  • an electrode composition positive electrode composition, negative electrode composition
  • the positive electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be complexed with Li, such as sulfur, or a complex of sulfur and metal.
  • the positive electrode active material it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V). More preferred.
  • this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halide phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
  • transition metal oxide having a layered rock salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.10 Al 0.05 O 2 (lithium nickel cobalt aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobaltate [NMC]) and LiNi 0.5 Mn 0.5 O 2 (manganese) Lithium nickelate).
  • LCO lithium cobaltate
  • NCA lithium nickel cobalt aluminate
  • NMC nickel manganese lithium cobaltate
  • LiNi 0.5 Mn 0.5 O 2 manganese lithium cobaltate
  • transition metal oxides having (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
  • (MC) lithium-containing transition metal phosphate compounds include olivine-type phosphate iron salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
  • Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO, LMO, NCA or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited.
  • the thickness can be 0.1 to 50 ⁇ m.
  • an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and even more preferably 50 to 85% by mass at 100% by mass. Preferably, it is 55 to 80% by mass.
  • the negative electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium simple substance and a lithium alloy such as a lithium aluminum alloy, and , Metals such as Sn, Si, Al, and In that can form an alloy with lithium.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) -based resin, furfuryl alcohol resin, etc.
  • the carbonaceous material which baked resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
  • an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during occlusion and release of lithium ions, and the deterioration of the electrode is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
  • a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of occlusion of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
  • the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a normal pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, and a sieve are preferably used.
  • pulverizing wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass with a solid content of 100% by mass.
  • the surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si, or Li. Specific examples include spinel titanate, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, and the like. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , LiTaO 3.
  • the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the particle surface of the positive electrode active material or the negative electrode active material may be subjected to a surface treatment with actinic light or an active gas (plasma or the like) before and after the surface coating.
  • the solid electrolyte composition of the present invention may contain a binder (E).
  • the binder (E) is also simply referred to as a binder.
  • the binder used in the present invention is not particularly limited as long as it is an organic polymer.
  • the binder that can be used in the present invention is not particularly limited, and for example, a binder made of the resin described below is preferable.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic resin examples include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of these monomers (preferably a copolymer of acrylic acid and methyl acrylate). It is done. Further, a copolymer (copolymer) with other vinyl monomers is also preferably used. Examples thereof include a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile, and styrene.
  • the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferred.
  • other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the binder used in the present invention exhibits strong binding properties (inhibition of peeling from the current collector and improvement in cycle life due to binding at the solid interface), so that the above-mentioned acrylic resin, polyurethane resin, polyurea resin, polyimide resin are used. It is preferably at least one selected from the group consisting of fluorine-containing resins and hydrocarbon-based thermoplastic resins.
  • the binder used in the present invention preferably has a polar group in order to improve wettability and adsorptivity to the particle surface.
  • the polar group is preferably a monovalent group containing a hetero atom, for example, a monovalent group containing a structure in which any one of an oxygen atom, a nitrogen atom and a sulfur atom is bonded to a hydrogen atom.
  • Specific examples include a carboxy group, A hydroxy group, an amino group, a phosphate group, and a sulfo group are mentioned.
  • the shape of the binder is not particularly limited, and may be particulate or indefinite in the solid electrolyte composition, the solid electrolyte-containing sheet, or the all-solid secondary battery.
  • the binder is particles insoluble in the dispersion medium.
  • “the binder is an insoluble particle in the dispersion medium” means that the average particle diameter does not decrease by 5% or more even when added to the dispersion medium at 30 ° C. and left to stand for 24 hours. It is preferably 3% or less, more preferably 1% or less.
  • the binder in the solid electrolyte composition is preferably a nanoparticle having an average particle diameter of 10 to 1000 nm in order to suppress a decrease in interparticle ion conductivity of the inorganic solid electrolyte.
  • the average particle size of the binder can be calculated by the method described in the Examples section below.
  • the binder may be composed of one compound or a combination of two or more compounds.
  • the binder is a particle, the particle itself may not be a uniform dispersion but may be a core-shell shape or a hollow shape.
  • you may enclose organic substance and an inorganic substance in the core part which forms the inside of a binder.
  • the organic substance included in the core include a dispersion medium, a dispersant, a lithium salt, an ionic liquid, and a conductive auxiliary agent described later.
  • the average particle size of the binder particles used in the present invention is based on the measurement conditions and definitions described below unless otherwise specified.
  • the binder particles are prepared by diluting a 1% by mass dispersion in a 20 ml sample bottle using an arbitrary solvent (dispersion medium used for preparing the solid electrolyte composition, for example, octane).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • the measurement from the produced all-solid-state secondary battery is performed, for example, after disassembling the battery and peeling off the electrode, then measuring the electrode material according to the method for measuring the average particle diameter of the polymer particles, This can be done by eliminating the measured value of the average particle diameter of the particles other than the polymer particles that have been measured.
  • a commercial item can be used for the binder used for this invention. Moreover, it can also prepare by a conventional method.
  • the water concentration of the polymer constituting the binder used in the present invention is preferably 100 ppm (mass basis) or less.
  • the polymer which comprises the binder used for this invention may be used in a solid state, and may be used in the state of a polymer particle dispersion or a polymer solution.
  • the mass average molecular weight of the polymer constituting the binder used in the present invention is preferably 10,000 or more, more preferably 20,000 or more, and further preferably 30,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
  • the content of the binder in the solid electrolyte composition is 0.01% by mass with respect to 100% by mass of the solid component, considering good reduction in interface resistance and its maintainability when used in an all-solid secondary battery.
  • the above is preferable, 0.1% by mass or more is more preferable, and 1% by mass or more is more preferable.
  • the mass ratio of the total mass (total amount) of the inorganic solid electrolyte and the active material to the mass of the binder [(mass of the inorganic solid electrolyte + mass of the active material) / mass of the binder] is 1,000 to 1. A range is preferred. This ratio is more preferably 500 to 2, and further preferably 100 to 10.
  • the solid electrolyte composition of the present invention may contain a dispersant. Even when the concentration of either the electrode active material or the inorganic solid electrolyte is high by adding a dispersant, or even when the particle diameter is small and the surface area is increased, the aggregation is suppressed, and the uniform active material layer and solid electrolyte layer Can be formed.
  • a dispersant those usually used for all-solid secondary batteries can be appropriately selected and used. In general, compounds intended for particle adsorption and steric repulsion and / or electrostatic repulsion are preferably used.
  • the solid electrolyte composition of the present invention may contain a lithium salt.
  • the lithium salt is not particularly limited, and for example, lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
  • the content of the lithium salt is preferably 0 part by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • the solid electrolyte composition of the present invention may contain an ionic liquid in order to further improve the ionic conductivity of the solid electrolyte-containing sheet.
  • an ionic liquid From the viewpoint of improving an ionic conductivity effectively, what melt
  • the compound which consists of a combination of the following cation and an anion is mentioned.
  • (I) Cation As a cation, an imidazolium cation having the following substituent, a pyridinium cation having the following substituent, a piperidinium cation having the following substituent, a pyrrolidinium cation having the following substituent, Morpholinium cations having the following substituents, phosphonium cations having the following substituents, or quaternary ammonium cations having the following substituents. As the cation, one kind of these cations may be used alone, or two or more kinds may be used in combination. Preferably, it is a quaternary ammonium cation, a piperidinium cation or a pyrrolidinium cation.
  • an alkyl group (an alkyl group having 1 to 8 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable), a hydroxyalkyl group (a hydroxyalkyl group having 1 to 3 carbon atoms is preferable).
  • An alkyloxyalkyl group (preferably an alkyloxyalkyl group having 2 to 8 carbon atoms, more preferably an alkyloxyalkyl group having 2 to 4 carbon atoms), an ether group, an allyl group, an aminoalkyl group (1 to 8 carbon atoms).
  • an aryl group (an aryl group having 6 to 12 carbon atoms is more preferable, and an aryl group having 6 to 8 carbon atoms is more preferable).
  • the substituent may form a cyclic structure containing a cation moiety. These substituents may further have the above substituent P.
  • the ether group is used in combination with other substituents. Examples of such a substituent include an alkyloxy group and an aryloxy group.
  • Anions As anions, chloride ions, bromide ions, iodide ions, boron tetrafluoride ions, nitrate ions, dicyanamide ions, acetate ions, iron tetrachloride ions, bis (trifluoromethanesulfonyl) imide ions, bis ( Fluorosulfonyl) imide ion, bis (perfluorobutylmethanesulfonyl) imide ion, allyl sulfonate ion, hexafluorophosphate ion, or trifluoromethane sulfonate ion.
  • these anions may be used alone or in combination of two or more.
  • Preferred are boron tetrafluoride ion, bis (trifluoromethanesulfonyl) imide ion, bis (fluorosulfonyl) imide ion, hexafluorophosphate ion, dicyanamide ion or allyl sulfonate ion, and more preferred is bis (trifluoromethanesulfonyl) imide ion.
  • the ionic liquid examples include 1-allyl-3-ethylimidazolium bromide, 1-ethyl-3-methylimidazolium bromide, 1- (2-hydroxyethyl) -3-methylimidazolium bromide, 1- ( 2-methoxyethyl) -3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate, 1- Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, 1-ethyl-3-methylimidazolium bistrifluoromethanesulfonic acid, 1-ethyl- 3-methylimidazolium dicyanamide, 1- Tyl-1-methylpyrrolidinium
  • the content of the ionic liquid is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, and particularly preferably 1 part by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte.
  • 50 mass parts or less are preferable, 20 mass parts or less are more preferable, and 10 mass parts or less are especially preferable.
  • the mass ratio of the lithium salt to the ionic liquid is preferably 1:20 to 20: 1, more preferably 1:10 to 10: 1, and particularly preferably 1: 5 to 2: 1.
  • the solid electrolyte composition of the present invention may contain a conductive additive.
  • a conductive support agent What is known as a general conductive support agent can be used.
  • graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber and carbon nanotubes, which are electron conductive materials
  • Carbon fibers such as graphene, carbonaceous materials such as graphene and fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may be used. It may be used.
  • 1 type may be used among these and 2 or more types may be used.
  • the solid electrolyte composition of the present invention can be prepared by dispersing the inorganic solid electrolyte (A) in the presence of the dispersion medium (C) to form a slurry.
  • Slurry can be performed by mixing an inorganic solid electrolyte and a dispersion medium using various mixers.
  • the mixing apparatus is not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill.
  • the mixing conditions are not particularly limited. For example, when a ball mill is used, the mixing is preferably performed at 150 to 700 rpm (rotation per minute) for 1 to 24 hours.
  • a solid electrolyte composition containing components such as an active material and a particle dispersant
  • it may be added and mixed simultaneously with the dispersion step of the inorganic solid electrolyte (A), or may be added and mixed separately.
  • the dehydrating agent (B) may be added and mixed simultaneously with the dispersion step of the above-mentioned inorganic solid electrolyte (A) and / or components such as the active material and the particle dispersing agent, or may be added and mixed separately.
  • the inorganic dehydrating agent is preferably added after dispersing and / or mixing components other than the inorganic dehydrating agent constituting the solid electrolyte composition
  • the organic dehydrating agent is an organic component constituting the solid electrolyte composition. It is preferable to add after dispersing and / or mixing components other than the system dehydrating agent.
  • the solid electrolyte-containing sheet of the present invention can be suitably used for an all-solid-state secondary battery, and includes various modes depending on the application.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for an all-solid secondary battery
  • a sheet preferably used for an electrode or a laminate of an electrode and a solid electrolyte layer an electrode sheet for an all-solid secondary battery Etc.
  • these various sheets may be collectively referred to as an all-solid secondary battery sheet.
  • the all-solid-state secondary battery sheet is a sheet having a solid electrolyte layer or an active material layer (electrode layer) on a base material.
  • the all-solid-state secondary battery sheet may have other layers as long as it has a base material and a solid electrolyte layer or an active material layer. It is classified as a secondary battery electrode sheet. Examples of other layers include a protective layer, a current collector, and a coat layer (current collector, solid electrolyte layer, active material layer) and the like.
  • Examples of the solid electrolyte sheet for an all-solid secondary battery include a sheet having a solid electrolyte layer and a protective layer in this order on a base material.
  • the substrate is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include materials described in the current collector, sheet materials (plate bodies) such as organic materials and inorganic materials, and the like.
  • the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • the inorganic material include glass and ceramic.
  • the thickness of the solid electrolyte layer of the all-solid-state secondary battery sheet is the same as the thickness of the solid electrolyte layer described in the above-described all-solid-state secondary battery of the present invention.
  • the filtrate of the solid electrolyte composition of the present invention is formed (applied and dried) on a base material (which may be via another layer) to form a solid electrolyte layer on the base material. Is obtained.
  • the solid electrolyte composition of the present invention can be prepared by the above-described method.
  • the electrode sheet for an all-solid-state secondary battery of the present invention (also simply referred to as “electrode sheet”) is formed on a metal foil as a current collector for forming the active material layer of the all-solid-state secondary battery of the present invention.
  • An electrode sheet having an active material layer is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer, and a solid electrolyte layer in this order, and a current collector, an active material layer, and a solid electrolyte The aspect which has a layer and an active material layer in this order is also included.
  • each layer thickness of each layer constituting the electrode sheet is the same as the layer thickness of each layer described in the above-described all solid state secondary battery of the present invention.
  • the structure of each layer which comprises an electrode sheet is the same as the structure of each layer demonstrated in the postscript and the all-solid-state secondary battery of this invention.
  • the electrode sheet can be obtained by forming a solid electrolyte composition-containing filtrate of the present invention on a metal foil (coating and drying) to form an active material layer on the metal foil.
  • the method for preparing the solid electrolyte composition containing the active material is the same as the method for preparing the solid electrolyte composition except that the active material is used.
  • the all solid state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode active material layer on a positive electrode current collector.
  • the negative electrode has a negative electrode active material layer on a negative electrode current collector.
  • At least one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is preferably formed using the solid electrolyte composition of the present invention.
  • the active material layer and / or the solid electrolyte layer formed using the solid electrolyte composition are preferably basically the same as those in the solid content of the solid electrolyte composition with respect to the component types to be contained and the content ratio thereof.
  • the present invention since the solid electrolyte composition is filtered and used to form each layer, when the dehydrating agent is filtered off, the content may be different between the solid electrolyte composition and each layer.
  • the present invention is not limited to this.
  • any of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is formed of the solid electrolyte-containing sheet of the present invention. That is, when the solid electrolyte layer 3 is formed of the solid electrolyte-containing sheet of the present invention, the solid electrolyte layer 3 includes an inorganic solid electrolyte and a dehydrating agent.
  • the solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material.
  • the dehydrating agent contained between the solid particles in the inorganic solid electrolyte and the adjacent active material reacts with water, deterioration of the inorganic solid electrolyte is suppressed. Even when used after storage, the all-solid-state secondary battery 10 is excellent in battery voltage.
  • the positive electrode active material layer 4 and / or the negative electrode active material layer 2 is formed of the solid electrolyte-containing sheet of the present invention containing an active material, that is, an electrode sheet, the positive electrode active material layer 4 and the negative electrode active material layer 2 are , Each including a positive electrode active material or a negative electrode active material, and further including an inorganic solid electrolyte and a dehydrating agent.
  • the active material layer contains an inorganic solid electrolyte, the ionic conductivity can be improved.
  • the dehydrating agent present between the solid particles reacts with water, so that the deterioration of the inorganic solid electrolyte is suppressed. 10 is excellent in battery voltage.
  • the inorganic solid electrolyte and the dehydrating agent contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same or different from each other.
  • any one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer in the all-solid-state secondary battery contains a solid electrolyte containing the dehydrating agent and solid particles such as an inorganic solid electrolyte. It is produced using a sheet.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel and titanium, as well as the surface of aluminum or stainless steel treated with carbon, nickel, titanium or silver (formation of a thin film) Among them, aluminum and aluminum alloys are more preferable.
  • the material for forming the negative electrode current collector is treated with carbon, nickel, titanium or silver on the surface of aluminum, copper, copper alloy or stainless steel. What was made to do is preferable, and aluminum, copper, copper alloy, and stainless steel are more preferable.
  • the current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
  • Each layer may be composed of a single layer or a plurality of layers.
  • the basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to form a dry battery, it is further enclosed in a suitable housing.
  • the housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made from an aluminum alloy and stainless steel can be mentioned, for example.
  • the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
  • the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
  • the solid electrolyte-containing sheet of the present invention contains an inorganic solid electrolyte (A) having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and a dehydrating agent (B), thereby improving battery performance.
  • A inorganic solid electrolyte
  • B dehydrating agent
  • the content of the dehydrating agent is preferably 5% by mass or less.
  • the dehydrating agent is preferably present in the slurry and removed from the solid electrolyte-containing sheet.
  • an inorganic dehydrating agent there is a risk of inhibiting the formation of the interface between the active material and the inorganic solid electrolyte. If the dehydrating agent is excessively contained in the solid electrolyte-containing sheet, there is a concern about the effect on battery performance. is there. Even in the case of an organic dehydrating agent, by-products generated by reaction with water may further react with the inorganic solid electrolyte, and if the solid electrolyte-containing sheet contains excessive dehydrating agent, battery performance will be reduced. There is concern about making it worse.
  • the solid electrolyte-containing sheet preferably contains an organic dehydrating agent.
  • an organic dehydrating agent in which a by-product generated by the reaction with water is an acid (carboxylic acid, sulfonic acid, phosphoric acid, etc.) is used, the acid is harmless to the inorganic solid electrolyte.
  • these organic dehydrating agents remain in the solid electrolyte-containing sheet, so that not only the slurry but also the water resistance of the solid electrolyte-containing sheet can be improved, and the all-solid-state secondary battery can be obtained without degrading the battery performance.
  • the battery voltage can be improved.
  • the dehydrating agent is volatilized at the time of heat drying in the sheet manufacturing process.
  • the solid electrolyte-containing sheet of the present invention includes a step of filtering a solid electrolyte composition containing an inorganic solid electrolyte (A), a dehydrating agent (B), and a dispersion medium (C), and the filtrate obtained in the above step. It can manufacture by passing through the process of apply
  • the content of the inorganic dehydrating agent in the solid electrolyte-containing sheet is prepared by adjusting the amount of the dehydrating agent that is collected by the pore size of the filter used for filtration.
  • the dehydrating agent that does not dissolve in the dispersion medium is a dehydrating agent that maintains a solid in the dispersion medium, and specifically includes an inorganic dehydrating agent.
  • seat for all-solid-state secondary batteries which is a sheet
  • the method as described in manufacture of the following all-solid-state secondary battery can be used.
  • the solid electrolyte-containing sheet may contain a dispersion medium within a range that does not affect battery performance. Specifically, you may contain 1 ppm or more and 10000 ppm or less in the total mass.
  • Manufacture of the all-solid-state secondary battery and the electrode sheet for all-solid-state secondary batteries can be performed by a conventional method.
  • the all-solid-state secondary battery and the electrode sheet for the all-solid-state secondary battery are filtrates obtained by filtering the solid electrolyte composition of the present invention with, for example, a Teflon (registered trademark) mesh (hereinafter referred to as solid electrolyte). It is also referred to as a filtrate of a composition. This will be described in detail below.
  • each layer in the all-solid-state secondary battery of the present invention only needs to be formed of any one of the solid electrolyte compositions of the present invention.
  • the all-solid-state secondary battery of the present invention includes a method of applying (interposing) the filtrate of the solid electrolyte composition of the present invention onto a metal foil serving as a current collector and forming (forming) a coating film.
  • a positive electrode active material layer is formed by applying a filtrate of a solid electrolyte composition containing a positive electrode active material as a positive electrode material (positive electrode composition) on a metal foil that is a positive electrode current collector.
  • a positive electrode sheet for a solid secondary battery is prepared.
  • a solid electrolyte composition filtrate for forming a solid electrolyte layer is applied on the positive electrode active material layer to form a solid electrolyte layer.
  • a solid electrolyte composition filtrate containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer.
  • An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer is obtained by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. Can do. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
  • each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery.
  • Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Also, a negative electrode active material layer is formed by applying a solid electrolyte composition filtrate containing a negative electrode active material as a negative electrode material (negative electrode composition) on a metal foil as a negative electrode current collector. A negative electrode sheet for a solid secondary battery is prepared. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately from this, a solid electrolyte composition filtrate is applied on a substrate to produce a solid electrolyte sheet for an all-solid-state secondary battery comprising a solid electrolyte layer. Furthermore, it laminates
  • An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are produced. Then, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be produced by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery.
  • the method for applying the filtrate of the solid electrolyte composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating.
  • the filtrate of the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • a dispersion medium By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state. Moreover, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding properties can be obtained.
  • each layer or all-solid secondary battery After applying the filtrate of the solid electrolyte composition or after producing the all-solid secondary battery. Moreover, it is also preferable to pressurize in the state which laminated
  • An example of the pressurizing method is a hydraulic cylinder press.
  • the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa. Moreover, you may heat the apply
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
  • each composition may be applied simultaneously, and application and drying presses may be performed simultaneously and / or sequentially. You may laminate
  • the atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point -20 ° C. or lower), and inert gas (for example, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
  • a restraining tool screw tightening pressure or the like
  • the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
  • the pressing pressure can be changed according to the area and film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
  • the press surface may be smooth or roughened.
  • the all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses.
  • the application mode for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
  • Others for consumer use include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.) . Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • An all-solid secondary battery in which at least one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer contains a lithium salt.
  • a method for producing an all-solid-state secondary battery in which the solid electrolyte layer is wet-coated with a slurry filtrate in which a lithium salt and a sulfide-based inorganic solid electrolyte are dispersed by a dispersion medium.
  • a solid electrolyte composition containing an active material for producing the all-solid secondary battery.
  • the preferred methods for producing the all-solid-state secondary battery and the battery electrode sheet of the present invention are both wet processes. Thereby, even in a region where the content of the inorganic solid electrolyte in at least one of the positive electrode active material layer and the negative electrode active material layer is as low as 10% by mass or less, the adhesiveness between the active material and the inorganic solid electrolyte is increased, and an efficient ion conduction path. Can be maintained, and an all-solid-state secondary battery having a high energy density (Wh / kg) and high power density (W / kg) per battery mass can be manufactured.
  • An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
  • this invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state that uses the above-described Li—PS glass, LLT, LLZ, or the like. It is divided into secondary batteries.
  • an organic compound to an inorganic all-solid secondary battery is not hindered, and the organic compound can be applied as a binder or additive for a positive electrode active material, a negative electrode active material, and an inorganic solid electrolyte.
  • the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above-described Li—PS glass, LLT, and LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • electrolyte a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte.
  • electrolyte salt When distinguishing from the electrolyte as the above ion transport material, this is called “electrolyte salt” or “supporting electrolyte”.
  • electrolyte salt An example of the electrolyte salt is LiTFSI.
  • composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • 66 zirconia beads having a diameter of 5 mm were introduced into a 45 mL container (manufactured by Fritsch) made of zirconia, the whole mixture of lithium sulfide and phosphorous pentasulfide was introduced, and the container was sealed under an argon atmosphere.
  • This container is set in a planetary ball mill P-7 (trade name) manufactured by Frichtu, and mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours to obtain a yellow powder sulfide-based inorganic solid electrolyte (Li-P—). S glass) 6.20 g was obtained.
  • the ionic conductivity was 0.28 mS / cm, and the particle diameter was 20.3 ⁇ m.
  • Example 1 ⁇ Test> The ionic conductivity before and after aging of the solid electrolyte composition prepared below was measured, and how much the ionic conductivity decreased before and after aging was evaluated. The test method is described below. The evaluation is described in the column of “Ion conductivity reduction inhibiting effect” in Table 1 below.
  • ion conductivity (Ia) before aging The prepared slurry of the solid electrolyte composition was filtered through a 50 ⁇ m Teflon mesh, and then dried at normal pressure (760 mmHg) for 2 hours on a hot plate heated to 100 ° C. in a dry air having a dew point of ⁇ 60 ° C. About the obtained dry powder, the ionic conductivity was measured by the impedance method. This is defined as ion conductivity (Ia) before aging.
  • the slurry of the solid electrolyte composition was stirred with a stirrer for 2 weeks in a constant temperature bath at 25 ° C. in an open system under dry air having a dew point of ⁇ 20 ° C.
  • the slurry after 2 weeks was filtered through a 50 ⁇ m Teflon mesh, dried by the same method as above, and the ionic conductivity of the dried powder was measured by the impedance method. This is defined as ionic conductivity (Ib) after time.
  • the dry powder was packed in a cylinder having a diameter of 14.5 mm to produce a coin-type jig.
  • the sample was sandwiched between jigs capable of applying a pressure of 500 kgf / cm 2 between the electrodes from the outside of the coin-type jig, and used for ion conductivity measurement.
  • the ion conductivity under pressure 500 kgf / cm 2
  • the specimen shown in FIG. 2 was used for pressurization of the coin-type jig.
  • 11 is an upper support plate
  • 12 is a lower support plate
  • 13 is a coin-type jig
  • S is a screw.
  • the evaluation criteria are shown below. B and above are acceptable levels.
  • Table 1 below summarizes the composition of the solid electrolyte composition.
  • the solid electrolyte compositions S-1 to S-17 are solid electrolyte compositions of the present invention
  • the solid electrolyte compositions T-1 to T-4 are comparative solid electrolyte compositions.
  • E-1 PVdF-HFP (manufactured by Arkema)
  • E-2 SBR (manufactured by JSR)
  • E-3 Acrylic acid-methyl acrylate copolymer prepared by the following method (20/80 molar ratio Mw25000)
  • 1.2 g of acrylic acid manufactured by Wako Pure Chemical Industries, Ltd.
  • 4.2 g of methyl acrylate manufactured by Wako Pure Chemical Industries, Ltd.
  • MEK methyl ethyl ketone
  • E-4 Acrylic latex, binder (B-1) described in JP-A-2015-88486 Latex average particle diameter: 500 nm (The average particle diameter was measured by the method described above.)
  • E-5 Urethane polymer Exemplified compound (44) described in JP-A-2015-88480 LLZ: Li 7 La 3 Zr 2 O 12 (manufactured by Toshima Seisakusho)
  • Li / P / S Li—PS system glasses B-1 to B-4 synthesized above: Exemplary compounds (B-1) to (B-4) of dehydrating agents
  • Boiling point Boiling point at 760 mmHg
  • the solid electrolyte composition of the present invention shows a good suppression effect on the decrease in ionic conductivity in an accelerated test stored with a high dew point, and the deterioration of the inorganic solid electrolyte due to water is small. It was found that the retention rate of ionic conductivity was high.
  • a positive electrode composition P-1 1.0 g of molecular sieves 4A sufficiently dried as a dehydrating agent (dehydrating agent used in the corresponding solid electrolyte composition S-1) was added to prepare a positive electrode composition P-1. Since the composition of the positive electrode composition is obtained by combining the composition of the solid electrolyte composition S-1 with the positive electrode active material, in the following Table 2, the composition P for the positive electrode is represented by the solid electrolyte composition S-1 and the positive electrode active material. The composition of -1.
  • Table 2 summarizes the composition of the solid electrolyte composition.
  • the positive electrode compositions P-1 to P-17 are the solid electrolyte compositions of the present invention
  • the positive electrode compositions HP-1 to HP-4 are comparative solid electrolyte compositions.
  • LCO LiCoO 2
  • LMO LiMn 2 O 4
  • NCA LiNi 0.85 Co 0.10 Al 0.05
  • NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • LTO Li 4 Ti 5 O 12
  • a dehydrating agent used in the corresponding solid electrolyte composition (S-1) was added to prepare a negative electrode composition N-1.
  • the composition of the negative electrode composition is the composition of the solid electrolyte composition S-1 combined with the negative electrode active material.
  • the composition of -1 is the composition of the solid electrolyte composition S-1 combined with the negative electrode active material.
  • Table 3 summarizes the composition of the solid electrolyte composition.
  • the negative electrode compositions N-1 to N-17 are solid electrolyte compositions of the present invention
  • the negative electrode compositions HN-1 to HN-4 are comparative solid electrolyte compositions.
  • the negative electrode composition shown in Table 3 was filtered through a 50 ⁇ m Teflon mesh, then applied onto a stainless steel (SUS) foil as a current collector, and dried at 80 ° C. for 20 minutes to form a negative electrode layer. Furthermore, the solid electrolyte composition shown in Table 1 was applied to the negative electrode layer after filtering through a 50 ⁇ m Teflon mesh, and dried at 80 ° C. for 1 hour to form a solid electrolyte layer.
  • the positive electrode composition shown in Table 2 was filtered through a 50 ⁇ m Teflon mesh, then applied onto an aluminum foil as a current collector, and dried at 80 ° C. for 1 hour to form a positive electrode layer. By laminating these two sheets, an electrode sheet including a negative electrode layer, a solid electrolyte layer, and a positive electrode layer in this order was obtained. Table 4 below shows combinations of the configurations of the respective layers.
  • the electrode sheet 17 for an all-solid-state secondary battery produced above was cut into a disk shape having a diameter of 14.5 mm, and, as shown in FIG. 3, put into a stainless steel 2032 type coin case 16 incorporating a spacer and a washer,
  • the all-solid secondary battery 18 having the layer structure shown in FIG. 1 was manufactured by tightening with a torque wrench with a force of 8 Newtons (N).
  • the battery voltage of the all-solid-state secondary battery produced above was measured with a charge / discharge evaluation device “TOSCAT-3000 (trade name)” manufactured by Toyo System Co., Ltd. Charging is performed at a current density of 2 A / m 2 until the battery voltage reaches 4.2 V. After reaching 4.2 V, the constant voltage at 4.2 V is obtained until the current density becomes less than 0.2 A / m 2. Charging was performed. Discharging was performed at a current density of 2 A / m 2 until the battery voltage reached 3.0V. This was repeated three times as one cycle, and the battery voltage after 5 mAh / g discharge in the third cycle was read. Evaluation was made according to the following evaluation criteria. Ranks A to C are acceptable levels.
  • Fresh product Storage condition of all-solid secondary battery composition prepared within 24 hours after preparation of each composition above: Storage condition of all-solid secondary battery with dew point of -60 ° C or less under argon atmosphere: Argon atmosphere Below dew point -60 °C or less
  • the all-solid-state secondary battery produced from the solid electrolyte composition not satisfying the provisions of the present invention failed in battery voltage.
  • the all-solid-state secondary battery in which at least one layer was produced from the solid electrolyte composition of the present invention was excellent in battery voltage. From this result, it can be seen that in the all-solid-state secondary battery produced from the solid electrolyte composition of the present invention, the deterioration of the inorganic solid electrolyte due to moisture absorption is suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

A solid electrolyte composition which contains an inorganic solid electrolyte having conductivity for ions of metals in group 1 or group 2 of the periodic table, a dehydrating agent and a dispersion medium; a solid electrolyte-containing sheet which contains an inorganic solid electrolyte having conductivity for ions of metals in group 1 or group 2 of the periodic table and a dehydrating agent; an all-solid-state secondary battery; a method for producing a solid electrolyte-containing sheet; and a method for producing an all-solid-state secondary battery.

Description

固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
 本発明は、固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法に関する。 The present invention relates to a solid electrolyte composition, a solid electrolyte-containing sheet and an all-solid secondary battery, and a method for producing a solid electrolyte-containing sheet and an all-solid secondary battery.
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電または過放電により電池内部で短絡が生じ発火するおそれもあり、信頼性と安全性のさらなる向上が求められている。
 かかる状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質および正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。さらに、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車や大型蓄電池等への応用が期待されている。
A lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charging and discharging by reciprocating lithium ions between the two electrodes. Conventionally, an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery. However, the organic electrolyte is liable to leak, and there is a possibility that a short circuit occurs inside the battery due to overcharge or overdischarge, resulting in ignition, and further improvements in reliability and safety are required.
Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention. All-solid-state secondary batteries are composed of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which is a problem of batteries using organic electrolytes, and can also extend the life. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which electrodes and an electrolyte are directly arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolyte, and application to an electric vehicle, a large storage battery, and the like is expected.
 上記のような各利点から、次世代のリチウムイオン電池として全固体二次電池の開発が進められている。例えば、特許文献1には、硫化物系無機固体電解質を用いて導電率を確保しながら、大気中の水分との反応による硫化水素の発生を防止することができる全固体二次電池が記載されている。この全固体二次電池において硫化物系無機固体電解質は液状物質で被覆されている。 Because of the above advantages, all-solid-state secondary batteries are being developed as next-generation lithium-ion batteries. For example, Patent Document 1 describes an all-solid-state secondary battery that can prevent generation of hydrogen sulfide due to reaction with moisture in the atmosphere while ensuring conductivity using a sulfide-based inorganic solid electrolyte. ing. In this all solid state secondary battery, the sulfide-based inorganic solid electrolyte is coated with a liquid substance.
特開2009-117168号公報JP 2009-117168 A
 特許文献1記載の全固体二次電池は、作製方法によっては、硫化物系無機固体電解質の機能劣化を防ぐことができ、電池電圧等の全固体二次電池の性能を一定程度向上させることができる。しかし、液状物質で被覆された硫化物系無機固体電解質と、分散媒体とを含んでなる固体電解質組成物を用いて全固体二次電池を作製する場合、分散媒体と液状物質とが相溶し、硫化物系無機固体電解質の被覆が除去されるおそれがある。その結果、硫化物系無機固体電解質が分散媒体中の水分と接触し、電解質としての機能および全固体二次電池の性能が低下する。 The all-solid-state secondary battery described in Patent Document 1 can prevent functional deterioration of the sulfide-based inorganic solid electrolyte depending on the production method, and can improve the performance of the all-solid-state secondary battery such as battery voltage to some extent. it can. However, when an all-solid secondary battery is manufactured using a solid electrolyte composition comprising a sulfide-based inorganic solid electrolyte coated with a liquid material and a dispersion medium, the dispersion medium and the liquid material are compatible. The sulfide-based inorganic solid electrolyte coating may be removed. As a result, the sulfide-based inorganic solid electrolyte comes into contact with moisture in the dispersion medium, and the function as the electrolyte and the performance of the all-solid secondary battery are reduced.
 上記問題に鑑み、本発明は、無機固体電解質と水分との反応が抑制され、全固体二次電池において優れた電池電圧を実現できる、固体電解質組成物を提供することを課題とする。また、本発明は、無機固体電解質と水分との反応が抑制され、全固体二次電池において優れた電池電圧を実現できる固体電解質含有シート及び上記固体電解質含有シートを用いた全固体二次電池を提供することを課題とする。さらに、本発明は、上記固体電解質含有シート及び全固体二次電池の製造方法を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a solid electrolyte composition in which the reaction between an inorganic solid electrolyte and moisture is suppressed and an excellent battery voltage can be realized in an all-solid secondary battery. In addition, the present invention provides a solid electrolyte-containing sheet capable of realizing an excellent battery voltage in an all-solid secondary battery in which the reaction between the inorganic solid electrolyte and moisture is suppressed, and an all-solid secondary battery using the solid electrolyte-containing sheet. The issue is to provide. Furthermore, this invention makes it a subject to provide the manufacturing method of the said solid electrolyte containing sheet and an all-solid-state secondary battery.
 本発明者らが鋭意検討した結果、脱水剤と、特定の無機固体電解質と、分散媒体とを含有する固体電解質組成物が、経時安定性に優れることを見出し、上記固体電解質組成物を用いることにより、電池電圧に優れる全固体二次電池を実現できることを見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。 As a result of intensive studies by the present inventors, it has been found that a solid electrolyte composition containing a dehydrating agent, a specific inorganic solid electrolyte, and a dispersion medium is excellent in stability over time, and the solid electrolyte composition is used. Thus, it has been found that an all-solid secondary battery excellent in battery voltage can be realized. The present invention has been further studied based on these findings and has been completed.
 すなわち、上記の課題は以下の手段により解決された。
<1>周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、脱水剤(B)と、分散媒体(C)とを含有する固体電解質組成物。
<2>無機固体電解質(A)が、硫化物系無機固体電解質である<1>に記載の固体電解質組成物。
<3>脱水剤(B)が、同一炭素原子または同一硫黄原子に2つ以上酸素原子が結合した部分構造を有する有機化合物である<1>または<2>に記載の固体電解質組成物。
That is, the above problem has been solved by the following means.
<1> Solid electrolyte composition containing an inorganic solid electrolyte (A) having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, a dehydrating agent (B), and a dispersion medium (C) object.
<2> The solid electrolyte composition according to <1>, wherein the inorganic solid electrolyte (A) is a sulfide-based inorganic solid electrolyte.
<3> The solid electrolyte composition according to <1> or <2>, wherein the dehydrating agent (B) is an organic compound having a partial structure in which two or more oxygen atoms are bonded to the same carbon atom or the same sulfur atom.
<4>脱水剤(B)が、水と反応して下記一般式(1)~(3)のいずれかで表される部分構造を有する生成物を形成する有機化合物である<1>~<3>のいずれか1つに記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000002
 一般式(1)~(3)中、R、R、R31およびR32は、ぞれぞれ独立に水素原子、アルキル基またはアリール基を示す。X、X、X31およびX32は、ぞれぞれ独立に単結合、酸素原子、硫黄原子、または-N(R)-を示す。Rは、水素原子、アルキル基またはアリール基を示す。Yは炭素原子または硫黄原子を示す。Yは硫黄原子を示す。Yはリン原子を示す。*は生成物中における連結部位を示す。
<4> The dehydrating agent (B) is an organic compound that reacts with water to form a product having a partial structure represented by any one of the following general formulas (1) to (3) <1> to <3> The solid electrolyte composition according to any one of 3>.
Figure JPOXMLDOC01-appb-C000002
In the general formulas (1) to (3), R 1 , R 2 , R 31 and R 32 each independently represent a hydrogen atom, an alkyl group or an aryl group. X 1 , X 2 , X 31 and X 32 each independently represent a single bond, an oxygen atom, a sulfur atom or —N (R 3 ) —. R 3 represents a hydrogen atom, an alkyl group or an aryl group. Y 1 represents a carbon atom or a sulfur atom. Y 2 represents a sulfur atom. Y 3 represents a phosphorus atom. * Indicates a linking site in the product.
<5>脱水剤(B)が、酸無水物、酸ハロゲン化物、アセタールおよびオルトエステルからなる群から選択される少なくとも1種である<1>~<4>のいずれか1つに記載の固体電解質組成物。
<6>脱水剤(B)が、フッ素原子を有する有機化合物である<1>~<5>のいずれか1つに記載の固体電解質組成物。
<7>脱水剤(B)の含有量が、前記固体電解質組成物の全固形分中、1質量%以上50質量%以下である<1>~<6>のいずれか1つに記載の固体電解質組成物。
<8>脱水剤(B)が、分子量300以下または760mmHgにおける沸点が300℃以下である<1>~<7>のいずれか1つに記載の固体電解質組成物。
<9>脱水剤(B)が25℃で液体であり、分散媒体(C)に対する質量比(B)/(C)が、1/99~99/1である<1>~<8>のいずれか1つに記載の固体電解質組成物。
<10>活物質(D)を含有する<1>~<9>のいずれか1つに記載の固体電解質組成物。
<11>バインダー(E)を含有する<1>~<10>のいずれか1つに記載の固体電解質組成物。
<12>バインダー(E)が、アクリル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、含フッ素樹脂および炭化水素系熱可塑性樹脂からなる群から選択される少なくとも1種である<11>に記載の固体電解質組成物。
<13>バインダー(E)が極性基を有する<11>または<12>に記載の固体電解質組成物。
<5> The solid according to any one of <1> to <4>, wherein the dehydrating agent (B) is at least one selected from the group consisting of acid anhydrides, acid halides, acetals, and orthoesters. Electrolyte composition.
<6> The solid electrolyte composition according to any one of <1> to <5>, wherein the dehydrating agent (B) is an organic compound having a fluorine atom.
<7> The solid according to any one of <1> to <6>, wherein the content of the dehydrating agent (B) is 1% by mass or more and 50% by mass or less in the total solid content of the solid electrolyte composition. Electrolyte composition.
<8> The solid electrolyte composition according to any one of <1> to <7>, wherein the dehydrating agent (B) has a molecular weight of 300 or less or a boiling point at 760 mmHg of 300 ° C. or less.
<9> The dehydrating agent (B) is liquid at 25 ° C., and the mass ratio (B) / (C) to the dispersion medium (C) is 1/99 to 99/1. The solid electrolyte composition as described in any one.
<10> The solid electrolyte composition according to any one of <1> to <9>, which contains an active material (D).
<11> The solid electrolyte composition according to any one of <1> to <10>, containing a binder (E).
<12> The solid according to <11>, wherein the binder (E) is at least one selected from the group consisting of an acrylic resin, a polyurethane resin, a polyurea resin, a polyimide resin, a fluorine-containing resin, and a hydrocarbon-based thermoplastic resin. Electrolyte composition.
<13> The solid electrolyte composition according to <11> or <12>, wherein the binder (E) has a polar group.
<14>周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、脱水剤(B)とを含有する固体電解質含有シート。
<15>脱水剤(B)を、全固形分中5質量%以下含有する<14>に記載の固体電解質含有シートの製造方法であって、
 無機固体電解質(A)と、脱水剤(B)と、分散媒体(C)とを含有する固体電解質組成物をろ過する工程と、
 上記工程で得たろ液を基材上に塗布する工程と、
 加熱乾燥する工程とを
有する固体電解質含有シートの製造方法。
<16>正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、
 正極活物質層、負極活物質層および固体電解質層の少なくとも1つの層が<14>に記載の固体電解質含有シートである全固体二次電池。
<17> <15>に記載の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
<14> A solid electrolyte-containing sheet containing an inorganic solid electrolyte (A) having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table and a dehydrating agent (B).
<15> The method for producing a solid electrolyte-containing sheet according to <14>, wherein the dehydrating agent (B) is contained in a total solid content of 5% by mass or less.
Filtering the solid electrolyte composition containing the inorganic solid electrolyte (A), the dehydrating agent (B), and the dispersion medium (C);
Applying the filtrate obtained in the above step onto a substrate;
The manufacturing method of the solid electrolyte containing sheet | seat which has the process of heat-drying.
<16> An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer,
An all-solid-state secondary battery, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is the solid electrolyte-containing sheet according to <14>.
<17> A method for producing an all-solid secondary battery, wherein an all-solid secondary battery is produced through the production method according to <15>.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、単に「アクリル」又は「(メタ)アクリル」と記載するときは、メタアクリル及び/又はアクリルを意味する。また、単に「アクリロイル」又は「(メタ)アクリロイル」と記載するときは、メタアクリロイル及び/又はアクリロイルを意味する。
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present specification, when “acryl” or “(meth) acryl” is simply described, it means methacryl and / or acryl. The term “acryloyl” or “(meth) acryloyl” simply means methacryloyl and / or acryloyl.
 本明細書において、質量平均分子量(Mw)は、特段の断りがない限り、GPCによってポリスチレン換算の分子量として計測することができる。このとき、GPC装置HLC-8220(東ソー(株)社製)を用い、カラムはG3000HXL+G2000HXLを用い、23℃で流量は1mL/minで、RIで検出することとする。溶離液としては、THF(テトラヒドロフラン)、クロロホルム、NMP(N-メチル-2-ピロリドン)、m-クレゾール/クロロホルム(湘南和光純薬(株)社製)から選定することができ、溶解するものであればTHFを用いることとする。 In the present specification, unless otherwise specified, the mass average molecular weight (Mw) can be measured as a molecular weight in terms of polystyrene by GPC. At this time, GPC device HLC-8220 (manufactured by Tosoh Corporation) is used, G3000HXL + G2000HXL is used as the column, the flow rate is 1 mL / min at 23 ° C., and detection is performed by RI. The eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.) and dissolves. If present, use THF.
 本発明の固体電解質組成物は、無機固体電解質と水分との反応が抑制され、この固体電解質組成物を用いて作製された全固体二次電池において優れた電池電圧を実現できる。本発明の固体電解質含有シートは、無機固体電解質と水分との反応が抑制され、全固体二次電池において優れた電池電圧を実現できる。また、本発明の全固体二次電池は電池電圧に優れる。
 また、本発明の製造方法によれば、本発明の、固体電解質含有シート及び全固体二次電池を製造することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
In the solid electrolyte composition of the present invention, the reaction between the inorganic solid electrolyte and moisture is suppressed, and an excellent battery voltage can be realized in an all-solid secondary battery produced using this solid electrolyte composition. In the solid electrolyte-containing sheet of the present invention, the reaction between the inorganic solid electrolyte and moisture is suppressed, and an excellent battery voltage can be realized in an all-solid secondary battery. Moreover, the all-solid-state secondary battery of this invention is excellent in a battery voltage.
Moreover, according to the manufacturing method of this invention, the solid electrolyte containing sheet | seat and all-solid-state secondary battery of this invention can be manufactured.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
図1は、本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing an all solid state secondary battery according to a preferred embodiment of the present invention. 図2は、実施例で使用した試験装置を模式的に示す縦断面図である。FIG. 2 is a longitudinal sectional view schematically showing the test apparatus used in the examples. 図3は、実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。FIG. 3 is a longitudinal sectional view schematically showing an all solid state secondary battery (coin battery) produced in the example.
<好ましい実施形態>
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。本発明の固体電解質組成物は、上記負極活物質層、正極活物質層、固体電解質層の成形材料として好ましく用いることができる。また、本発明の固体電解質含有シートは、上記負極活物質層、正極活物質層、固体電解質層として好適である。
 本明細書において、正極活物質層(以下、正極層とも称す。)と負極活物質層(以下、負極層とも称す。)をあわせて電極層または活物質層と称することがある。
 なお、図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、図1に示す層構成を有する全固体二次電池を全固体二次電池用電極シートと称し、この全固体二次電池用電極シートを2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。
<Preferred embodiment>
FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention. The all-solid-state secondary battery 10 of this embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. . Each layer is in contact with each other and has a laminated structure. By adopting such a structure, at the time of charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein. On the other hand, at the time of discharge, lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the working part 6. In the example shown in the figure, a light bulb is adopted as the operation part 6 and is turned on by discharge. The solid electrolyte composition of the present invention can be preferably used as a molding material for the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer. The solid electrolyte-containing sheet of the present invention is suitable as the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
In this specification, a positive electrode active material layer (hereinafter also referred to as a positive electrode layer) and a negative electrode active material layer (hereinafter also referred to as a negative electrode layer) may be collectively referred to as an electrode layer or an active material layer.
In addition, when putting the all-solid-state secondary battery having the layer configuration shown in FIG. 1 into a 2032 type coin case, the all-solid-state secondary battery having the layer configuration shown in FIG. A battery produced by placing an electrode sheet for an all-solid secondary battery in a 2032 type coin case may be referred to as an all-solid secondary battery.
 正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されない。なお、一般的な電池の寸法を考慮すると、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3および負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることがさらに好ましい。 The thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. In consideration of general battery dimensions, the thickness is preferably 10 to 1,000 μm, more preferably 20 μm or more and less than 500 μm. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 is 50 μm or more and less than 500 μm.
<固体電解質組成物>
 本発明の固体電解質組成物は、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、脱水剤(B)と、分散媒体(C)とを含有する。
 以下、無機固体電解質(A)、脱水剤(B)および分散媒体(C)を、それぞれ無機固体電解質、脱水剤および分散媒体と記載することもある。
<Solid electrolyte composition>
The solid electrolyte composition of the present invention includes an inorganic solid electrolyte (A) having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, a dehydrating agent (B), and a dispersion medium (C). Containing.
Hereinafter, the inorganic solid electrolyte (A), the dehydrating agent (B), and the dispersion medium (C) may be referred to as an inorganic solid electrolyte, a dehydrating agent, and a dispersion medium, respectively.
(無機固体電解質(A))
 無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオンおよびアニオンに解離または遊離していない。この点で、電解液やポリマー中でカチオンおよびアニオンが解離または遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族または第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
(Inorganic solid electrolyte (A))
The inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). In addition, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions. In this respect, it is also clearly distinguished from inorganic electrolyte salts (such as LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which cations and anions are dissociated or liberated in the electrolyte or polymer. The inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
 本発明において、無機固体電解質は、周期律表第1族または第2族に属する金属のイオン伝導性を有する。上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができるため、硫化物系無機固体電解質が好ましく用いられる。 In the present invention, the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table. As the inorganic solid electrolyte, a solid electrolyte material applied to this type of product can be appropriately selected and used. Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes. In the present invention, since a better interface can be formed between the active material and the inorganic solid electrolyte, a sulfide-based inorganic solid electrolyte is preferably used.
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、SおよびPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的または場合に応じて、Li、SおよびP以外の他の元素を含んでもよい。
 例えば下記式(I)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、NaおよびKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1はさらに、1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましい。d1はさらに、2.5~10が好ましく、3.0~8.5がより好ましい。e1はさらに、0~5が好ましく、0~3がより好ましい。
(I) Sulfide-based inorganic solid electrolyte The sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred. The sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S and P may be used. An element may be included.
For example, a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (I) is exemplified.

L a1 M b1 P c1 S d1 A e1 Formula (I)

In the formula, L represents an element selected from Li, Na and K, and Li is preferred. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. a1 is further preferably 1 to 9, and more preferably 1.5 to 7.5. b1 is preferably 0 to 3. Further, d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5. Further, e1 is preferably 0 to 5, and more preferably 0 to 3.
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。 The composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、PおよびSを含有するLi-P-S系ガラス、またはLi、PおよびSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized. For example, Li—PS system glass containing Li, P and S, or Li—PS system glass ceramics containing Li, P and S can be used.
The sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of an element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
 Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。 The ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22. By setting the ratio of Li 2 S to P 2 S 5 within this range, the lithium ion conductivity can be increased. Specifically, the lithium ion conductivity can be preferably 1 × 10 −4 S / cm or more, more preferably 1 × 10 −3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 × 10 −1 S / cm or less.
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。たとえばLiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法および溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 Examples of combinations of raw materials are shown below as specific examples of sulfide-based inorganic solid electrolytes. For example, Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2 —LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—GeS 2 , Li 2 S—GeS 2 —ZnS, Li 2 S—Ga 2 S 3, Li 2 S-GeS 2 -Ga 2 S 3, Li 2 S-GeS 2 -P 2 S 5 Li 2 S-GeS 2 -Sb 2 S 5, Li 2 S-GeS 2 -Al 2 S 3, Li 2 S-SiS 2, Li 2 S-Al 2 S 3, Li 2 S-SiS 2 -Al 2 S 3 , Li 2 S—SiS 2 —P 2 S 5 , Li 2 S—SiS 2 —P 2 S 5 —LiI, Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 —Li 4 SiO 4 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 10 GeP 2 S 12 and the like. However, the mixing ratio of each raw material does not matter. Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method. Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
(Ii) Oxide-based inorganic solid electrolyte The oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and A compound having an electronic insulating property is preferable.
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。 Specific examples of the compound include Li xa La ya TiO 3 [xa = 0.3 to 0.7, ya = 0.3 to 0.7] (LLT), Li xb La yb Zr zb M bb mb O nb ( Mbb is at least one element selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, and Sn, xb satisfies 5 ≦ xb ≦ 10, and yb satisfies 1 ≦ yb. ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, nb satisfies 5 ≦ nb ≦ 20), Li xc B yc M cc zc Onc (M cc is C, S, Al, Si, Ga, Ge, In, Sn are at least one element, xc satisfies 0 ≦ xc ≦ 5, yc satisfies 0 ≦ yc ≦ 1, and zc satisfies 0 ≦ zc ≦ met 1, nc satisfies 0 ≦ nc ≦ 6.), Li xd ( l, Ga) yd (Ti, Ge) zd Si ad P md O nd ( provided that, 1 ≦ xd ≦ 3,0 ≦ yd ≦ 1,0 ≦ zd ≦ 2,0 ≦ ad ≦ 1,1 ≦ md ≦ 7, 3 ≦ nd ≦ 13), Li (3-2xe) M ee xe D ee O (xe represents a number from 0 to 0.1, and M ee represents a divalent metal atom. D ee represents a halogen atom or Represents a combination of two or more halogen atoms.), Li xf Si yf O zf (1 ≦ xf ≦ 5, 0 <yf ≦ 3, 1 ≦ zf ≦ 10), Li xg S yg O zg (1 ≦ xg ≦ 3, 0 <yg ≦ 2, 1 ≦ zg ≦ 10), Li 3 BO 3 —Li 2 SO 4 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 6 BaLa 2 ta 2 O 12, Li 3 PO (4-3 / 2w) N w (w is w <1), LI ICON (Lithium super ionic conductor) type Li 3.5 Zn 0.25 GeO 4 having a crystal structure, La 0.55 Li 0.35 TiO 3 having a perovskite crystal structure, NASICON (Natrium super ionic conductor) type crystal structure LiTi 2 P 3 O 12 , Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (where 0 ≦ xh ≦ 1, 0 ≦ yh ≦ 1), garnet Examples include Li 7 La 3 Zr 2 O 12 (LLZ) having a type crystal structure. Phosphorus compounds containing Li, P and O are also desirable. For example, lithium phosphate (Li 3 PO 4 ), LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen, LiPOD 1 (D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr) , Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.). LiA 1 ON (A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used.
 無機固体電解質の体積平均粒子径は特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質粒子の平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。 The volume average particle diameter of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less. In addition, the measurement of the average particle diameter of an inorganic solid electrolyte particle is performed in the following procedures. The inorganic solid electrolyte particles are diluted and adjusted in a 20 ml sample bottle using water (heptane in the case of a substance unstable to water). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that. Using this dispersion liquid sample, using a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by HORIBA), data acquisition was performed 50 times using a measurement quartz cell at a temperature of 25 ° C. Get the diameter. For other detailed conditions, the description of JISZ8828: 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level, and the average value is adopted.
 無機固体電解質の固体電解質組成物中の固形成分における含有量は、全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮したとき、固形成分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 上記無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 なお、本明細書において固形分(固形成分)とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒体以外の成分を指す。
The content of the solid component in the solid electrolyte composition of the inorganic solid electrolyte is 100% by mass of the solid component when considering the reduction of the interface resistance when used in an all-solid secondary battery and the maintenance of the reduced interface resistance. It is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass or more. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
The said inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
In the present specification, solid content (solid component) refers to a component that does not disappear by evaporation or evaporation when subjected to a drying treatment at 170 ° C. for 6 hours in a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium described below.
(脱水剤(B))
 本発明の固体電解質組成物は、水との反応による無機固体電解質の変質を抑制するため、脱水剤を含有する。本発明に用いられる脱水剤は、水を吸着するまたは水と反応する化合物を意味し、乾燥剤および吸水剤を含むものとする。本発明において、脱水剤は特に限定されず、有機化合物および無機化合物のいずれでもよい。
 なお、本発明において、脱水剤は1種単独で用いてもよく、複数種組み合わせて用いてもよい。
(Dehydrating agent (B))
The solid electrolyte composition of the present invention contains a dehydrating agent in order to suppress alteration of the inorganic solid electrolyte due to reaction with water. The dehydrating agent used in the present invention means a compound that adsorbs water or reacts with water, and includes a desiccant and a water absorbing agent. In the present invention, the dehydrating agent is not particularly limited and may be either an organic compound or an inorganic compound.
In the present invention, the dehydrating agent may be used alone or in combination of two or more.
 脱水剤のうち、無機化合物の具体例としては、五酸化二リン、三塩化リン、モレキュラーシーブス(3A、4A、5A、13X)、シリカゲル、ゼオライト、塩化リチウム、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、酸化アルミニウム、酸化カルシウム、金属Na、金属Liおよび金属水素化物が挙げられる。金属水素化物の具体例としては、水素化リチウム、水素化ホウ素リチウム、水素化ナトリウム、水素化カルシウム、水素化ホウ素ナトリウムおよび水素化アルミニウムリチウムが挙げられる。
 これらのうち、モレキュラーシーブスが水を吸着し、他は水と反応することにより脱水機能を発揮する。以下、無機化合物の脱水剤を無機系脱水剤と称することもある。
 上記無機系脱水剤は、脱水剤として通常使用される態様で使用すればよい。例えば、モレキュラーシーブスは、十分に乾燥させた状態のモレキュラーシーブスを使用する。
Among the dehydrating agents, specific examples of inorganic compounds include diphosphorus pentoxide, phosphorus trichloride, molecular sieves (3A, 4A, 5A, 13X), silica gel, zeolite, lithium chloride, calcium chloride, sodium sulfate, magnesium sulfate, Examples include aluminum oxide, calcium oxide, metal Na, metal Li, and metal hydride. Specific examples of metal hydrides include lithium hydride, lithium borohydride, sodium hydride, calcium hydride, sodium borohydride, and lithium aluminum hydride.
Among these, molecular sieves adsorb water, and others exhibit a dehydrating function by reacting with water. Hereinafter, the inorganic compound dehydrating agent may be referred to as an inorganic dehydrating agent.
What is necessary is just to use the said inorganic type dehydrating agent in the aspect normally used as a dehydrating agent. For example, molecular sieves that are sufficiently dried are used.
 無機系脱水剤として、化学物質の固有の性質(化学反応、潮解)を利用した化学的乾燥剤、及び、多孔質表面に水分子が吸着しやすい性質を利用した物理的乾燥剤を用いることができる。 As the inorganic dehydrating agent, a chemical desiccant that uses the intrinsic properties of chemical substances (chemical reaction, deliquescence) and a physical desiccant that uses the property that water molecules are easily adsorbed on the porous surface should be used. it can.
 脱水剤のうち、有機化合物は、水と反応することにより脱水機能を発揮する。以下、有機化合物の脱水剤を有機系脱水剤と称することもある。 Among the dehydrating agents, organic compounds exhibit a dehydrating function by reacting with water. Hereinafter, the organic compound dehydrating agent may be referred to as an organic dehydrating agent.
 有機系脱水剤として、水と反応しうる吸電子性を有しているため、ヘテロ原子含有二重結合を有する有機化合物が好ましい。
 ヘテロ原子の具体例としては、酸素原子、硫黄原子、リン原子および窒素原子が挙げられる。ヘテロ原子含有二重結合の具体例としては、C=O、S=O、P=OおよびC=Nが挙げられる。
As the organic dehydrating agent, an organic compound having a heteroatom-containing double bond is preferable because it has an electrophilic property capable of reacting with water.
Specific examples of the hetero atom include an oxygen atom, a sulfur atom, a phosphorus atom and a nitrogen atom. Specific examples of the heteroatom-containing double bond include C═O, S═O, P═O and C═N.
 また、有機系脱水剤として、水との反応性が高く速やかに加水分解を起こして水を消費するため、同一炭素原子または同一硫黄原子に2つ以上酸素原子が結合した部分構造を有する有機化合物が好ましい。
 同一炭素原子に2つ以上酸素原子が結合した部分構造の具体例としては、>C(-O-)、-C(=O)O-が挙げられる。一方、同一炭素原子に2つ以上硫黄原子が結合した部分構造の具体例としては、>S(=O)が挙げられる。
In addition, as an organic dehydrating agent, an organic compound having a partial structure in which two or more oxygen atoms are bonded to the same carbon atom or the same sulfur atom in order to rapidly react with water and consume water by being highly reactive with water Is preferred.
Specific examples of the partial structure in which two or more oxygen atoms are bonded to the same carbon atom include> C (—O—) 2 and —C (═O) O—. On the other hand, a specific example of a partial structure in which two or more sulfur atoms are bonded to the same carbon atom includes> S (= O) 2 .
 また、有機系脱水剤として、加水分解副生成物が酸性化合物である場合、無機固体電解質に対してイオン伝導度を低下させにくいため、水と反応して下記一般式(1)~(3)のいずれかで表される部分構造を有する生成物を形成する有機化合物が好ましい。 Further, as an organic dehydrating agent, when the hydrolysis by-product is an acidic compound, it is difficult to lower the ionic conductivity with respect to the inorganic solid electrolyte, so that it reacts with water and the following general formulas (1) to (3) The organic compound which forms the product which has the partial structure represented by either of these is preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)~(3)中、R、R、R31およびR32は、ぞれぞれ独立に水素原子、アルキル基またはアリール基を示す。X、X、X31およびX32は、ぞれぞれ独立に単結合、酸素原子、硫黄原子、または-N(R)-を示す。Rは、水素原子、アルキル基またはアリール基を示す。Yは炭素原子または硫黄原子を示す。Yは硫黄原子を示す。Yはリン原子を示す。*は生成物中における連結部位を示す。 In the general formulas (1) to (3), R 1 , R 2 , R 31 and R 32 each independently represent a hydrogen atom, an alkyl group or an aryl group. X 1 , X 2 , X 31 and X 32 each independently represent a single bond, an oxygen atom, a sulfur atom or —N (R 3 ) —. R 3 represents a hydrogen atom, an alkyl group or an aryl group. Y 1 represents a carbon atom or a sulfur atom. Y 2 represents a sulfur atom. Y 3 represents a phosphorus atom. * Indicates a linking site in the product.
 R~R、R31およびR32のアルキル基としては、後述の置換基Pにおけるアルキル基が好ましい。好ましくは炭素数1~12のアルキル基であり、より好ましくは炭素数1~6であり、特に好ましくはメチルおよびエチルである。
 R~R、R31およびR32のアリール基としては、後述の置換基Pにおけるアリール基が好ましい。
As the alkyl group for R 1 to R 3 , R 31 and R 32 , an alkyl group for the substituent P described later is preferable. Preferred are alkyl groups having 1 to 12 carbon atoms, more preferred are 1 to 6 carbon atoms, and particularly preferred are methyl and ethyl.
As the aryl group of R 1 to R 3 , R 31 and R 32, an aryl group in the substituent P described later is preferable.
 一般式(1)で表される部分構造を有する生成物を形成する有機化合物の具体例としては蟻酸、酢酸、プロピオン酸、ピバル酸、トリフルオロ酢酸、アクリル酸、メタクリル酸およびこれらのエステル類が挙げられる。
 一般式(2)で表される部分構造を有する生成物を形成する有機化合物の具体例としてはメタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、ビニルスルホン酸およびこれらのエステル類が挙げられる。
 一般式(3)で表される部分構造を有する生成物を形成する有機化合物の具体例としては、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸、フェニルホスホン酸およびこれらのエステル類が挙げられる。
 なお、本発明は上記具体例に限定されるものではない。
Specific examples of the organic compound forming the product having the partial structure represented by the general formula (1) include formic acid, acetic acid, propionic acid, pivalic acid, trifluoroacetic acid, acrylic acid, methacrylic acid, and esters thereof. Can be mentioned.
Specific examples of the organic compound forming the product having the partial structure represented by the general formula (2) include methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, vinylsulfonic acid, and esters thereof.
Specific examples of the organic compound forming the product having the partial structure represented by the general formula (3) include methylphosphonic acid, ethylphosphonic acid, vinylphosphonic acid, phenylphosphonic acid and esters thereof.
The present invention is not limited to the above specific examples.
 また、有機系脱水剤として、酸無水物、酸ハロゲン化物、アセタールおよびオルトエステルが水との反応性が高く速やかに加水分解を起こして水を消費するため、好ましく用いられる。なお、アセタールは>C(OR)(Rは任意の有機基を示す)構造を有する化合物であり、アルデヒドから得られる化合物とケトンから得られる化合物(ケタール)の両方を含む。 As organic dehydrating agents, acid anhydrides, acid halides, acetals, and orthoesters are preferably used because they are highly reactive with water and rapidly hydrolyze to consume water. Acetal is a compound having a structure> C (OR) 2 (R represents an arbitrary organic group), and includes both a compound obtained from an aldehyde and a compound (ketal) obtained from a ketone.
 本発明に用いられる脱水剤は、フッ素原子を有する有機化合物であることが好ましく、パーフルオロ有機化合物であることがより好ましい。フッ素原子を有することにより、脱水剤本来の脱水効果に加えて、脱水剤の存在に起因する組成物中への水の侵入抑制効果を有するからである。
 有機系脱水剤の具体例として、アルキルリチウム(例えば、ノルマルブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、メチルリチウムおよびフェニルリチウム)、金属アミド(例えば、リチウムジイソプロピルアミド、リチウム-2,2,6,6-テトラメチルピペリジド、リチウムヘキサメチルジシラジド、リチウムアミドおよびナトリウムアミド)、シランカップリング剤、カルボン酸無水物(例えば、無水酢酸、無水トリフルオロ酢酸、無水コハク酸)、スルホン酸無水物(例えば、無水トリフルオロメタンスルホン酸)、カルボン酸ハロゲン化物(カルボン酸塩化物が好ましく、例えば、酢酸クロリド)、スルホン酸ハロゲン化物(スルホン酸塩化物が好ましく、例えば、トリフルオロメタンスルホン酸クロリド)、オルトイソ酪酸トリメチルおよび下記例示化合物(B-1)~(B-4)が挙げられる。
The dehydrating agent used in the present invention is preferably an organic compound having a fluorine atom, and more preferably a perfluoro organic compound. This is because by having a fluorine atom, in addition to the original dehydrating effect of the dehydrating agent, it has the effect of suppressing the entry of water into the composition due to the presence of the dehydrating agent.
Specific examples of the organic dehydrating agent include alkyl lithium (for example, normal butyl lithium, sec-butyl lithium, tert-butyl lithium, methyl lithium and phenyl lithium), metal amide (for example, lithium diisopropylamide, lithium-2,2, 6,6-tetramethylpiperidide, lithium hexamethyldisilazide, lithium amide and sodium amide), silane coupling agents, carboxylic anhydrides (eg acetic anhydride, trifluoroacetic anhydride, succinic anhydride), sulfones Acid anhydride (for example, trifluoromethanesulfonic anhydride), carboxylic acid halide (carboxylic acid chloride is preferable, for example, acetic acid chloride), sulfonic acid halide (sulfonic acid chloride is preferable, for example, trifluoromethanesulfonic acid chloride) De) Orutoiso acid trimethyl and the following exemplified compound (B-1) include ~ (B-4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 固体電解質組成物中の脱水剤の含有量は特に制限されないが、無機固体電解質への悪影響を除外しつつ十分な乾燥能力を発揮させるため、全固形分中、1質量%以上50質量%以下が好ましく、2質量%以上30質量%以下がより好ましく、3質量%以上20質量%以下が特に好ましい。 The content of the dehydrating agent in the solid electrolyte composition is not particularly limited, but in order to exert a sufficient drying capacity while excluding adverse effects on the inorganic solid electrolyte, the total solid content is 1% by mass or more and 50% by mass or less. It is preferably 2% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 20% by mass or less.
 脱水剤は固体電解質組成物中に溶解していてもよいし不溶であってもよい。不溶の場合、固体電解質組成物中に均等に存在していても良いし、偏在化していてもよい。偏在化している場合、脱水剤の存在場所は、固体電解質組成物中の上部界面であっても低部界面であってもよい。特に固体電解質組成物に水分が接触しうる界面との間に脱水剤が存在していることが好ましい。 The dehydrating agent may be dissolved in the solid electrolyte composition or insoluble. When insoluble, it may exist evenly in the solid electrolyte composition or may be unevenly distributed. In the case of uneven distribution, the dehydrating agent may be present at the upper interface or the lower interface in the solid electrolyte composition. In particular, it is preferable that a dehydrating agent exists between the solid electrolyte composition and an interface with which moisture can come into contact.
 本発明に用いられる脱水剤の分子量および沸点は特に制限されないが、固体電解質含有シート作製時に余分な脱水剤を効率的に除去するため、分子量300以下または760mmHgにおける沸点が300℃以下であることが好ましい。
 分子量の下限は、50以上であることが実際的である。一方、760mmHgにおける沸点の下限は、25℃以上であることが実際的である。
The molecular weight and boiling point of the dehydrating agent used in the present invention are not particularly limited, but the boiling point at a molecular weight of 300 or less or 760 mmHg may be 300 ° C. or less in order to efficiently remove excess dehydrating agent when preparing the solid electrolyte-containing sheet. preferable.
It is practical that the lower limit of the molecular weight is 50 or more. On the other hand, the lower limit of the boiling point at 760 mmHg is practically 25 ° C. or higher.
 本発明に用いられる脱水剤(B)は、無機固体電解質への悪影響を除外しつつ十分な乾燥能力を発揮させるため、25℃で液体であり、分散媒体(C)に対する質量比(B)/(C)が、1/99~99/1であることが好ましく、5/95~50/5が好ましく、10/90~30/70が特に好ましい。 The dehydrating agent (B) used in the present invention is a liquid at 25 ° C. and exhibits a mass ratio (B) / weight to the dispersion medium (C) in order to exhibit a sufficient drying ability while excluding adverse effects on the inorganic solid electrolyte. (C) is preferably 1/99 to 99/1, more preferably 5/95 to 50/5, and particularly preferably 10/90 to 30/70.
 本明細書において置換または無置換を明記していない化合物、部分構造ないし基については、その化合物、部分構造ないし基に適宜の置換基を有していてもよい意味である。これは置換または無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Pが挙げられる。
 置換基Pとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、ただし本明細書においてアルキル基というときには通常シクロアルキル基を含む意味である。)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、アラルキル基(好ましくは炭素数7~23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、環構成原子として酸素原子、硫黄原子および窒素原子から選択される少なくとも1つを有する5又は6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラニル、テトラヒドロフラニル、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等、ただし本明細書においてアルコキシ基というときには通常アリーロイル基を含む意味である。)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素原子数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル等)、アリーロイル基(好ましくは炭素原子数7~23のアリーロイル基、例えば、ベンゾイル等、ただし本明細書においてアシル基というときには通常アリーロイル基を含む意味である。)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ等)、アリーロイルオキシ基(好ましくは炭素原子数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等、ただし本明細書においてアシルオキシ基というときには通常アリーロイルオキシ基を含む意味である。)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルスルファニル基(好ましくは炭素原子数1~20のアルキルスルファニル基、例えば、メチルスルファニル、エチルスルファニル、イソプロピルスルファニル、ベンジルスルファニル等)、アリールスルファニル基(好ましくは炭素原子数6~26のアリールスルファニル基、例えば、フェニルスルファニル、1-ナフチルスルファニル、3-メチルフェニルスルファニル、4-メトキシフェニルスルファニル等)、アルキルスルホニル基(好ましくは炭素原子数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素原子数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素原子数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素原子数6~42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素原子数1~20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素原子数6~42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素原子数0~20のホスホリル基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素原子数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素原子数0~20のホスフィニル基、例えば、-P(R)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルイミノ基((メタ)アクリルアミド基)、ヒドロキシ基、スルファニル基、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
 また、これらの置換基Pで挙げた各基は、上記の置換基Pがさらに置換していてもよい。
 化合物、置換基および連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基および/またはアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
In the present specification, a compound, partial structure or group for which substitution or non-substitution is not clearly specified means that the compound, partial structure or group may have an appropriate substituent. This is also synonymous for compounds that do not specify substituted or unsubstituted. Preferable substituents include the following substituent P.
Examples of the substituent P include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl A group (preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like), A cycloalkyl group (preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., but in this specification, an alkyl group usually means a cycloalkyl group) ), An aryl group (preferably Aryl groups having 6 to 26 elemental atoms such as phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl and the like, aralkyl groups (preferably aralkyl groups having 7 to 23 carbon atoms such as Benzyl, phenethyl and the like), a heterocyclic group (preferably a heterocyclic group having 2 to 20 carbon atoms, preferably 5 or 6 having at least one selected from an oxygen atom, a sulfur atom and a nitrogen atom as a ring-constituting atom Preferred are membered heterocyclic groups such as tetrahydropyranyl, tetrahydrofuranyl, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, pyrrolidone group, etc.), alkoxy groups ( Preferably an alkoxy group having 1 to 20 carbon atoms such as methoxy, ethoxy, Propyloxy, benzyloxy, etc.), aryloxy groups (preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc., but in this specification, An alkoxy group usually means an aryloyl group), an alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.), an aryloxycarbonyl group ( Preferably, the aryloxycarbonyl group having 6 to 26 carbon atoms such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc.), amino group (preferably carbon atom) Including an amino group having 0 to 20 atoms, an alkylamino group, and an arylamino group, such as amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc.), a sulfamoyl group (preferably A sulfamoyl group having 0 to 20 carbon atoms such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl and the like, an acyl group (preferably an acyl group having 1 to 20 carbon atoms such as acetyl and propionyl). , Butyryl, etc.), an aryloyl group (preferably an aryloyl group having 7 to 23 carbon atoms, such as benzoyl, etc., but an acyl group in this specification usually means an aryloyl group). ), An acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy), an aryloyloxy group (preferably an aryloyloxy group having 7 to 23 carbon atoms, such as benzoyloxy, etc., provided that In this specification, an acyloxy group usually means an aryloyloxy group), a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc. ), An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.), an alkylsulfanyl group (preferably an alkylsulfanyl group having 1 to 20 carbon atoms, such as methylsulfanyl, ethyl Sulfanyl, isopropyl Sulfanyl, benzylsulfanyl, etc.), arylsulfanyl groups (preferably arylsulfanyl groups having 6 to 26 carbon atoms, such as phenylsulfanyl, 1-naphthylsulfanyl, 3-methylphenylsulfanyl, 4-methoxyphenylsulfanyl, etc.), alkylsulfonyl A group (preferably an alkylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl or ethylsulfonyl), an arylsulfonyl group (preferably an arylsulfonyl group having 6 to 22 carbon atoms, such as benzenesulfonyl), an alkyl, etc. A silyl group (preferably an alkylsilyl group having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.), an arylsilyl group (preferably 6 to 4 carbon atoms) Arylsilyl groups such as triphenylsilyl), alkoxysilyl groups (preferably alkoxysilyl groups having 1 to 20 carbon atoms such as monomethoxysilyl, dimethoxysilyl, trimethoxysilyl, triethoxysilyl, etc.), aryl An oxysilyl group (preferably an aryloxysilyl group having 6 to 42 carbon atoms, such as triphenyloxysilyl), a phosphoryl group (preferably a phosphoryl group having 0 to 20 carbon atoms, such as —OP (═O) (R P ) 2 ), a phosphonyl group (preferably a phosphonyl group having 0 to 20 carbon atoms, such as —P (═O) (R P ) 2 ), a phosphinyl group (preferably phosphinyl having 0 to 20 carbon atoms). Groups such as -P (R P ) 2 ), (meth) acryloyl groups, (meth) acryloyloxy groups, ( (Meth) acryloylumimino group ((meth) acrylamide group), hydroxy group, sulfanyl group, carboxy group, phosphoric acid group, phosphonic acid group, sulfonic acid group, cyano group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, Iodine atom).
In addition, each of the groups listed as the substituent P may be further substituted with the substituent P described above.
When the compound, substituent, linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and / or an alkynylene group, these may be cyclic or linear, and may be linear or branched. It may be substituted as described above or unsubstituted.
(分散媒体(C))
 本発明の固体電解質組成物は、固形成分を分散させるため分散媒体を含有する。分散媒体の具体例としては下記のものが挙げられる。
(Dispersion medium (C))
The solid electrolyte composition of the present invention contains a dispersion medium for dispersing solid components. Specific examples of the dispersion medium include the following.
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。 Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4-butane. Diols are mentioned.
 エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジブチルエーテル等)、アルキルアリールエーテル(アニソール)、テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)、ジエトキシエタン、テトラエチレングリコールジメチルエーテル(テトラグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、テトラエチレングリコール及びトリエチレングリコールが挙げられる。 Examples of ether compound solvents include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol monomethyl ether, Propylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, etc.), dialkyl ether (dimethyl ether, diethyl ether, dibutyl ether, etc.), alkyl aryl ether (anisole), tetrahydrofuran, dioxane (1,2-, 1,3) And 1,4-isomers), diethoxyethane, tetraethylene glycol dimethyl ether (tetraglyme), triethylene glycol dimethyl ether (triglyme), tetraethylene glycol monomethyl ether, triethylene glycol monomethyl ether, tetraethylene glycol and A triethylene glycol is mentioned.
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。 Examples of the amide compound solvent include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
 アミノ化合物溶媒としては、例えば、トリエチルアミン、トリブチルアミンなどが挙げられる。 Examples of the amino compound solvent include triethylamine and tributylamine.
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、エチルプロピルケトン、ジプロピルケトン、ジブチルケトン、ジペンチルケトン、ジヘキシルケトン、シクロヘキサノンが挙げられる。 Examples of the ketone compound solvent include acetone, methyl ethyl ketone, diethyl ketone, ethyl propyl ketone, dipropyl ketone, dibutyl ketone, dipentyl ketone, dihexyl ketone, and cyclohexanone.
 エステル化合物溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル、酪酸ペンチル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸ブチル、カプロン酸メチル、カプロン酸エチル、カプロン酸プロピル及びカプロン酸ブチルが挙げられる。 Examples of ester compound solvents include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate. Butyl butyrate, pentyl butyrate, methyl valerate, ethyl valerate, propyl valerate, butyl valerate, methyl caproate, ethyl caproate, propyl caproate and butyl caproate.
 カーボネート化合物溶媒としては、例えばエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートが挙げられる。 Examples of the carbonate compound solvent include ethylene carbonate, dimethyl carbonate, and diethyl carbonate.
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレンなどが挙げられる。 Examples of the aromatic compound solvent include benzene, toluene, xylene, mesitylene and the like.
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ペンタン、シクロペンタンなどが挙げられる。 Examples of the aliphatic compound solvent include hexane, heptane, cyclohexane, methylcyclohexane, octane, pentane, and cyclopentane.
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、ブチロニトリルなどが挙げられる。 Examples of the nitrile compound solvent include acetonitrile, propyronitrile, butyronitrile, and the like.
 分散媒体は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることがさらに好ましい。上記分散媒体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher at normal pressure (1 atm). The upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower. The said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
 本発明においては、中でも、エーテル化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒が好ましく用いられる。脱水剤が固着せずに分散状態を保持できるため、無機系脱水剤とエーテル化合物溶媒または芳香族化合物溶媒、脂肪族化合物溶媒との組合せが好ましい。また、幅広い比率で混和するため、有機系脱水剤とエーテル化合物溶媒、ケトン化合物溶媒、エステル溶媒、芳香族化合物溶媒または脂肪族化合物溶媒との組合せが好ましい。
 なお、エーテル化合物溶媒としては、なかでもジエチルエーテル、ジメトキシエタン、エチルフェニルエーテル、テトラヒドロフランおよび1,4-ジオキサンが好ましい。芳香族化合物溶媒としては、なかでもトルエンおよびキシレンが好ましい。脂肪族化合物溶媒としては、なかでもヘプタンおよびオクタンが好ましい。
In the present invention, among them, ether compound solvents, aromatic compound solvents, and aliphatic compound solvents are preferably used. A combination of an inorganic dehydrating agent and an ether compound solvent, an aromatic compound solvent or an aliphatic compound solvent is preferable because the dehydrating agent can be maintained without being fixed. Moreover, since it mixes in a wide ratio, the combination of an organic type dehydrating agent and an ether compound solvent, a ketone compound solvent, an ester solvent, an aromatic compound solvent or an aliphatic compound solvent is preferable.
Of the ether compound solvents, diethyl ether, dimethoxyethane, ethylphenyl ether, tetrahydrofuran and 1,4-dioxane are preferred. Of these, toluene and xylene are preferred as the aromatic compound solvent. Among them, heptane and octane are preferable as the aliphatic compound solvent.
 なお、本発明の固体電解質組成物中の分散媒体の含有量は特に制限されないが、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。 The content of the dispersion medium in the solid electrolyte composition of the present invention is not particularly limited, but is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
 分散媒体は固体電解質組成物に含まれるが、固体電解質含有シートまたは全固体二次電池の作製過程において除去され、固体電解質含有シートまたは全固体二次電池中に残存しないことが好ましい。なお、分散媒体は、固体電解質含有シートまたは全固体二次電池中に一部残存しても良い。残存する場合、これら分散媒体の、固体電解質含有シートまたは全固体二次電池中の残存量の許容量は上限として5質量%以下であり1質量%以下がより好ましく、0.1質量%以下がさらに好ましく、0.05質量%以下が最も好ましい。下限は特に規定されないが1ppb以上(質量基準)であるのが実際的である。 The dispersion medium is contained in the solid electrolyte composition, but is preferably removed in the process of producing the solid electrolyte-containing sheet or the all-solid secondary battery and does not remain in the solid electrolyte-containing sheet or the all-solid-state secondary battery. A part of the dispersion medium may remain in the solid electrolyte-containing sheet or the all-solid secondary battery. When remaining, the allowable amount of the residual amount in the solid electrolyte-containing sheet or the all-solid secondary battery of these dispersion media is 5% by mass or less, more preferably 1% by mass or less, and more preferably 0.1% by mass or less. More preferred is 0.05% by mass or less. Although the lower limit is not particularly defined, it is practical that it is 1 ppb or more (mass basis).
(活物質(D))
 本発明の固体電解質組成物は、周期律表第1族又は第2族に属する金属元素のイオンの挿入放出が可能な活物質(D)を含有してもよい。以下、活物質(D)を単に活物質とも称する。
 活物質としては、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物、又は、負極活物質である金属酸化物が好ましい。
 本発明において、活物質(正極活物質、負極活物質)を含有する固体電解質組成物を、電極用組成物(正極用組成物、負極用組成物)ということがある。
(Active material (D))
The solid electrolyte composition of the present invention may contain an active material (D) capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the Periodic Table. Hereinafter, the active material (D) is also simply referred to as an active material.
Examples of the active material include a positive electrode active material and a negative electrode active material, and a transition metal oxide that is a positive electrode active material or a metal oxide that is a negative electrode active material is preferable.
In the present invention, a solid electrolyte composition containing an active material (positive electrode active material, negative electrode active material) may be referred to as an electrode composition (positive electrode composition, negative electrode composition).
 -正極活物質-
 本発明の固体電解質組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物や、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、CuおよびVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、PまたはBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物および(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
-Positive electrode active material-
The positive electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions. The material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be complexed with Li, such as sulfur, or a complex of sulfur and metal.
Among them, as the positive electrode active material, it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V). More preferred. In addition, this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B) may be mixed. The mixing amount is preferably 0 ~ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halide phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])およびLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO4、LiFeMn、LiCuMn、LiCrMnおよびLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePOおよびLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類ならびにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩およびLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiOおよびLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO、LMO、NCA又はNMCがより好ましい。
(MA) As specific examples of the transition metal oxide having a layered rock salt structure, LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.10 Al 0.05 O 2 (lithium nickel cobalt aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobaltate [NMC]) and LiNi 0.5 Mn 0.5 O 2 (manganese) Lithium nickelate).
Specific examples of transition metal oxides having (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
Examples of (MC) lithium-containing transition metal phosphate compounds include olivine-type phosphate iron salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
In the present invention, a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO, LMO, NCA or NMC is more preferable.
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。 The shape of the positive electrode active material is not particularly limited, but is preferably particulate. The volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited. For example, the thickness can be 0.1 to 50 μm. In order to make the positive electrode active material have a predetermined particle size, an ordinary pulverizer or classifier may be used. The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent. The volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The positive electrode active materials may be used alone or in combination of two or more.
When forming the positive electrode active material layer, the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
 正極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量がさらに好ましく、55~80質量%が特に好ましい。 The content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and even more preferably 50 to 85% by mass at 100% by mass. Preferably, it is 55 to 80% by mass.
 -負極活物質-
 本発明の固体電解質組成物が含有してもよい負極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体およびリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、AlおよびIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵および放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
-Negative electrode active material-
The negative electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions. The material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium simple substance and a lithium alloy such as a lithium aluminum alloy, and , Metals such as Sn, Si, Al, and In that can form an alloy with lithium. Among these, a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability. The metal composite oxide is preferably capable of inserting and extracting lithium. The material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維および活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカーならびに平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially made of carbon. For example, various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) -based resin, furfuryl alcohol resin, etc. The carbonaceous material which baked resin can be mentioned. Furthermore, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。 As the metal oxide and metal composite oxide applied as the negative electrode active material, an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done. The term “amorphous” as used herein means an X-ray diffraction method using CuKα rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2θ, and is a crystalline diffraction line. You may have.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、SbおよびBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、ならびにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、SbおよびSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。 Among the compound group consisting of the amorphous oxide and the chalcogenide, the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。 It is also preferable that the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during occlusion and release of lithium ions, and the deterioration of the electrode is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛およびアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。 In the present invention, it is also preferable to apply a Si-based negative electrode. In general, a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of occlusion of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミルおよび旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式および湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。 The shape of the negative electrode active material is not particularly limited, but is preferably particulate. The average particle size of the negative electrode active material is preferably 0.1 to 60 μm. In order to obtain a predetermined particle size, a normal pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, and a sieve are preferably used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle diameter, classification is preferably performed. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet. The average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
When the negative electrode active material layer is formed, the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
 負極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましい。 The content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass with a solid content of 100% by mass.
 正極活物質および負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi,Nb、Ta,W,Zr、Al,SiまたはLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12,LiTi,LiTaO,LiNbO,LiAlO,LiZrO,LiWO,LiTiO,Li,LiPO,LiMoO,LiBO,LiBO,LiCO,LiSiO,SiO,TiO,ZrO,Al,B等が挙げられる。
 また、正極活物質または負極活物質を含む電極表面は硫黄またはリンで表面処理されていてもよい。
 さらに、正極活物質または負極活物質の粒子表面は、上記表面被覆の前後において活性光線または活性気体(プラズマ等)により表面処理を施されていても良い。
The surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide. Examples of the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si, or Li. Specific examples include spinel titanate, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, and the like. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , LiTaO 3. , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TiO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 , SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , B 2 O 3 and the like.
Moreover, the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus.
Furthermore, the particle surface of the positive electrode active material or the negative electrode active material may be subjected to a surface treatment with actinic light or an active gas (plasma or the like) before and after the surface coating.
(バインダー(E))
 本発明の固体電解質組成物はバインダー(E)を含有してもよい。以下、バインダー(E)を単にバインダーとも称する。
 本発明で使用するバインダーは、有機ポリマーであれば特に限定されない。
 本発明に用いることができるバインダーは、特に制限はなく、例えば、以下に述べる樹脂からなるバインダーが好ましい。
(Binder (E))
The solid electrolyte composition of the present invention may contain a binder (E). Hereinafter, the binder (E) is also simply referred to as a binder.
The binder used in the present invention is not particularly limited as long as it is an organic polymer.
The binder that can be used in the present invention is not particularly limited, and for example, a binder made of the resin described below is preferable.
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
 アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、およびこれら樹脂を構成するモノマーの共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
 また、そのほかのビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられる。本願明細書において、コポリマーは、統計コポリマーおよび周期コポリマーのいずれでもよく、ブロックコポリマーが好ましい。
 その他の樹脂としては例えばポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
 これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
Examples of the fluorine-containing resin include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
Examples of the hydrocarbon-based thermoplastic resin include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
Examples of the acrylic resin include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of these monomers (preferably a copolymer of acrylic acid and methyl acrylate). It is done.
Further, a copolymer (copolymer) with other vinyl monomers is also preferably used. Examples thereof include a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile, and styrene. In the present specification, the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferred.
Examples of other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin.
These may be used individually by 1 type, or may be used in combination of 2 or more type.
 本発明に用いられるバインダーは、強い結着性を示す(集電体からの剥離抑制および、固体界面の結着によるサイクル寿命の向上)ため、上述のアクリル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、含フッ素樹脂および炭化水素系熱可塑性樹脂からなる群から選択される少なくとも1種であることが好ましい。 The binder used in the present invention exhibits strong binding properties (inhibition of peeling from the current collector and improvement in cycle life due to binding at the solid interface), so that the above-mentioned acrylic resin, polyurethane resin, polyurea resin, polyimide resin are used. It is preferably at least one selected from the group consisting of fluorine-containing resins and hydrocarbon-based thermoplastic resins.
 本発明に用いられるバインダーは、粒子表面への濡れ性や吸着性を高めるため、極性基を有することが好ましい。極性基とは、ヘテロ原子を含む1価の基、例えば、酸素原子、窒素原子および硫黄原子のいずれかと水素原子が結合した構造を含む1価の基が好ましく、具体例としては、カルボキシ基、ヒドロキシ基、アミノ基、リン酸基およびスルホ基が挙げられる。 The binder used in the present invention preferably has a polar group in order to improve wettability and adsorptivity to the particle surface. The polar group is preferably a monovalent group containing a hetero atom, for example, a monovalent group containing a structure in which any one of an oxygen atom, a nitrogen atom and a sulfur atom is bonded to a hydrogen atom. Specific examples include a carboxy group, A hydroxy group, an amino group, a phosphate group, and a sulfo group are mentioned.
 バインダーの形状は特に限定されず、固体電解質組成物、固体電解質含有シートまたは全固体二次電池中において粒子状であっても不定形状であってもよい。
 本発明において、バインダーが分散媒体に対して不溶の粒子であることが固体電解質組成物の分散安定性の観点から好ましい。ここで、「バインダーが分散媒体に対して不溶の粒子である」とは、30℃の分散媒体に添加し、24時間静置しても、平均粒子径が5%以上低下しないことを意味し、3%以上低下しないことが好ましく、1%以上低下しないことがより好ましい。
 なお、バインダー粒子が分散媒体に全く溶解していない状態では、添加前に対する平均粒子径の上記変化量は0%である。
 また、固体電解質組成物中におけるバインダーは、無機固体電解質の粒子間イオン伝導性の低下抑制のため、平均粒子径10~1000nmのナノ粒子であることが好ましい。
 バインダーの平均粒子径は、後述の実施例の項に記載の方法により算出することができる。
The shape of the binder is not particularly limited, and may be particulate or indefinite in the solid electrolyte composition, the solid electrolyte-containing sheet, or the all-solid secondary battery.
In the present invention, it is preferable from the viewpoint of dispersion stability of the solid electrolyte composition that the binder is particles insoluble in the dispersion medium. Here, “the binder is an insoluble particle in the dispersion medium” means that the average particle diameter does not decrease by 5% or more even when added to the dispersion medium at 30 ° C. and left to stand for 24 hours. It is preferably 3% or less, more preferably 1% or less.
In the state where the binder particles are not dissolved at all in the dispersion medium, the amount of change in the average particle diameter with respect to that before the addition is 0%.
In addition, the binder in the solid electrolyte composition is preferably a nanoparticle having an average particle diameter of 10 to 1000 nm in order to suppress a decrease in interparticle ion conductivity of the inorganic solid electrolyte.
The average particle size of the binder can be calculated by the method described in the Examples section below.
 バインダーは1種の化合物からなるものでもよく、2種以上の化合物の組合せからなるものでもよい。バインダーが粒子の場合、粒子そのものは、均一分散物でなくコアシェル形状や中空形状であってもよい。またバインダー内部を形成するコア部に有機物や無機物を内包していても良い。コア部に内包される有機物としては後述の分散媒体、分散剤、リチウム塩、イオン液体、導電助剤等が挙げられる。 The binder may be composed of one compound or a combination of two or more compounds. When the binder is a particle, the particle itself may not be a uniform dispersion but may be a core-shell shape or a hollow shape. Moreover, you may enclose organic substance and an inorganic substance in the core part which forms the inside of a binder. Examples of the organic substance included in the core include a dispersion medium, a dispersant, a lithium salt, an ionic liquid, and a conductive auxiliary agent described later.
 本発明に用いられるバインダー粒子の平均粒子径は、特に断らない限り、以下に記載の測定条件および定義に基づくものとする。
 バインダー粒子を任意の溶媒(固体電解質組成物の調製に用いる分散媒体。例えば、オクタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とする。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製して測定し、その平均値を採用する。
 なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について上記ポリマー粒子の平均粒子径の測定方法に準じてその測定を行い、あらかじめ測定していたポリマー粒子以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
The average particle size of the binder particles used in the present invention is based on the measurement conditions and definitions described below unless otherwise specified.
The binder particles are prepared by diluting a 1% by mass dispersion in a 20 ml sample bottle using an arbitrary solvent (dispersion medium used for preparing the solid electrolyte composition, for example, octane). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that. Using this dispersion liquid sample, using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA), data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Let the obtained volume average particle diameter be an average particle diameter. For other detailed conditions, the description of JISZ8828: 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level and measured, and the average value is adopted.
In addition, the measurement from the produced all-solid-state secondary battery is performed, for example, after disassembling the battery and peeling off the electrode, then measuring the electrode material according to the method for measuring the average particle diameter of the polymer particles, This can be done by eliminating the measured value of the average particle diameter of the particles other than the polymer particles that have been measured.
 なお、本発明に用いられるバインダーは市販品を用いることができる。また、常法により調製することもできる。 In addition, a commercial item can be used for the binder used for this invention. Moreover, it can also prepare by a conventional method.
 本発明に用いられるバインダーを構成するポリマーの水分濃度は、100ppm(質量基準)以下が好ましい。
 また、本発明に用いられるバインダーを構成するポリマーは、固体の状態で使用しても良いし、ポリマー粒子分散液またはポリマー溶液の状態で用いてもよい。
The water concentration of the polymer constituting the binder used in the present invention is preferably 100 ppm (mass basis) or less.
Moreover, the polymer which comprises the binder used for this invention may be used in a solid state, and may be used in the state of a polymer particle dispersion or a polymer solution.
 本発明に用いられるバインダーを構成するポリマーの質量平均分子量は10,000以上が好ましく、20,000以上がより好ましく、30,000以上がさらに好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。 The mass average molecular weight of the polymer constituting the binder used in the present invention is preferably 10,000 or more, more preferably 20,000 or more, and further preferably 30,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
 バインダーの固体電解質組成物中での含有量は、全固体二次電池に用いたときの良好な界面抵抗の低減性とその維持性を考慮すると、固形成分100質量%において、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。上限としては、電池特性の観点から、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。
 本発明では、バインダーの質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/バインダーの質量]は、1,000~1の範囲が好ましい。この比率はさらに500~2がより好ましく、100~10がさらに好ましい。
The content of the binder in the solid electrolyte composition is 0.01% by mass with respect to 100% by mass of the solid component, considering good reduction in interface resistance and its maintainability when used in an all-solid secondary battery. The above is preferable, 0.1% by mass or more is more preferable, and 1% by mass or more is more preferable. As an upper limit, from a viewpoint of a battery characteristic, 10 mass% or less is preferable, 5 mass% or less is more preferable, and 3 mass% or less is further more preferable.
In the present invention, the mass ratio of the total mass (total amount) of the inorganic solid electrolyte and the active material to the mass of the binder [(mass of the inorganic solid electrolyte + mass of the active material) / mass of the binder] is 1,000 to 1. A range is preferred. This ratio is more preferably 500 to 2, and further preferably 100 to 10.
(分散剤)
 本発明の固体電解質組成物は分散剤を含有してもよい。分散剤を添加することで電極活物質及び無機固体電解質のいずれかの濃度が高い場合や、粒子径が細かく表面積が増大する場合においてもその凝集を抑制し、均一な活物質層及び固体電解質層を形成することができる。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発および/または静電反発を意図した化合物が好適に使用される。
(Dispersant)
The solid electrolyte composition of the present invention may contain a dispersant. Even when the concentration of either the electrode active material or the inorganic solid electrolyte is high by adding a dispersant, or even when the particle diameter is small and the surface area is increased, the aggregation is suppressed, and the uniform active material layer and solid electrolyte layer Can be formed. As the dispersant, those usually used for all-solid secondary batteries can be appropriately selected and used. In general, compounds intended for particle adsorption and steric repulsion and / or electrostatic repulsion are preferably used.
(リチウム塩)
 本発明の固体電解質組成物は、リチウム塩を含有してもよい。
 リチウム塩としては、特に制限はなく、例えば、特開2015-088486号公報の段落0082~0085記載のリチウム塩が好ましい。
 リチウム塩の含有量は、無機固体電解質100質量部に対して0質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
(Lithium salt)
The solid electrolyte composition of the present invention may contain a lithium salt.
The lithium salt is not particularly limited, and for example, lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
The content of the lithium salt is preferably 0 part by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
(イオン液体)
 本発明の固体電解質組成物は、固体電解質含有シートのイオン伝導度をより向上させるため、イオン液体を含有してもよい。イオン液体としては、特に限定されないが、イオン伝導度を効果的に向上させる観点から、上述したリチウム塩を溶解するものが好ましい。例えば、下記のカチオンと、アニオンとの組み合わせよりなる化合物が挙げられる。
(Ionic liquid)
The solid electrolyte composition of the present invention may contain an ionic liquid in order to further improve the ionic conductivity of the solid electrolyte-containing sheet. Although it does not specifically limit as an ionic liquid, From the viewpoint of improving an ionic conductivity effectively, what melt | dissolves the lithium salt mentioned above is preferable. For example, the compound which consists of a combination of the following cation and an anion is mentioned.
 (i)カチオン
 カチオンとしては、以下の置換基を有するイミダゾリウムカチオン、以下の置換基を有するピリジニウムカチオン、以下の置換基を有するピペリジニウムカチオン、以下の置換基を有するピロリジニウムカチオン、以下の置換基を有するモルホリニウムカチオン、以下の置換基を有するホスホニウムカチオン、又は、以下の置換基を有する第4級アンモニウムカチオン等が挙げられる。
 カチオンとしては、これらのカチオンを1種単独で用いてもよく、2種以上組み合わせて用いることもできる。
 好ましくは、四級アンモニウムカチオン、ピペリジニウムカチオン又はピロリジニウムカチオンである。
 置換基としては、アルキル基(炭素数1~8のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。)、ヒドロキシアルキル基(炭素数1~3のヒドロキシアルキル基が好ましい。)、アルキルオキシアルキル基(炭素数2~8のアルキルオキシアルキル基が好ましく、炭素数2~4のアルキルオキシアルキル基がより好ましい。)、エーテル基、アリル基、アミノアルキル基(炭素数1~8のアミノアルキル基が好ましく、炭素数1~4のアミノアルキル基がより好ましい。)、アリール基(炭素数6~12のアリール基が好ましく、炭素数6~8のアリール基がより好ましい。)が挙げられる。上記置換基はカチオン部位を含有する形で環状構造を形成していてもよい。これらの置換基はさらに上記置換基Pを有していてもよい。なお、上記エーテル基は、他の置換基と組み合わされて用いられる。このような置換基として、アルキルオキシ基、アリールオキシ基等が挙げられる。
(I) Cation As a cation, an imidazolium cation having the following substituent, a pyridinium cation having the following substituent, a piperidinium cation having the following substituent, a pyrrolidinium cation having the following substituent, Morpholinium cations having the following substituents, phosphonium cations having the following substituents, or quaternary ammonium cations having the following substituents.
As the cation, one kind of these cations may be used alone, or two or more kinds may be used in combination.
Preferably, it is a quaternary ammonium cation, a piperidinium cation or a pyrrolidinium cation.
As the substituent, an alkyl group (an alkyl group having 1 to 8 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable), a hydroxyalkyl group (a hydroxyalkyl group having 1 to 3 carbon atoms is preferable). An alkyloxyalkyl group (preferably an alkyloxyalkyl group having 2 to 8 carbon atoms, more preferably an alkyloxyalkyl group having 2 to 4 carbon atoms), an ether group, an allyl group, an aminoalkyl group (1 to 8 carbon atoms). And an aryl group (an aryl group having 6 to 12 carbon atoms is more preferable, and an aryl group having 6 to 8 carbon atoms is more preferable). Can be mentioned. The substituent may form a cyclic structure containing a cation moiety. These substituents may further have the above substituent P. The ether group is used in combination with other substituents. Examples of such a substituent include an alkyloxy group and an aryloxy group.
 (ii)アニオン
 アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、四フッ化ホウ素イオン、硝酸イオン、ジシアナミドイオン、酢酸イオン、四塩化鉄イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、ビス(パーフルオロブチルメタンスルホニル)イミドイオン、アリルスルホネートイオン、ヘキサフルオロリン酸イオン、又は、トリフルオロメタンスルホネートイオン等が挙げられる。
 アニオンとしては、これらのアニオンを1種単独で用いてもよく、2種以上組み合わせて用いることもできる。
 好ましくは、四フッ化ホウ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、ヘキサフルオロリン酸イオン、ジシアナミドイオン又はアリルスルホネートイオンであり、さらに好ましくはビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン又はアリルスルホネートイオンである。
(Ii) Anions As anions, chloride ions, bromide ions, iodide ions, boron tetrafluoride ions, nitrate ions, dicyanamide ions, acetate ions, iron tetrachloride ions, bis (trifluoromethanesulfonyl) imide ions, bis ( Fluorosulfonyl) imide ion, bis (perfluorobutylmethanesulfonyl) imide ion, allyl sulfonate ion, hexafluorophosphate ion, or trifluoromethane sulfonate ion.
As the anion, these anions may be used alone or in combination of two or more.
Preferred are boron tetrafluoride ion, bis (trifluoromethanesulfonyl) imide ion, bis (fluorosulfonyl) imide ion, hexafluorophosphate ion, dicyanamide ion or allyl sulfonate ion, and more preferred is bis (trifluoromethanesulfonyl) imide ion. Bis (fluorosulfonyl) imide ion or allyl sulfonate ion.
 上記のイオン液体としては、例えば、1-アリル-3-エチルイミダゾリウムブロミド、1-エチル-3-メチルイミダゾリウムブロミド、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウムブロミド、1-(2-メトキシエチル)-3-メチルイミダゾリウムブロミド、1-オクチル-3-メチルイミダゾリウムクロリド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムテトラフルオロボラート、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビストリフルオロメタンスルホン酸、1-エチル-3-メチルイミダゾリウムジシアナミド、1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、トリメチルブチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム ビス(トリフルオロメタンスルホニル)イミド、N-(2-メトキシエチル)-N-メチルピロリジニウム テトラフルオロボラード、1-ブチル-1-メチルピロリジニウム イミダゾリウムビス(フルオロスルホニル)イミド、(2-アクリロイルエチル)トリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、1-エチルー1-メチルピロリジニウムアリルスルホネート、1-エチルー3-メチルイミダゾリウムアリルスルホネート又は、塩化トリヘキシルテトラデシルホスホニウム等が挙げられる。
 イオン液体の含有量は、無機固体電解質100質量部に対して0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上が特に好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下が特に好ましい。
 リチウム塩とイオン液体の質量比は1:20~20:1が好ましく、1:10~10:1がより好ましく、1:5~2:1が特に好ましい。
Examples of the ionic liquid include 1-allyl-3-ethylimidazolium bromide, 1-ethyl-3-methylimidazolium bromide, 1- (2-hydroxyethyl) -3-methylimidazolium bromide, 1- ( 2-methoxyethyl) -3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate, 1- Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, 1-ethyl-3-methylimidazolium bistrifluoromethanesulfonic acid, 1-ethyl- 3-methylimidazolium dicyanamide, 1- Tyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide, trimethylbutylammonium bis (trifluoromethanesulfonyl) imide, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethane Sulfonyl) imide, N- (2-methoxyethyl) -N-methylpyrrolidinium tetrafluoroborard, 1-butyl-1-methylpyrrolidinium imidazolium bis (fluorosulfonyl) imide, (2-acryloylethyl) trimethylammonium Bis (trifluoromethanesulfonyl) imide, 1-ethyl-1-methylpyrrolidinium allyl sulfonate, 1-ethyl-3-methylimidazolium allyl sulfonate, or trihexyl tetradecylphosphoni chloride Beam, and the like.
The content of the ionic liquid is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, and particularly preferably 1 part by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte. As an upper limit, 50 mass parts or less are preferable, 20 mass parts or less are more preferable, and 10 mass parts or less are especially preferable.
The mass ratio of the lithium salt to the ionic liquid is preferably 1:20 to 20: 1, more preferably 1:10 to 10: 1, and particularly preferably 1: 5 to 2: 1.
(導電助剤)
 本発明の固体電解質組成物は、導電助剤を含有してもよい。導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維やカーボンナノチューブなどの炭素繊維類、グラフェンやフラーレンなどの炭素質材料であっても良いし、銅、ニッケルなどの金属粉、金属繊維でも良く、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いても良い。またこれらの内1種を用いても良いし、2種以上を用いても良い。
(Conductive aid)
The solid electrolyte composition of the present invention may contain a conductive additive. There is no restriction | limiting in particular as a conductive support agent, What is known as a general conductive support agent can be used. For example, graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber and carbon nanotubes, which are electron conductive materials Carbon fibers such as graphene, carbonaceous materials such as graphene and fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may be used. It may be used. Moreover, 1 type may be used among these and 2 or more types may be used.
(固体電解質組成物の調製)
 本発明の固体電解質組成物は、無機固体電解質(A)を分散媒体(C)の存在下で分散して、スラリー化することで調製することができる。
 スラリー化は、各種の混合機を用いて無機固体電解質と分散媒体とを混合することにより行うことができる。混合装置としては、特に限定されないが、例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダーおよびディスクミルが挙げられる。混合条件は特に制限されないが、例えば、ボールミルを用いた場合、150~700rpm(rotation per minute)で1時間~24時間混合することが好ましい。
 活物質、粒子分散剤等の成分を含有する固体電解質組成物を調製する場合には、上記の無機固体電解質(A)の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。なお、脱水剤(B)は、上記の無機固体電解質(A)及び/又は活物質、粒子分散剤等の成分の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。なかでも、無機系脱水剤は、固体電解質組成物を構成する無機系脱水剤以外の成分を分散及び/又は混合した後に加えることが好ましく、有機系脱水剤は、固体電解質組成物を構成する有機系脱水剤以外の成分を分散及び/又は混合した後に加えることが好ましい。
(Preparation of solid electrolyte composition)
The solid electrolyte composition of the present invention can be prepared by dispersing the inorganic solid electrolyte (A) in the presence of the dispersion medium (C) to form a slurry.
Slurry can be performed by mixing an inorganic solid electrolyte and a dispersion medium using various mixers. The mixing apparatus is not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill. The mixing conditions are not particularly limited. For example, when a ball mill is used, the mixing is preferably performed at 150 to 700 rpm (rotation per minute) for 1 to 24 hours.
When preparing a solid electrolyte composition containing components such as an active material and a particle dispersant, it may be added and mixed simultaneously with the dispersion step of the inorganic solid electrolyte (A), or may be added and mixed separately. Also good. The dehydrating agent (B) may be added and mixed simultaneously with the dispersion step of the above-mentioned inorganic solid electrolyte (A) and / or components such as the active material and the particle dispersing agent, or may be added and mixed separately. . Among these, the inorganic dehydrating agent is preferably added after dispersing and / or mixing components other than the inorganic dehydrating agent constituting the solid electrolyte composition, and the organic dehydrating agent is an organic component constituting the solid electrolyte composition. It is preferable to add after dispersing and / or mixing components other than the system dehydrating agent.
[全固体二次電池用シート]
 本発明の固体電解質含有シートは、全固体二次電池に好適に用いることができ、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう)、電極又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートということがある。
[All-solid-state secondary battery sheet]
The solid electrolyte-containing sheet of the present invention can be suitably used for an all-solid-state secondary battery, and includes various modes depending on the application. For example, a sheet preferably used for a solid electrolyte layer (also referred to as a solid electrolyte sheet for an all-solid secondary battery), a sheet preferably used for an electrode or a laminate of an electrode and a solid electrolyte layer (an electrode sheet for an all-solid secondary battery) Etc. In the present invention, these various sheets may be collectively referred to as an all-solid secondary battery sheet.
 全固体二次電池用シートは、基材上に固体電解質層又は活物質層(電極層)を有するシートである。この全固体二次電池用シートは、基材と固体電解質層又は活物質層を有していれば、他の層を有してもよいが、活物質を含有するものは後述する全固体二次電池用電極シートに分類される。他の層としては、例えば、保護層、集電体、コート層(集電体、固体電解質層、活物質層)等が挙げられる。
 全固体二次電池用固体電解質シートとして、例えば、固体電解質層と保護層とを基材上に、この順で有するシートが挙げられる。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後記集電体で説明した材料、有機材料および無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレンおよびセルロース等が挙げられる。無機材料としては、例えば、ガラスおよびセラミック等が挙げられる。
The all-solid-state secondary battery sheet is a sheet having a solid electrolyte layer or an active material layer (electrode layer) on a base material. The all-solid-state secondary battery sheet may have other layers as long as it has a base material and a solid electrolyte layer or an active material layer. It is classified as a secondary battery electrode sheet. Examples of other layers include a protective layer, a current collector, and a coat layer (current collector, solid electrolyte layer, active material layer) and the like.
Examples of the solid electrolyte sheet for an all-solid secondary battery include a sheet having a solid electrolyte layer and a protective layer in this order on a base material.
The substrate is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include materials described in the current collector, sheet materials (plate bodies) such as organic materials and inorganic materials, and the like. Examples of the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose. Examples of the inorganic material include glass and ceramic.
 全固体二次電池用シートの固体電解質層の層厚は、上述の、本発明の全固体二次電池において説明した固体電解質層の層厚と同じである。
 このシートは、本発明の固体電解質組成物のろ液を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
 ここで、本発明の固体電解質組成物は、上記の方法によって、調製できる。
The thickness of the solid electrolyte layer of the all-solid-state secondary battery sheet is the same as the thickness of the solid electrolyte layer described in the above-described all-solid-state secondary battery of the present invention.
In this sheet, the filtrate of the solid electrolyte composition of the present invention is formed (applied and dried) on a base material (which may be via another layer) to form a solid electrolyte layer on the base material. Is obtained.
Here, the solid electrolyte composition of the present invention can be prepared by the above-described method.
 本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、本発明の全固体二次電池の活物質層を形成するための、集電体としての金属箔上に活物質層を有する電極シートである。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
 電極シートを構成する各層の層厚は、上述の、本発明の全固体二次電池において説明した各層の層厚と同じである。また、電極シートを構成する各層の構成は、後記、本発明の全固体二次電池において説明した各層の構成と同じである。
 電極シートは、本発明の、活物質を含有する固体電解質組成物のろ液を金属箔上に製膜(塗布乾燥)して、金属箔上に活物質層を形成することにより、得られる。活物質を含有する固体電解質組成物を調製する方法は、活物質を用いること以外は、上記固体電解質組成物を調製する方法と同じである。
The electrode sheet for an all-solid-state secondary battery of the present invention (also simply referred to as “electrode sheet”) is formed on a metal foil as a current collector for forming the active material layer of the all-solid-state secondary battery of the present invention. An electrode sheet having an active material layer. This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer, and a solid electrolyte layer in this order, and a current collector, an active material layer, and a solid electrolyte The aspect which has a layer and an active material layer in this order is also included.
The layer thickness of each layer constituting the electrode sheet is the same as the layer thickness of each layer described in the above-described all solid state secondary battery of the present invention. Moreover, the structure of each layer which comprises an electrode sheet is the same as the structure of each layer demonstrated in the postscript and the all-solid-state secondary battery of this invention.
The electrode sheet can be obtained by forming a solid electrolyte composition-containing filtrate of the present invention on a metal foil (coating and drying) to form an active material layer on the metal foil. The method for preparing the solid electrolyte composition containing the active material is the same as the method for preparing the solid electrolyte composition except that the active material is used.
[全固体二次電池]
 本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体上に正極活物質層を有する。負極は、負極集電体上に負極活物質層を有する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の固体電解質組成物を用いて形成されることが好ましい。
 固体電解質組成物を用いて形成された活物質層および/または固体電解質層は、好ましくは、含有する成分種及びその含有量比について、固体電解質組成物の固形分におけるものと基本的に同じである。ただし、本発明において、固体電解質組成物をろ過して各層の形成に用いるため、脱水剤がろ別される場合、固体電解質組成物と各層とで含有量が異なる場合がある。
 以下に、図1を参照して、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
[All-solid secondary battery]
The all solid state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode. The positive electrode has a positive electrode active material layer on a positive electrode current collector. The negative electrode has a negative electrode active material layer on a negative electrode current collector.
At least one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is preferably formed using the solid electrolyte composition of the present invention.
The active material layer and / or the solid electrolyte layer formed using the solid electrolyte composition are preferably basically the same as those in the solid content of the solid electrolyte composition with respect to the component types to be contained and the content ratio thereof. is there. However, in the present invention, since the solid electrolyte composition is filtered and used to form each layer, when the dehydrating agent is filtered off, the content may be different between the solid electrolyte composition and each layer.
Hereinafter, a preferred embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited to this.
〔正極活物質層、固体電解質層、負極活物質層〕
 全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれかが本発明の固体電解質含有シートで形成されている。
 すなわち、固体電解質層3が本発明の、固体電解質含有シートで形成されている場合、固体電解質層3は、無機固体電解質と脱水剤とを含む。固体電解質層は、通常、正極活物質及び/又は負極活物質を含まない。固体電解質層3中では、無機固体電解質や隣接する活物質等中の固体粒子間に含まれる脱水剤が水と反応することにより、無機固体電解質の変質が抑制されるため、製造後、長期間保存後に使用しても全固体二次電池10は電池電圧に優れる。
[Positive electrode active material layer, solid electrolyte layer, negative electrode active material layer]
In the all-solid-state secondary battery 10, any of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is formed of the solid electrolyte-containing sheet of the present invention.
That is, when the solid electrolyte layer 3 is formed of the solid electrolyte-containing sheet of the present invention, the solid electrolyte layer 3 includes an inorganic solid electrolyte and a dehydrating agent. The solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material. In the solid electrolyte layer 3, since the dehydrating agent contained between the solid particles in the inorganic solid electrolyte and the adjacent active material reacts with water, deterioration of the inorganic solid electrolyte is suppressed. Even when used after storage, the all-solid-state secondary battery 10 is excellent in battery voltage.
 正極活物質層4及び/又は負極活物質層2が、活物質を含有する本発明の固体電解質含有シート、すなわち電極シートで形成されている場合、正極活物質層4及び負極活物質層2は、それぞれ、正極活物質又は負極活物質を含み、さらに、無機固体電解質と脱水剤とを含む。活物質層が無機固体電解質を含有するとイオン伝導度を向上させることができる。活物質層中では、固体粒子間等に存在する脱水剤が水と反応することにより、無機固体電解質の変質が抑制されるため、製造後、長期間保存後に使用しても全固体二次電池10は電池電圧に優れる。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質及び脱水剤は、それぞれ、互いに同種であっても異種であってもよい。
When the positive electrode active material layer 4 and / or the negative electrode active material layer 2 is formed of the solid electrolyte-containing sheet of the present invention containing an active material, that is, an electrode sheet, the positive electrode active material layer 4 and the negative electrode active material layer 2 are , Each including a positive electrode active material or a negative electrode active material, and further including an inorganic solid electrolyte and a dehydrating agent. When the active material layer contains an inorganic solid electrolyte, the ionic conductivity can be improved. In the active material layer, the dehydrating agent present between the solid particles reacts with water, so that the deterioration of the inorganic solid electrolyte is suppressed. 10 is excellent in battery voltage.
The inorganic solid electrolyte and the dehydrating agent contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same or different from each other.
 本発明においては、全固体二次電池における負極活物質層、正極活物質層及び固体電解質層のいずれかの層が、上記脱水剤と、無機固体電解質等の固体粒子とを含有する固体電解質含有シートを用いて作製される。 In the present invention, any one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer in the all-solid-state secondary battery contains a solid electrolyte containing the dehydrating agent and solid particles such as an inorganic solid electrolyte. It is produced using a sheet.
〔集電体(金属箔)〕
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウムまたはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウムおよびアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウム、銅、銅合金またはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金およびステンレス鋼がより好ましい。
[Current collector (metal foil)]
The positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors.
In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel and titanium, as well as the surface of aluminum or stainless steel treated with carbon, nickel, titanium or silver (formation of a thin film) Among them, aluminum and aluminum alloys are more preferable.
In addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, etc., the material for forming the negative electrode current collector is treated with carbon, nickel, titanium or silver on the surface of aluminum, copper, copper alloy or stainless steel. What was made to do is preferable, and aluminum, copper, copper alloy, and stainless steel are more preferable.
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
The current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。 In the present invention, a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be. Each layer may be composed of a single layer or a plurality of layers.
〔筐体〕
 上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためにはさらに適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金およびステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[Case]
The basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to form a dry battery, it is further enclosed in a suitable housing. The housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made from an aluminum alloy and stainless steel can be mentioned, for example. The metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively. The casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
[固体電解質含有シートの製造]
 本発明の固体電解質含有シートは、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、脱水剤(B)とを含有し、電池性能への影響を最小限に抑えるため、脱水剤の含有量は好ましくは、5質量%以下である。下限に特に制限はないが、0.1%以上であることが好ましい。
[Production of solid electrolyte-containing sheet]
The solid electrolyte-containing sheet of the present invention contains an inorganic solid electrolyte (A) having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and a dehydrating agent (B), thereby improving battery performance. In order to minimize the effect of the dehydrating agent, the content of the dehydrating agent is preferably 5% by mass or less. Although there is no restriction | limiting in particular in a minimum, It is preferable that it is 0.1% or more.
 脱水剤はスラリーの中に存在させ、固体電解質含有シートでは除去されていることが好ましいとも考えられる。無機系脱水剤の場合は、活物質と無機固体電解質の界面形成を阻害するおそれがあり、固体電解質含有シートに過剰に脱水剤が含有されると、電池性能への影響が懸念されるからである。また、有機系脱水剤の場合でも、水との反応で生成する副生成物が無機固体電解質とさらに反応することがあり、固体電解質含有シートに過剰に脱水剤が含有されると、電池性能を悪化させることが懸念される。
 しかし、固体電解質含有シートに含有される脱水剤が所定量であれば、電池性能を低下させないだけでなく、向上させることができる。
 本発明においては、固体電解質含有シートに有機系脱水剤が含有されることが好ましい。
 例えば、水との反応で生成する副生成物が酸(カルボン酸、スルホン酸、りん酸等)である有機系脱水剤を用いる場合、酸は無機固体電解質に対して無害である。そのため、固体電解質含有シート中にこれらの有機系脱水剤が残存することで、スラリーのみならず固体電解質含有シートの耐水性を向上させることができ、電池性能を低下させずに全固体二次電池の電池電圧を向上させることができる。
 なお、脱水剤を固体電解質含有シートに含有させないようにするには、例えば、シート製造工程における加熱乾燥時に揮発させる。
It is also considered that the dehydrating agent is preferably present in the slurry and removed from the solid electrolyte-containing sheet. In the case of an inorganic dehydrating agent, there is a risk of inhibiting the formation of the interface between the active material and the inorganic solid electrolyte. If the dehydrating agent is excessively contained in the solid electrolyte-containing sheet, there is a concern about the effect on battery performance. is there. Even in the case of an organic dehydrating agent, by-products generated by reaction with water may further react with the inorganic solid electrolyte, and if the solid electrolyte-containing sheet contains excessive dehydrating agent, battery performance will be reduced. There is concern about making it worse.
However, if the dehydrating agent contained in the solid electrolyte-containing sheet is a predetermined amount, not only the battery performance is not lowered, but also the battery performance can be improved.
In the present invention, the solid electrolyte-containing sheet preferably contains an organic dehydrating agent.
For example, when an organic dehydrating agent in which a by-product generated by the reaction with water is an acid (carboxylic acid, sulfonic acid, phosphoric acid, etc.) is used, the acid is harmless to the inorganic solid electrolyte. Therefore, these organic dehydrating agents remain in the solid electrolyte-containing sheet, so that not only the slurry but also the water resistance of the solid electrolyte-containing sheet can be improved, and the all-solid-state secondary battery can be obtained without degrading the battery performance. The battery voltage can be improved.
In order to prevent the dehydrating agent from being contained in the solid electrolyte-containing sheet, for example, it is volatilized at the time of heat drying in the sheet manufacturing process.
 本発明の固体電解質含有シートは、無機固体電解質(A)と、脱水剤(B)と、分散媒体(C)とを含有する固体電解質組成物をろ過する工程と、上記工程で得たろ液を基材上に塗布する工程と、加熱乾燥する工程とを経ることにより製造することができる。
 なお、固体電解質含有シートにおける、分散媒体に溶解しない脱水剤の含有量は、上記ろ過工程によって調整することができる。具体的には、例えば、ろ過に用いるフィルターの孔径によりろ取される脱水剤の量を調製することにより固体電解質含有シート中の無機系脱水剤の含有量を調製する。ここで、分散媒体に溶解しない脱水剤とは、分散媒中で固形を維持している脱水剤であり、具体的には無機系脱水剤が挙げられる。
 上記態様により、基材と固体電解質層とを有するシートである全固体二次電池用シートを作製することができる。
 その他、塗布等の工程については、下記全固体二次電池の製造に記載の方法を使用することができる。
 なお、固体電解質含有シートは、電池性能に影響を与えない範囲内で分散媒体を含有してもよい。具体的には、全質量中1ppm以上10000ppm以下含有してもよい。
The solid electrolyte-containing sheet of the present invention includes a step of filtering a solid electrolyte composition containing an inorganic solid electrolyte (A), a dehydrating agent (B), and a dispersion medium (C), and the filtrate obtained in the above step. It can manufacture by passing through the process of apply | coating on a base material, and the process of heat-drying.
In addition, content of the dehydrating agent which is not melt | dissolved in a dispersion medium in a solid electrolyte containing sheet can be adjusted with the said filtration process. Specifically, for example, the content of the inorganic dehydrating agent in the solid electrolyte-containing sheet is prepared by adjusting the amount of the dehydrating agent that is collected by the pore size of the filter used for filtration. Here, the dehydrating agent that does not dissolve in the dispersion medium is a dehydrating agent that maintains a solid in the dispersion medium, and specifically includes an inorganic dehydrating agent.
By the said aspect, the sheet | seat for all-solid-state secondary batteries which is a sheet | seat which has a base material and a solid electrolyte layer can be produced.
In addition, about the process of application | coating etc., the method as described in manufacture of the following all-solid-state secondary battery can be used.
The solid electrolyte-containing sheet may contain a dispersion medium within a range that does not affect battery performance. Specifically, you may contain 1 ppm or more and 10000 ppm or less in the total mass.
[全固体二次電池及び全固体二次電池用電極シートの製造]
 全固体二次電池及び全固体二次電池用電極シートの製造は、常法によって行うことができる。具体的には、全固体二次電池及び全固体二次電池用電極シートは、本発明の固体電解質組成物等を例えば、テフロン(登録商標)メッシュでろ過して得たろ液(以下、固体電解質組成物のろ液とも称す。)を用いて、上記の各層を形成することにより、製造できる。以下詳述する。ここで、本発明の全固体二次電池における各層は、いずれか1層が本発明の固体電解質組成物で形成されていればよく、以下詳述記載において適宜、「固体電解質組成物のろ液」を「本発明の固体電解質組成物以外の固体電解質組成物」に読み替えることができる。
[Manufacture of all-solid-state secondary battery and electrode sheet for all-solid-state secondary battery]
Manufacture of the all-solid-state secondary battery and the electrode sheet for all-solid-state secondary batteries can be performed by a conventional method. Specifically, the all-solid-state secondary battery and the electrode sheet for the all-solid-state secondary battery are filtrates obtained by filtering the solid electrolyte composition of the present invention with, for example, a Teflon (registered trademark) mesh (hereinafter referred to as solid electrolyte). It is also referred to as a filtrate of a composition. This will be described in detail below. Here, each layer in the all-solid-state secondary battery of the present invention only needs to be formed of any one of the solid electrolyte compositions of the present invention. Can be read as “a solid electrolyte composition other than the solid electrolyte composition of the present invention”.
 本発明の全固体二次電池は、本発明の固体電解質組成物のろ液を集電体となる金属箔上に塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する固体電解質組成物のろ液を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物のろ液を塗布して、固体電解質層を形成する。さらに、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物のろ液を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
The all-solid-state secondary battery of the present invention includes a method of applying (interposing) the filtrate of the solid electrolyte composition of the present invention onto a metal foil serving as a current collector and forming (forming) a coating film. Can be manufactured.
For example, a positive electrode active material layer is formed by applying a filtrate of a solid electrolyte composition containing a positive electrode active material as a positive electrode material (positive electrode composition) on a metal foil that is a positive electrode current collector. A positive electrode sheet for a solid secondary battery is prepared. Next, a solid electrolyte composition filtrate for forming a solid electrolyte layer is applied on the positive electrode active material layer to form a solid electrolyte layer. Further, a solid electrolyte composition filtrate containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer. An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer is obtained by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. Can do. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
Moreover, the formation method of each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery. You can also
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物のろ液を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。さらに、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物のろ液を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。さらに、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Also, a negative electrode active material layer is formed by applying a solid electrolyte composition filtrate containing a negative electrode active material as a negative electrode material (negative electrode composition) on a metal foil as a negative electrode current collector. A negative electrode sheet for a solid secondary battery is prepared. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. In this way, an all-solid secondary battery can be manufactured.
Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately from this, a solid electrolyte composition filtrate is applied on a substrate to produce a solid electrolyte sheet for an all-solid-state secondary battery comprising a solid electrolyte layer. Furthermore, it laminates | stacks so that the solid electrolyte layer peeled off from the base material may be pinched | interposed with the positive electrode sheet for all-solid-state secondary batteries, and the negative electrode sheet for all-solid-state secondary batteries. In this way, an all-solid secondary battery can be manufactured.
 上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。 An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are produced. Then, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be produced by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery.
(各層の形成(成膜))
 固体電解質組成物のろ液の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布およびバーコート塗布が挙げられる。
 このとき、固体電解質組成物のろ液は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、分散媒体を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
(Formation of each layer (film formation))
The method for applying the filtrate of the solid electrolyte composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating.
At this time, the filtrate of the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers. The drying temperature is not particularly limited. The lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher. The upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower. By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state. Moreover, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding properties can be obtained.
 固体電解質組成物のろ液を塗布した後、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒体をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒体が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布しても良いし、塗布乾燥プレスを同時および/または逐次行っても良い。別々の基材に塗布した後に、転写により積層してもよい。
It is preferable to pressurize each layer or all-solid secondary battery after applying the filtrate of the solid electrolyte composition or after producing the all-solid secondary battery. Moreover, it is also preferable to pressurize in the state which laminated | stacked each layer. An example of the pressurizing method is a hydraulic cylinder press. The applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa.
Moreover, you may heat the apply | coated solid electrolyte composition simultaneously with pressurization. The heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
The pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
In addition, each composition may be applied simultaneously, and application and drying presses may be performed simultaneously and / or sequentially. You may laminate | stack by transfer after apply | coating to a separate base material.
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)および不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
The atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point -20 ° C. or lower), and inert gas (for example, argon gas, helium gas, nitrogen gas).
The pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more). In the case of an all-solid-state secondary battery other than the all-solid-state secondary battery sheet, for example, a restraining tool (screw tightening pressure or the like) of the all-solid-state secondary battery can be used in order to keep applying moderate pressure.
The pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
The pressing pressure can be changed according to the area and film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
The press surface may be smooth or roughened.
(初期化)
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
(Initialization)
The all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use. The initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
[全固体二次電池の用途] [Use of all-solid-state secondary batteries]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。 The all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc. Others for consumer use include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.) . Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
 本発明の好ましい実施形態によれば、以下のような各応用形態が導かれる。
〔1〕正極活物質層、固体電解質層および負極活物質層の少なくとも1層がリチウム塩を含有する全固体二次電池。
〔2〕固体電解質層が、分散媒体によって、リチウム塩および硫化物系無機固体電解質が分散されたスラリーのろ液を湿式塗布し製膜される全固体二次電池の製造方法。
〔3〕上記全固体二次電池作製用の活物質を含有する固体電解質組成物。
〔4〕上記固体電解質組成物のろ液を金属箔上に適用し、製膜してなる電池用電極シート。
〔5〕上記固体電解質組成物のろ液を金属箔上に適用し、製膜する電池用電極シートの製造方法。
According to a preferred embodiment of the present invention, the following applications are derived.
[1] An all-solid secondary battery in which at least one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer contains a lithium salt.
[2] A method for producing an all-solid-state secondary battery, in which the solid electrolyte layer is wet-coated with a slurry filtrate in which a lithium salt and a sulfide-based inorganic solid electrolyte are dispersed by a dispersion medium.
[3] A solid electrolyte composition containing an active material for producing the all-solid secondary battery.
[4] A battery electrode sheet obtained by applying the filtrate of the solid electrolyte composition on a metal foil to form a film.
[5] A method for producing an electrode sheet for a battery, wherein the filtrate of the solid electrolyte composition is applied onto a metal foil to form a film.
 上記好ましい実施形態の〔2〕および〔5〕に記載するように、本発明の全固体二次電池および電池用電極シートの好ましい製造方法は、いずれも湿式プロセスである。これにより、正極活物質層および負極活物質層の少なくとも1層における無機固体電解質の含有量が10質量%以下の低い領域でも、活物質と無機固体電解質の密着性が高まり効率的なイオン伝導パスを維持することができ、電池質量あたりのエネルギー密度(Wh/kg)および出力密度(W/kg)が高い全固体二次電池を製造することができる。 As described in [2] and [5] of the preferred embodiments, the preferred methods for producing the all-solid-state secondary battery and the battery electrode sheet of the present invention are both wet processes. Thereby, even in a region where the content of the inorganic solid electrolyte in at least one of the positive electrode active material layer and the negative electrode active material layer is as low as 10% by mass or less, the adhesiveness between the active material and the inorganic solid electrolyte is increased, and an efficient ion conduction path. Can be maintained, and an all-solid-state secondary battery having a high energy density (Wh / kg) and high power density (W / kg) per battery mass can be manufactured.
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池を言う。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-S系ガラス、LLTやLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に有機化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質のバインダーや添加剤として有機化合物を適用することができる。
 無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S系ガラス、LLTやLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがある。上記のイオン輸送材料としての電解質と区別する際には、これを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては、例えばLiTFSIが挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte. In this, this invention presupposes an inorganic all-solid-state secondary battery. The all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state that uses the above-described Li—PS glass, LLT, LLZ, or the like. It is divided into secondary batteries. In addition, application of an organic compound to an inorganic all-solid secondary battery is not hindered, and the organic compound can be applied as a binder or additive for a positive electrode active material, a negative electrode active material, and an inorganic solid electrolyte.
The inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above-described Li—PS glass, LLT, and LLZ. The inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function. On the other hand, a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte. When distinguishing from the electrolyte as the above ion transport material, this is called “electrolyte salt” or “supporting electrolyte”. An example of the electrolyte salt is LiTFSI.
In the present invention, the term “composition” means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。また、「室温」は25℃を意味する。 Hereinafter, the present invention will be described in more detail based on examples. The present invention is not construed as being limited thereby. In the following examples, “part” and “%” representing the composition are based on mass unless otherwise specified. “Room temperature” means 25 ° C.
<硫化物系無機固体電解質の合成>
-Li-P-S系ガラスの合成-
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
<Synthesis of sulfide-based inorganic solid electrolyte>
-Synthesis of Li-PS system glass-
As a sulfide-based inorganic solid electrolyte, T.I. Ohtomo, A .; Hayashi, M .; Tatsumisago, Y. et al. Tsuchida, S .; HamGa, K .; Kawamoto, Journal of Power Sources, 233, (2013), pp231-235 and A.K. Hayashi, S .; Hama, H .; Morimoto, M .; Tatsumisago, T .; Minami, Chem. Lett. , (2001), pp 872-873, Li—PS glass was synthesized.
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。なお、LiSおよびPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製の遊星ボールミルP-7(商品名)にこの容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス)6.20gを得た。イオン伝導度は0.28mS/cm、粒子径は20.3μmであった。
Specifically, in a glove box under an argon atmosphere (dew point −70 ° C.), 2.42 g of lithium sulfide (Li 2 S, manufactured by Aldrich, purity> 99.98%), diphosphorus pentasulfide (P 2 S 5 , 3.90 g manufactured by Aldrich, purity> 99%) was weighed, put into an agate mortar, and mixed for 5 minutes using an agate pestle. The mixing ratio of Li 2 S and P 2 S 5 was Li 2 S: P 2 S 5 = 75: 25 in terms of molar ratio.
66 zirconia beads having a diameter of 5 mm were introduced into a 45 mL container (manufactured by Fritsch) made of zirconia, the whole mixture of lithium sulfide and phosphorous pentasulfide was introduced, and the container was sealed under an argon atmosphere. This container is set in a planetary ball mill P-7 (trade name) manufactured by Frichtu, and mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours to obtain a yellow powder sulfide-based inorganic solid electrolyte (Li-P—). S glass) 6.20 g was obtained. The ionic conductivity was 0.28 mS / cm, and the particle diameter was 20.3 μm.
(実施例1)
<試験>
 下記で調製した固体電解質組成物の経時前と経時後のイオン伝導度を測定し、経時前と経時後とでイオン伝導度がどの程度低下するかを評価した。以下、試験方法を記載する。また、評価を下記表1の「イオン伝導度の低下抑制効果」の列に記載する。
Example 1
<Test>
The ionic conductivity before and after aging of the solid electrolyte composition prepared below was measured, and how much the ionic conductivity decreased before and after aging was evaluated. The test method is described below. The evaluation is described in the column of “Ion conductivity reduction inhibiting effect” in Table 1 below.
<イオン伝導度測定>
 調製した固体電解質組成物のスラリーを50μmのテフロンメッシュでろ過した後、露点-60℃の乾燥空気下で、100℃に加熱したホットプレート上で2時間常圧(760mmHg)乾燥を行った。得られた乾燥粉末について、インピーダンス法によりイオン伝導度を測定した。これを経時前のイオン伝導度(Ia)とする。
<Ion conductivity measurement>
The prepared slurry of the solid electrolyte composition was filtered through a 50 μm Teflon mesh, and then dried at normal pressure (760 mmHg) for 2 hours on a hot plate heated to 100 ° C. in a dry air having a dew point of −60 ° C. About the obtained dry powder, the ionic conductivity was measured by the impedance method. This is defined as ion conductivity (Ia) before aging.
 固体電解質組成物のスラリーを開放系で露点-20℃の乾燥空気下で、25℃の恒温槽で2週間スターラー攪伴を行った。
 2週間後のスラリーを50μmのテフロンメッシュでろ過した後、上記と同様の方法で乾燥し、乾燥粉末をインピーダンス法によりイオン伝導度を測定した。これを経時後のイオン伝導度(Ib)とする。
The slurry of the solid electrolyte composition was stirred with a stirrer for 2 weeks in a constant temperature bath at 25 ° C. in an open system under dry air having a dew point of −20 ° C.
The slurry after 2 weeks was filtered through a 50 μm Teflon mesh, dried by the same method as above, and the ionic conductivity of the dried powder was measured by the impedance method. This is defined as ionic conductivity (Ib) after time.
 乾燥粉末を直径14.5mmの円筒に300mg詰め、コイン型冶具を作製した。コイン型冶具の外部より、電極間に500kgf/cmの圧力をかけることが可能なジグに挟み、イオン伝導度測定に用いた。
 上記で得られたコイン型冶具を用いて、30℃の恒温槽中、交流インピーダンス法により、加圧下(500kgf/cm)でのイオン伝導度を求めた。このとき、コイン型冶具の加圧には図2に示した試験体を用いた。11が上部支持板、12が下部支持板、13がコイン型冶具、Sがネジである。
 以下に評価基準を示す。B以上が合格レベルである。
300 mg of the dry powder was packed in a cylinder having a diameter of 14.5 mm to produce a coin-type jig. The sample was sandwiched between jigs capable of applying a pressure of 500 kgf / cm 2 between the electrodes from the outside of the coin-type jig, and used for ion conductivity measurement.
Using the coin-type jig obtained above, the ion conductivity under pressure (500 kgf / cm 2 ) was determined by an alternating current impedance method in a thermostat at 30 ° C. At this time, the specimen shown in FIG. 2 was used for pressurization of the coin-type jig. 11 is an upper support plate, 12 is a lower support plate, 13 is a coin-type jig, and S is a screw.
The evaluation criteria are shown below. B and above are acceptable levels.
A:0.9<(Ib/Ia)
B:0.7<(Ib/Ia)≦0.9
C:0.3<(Ib/Ia)≦0.7
D:0.1<(Ib/Ia)≦0.3
E:(Ib/Ia)≦0.1
A: 0.9 <(Ib / Ia)
B: 0.7 <(Ib / Ia) ≦ 0.9
C: 0.3 <(Ib / Ia) ≦ 0.7
D: 0.1 <(Ib / Ia) ≦ 0.3
E: (Ib / Ia) ≦ 0.1
<各組成物の調製>
-固体電解質組成物S-1の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、酸化物系無機固体電解質LLZ(豊島製作所製)1.5g、バインダー(E-1)0.02gを加え、分散媒体として、1,4-ジオキサン5.3gを投入した。その後、フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数300rpmで2時間混合を続けた。その後、脱水剤として十分に乾燥させたモレキュラーシーブス4A 1.0gを加えて固体電解質組成物S-1を調製した。
<Preparation of each composition>
-Preparation of solid electrolyte composition S-1-
50 zirconia beads having a diameter of 3 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), 1.5 g of an oxide-based inorganic solid electrolyte LLZ (manufactured by Toshima Seisakusho) and 0.02 g of binder (E-1) were added, As a dispersion medium, 5.3 g of 1,4-dioxane was added. Thereafter, the container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixing was continued for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm. Thereafter, 1.0 g of sufficiently dried molecular sieves 4A as a dehydrating agent was added to prepare a solid electrolyte composition S-1.
(2)固体電解質組成物S-2の調製
 ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、上記で合成した硫化物系無機固体電解質Li-P-S系ガラス0.8g、バインダー(E-1)0.04g、分散媒体として1,4-ジオキサン3.6gを投入した。その後、この容器を遊星ボールミルP-7(フリッチュ社製)にセットし、温度25℃、回転数300rpmで2時間攪拌を続けた。その後、脱水剤として十分に乾燥させたモレキュラーシーブス4A 1.0gを加えて固体電解質組成物S-2を調製した。
(2) Preparation of Solid Electrolyte Composition S-2 50 zirconia beads having a diameter of 3 mm were placed in a zirconia 45 mL container (manufactured by Fritsch), and the sulfide-based inorganic solid electrolyte Li—PS system synthesized above. 0.8 g of glass, 0.04 g of binder (E-1), and 3.6 g of 1,4-dioxane were added as a dispersion medium. Thereafter, this container was set in a planetary ball mill P-7 (manufactured by Fritsch), and stirring was continued for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm. Thereafter, 1.0 g of sufficiently dried molecular sieves 4A as a dehydrating agent was added to prepare a solid electrolyte composition S-2.
 下記表1に、固体電解質組成物の組成をまとめて記載する。
 ここで、固体電解質組成物S-1~S-17が本発明の固体電解質組成物であり、固体電解質組成物T-1~T-4が比較の固体電解質組成物である。
Table 1 below summarizes the composition of the solid electrolyte composition.
Here, the solid electrolyte compositions S-1 to S-17 are solid electrolyte compositions of the present invention, and the solid electrolyte compositions T-1 to T-4 are comparative solid electrolyte compositions.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
E-1:PVdF-HFP(アルケマ社製)
E-2:SBR(JSR社製)
E-3:下記の方法で調製したアクリル酸-アクリル酸メチル共重合体(20/80モル比 Mw25000)
 100mL3つ口フラスコにアクリル酸(和光純薬(株)製)1.2gとアクリル酸メチル4.2g(和光純薬(株)製)をMEK(メチルエチルケトン)30gに溶解し、75℃に加熱しながら窒素置換した。これにアゾイソブチロニトリル(V-60:商品名、和光純薬(株)製)0.15gを添加して、窒素雰囲気下75℃で6時間加熱した。得られたポリマー溶液を、ヘキサンを用いてポリマー沈殿させて白色粉末を得た。
E-4:アクリルラテックス、特開2015-88486記載のバインダー(B-1)
ラテックス平均粒子径:500nm(平均粒子径は上述の方法で測定した。)
E-5:ウレタンポリマー特開2015-88480記載の例示化合物(44)
LLZ:LiLaZr12(豊島製作所製)
Li/P/S:上記で合成したLi-P-S系ガラス
B-1~B-4:脱水剤の例示化合物(B-1)~(B-4)
沸点:760mmHgにおける沸点
E-1: PVdF-HFP (manufactured by Arkema)
E-2: SBR (manufactured by JSR)
E-3: Acrylic acid-methyl acrylate copolymer prepared by the following method (20/80 molar ratio Mw25000)
In a 100 mL three-necked flask, 1.2 g of acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 4.2 g of methyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in 30 g of MEK (methyl ethyl ketone) and heated to 75 ° C. While replacing with nitrogen. To this was added 0.15 g of azoisobutyronitrile (V-60: trade name, manufactured by Wako Pure Chemical Industries, Ltd.), and the mixture was heated at 75 ° C. for 6 hours in a nitrogen atmosphere. The obtained polymer solution was polymer precipitated with hexane to obtain a white powder.
E-4: Acrylic latex, binder (B-1) described in JP-A-2015-88486
Latex average particle diameter: 500 nm (The average particle diameter was measured by the method described above.)
E-5: Urethane polymer Exemplified compound (44) described in JP-A-2015-88480
LLZ: Li 7 La 3 Zr 2 O 12 (manufactured by Toshima Seisakusho)
Li / P / S: Li—PS system glasses B-1 to B-4 synthesized above: Exemplary compounds (B-1) to (B-4) of dehydrating agents
Boiling point: Boiling point at 760 mmHg
 表1から明らかなように、本発明の固体電解質組成物は、露点が高い状態で保管した加速試験において良好なイオン伝導度の低下抑制効果を示しており、水による無機固体電解質の劣化が少なく、イオン伝導度の保持率が高いことが分かった。 As is apparent from Table 1, the solid electrolyte composition of the present invention shows a good suppression effect on the decrease in ionic conductivity in an accelerated test stored with a high dew point, and the deterioration of the inorganic solid electrolyte due to water is small. It was found that the retention rate of ionic conductivity was high.
-正極用組成物の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、固体電解質組成物S-1から脱水剤を除いた組成を有する組成物6.8gを加えた。これに正極活物質LCOを3.2g加え、その後、この容器を遊星ボールミルP-7(フリッチュ社製)にセットし、温度25℃、回転数100rpmで10分間攪拌を続けた。最後に脱水剤として十分に乾燥させたモレキュラーシーブス4A(対応する固体電解質組成物S-1で使用の脱水剤)1.0gを加えて正極用組成物P-1を調製した。
 正極用組成物の組成は、固体電解質組成物S-1の組成に正極活物質を合わせたものであるので、下記表2では固体電解質組成物S-1と正極活物質により正極用組成物P-1の組成を示している。
-Preparation of composition for positive electrode-
Fifty zirconia beads having a diameter of 3 mm were charged into a zirconia 45 mL container (manufactured by Fritsch), and 6.8 g of a composition having a composition obtained by removing the dehydrating agent from the solid electrolyte composition S-1. To this was added 3.2 g of the positive electrode active material LCO, and then this container was set on a planetary ball mill P-7 (manufactured by Fritsch), and stirring was continued for 10 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm. Finally, 1.0 g of molecular sieves 4A sufficiently dried as a dehydrating agent (dehydrating agent used in the corresponding solid electrolyte composition S-1) was added to prepare a positive electrode composition P-1.
Since the composition of the positive electrode composition is obtained by combining the composition of the solid electrolyte composition S-1 with the positive electrode active material, in the following Table 2, the composition P for the positive electrode is represented by the solid electrolyte composition S-1 and the positive electrode active material. The composition of -1.
 下記表2に、固体電解質組成物の組成をまとめて記載する。
 ここで、正極用組成物P-1~P-17が本発明の固体電解質組成物であり、正極用組成物HP-1~HP-4が比較の固体電解質組成物である。
Table 2 below summarizes the composition of the solid electrolyte composition.
Here, the positive electrode compositions P-1 to P-17 are the solid electrolyte compositions of the present invention, and the positive electrode compositions HP-1 to HP-4 are comparative solid electrolyte compositions.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<表の注>
LCO:LiCoO
LMO:LiMn
NCA:LiNi0.85Co0.10Al0.05
NMC:LiNi1/3Co1/3Mn1/3
<Notes on the table>
LCO: LiCoO 2
LMO: LiMn 2 O 4
NCA: LiNi 0.85 Co 0.10 Al 0.05 O 2
NMC: LiNi 1/3 Co 1/3 Mn 1/3 O 2
-負極用組成物の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、固体電解質組成物(S-1)から脱水剤を除いた組成を有する組成物6.8gを加えた。これに負極活物質としてLTO(LiTi12)を3.2g加え、その後、この容器を遊星ボールミルP-7(フリッチュ社製)にセットし、温度25℃、回転数100rpmで10分間攪拌を続けた。最後に脱水剤として十分に乾燥させたモレキュラーシーブス4A(対応する固体電解質組成物(S-1)で使用の脱水剤)1.0gを加えて負極用組成物N-1を調製した。
 負極用組成物の組成は、固体電解質組成物S-1の組成に負極活物質を合わせたものであるので、下記表3では固体電解質組成物S-1と負極活物質により負極用組成物N-1の組成を示している。
-Preparation of composition for negative electrode-
Fifty zirconia beads having a diameter of 3 mm were charged into a zirconia 45 mL container (manufactured by Fritsch), and 6.8 g of a composition having a composition obtained by removing the dehydrating agent from the solid electrolyte composition (S-1) was added. To this, 3.2 g of LTO (Li 4 Ti 5 O 12 ) as a negative electrode active material was added, and then this container was set in a planetary ball mill P-7 (manufactured by Fritsch), and the temperature was 25 ° C. and the rotation speed was 100 rpm for 10 minutes. Stirring was continued. Finally, 1.0 g of molecular sieves 4A (a dehydrating agent used in the corresponding solid electrolyte composition (S-1)) sufficiently dried as a dehydrating agent was added to prepare a negative electrode composition N-1.
The composition of the negative electrode composition is the composition of the solid electrolyte composition S-1 combined with the negative electrode active material. The composition of -1.
 下記表3に、固体電解質組成物の組成をまとめて記載する。
 ここで、負極用組成物N-1~N-17が本発明の固体電解質組成物であり、負極用組成物HN-1~HN-4が比較の固体電解質組成物である。
Table 3 below summarizes the composition of the solid electrolyte composition.
Here, the negative electrode compositions N-1 to N-17 are solid electrolyte compositions of the present invention, and the negative electrode compositions HN-1 to HN-4 are comparative solid electrolyte compositions.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<表の注>
LTO:LiTi12
<Notes on the table>
LTO: Li 4 Ti 5 O 12
<電極シートの作製>
 表3に示す負極用組成物を50μmテフロンメッシュでろ過した後、集電体であるステンレス鋼(SUS)箔上に塗布し、80℃で20分間乾燥することにより負極層を形成した。さらにこの負極層上に表1に示す固体電解質組成物を50μmテフロンメッシュでろ過した後に塗布し、80℃で1時間乾燥することにより固体電解質層を形成した。
 一方、表2に示す正極用組成物を50μmテフロンメッシュでろ過した後、集電体であるアルミニウム箔上に塗布し、80℃で1時間乾燥することにより正極層を形成した。
 この2枚を張り合わせることにより、負極層-固体電解質層-正極層をこの順に含む電極シートを得た。
 各層の構成の組み合わせを下記表4に示す。
<Production of electrode sheet>
The negative electrode composition shown in Table 3 was filtered through a 50 μm Teflon mesh, then applied onto a stainless steel (SUS) foil as a current collector, and dried at 80 ° C. for 20 minutes to form a negative electrode layer. Furthermore, the solid electrolyte composition shown in Table 1 was applied to the negative electrode layer after filtering through a 50 μm Teflon mesh, and dried at 80 ° C. for 1 hour to form a solid electrolyte layer.
On the other hand, the positive electrode composition shown in Table 2 was filtered through a 50 μm Teflon mesh, then applied onto an aluminum foil as a current collector, and dried at 80 ° C. for 1 hour to form a positive electrode layer.
By laminating these two sheets, an electrode sheet including a negative electrode layer, a solid electrolyte layer, and a positive electrode layer in this order was obtained.
Table 4 below shows combinations of the configurations of the respective layers.
-全固体二次電池の製造-
 上記で製造した全固体二次電池用電極シート17を直径14.5mmの円板状に切り出し、図3に示すように、スペーサーとワッシャーを組み込んだステンレス製の2032型コインケース16に入れて、トルクレンチで8ニュートン(N)の力で締め付け、図1に示す層構成を有する全固体二次電池18を製造した。
-Manufacture of all-solid-state secondary batteries-
The electrode sheet 17 for an all-solid-state secondary battery produced above was cut into a disk shape having a diameter of 14.5 mm, and, as shown in FIG. 3, put into a stainless steel 2032 type coin case 16 incorporating a spacer and a washer, The all-solid secondary battery 18 having the layer structure shown in FIG. 1 was manufactured by tightening with a torque wrench with a force of 8 Newtons (N).
<評価>
 上記で作製した実施例及び比較例の全固体二次電池に対して以下の評価を行った。評価結果を下記表4に示す。
 各層に残存する脱水剤の含有量はトルエンでシートの固形分を溶出し、ガスクロマトグラフィーを用いて定量することにより求めた。残存量はシートに占める全固形分あたりの質量%で示してある。
<Evaluation>
The following evaluation was performed with respect to the all-solid-state secondary batteries of Examples and Comparative Examples produced above. The evaluation results are shown in Table 4 below.
The content of the dehydrating agent remaining in each layer was determined by eluting the solid content of the sheet with toluene and quantifying it using gas chromatography. The remaining amount is shown in mass% per total solid content in the sheet.
-電池電圧-
 上記で作製した全固体二次電池の電池電圧を、東洋システム(株)製の充放電評価装置「TOSCAT-3000(商品名)」により測定した。
 充電は、電流密度2A/mで電池電圧が4.2Vに達するまで行い、4.2Vに到達後は、電流密度が0.2A/m未満となるまで、4.2Vでの定電圧充電を実施した。放電は、電流密度2A/mで電池電圧が3.0Vに達するまで行った。これを1サイクルとして3サイクル繰り返して行い、3サイクル目の5mAh/g放電後の電池電圧を読み取った。
 以下の評価基準で評価した。なお、ランクA~Cが合格レベルである。
-Battery voltage-
The battery voltage of the all-solid-state secondary battery produced above was measured with a charge / discharge evaluation device “TOSCAT-3000 (trade name)” manufactured by Toyo System Co., Ltd.
Charging is performed at a current density of 2 A / m 2 until the battery voltage reaches 4.2 V. After reaching 4.2 V, the constant voltage at 4.2 V is obtained until the current density becomes less than 0.2 A / m 2. Charging was performed. Discharging was performed at a current density of 2 A / m 2 until the battery voltage reached 3.0V. This was repeated three times as one cycle, and the battery voltage after 5 mAh / g discharge in the third cycle was read.
Evaluation was made according to the following evaluation criteria. Ranks A to C are acceptable levels.
 <評価基準>
A:フレッシュ品に対する2週間保存後の全固体二次電池の電圧の低下率が10%以下
B:フレッシュ品に対する2週間保存後の全固体二次電池の電圧の低下率が10%を超え30%以下
C:フレッシュ品に対する2週間保存後の全固体二次電池の電圧の低下率が30%を超え50%以下
D:フレッシュ品に対する2週間保存後の全固体二次電池の電圧の低下率が50%を超え70%以下
E:電池駆動せず。
<Evaluation criteria>
A: The rate of decrease in the voltage of the all-solid-state secondary battery after storage for 2 weeks for a fresh product is 10% or less B: The rate of decrease in the voltage of the all-solid-state secondary battery after storage for 2 weeks for a fresh product exceeds 10% and is 30 % Or less C: The decrease rate of the voltage of the all-solid-state secondary battery after storage for 2 weeks with respect to the fresh product exceeds 30% and 50% or less D: The decrease rate of the voltage of the all-solid-state secondary battery after storage with 2 weeks for the fresh product Exceeds 50% and is 70% or less E: The battery is not driven.
フレッシュ品:上記各組成物を調製後、保存時間24時間以内に作製した全固体二次電池
組成物の保存条件:アルゴン雰囲気下で露点-60℃以下
全固体二次電池の保存条件:アルゴン雰囲気下で露点-60℃以下
Fresh product: Storage condition of all-solid secondary battery composition prepared within 24 hours after preparation of each composition above: Storage condition of all-solid secondary battery with dew point of -60 ° C or less under argon atmosphere: Argon atmosphere Below dew point -60 ℃ or less
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記表4から明らかなように、本発明の規定を満たさない固体電解質組成物から作製した全固体二次電池は電池電圧がいずれも不合格であった。
 これに対して、少なくとも1つの層を本発明の固体電解質組成物から作製した全固体二次電池は電池電圧に優れた。この結果から、本発明の固体電解質組成物から作製した全固体二次電池では、水分吸収による無機固体電解質の劣化が抑制されていることが分かる。
As can be seen from Table 4 above, the all-solid-state secondary battery produced from the solid electrolyte composition not satisfying the provisions of the present invention failed in battery voltage.
On the other hand, the all-solid-state secondary battery in which at least one layer was produced from the solid electrolyte composition of the present invention was excellent in battery voltage. From this result, it can be seen that in the all-solid-state secondary battery produced from the solid electrolyte composition of the present invention, the deterioration of the inorganic solid electrolyte due to moisture absorption is suppressed.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2016年5月19日に日本国で特許出願された特願2016-100617に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2016-1000061 filed in Japan on May 19, 2016, which is hereby incorporated herein by reference. Capture as part.
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 上部支持板
12 下部支持板
13 コイン型冶具
14 コインケース
15 固体電解質含有シート
S ネジ
16 2032型コインケース
17 全固体二次電池用電極シート
18 全固体二次電池
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode collector 6 Working part 10 All-solid-state secondary battery 11 Upper support plate 12 Lower support plate 13 Coin-shaped jig 14 Coin case 15 Solid Electrolyte-containing sheet S Screw 16 2032 type coin case 17 Electrode sheet 18 for all-solid-state secondary battery 18 All-solid-state secondary battery

Claims (17)

  1.  周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、脱水剤(B)と、分散媒体(C)とを含有する固体電解質組成物。 A solid electrolyte composition containing an inorganic solid electrolyte (A) having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, a dehydrating agent (B), and a dispersion medium (C).
  2.  前記無機固体電解質(A)が、硫化物系無機固体電解質である請求項1に記載の固体電解質組成物。 The solid electrolyte composition according to claim 1, wherein the inorganic solid electrolyte (A) is a sulfide-based inorganic solid electrolyte.
  3.  前記脱水剤(B)が、同一炭素原子または同一硫黄原子に2つ以上酸素原子が結合した部分構造を有する有機化合物である請求項1または2に記載の固体電解質組成物。 The solid electrolyte composition according to claim 1 or 2, wherein the dehydrating agent (B) is an organic compound having a partial structure in which two or more oxygen atoms are bonded to the same carbon atom or the same sulfur atom.
  4.  前記脱水剤(B)が、水と反応して下記一般式(1)~(3)のいずれかで表される部分構造を有する生成物を形成する有機化合物である請求項1~3のいずれか1項に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)~(3)中、R、R、R31およびR32は、ぞれぞれ独立に水素原子、アルキル基またはアリール基を示す。X、X、X31およびX32は、ぞれぞれ独立に単結合、酸素原子、硫黄原子、または-N(R)-を示す。Rは、水素原子、アルキル基またはアリール基を示す。Yは炭素原子または硫黄原子を示す。Yは硫黄原子を示す。Yはリン原子を示す。*は生成物中における連結部位を示す。
    The dehydrating agent (B) is an organic compound that reacts with water to form a product having a partial structure represented by any one of the following general formulas (1) to (3). 2. The solid electrolyte composition according to item 1.
    Figure JPOXMLDOC01-appb-C000001
    In the general formulas (1) to (3), R 1 , R 2 , R 31 and R 32 each independently represent a hydrogen atom, an alkyl group or an aryl group. X 1 , X 2 , X 31 and X 32 each independently represent a single bond, an oxygen atom, a sulfur atom or —N (R 3 ) —. R 3 represents a hydrogen atom, an alkyl group or an aryl group. Y 1 represents a carbon atom or a sulfur atom. Y 2 represents a sulfur atom. Y 3 represents a phosphorus atom. * Indicates a linking site in the product.
  5.  前記脱水剤(B)が、酸無水物、酸ハロゲン化物、アセタールおよびオルトエステルからなる群から選択される少なくとも1種である請求項1~4のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 4, wherein the dehydrating agent (B) is at least one selected from the group consisting of acid anhydrides, acid halides, acetals, and orthoesters.
  6.  前記脱水剤(B)が、フッ素原子を有する有機化合物である請求項1~5のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 5, wherein the dehydrating agent (B) is an organic compound having a fluorine atom.
  7.  前記脱水剤(B)の含有量が、前記固体電解質組成物の全固形分中、1質量%以上50質量%以下である請求項1~6のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 6, wherein a content of the dehydrating agent (B) is 1% by mass or more and 50% by mass or less in a total solid content of the solid electrolyte composition.
  8.  前記脱水剤(B)が、分子量300以下または760mmHgにおける沸点が300℃以下である請求項1~7のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 7, wherein the dehydrating agent (B) has a molecular weight of 300 or less or a boiling point at 760 mmHg of 300 ° C or less.
  9.  前記脱水剤(B)が25℃で液体であり、分散媒体(C)に対する質量比(B)/(C)が、1/99~99/1である請求項1~8のいずれか1項に記載の固体電解質組成物。 9. The dehydrating agent (B) is a liquid at 25 ° C., and the mass ratio (B) / (C) to the dispersion medium (C) is 1/99 to 99/1. The solid electrolyte composition described in 1.
  10.  活物質(D)を含有する請求項1~9のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 9, comprising an active material (D).
  11.  バインダー(E)を含有する請求項1~10のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 10, comprising a binder (E).
  12.  前記バインダー(E)が、アクリル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、含フッ素樹脂および炭化水素系熱可塑性樹脂からなる群から選択される少なくとも1種である請求項11に記載の固体電解質組成物。 The solid electrolyte composition according to claim 11, wherein the binder (E) is at least one selected from the group consisting of an acrylic resin, a polyurethane resin, a polyurea resin, a polyimide resin, a fluorine-containing resin, and a hydrocarbon-based thermoplastic resin. object.
  13.  前記バインダー(E)が極性基を有する請求項11または12に記載の固体電解質組成物。 The solid electrolyte composition according to claim 11 or 12, wherein the binder (E) has a polar group.
  14.  周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、脱水剤(B)とを含有する固体電解質含有シート。 A solid electrolyte-containing sheet containing an inorganic solid electrolyte (A) having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table and a dehydrating agent (B).
  15.  前記脱水剤(B)を、全固形分中5質量%以下含有する請求項14に記載の固体電解質含有シートの製造方法であって、
     前記無機固体電解質(A)と、前記脱水剤(B)と、分散媒体(C)とを含有する固体電解質組成物をろ過する工程と、
     前記工程で得たろ液を基材上に塗布する工程と、
     加熱乾燥する工程とを
    有する固体電解質含有シートの製造方法。
    The method for producing a solid electrolyte-containing sheet according to claim 14, wherein the dehydrating agent (B) is contained in a total solid content of 5% by mass or less.
    Filtering the solid electrolyte composition containing the inorganic solid electrolyte (A), the dehydrating agent (B), and the dispersion medium (C);
    Applying the filtrate obtained in the above step onto a substrate;
    The manufacturing method of the solid electrolyte containing sheet | seat which has the process of heat-drying.
  16.  正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、
     前記正極活物質層、前記負極活物質層および前記固体電解質層の少なくとも1つの層が請求項14に記載の固体電解質含有シートである全固体二次電池。
    An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer,
    The all-solid-state secondary battery whose at least 1 layer of the said positive electrode active material layer, the said negative electrode active material layer, and the said solid electrolyte layer is a solid electrolyte containing sheet | seat of Claim 14.
  17.  請求項15に記載の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。 A method for producing an all-solid secondary battery, wherein an all-solid secondary battery is produced through the production method according to claim 15.
PCT/JP2017/017757 2016-05-19 2017-05-10 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery WO2017199821A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018518242A JP6684901B2 (en) 2016-05-19 2017-05-10 Solid electrolyte composition, solid electrolyte-containing sheet and all solid state secondary battery, and method for producing solid electrolyte containing sheet and all solid state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016100617 2016-05-19
JP2016-100617 2016-05-19

Publications (1)

Publication Number Publication Date
WO2017199821A1 true WO2017199821A1 (en) 2017-11-23

Family

ID=60325863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017757 WO2017199821A1 (en) 2016-05-19 2017-05-10 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery

Country Status (2)

Country Link
JP (1) JP6684901B2 (en)
WO (1) WO2017199821A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125468A (en) * 2018-01-16 2019-07-25 トヨタ自動車株式会社 Negative electrode slurry for lithium battery
JP2019200900A (en) * 2018-05-16 2019-11-21 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh All-solid battery containing impurity scavenger
US20210005925A1 (en) * 2018-03-26 2021-01-07 Toyota Motor Europe Solid electrolyte material for solid state batteries, solid electrolyte and solid state battery
WO2021131484A1 (en) 2019-12-26 2021-07-01 日本ゼオン株式会社 Binder composition for secondary batteries, slurry composition for secondary batteries, solid electrolyte-containing layer, all-solid-state secondary battery, and method for producing all-solid-state secondary battery
WO2021178284A1 (en) * 2020-03-02 2021-09-10 Navitas Systems, Llc Compositions and methods for electrochemical cell component fabrication
CN113597694A (en) * 2019-06-26 2021-11-02 松下知识产权经营株式会社 Ion conductor material and battery
KR20220002092A (en) * 2020-06-30 2022-01-06 도요타 지도샤(주) Method for manufacturing solid electrolyte-containing layer, method for manufacturing solid-state battery, and solid-state battery
WO2022044815A1 (en) * 2020-08-31 2022-03-03 日本ゼオン株式会社 Method for manufacturing binder composition for all-solid-state secondary cell, method for manufacturing slurry composition for all-solid-state secondary cell, method for manufacturing solid-electrolyte-containing layer, and method for manufacturing all-solid-state secondary cell
CN114556616A (en) * 2019-10-15 2022-05-27 Attaccato合同会社 Electrode for nonaqueous electrolyte electricity storage device, and method for manufacturing same
WO2023026629A1 (en) * 2021-08-27 2023-03-02 パナソニックIpマネジメント株式会社 Battery
JP7527466B2 (en) 2020-12-09 2024-08-02 ジアンス・コンテンポラリー・アンプレックス・テクノロジー・リミテッド Electrode plate, secondary battery and its manufacturing method, and device including secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262807A (en) * 2009-05-01 2010-11-18 Konica Minolta Holdings Inc Secondary battery
JP2013201111A (en) * 2012-02-21 2013-10-03 Toyota Motor Corp Storage method and storage device of solid electrolyte, and manufacturing method of all solid state battery
JP2015090860A (en) * 2013-11-07 2015-05-11 旭化成株式会社 Nonaqueous electrolyte secondary battery
JP2015153466A (en) * 2014-02-10 2015-08-24 古河機械金属株式会社 Solid electrolytic sheet and all-solid type lithium ion battery
JP2016018679A (en) * 2014-07-08 2016-02-01 三菱瓦斯化学株式会社 Electrode layer for all-solid battery and all-solid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262807A (en) * 2009-05-01 2010-11-18 Konica Minolta Holdings Inc Secondary battery
JP2013201111A (en) * 2012-02-21 2013-10-03 Toyota Motor Corp Storage method and storage device of solid electrolyte, and manufacturing method of all solid state battery
JP2015090860A (en) * 2013-11-07 2015-05-11 旭化成株式会社 Nonaqueous electrolyte secondary battery
JP2015153466A (en) * 2014-02-10 2015-08-24 古河機械金属株式会社 Solid electrolytic sheet and all-solid type lithium ion battery
JP2016018679A (en) * 2014-07-08 2016-02-01 三菱瓦斯化学株式会社 Electrode layer for all-solid battery and all-solid battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125468A (en) * 2018-01-16 2019-07-25 トヨタ自動車株式会社 Negative electrode slurry for lithium battery
US20210005925A1 (en) * 2018-03-26 2021-01-07 Toyota Motor Europe Solid electrolyte material for solid state batteries, solid electrolyte and solid state battery
US12040446B2 (en) * 2018-03-26 2024-07-16 Toyota Motor Europe Solid electrolyte material for solid state batteries, solid electrolyte and solid state battery
JP2019200900A (en) * 2018-05-16 2019-11-21 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh All-solid battery containing impurity scavenger
JP7256609B2 (en) 2018-05-16 2023-04-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング All-solid-state battery with impurity scavenger
CN113597694A (en) * 2019-06-26 2021-11-02 松下知识产权经营株式会社 Ion conductor material and battery
CN114556616A (en) * 2019-10-15 2022-05-27 Attaccato合同会社 Electrode for nonaqueous electrolyte electricity storage device, and method for manufacturing same
WO2021131484A1 (en) 2019-12-26 2021-07-01 日本ゼオン株式会社 Binder composition for secondary batteries, slurry composition for secondary batteries, solid electrolyte-containing layer, all-solid-state secondary battery, and method for producing all-solid-state secondary battery
KR20220121778A (en) 2019-12-26 2022-09-01 니폰 제온 가부시키가이샤 A binder composition for a secondary battery, a slurry composition for a secondary battery, and a solid electrolyte-containing layer, and an all-solid secondary battery and a method for manufacturing an all-solid secondary battery
WO2021178284A1 (en) * 2020-03-02 2021-09-10 Navitas Systems, Llc Compositions and methods for electrochemical cell component fabrication
JP2022011539A (en) * 2020-06-30 2022-01-17 トヨタ自動車株式会社 Manufacturing method of solid electrolyte-containing layer, manufacturing method of solid-state battery, and solid-state battery
JP7276264B2 (en) 2020-06-30 2023-05-18 トヨタ自動車株式会社 Method for producing solid electrolyte-containing layer, method for producing solid battery, and solid battery
KR102634216B1 (en) * 2020-06-30 2024-02-07 도요타 지도샤(주) Method for manufacturing solid electrolyte-containing layer, method for manufacturing solid-state battery, and solid-state battery
KR20220002092A (en) * 2020-06-30 2022-01-06 도요타 지도샤(주) Method for manufacturing solid electrolyte-containing layer, method for manufacturing solid-state battery, and solid-state battery
WO2022044815A1 (en) * 2020-08-31 2022-03-03 日本ゼオン株式会社 Method for manufacturing binder composition for all-solid-state secondary cell, method for manufacturing slurry composition for all-solid-state secondary cell, method for manufacturing solid-electrolyte-containing layer, and method for manufacturing all-solid-state secondary cell
JP7527466B2 (en) 2020-12-09 2024-08-02 ジアンス・コンテンポラリー・アンプレックス・テクノロジー・リミテッド Electrode plate, secondary battery and its manufacturing method, and device including secondary battery
WO2023026629A1 (en) * 2021-08-27 2023-03-02 パナソニックIpマネジメント株式会社 Battery

Also Published As

Publication number Publication date
JPWO2017199821A1 (en) 2019-03-07
JP6684901B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
KR102126144B1 (en) Solid electrolyte composition, electrode sheet for all-solid secondary battery and all-solid secondary battery, and electrode sheet for all-solid secondary battery and method for manufacturing all-solid secondary battery
WO2017199821A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
JP6591687B2 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
JP6665284B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and method for producing solid electrolyte-containing sheet and all-solid secondary battery
WO2017099248A1 (en) Solid electrolyte composition, binder particle, all-solid secondary battery sheet, all-solid secondary battery electrode sheet and all-solid secondary battery, and production method therefor
JP6621532B2 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET, ELECTRODE SHEET FOR ALL-SOLID SECONDARY BATTERY AND ALL-SOLID SECONDARY BATTERY, AND SOLID ELECTROLYTE-CONTAINING SHEET, ELECTRODE SHEET FOR ALL-SOLID SECONDARY BATTERY
WO2018168505A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte composition, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
WO2018047946A1 (en) Electrode layer material, sheet for all-solid-state secondary battery electrode, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP6621443B2 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
WO2017204027A1 (en) Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and method for producing electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery
JP6572063B2 (en) All-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and production method thereof
WO2019054191A1 (en) Solid electrolyte composition, method for producing same, storage method and kit, solid electrolyte-containing sheet, storage method and kit therefor, and all-solid secondary battery
JPWO2019054455A1 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY, AND METHOD FOR PRODUCING SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
JP7165747B2 (en) Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
JP6740350B2 (en) Solid electrolyte composition, solid electrolyte containing sheet and all solid state secondary battery, and solid electrolyte containing sheet and all solid state secondary battery manufacturing method
JP2017147173A (en) Solid electrolyte composition, sheet for all-solid type secondary battery, all-solid type secondary battery, and methods for manufacturing sheet for all-solid type secondary battery and all-solid type secondary battery
JP6673785B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and method for producing solid electrolyte-containing sheet and all-solid secondary battery
US20210083323A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery
JP6670641B2 (en) Electrode material, electrode sheet for all-solid secondary battery and all-solid secondary battery using the same, and electrode sheet for all-solid secondary battery and method for producing all-solid secondary battery
WO2020067108A1 (en) Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2019203334A1 (en) Solid electrolyte composition, all-solid secondary battery sheet, all-solid secondary battery, and method of manufacturing all-solid secondary battery sheet or all-solid secondary battery
JP6623083B2 (en) Solid electrolyte composition, sheet for all-solid secondary battery and all-solid-state secondary battery using the same, and method for producing them
US12040445B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte-containing sheet and all-solid state secondary battery
WO2021261526A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid secondary battery, all-solid secondary battery, and methods of producing sheet for all-solid secondary battery and all-solid secondary battery

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2018518242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799245

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799245

Country of ref document: EP

Kind code of ref document: A1