[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017199805A1 - 熱可塑性エラストマー組成物及びその製造方法 - Google Patents

熱可塑性エラストマー組成物及びその製造方法 Download PDF

Info

Publication number
WO2017199805A1
WO2017199805A1 PCT/JP2017/017641 JP2017017641W WO2017199805A1 WO 2017199805 A1 WO2017199805 A1 WO 2017199805A1 JP 2017017641 W JP2017017641 W JP 2017017641W WO 2017199805 A1 WO2017199805 A1 WO 2017199805A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
side chain
compound
elastomeric polymer
polymer
Prior art date
Application number
PCT/JP2017/017641
Other languages
English (en)
French (fr)
Inventor
知野 圭介
鈴木 宏明
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Publication of WO2017199805A1 publication Critical patent/WO2017199805A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups

Definitions

  • the present invention relates to a thermoplastic elastomer composition and a method for producing the same.
  • Thermoplastic elastomer is an extremely useful material in the industry because it can be melted at the processing temperature during molding and can be molded by a known resin molding method.
  • a thermoplastic elastomer for example, in JP-A-2006-131663 (Patent Document 1), a side chain containing a hydrogen-bonding cross-linking site having a carbonyl-containing group and a nitrogen-containing heterocyclic ring is covalently bonded.
  • a thermoplastic elastomer composed of an elastomeric polymer having a glass transition point of 25 ° C. or less having other side chains containing a crosslinking site is disclosed.
  • such a thermoplastic elastomer described in Patent Document 1 is not always sufficient in terms of tensile strength based on 100% modulus and breaking strength, and wear resistance.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and it is possible to make the tensile strength based on 100% modulus and breaking strength higher, and sufficiently high resistance. It is an object of the present invention to provide a thermoplastic elastomer composition that can be worn.
  • the inventors of the present invention have a side chain containing a hydrogen-bonded bridging site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring, and a glass transition point of 25. And an elastomeric polymer (B) having a hydrogen bond crosslinking site and a covalent bond crosslinking site in the side chain and having a glass transition point of 25 ° C. or less.
  • At least one elastomer component selected from the group and at least one selected from the group consisting of expanded graphite, carbon nanotubes, fullerenes, graphene, silicate-based natural nanofibers, silsesquioxanes, and layered titanate compounds
  • an additive component whose content is 20 parts by mass or less with respect to 100 parts by mass of the elastomer component. Therefore, the tensile strength based on the 100% modulus and the breaking strength of the obtained thermoplastic elastomer composition can be made higher, and the composition has a sufficiently high wear resistance.
  • the present invention has been completed by finding that it is possible to have the following.
  • thermoplastic elastomer composition of the present invention has an elastomeric polymer having a side chain containing a hydrogen-bonding crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or lower.
  • A and at least one selected from the group consisting of an elastomeric polymer (B) containing a hydrogen-bonding cross-linking site and a covalent cross-linking site in the side chain and having a glass transition point of 25 ° C. or lower.
  • a kind of elastomer component It is at least one selected from the group consisting of expanded graphite, carbon nanotubes, fullerenes, graphene, silicate-based natural nanofibers, silsesquioxanes, and layered titanate compounds, and the content thereof is 100 masses of the elastomer component.
  • An additive component that is 20 parts by mass or less relative to parts, It contains.
  • the elastomer component contains the following reactants (I) to (VI): [Reactant (I)] Among maleic anhydride-modified elastomeric polymer and triazole, hydroxyl group, thiol group and amino group which may have at least one substituent selected from hydroxyl group, thiol group and amino group Among the thiadiazole, hydroxyl group, thiol group and amino group optionally having at least one substituent of pyridine, hydroxyl group, thiol group and amino group optionally having at least one substituent group Of isocyanurate, hydroxyl group, thiol group and amino group which may have at least one substituent of imidazole, hydroxyl group, thiol group and amino group which may have at least one kind of substituent At least one of triazine, hydroxyl group, thiol group and amino group optionally having at least one substituent.
  • the main chain of the polymer contained as the elastomer component is a diene rubber, a hydrogenated diene rubber, an olefin rubber, or a hydrogenated polystyrene. It is composed of at least one selected from a polymer elastomeric polymer, a polyolefin elastomeric polymer, a polyvinyl chloride elastomeric polymer, a polyurethane elastomeric polymer, a polyester elastomeric polymer, and a polyamide elastomeric polymer Is preferred.
  • thermoplastic elastomer composition which can make the tensile strength on the basis of 100% modulus and breaking strength more advanced, and can have a sufficiently high abrasion resistance. Things can be provided.
  • thermoplastic elastomer composition of the present invention has an elastomeric polymer (A) having a side chain containing a hydrogen-bonding crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or lower. ), And at least one selected from the group consisting of an elastomeric polymer (B) having a hydrogen bond crosslinking site and a covalent bond site in the side chain and having a glass transition point of 25 ° C.
  • An elastomer component It is at least one selected from the group consisting of expanded graphite, carbon nanotubes, fullerenes, graphene, silicate-based natural nanofibers, silsesquioxanes, and layered titanate compounds, and the content thereof is 100 masses of the elastomer component.
  • An additive component that is 20 parts by mass or less relative to parts, It contains.
  • Such an elastomer component is at least one selected from the group consisting of the above-mentioned elastomeric polymers (A) to (B).
  • “side chains” refer to side chains and terminals of the elastomeric polymer.
  • a side chain containing a hydrogen-bonding cross-linked site having a carbonyl-containing group and / or a nitrogen-containing heterocycle hereinafter, sometimes referred to as“ side chain (a) ”for convenience) means an elastomeric polymer.
  • a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring (more preferably a carbonyl-containing group) Group and nitrogen-containing heterocycle) has a chemically stable bond (covalent bond).
  • the side chain contains a hydrogen-bonding crosslinking site and a covalent bonding site means a side chain having a hydrogen-bonding crosslinking site (hereinafter referred to as “side chain (a ′)” for convenience).
  • side chain (b) a side chain having a covalent crosslinking site
  • the side chain of the polymer contains a hydrogen bonding crosslinking site.
  • a side chain having both a hydrogen bonding crosslinking site and a covalent crosslinking site a hydrogen bonding crosslinking site and a covalent bond in one side chain.
  • Side chains including both cross-linked sites are sometimes referred to as “side chains (c)”. A concept that includes the case where both binding crosslink sites are contained. is there.
  • Such main chains of the elastomeric polymers (A) to (B) are generally known natural polymers or synthetic polymers.
  • the molecule is not particularly limited as long as it is made of a polymer having a glass transition point of room temperature (25 ° C.) or less (it may be made of a so-called elastomer).
  • the elastomeric polymers (A) to (B) have, for example, an elastomeric polymer having a glass transition point of room temperature (25 ° C.) or lower such as a natural polymer or a synthetic polymer as a main chain, and a carbonyl-containing group and And / or containing a side chain (a) containing a hydrogen-bonding cross-linked moiety having a nitrogen-containing heterocycle; mainly composed of an elastomeric polymer having a glass transition point of room temperature (25 ° C.) or less, such as a natural polymer or a synthetic polymer Containing a side chain (a ′) having a hydrogen-bonding cross-linking site and a side chain (b) having a covalent cross-linking site as a side chain; glass such as a natural polymer or a synthetic polymer An elastomeric polymer having a transition point of room temperature (25 ° C.) or lower and having a side chain (c) including both
  • Examples of the main chains of the elastomeric polymers (A) to (B) include natural rubber (NR) and isoprene rubber.
  • IR natural rubber
  • BR butadiene rubber
  • SBR 1,2-butadiene rubber
  • NBR styrene-butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • IIR chloroprene rubber
  • EPDM butyl rubber
  • EPM ethylene-propylene-diene rubber
  • EPM ethylene-acrylic rubber
  • EBM chlorosulfonated polyethylene
  • acrylic rubber, fluororubber polyethylene rubber Olef such as polypropylene rubber
  • a tin-based rubber an epichlorohydrin rubber
  • a polysulfide rubber a silicone rubber
  • urethanef ethylene rubber Olef
  • urethanef such as polypropylene rubber
  • a tin-based rubber such as polypropylene rubber
  • the main chain of the elastomeric polymers (A) to (B) is composed of an elastomeric polymer containing a resin component.
  • a resin component for example, polystyrene-based elastomeric polymer (for example, SBS, SIS, SEBS, etc.) that may be hydrogenated, polyolefin-based elastomeric polymer, polyvinyl chloride-based elastomeric polymer, polyurethane-based elastomeric polymer , Polyester-based elastomeric polymers, polyamide-based elastomeric polymers, and the like.
  • Examples of the main chain of the elastomeric polymers (A) to (B) include diene rubber, hydrogenated diene rubber, olefin rubber, and hydrogenated. At least selected from polystyrene-based elastomeric polymer, polyolefin-based elastomeric polymer, polyvinyl chloride-based elastomeric polymer, polyurethane-based elastomeric polymer, polyester-based elastomeric polymer, and polyamide-based elastomeric polymer One is preferred.
  • the main chain of the elastomeric polymers (A) to (B) is a diene rubber from the viewpoint that there is no double bond that tends to age. From the viewpoint of low cost and high reactivity (having many double bonds capable of ene reaction of a compound such as maleic anhydride), diene rubber is preferable. preferable.
  • the elastomeric polymers (A) to (B) may be in a liquid or solid state, and the molecular weight thereof is not particularly limited, and uses for which the thermoplastic elastomer composition of the present invention is used, required physical properties, etc. It can be selected as appropriate according to the conditions.
  • the elastomeric polymers (A) to (B) are preferably in a liquid state, for example, a main chain portion.
  • a diene rubber such as isoprene rubber or butadiene rubber
  • the weight average molecular weight of the main chain portion is 1,000 to 100 in order to make the elastomeric polymers (A) to (B) liquid.
  • the elastomeric polymers (A) to (B) are preferably in a solid state, for example, the main chain portion is isoprene rubber, butadiene rubber or the like.
  • the weight average molecular weight of the main chain portion is 100,000 or more. It is particularly preferably about 1,000,000 to 1,500,000.
  • Such a weight average molecular weight is a weight average molecular weight (in terms of polystyrene) measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the elastomeric polymers (A) to (B) can be used in combination of two or more.
  • the mixing ratio of the respective elastomeric polymers can be set to an arbitrary ratio according to the use in which the thermoplastic elastomer composition of the present invention is used or the required physical properties.
  • the glass transition point of the elastomeric polymers (A) to (B) is 25 ° C. or less as described above. If the glass transition point of the elastomeric polymer is within this range, the thermoplastic elastomer composition of the present invention exhibits rubber-like elasticity at room temperature.
  • the “glass transition point” is a glass transition point measured by differential scanning calorimetry (DSC-Differential Scanning Calorimetry). In the measurement, the rate of temperature rise is preferably 10 ° C./min.
  • the main chain of the elastomeric polymers (A) to (B) (the main chain of the polymer contained as the elastomer component) has a glass transition point of the elastomeric polymers (A) to (B) of 25 ° C.
  • the molded article comprising the thermoplastic elastomer composition obtained exhibits rubber-like elasticity at room temperature (25 ° C.), natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), 1,2-butadiene rubber , Diene rubbers such as styrene-butadiene rubber (SBR), ethylene-propylene-diene rubber (EPDM), butyl rubber (IIR); ethylene-propylene rubber (EPM), ethylene-acrylic rubber (AEM), ethylene-butene rubber (EBM) And the like.
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • EPDM ethylene-propylene-diene rubber
  • IIR butyl rubber
  • EPM ethylene-propylene rubber
  • AEM ethylene-acrylic rubber
  • EBM ethylene-butene rubber
  • thermoplastic elastomer composition when an olefin rubber is used for each of the main chains of the elastomeric polymers (A) to (B), the tensile strength of the resulting thermoplastic elastomer composition is improved and there is no double bond. Degradation tends to be more sufficiently suppressed.
  • the amount of bound styrene of the styrene-butadiene rubber (SBR) that can be used for the elastomeric polymers (A) to (B), the hydrogenation rate of the hydrogenated elastomeric polymer, and the like are not particularly limited.
  • the ratio can be adjusted to any ratio according to the use of the thermoplastic elastomer composition, the physical properties required of the composition, and the like.
  • the main chain of the elastomeric polymers (A) to (B) (the main chain of the polymer contained as the elastomer component), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic rubber (AEM), ethylene-propylene
  • EPDM ethylene-propylene-diene rubber
  • AEM ethylene-acrylic rubber
  • EPM ethylene-propylene
  • EBM ethylene-butene rubber
  • ethylene-propylene-diene rubber EPDM
  • ethylene-acrylic rubber AEM
  • ethylene-propylene rubber EPM
  • ethylene-butene rubber EBM
  • the ethylene content is preferably 10 to 90 mol%, more preferably 30 to 90 mol%. If the ethylene content is within this range, it is preferable because it is excellent in compression set, mechanical strength, particularly tensile strength when it is used as a thermoplastic elastomer (composition).
  • the elastomeric polymers (A) to (B) are preferably amorphous from the viewpoint of good rubbery elasticity at room temperature.
  • such elastomeric polymers (A) to (B) may be elastomers having a crystallinity (crystal structure) in part, but even in this case, the degree of crystallinity is 10%. It is preferably less than (particularly preferably 5 to 0%).
  • crystallinity is measured by using an X-ray diffractometer (for example, trade name “MiniFlex300” manufactured by Rigaku Corporation) as a measuring device, measuring a diffraction peak, and integrating a scattering peak derived from crystallinity / amorphous. It can be determined by calculating the ratio.
  • the elastomeric polymers (A) to (B) include, as a side chain, a side chain (a) containing a hydrogen-bonded crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle; A side chain (a ′) containing a hydrogen-bonding crosslinking site and a side chain (b) containing a covalent bonding site; and a side chain (c) containing a hydrogen-bonding crosslinking site and a covalent crosslinking site. And at least one of them.
  • the side chain (c) can also be said to be a side chain that functions as a side chain (b) while functioning as a side chain (a ').
  • each side chain will be described.
  • the side chain (a ′) containing a hydrogen-bonding cross-linking site has a group capable of forming a cross-link by hydrogen bonding (for example, a hydroxyl group, a hydrogen-bonding cross-linking site contained in the side chain (a) described later). Any side chain that forms a hydrogen bond based on the group may be used, and the structure is not particularly limited.
  • the hydrogen bond crosslinking site is a site where polymers (elastomers) are crosslinked by hydrogen bonding.
  • Cross-linking by hydrogen bonding includes a hydrogen acceptor (such as a group containing an atom containing a lone pair) and a hydrogen donor (such as a group including a hydrogen atom covalently bonded to an atom having a large electronegativity). Therefore, when both the hydrogen acceptor and the hydrogen donor are not present between the side chains of the elastomers, no crosslinks due to hydrogen bonds are formed. Therefore, a hydrogen bonding cross-linked site is present in the system only when both hydrogen acceptors and hydrogen donors exist between the side chains of the elastomers.
  • a hydrogen acceptor such as a group containing an atom containing a lone pair
  • a hydrogen donor such as a group including a hydrogen atom covalently bonded to an atom having a large electronegativity
  • a hydrogen acceptor for example, a carbonyl group
  • a hydrogen donor for example, a hydroxyl group
  • a hydrogen-bonding bridging site in the side chain (a ′) a hydrogen bond having a carbonyl-containing group and / or a nitrogen-containing heterocycle described below from the viewpoint of forming a stronger hydrogen bond. It is preferable that it is an ionic crosslinking site (hydrogen bonding crosslinking site contained in the side chain (a)). That is, as the side chain (a ′), the side chain (a) described later is more preferable. From the same viewpoint, the hydrogen-bonding cross-linking site in the side chain (a ′) is more preferably a hydrogen-bonding cross-linking site having a carbonyl-containing group and a nitrogen-containing heterocycle.
  • the side chain (a) containing a hydrogen-bonded bridging site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring may be any as long as it has a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring. It is not limited. As such a hydrogen bonding cross-linking site, those having a carbonyl-containing group and a nitrogen-containing heterocyclic ring are more preferred.
  • Such a carbonyl-containing group is not particularly limited as long as it contains a carbonyl group, and specific examples thereof include amide, ester, imide, carboxy group, carbonyl group and the like.
  • Such a carbonyl-containing group may be a group introduced into the main chain (polymer of the main chain portion) using a compound capable of introducing a carbonyl-containing group into the main chain.
  • the compound capable of introducing such a carbonyl-containing group into the main chain is not particularly limited, and specific examples thereof include ketones, carboxylic acids and derivatives thereof.
  • carboxylic acid examples include organic acids having a saturated or unsaturated hydrocarbon group, and the hydrocarbon group may be any of aliphatic, alicyclic, aromatic and the like.
  • carboxylic acid derivatives include carboxylic acid anhydrides, amino acids, thiocarboxylic acids (mercapto group-containing carboxylic acids), esters, amino acids, ketones, amides, imides, dicarboxylic acids and monoesters thereof. Etc.
  • carboxylic acid and derivatives thereof include malonic acid, maleic acid, succinic acid, glutaric acid, phthalic acid, isophthalic acid, terephthalic acid, p-phenylenediacetic acid, and p-hydroxybenzoic acid.
  • Acids carboxylic acids such as p-aminobenzoic acid and mercaptoacetic acid, and those carboxylic acids containing substituents; acids such as succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride, propionic anhydride, benzoic anhydride Anhydrides; aliphatic esters such as maleic acid ester, malonic acid ester, succinic acid ester, glutaric acid ester and ethyl acetate; phthalic acid ester, isophthalic acid ester, terephthalic acid ester, ethyl-m-aminobenzoate, methyl-p- Aromatic esters such as hydroxybenzoate; quinone, anne Ketones such as laquinone and naphthoquinone; glycine, tyrosine, bicine, alanine, valine, leucine, serine, threonine, lysine, aspartic acid,
  • maleamide maleamic acid (maleic monoamide), succinic monoamide, 5-hydroxyvaleramide, N-acetylethanolamine, N, N′-hexamethylenebis (acetamide), malonamide, cycloserine, 4-acetamidophenol, amides such as p-acetamidobenzoic acid; imides such as maleimide and succinimide; and the like.
  • the compound capable of introducing a carbonyl group is preferably a cyclic acid anhydride such as succinic anhydride, maleic anhydride, glutaric anhydride, and phthalic anhydride, and is maleic anhydride. It is particularly preferred.
  • the nitrogen-containing heterocycle may be introduced into the main chain directly or via an organic group, and the configuration thereof is particularly limited. It is not a thing.
  • a nitrogen-containing heterocycle may be used even if it contains a heteroatom other than a nitrogen atom in the heterocycle, for example, a sulfur atom, an oxygen atom, a phosphorus atom, etc., as long as it contains a nitrogen atom in the heterocycle. it can.
  • thermoplastic elastomer composition of the present invention if it has a heterocyclic structure, the hydrogen bond forming a bridge becomes stronger, and the resulting thermoplastic elastomer composition of the present invention This is preferable because the tensile strength is further improved.
  • the nitrogen-containing heterocyclic ring may have a substituent, and examples of the substituent include alkyl groups such as a methyl group, an ethyl group, a (iso) propyl group, and a hexyl group; a methoxy group and an ethoxy group.
  • Alkoxy groups such as (iso) propoxy group; groups consisting of halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; cyano group; amino group; aromatic hydrocarbon group; ester group; ether group; A thioether group; and the like can be used in combination.
  • the substitution position of these substituents is not particularly limited, and the number of substituents is not limited.
  • the nitrogen-containing heterocycle may or may not have aromaticity, but the permanent compression of the thermoplastic elastomer composition of the present invention obtained when having aromaticity. This is preferable because strain and mechanical strength are further improved.
  • such a nitrogen-containing heterocyclic ring is not particularly limited, but from the viewpoints that hydrogen bonds become stronger and compression set and mechanical strength are further improved, a 5-membered ring or a 6-membered ring. It is preferable that Specific examples of such nitrogen-containing heterocycle include pyrrololine, pyrrolidone, oxindole (2-oxindole), indoxyl (3-oxindole), dioxindole, isatin, indolyl, phthalimidine, ⁇ -Isoindigo, monoporphyrin, diporphyrin, triporphyrin, azaporphyrin, phthalocyanine, hemoglobin, uroporphyrin, chlorophyll, phyroerythrin, imidazole, pyrazole, triazole, tetrazole, benzimidazole, benzopyrazole, benzotriazole, imidazoline, imidazolone, imidazolidone Hydan
  • the substituents X, Y, and Z in the general formulas (10) and (11) are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or 6 to 6 carbon atoms. 20 aryl groups or amino groups. Note that any one of X and Y in the general formula (10) is not a hydrogen atom, and similarly, at least one of X, Y and Z in the general formula (11) is not a hydrogen atom.
  • substituents X, Y, and Z include, in addition to hydrogen atoms and amino groups, specifically, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, octyl group, dodecyl group, stearyl Linear alkyl groups such as isopropyl groups, isobutyl groups, s-butyl groups, t-butyl groups, isopentyl groups, neopentyl groups, t-pentyl groups, 1-methylbutyl groups, 1-methylheptyl groups, 2- Branched alkyl groups such as ethylhexyl group; aralkyl groups such as benzyl group and phenethyl group; aryl groups such as phenyl group, tolyl group (o-, m-, p-), dimethylphenyl group, mesityl group; It is done.
  • substituents X, Y, and Z are alkyl groups, particularly butyl, octyl, dodecyl, isopropyl, and 2-ethylhexyl groups. This is preferable because the processability of is improved.
  • the following compounds are preferably exemplified for the nitrogen-containing 6-membered ring. These may also have the above-described various substituents (for example, the substituents that the above-mentioned nitrogen-containing heterocycle may have), or may be hydrogenated or eliminated. .
  • a condensed product of the nitrogen-containing heterocycle and a benzene ring or a nitrogen-containing heterocycle can be used, and specific examples thereof include the following condensed rings.
  • These condensed rings may also have the above-described various substituents, and may have hydrogen atoms added or eliminated.
  • thermoplastic elastomer composition of the present invention to be obtained is excellent in recyclability, compression set, hardness and mechanical strength, particularly tensile strength. Therefore, a triazole ring, an isocyanurate ring, It is preferably at least one selected from thiadiazole ring, pyridine ring, imidazole ring, triazine ring and hydantoin ring, and at least selected from triazole ring, thiadiazole ring, pyridine ring, imidazole ring and hydantoin ring One type is preferable.
  • the side chain (a) includes both the carbonyl-containing group and the nitrogen-containing heterocycle
  • the carbonyl-containing group and the nitrogen-containing heterocycle are introduced into the main chain as side chains independent of each other.
  • the carbonyl-containing group and the nitrogen-containing heterocycle are introduced into the main chain as one side chain bonded through different groups.
  • a side chain containing a hydrogen-bonded cross-linking site having the carbonyl-containing group and the nitrogen-containing heterocycle is introduced into the main chain as one side chain.
  • A is a nitrogen-containing heterocyclic ring
  • B is a single bond
  • an oxygen atom and a formula: NR ′
  • R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the side chain containing the structural part represented by is introduced into the main chain as one side chain.
  • the hydrogen-bonding cross-linked site of the side chain (a) contains a structural portion represented by the general formula (1).
  • the nitrogen-containing heterocyclic ring A in the above formula (1) specifically includes the nitrogen-containing heterocyclic rings exemplified above.
  • Specific examples of the substituent B in the above formula (1) include, for example, a single bond; an oxygen atom, a sulfur atom, or a formula: NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms).
  • NR ′ is simply referred to as “amino group NR ′”); the number of carbon atoms that may contain these atoms or groups An alkylene group having 1 to 20 carbon atoms or an aralkylene group; an alkylene ether group having 1 to 20 carbon atoms (an alkyleneoxy group such as an —O—CH 2 CH 2 — group) or an alkyleneamino group having these atoms or groups as terminals.
  • alkylene thioether group (alkylene thio group, for example, —S—CH 2 CH 2 — group);
  • alkylene thio group for example, —S—CH 2 CH 2 — group;
  • a xylene ether group (aralkyleneoxy group), an aralkylene amino group, or an aralkylene thioether group;
  • examples of the alkyl group having 1 to 10 carbon atoms that can be selected as R ′ in the amino group NR ′ include methyl, ethyl, propyl, butyl, pentyl, hexyl, A heptyl group, an octyl group, a nonyl group, a decyl group, etc. are mentioned.
  • the substituent B is an oxygen atom, a sulfur atom or an amino group forming a conjugated system; an alkylene ether group having 1 to 20 carbon atoms, an alkyleneamino group or an alkylene having these atoms or groups at the terminal. It is preferably a thioether group, an amino group (NH), an alkyleneamino group (—NH—CH 2 — group, —NH—CH 2 CH 2 — group, —NH—CH 2 CH 2 CH 2 — group), alkylene An ether group (—O—CH 2 — group, —O—CH 2 CH 2 — group, —O—CH 2 CH 2 CH 2 — group) is particularly preferred.
  • the side chain (a) is a side chain containing a hydrogen-bonded cross-linking site having the carbonyl-containing group and the nitrogen-containing heterocycle
  • the hydrogen bond having the carbonyl-containing group and the nitrogen-containing heterocycle is more preferably a side chain introduced into the polymer main chain at the ⁇ -position or ⁇ -position as one side chain represented by the following formula (2) or (3).
  • A is a nitrogen-containing heterocyclic ring
  • B and D are each independently a single bond; an oxygen atom, an amino group NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) or A sulfur atom; or an organic group that may contain these atoms or groups.
  • the nitrogen-containing heterocyclic ring A is basically the same as the nitrogen-containing heterocyclic ring A of the above formula (1), and the substituents B and D are each independently of the substituent B of the above formula (1). The same as above.
  • the substituent D in the formula (3) is a single bond; an alkylene having 1 to 20 carbon atoms which may contain an oxygen atom, a nitrogen atom or a sulfur atom among those exemplified as the substituent B in the formula (1). It is preferable to form a conjugated system of a group or an aralkylene group, and a single bond is particularly preferable. That is, it is preferable to form an alkyleneamino group or an aralkyleneamino group having 1 to 20 carbon atoms which may contain an oxygen atom, a nitrogen atom or a sulfur atom together with the imide nitrogen of the above formula (3). It is particularly preferred that the nitrogen-containing heterocycle is directly bonded to the imide nitrogen (single bond).
  • the substituent D includes a single bond; the above-described alkylene ether or aralkylene ether group having 1 to 20 carbon atoms having an oxygen atom, sulfur atom or amino group as a terminal; methylene including isomers; Group, ethylene group, propylene group, butylene group, hexylene group, phenylene group, xylylene group and the like.
  • the hydrogen-bond cross-linking site of the side chain (a) is Formula (101):
  • A is a nitrogen-containing heterocyclic ring.
  • the nitrogen-containing heterocycle A in the formula (101) is basically the same as the nitrogen-containing heterocycle A in the formula (1).
  • the hydrogen bond cross-linking site of such a side chain (a) is represented by the following general formula (102) from the viewpoint of high modulus and high breaking strength:
  • the side chain (a) is particularly preferably a group represented by the general formula (102).
  • the ratio of the carbonyl-containing group and the nitrogen-containing heterocycle of the thermoplastic elastomer is not particularly limited, and is in the range of 1: 1 to 3: 1 (more preferably 1: 1, 2: 1 or 3: 1). It is preferable because it is easy to form a complementary interaction and can be easily manufactured.
  • the side chain (a) containing a hydrogen-bonded cross-linking site having such a carbonyl-containing group and / or a nitrogen-containing heterocycle has a ratio of 0.1 to 50 mol% with respect to 100 mol% of the main chain portion ( It is preferably introduced at a rate of 1 to 30 mol%.
  • the introduction rate of such side chain (a) is less than 0.1 mol%, the tensile strength at the time of crosslinking may not be sufficient.
  • it exceeds 50 mol% the crosslinking density increases and rubber elasticity is lost. There is.
  • the introduction rate is within the above-mentioned range, the crosslinks are efficiently formed between the molecules by the interaction between the side chains of the thermoplastic elastomer, so the tensile strength at the time of crosslinking is high and the recyclability is excellent. Therefore, it is preferable.
  • the introduction rate is such that the side chain (a) includes a side chain (ai) containing a hydrogen-bonded cross-linking site having the carbonyl-containing group and a hydrogen bond cross-linking site having the nitrogen-containing heterocycle.
  • the side chain (aii) containing the carbonyl-containing group and the side chain (ai-ii) containing the nitrogen-containing heterocyclic ring According to the ratio, these are considered as one side chain (a) and calculated.
  • the introduction rate may be considered based on the larger side chain.
  • the introduction rate is, for example, when the main chain portion is ethylene-propylene rubber (EPM), the amount of the monomer having the side chain portion introduced is 0.1 to 50 per 100 units of ethylene and propylene monomer units. About unit.
  • EPM ethylene-propylene rubber
  • a polymer having a cyclic acid anhydride group (more preferably a maleic anhydride group) as a functional group in a polymer (material for forming an elastomeric polymer) that forms the main chain after the reaction.
  • the compound capable of introducing such a nitrogen-containing heterocycle may be the nitrogen-containing heterocycle itself exemplified above, and a substituent that reacts with a cyclic acid anhydride group such as maleic anhydride (for example, hydroxyl group, thiol).
  • nitrogen-containing heterocycle in the side chain (a)
  • nitrogen heterocycle is referred to as “nitrogen-containing n-membered ring compound (n ⁇ 3)”.
  • the bonding positions described below are based on the IUPAC nomenclature. For example, in the case of a compound having three nitrogen atoms having an unshared electron pair, the bonding position is determined by the order based on the IUPAC nomenclature. Specifically, the bonding positions are indicated on the 5-membered, 6-membered and condensed nitrogen-containing heterocycles exemplified above.
  • the bonding position of the nitrogen-containing n-membered ring compound bonded to the copolymer directly or via an organic group is not particularly limited, and any bonding position (position 1 to position n) But you can. Preferably, it is the 1-position or 3-position to n-position.
  • the nitrogen-containing n-membered ring compound contains one nitrogen atom (for example, a pyridine ring), the chelate is easily formed in the molecule, and the physical properties such as tensile strength when the composition is obtained are excellent.
  • the (n-1) position is preferred.
  • the elastomeric polymer is easy to form crosslinks due to hydrogen bonding, ionic bonding, coordination bonding, etc. between the molecules of the elastomeric polymer, and is excellent in recyclability. , Tend to be excellent in mechanical properties, particularly tensile strength.
  • the “side chain (b) containing a covalently bonded cross-linking site” is a covalent cross-linking site (containing an amino group described later) on an atom (usually a carbon atom) forming the main chain of the elastomeric polymer.
  • Functional groups that can generate at least one bond selected from the group consisting of amides, esters, lactones, urethanes, ethers, thiourethanes, and thioethers by reacting with “compounds that form covalent bonds” such as compounds ) Has a chemically stable bond (covalent bond).
  • the side chain (b) is a side chain containing a covalent cross-linking site, but has a covalent bond site and a group capable of hydrogen bonding, and hydrogen bonds between the side chains.
  • a hydrogen donor that can be used as a side chain (c) described later (which can form a hydrogen bond between the side chains of the elastomers, and
  • both hydrogen acceptors are not included, for example, when only a side chain containing an ester group (—COO—) is present in the system, the ester groups (—COO—)
  • a hydrogen-donating hydrogen donor site such as a carboxy group or a triazole ring, and a hydrogen acceptor Part
  • hydrogen bonds are formed between the side chains of the elastomers, so that
  • the site where the hydrogen bond is formed becomes a hydrogen-bonding crosslinking site.
  • the side chain (b) may be used as the side chain (c) depending on the structure itself, the structure of the side chain (b) and the type of substituents of the other side chain, etc.) .
  • the “covalent bonding crosslinking site” referred to here is a site that crosslinks polymers (elastomers) by covalent bonding.
  • the side chain (b) containing such a covalently cross-linked site is not particularly limited.
  • an elastomeric polymer having a functional group in the side chain (polymer for forming the main chain portion) and the functional group It is preferable to contain a covalent crosslinking site formed by reacting with a compound that reacts with a group to form a covalent crosslinking site (compound that generates a covalent bond).
  • Crosslinking at the covalent cross-linking site of such a side chain (b) is formed by at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether. Is preferred.
  • the functional group possessed by the polymer constituting the main chain is a functional group capable of producing at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether. It is preferable.
  • Examples of such “compound that forms a covalent bond site (compound that forms a covalent bond)” include, for example, two or more amino groups and / or imino groups (both amino groups and imino groups are combined in one molecule).
  • the “compound that forms a covalent crosslinkable site (compound that forms a covalent bond)” refers to the type of substituent that the compound has, the degree of progress of the reaction when the compound is reacted, Depending on the above, it becomes a compound that can introduce both the hydrogen-bonding cross-linking site and the covalent-bonding cross-linking site (for example, when a cross-linking site by a covalent bond is formed using a compound having 3 or more hydroxyl groups). Depending on the progress of the reaction, two hydroxyl groups may react with the functional group of the elastomeric polymer having a functional group in the side chain, and the remaining one hydroxyl group may remain as a hydroxyl group.
  • the “compound that forms a covalent bond site (compound that forms a covalent bond)” exemplified here also includes “a compound that forms both a hydrogen bond bridge site and a covalent bond site”. obtain. From this point of view, when the side chain (b) is formed, the compound is appropriately selected from “compounds that form a covalent bond site (compound that generates a covalent bond)” according to the intended design. Or the side chain (b) may be formed by appropriately controlling the degree of progress of the reaction.
  • Polyamine compounds that can be used as such “compound that forms a covalent bond site (compound that forms a covalent bond)” include, for example, the following alicyclic amines, aliphatic polyamines, aromatic polyamines, and the like. And nitrogen heterocyclic amines.
  • alicyclic amines include, for example, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis- (4-aminocyclohexyl) methane, diaminocyclohexane, di- (Aminomethyl) cyclohexane and the like.
  • the aliphatic polyamine is not particularly limited, and examples thereof include methylene diamine, ethylene diamine, propylene diamine, 1,2-diaminopropane, 1,3-diaminopentane, hexamethylene diamine, diaminoheptane, diaminododecane, diethylenetriamine, Diethylaminopropylamine, N-aminoethylpiperazine, triethylenetetramine, N, N'-dimethylethylenediamine, N, N'-diethylethylenediamine, N, N'-diisopropylethylenediamine, N, N'-dimethyl-1,3-propane Diamine, N, N'-diethyl-1,3-propanediamine, N, N'-diisopropyl-1,3-propanediamine, N, N'-dimethyl-1,6-hexanediamine, N, N'-diethyl -1, - he
  • the aromatic polyamine and the nitrogen-containing heterocyclic amine are not particularly limited.
  • examples include sulfone and 3-amino-1,2,4-triazole.
  • one or more of the hydrogen atoms may be substituted with an alkyl group, an alkylene group, an aralkylene group, an oxy group, an acyl group, a halogen atom, or the like. It may contain a hetero atom such as a sulfur atom.
  • the polyamine compounds may be used singly or in combination of two or more.
  • the mixing ratio when two or more types are used in combination is an arbitrary ratio depending on the use in which the thermoplastic elastomer (composition) of the present invention is used, the physical properties required for the thermoplastic elastomer (composition) of the present invention, and the like. Can be adjusted.
  • hexamethylene diamine, N, N′-dimethyl-1,6-hexanediamine, diaminodiphenyl sulfone and the like are preferable because of their high effect of improving compression set, mechanical strength, particularly tensile strength. .
  • the polyol compound is a compound having two or more hydroxyl groups
  • the molecular weight and skeleton thereof are not particularly limited.
  • the following polyether polyols, polyester polyols, other polyols, and mixed polyols thereof may be used. Can be mentioned.
  • polyether polyols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, 1,1,1-trimethylolpropane, 1,2,5-hexanetriol, 1 , 3-butanediol, 1,4-butanediol, 4,4′-dihydroxyphenylpropane, 4,4′-dihydroxyphenylmethane, at least one selected from polyhydric alcohols such as pentaerythritol, ethylene oxide, propylene Polyol obtained by adding at least one selected from oxide, butylene oxide, styrene oxide, etc .; polyoxytetramethylene oxide; and the like may be used alone or in combination of two or more. Good
  • polyester polyol examples include ethylene glycol, propylene glycol, butanediol pentanediol, hexanediol, cyclohexanedimethanol, glycerin, 1,1,1-trimethylolpropane, and other low molecular polyols.
  • polystyrene resin examples include, for example, polymer polyol, polycarbonate polyol; polybutadiene polyol; hydrogenated polybutadiene polyol; acrylic polyol; ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butanediol, pentanediol, Hexanediol, polyethylene glycol laurylamine (eg, N, N-bis (2-hydroxyethyl) laurylamine), polypropylene glycol laurylamine (eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine) Polyethylene glycol octylamine (eg, N, N-bis (2-hydroxyethyl) octylamine), polypropylene glycol octyl Ruamine (eg, N, N-bis (2-methyl-2-hydroxyethyl) octylamine), polyethylene glycol stearylamine (e
  • polyisocyanate compound examples include 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4,4′-diphenylmethane diisocyanate (4,4′- MDI), 2,4′-diphenylmethane diisocyanate (2,4′-MDI), 1,4-phenylene diisocyanate, xylylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), tolidine diisocyanate (TODI), 1, Aromatic polyisocyanates such as 5-naphthalene diisocyanate (NDI), hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate, norbornane diisocyanate methyl (NB) DI) aliphatic polyisocyanate, transcyclohexane-1,4-
  • the polythiol compound is a compound having two or more thiol groups
  • its molecular weight and skeleton are not particularly limited. Specific examples thereof include methanedithiol, 1,3-butanedithiol, 1,4-butanedithiol, 2,3-butanedithiol, 1,2-benzenedithiol, 1,3-benzenedithiol, 1,4-benzenedithiol, 1,10-decanedithiol, 1,2-ethanedithiol, 1,6-hexanedithiol, , 9-nonanedithiol, 1,8-octanedithiol, 1,5-pentanedithiol, 1,2-propanedithiol, 1,3-propadithiol, toluene-3,4-dithiol, 3,6-dichloro-1, 2-benzenedithiol, 1,5-naphthalenedithiol, 1,2-benzenedimethanethiol,
  • the polyepoxy compound is not particularly limited in terms of molecular weight and skeleton as long as it is a compound having two or more epoxy groups. Specific examples thereof include bisphenol A diglycidyl ether (bisphenol A type epoxy resin). Bisphenol F diglycidyl ether (bisphenol F type epoxy resin), 3,4-epoxycyclohexylmethyl-3'4'-epoxycyclohexanecarboxylate, DCPD type epoxy resin, epoxy novolak resin, orthocresol novolak type epoxy resin These may be used alone or in combination of two or more.
  • the polycarboxy compound is not particularly limited as long as it has two or more carboxy groups, and specific examples thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, Examples include adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, propanetricarboxylic acid, and benzenetricarboxylic acid. These may be used alone or in combination of two or more. May be.
  • the polyalkoxysilyl compound is not particularly limited as long as it has a compound having two or more alkoxysilyl groups, and specific examples thereof include tris- (trimethoxysilylpropyl) isocyanurate.
  • the functional group possessed by the polymer constituting the main chain that reacts with such a “compound that forms a covalent bond site (compound that forms a covalent bond)” includes amide, ester, lactone, urethane, and thiourethane.
  • the elastomeric polymer (B) having the side chain (b) has a cross-linking at the covalent cross-linking site in the side chain (b), that is, the above-mentioned “covalent cross-linking with the functional group”. Having at least one covalent bond formed in a molecule by reaction with a compound that forms a site (compound that forms a covalent bond), and in particular, lactone, urethane, ether, thiourethane and thioether In the case where the cross-link is formed by at least one bond selected from the group consisting of: preferably 2 or more, more preferably 2 to 20, more preferably 2 to 10 More preferably.
  • the crosslinking at the covalent crosslinking site of the side chain (b) contains a tertiary amino bond (—N ⁇ ) or an ester bond (—COO—).
  • the compression set and mechanical strength (breaking elongation, breaking strength) of the composition) are preferable because they can be more easily improved.
  • an elastomer having a side chain containing a group capable of forming a hydrogen bond with respect to a tertiary amino bond (—N ⁇ ) and an ester bond (—COO—) is included.
  • the covalently crosslinked site can function as a side chain (c) described later.
  • the elastomeric polymer (B) having the side chain (a) as the side chain (a ′) that is, the elastomeric polymer (B) has both side chains (a) and (b).
  • the crosslinking at the covalent crosslinking site has the tertiary amino bond and / or the ester bond
  • these groups and the side chain (a) carbonyl-containing group and / or nitrogen-containing group
  • the crosslink density can be further improved by hydrogen bonding (interaction) with a group in the side chain having a heterocyclic ring.
  • a side chain (b) having such a structure containing a tertiary amino bond (—N ⁇ ) and an ester bond (—COO—)
  • a covalently linked cross-linking site is formed.
  • polyethylene glycol laurylamine eg, N, N-bis (2-hydroxyethyl) laurylamine
  • polypropylene glycol laurylamine eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine
  • polyethylene glycol octylamine eg, N, N-bis (2-hydroxyethyl) octylamine
  • polypropylene glycol octylamine eg, N, N-bis (2-methyl-2-hydroxyethyl) octylamine
  • Such a side chain (c) is a side chain containing both a hydrogen-bonding crosslinking site and a covalent bonding site in one side chain.
  • a hydrogen-bonding cross-linking site contained in the side chain (c) is the same as the hydrogen-bonding cross-linking site described in the side chain (a ′), and the hydrogen-bonding cross-linking site in the side chain (a).
  • part is preferable.
  • the thing similar to the covalent bond crosslinkable part in a side chain (b) can be utilized (The same bridge
  • Such a side chain (c) reacts with an elastomeric polymer having a functional group in the side chain (polymer for forming the main chain portion) and the functional group to form a hydrogen-bonding crosslinking site and a covalent bond.
  • a side chain formed by reacting a compound that forms both of the crosslinking sites is preferable.
  • a compound that forms both such a hydrogen-bonding crosslinking site and a covalent-bonding crosslinking site a compound that introduces both a hydrogen-bonding crosslinking site and a covalent-bonding crosslinking site
  • a heterocyclic ring particularly preferably a nitrogen-containing compound
  • a compound having a heterocycle) and capable of forming a covalent crosslinking site is preferable, among which a heterocycle-containing polyol, a heterocycle-containing polyamine, a heterocycle-containing polythiol, and the like are more preferable. preferable.
  • the polyol, polyamine, and polythiol containing such a heterocyclic ring may form the above-mentioned “covalently linked crosslinking site” except that it has a heterocyclic ring (particularly preferably a nitrogen-containing heterocyclic ring).
  • the same polyols, polyamines and polythiols as described in “Possible compounds (compounds forming a covalent bond)” can be used as appropriate.
  • Such a heterocyclic ring-containing polyol is not particularly limited, and examples thereof include bis, tris (2-hydroxyethyl) isocyanurate, kojic acid, dihydroxydithiane, and trishydroxyethyltriazine.
  • the heterocycle-containing polyamine is not particularly limited, and examples thereof include acetoguanamine, piperazine, bis (aminopropyl) piperazine, benzoguanamine, and melamine. Further, examples of such a heterocyclic ring-containing polythiol include dimercaptothiadiazole and tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate.
  • the side chain (c) an elastomeric polymer having a functional group in the side chain (polymer for forming the main chain part) is reacted with a polyol, polyamine, polythiol, etc. containing a heterocyclic ring. It is preferable that the side chain is obtained.
  • the main chain that reacts with “a compound that forms both a hydrogen bonding crosslinking site and a covalent crosslinking site (a compound that introduces both a hydrogen bonding crosslinking site and a covalent crosslinking site)” is formed.
  • the functional group possessed by the polymer is preferably a functional group capable of producing (generating: forming) at least one bond selected from the group consisting of amide, ester, lactone, urethane, thiourethane and thioether.
  • Preferred examples include a cyclic acid anhydride group, a hydroxyl group, an amino group, a carboxy group, an isocyanate group, and a thiol group.
  • the elastomeric polymer (B) having the side chain (c) has at least one crosslink in the molecule at the covalent crosslink site in the side chain (c),
  • a bridge is formed by at least one bond selected from the group consisting of lactone, urethane, ether, thiourethane and thioether
  • it preferably has 2 or more, and has 2 to 20 More preferably, 2 to 10 are more preferable.
  • the crosslinking at the covalent crosslinking site of the side chain (c) contains a tertiary amino bond (—N ⁇ ) or an ester bond (—COO—). This is preferable because the compression set and mechanical strength (breaking elongation, breaking strength) of the composition) are further improved.
  • the bridge at the covalent crosslinking site contains a tertiary amino bond (—N ⁇ ), an ester bond (—COO—),
  • a tertiary amino bond (—N ⁇ )
  • an ester bond (—COO—)
  • the tertiary amino bond (—N ⁇ ) or ester bond (—COO—) in the side chain having a covalent cross-linking site forms a hydrogen bond with the other side chain.
  • the covalent bond cross-linking site containing such a tertiary amino bond (—N ⁇ ) and ester bond (—COO—) is also provided with a hydrogen bond cross-linking site, and the side chain (c) Can function.
  • the share containing the tertiary amino bond and / or the ester bond is included.
  • the cross-linking density is further improved. Is considered possible.
  • a compound capable of reacting with a functional group of the polymer constituting the main chain to form a covalently crosslinked site containing the tertiary amino bond and / or the ester bond examples include polyethylene glycol laurylamine (for example, N, N-bis (2-hydroxyethyl) laurylamine), polypropylene glycol laurylamine (Eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine), polyethylene glycol octylamine (eg, N, N-bis (2-hydroxyethyl) octylamine), polypropylene glycol octylamine (eg, N, N-bis (2-methyl-2-hydroxyethyl) o Tilamine), polyethylene glycol stearylamine (eg, N, N-bis (2-hydroxyethyl) stearylamine), polypropy
  • the crosslink at the covalent crosslink site of the side chain (b) and / or side chain (c) contains at least one structure represented by any of the following general formulas (4) to (6). More preferably, G in the formula contains a tertiary amino bond or an ester bond (in the following structure, when it contains a hydrogen-bonding cross-linked site, the side having that structure) The chain is used as the side chain (c)).
  • E, J, K and L are each independently a single bond; an oxygen atom, an amino group NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) .) Or a sulfur atom; or an organic group that may contain these atoms or groups, G may contain an oxygen atom, a sulfur atom, or a nitrogen atom, and may have a linear, branched, or cyclic carbon number. 1 to 20 hydrocarbon groups.
  • substituent G examples include a methylene group, an ethylene group, a 1,3-propylene group, a 1,4-butylene group, a 1,5-pentylene group, a 1,6-hexylene group, and a 1,7-heptylene group.
  • Alkylene groups such as 1,8-octylene group, 1,9-nonylene group, 1,10-decylene group, 1,11-undecylene group, 1,12-dodecylene group; N, N-diethyldodecylamine-2, 2'-diyl, N, N-dipropyldodecylamine-2,2'-diyl, N, N-diethyloctylamine-2,2'-diyl, N, N-dipropyloctylamine-2,2'- Diyl, N, N-diethylstearylamine-2,2′-diyl, N, N-dipropylstearylamine-2,2′-diyl, divinyl, bivalent group such as 1,4-cyclohexylene group Alicyclic charcoal Hydrogen group; divalent aromatic hydrocarbon group such as 1,4-phenylene group, 1,2-phenylene group, 1,3-phenylene group, 1,
  • the substituent G in such a formula preferably has an isocyanurate group (isocyanurate ring) structure from the viewpoint of high heat resistance and high strength due to hydrogen bonding.
  • the substituent G in such a formula is a group represented by the following general formula (111) and the following general formula (112) from the viewpoint of high heat resistance and high strength due to hydrogen bonding. It is more preferable that it is a group represented.
  • the crosslinking at the covalent crosslinking site of the side chain (c) is bonded to the main chain of the elastomeric polymer at the ⁇ -position or ⁇ -position. It is preferable to contain at least one of the structures represented, and it is more preferred that G in the formula contains a tertiary amino group (the structures shown in the formulas (7) to (9) are a hydroxyl group and a carbonyl group. And a side chain having such a structure can function as a side chain (c)).
  • the substituents E, J, K and L are each independently the same as the substituents E, J, K and L in the above formulas (4) to (6).
  • the substituent G is basically the same as the substituent G in the above formulas (4) to (6).
  • the cross-linking at the covalent cross-linking site is preferably formed by a reaction between a cyclic acid anhydride group and a hydroxyl group or an amino group and / or an imino group. .
  • the polymer that forms the main chain portion after the reaction has a cyclic acid anhydride group (for example, maleic anhydride group) as a functional group
  • the cyclic acid anhydride group of the polymer a hydroxyl group or an amino group, and It is formed by reacting with a compound that forms the above-described covalently crosslinked site having an imino group (compound that generates a covalent bond) to form a site that is crosslinked by a covalent bond, thereby crosslinking between the polymers.
  • Crosslinking may be used.
  • the crosslinking at the covalent crosslinking site is selected from the group consisting of amide, ester, lactone, urethane, ether, urea bond, thiourethane and thioether. More preferably, it is formed by at least one bond.
  • the side chain (a ′), the side chain (a), the side chain (b), and the side chain (c) have been described above.
  • Each group (structure) of the side chain in such a polymer is NMR, It can be confirmed by a commonly used analytical means such as an IR spectrum.
  • the elastomeric polymer (A) is an elastomeric polymer having the side chain (a) and a glass transition point of 25 ° C. or less, and the elastomeric polymer (B) has a hydrogen-bonding cross-linked site in the side chain. And an elastomeric polymer having a glass transition point of 25 ° C. or less (a polymer having both side chains (a ′) and side chains (b) as side chains, side chains on side chains) A polymer containing at least one chain (c)).
  • an elastomer component one of the elastomeric polymers (A) to (B) may be used alone, or two or more of them may be used in combination. Good.
  • the elastomeric polymer (B) may be a polymer having both a side chain (a ′) and a side chain (b) or a polymer having a side chain (c). From the viewpoint that a stronger hydrogen bond is formed as the hydrogen bonding cross-linking site contained in the side chain of the elastomeric polymer (B), hydrogen bonding cross-linking having a carbonyl-containing group and / or a nitrogen-containing heterocycle. It is preferably a site (more preferably a hydrogen-bonding cross-linked site having a carbonyl-containing group and a nitrogen-containing heterocycle).
  • the at least one elastomer component selected from the group consisting of such elastomeric polymers (A) and (B) is at least one selected from the group consisting of the following reactants (I) to (VI): Preferably it is a seed.
  • elastomeric polymer (E1) Maleic anhydride-modified elastomeric polymer (hereinafter simply referred to as “elastomeric polymer (E1)” for convenience) and at least one of a hydroxyl group, a thiol group, and an amino group At least one of pyridine, hydroxyl group, thiol group and amino group optionally having at least one substituent selected from triazole, hydroxyl group, thiol group and amino group optionally having substituents At least one of imidazole, hydroxyl group, thiol group and amino group optionally having at least one substituent among thiadiazole, hydroxyl group, thiol group and amino group optionally having substituents It has at least one kind of substituent among isocyanurate, hydroxyl group, thiol group and amino group which may have a substituent.
  • Compound (M1) for convenience
  • Product [Reactant (II)] A hydroxyl group-containing elastomeric polymer (hereinafter simply referred to as “elastomeric polymer (E2)” for convenience) and a carboxy group, an alkoxysilyl group and an isocyanate group.
  • a compound having at least two substituents hereinafter, for convenience, Reaction product with [Compound (M2)]] [Reactant (III)] Carboxy group-containing elastomeric polymer (hereinafter simply referred to as “elastomeric polymer (E3)” for convenience).
  • reaction Product (M3) A reaction product of a compound having two or more substituents selected from a hydroxyl group, a thiol group and an amino group (hereinafter simply referred to as “compound (M3)” for convenience)
  • reaction Product (IV) An amino group-containing elastomeric polymer (hereinafter simply referred to as “elastomeric polymer (E4)” for convenience) and a carboxy group, an epoxy group, an alkoxysilyl group, and an isocyanate group.
  • compound (M4) A compound having two or more substituents
  • Reactant (V) with an alkoxysilyl group-containing elastomeric polymer (hereinafter simply referred to as “elastomeric polymer (E5)” for convenience) and a hydroxyl group, a carboxy group, and an amino group.
  • Reactant [Reactant (VI)] with compound having two or more substituents selected from the above hereinafter simply referred to as “compound (M5)” for the sake of convenience
  • a polymer hereinafter simply referred to as “elastomeric polymer (E6)” for convenience
  • compound (M6) a compound having at least two substituents selected from a thiol group and an amino group
  • Such elastomeric polymers (E1) to (E6) are produced by a conventional method, for example, a polymer capable of forming the main chain portion of the above-mentioned elastomer component under the usual conditions such as heating.
  • the compound may be produced by a graft polymerization of a compound capable of introducing a functional group (for example, maleic anhydride or the like) according to the intended design by stirring the above.
  • a functional group for example, maleic anhydride or the like
  • the glass transition point of such elastomeric polymers (E1) to (E6) is preferably 25 ° C. or lower as in the case of the elastomer component described above. If the glass transition point of the elastomeric polymer is within this range, the resulting thermoplastic elastomer composition of the present invention will exhibit rubber-like elasticity at room temperature.
  • the preferred range of the weight average molecular weight of the main chain portions of the elastomeric polymers (E1) to (E6) is the weight average molecular weight of the main chain portions of the elastomeric polymers (A) and (B). This is the same as the preferred range.
  • maleic anhydride-modified elastomeric polymer (E1) examples include maleic anhydride-modified isoprene rubbers such as LIR-403 (manufactured by Kuraray Co., Ltd.) and LIR-410A (prototype of Kuraray Co., Ltd.); Chemical Company), Yucaron (Mitsubishi Chemical Corporation), Tuffmer M (for example, MP0610 (Mitsui Chemicals), MP0620 (Mitsui Chemicals)), etc .; maleic anhydride modified ethylene-propylene rubber; Tuffmer M (for example, MA8510, MH7010, MH7020 (manufactured by Mitsui Chemicals), MH5010, MH5020 (manufactured by Mitsui Chemicals), MH5040 (manufactured by Mitsui Chemicals)), etc .; Adtex series (maleic anhydride modified EVA, Maleic anhydride modified EMA (Nippon Polyolefin )
  • maleic anhydride-modified elastomeric polymer (E1) maleic anhydride-modified ethylene-propylene rubber and maleic anhydride-modified ethylene-butene rubber are more preferable from the viewpoint of high molecular weight and high strength.
  • hydroxyl group-containing elastomeric polymer (E2) examples include hydroxyl group-containing BR, hydroxyl group-containing SBR, hydroxyl group-containing IR, hydroxyl group-containing natural rubber, polyvinyl alcohol, and ethylene vinyl alcohol copolymer.
  • hydroxyl group-containing elastomeric polymers E2
  • an elastomeric polymer in which both ends are hydroxyl groups is preferable from the viewpoint of being easily available industrially and excellent in physical properties.
  • hydroxyl group-containing BR hydroxyl group-containing IR
  • An ethylene vinyl alcohol copolymer is more preferable, and a hydroxyl group-containing BR is more preferable.
  • Examples of such carboxy group-containing elastomeric polymer (E3) include carboxy group-containing BR, carboxy group-containing SBR, carboxy group-containing IR, carboxy group-containing natural rubber, polyacrylic acid, ethylene acrylic acid copolymer, poly A methacrylic acid, an ethylene methacrylic acid copolymer, etc. are mentioned.
  • carboxy group-containing elastomeric polymer (E3) As such a carboxy group-containing elastomeric polymer (E3), a carboxy group-containing IR, an ethylene acrylic acid copolymer, and an ethylene methacrylic acid copolymer are available from the viewpoint of being easily available industrially and having excellent physical properties.
  • carboxy group-containing IR is more preferable.
  • amino group-containing elastomeric polymer (E4) examples include amino group-containing BR, amino group-containing SBR, amino group-containing IR, amino group-containing natural rubber, amino group-containing polyethyleneimine, and the like.
  • an amino group-containing polyethyleneimine is more preferable from the viewpoint of being easily industrially available and having excellent physical properties.
  • the amino group-containing elastomeric polymer (E4) preferably has an amine value of 1 to 50 mmol / g, more preferably 5 to 40 mmol / g, and further preferably 10 to 30 mmol / g. preferable. If the amine value is less than the lower limit, it is necessary to add a large amount, and the physical properties tend to decrease due to a decrease in the crosslinking density. On the other hand, if the upper limit is exceeded, the crosslinking density becomes too high due to the addition of a small amount. It tends to end up. As the amine value, a value measured by potentiometric titration can be used.
  • alkoxysilyl group-containing elastomeric polymer (E5) examples include, for example, alkoxysilyl group-containing BR, alkoxysilyl group-containing SBR, alkoxysilyl group-containing IR, alkoxysilyl group-containing natural rubber, and alkoxysilyl group-containing polyethylene. And alkoxysilyl group-containing polypropylene.
  • Such an alkoxysilyl group-containing elastomeric polymer (E5) is more preferably an alkoxysilyl group-containing polyethylene from the viewpoint of being easily available industrially and having excellent physical properties.
  • Examples of the epoxy group-containing elastomeric polymer (E6) include epoxy group-containing BR, epoxy group-containing SBR, epoxy group-containing IR, and epoxy group-containing natural rubber.
  • Such an epoxy group-containing elastomeric polymer (E6) is more preferably an epoxy group-containing SBR from the viewpoint of being easily available industrially and having excellent physical properties.
  • Examples of the hydrocarbon compound having two or more substituents selected from a hydroxyl group, a thiol group and an amino group used as such a compound (M1) include the aforementioned polyol compounds and polythiol compounds.
  • the hydrocarbon group having such a main skeleton is preferably an aliphatic hydrocarbon compound (more preferably an aliphatic hydrocarbon compound having 1 to 30 carbon atoms).
  • the hydrocarbon compound having two or more substituents selected from a hydroxyl group, a thiol group and an amino group used as such a compound (M1) can be easily obtained industrially. From the viewpoint of high crosslinking density and excellent physical properties, pentaerythritol, ethanedithiol, and ethanediamine are preferred, and pentaerythritol is more preferred.
  • Examples of the compound having two or more substituents selected from carboxy group, alkoxysilyl group and isocyanate group used as compound (M2) include the aforementioned polycarboxy compounds and polyalkoxysilyl compounds.
  • Polyisocyanate compounds can be suitably used. Among them, 2,6-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, xylylene diisocyanate (XDI) can be used from the viewpoint of being easily available industrially and having excellent physical properties. Is more preferable.
  • the compound having two or more substituents selected from the hydroxyl group, thiol group, and amino group used as the compound (M3) the aforementioned polyol compound, polythiol compound, and polyamine compound are preferable. Among them, trishydroxyethyl isocyanurate, 2,4-diamino-6-phenyl-1,3,5-triazine, tris-[( 3-mercaptopropionyloxy) -ethyl] -isocyanurate is more preferred.
  • Examples of the compound having two or more substituents selected from a carboxy group, an epoxy group, an alkoxysilyl group, and an isocyanate group, which are used as the compound (M4) include the above-described polycarboxy compounds, poly Epoxy compounds, polyalkoxysilyl compounds, and polyisocyanate compounds can be suitably used.
  • 2,6-pyridinedicarboxylic acid and 2,4-pyridinedicarboxylic acid are particularly preferable from the viewpoint of being easily available industrially and having excellent physical properties. Tris- (2,3-epoxypropyl) -isocyanurate is more preferred.
  • the compound (M5) used as the compound having two or more substituents selected from a hydroxyl group, a carboxy group, and an amino group the aforementioned polyol compound and polycarboxy compound are preferably used. Among them, trishydroxyethyl isocyanurate, 2,6-pyridinedicarboxylic acid, and 2,4-pyridinedicarboxylic acid are more preferable from the viewpoint of easy industrial availability and excellent physical properties.
  • the above-mentioned polythiol compounds and polyamine compounds can be preferably used as the compound (M6).
  • Tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate and 2,4-diamino-6-phenyl-1,3,5-triazine are more preferred.
  • the main chains of the elastomeric polymers (E1) to (E6) are the same as those described as the main chains of the elastomeric polymers (A) and (B) (the preferred ones are also the same). is there.).
  • the elastomeric polymers (E1) to (E6) used for producing each of these reactants are functional groups (maleic anhydride group, hydroxyl group, carboxy group, amino group, alkoxysilyl group, epoxy group) possessed by each polymer.
  • a maleic anhydride-modified elastomeric polymer a hydroxyl group, a thiol group, and an amino group Pyridine, hydroxyl group, thiol group and amino group optionally having at least one substituent selected from triazole, hydroxyl group, thiol group and amino group optionally having at least one substituent Among these, thiadiazole, which may have at least one substituent, hydroxyl group, thiol group, and amino group, which may have at least one substituent among imidazole, hydroxyl group, thiol group, and amino group Of isocyanurate, hydroxyl group, thiol group and amino group optionally having at least one substituent May also have one substituent, a triazine, a hydroxyl group, a thiol group, and an amino group, a hydantoin that may
  • the polymer contained as the elastomer component does not have a double bond, and thus is not easily deteriorated. Interaction between the isocyanurate ring and the isocyanurate ring and other hydrogen bonding sites and hydrogen bonding between the additive component and the like Therefore, it is preferable that the main chain of the polymer is an olefin copolymer and the side chain of the polymer has an isocyanurate ring.
  • Examples of such a polymer in which the main chain is an olefin copolymer and the side chain has an isocyanurate ring include, for example, a maleic anhydride-modified elastomeric polymer comprising an olefin copolymer modified with maleic anhydride ( More preferred is a reaction product of maleic anhydride-modified ethylene-propylene rubber or maleic anhydride-modified ethylene-butene rubber) and trishydroxyethyl isocyanurate.
  • an olefin resin (the “olefin resin” referred to herein includes an olefin copolymer of the main chain of the polymer contained as the elastomer component.
  • An olefin-based resin having an ⁇ -olefin-based resin having no cross-linking site or a case where a plurality of polymers are contained as the elastomer component, and the main chain of one polymer is other than the olefin-based copolymer In the case of consisting of the above-mentioned “olefin resin”, all olefin resins contained in the system ( ⁇ -olefin resins having no crosslinkable sites for chemical bonding, olefin copolymers forming a main chain, olefin resins other than olefin copolymers forming a main chain, etc.).
  • thermoplastic elastomer composition containing (the polymer contained as the elastomer component in which the main chain is an olefin copolymer and the side chain has an isocyanurate ring) is thickened so that the surface is smooth.
  • An infrared absorption spectrum infrared attenuated total reflection (FTIR-ATR)) in a wave number range of 400 to 4000 cm ⁇ 1 by a total reflection measurement (ATR) method using a measurement sample prepared by press molding at a thickness of 2 mm.
  • the graph of the absorption spectrum obtained by measuring (spectrum) is used.
  • the peak of the infrared absorption spectrum of the carbonyl group in the isocyanurate ring of the side chain appears in the vicinity of a wavelength of 1695 cm ⁇ 1 (approximately in the range of 1690 to 1700 cm ⁇ 1 ), and the olefin resin (
  • the peak of the infrared absorption spectrum of C—H stretching vibration of the main chain (base polymer olefin copolymer) appears in the vicinity of a wavelength of 2920 cm ⁇ 1 (approximately in the range of 2910 to 2930 cm ⁇ 1 ).
  • a maleic anhydride-modified elastomeric polymer (more preferably maleic anhydride-modified ethylene-propylene rubber or maleic anhydride-modified ethylene-butene rubber) composed of an olefin copolymer modified with maleic anhydride, and trishydroxyethylisocyanate.
  • the reaction product is a maleic anhydride-modified elastomeric polymer at the time of production of the reaction product.
  • the side chain is formed by the reaction of the acid anhydride group therein and the hydroxyl group of trishydroxyethyl isocyanurate, and the isocyanurate ring is introduced into the side chain of the polymer. Due to the carbonyl group in the isocyanurate ring of the side chain of the (reactant) Peaks of the infrared absorption spectrum appears at a wavelength of around 1,695 cm -1 (range of 1690 ⁇ 1700 cm -1), while, C-H of the olefin copolymer of the polymer main chain of the (reaction) (base polymer) since a peak derived from stretching vibration appearing in the vicinity of wavelength 2920 cm -1 (range of 2910 ⁇ 2930 cm -1), in the above compositions comprising such reaction, the peak in the vicinity of a wavelength of 1,695 cm -1, wavelength 2920 cm -1 By calculating the ratio of the intensity of nearby peaks, the side chain in which the isocyanurate ring in the polymer (reactant
  • the cross-linking density of the entire system can be inferred. Even when including the olefinic resin (for example, when including ⁇ - olefin resin having no chemical binding of the cross-linked site below, etc.) to another, and the peak in the vicinity of a wavelength of 1,695 cm -1, wavelength 2920 cm -1 By determining the ratio of the intensity of nearby peaks, the ratio of the side chain into which the isocyanurate ring is introduced to the total amount of olefinic resin present in the system can be determined, and the crosslinking density of the entire system can be estimated.
  • the olefinic resin for example, when including ⁇ - olefin resin having no chemical binding of the cross-linked site below, etc.
  • the method for producing such elastomeric polymers (A) to (B) is not particularly limited, and the side chain (a) as described above; the side chain (a ′) and the side chain (b);
  • a known method capable of introducing at least one selected from the group consisting of the side chain (c) as a side chain of an elastomeric polymer having a glass transition point of 25 ° C. or lower can be appropriately employed.
  • a method for producing the elastomeric polymer (B) a method described in JP-A-2006-131663 may be employed.
  • a cyclic acid anhydride group for example, a maleic anhydride group
  • a compound that reacts with the cyclic acid anhydride group to form a covalent bond cross-linking site compound that forms a covalent bond
  • a hydrogen bond that reacts with the cyclic acid anhydride group on the elastomeric polymer in the side chain
  • Each side chain may be introduced at the same time using a mixture (mixed raw material) with a compound (a compound capable of introducing a nitrogen-containing heterocycle) that forms a sexually cross-linked site.
  • an elastomeric polymer having a functional group (for example, a cyclic acid anhydride group) in the side chain for example, an elastomeric polymer ( E1) to (E6) may be mentioned as preferred.
  • the elastomeric polymer is reacted with the functional group to form a hydrogen-bonding cross-linked site, and the functional group is reacted with the functional group.
  • At least one raw material compound for example, the compounds (M1) to (M6) described above, which is a mixed raw material of a compound that forms a hydrogen bonding cross-linking site and a compound that reacts with the functional group to form a covalent cross-linking site.
  • And / or a method of producing an elastomeric polymer having the side chain (c) (the elastomeric polymers (A) to (B)) may be employed.
  • the conditions (temperature conditions, atmospheric conditions, etc.) employed in the case of such a reaction are not particularly limited, and the functional group and the compound that reacts with the functional group (the compound that forms a hydrogen-bonding cross-linked site and / or the covalent bond) What is necessary is just to set suitably according to the kind of compound which forms a binding bridge
  • the elastomeric polymer (A) it may be produced by polymerizing a monomer having a hydrogen bonding site.
  • the elastomeric polymer having such a functional group (for example, cyclic acid anhydride group) in the side chain is a polymer capable of forming the main chain of the above-mentioned elastomeric polymers (A) to (B). Those having a functional group in the side chain are preferred.
  • the “elastomeric polymer containing a functional group in a side chain” means that a functional group (the above-described functional group such as a cyclic acid anhydride group) is chemically stable at an atom forming a main chain.
  • Such a functional group is preferably a functional group capable of causing at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether, and among them, cyclic An anhydride group, a hydroxyl group, an amino group, a carboxy group, an isocyanate group, a thiol group and the like are preferable, and a cyclic anhydride group is particularly preferable from the viewpoint that an additive component can be more efficiently dispersed in the composition. .
  • a succinic anhydride group a maleic anhydride group, a glutaric anhydride group, and a phthalic anhydride group are preferable. Among them, it can be easily introduced into a polymer side chain and is industrially available. From the viewpoint of being easy, maleic anhydride groups are more preferable.
  • the functional group is a cyclic acid anhydride group
  • examples of the compound into which the functional group can be introduced include succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride, and derivatives thereof.
  • a cyclic acid anhydride may be used to introduce a functional group into an elastomeric polymer (for example, a known natural polymer or synthetic polymer).
  • the compound that reacts with the functional group to form a hydrogen-bonding cross-linking site is not particularly limited, but the above-mentioned “compound that forms a hydrogen-bonding cross-linking site (compound capable of introducing a nitrogen-containing heterocycle)” It is preferable to use it. Further, the compound that reacts with the functional group to form a covalent crosslinking site is not particularly limited, but the above-mentioned “compound that forms a covalent crosslinking site (compound that generates a covalent bond)” is used. Is preferred.
  • a compound that forms a hydrogen-bonding cross-linked site a compound that can introduce a nitrogen-containing heterocycle
  • a compound that forms a covalent-bonded cross-linked site a compound that generates a covalent bond
  • the compound reacts with the functional group.
  • compounds that form both hydrogen-bonding and covalent bonding sites for example, polyols, polyamines, polythiols, and the like containing nitrogen-containing heterocycles
  • an elastomeric polymer having a functional group for example, a cyclic acid anhydride group
  • a compound that reacts with the functional group to form a hydrogen-bonding cross-linking site, a compound that reacts with the functional group to form a hydrogen-bonding cross-linking site, and a functional group to react with a covalent bond The elastomeric polymer (A) having the side chain (a) by reacting with at least one raw material compound among the mixed raw materials of the compound forming the site, the hydrogen-bonding cross-linking site and the covalent bond in the side chain
  • the elastomeric polymer having a functional group in the side chain is converted into the raw material.
  • the additive component and the elastomeric polymer having a functional group in the side chain are mixed, and then the raw material compound is added and reacted to form a composition simultaneously with the preparation of the elastomer component (Method of adding additive components in advance) may be employed.
  • the method is not particularly limited, and the elastomeric polymers (E1) to (E6) are not limited.
  • the compounds (M1) to (M6) to be reacted therewith are appropriately selected so that the side chains of the desired design are formed, whereby reactants (I) to (VI) are obtained.
  • the reaction conditions temperature conditions, atmospheric conditions, etc.
  • the functional groups and main groups of the elastomeric polymers (E1) to (E6) as raw materials for obtaining the reaction product can be used. It can be set according to the type of chain and further the types of compounds (M1) to (M6) to be reacted therewith.
  • reactants (I) to (VI) for example, a polymer appropriately selected from the elastomeric polymers (E1) to (E6) is added to the pressure kneader according to the target design. Then, while stirring, the compound selected from the compounds (M1) to (M6) for reacting with the polymer may be added and reacted, and the reaction proceeds at that time. What is necessary is just to set suitably to such temperature.
  • a polymer appropriately selected from the elastomeric polymers (E1) to (E6) used for preparing the reactants (I) to (VI) is used as the compound.
  • the polymer and the additive component are mixed, and then the compound is added and reacted to form the composition simultaneously with the preparation of the elastomer component.
  • a method of forming may be employed.
  • the above-mentioned additive component is added in advance when producing a composition containing the reactants (I) to (VI). It is preferable to adopt the method to do.
  • thermoplastic elastomer composition of the present invention is selected from the group consisting of expanded graphite, carbon nanotubes, fullerene, graphene, silicate natural nanofibers, silsesquioxane and layered titanate compound in combination with the elastomer component. Containing at least one additive component.
  • the expanded graphite used as such an additive component is not particularly limited, and known expanded graphite can be appropriately used.
  • the expanded graphite may be any graphite that expands by heat, and it is preferable to use a compound in which a compound or the like is inserted between layers of graphite (for example, natural scale-like graphite, pyrolytic graphite, quiche graphite, etc.). it can.
  • the compound inserted between the graphite layers include acids such as sulfuric acid and nitric acid, and mixtures of these acids.
  • Such expanded graphite is preferably in the form of powder, and the average particle size is preferably 0.1 to 100 nm, more preferably 1 to 80 nm. If the average particle size is less than the lower limit, it tends to be too fine and difficult to disperse, and the physical properties tend to decrease. Etc. tend to decrease.
  • examples of the carbon nanotubes used as the additive component include single-walled carbon nanotubes and multi-walled carbon nanotubes.
  • a single-walled carbon nanotube is preferable from the viewpoint that higher physical properties can be expressed.
  • Such carbon nanotubes preferably have an average diameter of 0.1 to 100 nm (more preferably 0.4 to 50 nm). If the diameter is less than the lower limit, it tends to be too fine and difficult to disperse, and the physical properties tend to decrease. It tends to decrease.
  • Such carbon nanotubes preferably have an average length of 1 nm to 1 mm (more preferably 10 to 100 nm).
  • Such carbon nanotubes preferably have an aspect ratio of 1 to 1000 (more preferably 10 to 100). If the length or aspect ratio is less than the lower limit, the dispersion tends to be difficult because the dispersion is difficult, and the physical properties are lowered. There exists a tendency for tensile physical properties etc. to fall.
  • carbon nanotubes for example, ED, EP, HP manufactured by Sakai Kogyo Co., Ltd .; EC 1.0, EC 1.5, EC 2.0 manufactured by Meijo Nano Carbon Co., Ltd .; Marubeni Information 9000, 9100, 9110 manufactured by Systems Co., Ltd .; Zeonano SG101 manufactured by Nippon Zeon Co., Ltd .; these dispersions and polymer master batch products; and the like can be used.
  • fullerene used as the additive component is not particularly limited, and known ones can be used as appropriate.
  • fullerene is a general term for a cluster composed only of a large number of carbon atoms in a closed shell cavity shape.
  • fullerenes include fullerenes composed of carbon clusters such as C60, C70, C76, C78, C82, C84, C90, C94, and C96.
  • C60 fullerene, C70 fullerene, and a mixture of the above fullerenes are preferable from the viewpoint of industrial availability and low cost, and the above fullerene mixture is particularly preferable. preferable.
  • commercially available products can be used as appropriate, for example, Nanom series manufactured by Frontier Carbon Co., etc. can be used.
  • the graphene used as the additive component is not particularly limited, and known graphene can be appropriately used.
  • graphene it is preferable to use graphene nanoparticles (graphene nanopowder) from the viewpoint of higher dispersion and higher strength.
  • graphene nanoparticles preferably have an average particle size of 0.1 to 1000 nm, and more preferably 1 to 300 nm. If the average particle size is less than the lower limit, it tends to be too fine and difficult to disperse, and the physical properties tend to decrease. Etc. tend to decrease.
  • graphene commercially available products can be used as appropriate.
  • XG Graphene powder on scales manufactured by Sciences Nano graphene aqueous solution manufactured by NanoIntegris; Graphene oxide G-GOSiO ⁇ Sol-GO manufactured by Graphos -GO: Functionalized graphene oxide manufactured by NiSiNa Materials, Rap GO, Rap bGO, Metal / GO, Rap rGO; EM Japan graphene nanopowder; Wako Yakuhin graphene;
  • silicate-based natural nanofibers used as the additive component are not particularly limited, and natural nanofibers made of known silicates can be appropriately used.
  • Such siliceous natural nanofiber for example, the formula: SiO 2 ⁇ Al 2 O 3 ⁇ 2H 2 O, silicates represented by Al 2 SiO 3 (OH) 4 ( imogolite), wherein: Silicates (palygorskite) represented by (Mg, Al) 2 [Si 4 O 10 ] (OH) -4H 2 O, silicates (allophane) represented by the formula: SiO 2 ⁇ Al 2 O 3 , etc. Is mentioned.
  • Such silicate-based natural nanofibers preferably have an average diameter (average of outer diameter) of 0.1 to 10 nm (more preferably 1 to 7 nm).
  • the average inner diameter (average inner diameter) is preferably 0.1 to 8 nm (more preferably 0.3 to 6 nm). If the diameter is less than the lower limit, it tends to be too fine and difficult to disperse, and the physical properties tend to decrease. It tends to decrease.
  • silicate-based natural nanofibers preferably have an average length of 1 nm to 5 ⁇ m (more preferably 5 nm to 3 ⁇ m).
  • Such silicate-based natural nanofibers preferably have an aspect ratio of 1 to 1000 (more preferably 10 to 100). If the length or aspect ratio is less than the lower limit, the dispersion tends to be difficult because the dispersion is difficult, and the physical properties are lowered. There exists a tendency for tensile physical properties etc. to fall.
  • silicate-based natural nanofibers imogolite and palygorskite are preferable, and imogolite is particularly preferable from the viewpoint of industrial availability and low cost.
  • a commercial item can be used suitably, for example, Asron Corp. dronpa, horticultural Kanuma soil, etc. can be used.
  • Silsesquioxane used as the additive component is a siloxane-based compound having a main chain skeleton composed of Si—O bonds, and has the following formula: -(RSiO 3/2 ) n- [Wherein, R represents an alkyl group which may have a substituent, and n represents an integer. ] It is preferable that it has the silsesquioxane structure represented by these. Moreover, a polymer type may be sufficient.
  • the alkyl group that can be selected as R in the formula showing such a silsesquioxane structure preferably has 1 to 30 carbon atoms, and more preferably 1 to 20 carbon atoms.
  • the composition tends to be unstable and easily decomposed, which tends to be difficult to mix.
  • the upper limit is exceeded, the steric hindrance is too great and the interaction with the siloxane bond falls, making dispersion difficult.
  • molecules tend to be too large to become foreign matters and become a starting point of fracture, resulting in a tendency for tensile properties and the like to decrease.
  • the substituent that the alkyl group that can be selected as R in the formula showing the silsesquioxane structure may include methyl, ethyl, propyl, hexyl, phenyl, vinyl, and the like.
  • n is preferably 2 to 100, more preferably 8 to 50. If such an integer n is less than the lower limit, it tends to be liquid and the effect as a filler tends not to be obtained. It tends to decrease.
  • silsesquioxane is preferably in the form of particles, and the average particle diameter is preferably 0.1 to 300 nm, more preferably 0.5 to 100 nm. If the average particle size is less than the lower limit, it tends to be too fine and difficult to disperse, and the physical properties tend to decrease. Etc. tend to decrease.
  • silsesquioxanes commercially available products can be used as appropriate. For example, KMP-590 and KMP-591 manufactured by Shin-Etsu Silicone; SST series manufactured by AMAX Co .; manufactured by Sigma-Aldrich POSS; etc. can be used.
  • Such layered titanate compounds have the formula: M l Ti n O m [Wherein, M represents a metal, and l, n, and m represent an integer of 1 to 30. ] What consists of a compound represented by these is mentioned.
  • Such layered titanic acid compounds such as potassium titanate K 2 Ti 6 O 13, barium titanate BaTiO 3, strontium titanate SrTiO 3, calcium titanate CaTiO 3, magnesium titanate MgTiO 3, lead titanate PbTiO 3, aluminum titanate Al 2 TiO 5, lithium titanate Li 4 Ti 5 O 12 and the like.
  • Such a layered titanic acid compound is preferably in the form of particles, and the average particle diameter is preferably 0.1 to 500 nm, more preferably 0.5 to 300 nm. If the average particle size is less than the lower limit, it tends to be too fine and difficult to disperse, and the physical properties tend to decrease. Etc. tend to decrease.
  • layered titanic acid compounds commercially available products can be used as appropriate, for example, Tismo, Terrasus, Dentor WK manufactured by Otsuka Chemical Co., Ltd. SW-100, SW-300, TC manufactured by Titanium Industry Co., Ltd. -100; titanic acid compound manufactured by Fuji Titanium Industry Co., Ltd .; titanic acid compound manufactured by Sakai Chemical Industry Co., Ltd .;
  • additive components can be used alone or in combination of two or more.
  • it is industrially easy to obtain and costs among expanded graphite, carbon nanotube, fullerene, graphene, silicate natural nanofiber, silsesquioxane and layered titanate compound. From the viewpoint of low, expanded graphite and layered titanate compounds are more preferable, and expanded graphite is more preferable.
  • thermoplastic elastomer composition of the present invention contains the elastomer component and the additive component.
  • the elastomer component is an elastomeric polymer containing a side chain having at least a hydrogen bonding cross-linking site (in the side chain, side chain (a); side chain (a ′) and side chain (b)). And a polymer containing at least one of the side chains (c)).
  • any of the additive components can form a surface cross-link with a hydrogen bonding cross-linking site (so-called surface cross-linking agent).
  • thermoplastic elastomer is a type that uses pseudo-crosslinking by physical interaction between polymer molecular chains (physical interaction is caused by interaction between polymer molecules).
  • a type in which a weak bond is formed There are two types: a type in which a weak bond is formed) and a type in which rubber is dispersed in a thermoplastic resin matrix.
  • thermoplastic elastomers using pseudo-crosslinking include polymers having soft segments and hard segments such as block polymers and urethane elastomers.
  • a filler such as the additive component
  • thermoplastic elastomer of the type utilizing pseudo-crosslinking interaction at the pseudo-crosslinking point ( The physical interaction between the polymer molecular chains) is hindered by the additive component, and the mechanical strength of the polymer is lowered, making it unusable for actual use as a rubber product.
  • the conventional thermoplastic elastomer consisting only of the thermoplastic elastomer of the type utilizing pseudo-crosslinking, in the case where it is simply combined with the additive component, in the composition, on the contrary, pseudo-crosslinking. Formation is inhibited, and the mechanical strength (tensile stress, etc.) of the composition is lowered.
  • the filler such as the additive component is introduced only into the matrix phase, as is apparent from the composition.
  • a matrix made of a thermoplastic resin having no side chain no interaction with the additive component is formed in the matrix.
  • the additive component is introduced at a high concentration in a certain portion, and the additive component is not introduced at all in a certain portion.
  • a difference in hardness is generated inside the elastomer, and the mechanical strength and the like are decreased. Therefore, in a thermoplastic elastomer of a type in which rubber is dispersed in a thermoplastic resin matrix, when a polymer that does not contain a side chain is used as a hydrogen bonding cross-linked site, the additive component is simply introduced. However, the additive component cannot be sufficiently dispersed, and the mechanical strength (breaking strength, etc.) of the composition is lowered.
  • the side chain containing the covalent crosslinking site is more The present inventors speculate that it is possible to develop a high level of compression set resistance. Further, in the case where a hydrogen bonding crosslinking site and a covalent bonding crosslinking site are present in the elastomer component (when the elastomeric polymer (B) is contained, a mixture of the elastomeric polymer (B) and another elastomeric polymer is added.
  • the elastomeric polymer having a side chain (b) other than the elastomeric polymer (A) and the elastomeric polymer (B) In the case of using a mixture of a hydrogen bond and a covalent bond site, a higher mechanical strength due to the covalent bond and a heating due to the hydrogen bond due to the presence of the hydrogen bond crosslink site and the covalent bond site. Higher fluidity (formability) can be developed at the same time by cleaving. Therefore, the present inventors speculate that it is possible to appropriately change the composition according to the type of the side chain and to appropriately exhibit the characteristics according to the application.
  • the elastomeric polymer having a side chain (b) other than the elastomeric polymer (B) as described above is obtained by using an elastomeric polymer having a functional group (for example, a cyclic acid anhydride group) in the side chain.
  • a functional group for example, a cyclic acid anhydride group
  • reacting a functional polymer with a compound that reacts with the functional group to form a covalently cross-linked site (compound that generates a covalent bond) to produce the elastomeric polymer having the side chain (b) It is possible to obtain.
  • the above-mentioned “compound that forms a covalent crosslinking site (compound that generates a covalent bond)” is used as the compound that forms a covalent crosslinking site (a compound that generates a covalent bond). can do.
  • thermoplastic elastomer composition of the present invention As described above, the reason why the above-described effects of the present invention can be obtained by the thermoplastic elastomer composition of the present invention has been examined. Preferred embodiments of the thermoplastic elastomer composition of the present invention (containing each component) The preferred conditions for the ratio and the like will be further described.
  • the thermoplastic elastomer composition of the present invention contains the elastomer component and the additive component.
  • the content of the additive component (when two or more types are combined to include a plurality of components, the total amount thereof) is 20 with respect to 100 parts by mass of the elastomer component. It is below mass parts. If the content of such an additive component exceeds the upper limit, it is too much to easily cause a dispersion failure, resulting in a foreign matter, resulting in a decrease in tensile strength.
  • the content (total amount) of the additive component in such a thermoplastic elastomer composition is more preferably 0.1 to 10 parts by mass, and 0.5 to 5 parts by mass with respect to 100 parts by mass of the elastomer component. More preferred is 1 to 3 parts by mass. If the content of such an additive component is less than the lower limit, the content of the additive component tends to be too small to obtain a sufficient effect.On the other hand, if the content exceeds the upper limit, the crosslinking becomes too strong. Elongation and strength are lowered, and it tends to be difficult to use for various purposes (practicality is lowered).
  • such an additive component when such an additive component is a multilayer, it is preferably present in the composition in a single layer form.
  • the presence of such an additive component in the form of a single layer can be confirmed by measuring the surface of the composition with a transmission electron microscope (TEM).
  • thermoplastic elastomer composition of this invention the characteristic according to a use can also be provided suitably according to the kind of elastomer component to be used.
  • a thermoplastic elastomer composition comprising an elastomeric polymer (A) as an elastomer component, since the properties derived from the side chain (a) can be imparted to the composition, the elongation at break, strength at break, and fluidity are particularly improved. It becomes possible to make it.
  • thermoplastic elastomer composition which uses an elastomeric polymer (B) as an elastomer component, since the characteristic derived from the covalently crosslinked site in the side chain can be imparted to the composition, it is particularly resistant to compression set. It is possible to improve (compression set resistance).
  • thermoplastic elastomer composition containing the elastomeric polymer (B) as an elastomer component
  • the hydrogen bond crosslinking site side chain (a The properties derived from the hydrogen-bonding cross-linking sites described in ') can also be imparted, so that it is possible to further improve compression set resistance while maintaining fluidity (formability), and its side chain
  • the type of the polymer, the type of the polymer (B), etc. it becomes possible to more efficiently exhibit the desired characteristics according to the application.
  • thermoplastic elastomer composition of the present invention a thermoplastic elastomer composition containing the elastomeric polymer (A) as an elastomer component and a thermoplastic elastomer composition containing the elastomeric polymer (B) as an elastomer component, respectively.
  • thermoplastic elastomer composition which mixes this and contains the elastomeric polymers (A) and (B) as an elastomer component.
  • the elastomer component only needs to contain at least the elastomeric polymers (A) and (B).
  • the covalent bond can be made more efficiently by providing a covalent cross-linking site in the composition.
  • elastomeric polymers having side chains (b) other than the elastomeric polymer (B) may be used in combination.
  • an elastomeric polymer (A) is used as the elastomer component
  • another elastomeric polymer having a side chain (b) other than the elastomeric polymer (B) is used in combination
  • Providing substantially the same characteristics as the thermoplastic elastomer composition using the elastomeric polymer (B) containing a hydrogen bonding crosslinking site and a covalent bonding crosslinking site in the side chain derived from the side chain contained Is also possible.
  • thermoplastic elastomer composition containing elastomeric polymers (A) and (B) as an elastomer component when manufacturing the thermoplastic elastomer composition containing elastomeric polymers (A) and (B) as an elastomer component, side chains (b) other than the elastomeric polymer (A) and the elastomeric polymer (B) are used.
  • thermoplastic elastomer composition containing other elastomeric polymer the ratio of each component (for example, each component of the elastomeric polymer (A) and the elastomeric polymer (B)) is appropriately changed. It is also possible to exhibit desired characteristics as appropriate.
  • the content ratio of the elastomeric polymer (A) and the elastomeric polymer (B) is mass.
  • the ratio ([polymer (A)]: [polymer (B)]) is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2. If the content ratio of such a polymer (A) is less than the lower limit, the fluidity (moldability) and mechanical strength tend to be insufficient. On the other hand, if the content ratio exceeds the upper limit, the resistance to compression set tends to decrease. It is in.
  • thermoplastic elastomer composition of the present invention contains an elastomeric polymer (A), and other polymer having a side chain (b) other than the elastomeric polymer (B) (hereinafter referred to as “elastomer polymer”).
  • elastomeric polymer (C) it is referred to as “elastomeric polymer (C)”), and the content ratio of the elastomeric polymer (A) to the elastomeric polymer (C) is a mass ratio ([elastomeric polymer (A)]).
  • [Elastomeric polymer (C)] preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2.
  • the content ratio of such a polymer (A) is less than the lower limit, the fluidity (moldability) and mechanical strength tend to be insufficient. On the other hand, if the content ratio exceeds the upper limit, the resistance to compression set tends to decrease. It is in.
  • the total amount of the side chain (a ′) and the side chain (b) is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2, based on the mass ratio. If the total amount of such side chains (a ′) is less than the lower limit, the fluidity (formability) and mechanical strength tend to be insufficient. On the other hand, if the upper limit is exceeded, the resistance to compression set is reduced. There is a tendency.
  • Such a side chain (a ′) is a concept including the side chain (a). Therefore, even when only the side chain (a) is contained as the side chain (a ′), both the side chain (a) and the side chain (b) are present in the composition at the above-described mass ratio. Is preferred.
  • thermoplastic elastomer composition of the present invention may be a polymer component other than the elastomer component (hereinafter simply referred to as “other polymer”), paraffin, as long as the purpose of the present invention is not impaired.
  • amino group-containing compounds, compounds containing metal elements hereinafter simply referred to as “metal salts”), maleic anhydride-modified polymers, antioxidants, antioxidants, pigments (dyes), plasticizers other than the paraffin oil , Thixotropic agents, UV absorbers, flame retardants, solvents, surfactants (including leveling agents), dispersants, dehydrating agents, rust inhibitors, adhesion promoters, antistatic agents, clays, organoclays, antibacterials Agent, prevention Agent may contain various additive
  • Such additives are not particularly limited, and commonly used ones (known ones) can be appropriately used.
  • the other polymer paraffin oil, reinforcing agent, anti-aging agent, antioxidant, pigment (dye), plasticizer and the like, the following can be appropriately used.
  • the other polymer examples include other elastomeric polymers having a side chain (b) other than the elastomeric polymer (B); ⁇ -olefin-based resins having no chemically-bonded crosslinking sites; chemically-bonded crosslinking sites A styrene block copolymer that does not have a diol can be suitably used.
  • the “chemically-bonded cross-linked site” here refers to a site where a cross-link is formed by a chemical bond such as a hydrogen bond or a covalent bond. Therefore, “having no chemically-bonded cross-linking site” in the present invention refers to a state having no cross-link formed by a chemical bond (for example, hydrogen bond, covalent bond, etc.).
  • Such an ⁇ -olefin-based resin having no chemically-bonded crosslinking site is a crosslink by chemical bonding. Bonding sites that do not contain functional groups (for example, hydroxyl groups, carbonyl groups, carboxyl groups, thiol groups, amide groups, and amino groups) that form points, and that directly crosslink polymer chains (covalent crosslinking) Those which do not contain a part or the like are preferably used.
  • the ⁇ -olefin-based resin having no chemically-bonded cross-linking site includes at least the side chain (a), the side chain (a ′), the side chain (b), the side chain ( c) The polymer does not have.
  • ⁇ -olefin-based resin here refers to an ⁇ -olefin homopolymer and an ⁇ -olefin copolymer.
  • ⁇ -olefin refers to an alkene having a carbon-carbon double bond at the ⁇ -position (an alkene having a carbon-carbon double bond at the end: such an alkene may be linear. It may be branched, and preferably has 2 to 20 carbon atoms (more preferably 2 to 10), for example, ethylene, propylene, 1-butene, 1-pentene, 1 -Hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like.
  • an ⁇ -olefin polymer (poly ⁇ -olefin: either a homopolymer or a copolymer) may be used.
  • poly ⁇ -olefin polymer poly ⁇ -olefin: either a homopolymer or a copolymer
  • examples thereof include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and propylene-ethylene-butene copolymer.
  • polypropylene, polyethylene, and ethylene-propylene copolymer are preferable from the viewpoint of compatibility with the base elastomer.
  • such ⁇ -olefin-based resins having no chemically bonding cross-linking sites may be used alone or in combination of two or more.
  • the ⁇ -olefin resin having no chemically-bonded cross-linking site preferably has a crystallinity of 10% or more, more preferably 10 to 80%, and more preferably 10 to 75%. Further preferred. If the degree of crystallinity is less than the lower limit, the resin-like properties become dilute, so it tends to be difficult to make the mechanical properties and fluidity more advanced. Therefore, it tends to be difficult to exhibit mechanical properties in a balanced manner at a higher level.
  • Such crystallinity is measured by using an X-ray diffractometer (for example, trade name “MiniFlex300” manufactured by Rigaku Corporation) as a measuring device, measuring a diffraction peak, and integrating a scattering peak derived from crystallinity / amorphous. It can be determined by calculating the ratio.
  • an X-ray diffractometer for example, trade name “MiniFlex300” manufactured by Rigaku Corporation
  • melt flow rate is preferably 40 g / 10 min or more. If such a melt flow rate (MFR) is less than the lower limit, it tends to be difficult to improve the fluidity even if blended in the composition.
  • melt flow rate is a value measured in accordance with the method B described in JIS K6922-2 (issued in 2010).
  • the weight average molecular weight (Mw) of the ⁇ -olefin-based resin having no chemically-bonded crosslinking site is preferably 10,000 or more and 2,000,000 or less, more preferably 30,000 or more and 1,500,000 or less. Preferably, it is 50,000 or more and 1.25 million or less.
  • Mw weight average molecular weight
  • the weight average molecular weight is less than the lower limit, the mechanical strength tends to decrease.
  • the weight average molecular weight exceeds the upper limit, the compatibility with the elastomer component decreases and the phase tends to be separated.
  • the number average molecular weight (Mn) of the ⁇ -olefin resin having no chemically-bonded crosslinking site is preferably 10,000 or more and 2,000,000 or less, more preferably 30,000 or more and 1,500,000 or less. Preferably, it is 50,000 or more and 1.25 million or less. If the number average molecular weight is less than the lower limit, the mechanical strength tends to decrease. On the other hand, if the number average molecular weight exceeds the upper limit, the compatibility with the elastomer component decreases, and phase separation tends to occur.
  • the dispersion degree (Mw / Mn) of the molecular weight distribution of the ⁇ -olefin-based resin having no chemically-bonded crosslinking site is preferably 5 or less, more preferably 1 to 3. If the degree of dispersion (Mw / Mn) of the molecular weight distribution is less than the lower limit, the fluidity tends to decrease. On the other hand, if it exceeds the upper limit, the compatibility with the elastomer component tends to decrease.
  • the weight-average molecular weight (Mw), the number-average molecular weight (Mn), and the molecular weight distribution dispersity (Mw / Mn) of the ⁇ -olefin resin as described above are determined by a so-called gel permeation chromatography (GPC) method. Can be sought. Moreover, as a specific apparatus and conditions for measuring such molecular weight, “Prominence GPC system” manufactured by Shimadzu Corporation can be used.
  • the glass transition point of the ⁇ -olefin-based resin having no chemical bonding cross-linking site is preferably ⁇ 150 to 5 ° C., more preferably ⁇ 125 to 0 ° C.
  • the melting point becomes low and the heat resistance tends to be lowered.
  • the upper limit is exceeded, rubber elasticity after blending into the elastomer component tends to be lowered.
  • the “glass transition point” here is a glass transition point measured by differential scanning calorimetry (DSC-Differential Scanning Calorimetry) as described above. In such DSC measurement, the rate of temperature rise is preferably 10 ° C./min.
  • the method for producing such an ⁇ -olefin-based resin having no chemically-bonded crosslinking site is not particularly limited, and a known method can be appropriately employed.
  • ⁇ -olefin resin commercially available products may be used.
  • trade names “Tafmer” manufactured by Mitsui Chemicals, Inc . trade names “Novatech HD”, “Novatech LD” Novatec LL, “Kernel”
  • thermoplastic elastomer composition of the present invention further contains an ⁇ -olefin resin having no chemically-bonded crosslinking site
  • the inclusion of the ⁇ -olefin resin not having the chemically-bonded crosslinking site is preferably 800 parts by mass or less, more preferably 5 to 700 parts by mass, and still more preferably 10 to 600 parts by mass with respect to 100 parts by mass of the elastomer component.
  • the amount is particularly preferably 25 to 500 parts by mass, and most preferably 50 to 400 parts by mass. If the content of the ⁇ -olefin resin not having such a chemical bonding cross-linking site is less than the lower limit, the fluidity tends to be lowered. On the other hand, if the content exceeds the upper limit, the compression set is lowered. There is a tendency.
  • thermoplastic elastomer composition of the present invention further contains an ⁇ -olefin-based resin having no chemically-bonded crosslinking site, the ⁇ -olefin-based resin not having the chemically-bonded crosslinking site.
  • the content of is preferably 1 to 90% by mass, more preferably 3 to 80% by mass, and still more preferably 5 to 70% by mass with respect to the total amount of the composition. If the content of the ⁇ -olefin resin not having such a chemical bonding cross-linking site is less than the lower limit, the fluidity tends to be lowered. On the other hand, if the content exceeds the upper limit, the compression set is lowered. There is a tendency.
  • a styrene block copolymer having no chemically-bonded crosslinking site is preferable from the viewpoint that it is a component that does not interfere with the crosslinking reaction of the base elastomer.
  • a styrene block copolymer when used, it basically does not interfere with the cross-linking structure of the base elastomeric polymer (the elastomer component) or the cross-linking reaction at the time of manufacture. Since the inherent physical properties of the structure are not hindered, excellent mechanical properties (particularly tensile properties, compression set, etc.) derived from the styrene block copolymer can be obtained while sufficiently maintaining the properties derived from the elastomer component. The present inventors speculate that it can be reflected (provided) in the thermoplastic elastomer composition of the present invention and can have higher properties.
  • the styrene block copolymer which is a component suitably used in the thermoplastic elastomer composition of the present invention, does not have a chemically bonding cross-linked site.
  • “having no chemically-bonded cross-linking site” has the same meaning as described for the ⁇ -olefin resin.
  • a functional group for example, a hydroxyl group, a carbonyl group, a carboxyl group, a thiol group, an amide group, an amide group, which forms a crosslinking point by a chemical bond
  • a binding site such as a cross-linking site by a covalent bond
  • such a styrene block copolymer having no chemically-bonded cross-linking site has at least the above-mentioned side chain (a), side chain (a ′), side chain (b), side chain ( c) The polymer does not have.
  • styrene block copolymer herein may be a polymer having a styrene block structure at any part.
  • a styrene block copolymer has a styrene block structure, and at normal temperature, the styrene block structure part aggregates to form a physical crosslinking point (physical pseudo-crosslinking point) and is heated. Based on the fact that such a physical pseudo-crosslinking point collapses, it can be used as a material having thermoplasticity and rubber-like properties (elasticity, etc.) at room temperature.
  • styrene block copolymer having no chemically bonding cross-linking site (hereinafter, simply referred to as “styrene block copolymer having no chemical bonding cross-linking site”), rubber is used.
  • styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene-propylene-styrene block copolymer (SEPS), styrene-ethylene-ethylene-propylene-styrene block copolymer Polymer (SEEPS), Styrene-Butadiene-Styrene Block Copolymer (SBS), Styrene-Ethylene-Butylene-Styrene Block Copolymer (SEBS), Styrene-Isoprene-Butadiene-Styrene Block Copolymer (SIBS), These Hydrogenated products (so-called hydrogenated products) are preferred and S BS, SEEPS is more preferable.
  • S BS, SEEPS is more preferable.
  • Such a styrene block copolymer may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the styrene block copolymer having no chemically-bonded cross-linking site is a styrene block copolymer having a styrene content of 20 to 40% by mass (more preferably 25 to 37% by mass). preferable. If the styrene content is less than the lower limit, the thermoplasticity tends to decrease due to a decrease in the styrene block component. On the other hand, if the styrene content exceeds the upper limit, the rubber elasticity tends to decrease due to a decrease in the olefin component.
  • the styrene content in such a styrene block styrene block copolymer can be measured by a method based on the IR method described in JIS K6239 (issued in 2007).
  • the weight average molecular weight (Mw) of the styrene block copolymer having no chemically-bonded crosslinking site is preferably 200,000 to 700,000, more preferably 300,000 to 600,000. Preferably, it is 350,000 or more and 550,000 or less.
  • Mw weight average molecular weight
  • the weight average molecular weight is less than the lower limit, the heat resistance tends to be reduced.
  • the weight average molecular weight exceeds the upper limit, the compatibility with the elastomeric polymer tends to be reduced.
  • the number average molecular weight (Mn) of the styrene block copolymer having no chemically-bonded crosslinking site is preferably 100,000 or more and 600,000 or less, more preferably 150,000 or more and 550,000 or less. Preferably, it is 200,000 or more and 500,000 or less.
  • Mn number average molecular weight
  • the heat resistance tends to be lowered.
  • the upper limit is exceeded, the compatibility with the elastomeric polymer (the elastomer component) tends to be lowered.
  • the dispersity (Mw / Mn) of the molecular weight distribution of the styrene block copolymer having no chemically bonding cross-linked site is preferably 5 or less, more preferably 1 to 3.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution dispersity (Mw / Mn) can be determined by a so-called gel permeation chromatography (GPC) method. Further, as a specific apparatus and conditions for measuring such molecular weight, “Prominence GPC system” manufactured by Shimadzu Corporation can be used.
  • the glass transition point of the styrene block copolymer having no chemically bonding cross-linking site is preferably ⁇ 80 to ⁇ 40 ° C., and more preferably ⁇ 70 to ⁇ 50.
  • the melting point becomes low, and thus the heat resistance tends to be lowered.
  • the upper limit is exceeded, rubber elasticity tends to be lowered.
  • the “glass transition point” here is a glass transition point measured by differential scanning calorimetry (DSC-Differential Scanning Calorimetry) as described above. In such DSC measurement, the rate of temperature rise is preferably 10 ° C./min.
  • the method for producing the styrene block copolymer having no chemical bonding cross-linking site is not particularly limited, and a known method can be appropriately employed.
  • a commercially available product may be used as such a styrene block copolymer.
  • thermoplastic elastomer composition of the present invention further contains a styrene block copolymer having no chemically-bonded crosslinking site
  • the styrene block copolymer having no chemically-bonded crosslinking site is used.
  • the content (content ratio) is preferably 10 to 400 parts by mass or less, more preferably 15 to 350 parts by mass, and more preferably 20 to 300 parts by mass with respect to 100 parts by mass of the elastomer component. More preferred is 30 to 250 parts by mass.
  • the content of the styrene block copolymer having no such chemical bonding crosslinking site is less than the lower limit, the content of the styrene block copolymer having no chemical bonding crosslinking site is too small, In particular, there is a tendency that sufficient effects cannot be obtained in terms of fluidity and workability.
  • the upper limit is exceeded, the characteristics of the matrix structure (characteristics derived from the elastomer component) due to the crosslinked elastomer tend to be dilute. It is in.
  • thermoplastic elastomer composition of the present invention further contains a styrene block copolymer having no chemically-bonded crosslinking site
  • the styrene block copolymer having no chemically-bonded crosslinking site is used.
  • the content is preferably 5 to 60% by mass, more preferably 7 to 45% by mass, and still more preferably 10 to 30% by mass with respect to the total amount of the thermoplastic elastomer composition. If the content of the styrene block copolymer having no such chemically bondable crosslinking site is less than the lower limit, the content of the styrene block copolymer is too small, particularly in terms of fluidity and workability. On the other hand, if the upper limit is exceeded, the characteristics of the matrix structure (characteristics derived from the elastomer component) due to the crosslinked elastomer tend to be diluted.
  • thermoplastic elastomer composition of the present invention examples include, for example, the ⁇ -olefin-based resin that does not have the chemical bond crosslinking site and the chemical bond crosslinking site.
  • the styrene block copolymer other types of polymers can be used as appropriate.
  • PTFE polytetrafluoroethylene
  • polyisobutylene polymethyl methacrylate, polystearyl methacrylate, polybutyl methacrylate, polypropyl methacrylate, fluororubber, silicone rubber ( MQ), polypropylene oxide, polydimethylsiloxane, butyl rubber (IIR), polyvinyl chloride, natural rubber (NR), polyisoprene (IR: isoprene rubber), polybutadiene (BR: butadiene rubber), styrene butadiene rubber (SBR), polystyrene Is mentioned.
  • PTFE polytetrafluoroethylene
  • polyisobutylene polymethyl methacrylate
  • polystearyl methacrylate polybutyl methacrylate
  • polypropyl methacrylate fluororubber
  • silicone rubber MQ
  • polypropylene oxide polydimethylsiloxane
  • paraffin oil may contain other components (additional) further contained in the thermoplastic elastomer composition of the present invention from the viewpoint that the fluidity can be further improved without deteriorating various physical properties of the composition. Agent).
  • paraffin oil is used in combination with the above-mentioned styrenic block polymer, it becomes possible to absorb the oil component into the block polymer, improving the workability by adding oil (improving fluidity) and styrenic It is possible to achieve a sufficiently high level of improvement in mechanical properties due to the addition of block polymers, so that production properties such as extrusion and injection moldability are maintained while maintaining sufficient mechanical properties and heat resistance. Can be more advanced.
  • paraffin oil when used, for example, when heated and extruded from an orifice (for example, one having an opening with a diameter of 1 mm), the string-like thermoplastic extruded from the orifice opening
  • the shape (strand shape) of the elastomer composition has a sufficiently uniform thickness, and excellent extrudability tends to be obtained such that no fuzz is observed on the surface thereof.
  • paraffin oil is not particularly limited, and known paraffin oil can be appropriately used.
  • paraffin oil a correlation ring analysis (ndM ring analysis) based on ASTM D3238-85 is performed on the oil, and the percentage of the paraffin carbon number to the total carbon number (paraffin) Parts: C P ), percentage of total number of naphthene carbons (naphthene part: C N ), and percentage of total number of aromatic carbons (aromatic part: C A ), respectively. It is preferable that the percentage (C P ) of the paraffin carbon number to the total carbon number is 60% or more.
  • such a paraffin oil is measured according to JIS K 2283 (published in 2000), it preferably has 50mm 2 / s ⁇ 700mm 2 / s kinematic viscosity at 40 °C, 150 ⁇ 600mm 2 / S is more preferable, and 300 to 500 mm 2 / s is even more preferable. If such a kinematic viscosity ( ⁇ ) is less than the lower limit, oil bleeding tends to occur. On the other hand, if it exceeds the upper limit, sufficient fluidity tends not to be imparted. As the kinematic viscosity of such paraffin oil, a value measured according to JIS K 2283 (issued in 2000) under a temperature condition of 40 ° C. is adopted.
  • JIS K 2283 (issued in 2000) The value automatically measured under a temperature condition of 40 ° C. using a Canon-Fenske viscometer (for example, trade name “SO Series” manufactured by Shibata Kagaku Co., Ltd.) may be employed.
  • Canon-Fenske viscometer for example, trade name “SO Series” manufactured by Shibata Kagaku Co., Ltd.
  • paraffin oil preferably has an aniline point measured by the U-tube method in accordance with JIS K2256 (issued in 2013) of 80 ° C to 145 ° C, more preferably 100 to 145 ° C.
  • the temperature is 105 to 145 ° C.
  • aniline point of such paraffin oil a value measured by the U-shaped tube method conforming to JIS K2256 (issued in 2013) is adopted.
  • the aniline point conforming to JIS K2256 (issued in 2013) is adopted.
  • a value measured using a measuring device for example, trade name “aap-6” manufactured by Tanaka Scientific Instruments Co., Ltd. may be used.
  • paraffin oil commercially available products can be used as appropriate.
  • a trade name “Gargoyle Arctic Series (1010, 1022, 1032, 1046, 1068, 1100, etc.)” manufactured by Mobil Corporation may be used as appropriate.
  • the content of the paraffin oil is preferably 10 to 600 parts by mass with respect to 100 parts by mass of the elastomer component.
  • the amount is more preferably 550 parts by mass, still more preferably 75 to 500 parts by mass, and particularly preferably 100 to 400 parts by mass. If the content of such paraffin oil is less than the lower limit, the content of paraffin oil is too small, and the effect obtained by adding paraffin oil (especially the effect of improving fluidity and workability) is not always sufficient. On the other hand, when the upper limit is exceeded, bleeding of paraffin oil tends to be induced.
  • the content of the paraffin oil is preferably 20 to 60% by mass with respect to the total amount of the thermoplastic elastomer composition, 25 More preferably, it is -55 mass%, and still more preferably 35-55 mass%. If the content of such paraffin oil is less than the above lower limit, the content of paraffin oil is too small, and in particular, there is a tendency that sufficient effects cannot be obtained in terms of fluidity and workability, and on the other hand, the content exceeds the upper limit. In this case, paraffin oil bleed tends to be induced.
  • thermoplastic elastomer composition of the present invention includes an ⁇ -olefin resin not having the chemical bonding cross-linking site, the paraffin oil, and the chemical bonding cross-linking from the viewpoint of improving fluidity and mechanical properties.
  • part in combination is preferable. That is, the thermoplastic elastomer composition of the present invention includes the elastomer component, the additive component, the ⁇ -olefin resin not having the chemically-bonded crosslinking site, the paraffin oil, and the chemically-bonded crosslinking site. What contains the styrene block copolymer which does not have is more preferable.
  • the additive component in the case of containing the elastomer component, the additive component, the ⁇ -olefin resin, the paraffin oil, and the styrene block copolymer, wear resistance, breaking strength, and compression set resistance Etc. tend to be able to demonstrate characteristics such as etc. at a higher level in a balanced manner.
  • wear resistance, breaking strength, and compression set resistance Etc. tend to be able to demonstrate characteristics such as etc. at a higher level in a balanced manner.
  • the present inventors speculate as follows. That is, first, when the paraffin oil and the styrene block copolymer are used in combination, their compatibility is sufficiently high, so that the paraffin oil is sufficiently uniform in the system containing the styrene block copolymer. To disperse.
  • the styrene block copolymer and the ⁇ -olefin resin are highly compatible, they are uniformly dispersed in the system. Further, in such a system containing the styrene block copolymer and the ⁇ -olefin resin, the elastomer component has high compatibility with both, so that the elastomer component is also sufficiently contained in the composition. It will be uniformly dispersed. As described above, since the elastomer component and the additive component interact to form surface crosslinking, the additive component also exists in a sufficiently dispersed state as the elastomer component is dispersed.
  • each component is contained in a sufficiently dispersed state. Therefore, the state of the elastomer component that strongly influences the properties of the thermoplastic elastomer composition is sufficiently dispersed in a state of interacting with the additive component (a state in which a strong bond is formed by surface cross-linking). It is possible to exhibit a higher level of mechanical strength and heat resistance in a balanced manner. Further, in such a system, higher fluidity (fluidity during heating) can be achieved due to the ⁇ -olefin resin.
  • the mechanical strength of the styrene block copolymer can be adjusted depending on the amount added, it can be adjusted to desired mechanical properties. Therefore, the system containing the elastomer component, the additive component, the ⁇ -olefin resin, the paraffin oil, and the styrene block copolymer has characteristics such as wear resistance, tensile strength, and compression set resistance. The present inventors speculate that the effect of being able to exhibit in a balanced manner at a higher level is obtained.
  • examples of the reinforcing agent (filler) that can be further contained in the thermoplastic elastomer composition of the present invention include carbon black, silica, calcium carbonate, and the like.
  • silica wet silica is preferably used.
  • antioxidant for example, compounds such as hindered phenols, aliphatic and aromatic hindered amines can be appropriately used.
  • antioxidant butylhydroxytoluene (BHT), butylhydroxyanisole (BHA) etc.
  • BHT butylhydroxytoluene
  • BHA butylhydroxyanisole
  • the pigment include inorganic pigments such as titanium dioxide, zinc oxide, ultramarine, bengara, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochloride, and sulfate, organic pigments such as azo pigments and copper phthalocyanine pigments.
  • Pigments can be used as appropriate, and examples of the plasticizer include benzoic acid, phthalic acid, trimellitic acid, pyromellitic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, itaconic acid, citric acid. In addition to derivatives such as acids, polyesters, polyethers, epoxy resins, and the like can be used as appropriate. Further, as the plasticizer (softener), those that can be used for thermoplastic elastomers can be appropriately used from the viewpoint of further improving fluidity, and for example, oils can also be used. In addition, as such an additive etc., you may utilize suitably what is illustrated by Unexamined-Japanese-Patent No. 2006-131663.
  • thermoplastic elastomer composition of the present invention has the elastomer component, the additive component, the ⁇ -olefin resin not having the chemically-bonded crosslinking site, the paraffin oil, and the chemically-bonded crosslinking site.
  • the content of the other components is not particularly limited, but polymers, reinforcing materials (filling)
  • the amount is preferably 400 parts by mass or less, more preferably 20 to 300 parts by mass with respect to 100 parts by mass of the elastomer component.
  • the effect of using the other components tends to be insufficiently expressed.
  • the content exceeds the upper limit, it depends on the type of the component used. The effect of the substrate elastomer is diminished and the physical properties tend to decrease.
  • the content of the other components is 100 parts by mass of the elastomer component, respectively.
  • the amount is preferably 20 parts by mass or less, more preferably 0.1 to 10 parts by mass. If the content of such other components is less than the lower limit, the effect of using the other components tends to be insufficient, while if the upper limit is exceeded, the reaction of the substrate elastomer is adversely affected. On the other hand, physical properties tend to decrease.
  • thermoplastic elastomer composition of the present invention is heated (for example, heated to 100 to 250 ° C.) to form hydrogen bonds formed at the hydrogen bond cross-linked sites and other cross-linked structures (including a styrene block copolymer).
  • the physical cross-linking and the like can be dissociated and softened to impart fluidity. This is presumably because the interaction between the side chains formed between the molecules or within the molecule due to heating (mainly the interaction due to hydrogen bonding) is weakened.
  • the side chain contains an elastomer component containing at least a hydrogen-bonding cross-linked site, etc.
  • the dissociated hydrogen bond Since they are bonded and cured again, depending on the composition, the thermoplastic elastomer composition can be made to exhibit recyclability more efficiently.
  • the thermoplastic elastomer composition of the present invention has a melt flow rate (MFR) at 230 ° C. under a load of 10 kg measured in accordance with JIS K6922-2 (issued in 2010) of 2 g / 10 min or more. Preferably, it is 4 g / 10 min or more, and more preferably 8 g / 10 min or more. If such a melt flow rate (MFR) is less than the lower limit, there may be a case where sufficient processability cannot always be exhibited.
  • MFR melt flow rate
  • Such a melt flow rate (MFR) is a value measured in accordance with method B described in JIS K6922-2 (issued in 2010), and is a product manufactured by Toyo Seiki Seisakusho as a melt flow rate measuring device.
  • thermoplastic elastomer composition 3 g was added to the furnace of the apparatus, and the temperature was maintained at 230 ° C. for 5 minutes, and then maintained at 230 ° C. and loaded to 10 kg.
  • the mass (g) of the elastomer flowing out in 10 minutes from the opening of a cylindrical orifice member having a diameter of 1 mm and a length of 8 mm connected to the lower part of the furnace body is measured (the furnace body The temperature is maintained at 230 ° C. for 5 minutes and then the load is started, and then the measurement of the mass of the elastomer flowing out is started. Kill.
  • the 5% weight loss temperature is preferably 320 ° C. or higher, more preferably 325 ° C. or higher.
  • a 5% weight loss temperature is prepared by preparing 10 mg of a thermoplastic elastomer composition as a measurement sample, and using a thermogravimetric measurement device (TGA) as a measurement device and heating at a heating rate of 10 ° C./min. It can be determined by measuring the temperature when the 5% weight is reduced from the initial weight (10 mg).
  • TGA thermogravimetric measurement device
  • thermoplastic elastomer composition of the present invention can be used for various rubber applications by utilizing rubber elasticity, for example. Moreover, since it can improve heat resistance and recyclability, it is preferable to use it as a hot melt adhesive or as an additive contained therein.
  • thermoplastic elastomer composition of the present invention comprises a hot melt adhesive or an additive contained therein, an automotive rubber part, a hose, a belt, a sheet, an anti-vibration rubber, a roller, a lining, a rubberized cloth, a sealing material, a glove, Fenders, medical rubber (syringe gaskets, tubes, catheters), gaskets (for home appliances, construction), asphalt modifiers, boots, grips, toys, shoes, sandals, keypads, gears, PET bottle caps It can be suitably used for applications such as liners, rubber parts for printers, sealing materials, paints / coating materials, and printing inks.
  • the rubber parts for automobiles include, for example, tire treads, carcass, sidewalls, inner liners, undertreads, belt portions, and other tire parts; exterior radiator grilles, side moldings, garnishes (pillars, rears) , Cowl top), aero parts (air dam, spoiler), wheel cover, weather strip, cow belt grill, air outlet louver, air scoop, hood bulge, vent parts, anti-corrosion parts (over fender, side seal panel, Malls (windows, hoods, door belts)), marks, etc .; interior window frame parts such as doors, lights, wiper weatherstrips, glass runs, glass run channels; air duct hoses, radiator hoses, brake hoses; cranks Lubricating oil system parts such as shaft seal, valve stem seal, head cover gasket, A / T oil cooler hose, mission oil seal, P / S hose, P / S oil seal; fuel hose, emission control hose, inlet filler hose, diaphragms Anti-vi
  • a rubber modifier for example, as a flow inhibitor, if it is included in a resin or rubber that causes a cold flow at room temperature, it is possible to prevent the flow during extrusion or cold flow.
  • thermoplastic elastomer composition of the present invention can have higher heat resistance and can have higher tensile properties based on the breaking strength.
  • thermoplastic elastomer composition it is possible to appropriately exhibit characteristics (for example, characteristics such as self-healing properties) required according to applications by appropriately changing the composition. In this way, by appropriately changing the composition, it is possible to appropriately exhibit the necessary characteristics in a balanced manner according to the use of the thermoplastic elastomer composition.
  • characteristics required according to the application it is preferable to appropriately change the type (composition) of the components in the composition.
  • thermoplastic elastomer composition of the present invention has been described above, a method that can be suitably used as a method for producing such a thermoplastic elastomer composition of the present invention will be described below.
  • thermoplastic elastomer composition of the present invention for example, an elastomeric polymer (E) having a functional group in a side chain, At least one additive selected from the group consisting of expanded graphite, carbon nanotubes, fullerenes, graphene, silicate-based natural nanofibers, silsesquioxanes and layered titanate compounds; A first step of mixing to obtain a mixture; Compound (I) that reacts with the cyclic acid anhydride group to form a hydrogen-bonding cross-linking site in the mixture, and a covalent bond cross-linking site that reacts with the compound (I) and the cyclic acid anhydride group
  • a thermoplastic elastomer is prepared by adding at least one raw material compound (M) among the mixed raw materials of the compound (II) forming the compound and reacting the elastomeric polymer (E) with the raw material compound (M).
  • thermoplastic elastomer composition obtained in the second step has a side chain containing a hydrogen-bonding cross-linked site having a carbonyl-containing group and / or a nitrogen-containing heterocycle, and has a glass transition point of 25 ° C. or lower.
  • At least one elastomer component It is at least one selected from the group consisting of expanded graphite, carbon nanotubes, fullerenes, graphene, silicate-based natural nanofibers, silsesquioxanes, and layered titanate compounds, and the content thereof is 100 masses of the elastomer component.
  • An additive component that is 20 parts by mass or less relative to parts,
  • a composition comprising In the first step, using the additive component at a ratio such that the content of the additive component in the thermoplastic elastomer composition is 20 parts by mass or less with respect to 100 parts by mass of the elastomer component, the elastomeric property
  • the method of mixing a polymer (E) and the said additional component can be mentioned.
  • the first step and the second step will be described separately.
  • the first step is a step in which an elastomeric polymer (E) having a cyclic acid anhydride group in the side chain is mixed with the additive component to obtain a mixture.
  • the “elastomeric polymer (E) having a functional group in its side chain” means a bond (covalent bond) in which a functional group (for example, a cyclic acid anhydride group) is chemically stable to an atom forming the main chain of the polymer.
  • the glass transition point consists of a polymer below room temperature (25 degreeC). Any material may be used as long as it is made of a so-called elastomer, and is not particularly limited.
  • Examples of the polymer capable of forming the main chain portion of such elastomeric polymers (A) to (B) include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), 1, Diene rubbers such as 2-butadiene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), ethylene-propylene-diene rubber (EPDM), and hydrogenation thereof Olefin rubbers such as ethylene-propylene rubber (EPM), ethylene-acrylic rubber (AEM), ethylene-butene rubber (EBM), chlorosulfonated polyethylene, acrylic rubber, fluororubber, polyethylene rubber, polypropylene rubber; epichlorohydride Rubber; polysulfide rubber; Examples include ricone rubber; urethane rubber;
  • the polymer capable of forming the main chain portion of the elastomeric polymers (A) to (B) may be an elastomeric polymer containing a resin component, for example, hydrogenated.
  • a resin component for example, hydrogenated.
  • Polystyrene-based elastomeric polymer for example, SBS, SIS, SEBS, etc.
  • polyolefin-based elastomeric polymer for example, SBS, SIS, SEBS, etc.
  • polyvinyl chloride-based elastomeric polymer polyurethane-based elastomeric polymer
  • polyester-based elastomeric polymer polyamide-based elastomeric polymer Etc.
  • polymers capable of forming the main chain portion of such elastomeric polymers (A) to (B) include diene rubber, hydrogenated diene rubber, olefin rubber, and hydrogenated. At least one selected from polystyrene-based elastomeric polymer, polyolefin-based elastomeric polymer, polyvinyl chloride-based elastomeric polymer, polyurethane-based elastomeric polymer, polyester-based elastomeric polymer, and polyamide-based elastomeric polymer It preferably consists of seeds.
  • a diene rubber is preferable from the viewpoint of easy introduction of a maleic anhydride group suitable as a cyclic acid anhydride group, and an olefin rubber is preferable from the viewpoint of aging resistance. preferable.
  • Examples of the compound capable of introducing the functional group include cyclic acid anhydrides such as succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride, and derivatives thereof. It is done.
  • the cyclic acid anhydride group includes a succinic anhydride group and a maleic anhydride group.
  • a glutaric anhydride group and a phthalic anhydride group are preferred, and among them, a maleic anhydride group is more preferred from the viewpoint of high reactivity of the raw material and industrial availability of the raw material.
  • the elastomeric polymer having such a cyclic acid anhydride group in the side chain is converted into a polymer capable of forming the main chain portion of the elastomeric polymers (A) to (B), for example, by a usual method.
  • it may be produced by a method of graft polymerization of a cyclic acid anhydride under usual conditions, for example, stirring under heating.
  • a commercially available product may be used as the elastomeric polymer having such a cyclic acid anhydride group in the side chain.
  • Examples of commercially available elastomeric polymers having such a cyclic acid anhydride group in the side chain include maleic anhydride-modified isoprene rubbers such as LIR-403 (manufactured by Kuraray Co., Ltd.) and LIR-410A (prototype manufactured by Kuraray Co., Ltd.).
  • Modified isoprene rubber such as LIR-410 (manufactured by Kuraray Co., Ltd.); carboxy-modified nitrile rubber such as Clinac 110, 221 and 231 (manufactured by Policer); CPIB (manufactured by Nisseki Chemical Co., Ltd.) Carboxy-modified polybutene such as Nucrel (made by Mitsui Dupont Polychemical), Yucaron (made by Mitsubishi Chemical), Tuffmer M (for example, MP0610 (made by Mitsui Chemicals), MP0620 (made by Mitsui Chemicals)), etc.
  • LIR-410 manufactured by Kuraray Co., Ltd.
  • carboxy-modified nitrile rubber such as Clinac 110, 221 and 231 (manufactured by Policer); CPIB (manufactured by Nisseki Chemical Co., Ltd.)
  • Carboxy-modified polybutene such as Nucrel (made by Mitsui Dupont Poly
  • the elastomeric polymer having such a cyclic acid anhydride group in the side chain is preferably a maleic anhydride-modified elastomeric polymer (E1).
  • E1 maleic anhydride-modified elastomeric polymer
  • Maleic anhydride-modified ethylene-propylene rubber, maleic anhydride-modified ethylene-butene rubber, and ethylene / methyl acrylate / maleic anhydride copolymer are more preferable.
  • an elastomeric polymer which has the said cyclic acid anhydride group in a side chain you may utilize 1 type individually or in combination of 2 or more types.
  • the elastomeric polymer (E) used in the first step is preferably the above-mentioned elastomeric polymers (E1) to (E6).
  • the additive component used in the first step is the same as that described in the thermoplastic elastomer composition of the present invention (the preferred ones are also the same).
  • an elastomer component in the thermoplastic elastomer composition, which is the final product (target product)
  • the elastomeric polymer (A) and / or (B) is formed, and the main chain portion of the elastomeric polymer (E) is directly used as the main chain portion of the polymer contained as the elastomer component.
  • the elastomeric polymer (E) and the additive component are mixed to obtain a mixture.
  • the additive component is added to the elastomeric polymer (E)
  • the elastomeric polymer (E) is plasticized in advance so that the additive component is sufficiently dispersed, and then the additive component is added. It is preferable.
  • the method for plasticizing the elastomeric polymer (E) is not particularly limited.
  • the roll or kneader is heated at a temperature (for example, about 100 to 250 ° C.) at which these can be plasticized.
  • a method of kneading using an extruder, a universal stirrer or the like can be appropriately employed.
  • Conditions such as temperature at the time of plasticizing such an elastomeric polymer (E) are not particularly limited and are appropriately set according to the type of component (type of elastomeric polymer (E), etc.). do it.
  • content of the said additional component in the thermoplastic elastomer composition finally obtained is 20 mass parts or less with respect to 100 mass parts of said elastomer components (preferably 0.00. 1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, particularly preferably 1 to 3 parts by weight) using the additive component in a proportion such that the elastomeric polymer (E) and the additive component Are preferably mixed.
  • the content of the additive component in such a mixture is preferably 20 parts by mass or less, and 0.5 to 5 parts by mass with respect to 100 parts by mass of the elastomeric polymer (E). Is more preferably 1 to 3 parts by mass.
  • the content is less than the lower limit, the amount of the additive component is too small, and the effect obtained by using the additive component tends to be reduced.
  • the content exceeds the upper limit, crosslinking occurs. It is too strong and tends to decrease the elongation and strength.
  • content of the said additive component in the thermoplastic elastomer composition finally obtained becomes a value within the said range.
  • the amount of the additive component used in forming such a mixture is 0.01 g to 2.0 g (more preferably) with respect to 1 mmol of the functional group in the elastomeric polymer (E). Is preferably contained at a ratio of 0.02 to 1.0 g). If the ratio of the additive component relative to 1 mmol of the functional group in the elastomeric polymer (E) is less than the lower limit, the amount of the additive component tends to be too small and the effect tends to decrease. Crosslinking is too strong, and the elongation and strength tend to decrease. In addition, by including an additive component within the range of such a ratio, it is possible to perform an appropriate interaction with the functional group, and the dispersibility of the additive component tends to be higher. is there.
  • Such a mixture further has an ⁇ -olefin resin, paraffin oil, which does not have a chemical bonding crosslinking site, and a chemical bonding crosslinking site, from the viewpoint of increasing fluidity and mechanical strength.
  • a non-styrene block copolymer or the like may be further contained.
  • Such an ⁇ -olefin resin not having a chemical bonding crosslinking site, paraffin oil, and a styrene block copolymer having no chemical bonding crosslinking site are the thermoplastic elastomer composition of the present invention, respectively. And the same as the ⁇ -olefin resin having no chemical bonding crosslinking site, paraffin oil, and the styrene block copolymer having no chemical bonding crosslinking site (each suitable The same is true for things).
  • the order of addition with the polymer is not particularly limited, but from the viewpoint of further improving the dispersibility of the additive component, the elastomeric polymer (E), the ⁇ -olefin resin and / or the polymer.
  • the content of the ⁇ -olefin resin is 100 masses of the elastomer component.
  • the amount is preferably 800 parts by mass or less (more preferably 5 to 700 parts by mass, further preferably 10 to 600 parts by mass, particularly preferably 25 to 500 parts by mass, most preferably 50 to 400 parts by mass) with respect to parts. .
  • the content of such an ⁇ -olefin resin exceeds the upper limit, mechanical properties (breaking strength, compression set) tend to be lowered.
  • the content is less than the lower limit, fluidity tends to be lowered.
  • the content of the ⁇ -olefin resin in such a mixture is 800 parts by mass or less (more preferably 5 to 700 parts by mass, still more preferably 10 parts by mass with respect to 100 parts by mass of the elastomeric polymer (E). To 600 parts by mass, particularly preferably 25 to 500 parts by mass, and most preferably 35 to 400 parts by mass). If such a content is less than the lower limit, mechanical properties (breaking strength, compression set) tend to decrease, and if it is less than the lower limit, fluidity tends to decrease.
  • the paraffin oil content is preferably 600 parts by mass or less, more preferably 10 to 600 parts by mass with respect to 100 parts by mass of the elastomer component. 50 to 550 parts by mass, more preferably 75 to 500 parts by mass, and most preferably 100 to 400 parts by mass.
  • the amount is preferably 600 parts by mass or less with respect to 100 parts by mass of the elastomer component. More preferred is 15 to 550 parts by weight, still more preferred is 20 to 500 parts by weight, and most preferred is 30 to 400 parts by weight.
  • the elastomer component, the ⁇ -olefin resin, and the styrene block are mixed with the mixture as long as the object of the present invention is not impaired.
  • polymers other than polymers reinforcing agents (fillers), fillers introduced with amino groups (hereinafter simply referred to as “amino group-introduced fillers”), amino group-containing compounds other than the amino group-introduced fillers, Compound containing metal element (hereinafter simply referred to as “metal salt”), maleic anhydride modified polymer, antioxidant, antioxidant, pigment (dye), plasticizer, thixotropic agent, ultraviolet absorber, flame retardant Further, other components such as various additives such as a solvent, a surfactant (including a leveling agent), a dispersant, a dehydrating agent, a rust preventive agent, an adhesion imparting agent, an antistatic agent, and a filler can be further contained.
  • a solvent a surfactant (including a leveling agent), a dispersant, a dehydrating agent, a rust preventive agent, an adhesion imparting agent, an antistatic agent, and a filler can be further contained.
  • thermoplastic elastomer composition by including other components in the mixture, it is possible to appropriately include such components in the finally obtained thermoplastic elastomer composition.
  • additives and the like are not particularly limited, and those commonly used can be appropriately used.
  • thermoplastic-elastomer composition of the said invention can be utilized suitably.
  • the content of such other components is preferably 500 parts by mass or less with respect to 100 parts by mass of the elastomer component when the other components are polymers and reinforcing materials (fillers). More preferred is 20 to 400 parts by mass. If the content of such other components is less than the lower limit, the effect of using the other components tends to be insufficiently expressed. On the other hand, if the content exceeds the upper limit, it depends on the type of the component used. The effect of the substrate elastomer is diminished and the physical properties tend to decrease.
  • the content of the other component is 20 with respect to 100 parts by mass of the elastomer component.
  • the amount is preferably not more than part by mass, more preferably 0.1 to 10 parts by mass. If the content of such other components is less than the lower limit, the effect of using the other components tends to be insufficient, while if the upper limit is exceeded, the reaction of the substrate elastomer is adversely affected. On the other hand, physical properties tend to decrease.
  • thermoplastic elastomer composition is obtained by adding at least one raw material compound (M) of the mixed raw materials of the compound (II) that forms a covalent cross-linking site, and reacting the polymer with the raw material compound. It is a process to obtain.
  • the compound (I) that forms a hydrogen bonding cross-linking site by reacting with the cyclic acid anhydride group a compound that forms the hydrogen bonding cross-linking site described in the thermoplastic elastomer composition of the present invention (nitrogen-containing complex).
  • nitrogen-containing complex a compound that forms the hydrogen bonding cross-linking site described in the thermoplastic elastomer composition of the present invention (nitrogen-containing complex).
  • the same compounds as the compound capable of introducing a ring) can be suitably used.
  • the nitrogen-containing heterocyclic ring described in the thermoplastic elastomer composition of the present invention may be used, or the nitrogen-containing compound may be used.
  • a substituent for example, a hydroxyl group, a thiol group, an amino group, etc.
  • a cyclic acid anhydride group such as maleic anhydride
  • it is possible to introduce a compound that forms both a hydrogen bonding crosslinking site and a covalent bonding site both hydrogen bonding crosslinking site and covalent bonding site can be introduced simultaneously).
  • a side chain having both a hydrogen bonding crosslinking site and a covalent bonding site can be said to be a preferred form of a side chain having a hydrogen bonding crosslinking site).
  • the compound (I) is not particularly limited, and the compound as described above depending on the type of side chain (side chain (a) or side chain (a ′)) in the target polymer.
  • a suitable compound can be appropriately selected from (I).
  • a compound (I) from the viewpoint that higher reactivity is obtained, triazole, pyridine, which may have at least one substituent selected from a hydroxyl group, a thiol group, and an amino group, It is preferably thiadiazole, imidazole, isocyanurate, triazine and hydantoin, and more preferably triazole, pyridine, thiadiazole, imidazole, isocyanurate, triazine and hydantoin having the above-mentioned substituents.
  • the triazole, isocyanurate, and triazine are more preferable, and the triazole having the substituent is particularly preferable.
  • Examples of the triazole, pyridine, thiadiazole, imidazole and hydantoin which may have such a substituent include, for example, 4H-3-amino-1,2,4-triazole, aminopyridine, aminoimidazole and aminotriazine. Aminoisocyanurate, hydroxypyridine, hydroxyethyl isocyanurate and the like.
  • the “compound that forms a covalently crosslinked site” described in the thermoplastic elastomer composition of the present invention A compound similar to “a compound capable of forming a covalent bond” ”can be preferably used (the same applies to those suitable as the compound).
  • a compound that forms both a hydrogen bonding crosslinking site and a covalent bonding site both hydrogen bonding crosslinking site and covalent bonding site can be introduced simultaneously.
  • a side chain having both a hydrogen bonding crosslinking site and a covalent crosslinking site can be said to be a preferred form of a side chain having a covalent crosslinking site).
  • trishydroxyethyl isocyanurate, sulfamide and polyether polyol are preferable, trishydroxyethyl isocyanurate and sulfamide are more preferable, and trishydroxyethyl isocyanurate is preferable. Further preferred.
  • the compound (I) and / or (II) a compound having at least one substituent selected from a hydroxyl group, a thiol group, an amino group, and an imino group from the viewpoint of introducing a hydrogen-bonding crosslinking site. It is preferable to use it. Furthermore, as the compound (I) and / or (II), it is possible to introduce both the hydrogen-bonding crosslinking site and the covalent-bonding crosslinking site into the composition more efficiently.
  • a compound that reacts with for example, the above-mentioned cyclic acid anhydride group to form both a hydrogen-bonding cross-linking site and a covalent cross-linking site (introducing both a hydrogen-bonding cross-linking site and a covalent cross-linking site simultaneously
  • a compound capable of As the compound that forms both the hydrogen bond crosslinking site and the covalent bond site the heterocyclic ring-containing polyol, the heterocyclic ring-containing polyamine, and the heterocyclic ring-containing polythiol can be suitably used. Trishydroxyethyl isocyanurate is particularly preferred.
  • the amount of the starting compound (M) (compound (I) and / or compound (II)) added is the total amount of these compounds (if only one compound is used). ), Preferably 10 to 10 parts by weight, more preferably 0.3 to 7 parts by weight, based on 100 parts by weight of the elastomeric polymer (E) in the mixture, 0.5 More preferably, it is ⁇ 5.0 parts by mass. If the amount of compound (I) and compound (II) added (the amount based on parts by mass) is less than the lower limit, the crosslinking density does not increase and the desired physical properties tend not to be exhibited. When it exceeds, it is too many and there exists a tendency for a branch to increase and a crosslinking density to fall.
  • the amount of the one compound.) Is not particularly limited, but when the compound contains active hydrogen such as amine or alcohol, the functional group (for example, the cyclic acid anhydride group) is 100 mol%.
  • the amount of active hydrogen such as amine and alcohol in the compound is preferably 20 to 250 mol%, more preferably 50 to 150 mol%, and 80 to 120 mol%. It is more preferable that the amount is as follows.
  • the amount added is less than the lower limit, the amount of side chains introduced is small, it is difficult to make the crosslinking density sufficiently high, and physical properties such as tensile strength tend to be reduced.
  • the above upper limit is exceeded, the amount of the compound used is too large, the number of branches increases, and the crosslinking density tends to decrease.
  • the order of adding compound (I) and compound (II) is not particularly limited, and either may be added first.
  • the functional group of the elastomeric polymer having the functional group for example, the cyclic acid anhydride group
  • the part mentioned here is preferably 1 mol% or more and 50 mol% or less with respect to 100 mol% of the functional group (for example, the cyclic acid anhydride group). If it is this range, in the obtained elastomeric polymer (B), the effect of introducing a group derived from the compound (I) (for example, a nitrogen-containing heterocyclic ring) is sufficiently exhibited, and the recyclability tends to be further improved. is there.
  • the compound (II) is preferably reacted with the cyclic acid anhydride group so that a suitable number of covalent crosslinks (for example, 1 to 3 per molecule) is obtained.
  • the functional group (for example, the cyclic acid anhydride group) of the polymer and the raw material compound (M) (the compound) (I) and / or compound (II)) are chemically bonded.
  • the temperature conditions for reacting the polymer (E) with the raw material compound (M) (opening the cyclic acid anhydride group) is not limited. Depending on the temperature, it may be adjusted to a temperature at which they can react, but from the viewpoint of softening and proceeding the reaction instantaneously, the temperature is preferably 100 to 250 ° C, more preferably 120 to 230 ° C.
  • a hydrogen-bonding cross-linking site is formed at the site where the compound (I) and the cyclic acid anhydride group are reacted. Therefore, a hydrogen-bonding cross-linking site (carbonyl group) is formed on the side chain of the polymer.
  • the side chain formed (introduced) by such a reaction may contain a structure represented by the above formula (2) or (3).
  • the side chain of the polymer is covalently crosslinked. It is also possible to use a part containing a part (side chain (b) or side chain (c)).
  • the side chain formed by such a reaction can also contain a structure represented by the above formulas (7) to (9).
  • each group (structure) of the side chain in such a polymer that is, an unreacted cyclic acid anhydride group, a structure represented by the above formulas (2), (3) and (7) to (9) Etc. can be confirmed by commonly used analytical means such as NMR and IR spectra.
  • the raw material compound (M) used in such a reaction is preferably the aforementioned compounds (M1) to (M6).
  • the aforementioned reactants (I) to (VI) can be prepared.
  • the combination of the elastomeric polymer (E) having a functional group used in the reaction and the raw material compound (M) is the following combination from the viewpoint of allowing the reaction with the functional group to proceed more efficiently.
  • the elastomer component is at least one selected from the group consisting of the reactants (I) to (VI). It can be a seed reactant.
  • the additive component having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the elastomer component; Can be obtained.
  • the elastomeric polymer (A) and the elastomeric polymer (B) in the thermoplastic elastomer composition thus obtained are the side chain (a), side chain (a ′), side chain ( b) and the side chain (c) each derived from a reaction with a cyclic acid anhydride group (for example, containing structures represented by the above formulas (2), (3) and (7) to (9)) Except for the side chain and the like, the elastomeric polymer (A) and the elastomeric polymer (B) described in the thermoplastic elastomer composition of the present invention are the same.
  • the elastomeric polymer having the functional group in the side chain is a maleic anhydride-modified elastomeric polymer (E1)
  • the raw material compound ( M) has at least one substituent selected from triazole, a hydroxyl group, a thiol group and an amino group which may have at least one substituent selected from a hydroxyl group, a thiol group and an amino group. It may have at least one substituent selected from pyridine, hydroxyl group, thiol group and amino group, and at least one substituent selected from thiadiazole, hydroxyl group, thiol group and amino group.
  • Preferred embodiment of the product (I) is preferably at least one selected from the group consisting of: That is, in the present invention, the elastomer component is a maleic anhydride-modified elastomeric polymer (E1) and a triazole or hydroxyl group that may have at least one substituent selected from a hydroxyl group, a thiol group, and an amino group.
  • the elastomer component is a maleic anhydride-modified elastomeric polymer (E1) and a triazole or hydroxyl group that may have at least one substituent selected from a hydroxyl group, a thiol group, and an amino group.
  • Pyridine optionally having at least one substituent of thiol group and amino group, hydroxyl group, thiadiazole optionally having at least one substituent of thiol group and amino group, hydroxyl group Imidazole optionally having at least one substituent among thiol group and amino group, isocyanurate optionally having at least one substituent selected from hydroxyl group, thiol group and amino group, Triazine, hydroxyl group, and thiyl optionally having at least one substituent selected from hydroxyl group, thiol group and amino group.
  • At least one compound selected from the group consisting of hydantoin, trishydroxyethyl isocyanurate, sulfamide, and polyether polyol which may have at least one substituent selected from the group consisting of an alcohol group and an amino group
  • the compound (M1 It is preferably at least one selected from the group consisting of reactants with compounds selected from
  • the elastomer component is treated with the maleic anhydride-modified elastomeric polymer (E1) and a hydroxyl group.
  • thermoplastic elastomer composition of the present invention that can have a sufficiently high tensile strength and a sufficiently high friction resistance can be efficiently produced. Is possible.
  • thermoplastic elastomer composition containing an elastomeric polymer (A) as an elastomer component and a thermoplastic elastomer composition containing an elastomeric polymer (B) as an elastomer component were separately produced. Then, it is good also as a thermoplastic elastomer composition which mixes this and contains elastomeric polymers (A) and (B) as an elastomer component.
  • thermoplastic elastomer composition containing a combination of elastomeric polymers (A) and (B) as an elastomer component
  • the ratio of the elastomeric polymer (A) and the elastomeric polymer (B) is appropriately changed.
  • desired characteristics can be exhibited by appropriately changing the ratio of the hydrogen-bonding cross-linking site and the covalent cross-linking site existing in the composition.
  • thermoplastic elastomer composition of this invention which is a method suitably usable as a method for manufacturing the thermoplastic elastomer composition of this invention was demonstrated, the thermoplastic elastomer composition of this invention was demonstrated.
  • the method for producing is not limited to the method for producing the thermoplastic elastomer composition of the present invention, and other methods may be appropriately employed.
  • the elastomeric polymer (D), the polymer (Z), the raw material compound, and the additive component are simultaneously added to form a mixture, and the elastomeric polymer (D) reacting the raw material compound to obtain a thermoplastic elastomer composition, forming a mixture of the elastomeric polymer (D), the polymer (Z), and the raw material compound,
  • a method of adding the additive component to a mixture containing the elastomer component may be appropriately employed.
  • thermoplastic elastomer composition obtained in each example and each comparative example First, a method for evaluating the characteristics of the thermoplastic elastomer composition obtained in each example and each comparative example will be described.
  • thermoplastic elastomer composition obtained in each Example and each Comparative Example was used in an amount of 42 g, and the thermoplastic elastomer was heated at a temperature of 200 ° C. and preheated for 3 minutes. After placing in a 150 mm horizontal mold, pressure was applied by a hot press under conditions of temperature: 200 ° C., pressure: 18 MPa, pressurization time: 5 minutes, then pressure: 18 MPa, pressurization time: By applying pressure under the condition of 2 minutes and taking out from the mold, 2 mm thick sheets (thickness 2 mm, length 150 mm, width 150 mm) were formed respectively.
  • thermoplastic elastomer compositions obtained in each Example and each Comparative Example 15 g was used, and a disk-shaped sample having a diameter of 16.0 mm and a thickness of 8 mm was respectively obtained using a dedicated mold (dedicated mold). Prepared.
  • Example 1 First, a styrene block copolymer (styrene-ethylene-butylene-styrene block copolymer (SEBS): trade name “G1633” manufactured by Clayton Co., Ltd., molecular weight: 400,000 to 500,000, styrene content: 30 mass%) 20 0.0 g was put into a pressure kneader and kneaded at 180 ° C., while paraffin oil (trade name “Super Oil M Series P500S” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 472 mm 2 / s, Cp value: 68.7%, aniline point: 123 ° C.) was added dropwise, and styrene-ethylene-butylene-styrene block copolymer and paraffin oil were mixed for 1 minute.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • maleic anhydride-modified ethylene-butene copolymer (maleinized EBM: trade name “Toughmer MH5040”, crystallinity: 4%) manufactured by Mitsui Chemicals, Inc., ⁇ -olefin was added in the pressure kneader.
  • EBM Ethylene-butene copolymer
  • crystallinity 10%
  • MFR 35 g / 10 min (2.16 kg, 190 ° C.)
  • Mw 100,000
  • an antioxidant trade name “AO-50” manufactured by Adeka Co., Ltd.
  • AO-50 trade name “AO-50” manufactured by Adeka Co., Ltd.
  • side chain (i) A side chain containing a structure represented by the following formula (26) (hereinafter sometimes simply referred to as “side chain (i)”), a side chain containing a structure represented by the following formula (27) ( Hereinafter, in some cases, simply referred to as “side chain (ii)”) and a side chain containing a structure represented by the following formula (28) (hereinafter, sometimes simply referred to as “side chain (iii)”).
  • An elastomeric polymer mainly having the side chain (iii) is formed (note that the side chain (i) to (iii) are stoichiometrically determined from the raw materials used). If considered, side chain (iii) is mainly formed It is clear that the side chain (i) and / or the side chain (ii) can be formed depending on the position of the side chain of the polymer, etc. Hereinafter, it is formed by reaction based on the raw materials used. In some cases, the type of the side chain that is considered to be the side chain (iii) is simply referred to as “the elastomeric polymer mainly having the side chain (iii)”.
  • such an elastomeric polymer has a glass transition point of 25 ° C. or lower because the main chain is composed of an ethylene-butene copolymer (ethylene and butene). Further, such an elastomeric polymer can be regarded as having an SP value of 8.0 from the type of raw material used (maleic anhydride-modified ethylene-butene copolymer).
  • thermoplastic elastomer composition thus obtained is introduced into a sheet-forming mold (thickness 2 mm, length 150 mm, width 150 mm) heated to 200 ° C., and preheated for 3 minutes without applying pressure.
  • thermoplastic elastomer composition (thickness 2 mm, length 150 mm, 150 mm wide) was obtained.
  • the evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 1.
  • Example 2 Instead of using 0.03 g of carbon nanotubes (trade name “ZeonanoSG101” manufactured by Nippon Zeon), 0.03 g of natural silicate-based nanofibers (trade name “Imogolite” manufactured by Astech) was used. In the same manner as in Example 1, a thermoplastic elastomer composition was prepared.
  • Example 3 Carbon nanotubes (Nippon Zeon Co., Ltd. under the trade name “ZeonanoSG101”) to 0.03g layered titanic acid compound instead of using (Tokyo Kasei Co., Ltd. under the trade name “potassium titanate", chemical formula: K 2 Ti 6 O 13, powder A thermoplastic elastomer composition was prepared in the same manner as in Example 1 except that 0.03 g was used.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 1. The evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 1.
  • thermoplastic elastomer composition was prepared. The evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 1.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 1. The evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 1.
  • Example 4 instead of using 7.5 g of ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals), 15.0 g of high density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene) is used. Instead of using 0.262 g of trishydroxyethyl isocyanurate (trade name “Tanac” manufactured by Nissei Sangyo Co., Ltd.), 0.102 g of pentaerythritol (trade name “Neuiser P” manufactured by Nippon Synthetic Chemical Co., Ltd.) is used.
  • EBM ethylene-butene copolymer
  • HDPE high density polyethylene
  • pentaerythritol trade name “Neuiser P” manufactured by Nippon Synthetic Chemical Co., Ltd.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 1. The evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component becomes a reaction product of a maleic anhydride-modified ethylene-butene copolymer and pentaerythritol, and the side chain is formed by the reaction of maleic anhydride group and the hydroxy group of pentaerythritol, resulting in a carboxylate group (bonding). Part)) (having a hydrogen-bonding crosslinking site and a covalent bonding site).
  • Example 5 Instead of using 7.5 g of ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals), 15.0 g of high density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene) is used.
  • EBM ethylene-butene copolymer
  • HDPE high density polyethylene
  • thermoplastic elastomer composition in the same manner as.
  • the evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component is a reaction product of maleic anhydride-modified ethylene-butene copolymer and 2,4-diamino-6-phenyl-1,3,5-triazine, and the side chain is a maleic anhydride group and 2,4 -Formed by a reaction with an amino group (-NH 2 ) in diamino-6-phenyl-1,3,5-triazine and having a crosslinked structure containing a triazine ring and an amide bond (formula: -CONH-) (It will have a hydrogen-bonding cross-linking site and a covalent bond cross-linking site).
  • thermoplastic elastomer composition was prepared in the same manner as in Example 1 except that 0.527 g of the trade name “Tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate”) was used.
  • Table 2 The evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component is a reaction product of a maleic anhydride-modified ethylene-butene copolymer and tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, and the side chain is a maleic anhydride group and tris-[( 3-Mercaptopropionyloxy) -ethyl] -isocyanurate, formed by reaction with thiol group (—SH), isocyanurate ring in side chain and thioester (group represented by —CO—S—) , Having a cross-linked structure containing a carboxy group (having a hydrogen bond cross-linking site and a covalent bond cross-linking site).
  • Example 7 Instead of using 7.5 g of ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals), 15.0 g of high density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene) is used.
  • EBM ethylene-butene copolymer
  • HDPE high density polyethylene
  • thermoplastic elastomer composition In the same manner as in Example 1 except that 0.03 g of natural nanofibers (trade name “Imogolite” manufactured by Astec Co., Ltd.) was used instead of using 0.03 g of “ZeonanoSG101”).
  • 0.03 g of natural nanofibers trade name “Imogolite” manufactured by Astec Co., Ltd.
  • ZeonanoSG101 0.03 g of “ZeonanoSG101”.
  • the elastomer component becomes a reaction product of hydroxyl-terminated polybutadiene and 2,6-pyridinedicarboxylic acid, and the side chain is formed by the reaction of the hydroxyl group and the carboxy group in 2,6-pyridinedicarboxylic acid. It has a crosslinked structure containing a ring and a carboxylic acid ester group (bonding moiety) (having a hydrogen-bonding crosslinking site and a covalent bonding site).
  • Example 8 Instead of using 7.5 g of ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals), 15.0 g of high density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene) is used.
  • EBM ethylene-butene copolymer
  • HDPE high density polyethylene
  • thermoplastic elastomer instead of using 10.0 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), carboxy group-containing polyisoprene (trade name “LIR-410” manufactured by Kuraray Co., Ltd., carboxy equivalent: 4000) 0.0 g was used, the amount of trishydroxyethyl isocyanurate (trade name “Tanac” manufactured by Nissei Sangyo Co., Ltd.) was changed from 0.262 g to 0.218 g, and carbon nanotubes (trade name of Nippon Zeon Co., Ltd.) Instead of using 0.03 g of “Zeonano SG101”), a layered titanate compound (Tokyo Kasei Co., Ltd.) Trade name "Titanium potassium acid", chemical formula except that the K 2 Ti 6 O 13 "powder) was 0.03g utilized to prepare a thermoplastic elastomer composition in the same manner as in Example 1. The evaluation results of the properties
  • the elastomer component becomes a reaction product of carboxy group-containing polyisoprene and trishydroxyethyl isocyanurate, the side chain is formed by the reaction of carboxy group and the hydroxyl group of trishydroxyethyl isocyanurate, the side chain isocyanurate ring, It has a cross-linked structure containing a carboxylic acid ester group (bonding moiety) (has a hydrogen bond cross-linking site and a covalent bond cross-linking site).
  • Example 9 Instead of using 10.0 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), 10.0 g of carboxy group-containing polyisoprene (trade name “LIR-410” manufactured by Kuraray Co., Ltd., carboxy equivalent: 4000) is used. Furthermore, instead of using 0.262 g of trishydroxyethyl isocyanurate (trade name “Tanac” manufactured by Nissei Sangyo Co., Ltd.), pentaerythritol (trade name “Neuiser P” manufactured by Nippon Synthetic Chemical Co., Ltd.) A thermoplastic elastomer composition was prepared in the same manner as in Example 1 except that 0085 g was used. The evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component becomes a reaction product of carboxy group-containing polyisoprene and trishydroxyethyl isocyanurate, the side chain is formed by the reaction of the carboxy group and the hydroxyl group of pentaerythritol, and the side chain is a carboxylic acid ester group (bonding portion). (Having a hydrogen-bonding cross-linking site and a covalent bond cross-linking site).
  • Example 10 Instead of using 7.5 g of ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals), 15.0 g of high density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene) is used.
  • EBM ethylene-butene copolymer
  • HDPE high density polyethylene
  • thermoplastic elastomer in the same manner as in Example 1 except that 0.03 g of natural nanofibers (trade name “Imogolite” manufactured by Astec Co., Ltd.) was used instead of using 0.03 g of the product name “Zeonano SG101” manufactured by the company.
  • a composition was prepared.
  • the evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component is a reaction product of carboxy group-containing polyisoprene and 2,4-diamino-6-phenyl-1,3,5-triazine, and the side chain is a carboxy group and 2,4-diamino-6-phenyl-. It is formed by a reaction with an amino group (—NH 2 ) in 1,3,5-triazine, and has a crosslinked structure containing a triazine ring and an amide bond (formula: —CONH—) (hydrogen bonding bridge) It has a site and a covalent cross-linking site.
  • Example 11 Instead of using 7.5 g of ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals), 15.0 g of high density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene) is used.
  • EBM ethylene-butene copolymer
  • HDPE high density polyethylene
  • thermoplastic elastomer composition was prepared.
  • potassium acid ", chemical formula: K 2 Ti 6 O 13" and except that the powder) was 0.03g utilized in the same manner as in example 1 to prepare a thermoplastic elastomer composition.
  • the evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component is a reaction product of carboxy group-containing polyisoprene and tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, and the side chain is carboxy group and tris-[(3-mercaptopropionyloxy)- Ethyl] -isocyanurate is formed by reaction with a thiol group (—SH) and has a cross-linked structure containing an isocyanurate ring and a thioester (group represented by the formula —CO—S—) in the side chain. (Having a hydrogen-bonding cross-linking site and a covalent bond cross-linking site).
  • Example 12 Instead of using 10.0 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), an amino group-containing polyethyleneimine (trade name “Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd., amine value: 18 mmol / g) 10.0 g of trishydroxyethyl isocyanurate (trade name “Tanac” manufactured by Nissei Sangyo Co., Ltd.) instead of using 0.262 g of 2,6-pyridinedicarboxylic acid (trade name “product of Air Water” A thermoplastic elastomer composition was prepared in the same manner as in Example 1 except that 1.504 g of 2,6-pyridinedicarboxylic acid ”) was used. The evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component becomes a reaction product of an amino group-containing polyethyleneimine and 2,6-pyridinedicarboxylic acid, and the side chain is formed by the reaction of the amino group and the carboxy group in 2,6-pyridinedicarboxylic acid.
  • Example 13 Instead of using 7.5 g of ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals), 15.0 g of high density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene) is used.
  • EBM ethylene-butene copolymer
  • HDPE high density polyethylene
  • the elastomer component becomes a reaction product of amino group-containing polyethyleneimine and trisepoxypropyl isocyanurate
  • the side chain is formed by the reaction of amino group and epoxy group in trisepoxypropyl isocyanurate, and the isocyanurate ring is formed in the side chain.
  • a hydroxyl group and an imino bond can be formed (a side chain can be a side chain including both a hydrogen-bonding crosslinking site and a covalent bonding site). (It has a hydrogen bonding cross-linking site and a covalent bonding cross-linking site).
  • Example 14 Instead of using 7.5 g of ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals), 15.0 g of high density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene) is used. Then, instead of using 10.0 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), 10.0 g of alkoxysilyl group-containing polyethylene (trade name “Linkron” manufactured by Mitsubishi Chemical Corporation) was used.
  • EBM ethylene-butene copolymer
  • HDPE high density polyethylene
  • maleinized EBM 10.0 g of maleic anhydride-modified ethylene-butene copolymer
  • alkoxysilyl group-containing polyethylene trade name “Linkron” manufactured by Mitsubishi Chemical Corporation
  • thermoplastic elastomer composition The evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component is a reaction product of an alkoxysilyl group-containing polyethylene and trishydroxyethyl isocyanurate, and the side chain is formed by the reaction of an alkoxysilyl group and a hydroxyl group (hydroxy group) in trishydroxyethyl isocyanurate.
  • a cross-linked structure containing an isocyanurate ring and a silyloxy bond (a side chain can be a side chain containing both a hydrogen-bonded cross-linked site and a covalent-bonded cross-linked site) (It will have a hydrogen-bonding cross-linking site and a covalent bond cross-linking site).
  • thermoplastic elastomer composition was prepared in the same manner as in Example 1. The evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component is a reaction product of an alkoxysilyl group-containing polyethylene and pentaerythritol, and the side chain is formed by the reaction of an alkoxysilyl group and a hydroxyl group (hydroxy group) in trishydroxyethyl isocyanurate.
  • a side chain can be a side chain including both a hydrogen-bonded cross-link site and a covalent bond site) (hydrogen-bond cross-link site) And a covalently cross-linked site).
  • Example 16 Instead of using 7.5 g of ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals), 15.0 g of high density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene) is used. Then, instead of using 10.0 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), 10.0 g of alkoxysilyl group-containing polyethylene (trade name “Linkron” manufactured by Mitsubishi Chemical Corporation) was used.
  • EBM ethylene-butene copolymer
  • HDPE high density polyethylene
  • maleinized EBM 10.0 g of maleic anhydride-modified ethylene-butene copolymer
  • alkoxysilyl group-containing polyethylene trade name “Linkron” manufactured by Mitsubishi Chemical Corporation
  • thermoplastic elastomer composition under the trade name " imogolite ") was 0.03g utilized in the same manner as in Example 1 to prepare a thermoplastic elastomer composition instead of 0.03g utilized.
  • the evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component is a reaction product of an alkoxysilyl group-containing polyethylene and tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, and the side chain is an alkoxysilyl group and tris-[(3-mercaptopropionyloxy).
  • -Ethyl] -isocyanurate is formed by reaction with thiol group (-SH) and has a cross-linked structure containing an isocyanurate ring and a mercaptosilyl bond in the side chain (covalent bond with hydrogen-bonding cross-linking site) Having a crosslinkable site)
  • thiol group -SH
  • HDPE high density polyethylene
  • thermoplastic elastomer composition was prepared in the same manner as in Example 1 except that.
  • the evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component is a reaction product of epoxidized styrene-butadiene block copolymer and 2,4-diamino-6-phenyl-1,3,5-triazine
  • the side chain is an epoxy group and tris-[((3 -Mercaptopropionyloxy) -ethyl] -is formed by reaction with a thiol group (-SH) in isocyanurate and has a cross-linked structure containing an isocyanurate ring, a hydroxyl group and an imino bond in the side chain (hydrogen bond) Having a crosslinking site and a covalent crosslinking site).
  • Example 18 Instead of using 10.0 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), 10.0 g of epoxidized styrene-butadiene block copolymer (trade name “Epofriend” manufactured by Daicel) is used.
  • maleinized EBM maleic anhydride-modified ethylene-butene copolymer
  • epoxidized styrene-butadiene block copolymer trade name “Epofriend” manufactured by Daicel
  • thermoplastic elastomer composition was prepared in the same manner as in Example 1 except that 1.75 g of the trade name “Tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate”) was used.
  • Table 2 The evaluation results of the properties of the thermoplastic elastomer composition thus obtained are shown in Table 2.
  • the elastomer component is a reaction product of an epoxidized styrene-butadiene block copolymer and tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, and the side chain is an epoxy group and tris-[(3- Mercaptopropionyloxy) -ethyl] -isocyanurate is formed by reaction with thiol group (—SH) and has a cross-linked structure containing isocyanurate ring, hydroxyl group, and thioether group in the side chain (hydrogen bond) Having a crosslinking site and a covalent crosslinking site).
  • thiol group —SH
  • thermoplastic elastomer compositions obtained in Examples 6, 9, 12, 15, and 18 having the same composition as in Example 1 except for the type of the elastomer component.
  • the tensile strength and abrasion resistance comparable to those of Example 1 were obtained, and even higher tensile strengths were obtained compared to the thermoplastic elastomer compositions obtained in Comparative Examples 1 to 3. It was confirmed that strength and wear resistance were achieved.
  • thermoplastic elastomer compositions obtained in Examples 4 to 5, 7 to 8, 10 to 11, 13 to 14, and 16 to 17 are all Examples 6 and 9 having the same composition as Example 1.
  • 12, 15 and 18, higher tensile strength and abrasion resistance have been achieved compared to the thermoplastic elastomer compositions obtained in accordance with the present invention. It was found that the tensile strength can be made higher, and it is possible to have a sufficiently high wear resistance.
  • thermoplastic elastomer composition As described above, according to the present invention, it is possible to make the tensile strength based on 100% modulus and breaking strength higher, and to have sufficiently high wear resistance. It becomes possible to provide the thermoplastic elastomer composition.
  • thermoplastic elastomer composition of the present invention can exhibit various properties as described above in a well-balanced manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、膨張黒鉛、カーボンナノチューブ、フラーレン、グラフェン、ケイ酸塩系天然ナノファイバー、シルセスキオキサン及び層状チタン酸化合物からなる群から選択される少なくとも1種であり、かつ、含有量が前記エラストマー成分100質量部に対して20質量部以下である添加成分と、を含有してなる熱可塑性エラストマー組成物。

Description

熱可塑性エラストマー組成物及びその製造方法
 本発明は、熱可塑性エラストマー組成物並びにその製造方法に関する。
 熱可塑性エラストマーは、その成形加工時に加工温度で溶融し、周知の樹脂成形法で成形することが可能であることから、産業上極めて有用な材料である。このような熱可塑性エラストマーとしては、例えば、特開2006-131663号公報(特許文献1)において、カルボニル含有基および含窒素複素環を有する水素結合性架橋部位を含有する側鎖と、共有結合性架橋部位を含有する他の側鎖とを有するガラス転移点が25℃以下のエラストマー性ポリマーからなる熱可塑性エラストマーが開示されている。しかしながら、このような特許文献1に記載の熱可塑性エラストマーは、100%モジュラス及び破断強度を基準とする引張強度や、耐摩耗性の点で必ずしも十分なものではなかった。
特開2006-131663号公報
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、100%モジュラス及び破断強度を基準とする引張強度をより高度なものとすることが可能であり、しかも十分に高度な耐摩耗性を有することを可能とする熱可塑性エラストマー組成物を提供することを目的とする。
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、膨張黒鉛、カーボンナノチューブ、フラーレン、グラフェン、ケイ酸塩系天然ナノファイバー、シルセスキオキサン及び層状チタン酸化合物からなる群から選択される少なくとも1種であり、かつ、含有量が前記エラストマー成分100質量部に対して20質量部以下である添加成分とを含有せしめることにより、得られる熱可塑性エラストマー組成物の100%モジュラス及び破断強度を基準とする引張強度をより高度なものとすることが可能であるとともに、かかる組成物を十分に高度な耐摩耗性を有するものとすることが可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明の熱可塑性エラストマー組成物は、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 膨張黒鉛、カーボンナノチューブ、フラーレン、グラフェン、ケイ酸塩系天然ナノファイバー、シルセスキオキサン及び層状チタン酸化合物からなる群から選択される少なくとも1種であり、かつ、含有量が前記エラストマー成分100質量部に対して20質量部以下である添加成分と、
を含有してなるものである。
 上記本発明の熱可塑性エラストマー組成物においては、前記エラストマー成分が、下記反応物(I)~(VI):
[反応物(I)] 無水マレイン酸変性エラストマー性ポリマーと、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物、トリスヒドロキシエチルイソシアヌレート、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物との反応物
[反応物(II)] 水酸基含有エラストマー性ポリマーと、カルボキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物との反応物
[反応物(III)] カルボキシ基含有エラストマー性ポリマーと、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物との反応物
[反応物(IV)] アミノ基含有エラストマー性ポリマーと、カルボキシ基、エポキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物との反応物
[反応物(V)] アルコキシシリル基含有エラストマー性ポリマーと、水酸基、カルボキシ基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物との反応物
[反応物(VI)] エポキシ基含有エラストマー性ポリマーと、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物との反応物
からなる群から選択される少なくとも1種の反応物であることが好ましい。
 さらに、上記本発明の熱可塑性エラストマー組成物においては、前記エラストマー成分として含まれるポリマーの主鎖が、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、及び、ポリアミド系エラストマー性ポリマーの中から選択される少なくとも1種からなることが好ましい。
 本発明によれば、100%モジュラス及び破断強度を基準とする引張強度をより高度なものとすることが可能であり、しかも十分に高度な耐摩耗性を有することを可能とする熱可塑性エラストマー組成物を提供することが可能となる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 本発明の熱可塑性エラストマー組成物は、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 膨張黒鉛、カーボンナノチューブ、フラーレン、グラフェン、ケイ酸塩系天然ナノファイバー、シルセスキオキサン及び層状チタン酸化合物からなる群から選択される少なくとも1種であり、かつ、含有量が前記エラストマー成分100質量部に対して20質量部以下である添加成分と、
を含有してなるものである。
 (エラストマー成分)
 このようなエラストマー成分は、上述のエラストマー性ポリマー(A)~(B)からなる群から選択される少なくとも1種のものである。このようなエラストマー性ポリマー(A)~(B)において、「側鎖」とは、エラストマー性ポリマーの側鎖および末端をいう。また、「カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(以下、便宜上、場合により「側鎖(a)」と称する。)」とは、エラストマー性ポリマーの主鎖(前記エラストマー成分として含まれるポリマーの主鎖)を形成する原子(通常、炭素原子)に、水素結合性架橋部位としてのカルボニル含有基および/または含窒素複素環(より好ましくはカルボニル含有基および含窒素複素環)が化学的に安定な結合(共有結合)をしていることを意味する。また、「側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有され」とは、水素結合性架橋部位を有する側鎖(以下、便宜上、場合により「側鎖(a’)」と称する。)と、共有結合性架橋部位を有する側鎖(以下、便宜上、場合により「側鎖(b)」と称する。)の双方の側鎖を含むことによってポリマーの側鎖に水素結合性架橋部位及び共有結合性架橋部位の双方が含有されている場合の他、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖(1つの側鎖中に水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖:以下、このような側鎖を便宜上、場合により「側鎖(c)」と称する。)を含むことで、ポリマーの側鎖に、水素結合性架橋部位及び共有結合性架橋部位の双方が含有されている場合を含む概念である。
 このようなエラストマー性ポリマー(A)~(B)の主鎖(前記エラストマー成分として含まれるポリマーの主鎖:その主鎖部分を形成するポリマー)は、一般的に公知の天然高分子または合成高分子であって、そのガラス転移点が室温(25℃)以下のポリマーからなるものであればよく(いわゆるエラストマーからなるものであればよく)、特に限定されるものではない。そのため、エラストマー性ポリマー(A)~(B)は、例えば、天然高分子または合成高分子等のガラス転移点が室温(25℃)以下のエラストマー性ポリマーを主鎖とし、かつ、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を含むもの;天然高分子または合成高分子等のガラス転移点が室温(25℃)以下のエラストマー性ポリマーを主鎖とし、かつ、側鎖として、水素結合性架橋部位を有する側鎖(a’)及び共有結合性架橋部位を有する側鎖(b)を含有するもの;天然高分子または合成高分子等のガラス転移点が室温(25℃)以下のエラストマー性ポリマーを主鎖とし、かつ、水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖(c)を含むもの;等としてもよい。
 このようなエラストマー性ポリマー(A)~(B)の主鎖(前記エラストマー成分として含まれるポリマーの主鎖:その主鎖部分を形成するポリマー)としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、1,2-ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、エチレン-プロピレン-ジエンゴム(EPDM)などのジエン系ゴムおよびこれらの水素添加物;エチレン-プロピレンゴム(EPM)、エチレン-アクリルゴム(AEM)、エチレン-ブテンゴム(EBM)、クロロスルホン化ポリエチレン、アクリルゴム、フッ素ゴム、ポリエチレンゴム、ポリプロピレンゴムなどのオレフィン系ゴム;エピクロロヒドリンゴム;多硫化ゴム;シリコーンゴム;ウレタンゴム;等が挙げられる。
 また、前記エラストマー性ポリマー(A)~(B)の主鎖(前記エラストマー成分として含まれるポリマーの主鎖:その主鎖部分を形成するポリマー)は、樹脂成分を含むエラストマー性のポリマーからなるものであってもよく、例えば、水素添加されていてもよいポリスチレン系エラストマー性ポリマー(例えば、SBS、SIS、SEBS等)、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、ポリアミド系エラストマー性ポリマー等が挙げられる。
 このようなエラストマー性ポリマー(A)~(B)の主鎖(前記エラストマー成分として含まれるポリマーの主鎖)としては、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、及び、ポリアミド系エラストマー性ポリマーの中から選択される少なくとも1種が好ましい。また、このような前記エラストマー性ポリマー(A)~(B)の主鎖(前記エラストマー成分として含まれるポリマーの主鎖)としては、老化しやすい二重結合がないという観点からは、ジエン系ゴムの水添物、オレフィン系ゴムが好ましく、コストの低さ、反応性の高さ(無水マレイン酸等の化合物のエン反応が可能な二重結合を多数有する)の観点からは、ジエン系ゴムが好ましい。
 さらに、エラストマー性ポリマー(A)~(B)は、液状または固体状であってもよく、その分子量は特に限定されず、本発明の熱可塑性エラストマー組成物が用いられる用途や要求される物性等に応じて適宜選択することができる。
 本発明の熱可塑性エラストマー組成物を加熱(脱架橋等)した時の流動性を重視する場合は、上記エラストマー性ポリマー(A)~(B)は液状であることが好ましく、例えば、主鎖部分がイソプレンゴム、ブタジエンゴム等のジエン系ゴムである場合には、エラストマー性ポリマー(A)~(B)を液状のものとするために、該主鎖部分の重量平均分子量が1,000~100,000であることが好ましく、1,000~50,000程度であることが特に好ましい。
 一方、本発明の熱可塑性エラストマー組成物の強度を重視する場合は、上記エラストマー性ポリマー(A)~(B)は固体状であることが好ましく、例えば、主鎖部分がイソプレンゴム、ブタジエンゴム等のジエン系ゴムである場合には、エラストマー性ポリマー(A)~(B)を固体状のものとするために、該主鎖部分の重量平均分子量が100,000以上であることが好ましく、500,000~1,500,000程度であることが特に好ましい。
 このような重量平均分子量は、ゲルパーミエションクロマトグラフィー(Gel permeation chromatography(GPC))により測定した重量平均分子量(ポリスチレン換算)である。測定にはテトラヒドロフラン(THF)を溶媒として用いることが好ましい。
 本発明の熱可塑性エラストマー組成物においては、前記エラストマー性ポリマー(A)~(B)は2種以上を混合して用いることができる。この場合の各エラストマー性ポリマー同士の混合比は、本発明の熱可塑性エラストマー組成物が用いられる用途や要求される物性等に応じて任意の比率とすることができる。
 また、前記エラストマー性ポリマー(A)~(B)のガラス転移点は、前述のように25℃以下である。エラストマー性ポリマーのガラス転移点がこの範囲であれば、本発明の熱可塑性エラストマー組成物が室温でゴム状弾性を示すためである。また、本発明において「ガラス転移点」は、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により測定したガラス転移点である。測定に際しては、昇温速度は10℃/minにするのが好ましい。
 このようなエラストマー性ポリマー(A)~(B)の主鎖(前記エラストマー成分として含まれるポリマーの主鎖)は、エラストマー性ポリマー(A)~(B)のガラス転移点が25℃以下となり、得られる熱可塑性エラストマー組成物からなる成形物が室温(25℃)でゴム状弾性を示すことから、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、1,2-ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、エチレン-プロピレン-ジエンゴム(EPDM)、ブチルゴム(IIR)などのジエン系ゴム;エチレン-プロピレンゴム(EPM)、エチレン-アクリルゴム(AEM)、エチレン-ブテンゴム(EBM)などのオレフィン系ゴム;であることが好ましい。また、前記エラストマー性ポリマー(A)~(B)の主鎖に、それぞれオレフィン系ゴムを用いると、得られる熱可塑性エラストマー組成物の引張強度が向上し、二重結合が存在しないため組成物の劣化がより十分に抑制される傾向にある。
 エラストマー性ポリマー(A)~(B)に用いることが可能な前記スチレン-ブタジエンゴム(SBR)の結合スチレン量や、水添エラストマー性ポリマーの水添率等は、特に限定されず、本発明の熱可塑性エラストマー組成物が用いられる用途や、組成物に要求される物性等に応じて任意の比率に調整することができる。
 また、上記エラストマー性ポリマー(A)~(B)の主鎖(前記エラストマー成分として含まれるポリマーの主鎖)として、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリルゴム(AEM)、エチレン-プロピレンゴム(EPM)、エチレン-ブテンゴム(EBM)を用いる場合、室温における良好なゴム状弾性発現の観点から、特に、結晶化度が10%未満(より好ましくは5~0%)のものであることが好ましい。また、上記エラストマー性ポリマー(A)~(B)の主鎖として、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリルゴム(AEM)、エチレン-プロピレンゴム(EPM)、エチレン-ブテンゴム(EBM)を用いる場合、そのエチレン含有量は、好ましくは10~90モル%であり、より好ましくは30~90モル%である。エチレン含有量がこの範囲であれば、熱可塑性エラストマー(組成物)としたときの圧縮永久歪、機械的強度、特に引張強度に優れるため好ましい。
 さらに、前記エラストマー性ポリマー(A)~(B)としては、室温における良好なゴム状弾性発現の観点から、非晶性のものが好ましい。また、このようなエラストマー性ポリマー(A)~(B)としては、一部に結晶性(結晶構造)を有するエラストマーであってもよいが、この場合であっても、結晶化度が10%未満(特に好ましくは5~0%)であることが好ましい。なお、このような結晶化度は、測定装置としてX線回折装置(例えば、リガク社製の商品名「MiniFlex300」を用い、回折ピークを測定し、結晶性/非晶性由来の散乱ピークの積分比を計算することにより求めることができる。
 また、上記エラストマー性ポリマー(A)~(B)は、上述のように、側鎖として、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a);水素結合性架橋部位を含有する側鎖(a’)及び共有結合性架橋部位を含有する側鎖(b);並びに、水素結合性架橋部位及び共有結合性架橋部位を含有する側鎖(c);のうちの少なくとも1種を有するものとなる。なお、本発明において、側鎖(c)は、側鎖(a’)としても機能しつつ側鎖(b)としても機能するような側鎖であるとも言える。以下において、各側鎖を説明する。
 <側鎖(a’):水素結合性架橋部位を含有する側鎖>
 水素結合性架橋部位を含有する側鎖(a’)は、水素結合による架橋を形成し得る基(例えば、水酸基、後述の側鎖(a)に含まれる水素結合性架橋部位等)を有し、その基に基づいて水素結合を形成する側鎖であればよく、その構造は特に制限されるものではない。ここにおいて、水素結合性架橋部位は、水素結合によりポリマー同士(エラストマー同士)を架橋する部位である。なお、水素結合による架橋は、水素のアクセプター(孤立電子対を含む原子を含有する基等)と、水素のドナー(電気陰性度が大きな原子に共有結合した水素原子を備える基等)とがあって初めて形成されることから、エラストマー同士の側鎖間において水素のアクセプターと水素のドナーの双方が存在しない場合には、水素結合による架橋が形成されない。そのため、エラストマー同士の側鎖間において、水素のアクセプターと水素のドナーの双方が存在することによって初めて、水素結合性架橋部位が系中に存在することとなる。なお、本発明においては、エラストマー同士の側鎖間において、水素のアクセプターとして機能し得る部分(例えばカルボニル基等)と、水素のドナーとして機能し得る部分(例えば水酸基等)の双方が存在することをもって、その側鎖の水素のアクセプターとして機能し得る部分とドナーとして機能し得る部分とを、水素結合性架橋部位と判断することができる。
 このような側鎖(a’)中の水素結合性架橋部位としては、より強固な水素結合を形成するといった観点から、以下において説明する、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位(側鎖(a)に含まれる水素結合性架橋部位)であることが好ましい。すなわち、かかる側鎖(a’)としては、後述の側鎖(a)がより好ましい。また、同様の観点で、前記側鎖(a’)中の水素結合性架橋部位としては、カルボニル含有基および含窒素複素環を有する水素結合性架橋部位であることがより好ましい。
 <側鎖(a):カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖>
 カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)は、カルボニル含有基および/または含窒素複素環を有するものであればよく、他の構成は特に限定されない。このような水素結合性架橋部位としては、カルボニル含有基および含窒素複素環を有するものがより好ましい。
 このようなカルボニル含有基としては、カルボニル基を含むものであればよく、特に限定されず、その具体例としては、アミド、エステル、イミド、カルボキシ基、カルボニル基等が挙げられる。このようなカルボニル含有基は、カルボニル含有基を前記主鎖に導入し得る化合物を用いて、前記主鎖(主鎖部分のポリマー)に導入した基であってもよい。このようなカルボニル含有基を前記主鎖に導入し得る化合物は特に限定されず、その具体例としては、ケトン、カルボン酸およびその誘導体等が挙げられる。
 このようなカルボン酸としては、例えば、飽和または不飽和の炭化水素基を有する有機酸が挙げられ、該炭化水素基は、脂肪族、脂環族、芳香族等のいずれであってもよい。また、カルボン酸誘導体としては、具体的には、例えば、カルボン酸無水物、アミノ酸、チオカルボン酸(メルカプト基含有カルボン酸)、エステル、アミノ酸、ケトン、アミド類、イミド類、ジカルボン酸およびそのモノエステル等が挙げられる。
 また、前記カルボン酸およびその誘導体等としては、具体的には、例えば、マロン酸、マレイン酸、スクシン酸、グルタル酸、フタル酸、イソフタル酸、テレフタル酸、p-フェニレンジ酢酸、p-ヒドロキシ安息香酸、p-アミノ安息香酸、メルカプト酢酸などのカルボン酸および置換基含有するこれらのカルボン酸;無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸、無水プロピオン酸、無水安息香酸などの酸無水物;マレイン酸エステル、マロン酸エステル、コハク酸エステル、グルタル酸エステル、酢酸エチルなどの脂肪族エステル;フタル酸エステル、イソフタル酸エステル、テレフタル酸エステル、エチル-m-アミノベンゾエート、メチル-p-ヒドロキシベンゾエートなどの芳香族エステル;キノン、アントラキノン、ナフトキノンなどのケトン;グリシン、チロシン、ビシン、アラニン、バリン、ロイシン、セリン、スレオニン、リシン、アスパラギン酸、グルタミン酸、システイン、メチオニン、プロリン、N-(p-アミノベンゾイル)-β-アラニンなどのアミノ酸;マレインアミド、マレインアミド酸(マレインモノアミド)、コハク酸モノアミド、5-ヒドロキシバレルアミド、N-アセチルエタノールアミン、N,N’-ヘキサメチレンビス(アセトアミド)、マロンアミド、シクロセリン、4-アセトアミドフェノール、p-アセトアミド安息香酸などのアミド類;マレインイミド、スクシンイミドなどのイミド類;等が挙げられる。
 これらのうち、カルボニル基(カルボニル含有基)を導入し得る化合物として、無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸等の環状酸無水物であることが好ましく、無水マレイン酸であることが特に好ましい。
 また、前記側鎖(a)が含窒素複素環を有する場合、前記含窒素複素環は、直接又は有機基を介して前記主鎖に導入されていればよく、その構成等は特に制限されるものではない。このような含窒素複素環は、複素環内に窒素原子を含むものであれば複素環内に窒素原子以外のヘテロ原子、例えば、イオウ原子、酸素原子、リン原子等を有するものでも用いることができる。ここで、前記側鎖(a)中に含窒素複素環を用いた場合には、複素環構造を有すると架橋を形成する水素結合がより強くなり、得られる本発明の熱可塑性エラスマー組成物の引張強度がより向上するため好ましい。
 また、上記含窒素複素環は置換基を有していてもよく、該置換基としては、例えば、メチル基、エチル基、(イソ)プロピル基、ヘキシル基などのアルキル基;メトキシ基、エトキシ基、(イソ)プロポキシ基などのアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子からなる基;シアノ基;アミノ基;芳香族炭化水素基;エステル基;エーテル基;アシル基;チオエーテル基;等が挙げられ、これらを組み合わせて用いることもできる。これらの置換基の置換位置は特に限定されず、置換基数も限定されない。
 さらに、上記含窒素複素環は、芳香族性を有していても、有していなくてもよいが、芳香族性を有していると得られる本発明の熱可塑性エラストマー組成物の圧縮永久歪や機械的強度がより向上するため好ましい。
 また、このような含窒素複素環は、特に制限されるものではないが、水素結合がより強固になり、圧縮永久歪や機械的強度がより向上するといった観点から、5員環、6員環であることが好ましい。このような含窒素複素環としては、具体的には、例えば、ピロロリン、ピロリドン、オキシインドール(2-オキシインドール)、インドキシル(3-オキシインドール)、ジオキシインドール、イサチン、インドリル、フタルイミジン、β-イソインジゴ、モノポルフィリン、ジポルフィリン、トリポルフィリン、アザポルフィリン、フタロシアニン、ヘモグロビン、ウロポルフィリン、クロロフィル、フィロエリトリン、イミダゾール、ピラゾール、トリアゾール、テトラゾール、ベンゾイミダゾール、ベンゾピラゾール、ベンゾトリアゾール、イミダゾリン、イミダゾロン、イミダゾリドン、ヒダントイン、ピラゾリン、ピラゾロン、ピラゾリドン、インダゾール、ピリドインドール、プリン、シンノリン、ピロール、ピロリン、インドール、インドリン、オキシルインドール、カルバゾール、フェノチアジン、インドレニン、イソインドール、オキサゾール、チアゾール、イソオキサゾール、イソチアゾール、オキサジアゾール、チアジアゾール、オキサトリアゾール、チアトリアゾール、フェナントロリン、オキサジン、ベンゾオキサジン、フタラジン、プテリジン、ピラジン、フェナジン、テトラジン、ベンゾオキサゾール、ベンゾイソオキサゾール、アントラニル、ベンゾチアゾール、ベンゾフラザン、ピリジン、キノリン、イソキノリン、アクリジン、フェナントリジン、アントラゾリン、ナフチリジン、チアジン、ピリダジン、ピリミジン、キナゾリン、キノキサリン、トリアジン、ヒスチジン、トリアゾリジン、メラミン、アデニン、グアニン、チミン、シトシン、ヒドロキシエチルイソシアヌレートおよびこれらの誘導体等が挙げられる。これらのうち、特に含窒素5員環については、下記の化合物(化学式で記載の環状構造)、下記一般式(10)で表されるトリアゾール誘導体および下記一般式(11)で表されるイミダゾール誘導体が好ましく例示される。また、これらは上記した種々の置換基を有していてもよいし、水素付加または脱離されたものであってもよい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
上記一般式(10)及び(11)中の置換基X、Y、Zは、それぞれ独立に、水素原子、炭素数1~30のアルキル基、炭素数7~20のアラルキル基、炭素数6~20のアリール基又はアミノ基である。なお、上記一般式(10)中のXおよびYのいずれか一方は水素原子ではなく、同様に、上記一般式(11)中のX、YおよびZの少なくとも1つは水素原子ではない。
 このような置換基X、Y、Zとしては、水素原子、アミノ基以外に、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、オクチル基、ドデシル基、ステアリル基などの直鎖状のアルキル基;イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、1-メチルブチル基、1-メチルヘプチル基、2-エチルヘキシル基などの分岐状のアルキル基;ベンジル基、フェネチル基などのアラルキル基;フェニル基、トリル基(o-、m-、p-)、ジメチルフェニル基、メシチル基などのアリール基;等が挙げられる。
 これらのうち、置換基X、Y、Zとしては、アルキル基、特に、ブチル基、オクチル基、ドデシル基、イソプロピル基、2-エチルヘキシル基であることが、得られる本発明の熱可塑性エラストマー組成物の加工性が良好となるため好ましい。
 また、含窒素6員環については、下記の化合物が好ましく例示される。これらについても上記した種々の置換基(例えば、前述の含窒素複素環が有していてもよい置換基)を有していてもよいし、水素付加または脱離されたものであってもよい。
Figure JPOXMLDOC01-appb-C000003
 また、上記含窒素複素環とベンゼン環または含窒素複素環同士が縮合したものも用いることができ、具体的には、下記の縮合環が好適に例示される。これらの縮合環についても上記した種々の置換基を有していてもよいし、水素原子が付加または脱離されたものであってもよい。
Figure JPOXMLDOC01-appb-C000004
 このような含窒素複素環としては、中でも、得られる本発明の熱可塑性エラストマー組成物のリサイクル性、圧縮永久歪、硬度および機械的強度、特に引張強度に優れるため、トリアゾール環、イソシアヌレート環、チアジアゾール環、ピリジン環、イミダゾール環、トリアジン環及びヒダントイン環の中から選択される少なくとも1種であることが好ましく、トリアゾール環、チアジアゾール環、ピリジン環、イミダゾール環およびヒダントイン環の中から選択される少なくとも1種であることが好ましい。
 また、前記側鎖(a)において、上記カルボニル含有基および上記含窒素複素環の双方が含まれる場合、上記カルボニル含有基および上記含窒素複素環は、互いに独立の側鎖として主鎖に導入されていてもよいが、上記カルボニル含有基と上記含窒素複素環とが互いに異なる基を介して結合した1つの側鎖として主鎖に導入されていることが好ましい。このように、側鎖(a)としては、上記カルボニル含有基および上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖が1つの側鎖として主鎖に導入されていることが好ましく、下記一般式(1):
Figure JPOXMLDOC01-appb-C000005
[式(1)中、Aは含窒素複素環であり、Bは単結合;酸素原子、式:NR’(R'は水素原子又は炭素数1~10のアルキル基である。)で表されるアミノ基又はイオウ原子;或いはこれらの原子又は基を含んでもよい有機基である。]
で表される構造部分を含有する側鎖が1つの側鎖として主鎖に導入されていることがより好ましい。このように、前記側鎖(a)の前記水素結合性架橋部位としては、上記一般式(1)で表される構造部分を含有することが好ましい。
 ここで、上記式(1)における含窒素複素環Aは、具体的には、上記で例示した含窒素複素環が挙げられる。また、上記式(1)における置換基Bとしては、具体的には、例えば、単結合;酸素原子、イオウ原子または式:NR’(R’は水素原子または炭素数1~10のアルキル基)で表されるアミノ基(なお、以下、便宜上、場合により、式:NR’で表されるアミノ基を単に「アミノ基NR’」と称する。);これらの原子または基を含んでもよい炭素数1~20のアルキレン基またはアラルキレン基;これらの原子または基を末端に有する、炭素数1~20のアルキレンエーテル基(アルキレンオキシ基、例えば、-O-CH2CH2-基)、アルキレンアミノ基(例えば、-NH-CH2CH2-基等)またはアルキレンチオエーテル基(アルキレンチオ基、例えば、-S-CH2CH2-基);これらを末端に有する、炭素数1~20のアラルキレンエーテル基(アラルキレンオキシ基)、アラルキレンアミノ基またはアラルキレンチオエーテル基;等が挙げられる。
 ここで、上記アミノ基NR’中のR’として選択され得る炭素数1~10のアルキル基としては、異性体を含む、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。上記式(1)における置換基B中の酸素原子、イオウ原子およびアミノ基NR’;ならびに;これらの原子または基を末端に有する炭素数1~20の、アルキレンエーテル基、アルキレンアミノ基、アルキレンチオエーテル基、または、アラルキレンエーテル基、アラルキレンアミノ基、アラルキレンチオエーテル基等の酸素原子、アミノ基NR’およびイオウ原子は、隣接するカルボニル基と組み合わされ共役系のエステル基、アミド基、イミド基、チオエステル基等を形成することが好ましい。
 これらのうち、前記置換基Bは、共役系を形成する、酸素原子、イオウ原子またはアミノ基;これらの原子または基を末端に有する、炭素数1~20のアルキレンエーテル基、アルキレンアミノ基またはアルキレンチオエーテル基であることが好ましく、アミノ基(NH)、アルキレンアミノ基(-NH-CH2-基、-NH-CH2CH2-基、-NH-CH2CH2CH2-基)、アルキレンエーテル基(-O-CH2-基、-O-CH2CH2-基、-O-CH2CH2CH2-基)であることが特に好ましい。
 また、側鎖(a)が、上記カルボニル含有基および上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖である場合、上記カルボニル含有基および上記含窒素複素環を有する前記水素結合性架橋部位は、下記式(2)または(3)で表される1つの側鎖として、そのα位またはβ位で上記ポリマー主鎖に導入されている側鎖であることがより好ましい。
Figure JPOXMLDOC01-appb-C000006
[式中、Aは含窒素複素環であり、BおよびDはそれぞれ独立に単結合;酸素原子、アミノ基NR’(R’は水素原子または炭素数1~10のアルキル基である。)またはイオウ原子;あるいはこれらの原子または基を含んでもよい有機基である。]
 ここで、含窒素複素環Aは上記式(1)の含窒素複素環Aと基本的に同様であり、置換基BおよびDはそれぞれ独立に、上記式(1)の置換基Bと基本的に同様である。ただし、上記式(3)における置換基Dは、上記式(1)の置換基Bで例示したもののうち、単結合;酸素原子、窒素原子またはイオウ原子を含んでもよい炭素数1~20のアルキレン基またはアラルキレン基の共役系を形成するものであることが好ましく、単結合であることが特に好ましい。すなわち、上記式(3)のイミド窒素と共に、酸素原子、窒素原子またはイオウ原子を含んでもよい炭素数1~20のアルキレンアミノ基またはアラルキレンアミノ基を形成することが好ましく、上記式(3)のイミド窒素に含窒素複素環が直接結合する(単結合)ことが特に好ましい。具体的には、上記置換基Dとしては、単結合;上記した酸素原子、イオウ原子またはアミノ基を末端に有する炭素数1~20のアルキレンエーテルまたはアラルキレンエーテル基等;異性体を含む、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、フェニレン基、キシリレン基等が挙げられる。
 また、側鎖(a)が上記カルボニル含有基および上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖である場合、前記側鎖(a)の前記水素結合性架橋部位が下記一般式(101):
Figure JPOXMLDOC01-appb-C000007
[式(101)中、Aは含窒素複素環である。]
で表される構造部分を含有することが好ましい。このような式(101)中の含窒素複素環Aは上記式(1)の含窒素複素環Aと基本的に同様のものである。また、このような側鎖(a)の前記水素結合性架橋部位としては、高モジュラス、高破断強度の観点から、下記一般式(102):
Figure JPOXMLDOC01-appb-C000008
で表される構造を有するものがより好ましい。更に、前記側鎖(a)が上記一般式(102)で表される基であることが特に好ましい。
 上記熱可塑性エラストマーが有する上記カルボニル含有基と上記含窒素複素環との割合は特に限定されず、1:1~3:1の範囲(より好ましくは1:1、2:1もしくは3:1)であると相補的な相互作用を形成しやすくなり、また、容易に製造できるため好ましい。
 このようなカルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)は、主鎖部分100モル%に対して、0.1~50モル%の割合(導入率)で導入されていることが好ましく、1~30モル%の割合で導入されていることがより好ましい。このような側鎖(a)の導入率が0.1モル%未満では架橋時の引張強度が十分でない場合があり、他方、50モル%を超えると架橋密度が高くなりゴム弾性が失われる場合がある。すなわち、導入率が上記した範囲内であれば、上記熱可塑性エラストマーの側鎖同士の相互作用によって、分子間で効率良く架橋が形成されるため、架橋時の引張強度が高く、リサイクル性に優れるため好ましい。
 上記導入率は、側鎖(a)として、上記カルボニル含有基を有する水素結合性架橋部位を含有する側鎖(a-i)と上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a-ii)とがそれぞれ独立に導入されている場合には、該カルボニル含有基を含有する側鎖(a-i)と該含窒素複素環を含有する側鎖(a-ii)との割合に従って、これらを一組で1つの側鎖(a)として考えて算出する。なお、側鎖(a-i)及び(a-ii)のうちの何れかが過剰の場合は、多い方の側鎖を基準として、上記導入率を考えればよい。
 また、上記導入率は、例えば、主鎖部分がエチレン-プロピレンゴム(EPM)である場合には、エチレンおよびプロピレンモノマー単位100ユニット当り、側鎖部分の導入されたモノマーが、0.1~50ユニット程度である。
 また、側鎖(a)としては、反応後に前記主鎖を形成するポリマー(エラストマー性ポリマー形成用の材料)に、官能基として環状酸無水物基(より好ましくは無水マレイン酸基)を有するポリマー(環状酸無水物基を側鎖に有するエラストマー性ポリマー)を用いて、前記官能基(環状酸無水物基)と、該環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)とを反応させて、水素結合性架橋部位を形成して、ポリマーの側鎖を側鎖(a)としたものが好ましい。このような含窒素複素環を導入し得る化合物は、上記で例示した含窒素複素環そのものであってもよく、無水マレイン酸等の環状酸無水物基と反応する置換基(例えば、水酸基、チオール基、アミノ基等)を有する含窒素複素環であってもよい。
 ここで、側鎖(a)における含窒素複素環の結合位置について説明する。なお、窒素複素環を便宜上「含窒素n員環化合物(n≧3)」とする。
 以下に説明する結合位置(「1~n位」)は、IUPAC命名法に基づくものである。例えば、非共有電子対を有する窒素原子を3個有する化合物の場合、IUPAC命名法に基づく順位によって結合位置を決定する。具体的には、上記で例示した5員環、6員環および縮合環の含窒素複素環に結合位置を記している。
 このような側鎖(a)においては、直接または有機基を介して共重合体と結合する含窒素n員環化合物の結合位置は特に限定されず、いずれの結合位置(1位~n位)でもよい。好ましくは、その1位または3位~n位である。
 含窒素n員環化合物に含まれる窒素原子が1個(例えば、ピリジン環等)の場合は、分子内でキレートが形成されやすく組成物としたときの引張強度等の物性に優れるため、3位~(n-1)位が好ましい。含窒素n員環化合物の結合位置を選択することにより、エラストマー性ポリマーは、エラストマー性ポリマー同士の分子間で、水素結合、イオン結合、配位結合等による架橋が形成されやすく、リサイクル性に優れ、機械的特性、特に引張強度に優れるものとなる傾向にある。
 <側鎖(b):共有結合性架橋部位を含有する側鎖>
 本明細書において「共有結合性架橋部位を含有する側鎖(b)」は、エラストマー性ポリマーの主鎖を形成する原子(通常、炭素原子)に、共有結合性架橋部位(後述するアミノ基含有化合物等の「共有結合を生成する化合物」等と反応することで、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起しうる官能基等)が化学的に安定な結合(共有結合)をしていることを意味する。なお、側鎖(b)は共有結合性架橋部位を含有する側鎖であるが、共有結合性部位を有しつつ、更に、水素結合が可能な基を有して、側鎖間において水素結合による架橋を形成するような場合には、後述の側鎖(c)として利用されることとなる(なお、エラストマー同士の側鎖間に水素結合を形成することが可能な、水素のドナーと、水素のアクセプターの双方が含まれていない場合、例えば、系中に単にエステル基(-COO-)が含まれている側鎖のみが存在するような場合には、エステル基(-COO-)同士では特に水素結合は形成されないため、かかる基は水素結合性架橋部位としては機能しない。他方、例えば、カルボキシ基やトリアゾール環のような、水素結合の水素のドナーとなる部位と、水素のアクセプターとなる部位の双方を有する構造をエラストマー同士の側鎖にそれぞれ含む場合には、エラストマー同士の側鎖間で水素結合が形成されるため、水素結合性架橋部位が含有されることとなる。また、例えば、エラストマー同士の側鎖間に、エステル基と水酸基とが共存して、それらの基により側鎖間で水素結合が形成される場合、その水素結合を形成する部位が水素結合性架橋部位となる。そのため、側鎖(b)が有する構造自体や、側鎖(b)が有する構造と他の側鎖が有する置換基の種類等に応じて、側鎖(c)として利用される場合がある。)。また、ここにいう「共有結合性架橋部位」は、共有結合によりポリマー同士(エラストマー同士)を架橋する部位である。
 このような共有結合性架橋部位を含有する側鎖(b)は特に制限されないが、例えば、官能基を側鎖に有するエラストマー性ポリマー(前記主鎖部分を形成させるためのポリマー)と、前記官能基と反応して共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)とを反応させることで、形成される共有結合性架橋部位を含有するものであることが好ましい。このような側鎖(b)の前記共有結合性架橋部位における架橋は、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により形成されてなることが好ましい。そのため、前記主鎖を構成するポリマーが有する前記官能基としては、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起しうる官能基であることが好ましい。
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」としては、例えば、1分子中にアミノ基および/またはイミノ基を2個以上(アミノ基およびイミノ基をともに有する場合はこれらの基を合計して2個以上)有するポリアミン化合物;1分子中に水酸基を2個以上有するポリオール化合物;1分子中にイソシアネート(NCO)基を2個以上有するポリイソシアネート化合物;1分子中にチオール基(メルカプト基)を2個以上有するポリチオール化合物;1分子中にエポキシ基を2個以上有するポリエポキシ化合物;1分子中にカルボキシ基を2個以上有するポリカルボキシ化合物;1分子中にアルコキシシリル基を2個以上有するポリアルコキシシリル化合物;等が挙げられる。ここにおいて「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」は、かかる化合物が有する置換基の種類や、かかる化合物を利用して反応せしめた場合に反応の進行の程度、等によっては、前記水素結合性架橋部位及び前記共有結合性架橋部位の双方を導入し得る化合物となる(例えば、水酸基を3個以上有する化合物を利用して、共有結合による架橋部位を形成する場合において、反応の進行の程度によっては、官能基を側鎖に有するエラストマー性ポリマーの該官能基に2個の水酸基が反応して、残りの1個の水酸基が水酸基として残るような場合も生じ、その場合には、水素結合性の架橋を形成する部位も併せて導入され得ることとなる。)。そのため、ここに例示する「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」には、「水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物」も含まれ得る。このような観点から、側鎖(b)を形成する場合には、「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」の中から目的の設計に応じて化合物を適宜選択したり、反応の進行の程度を適宜制御する等して、側鎖(b)を形成すればよい。なお、共有結合性架橋部位を形成する化合物が複素環を有している場合には、より効率よく水素結合性の架橋部位も同時に製造することが可能になり、後述の側鎖(c)として、前記共有結合性架橋部位を有する側鎖を効率よく形成することが可能となる。そのため、かかる複素環を有しているような化合物の具体例については、側鎖(c)を製造するための好適な化合物として、特に側鎖(c)と併せて説明する。なお、側鎖(c)は、その構造から、側鎖(a)や側鎖(b)等の側鎖の好適な一形態であるとも言える。
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」として利用可能なポリアミン化合物としては、例えば、以下に示す脂環族アミン、脂肪族ポリアミン、芳香族ポリアミン、含窒素複素環アミン等が挙げられる。
 このような脂環族アミンとしては、具体的には、例えば、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ジアミノシクロヘキサン、ジ-(アミノメチル)シクロヘキサン等が挙げられる。
 また、前記脂肪族ポリアミンとしては、特に制限されないが、例えば、メチレンジアミン、エチレンジアミン、プロピレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノペンタン、ヘキサメチレンジアミン、ジアミノヘプタン、ジアミノドデカン、ジエチレントリアミン、ジエチルアミノプロピルアミン、N-アミノエチルピペラジン、トリエチレンテトラミン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジイソプロピルエチレンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N’-ジエチル-1,3-プロパンジアミン、N,N’-ジイソプロピル-1,3-プロパンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン、N,N’-ジエチル-1,6-ヘキサンジアミン、N,N’,N’’-トリメチルビス(ヘキサメチレン)トリアミン等が挙げられる。
 前記芳香族ポリアミンおよび前記含窒素複素環アミンとしては、特に制限されないが、例えば、ジアミノトルエン、ジアミノキシレン、テトラメチルキシリレンジアミン、トリス(ジメチルアミノメチル)フェノール、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、3-アミノ-1,2,4-トリアゾール等が挙げられる。
 また、前記ポリアミン化合物は、その水素原子の一つ以上を、アルキル基、アルキレン基、アラルキレン基、オキシ基、アシル基、ハロゲン原子等で置換してもよく、また、その骨格に、酸素原子、イオウ原子等のヘテロ原子を含んでいてもよい。
 また、前記ポリアミン化合物は、1種単独で用いても2種以上を併用してもよい。2種以上を併用する場合の混合比は、本発明の熱可塑性エラストマー(組成物)が用いられる用途、本発明の熱可塑性エラストマー(組成物)に要求される物性等に応じて任意の比率に調整することができる。
 上記で例示したポリアミン化合物のうち、ヘキサメチレンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン、ジアミノジフェニルスルホン等が、圧縮永久歪、機械的強度、特に引張強度の改善効果が高く好ましい。
 前記ポリオール化合物は、水酸基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、例えば、以下に示すポリエーテルポリオール、ポリエステルポリオール、その他のポリオール、およびこれらの混合ポリオール等が挙げられる。
 このようなポリエーテルポリオールとしては、具体的には、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセリン、1,1,1-トリメチロールプロパン、1,2,5-ヘキサントリオール、1,3-ブタンジオール、1,4-ブタンジオール、4,4’-ジヒドロキシフェニルプロパン、4,4’-ジヒドロキシフェニルメタン、ペンタエリスリトール等の多価アルコールから選ばれる少なくとも1種に、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド等から選ばれる少なくとも1種を付加させて得られるポリオール;ポリオキシテトラメチレンオキサイド;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 前記ポリエステルポリオールとしては、具体的には、例えば、エチレングリコール、プロピレングリコール、ブタンジオールペンタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、グリセリン、1,1,1-トリメチロールプロパンその他の低分子ポリオールの1種または2種以上と、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、テレフタル酸、イソフタル酸、ダイマー酸その他の低分子カルボン酸やオリゴマー酸の1種または2種以上との縮合重合体;プロピオンラクトン、バレロラクトンなどの開環重合体;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 その他のポリオールとしては、具体的には、例えば、ポリマーポリオール、ポリカーボネートポリオール;ポリブタジエンポリオール;水素添加されたポリブタジエンポリオール;アクリルポリオール;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ポリエチレングリコールラウリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ラウリルアミン)、ポリプロピレングリコールラウリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ラウリルアミン)、ポリエチレングリコールオクチルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)オクチルアミン)、ポリプロピレングリコールオクチルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)オクチルアミン)、ポリエチレングリコールステアリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ステアリルアミン)、ポリプロピレングリコールステアリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ステアリルアミン)などの低分子ポリオール;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 前記ポリイソシアネート化合物としては、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’-ジフェニルメタンジイソシアネート(2,4’-MDI)、1,4-フェニレンジイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)、1,5-ナフタレンジイソシアネート(NDI)等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHDI)、リジンジイソシアネート、ノルボルナンジイソシアナートメチル(NBDI)等の脂肪族ポリイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート(IPDI)、H6XDI(水添XDI)、H12MDI(水添MDI)、H6TDI(水添TDI)等の脂環式ポリイソシアネートなどのジイソシアネート化合物;ポリメチレンポリフェニレンポリイソシアネートなどのポリイソシアネート化合物;これらのイソシアネート化合物のカルボジイミド変性ポリイソシアネート;これらのイソシアネート化合物のイソシアヌレート変性ポリイソシアネート;これらのイソシアネート化合物と上記で例示したポリオール化合物とを反応させて得られるウレタンプレポリマー;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 ポリチオール化合物は、チオール基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、その具体例としては、メタンジチオール、1,3-ブタンジチオール、1,4-ブタンジチオール、2,3-ブタンジチオール、1,2-ベンゼンジチオール、1,3-ベンゼンジチオール、1,4-ベンゼンジチオール、1,10-デカンジチオール、1,2-エタンジチオール、1,6-ヘキサンジチオール、1,9-ノナンジチオール、1,8-オクタンジチオール、1,5-ペンタンジチオール、1,2-プロパンジチオール、1,3-プロパジチオール、トルエン-3,4-ジチオール、3,6-ジクロロ-1,2-ベンゼンジチオール、1,5-ナフタレンジチオール、1,2-ベンゼンジメタンチオール、1,3-ベンゼンジメタンチオール、1,4-ベンゼンジメタンチオール、4,4’-チオビスベンゼンチオール、2,5-ジメルカプト-1,3,4-チアジアゾール、1,8-ジメルカプト-3,6-ジオキサオクタン、1,5-ジメルカプト-3-チアペンタン、1,3,5-トリアジン-2,4,6-トリチオール(トリメルカプト-トリアジン)、2-ジ-n-ブチルアミノ-4,6-ジメルカプト-s-トリアジン、トリメチロールプロパントリス(β-チオプロピオネート)、トリメチロールプロパントリス(チオグリコレート)、ポリチオール(チオコールまたはチオール変性高分子(樹脂、ゴム等))、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 また、前記ポリエポキシ化合物としては、エポキシ基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、その具体例としては、ビスフェノールAジグリシジルエーテル(ビスフェノールA型エポキシ樹脂)、ビスフェノールFジグリシジルエーテル(ビスフェノールF型エポキシ樹脂)、3,4-エポキシシクロヘキシルメチルー3’4’-エポキシシクロヘキサンカルボキシレート、DCPD型エポキシ樹脂、エポキシノボラック樹脂、オルソクレゾールノボラック型エポキシ樹脂が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 また、前記ポリカルボキシ化合物としては、カルボキシ基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、その具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、プロパントリカルボン酸、ベンゼントリカルボン酸が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 さらに、前記ポリアルコキシシリル化合物としては、アルコキシシリル基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、その具体例としては、トリス-(トリメトキシシリルプロピル)イソシアヌレート、ビス(トリエトキシシリルプロピル)テトラスルフィド、1,6-ビス(トリメトキシシリル)ヘキサン、ビス[3-(トリメトキシシリル)プロピル]アミンが挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」と反応する、前記主鎖を構成するポリマーが有する官能基としては、アミド、エステル、ラクトン、ウレタン、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起(生成:形成)し得る官能基が好ましく、かかる官能基としては、環状酸無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好適に例示される。
 なお、前記側鎖(b)を有するエラストマー性ポリマー(B)は、かかる側鎖(b)の部分において、前記共有結合性架橋部位における架橋、すなわち、前記官能基と上述した「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」との反応により形成される共有結合による架橋を1分子中に少なくとも1個有しており、特に、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により架橋が形成される場合は、2個以上有しているのが好ましく、2~20個有しているのがより好ましく、2~10個有しているのがさらに好ましい。
 また、前記側鎖(b)の共有結合性架橋部位における架橋が、第三級アミノ結合(-N=)、エステル結合(-COO-)を含有していることが、得られる熱可塑性エラストマー(組成物)の圧縮永久歪および機械的強度(破断伸び、破断強度)がより容易に改善され得るとの理由から好ましい。なお、この場合において、第三級アミノ結合(-N=)、エステル結合(-COO-)に対して、水素結合を形成することが可能な基を含む側鎖を有するエラストマーが含まれている場合(例えば、水酸基等を含む側鎖を有するエラストマーが他に存在する場合等)には、前記共有結合性架橋部位が、後述の側鎖(c)として機能し得る。例えば、前記側鎖(a’)として前記側鎖(a)を有するエラストマー性ポリマー(B)の場合(すなわちエラストマー性ポリマー(B)が側鎖(a)及び(b)の双方を有するエラストマー性ポリマーである場合)において、共有結合性架橋部位における架橋が前記第三級アミノ結合及び/又は前記エステル結合を有する場合、それらの基と、側鎖(a)(カルボニル含有基および/または含窒素複素環を有する側鎖)中の基とが水素結合(相互作用)することで、架橋密度をより向上させることも可能となるものと考えられる。なお、このような第三級アミノ結合(-N=)、エステル結合(-COO-)を含有している構造の側鎖(b)を形成するとの観点で、「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」としては、上記で例示したもののうち、ポリエチレングリコールラウリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ラウリルアミン)、ポリプロピレングリコールラウリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ラウリルアミン)、ポリエチレングリコールオクチルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)オクチルアミン)、ポリプロピレングリコールオクチルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)オクチルアミン)、ポリエチレングリコールステアリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ステアリルアミン)、ポリプロピレングリコールステアリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ステアリルアミン)であることが好ましい。
 なお、上述のような共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)を利用しても、反応の進行度や置換基の種類、用いる原料の化学量論比等によっては、水素結合性の架橋部位も併せて導入されるような場合もあるため、前記共有結合性架橋部位の好適な構造については、側鎖(c)中の共有結合性架橋部位の好適な構造と併せて説明する。
 <側鎖(c):水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖>
 このような側鎖(c)は、1つの側鎖中に水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖である。このような側鎖(c)に含まれる水素結合性架橋部位は、側鎖(a’)において説明した水素結合性架橋部位と同様のものであり、側鎖(a)中の水素結合性架橋部位と同様のものが好ましい。また、側鎖(c)に含まれる共有結合性架橋部位としては、側鎖(b)中の共有結合性架橋部位と同様のものを利用できる(その好適な架橋も同様のものを利用できる。)。
 このような側鎖(c)は、官能基を側鎖に有するエラストマー性ポリマー(前記主鎖部分を形成させるためのポリマー)と、前記官能基と反応して水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)とを反応させることで、形成される側鎖であることが好ましい。 このような水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)としては、複素環(特に好ましくは含窒素複素環)を有しかつ共有結合性架橋部位を形成することが可能な化合物(共有結合を生成する化合物)が好ましく、中でも、複素環含有ポリオール、複素環含有ポリアミン、複素環含有ポリチオール等がより好ましい。
 なお、このような複素環を含有する、ポリオール、ポリアミンおよびポリチオールは、複素環(特に好ましくは含窒素複素環)を有するものである以外は、前述の「共有結合性架橋部位を形成することが可能な化合物(共有結合を生成する化合物)」において説明したポリオール、ポリアミンおよびポリチオールと同様のものを適宜利用することができる。また、このような複素環含有ポリオールとしては、特に制限されないが、例えば、ビス、トリス(2-ヒドロキシエチル)イソシアヌレート、コウジ酸、ジヒドロキシジチアン、トリスヒドロキシエチルトリアジンが挙げられる。また、前記複素環含有ポリアミンとしては、特に制限されないが、例えば、アセトグアナミン、ピペラジン、ビス(アミノプロピル)ピペラジン、ベンゾグアナミン、メラミンが挙げられる。更に、このような複素環含有ポリチオールとしては、ジメルカプトチアジアゾール、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートが挙げられる。このように、側鎖(c)としては、官能基を側鎖に有するエラストマー性ポリマー(前記主鎖部分を形成させるためのポリマー)と、複素環を含有するポリオール、ポリアミンおよびポリチオール等とを反応させて、得られる側鎖であることが好ましい。
 なお、「水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)」と反応する、前記主鎖を構成するポリマーが有する官能基としては、アミド、エステル、ラクトン、ウレタン、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起(生成:形成)し得る官能基が好ましく、かかる官能基としては、環状酸無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好適に例示される。
 また、前記側鎖(c)を有するエラストマー性ポリマー(B)は、かかる側鎖(c)の部分において、前記共有結合性架橋部位における架橋を1分子中に少なくとも1個有しており、特に、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により架橋が形成される場合は、2個以上有しているのが好ましく、2~20個有しているのがより好ましく、2~10個有しているのがさらに好ましい。また、前記側鎖(c)の共有結合性架橋部位における架橋が、第三級アミノ結合(-N=)、エステル結合(-COO-)を含有していることが、得られる熱可塑性エラストマー(組成物)の圧縮永久歪および機械的強度(破断伸び、破断強度)がより改善されるとの理由から好ましい。
 (側鎖(b)~(c)中の共有結合性架橋部位として好適な構造について)
 側鎖(b)及び/又は(c)に関して、共有結合性架橋部位における架橋が、第三級アミノ結合(-N=)、エステル結合(-COO-)を含有している場合であって、これらの結合部位が水素結合性架橋部位としても機能する場合、得られる熱可塑性エラストマー(組成物)の圧縮永久歪および機械的強度(破断伸び、破断強度)がより高度に改善されるとの理由から好ましい。このように、共有結合性架橋部位を有する側鎖中の第三級アミノ結合(-N=)やエステル結合(-COO-)が、他の側鎖との間において、水素結合を形成するような場合、かかる第三級アミノ結合(-N=)、エステル結合(-COO-)を含有している共有結合性架橋部位は、水素結合性架橋部位も備えることとなり、側鎖(c)として機能し得る。
 なお、例えば、前記側鎖(a’)として前記側鎖(a)を有するエラストマー性ポリマー(B)の場合であって、前記第三級アミノ結合及び/又は前記エステル結合を含有している共有結合性架橋部位を有する場合において、前記第三級アミノ結合及び/又は前記エステル結合が、前記側鎖(a)中の基と水素結合(相互作用)を形成すると、架橋密度をより向上させることが可能となるものと考えられる。ここで、前記主鎖を構成するポリマーが有する官能基と反応して前記第三級アミノ結合及び/又は前記エステル結合を含有している共有結合性架橋部位を形成させることが可能な化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を形成することが可能な化合物)としては、ポリエチレングリコールラウリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ラウリルアミン)、ポリプロピレングリコールラウリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ラウリルアミン)、ポリエチレングリコールオクチルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)オクチルアミン)、ポリプロピレングリコールオクチルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)オクチルアミン)、ポリエチレングリコールステアリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ステアリルアミン)、ポリプロピレングリコールステアリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ステアリルアミン)を好適なものとして挙げることができる。
 前記側鎖(b)及び/又は側鎖(c)の上記共有結合性架橋部位における架橋としては、下記一般式(4)~(6)のいずれかで表される構造を少なくとも1つ含有しているものが好ましく、式中のGが第三級アミノ結合、エステル結合を含有しているものがより好ましい(なお、以下の構造において、水素結合性架橋部位を含む場合、その構造を有する側鎖は、側鎖(c)として利用されるものである。)。
Figure JPOXMLDOC01-appb-C000009
上記一般式(4)~(6)中、E、J、KおよびLはそれぞれ独立に単結合;酸素原子、アミノ基NR’(R’は水素原子または炭素数1~10のアルキル基である。)またはイオウ原子;あるいはこれらの原子または基を含んでもよい有機基であり、Gは酸素原子、イオウ原子または窒素原子を含んでいてもよく、直鎖状、分岐鎖状又は環状の炭素数1~20の炭化水素基である。
 ここで、置換基E、J、KおよびLはそれぞれ独立に、上記一般式(1)の置換基Bと基本的に同様である。
 また、置換基Gとしては、例えば、メチレン基、エチレン基、1,3-プロピレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,7-ヘプチレン基、1,8-オクチレン基、1,9-ノニレン基、1,10-デシレン基、1,11-ウンデシレン基、1,12-ドデシレン基などのアルキレン基;N,N-ジエチルドデシルアミン-2,2’-ジイル、N,N-ジプロピルドデシルアミン-2,2’-ジイル、N,N-ジエチルオクチルアミン-2,2’-ジイル、N,N-ジプロピルオクチルアミン-2,2’-ジイル、N,N-ジエチルステアリルアミン-2,2’-ジイル、N,N-ジプロピルステアリルアミン-2,2’-ジイル、;ビニレン基;1,4-シクロへキシレン基等の2価の脂環式炭化水素基;1,4-フェニレン基、1,2-フェニレン基、1,3-フェニレン基、1,3-フェニレンビス(メチレン)基などの2価の芳香族炭化水素基;プロパン-1,2,3-トリイル、ブタン-1,3,4-トリイル、トリメチルアミン-1,1’,1’’-トリイル、トリエチルアミン-2,2’,2’’-トリイル等の3価の炭化水素基;イソシアヌレート基、トリアジン基等の酸素原子、イオウ原子または窒素原子を含む3価の環状炭化水素;下記式(12)および(13)で表される4価の炭化水素基;およびこれらを組み合わせて形成される置換基;等が挙げられる。また、このような式中の置換基Gとしては、耐熱性が高く、水素結合により、高強度になるという観点から、イソシアヌレート基(イソシアヌレート環)の構造を有するものであることが好ましい。また、このような式中の置換基Gとしては、耐熱性が高く、水素結合により、高強度になるという観点から、下記一般式(111)で表される基及び下記一般式(112)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000010
 さらに、前記側鎖(c)の上記共有結合性架橋部位における架橋が、上述した上記エラストマー性ポリマーの主鎖にα位またはβ位で結合する下記式(7)~(9)のいずれかで表される構造を少なくとも1つ含有するのが好ましく、式中のGが第三級アミノ基を含有しているのがより好ましい(式(7)~(9)に示す構造は水酸基とカルボニル基を含有しており、水素結合性架橋部位及び共有結合性架橋部位の双方を含む構造といえ、かかる構造を有する側鎖は側鎖(c)として機能し得る。)。
Figure JPOXMLDOC01-appb-C000011
式(7)~(9)中、置換基E、J、KおよびLはそれぞれ独立に、上記式(4)~(6)の置換基E、J、KおよびLと基本的に同様であり、置換基Gは、上記式(4)~(6)中の置換基Gと基本的に同様である。
 また、このような式(7)~(9)のいずれかで表される構造としては、具体的には、下記式(14)~(25)で表される構造が好適なものとして例示される。
Figure JPOXMLDOC01-appb-C000012
(式中、lは、1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
(式中、l、mおよびnは、それぞれ独立に1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000015
 また、前記側鎖(b)及び(c)において、上記共有結合性架橋部位における架橋は、環状酸無水物基と、水酸基あるいはアミノ基及び/又はイミノ基との反応により形成されることが好ましい。例えば、反応後に主鎖部分を形成するポリマーが官能基として環状酸無水物基(例えば無水マレイン酸基)を有している場合に、該ポリマーの環状酸無水物基と、水酸基あるいはアミノ基および/またはイミノ基を有する前記共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)とを反応させて、共有結合により架橋する部位を形成してポリマー間を架橋させることで、形成される架橋としてもよい。
 また、このような側鎖(b)及び(c)において、前記共有結合性架橋部位における架橋は、アミド、エステル、ラクトン、ウレタン、エーテル、尿素結合、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により形成されてなることがより好ましい。
 以上、側鎖(a’)、側鎖(a)、側鎖(b)、側鎖(c)について説明したが、このようなポリマー中の側鎖の各基(構造)等は、NMR、IRスペクトル等の通常用いられる分析手段により確認することができる。
 また、前記エラストマー性ポリマー(A)は、前記側鎖(a)を有するガラス転移点が25℃以下のエラストマー性ポリマーであり、前記エラストマー性ポリマー(B)は、側鎖に水素結合性架橋部位及び共有結合性架橋部位を含有しているガラス転移点が25℃以下のエラストマー性ポリマー(側鎖として、側鎖(a’)及び側鎖(b)の双方を有するポリマーや、側鎖に側鎖(c)を少なくとも一つ含むポリマー等)である。このようなエラストマー成分としては、前記エラストマー性ポリマー(A)~(B)のうちの1種を単独で利用してもよく、あるいは、それらのうちの2種以上を混合して利用してもよい。
 なお、エラストマー性ポリマー(B)は、側鎖(a’)及び側鎖(b)の双方を有するポリマーであっても、側鎖(c)を有するポリマーであってもよいが、このようなエラストマー性ポリマー(B)の側鎖に含有される水素結合性架橋部位としては、より強固な水素結合が形成されるといった観点から、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位(より好ましくはカルボニル含有基および含窒素複素環を有する水素結合性架橋部位)であることが好ましい。
 また、このようなエラストマー性ポリマー(A)及び(B)からなる群から選択される少なくとも1種のエラストマー成分としては、下記反応物(I)~(VI)からなる群から選択される少なくとも1種であることが好ましい。
[反応物(I)] 無水マレイン酸変性エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E1)」と称する。)と、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物、トリスヒドロキシエチルイソシアヌレート、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物(以下、便宜上、場合により単に「化合物(M1)」と称する。)との反応物
[反応物(II)] 水酸基含有エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E2)」と称する。)と、カルボキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物(以下、便宜上、場合により単に「化合物(M2)」と称する。)との反応物
[反応物(III)] カルボキシ基含有エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E3)」と称する。)と、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物(以下、便宜上、場合により単に「化合物(M3)」と称する。)との反応物
[反応物(IV)] アミノ基含有エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E4)」と称する。)と、カルボキシ基、エポキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物(以下、便宜上、場合により単に「化合物(M4)」と称する。)との反応物
[反応物(V)] アルコキシシリル基含有エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E5)」と称する。)と、水酸基、カルボキシ基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物(以下、便宜上、場合により単に「化合物(M5)」と称する。)との反応物
[反応物(VI)] エポキシ基含有エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E6)」と称する。)と、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物(以下、便宜上、場合により単に「化合物(M6)」と称する。)との反応物。
 このようなエラストマー性ポリマー(E1)~(E6)は、通常行われる方法、例えば、上述のエラストマー成分の主鎖部分を形成することが可能なポリマーに、通常行われる条件、例えば、加熱下での撹拌等により、目的の設計に応じて、官能基を導入することが可能な化合物(例えば、マレイン酸無水物等)をグラフト重合させる方法で製造してもよい。また、このようなエラストマー性ポリマー(E1)~(E6)としては、市販品を用いてもよい。
 また、このようなエラストマー性ポリマー(E1)~(E6)のガラス転移点は、前述のエラストマー成分と同様に25℃以下であることが好ましい。エラストマー性ポリマーのガラス転移点がこの範囲であれば、得られる本発明の熱可塑性エラストマー組成物が室温でゴム状弾性を示すものとなるためである。なお、このようなエラストマー性ポリマー(E1)~(E6)の主鎖部分の重量平均分子量の好適な範囲は、前述のエラストマー性ポリマー(A)及び(B)の主鎖部分の重量平均分子量の好適な範囲と同様である。
 このような無水マレイン酸変性エラストマー性ポリマー(E1)としては、例えば、LIR-403(クラレ社製)、LIR-410A(クラレ社試作品)などの無水マレイン酸変性イソプレンゴム;ニュクレル(三井デュポンポリケミカル社製)、ユカロン(三菱化学社製)、タフマーM(例えば、MP0610(三井化学社製)、MP0620(三井化学社製))などの無水マレイン酸変性エチレン-プロピレンゴム;タフマーM(例えば、MA8510、MH7010、MH7020(三井化学社製)、MH5010、MH5020(三井化学社製)、MH5040(三井化学社製))などの無水マレイン酸変性エチレン-ブテンゴム;アドテックスシリーズ(無水マレイン酸変性EVA、無水マレイン酸変性EMA(日本ポリオレフィン社製))、HPRシリーズ(無水マレイン酸変性EEA、無水マレイン酸変性EVA(三井・ジュポンポリオレフィン社製))、ボンドファストシリーズ(無水マレイン酸変性EMA(住友化学社製))、デュミランシリーズ(無水マレイン酸変性EVOH(武田薬品工業社製))、ボンダイン(エチレン・アクリル酸エステル・無水マレイン酸三元共重合体(アトフィナ社製))、タフテック(無水マレイン酸変性SEBS、M1943(旭化成社製))、クレイトン(無水マレイン酸変性SEBS、FG1901,FG1924(クレイトンポリマー社製))、タフプレン(無水マレイン酸変性SBS、912(旭化成社製))、セプトン(無水マレイン酸変性SEPS(クラレ社製))、レクスパール(無水マレイン酸変性EVA、ET-182G、224M、234M(日本ポリオレフィン社製))、アウローレン(無水マレイン酸変性EVA、200S、250S(日本製紙ケミカル社製))などの無水マレイン酸変性ポリエチレン;アドマー(例えば、QB550、LF128(三井化学社製))などの無水マレイン酸変性ポリプロピレン;等が挙げられる。
 また、このような無水マレイン酸変性エラストマー性ポリマー(E1)としては、高分子量で高強度であるといった観点から、無水マレイン酸変性エチレン-プロピレンゴム、無水マレイン酸変性エチレン-ブテンゴムがより好ましい。
 このような水酸基含有エラストマー性ポリマー(E2)としては、例えば、水酸基含有BR、水酸基含有SBR、水酸基含有IR、水酸基含有天然ゴム、ポリビニルアルコール、エチレンビニルアルコール共重合体等が挙げられる。
 このような水酸基含有エラストマー性ポリマー(E2)の中でも、工業的に容易に入手でき、物性に優れるといった観点から、両末端が水酸基となるエラストマー性ポリマーが好ましく、中でも、水酸基含有BR、水酸基含有IR、エチレンビニルアルコール共重合体がより好ましく、水酸基含有BRが更に好ましい。
 このようなカルボキシ基含有エラストマー性ポリマー(E3)としては、例えば、カルボキシ基含有BR、カルボキシ基含有SBR、カルボキシ基含有IR、カルボキシ基含有天然ゴム、ポリアクリル酸、エチレンアクリル酸共重合体、ポリメタアクリル酸、エチレンメタアクリル酸共重合体等が挙げられる。
 このようなカルボキシ基含有エラストマー性ポリマー(E3)としては、工業的に容易に入手でき、物性に優れるといった観点から、カルボキシ基含有IR、エチレンアクリル酸共重合体、エチレンメタアクリル酸共重合体が好ましく、カルボキシ基含有IRがより好ましい。
 さらに、このようなアミノ基含有エラストマー性ポリマー(E4)としては、アミノ基含有BR、アミノ基含有SBR、アミノ基含有IR、アミノ基含有天然ゴム、アミノ基含有ポリエチレンイミン等が挙げられる。
 このようなアミノ基含有エラストマー性ポリマー(E4)としては、工業的に容易に入手でき、物性に優れるといった観点から、アミノ基含有ポリエチレンイミンがより好ましい。
 また、アミノ基含有エラストマー性ポリマー(E4)としては、アミン価が1~50mmol/gであることが好ましく、5~40mmol/gであることがより好ましく、10~30mmol/gであることが更に好ましい。このようなアミン価が前記下限未満では大量に添加する必要があり、また架橋密度の低下により物性が低下してしまう傾向にあり、他方、前記上限を超えると少量添加により架橋密度が高くなりすぎてしまう傾向にある。なお、このようなアミン価としては電位差滴定法により測定した値を採用することができる。
 また、このようなアルコキシシリル基含有エラストマー性ポリマー(E5)としては、例えば、アルコキシシリル基含有BR、アルコキシシリル基含有SBR、アルコキシシリル基含有IR、アルコキシシリル基含有天然ゴム、アルコキシシリル基含有ポリエチレン、アルコキシシリル基含有ポリプロピレン等が挙げられる。
 このようなアルコキシシリル基含有エラストマー性ポリマー(E5)としては、工業的に容易に入手でき、物性に優れるといった観点から、アルコキシシリル基含有ポリエチレンがより好ましい。
 このようなエポキシ基含有エラストマー性ポリマー(E6)としては、例えば、エポキシ基含有BR、エポキシ基含有SBR、エポキシ基含有IR、エポキシ基含有天然ゴム等が挙げられる。
 このようなエポキシ基含有エラストマー性ポリマー(E6)としては、工業的に容易に入手でき、物性に優れるといった観点から、エポキシ基含有SBRがより好ましい。
 また、このような化合物(M1)として利用する、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物としては、前述のポリオール化合物、ポリチオール化合物、ポリアミン化合物の中で、主骨格が炭化水素化合物からなるものが挙げられる。このような主骨格の炭化水素基としては脂肪族炭化水素化合物(より好ましくは炭素数が1~30の脂肪族炭化水素化合物)であることが好ましい。また、このような化合物(M1)として利用する、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物としては、工業的に容易に入手でき、架橋密度が高く物性に優れるといった観点からは、ペンタエリスリトール、エタンジチオール、エタンジアミンが好ましく、ペンタエリスリトールがより好ましい。
 また、化合物(M2)として利用する、カルボキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物としては、前述のポリカルボキシ化合物、ポリアルコキシシリル化合物、ポリイソシアネート化合物を好適に利用でき、中でも、工業的に容易に入手でき、物性に優れるといった観点からは、2,6-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、キシリレンジイソシアネート(XDI)がより好ましい。
 さらに、化合物(M3)として利用する、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物としては、前述のポリオール化合物、ポリチオール化合物、ポリアミン化合物を好適に利用でき、中でも、工業的に容易に入手でき、物性に優れるといった観点からは、トリスヒドロキシエチルイソシアヌレート、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートがより好ましい。
 また、化合物(M4)として利用する、カルボキシ基、エポキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物としては、前述のポリカルボキシ化合物、ポリエポキシ化合物、ポリアルコキシシリル化合物、ポリイソシアネート化合物を好適に利用でき、中でも、工業的に容易に入手でき、物性に優れるといった観点からは、2,6-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、トリス-(2,3-エポキシプロピル)-イソシアヌレートがより好ましい。
 また、化合物(M5)として利用する、水酸基、カルボキシ基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物としては、前述のポリオール化合物、ポリカルボキシ化合物を好適に利用でき、中でも、工業的に容易に入手でき、物性に優れるといった観点からは、トリスヒドロキシエチルイソシアヌレート、2,6-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸がより好ましい。
 さらに、化合物(M6)として利用する、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物としては、前述のポリチオール化合物、ポリアミン化合物を好適に利用でき、中でも、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、2,4-ジアミノ-6-フェニル-1,3,5-トリアジンがより好ましい。
 なお、前記エラストマー性ポリマー(E1)~(E6)の主鎖は、前記エラストマー性ポリマー(A)及び(B)の主鎖として説明したものと同様のものである(その好適なものも同様である。)。このような各反応物を製造するために用いるエラストマー性ポリマー(E1)~(E6)は、各ポリマーが有する官能基(無水マレイン酸基、水酸基、カルボキシ基、アミノ基、アルコキシシリル基、エポキシ基)の部分に、各反応物を製造するために用いる化合物(M1)~(M6)が有する置換基が反応して、化合物(M1)~(M6)の主骨格に由来する構造を有する側鎖が形成されるが、基本的に反応の前後において主鎖に変化はないため、前記反応物(I)~(VI)の主鎖(前記エラストマー性ポリマー(A)及び(B)の主鎖)は、エラストマー性ポリマー(E1)~(E6)の主鎖に由来したものとなるためである。
 また、このような反応物(I)~(VI)の中でも、工業的に容易に入手でき、物性に優れるという観点からは、実施例に挙げたもの(後述の各実施例に関する表1や表2に記載のエラストマー成分)が好ましい。
 また、前記反応物(I)としては、工業的に入手しやすく、機械的強度、圧縮永久歪を高度にバランスできるという観点から、無水マレイン酸変性エラストマー性ポリマーと、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、トリスヒドロキシエチルイソシアヌレート、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物との反応物がより好ましい。
 また、前記エラストマー成分として含有されるポリマーとしては、二重結合がないため、劣化しづらく、イソシアヌレート環同志およびイソシアヌレート環と他の水素結合部位や前記添加成分との水素結合等の相互作用が起こることから、該ポリマーの主鎖がオレフィン系共重合体でありかつ該ポリマーの側鎖がイソシアヌレート環を有することが好ましい。このような主鎖がオレフィン系共重合体でありかつ該側鎖がイソシアヌレート環を有するポリマーとしては、例えば、無水マレイン酸により変性したオレフィン系共重合体からなる無水マレイン酸変性エラストマー性ポリマー(より好ましくは無水マレイン酸変性エチレン-プロピレンゴム、無水マレイン酸変性エチレン-ブテンゴム)と、トリスヒドロキシエチルイソシアヌレートとの反応物が好適なものとして挙げられる。
 また、前記エラストマー成分として含有されるポリマーが、前述のような主鎖がオレフィン系共重合体でありかつ側鎖がイソシアヌレート環を有するものである場合、その熱可塑性エラストマー組成物の赤外吸収スペクトルにおいて、オレフィン系樹脂(ここにいう「オレフィン系樹脂」には、前記エラストマー成分として含有されるポリマーの主鎖のオレフィン系共重合体が含まれる。なお、例えば、添加成分として化学結合性の架橋部位を有さないα-オレフィン系樹脂を含む場合や、前記エラストマー成分として複数のポリマーが含有される場合であってそのうちの一つのポリマーの主鎖がオレフィン系共重合体以外のオレフィン系樹脂からなる場合等には、前述の「オレフィン系樹脂」に、系中に含まれる全てのオレフィン系樹脂(化学結合性の架橋部位を有さないα-オレフィン系樹脂、主鎖を形成するオレフィン系共重合体、主鎖を形成するオレフィン系共重合体以外のオレフィン系樹脂等)が含まれる。)のC-H伸縮振動に由来する波長2920cm-1付近のピークの吸収強度(A)と、前記イソシアヌレート環中のカルボニル基に由来する波長1695cm-1付近のピークの吸収強度(B)との比([吸収強度(B)]/[吸収強度(A)])が0.01以上であること(より好ましくは0.012~10、更に好ましくは0.015~5)であることが好ましい。このような赤外吸収スペクトル(IRスペクトル)におけるピーク(A)の強度とピーク(B)の強度の強度比が前記下限未満では組成物中におけるイソシアヌレート環を有する側鎖の存在比率が低くなり、系中において架橋密度が低下するため、機械強度等の物性が低下する傾向にある。他方、前記強度比が前記上限を超えると系中にエラストマー成分のブランチが多くなり、系全体の架橋密度が下がってしまうため、機械特性が低下する傾向にある。なお、このような熱可塑性エラストマー組成物の赤外吸収スペクトル(IRスペクトル)としては、全反射型ユニットを備えたIR測定装置(例えば、Thermo社製の「NICOLET380」)を用い、また、前記ポリマー(主鎖がオレフィン系共重合体でありかつ側鎖がイソシアヌレート環を有するものである、前記エラストマー成分として含有されるポリマー)を含む熱可塑性エラストマー組成物40gを表面が平滑になるように厚さ2mmでプレス成形して調製した測定用の試料を用いて、全反射測定(ATR)法により、400~4000cm-1の波数レンジで赤外吸収スペクトル(赤外減衰全反射(FTIR-ATR)スペクトル)の測定を行うことで求められる吸収スペクトルのグラフを利用する。このような測定により、側鎖のイソシアヌレート環中のカルボニル基の赤外吸収スペクトルのピークは波長1695cm-1付近(概ね1690~1700cm-1の範囲)に表れ、組成物中のオレフィン系樹脂(前記主鎖(ベースポリマー)のオレフィン系共重合体を含む。)のC-H伸縮振動の赤外吸収スペクトルのピークは波長2920cm-1付近(概ね2910~2930cm-1の範囲)に表れる。
 なお、無水マレイン酸により変性したオレフィン系共重合体からなる無水マレイン酸変性エラストマー性ポリマー(より好ましくは、無水マレイン酸変性エチレン-プロピレンゴム又は無水マレイン酸変性エチレン-ブテンゴム)と、トリスヒドロキシエチルイソシアヌレートとの反応物を含み、かつ、他にオレフィン系樹脂を含有していない熱可塑性エラストマー組成物を例に挙げると、前記反応物は、その反応物の製造時に、無水マレイン酸変性エラストマー性ポリマー中の酸無水物基と、トリスヒドロキシエチルイソシアヌレートの水酸基との反応により側鎖が形成されて、ポリマーの側鎖にイソシアヌレート環が導入されたものとなるが、上述のように、かかるポリマー(反応物)の側鎖のイソシアヌレート環中のカルボニル基に由来する赤外吸収スペクトルのピークは波長1695cm-1付近(1690~1700cm-1の範囲)に表れ、他方、そのポリマー(反応物)の主鎖(ベースポリマー)のオレフィン系共重合体のC-H伸縮振動に由来するピークは波長2920cm-1付近(2910~2930cm-1の範囲)に表れるため、かかる反応物を含む前述の組成物においては、波長1695cm-1付近のピークと、波長2920cm-1付近のピークの強度の比を求めることで、前記ポリマー(反応物)におけるイソシアヌレート環が導入された側鎖(上記例の場合には基本的に、形成される側鎖は水素結合性架橋部位と共有結合性架橋部位の双方を有するものとなる)の比率が分かり、これにより系全体の架橋密度を類推することができる。なお、他にオレフィン系樹脂を含む場合(例えば後述の化学結合性の架橋部位を有さないα-オレフィン系樹脂を含む場合等)においても、波長1695cm-1付近のピークと、波長2920cm-1付近のピークの強度の比を求めることで、系中に存在するオレフィン系樹脂の総量に対するイソシアヌレート環が導入された側鎖の比率が分かり、系全体の架橋密度を類推することができる。そして、このような強度比が前記下限値以上である場合には、イソシアヌレート環を有する側鎖の存在比率が十分なものとなり、系全体の架橋密度が十分なものとなって機械強度等の物性を十分なものとすることが可能となる。
 このようなエラストマー性ポリマー(A)~(B)を製造する方法としては特に制限されず、上述のような側鎖(a);側鎖(a')及び側鎖(b);、並びに、側鎖(c);からなる群から選択される少なくとも1種を、ガラス転移点が25℃以下のエラストマー性ポリマーの側鎖として導入することが可能な公知の方法を適宜採用することができる。例えば、エラストマー性ポリマー(B)を製造するための方法としては、特開2006-131663号公報に記載の方法を採用してもよい。また、上述のような側鎖(a’)及び側鎖(b)を備えるエラストマー性ポリマー(B)を得るために、例えば、官能基としての環状酸無水物基(例えば無水マレイン酸基)を側鎖に有するエラストマー性ポリマーに、前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)と、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)との混合物(混合原料)を利用して、それぞれの側鎖を同時に導入してもよい。
 また、このようなエラストマー性ポリマー(A)~(B)を製造する方法としては、例えば、官能基(例えば環状酸無水物基等)を側鎖に有するエラストマー性ポリマー(例えば、エラストマー性ポリマー(E1)~(E6)が好適のものとして挙げられる。)を用いて、該エラストマー性ポリマーを、前記官能基と反応して水素結合性架橋部位を形成する化合物、並びに、前記官能基と反応して水素結合性架橋部位を形成する化合物及び前記官能基と反応して共有結合性架橋部位を形成する化合物の混合原料のうちの少なくとも1種の原料化合物(例えば、前記化合物(M1)~(M6)が好適なものとして挙げられる。)と反応させて、前記側鎖(a)を有するエラストマー性ポリマー;側鎖(a')及び側鎖(b)を有するエラストマー性ポリマー;及び/又は前記側鎖(c)を有するエラストマー性ポリマー(前記エラストマー性ポリマー(A)~(B))を製造する方法を採用してもよい。なお、このような反応の際に採用する条件(温度条件や雰囲気条件等)は特に制限されず、官能基や該官能基と反応させる化合物(水素結合性架橋部位を形成する化合物及び/又は共有結合性架橋部位を形成する化合物)の種類に応じて適宜設定すればよい。なお、前記エラストマー性ポリマー(A)の場合は、水素結合部位を持つモノマーを重合して製造しても良い。
 このような官能基(例えば環状酸無水物基)を側鎖に有するエラストマー性ポリマーとしては、前述のエラストマー性ポリマー(A)~(B)の主鎖を形成することが可能なポリマーであって、官能基を側鎖に有するものが好ましい。ここで、「官能基を側鎖に含有するエラストマー性ポリマー」とは、主鎖を形成する原子に官能基(上述の官能基等、例えば、環状酸無水物基等)が化学的に安定な結合(共有結合)をしているエラストマー性ポリマーをいい、エラストマー性ポリマー(例えば公知の天然高分子または合成高分子)と官能基を導入し得る化合物とを反応させることにより得られるものを好適に利用できる。
 また、このような官能基としては、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起し得る官能基であることが好ましく、中でも、環状無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好ましく、組成物中に添加成分をより効率よく分散させることが可能であるといった観点からは、環状無水物基が特に好ましい。また、このような環状酸無水物基としては、無水コハク酸基、無水マレイン酸基、無水グルタル酸基、無水フタル酸基が好ましく、中でも、容易にポリマー側鎖に導入可能で、工業上入手が容易である観点からは、無水マレイン酸基がより好ましい。また、前記官能基が環状酸無水物基である場合には、例えば、前記官能基を導入しうる化合物として、無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸およびこれらの誘導体等の環状酸無水物を用いて、エラストマー性ポリマー(例えば公知の天然高分子または合成高分子)に官能基を導入してもよい。
 なお、前記官能基と反応して水素結合性架橋部位を形成する化合物としては特に制限されないが、前述の「水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)」を利用することが好ましい。また、前記官能基と反応して共有結合性架橋部位を形成する化合物としては特に制限されないが、前述の「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」を利用することが好ましい。また、水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)、及び、共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)としては、前記官能基と反応して水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(例えば、含窒素複素環を含むポリオール、ポリアミン、ポリチオール等)も好適に利用することができる。
 また、このようなエラストマー成分(エラストマー性ポリマー(A)~(B))を製造する方法に、官能基(例えば環状酸無水物基)を側鎖に有するエラストマー性ポリマーを用いて、該エラストマー性ポリマーを、前記官能基と反応して水素結合性架橋部位を形成する化合物、並びに、前記官能基と反応して水素結合性架橋部位を形成する化合物及び前記官能基と反応して共有結合性架橋部位を形成する化合物の混合原料のうちの少なくとも1種の原料化合物と反応させて、前記側鎖(a)を有する前記エラストマー性ポリマー(A)、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されている前記エラストマー性ポリマー(B)を製造する方法を採用する場合、官能基を側鎖に有するエラストマー性ポリマーを、前記原料化合物と反応させる前に、添加成分と官能基を側鎖に有するエラストマー性ポリマーとを混合し、その後、前記原料化合物を添加し、反応させて、エラストマー成分の調製と同時に組成物を形成する方法(添加成分を先添加する方法)を採用してもよい。
 なお、添加成分の分散性がより向上し、より高度な耐熱性が得られることから、エラストマー成分(エラストマー性ポリマー(A)~(B))を製造する際に、添加成分を先添加する方法を採用して、エラストマー成分の調製時に添加成分を分散させることが好ましい。
 前記エラストマー成分(エラストマー性ポリマー(A)~(B))として前記反応物(I)~(VI)を製造する場合においても、その方法は特に制限されず、エラストマー性ポリマー(E1)~(E6)と、それと反応させる化合物(M1)~(M6)とを、適宜選択して、目的の設計の側鎖が形成されるように適宜反応させることで反応物(I)~(VI)を得る方法を適宜使用することができ、そのような反応の条件(温度条件や雰囲気条件等)としては、反応物を得るための原料としてのエラストマー性ポリマー(E1)~(E6)の官能基や主鎖の種類、更には、それと反応させる化合物(M1)~(M6)の種類に応じて設定することができる。
 このような反応物(I)~(VI)を調製する際には、例えば、目的の設計に応じて、エラストマー性ポリマー(E1)~(E6)から適宜選択したポリマーを加圧ニーダ―に添加して撹拌しながら、そこに、該ポリマーと反応させるための化合物(M1)~(M6)から選択された化合物を添加して反応させて調製してもよく、その際に、反応が進行するような温度に適宜設定すればよい。なお、前記反応物(I)~(VI)を調製する際に、反応物(I)~(VI)の調製に用いるエラストマー性ポリマー(E1)~(E6)から適宜選択したポリマーを、前記化合物(M1)~(M6)から選択された化合物と反応させる前に、該ポリマーと添加成分とを混合し、その後、前記化合物を添加して反応させることにより、エラストマー成分の調製と同時に、組成物を形成する方法(添加成分を先添加する方法)を採用してもよい。なお、添加成分の分散性がより向上し、より高度な耐熱性が得られることから、反応物(I)~(VI)を含む組成物を製造する場合にも、前述の添加成分を先添加する方法を採用することが好ましい。
 (添加成分)
 本発明の熱可塑性エラストマー組成物においては、前記エラストマー成分と組み合わせて、膨張黒鉛、カーボンナノチューブ、フラーレン、グラフェン、ケイ酸塩系天然ナノファイバー、シルセスキオキサン及び層状チタン酸化合物からなる群から選択される少なくとも1種の添加成分を含有する。
 このような添加成分として利用される膨張黒鉛は、特に限定されず、公知の膨張黒鉛を適宜利用することができる。ここで、膨張黒鉛とは、熱により膨張する黒鉛であればよく、黒鉛(例えば、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等)の層間に化合物等を挿入したものを好適に利用することができる。このような黒鉛の層間に挿入する化合物としては、硫酸、硝酸等の酸や、それらの酸の混合物が挙げられる。このような膨張黒鉛としては市販品を適宜利用することができ、例えば、富士黒鉛工業社製のEXP-50シリーズ、EXP-80シリーズ;伊藤黒鉛工業社製の953240シリーズ、9550シリーズ、9510シリーズ;コールケミカル社製の5099SS-3、60CA-60;中越黒鉛工業社製SMF,EMF,SFF,SS;等を利用することができる。
 このような膨張黒鉛としては粉末状のものが好ましく、その平均粒子径は0.1~100nmであることが好ましく、1~80nmであることがより好ましい。このような平均粒子径が前記下限未満では細かすぎて分散が難しくなり物性が低下してしまう傾向にあり、他方、前記上限を超えると大きすぎて異物となって破壊の起点となって引張物性等が低下してしまう傾向にある。
 また、前記添加成分として利用されるカーボンナノチューブとしては、単層カーボンナノチューブ、多層カーボンナノチューブが挙げられる。このようなカーボンナノチューブとしては、より高物性を発現できるといった観点から、単層カーボンナノチューブが好ましい。
 このようなカーボンナノチューブとしては、平均直径が0.1~100nm(より好ましくは0.4~50nm)のものが好ましい。このような直径が前記下限未満では細かすぎて分散が難しくなり物性が低下してしまう傾向にあり、他方、前記上限を超えると大きすぎて異物となって破壊の起点となって引張物性等が低下してしまう傾向にある。また、このようなカーボンナノチューブとしては、平均長さが1nm~1mm(より好ましくは10~100nm)のものが好ましい。また、このようなカーボンナノチューブとしては、アスペクト比が1~1000(より好ましくは10~100)のものが好ましい。このような長さやアスペクト比が、前記下限未満では細かすぎて分散が難しくなり物性が低下してしまう傾向にあり、他方、前記上限を超えると大きすぎて異物となって破壊の起点となって引張物性等が低下してしまう傾向にある。このようなカーボンナノチューブとしては市販品を適宜利用することができ、例えば、巴工業社製のED、EP,HP;名城ナノカーボン社製のEC1.0,EC1.5,EC2.0;丸紅情報システムズ社製の9000,9100,9110;日本ゼオン社製のZeonanoSG101;これらの分散液やポリマーマスターバッチ品;等を利用することができる。
 また、前記添加成分として利用されるフラーレンとしては、特に制限されず、公知のものを適宜利用することができる。なお、このようなフラーレンは、閉殻空洞状の多数の炭素原子のみで構成される、クラスターの総称である。このようなフラーレンとしては、例えば、C60、C70、C76、C78、C82、C84、C90、C94、及び、C96等の炭素クラスターからなるフラーレンが挙げられる。このようなフラーレンの中でも工業的に入手が容易で、コストが低いという観点から、C60フラーレン、C70フラーレン、および上記フラーレンの混合物(C60フラーレン及びC70フラーレンの混合物)が好ましく、上記フラーレンの混合物が特に好ましい。また、このようなフラーレンとしては市販品を適宜利用することができ、例えば、フロンティアカーボン社製のナノムシリーズ等を利用することができる。
 前記添加成分として利用されるグラフェンとしては、特に限定されず、公知のグラフェンを適宜利用することができる。このようなグラフェンとしては、より高分散化し、より高強度を発現させるという観点から、グラフェンのナノ粒子(グラフェンナノパウダー)を用いることが好ましい。このようなグラフェンのナノ粒子としては、平均粒子径が0.1~1000nmであることが好ましく、1~300nmであることがより好ましい。このような平均粒子径が前記下限未満では細かすぎて分散が難しくなり物性が低下してしまう傾向にあり、他方、前記上限を超えると大きすぎて異物となって破壊の起点となって引張物性等が低下してしまう傾向にある。
 また、このようなグラフェンとしては市販品を適宜利用することができ、例えば、XG Sciences社製の鱗片上グラフェン粉末;NanoIntegris社製のナノグラフェン水溶液;Graphos社製の酸化グラフェンG-GOSiO・Sol-GO・GO;NiSiNa Materials社製の機能付与酸化グラフェンRap GO、Rap bGO、Metal/GO、Rap rGO;EMジャパン社製グラフェンナノパウダー;和光薬品社製グラフェン;等を利用することができる。
 前記添加成分として利用されるケイ酸塩系天然ナノファイバーとしては、特に制限されず、公知のケイ酸塩からなる天然ナノファイバーを適宜利用することができる。このようなケイ酸塩系天然ナノファイバーとしては、例えば、式:SiO・Al・2HO、AlSiO(OH)で表されるケイ酸塩(イモゴライト)、式:(Mg,Al)[Si10](OH)-4HOで表されるケイ酸塩(パリゴルスカイト)、式:SiO・Alで表されるケイ酸塩(アロフェン)等が挙げられる。
 このようなケイ酸塩系天然ナノファイバーとしては、平均直径(外径の平均)が0.1~10nm(より好ましくは1~7nm)のものが好ましい。また、ケイ酸塩系天然ナノファイバーが中空形状の場合において、内径の平均直径(内径の平均)が0.1~8nm(より好ましくは0.3~6nm)のものが好ましい。このような直径が前記下限未満では細かすぎて分散が難しくなり物性が低下してしまう傾向にあり、他方、前記上限を超えると大きすぎて異物となって破壊の起点となって引張物性等が低下してしまう傾向にある。また、このようなケイ酸塩系天然ナノファイバーとしては、平均長さが1nm~5μm(より好ましくは5nm~3μm)のものが好ましい。また、このようなケイ酸塩系天然ナノファイバーとしては、アスペクト比が1~1000(より好ましくは10~100)のものが好ましい。このような長さやアスペクト比が、前記下限未満では細かすぎて分散が難しくなり物性が低下してしまう傾向にあり、他方、前記上限を超えると大きすぎて異物となって破壊の起点となって引張物性等が低下してしまう傾向にある。
 このようなケイ酸塩系天然ナノファイバーとしては、工業的に入手が容易で、コストが低いという観点から、イモゴライト、パリゴルスカイトが好ましく、イモゴライトが特に好ましい。また、このようなケイ酸塩系天然ナノファイバーとしては、市販品を適宜利用することができ、例えば、アステック社製ドロンパ、園芸用の鹿沼土等を利用することができる。
 前記添加成分として利用されるシルセスキオキサンは、主鎖骨格がSi-O結合からなるシロキサン系の化合物であって、且つ、下記式:
 -(RSiO3/2
[式中、Rは置換基を有していてもよいアルキル基を示し、nは整数を示す。]
で表されるシルセスキオキサン構造を有するものであることが好ましい。また、ポリマータイプでもよい。このようなシルセスキオキサン構造を示す式中のRとして選択され得るアルキル基としては、炭素数が1~30のものが好ましく、1~20のものがより好ましい。このような炭素数が前記下限未満では不安定で分解しやすくなり配合が難しい傾向にあり、他方、前記上限を超えると立体障害が大きすぎて、シロキサン結合との相互作用が落ちて分散が難しくなる、また、分子が大きくなりすぎて異物となって破壊の起点となって引張物性等が低下してしまうといった傾向にある。また、このようなシルセスキオキサン構造を示す式中のRとして選択され得るアルキル基が有していてもよい置換基としては、メチル、エチル、プロピル、ヘキシル、フェニル、ビニル等が挙げられる。
 また、このようなシルセスキオキサン構造を示す式中においてnで表される整数としては2~100であることが好ましく、8~50であることがより好ましい。このような整数nが前記下限未満では液状になってフィラーとしての作用が得られない傾向にあり、他方、前記上限を超えると大きすぎて異物となって破壊の起点となって引張物性等が低下してしまう傾向にある。
 また、このようなシルセスキオキサンとしては粒子状のものが好ましく、その平均粒子径が0.1~300nmであることが好ましく、0.5~100nmであることがより好ましい。このような平均粒子径が前記下限未満では細かすぎて分散が難しくなり物性が低下してしまう傾向にあり、他方、前記上限を超えると大きすぎて異物となって破壊の起点となって引張物性等が低下してしまう傾向にある。また、このようなシルセスキオキサンとしては、市販品を適宜利用することができ、例えば、信越シリコーン社製のKMP-590、KMP-591;アヅマックス社製のSSTシリーズ;Sigma-Aldrich社製のPOSS;等を利用することができる。
 さらに、前記添加成分として利用される層状チタン酸化合物としては、特に制限されず、公知のものを適宜利用することができる。このような層状チタン酸化合物としては、式:
 MTi
[式中、Mは金属を示し、l、n、mは1~30の整数を示す。]
で表される化合物からなるものが挙げられる。このような層状チタン酸化合物としては、例えば、チタン酸カリウムKTi13、チタン酸バリウムBaTiO3、チタン酸ストロンチウムSrTiO3、チタン酸カルシウムCaTiO3、チタン酸マグネシウムMgTiO3、チタン酸鉛PbTiO3、チタン酸アルミニウムAlTiO5、チタン酸リチウムLiTi12などが挙げられる。このような層状チタン酸化合物としては、粒子状のものが好ましく、その平均粒子径が0.1~500nmであることが好ましく、0.5~300nmであることがより好ましい。このような平均粒子径が前記下限未満では細かすぎて分散が難しくなり物性が低下してしまう傾向にあり、他方、前記上限を超えると大きすぎて異物となって破壊の起点となって引張物性等が低下してしまう傾向にある。また、このような層状チタン酸化合物としては、市販品を適宜利用することができ、例えば、大塚化学社製のティスモ、テラサス、デントールWK;チタン工業社製のSW-100,SW-300,TC-100;富士チタン工業社製チタン酸化合物;堺化学工業社製チタン酸化合物;等を利用することができる。
 また、このような添加成分は1種を単独で、あるいは2種以上を組み合わせて利用することができる。また、このような添加成分としては、膨張黒鉛、カーボンナノチューブ、フラーレン、グラフェン、ケイ酸塩系天然ナノファイバー、シルセスキオキサン及び層状チタン酸化合物の中でも、工業的に入手が容易で、コストが低いという観点から、膨張黒鉛と層状チタン酸化合物がより好ましく、膨張黒鉛が更に好ましい。
 (組成物)
 本発明の熱可塑性エラストマー組成物は、前記エラストマー成分と、前記添加成分とを含有するものである。
 なお、本発明の熱可塑性エラストマー組成物によって、十分に高度な引張強度(100%モジュラス及び破断強度を指標とした引張強度)と、十分に高度な耐摩耗性とを有することが可能となる理由は必ずしも明らかではないが、本発明者らは以下のように推察する。すなわち、先ず、本発明において、エラストマー成分は、少なくとも水素結合性架橋部位を有する側鎖を含むエラストマー性ポリマー(側鎖に、側鎖(a);側鎖(a’)及び側鎖(b);並びに、側鎖(c)のうちの少なくとも1種を含むポリマー)を含有している。先ず、このようなエラストマー性ポリマーと前記添加成分とを組み合わせると、添加成分との間で水素結合等の相互作用が可能であることから、ポリマー中により均一にかつ高度に分散される。そして、このように系中に高度に分散された前記添加成分と水素結合性架橋部位とが相互作用(新たな水素結合が形成される等)して、前記添加成分として導入された成分の表面を利用してエラストマー成分が面架橋される。このように、前記添加成分は、いずれも水素結合性架橋部位との間で面架橋を形成することを可能とするもの(いわゆる面架橋剤)である。そして、このような面架橋が形成されると、架橋点への応力集中を抑えることが可能となり、前記添加成分を含有させなかった場合と比較して、より高い破断強度(破断されるまでの引張強度)を発現させることが可能となる。また、このように系中に高度に分散された前記添加成分と水素結合性架橋部位とが相互作用(新たな水素結合が形成される等)することにより、水素結合性架橋部位との相互作用により形成される架橋の密度をより均一化させることが可能となり、架橋点への応力集中を抑えることが可能となって、耐摩耗性がより高度なものとなるものと本発明者らは推察する。
 一方、水素結合性の架橋部位を側鎖に有する、エラストマー性ポリマー(A)及び(B)のうちの少なくとも1種をエラストマー成分として利用せず、他のエラストマー成分のみを用いた場合には、例え、前記添加成分と組み合わせて利用したとしても、上述のような効果を得ることができない。この点に関して検討すると、先ず、一般的な熱可塑性エラストマーは、高分子分子鎖間の物理的な相互作用による擬似的架橋を利用したタイプ(高分子の分子間力等による相互作用によって物理的に弱い結合が形成されているタイプ)と、熱可塑性樹脂のマトリックスにゴムを分散させたタイプの2つに大別される。このような擬似的架橋を利用したタイプの熱可塑性エラストマーは、代表的なものとして、ブロックポリマーやウレタンエラストマー等のソフトセグメントとハードセグメントを持つポリマーが挙げられる。ここで、上述のような側鎖を有するポリマーを導入することなく、単に、擬似的架橋を利用したタイプの熱可塑性エラストマーに前記添加成分等のフィラーを配合すると、擬似的架橋点における相互作用(高分子分子鎖間の物理的な相互作用)が前記添加成分により阻害されて、却って高分子の機械的な強度が低下してしまい、ゴム製品として実使用に耐えられないものとなってしまう。このように、擬似的架橋を利用したタイプの熱可塑性エラストマーのみからなるような従来の熱可塑性のエラストマーは、これを単に前記添加成分と組み合わせた場合に、その組成物中において、却って擬似的架橋の形成が阻害され、組成物の機械的な強度(引張応力等)が低下してしまう。また、熱可塑性樹脂のマトリックスにゴムを分散させたタイプの熱可塑性エラストマーでは、その組成からも明らかなように、前記添加成分等のフィラーは、マトリックス相にしか導入されないこととなる。ここにおいて、上記側鎖を有していないような熱可塑性樹脂からなるマトリクスにおいては、マトリクスにおいて前記添加成分との相互作用が形成されることがない。そのため、単純に前記添加成分を導入しても、ある部分に高濃度に前記添加成分が導入され、また、ある部分にはまったく前記添加成分が導入されないといった状態となってしまう。その結果、前記添加成分の濃度の差に起因して、エラストマーの内部において硬度の差が生まれ、却って機械的強度等が低下する。そのため、熱可塑性樹脂のマトリックスにゴムを分散させたタイプの熱可塑性エラストマーにおいて、水素結合性の架橋部位を側鎖を含まないポリマーを用いている場合においては、単純に前記添加成分を導入したとしても、前記添加成分を十分に分散させることができず、組成物の機械的な強度(破断強度等)が低下してしまう。このような観点で、エラストマー性ポリマー(A)及び(B)を、母体となるエラストマー成分に利用しなかった場合には、そもそも前記添加成分との間に相互作用を形成することができないばかりか、前記添加成分の存在により、却って機械的な強度が低下してしまい、エラストマー(ゴム)として必ずしも十分な特性を有するものとすることができないものと本発明者らは推察する。
 なお、本発明において、側鎖に共有結合性架橋部位を含むエラストマー成分を含有する場合(例えば、エラストマー性ポリマー(B)を含む場合)には、共有結合性架橋部位を含む側鎖により、より高い水準の耐圧縮永久歪性を発現させることも可能となるものと本発明者らは推察する。また、エラストマー成分中に、水素結合性架橋部位と共有結合性架橋部位とが存在する場合(エラストマー性ポリマー(B)を含有する場合、エラストマー性ポリマー(B)と他のエラストマー性ポリマーの混合物を含有する場合、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)との混合物を含有する場合、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)以外の側鎖(b)を有するエラストマー性ポリマーとの混合物を利用する場合等)には、水素結合性架橋部位と共有結合性架橋部位の存在に起因して、使用時に、共有結合による、より高度な機械的強度と、水素結合による加熱時の開裂による、より高度な流動性(成形性)を同時に発現させることも可能となる。そのため、側鎖の種類に応じて組成を適宜変更して、用途に応じた特性を適宜発揮させることも可能となるものと本発明者らは推察する。なお、上述のようなエラストマー性ポリマー(B)以外の側鎖(b)を有するエラストマー性ポリマーは、官能基(例えば環状酸無水物基)を側鎖に有するエラストマー性ポリマーを用いて、該エラストマー性ポリマーを、前記官能基と反応して共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)と反応させて、前記側鎖(b)を有する前記エラストマー性ポリマーを製造する方法により得ることが可能である。なお、この場合においても、共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)としては、前述の「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」を利用することができる。
 以上、本発明の熱可塑性エラストマー組成物によって、上述のような本発明の効果が得られる理由等について検討したが、以下、本発明の熱可塑性エラストマー組成物の好適な実施形態(各成分の含有比率の好適な条件等)について更に説明する。
 本発明の熱可塑性エラストマー組成物は、前記エラストマー成分と、前記添加成分とを含有するものである。そして、本発明の熱可塑性エラストマー組成物においては、前記添加成分の含有量(2種以上を組み合わせて複数の成分を含む場合にはそれらの総量)は、前記エラストマー成分100質量部に対して20質量部以下である。このような添加成分の含有量が前記上限を超えると、多すぎて分散不良を起こしやすく異物となってしまい引張強度等が低下する。このような熱可塑性エラストマー組成物における添加成分の含有量(総量)としては、前記エラストマー成分100質量部に対して0.1~10質量部であることがより好ましく、0.5~5質量部であることが更に好ましく、1~3質量部であることが特に好ましい。このような添加成分の含有量が前記下限未満では、添加成分の含有量が少なすぎて十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると、架橋が強くなり過ぎて、却って伸びや強度が低下してしまい、各種用途に利用することが困難となる(実用性が低下する)傾向にある。
 また、このような添加成分が多層のものである場合には、単層の形態で組成物中に存在することが好ましい。このような単層状の形態の添加成分の存在は、組成物の表面を透過型電子顕微鏡(TEM)により測定することにより確認できる。
 なお、本発明の熱可塑性エラストマー組成物においては、用いるエラストマー成分の種類に応じて、用途に応じた特性を適宜付与することもできる。例えば、エラストマー性ポリマー(A)をエラストマー成分とする熱可塑性エラストマー組成物においては、組成物中に側鎖(a)に由来する特性を付与できるため、特に破断伸び、破断強度、流動性を向上させることが可能となる。また、エラストマー性ポリマー(B)をエラストマー成分とする熱可塑性エラストマー組成物においては、組成物中に、側鎖中の共有結合性架橋部位に由来する特性を付与できるため、特に圧縮永久歪に対する耐性(耐圧縮永久歪性)を向上させることが可能となる。なお、エラストマー性ポリマー(B)をエラストマー成分として含有する熱可塑性エラストマー組成物においては、組成物中において、共有結合性架橋部位に由来する特性の他に、水素結合性架橋部位(側鎖(a’)において説明した水素結合性架橋部位)に由来する特性をも付与できるため、流動性(成形性)を保持した状態で、耐圧縮永久歪性をより向上させることも可能となり、その側鎖の種類やポリマー(B)の種類等を適宜変更することで、用途に応じた所望の特性を、より効率よく発揮させることも可能となる。
 また、本発明の熱可塑性エラストマー組成物においては、エラストマー性ポリマー(A)をエラストマー成分とする熱可塑性エラストマー組成物と、エラストマー性ポリマー(B)をエラストマー成分とする熱可塑性エラストマー組成物とをそれぞれ別々に製造した後、これを混合して、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を含有する熱可塑性エラストマー組成物としてもよい。また、本発明においては、エラストマー成分は、エラストマー性ポリマー(A)及び(B)を少なくとも含有していればよいが、組成物中に共有結合性架橋部位を存在せしめて、より効率よく共有結合性架橋部位の特性を利用するといった観点から、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマーを混合して用いてもよい。例えば、エラストマー成分として、エラストマー性ポリマー(A)を用いる場合に、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマーを組み合わせて用いた場合には、組成物中に含まれる側鎖に由来して、側鎖に水素結合性架橋部位及び共有結合性架橋部位を含有するエラストマー性ポリマー(B)を利用した熱可塑性エラストマー組成物と、ほぼ同様の特性を付与することも可能となる。また、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を含有する熱可塑性エラストマー組成物を製造する場合や、エラストマー性ポリマー(A)及びエラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマーを含有する熱可塑性エラストマー組成物を製造する場合には、各成分(例えばエラストマー性ポリマー(A)とエラストマー性ポリマー(B)の各成分)の比率を適宜変更することで、所望の特性を適宜発揮させることも可能となる。
 また、本発明の熱可塑性エラストマー組成物がエラストマー成分として、エラストマー性ポリマー(A)及び(B)を含有する場合には、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)の含有比率は質量比([ポリマー(A)]:[ポリマー(B)])で1:9~9:1とすることが好ましく、2:8~8:2とすることがより好ましい。このようなポリマー(A)の含有比率が前記下限未満では流動性(成形性)、機械的強度が不十分となる傾向にあり、他方、前記上限を超えると圧縮永久歪に対する耐性が低下する傾向にある。
 さらに、本発明の熱可塑性エラストマー組成物が、エラストマー性ポリマー(A)を含有し、他のポリマーとして、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマー(以下、場合により「エラストマー性ポリマー(C)」と称する。)を更に含有する場合には、エラストマー性ポリマー(A)とエラストマー性ポリマー(C)の含有比率は質量比([エラストマー性ポリマー(A)]:[エラストマー性ポリマー(C)])で1:9~9:1とすることが好ましく、2:8~8:2とすることがより好ましい。このようなポリマー(A)の含有比率が前記下限未満では流動性(成形性)、機械的強度が不十分となる傾向にあり、他方、前記上限を超えると圧縮永久歪に対する耐性が低下する傾向にある。
 また、本発明の熱可塑性エラストマー組成物においては、組成物中に側鎖(a’)と側鎖(b)の双方が存在する場合には、その側鎖(a’)の全量と側鎖(b)の全量とが、質量比を基準として、1:9~9:1となっていることが好ましく、2:8~8:2となっていることがより好ましい。このような側鎖(a’)の全量が前記下限未満では流動性(成形性)、機械的強度が不十分となる傾向にあり、他方、前記上限を超えると圧縮永久歪に対する耐性が低下する傾向にある。なお、このような側鎖(a’)は、側鎖(a)を含む概念である。そのため、側鎖(a’)として側鎖(a)のみが含まれるような場合においても、上記質量比で、組成物中に側鎖(a)と側鎖(b)の双方が存在することが好ましい。
 また、本発明の熱可塑性エラストマー組成物は、必要に応じて、本発明の目的を損わない範囲で、前記エラストマー成分以外のポリマー成分(以下、単に「他のポリマー」と称する。)、パラフィンオイル、補強剤(充填剤)、水素結合性の補強剤(充填剤)、アミノ基を導入してなる充填剤(以下、単に「アミノ基導入充填剤」という。)、該アミノ基導入充填剤以外のアミノ基含有化合物、金属元素を含む化合物(以下、単に「金属塩」という。)、無水マレイン酸変性ポリマー、老化防止剤、酸化防止剤、顔料(染料)、前記パラフィンオイル以外の可塑剤、揺変性付与剤、紫外線吸収剤、難燃剤、溶剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、防錆剤、接着付与剤、帯電防止剤、クレイ、有機化クレイ、抗菌剤、防黴剤、フィラーなどの各種添加剤等を含有することができる。このような添加剤等は、特に制限されず、一般に用いられるもの(公知のもの)を適宜使用することができる。例えば、前記他のポリマー、パラフィンオイル、補強剤、老化防止剤、酸化防止剤、顔料(染料)、可塑剤等としては、以下に記載のようなものを適宜利用することができる。
 前記他のポリマーとしては、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマー;化学結合性の架橋部位を有さないα-オレフィン系樹脂;化学結合性の架橋部位を有さないスチレンブロック共重合体;を好適に利用することができる。なお、ここにいう「化学結合性の架橋部位」とは、水素結合、共有結合等といった化学結合により架橋が形成されている部位をいう。そのため、本発明にいう「化学結合性の架橋部位を有さない」とは、化学結合(例えば水素結合、共有結合等)により形成される架橋を有さない状態であることをいう。
 このような化学結合性の架橋部位を有さないα-オレフィン系樹脂(以下、単に「化学結合性の架橋部位を有さないα-オレフィン系樹脂」と称する。)としては、化学結合による架橋点を形成するような、官能基(例えば、水酸基、カルボニル基、カルボキシル基、チオール基、アミド基、アミノ基)を含まず、更に、高分子鎖同士を直接架橋する結合部位(共有結合による架橋部位等)を含まないものが好適に用いられる。また、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂は、少なくとも、上述のような側鎖(a)、側鎖(a’)、側鎖(b)、側鎖(c)等を有していないポリマーとなる。
 また、ここにいう「α-オレフィン系樹脂」とは、α-オレフィンの単独重合体、α-オレフィンの共重合体をいう。ここにいう「α-オレフィン」とは、α位に炭素-炭素二重結合を有するアルケン(末端に炭素-炭素二重結合を有するアルケン:なお、かかるアルケンは直鎖状のものであっても分岐鎖状のものであってもよく、炭素数が2~20(より好ましくは2~10)であることが好ましい。)をいい、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン等が挙げられる。
 このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、α-オレフィンの重合体(ポリα-オレフィン:単独重合体であっても共重合体であってもよい。)であればよく、特に制限されないが、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、プロピレン-エチレン-ブテン共重合体等が挙げられる。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の中でも、母体となるエラストマーに対する相溶性の観点からは、ポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体が好ましい。なお、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂は1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。
 このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、結晶化度が10%以上のものが好ましく、10~80%のものがより好ましく、10~75%のものが更に好ましい。このような結晶化度が前記下限未満では樹脂的な性質が希薄になるため、機械特性、流動性をより高度なものとすることが困難となる傾向にあり、他方、前記上限を超えると樹脂的な性質が強くなるため、機械特性をより高い水準でバランスよく発揮させることが困難となる傾向にある。なお、このような結晶化度は、測定装置としてX線回折装置(例えば、リガク社製の商品名「MiniFlex300」を用い、回折ピークを測定し、結晶性/非晶性由来の散乱ピークの積分比を計算することにより求めることができる。
 また、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、JIS K6922-2(2010年発行)に準拠して測定される、190℃、2.16kg荷重におけるメルトフローレート(MFR)が40g/10分以上であることが好ましい。このようなメルトフローレート(MFR)が前記下限未満では組成物中に配合しても流動性を向上させることが困難となる傾向にある。なお、このようなメルトフローレート(MFR)は、JIS K6922-2(2010年発行)に記載のB法に準拠して測定される値であり、メルトフローレート測定装置として東洋精機製作所製の商品名「Melt Indexer G-01」を用いて、該装置の炉体内に前記α-オレフィン系樹脂を3g添加した後、温度を190℃にして5分間保持した後、190℃に維持しつつ2.16kgに荷重する条件で、前記炉体の下部に接続されている直径1mm、長さ8mmの筒状のオリフィス部材の開口部から、10分の間に流出する組成物の質量(g)を測定(前記炉体内において温度を190℃にして5分間保持した後に荷重を開始してから、流出するエラストマーの質量の測定を開始する。)することにより求めることができる。
 さらに、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の重量平均分子量(Mw)は、1万以上200万以下であることが好ましく、3万以上150万以下であることがより好ましく、5万以上125万以下であることが更に好ましい。このような重量平均分子量が前記下限未満では機械強度が低下する傾向にあり、他方、前記上限を超えるとエラストマー成分に対する相溶性が低下してしまい、相分離しやすくなる傾向にある。
 また、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の数平均分子量(Mn)は、1万以上200万以下であることが好ましく、3万以上150万以下であることがより好ましく、5万以上125万以下であることが更に好ましい。このような数平均分子量が前記下限未満では機械強度が低下する傾向にあり、他方、前記上限を超えるとエラストマー成分に対する相溶性が低下してしまい、相分離しやすくなる傾向にある。
 また、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の分子量分布の分散度(Mw/Mn)は5以下であることが好ましく、1~3であることがより好ましい。このような分子量分布の分散度(Mw/Mn)の値が前記下限未満では流動性が低下する傾向にあり、他方、前記上限を超えるとエラストマー成分に対する相溶性が低下する傾向にある。
 なお、上述のようなα-オレフィン系樹脂の重量平均分子量(Mw)や前記数平均分子量(Mn)および分子量分布の分散度(Mw/Mn)は、いわゆるゲルパーミエーションクロマトグラフィー(GPC)法により求めることができる。また、このような分子量等の測定の具体的な装置や条件としては、島津製作所製「Prominence GPCシステム」を利用できる。
 また、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂のガラス転移点は、-150~5℃であることが好ましく、-125~0℃であることがより好ましい。このようなガラス転移点が前記下限未満では融点が低くなるため耐熱性が低下する傾向にあり、他方、前記上限を超えるとエラストマー成分への配合後のゴム弾性が低下しやすい傾向にある。なお、ここにいう「ガラス転移点」は、前述のように、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により測定したガラス転移点である。このようなDSC測定に際しては、昇温速度は10℃/minにするのが好ましい。
 このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の製造するための方法は特に制限されず、公知の方法を適宜採用することができる。また、このようなα-オレフィン系樹脂としては、市販品を用いてもよく、例えば、三井化学社製の商品名「タフマー」;日本ポリエチレン社製の商品名「ノバテックHD」「ノバテックLD」「ノバテックLL」「カーネル」;プライムポリマー社製の商品名「ハイネックス」「ネオゼックス」「ウルトゼックス」「エボリュー」「プライムポリプロ」「ポリファイン」「モストロンーL」;サンアロマー社製のPP等を適宜用いてもよい。
 本発明の熱可塑性エラストマー組成物において、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂を更に含有する場合、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の含有量(含有比率)が、前記エラストマー成分100質量部に対して800質量部以下であることが好ましく、5~700質量部であることがより好ましく、10~600質量部であることが更に好ましく、25~500質量部であることが特に好ましく、50~400質量部であることが最も好ましい。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の含有量が前記下限未満では、流動性が低下する傾向にあり、他方、前記上限を超えると、圧縮永久歪が低下する傾向にある。
 また、本発明の熱可塑性エラストマー組成物において、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂を更に含有する場合、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の含有量は、前記組成物の総量に対して1~90質量%であることが好ましく、3~80質量%であることがより好ましく、5~70質量%であることが更に好ましい。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の含有量が前記下限未満では、流動性が低下する傾向にあり、他方、前記上限を超えると、圧縮永久歪が低下する傾向にある。
 また、前記他のポリマーとしては、母体となるエラストマーの架橋反応に干渉しない成分であるとの観点からは、化学結合性の架橋部位を有さないスチレンブロック共重合体が好ましい。なお、このようなスチレンブロック共重合体を用いた場合、基本的に、母体となるエラストマー性ポリマー(前記エラストマー成分)の架橋構造や製造時の架橋反応に干渉しないため、架橋した母体となるエラストマー構造固有の物性が阻害されないことから、前記エラストマー成分に由来する特性を十分に維持しつつ、スチレンブロック共重合体に由来する優れた機械特性(特に引張特性、圧縮永久歪等)を、本発明の熱可塑性エラストマー組成物に反映させること(付与すること)ができ、より高度な特性を有するものとすることが可能であるものと本発明者らは推察する。
 このような本発明の熱可塑性エラストマー組成物に好適に用いられる成分である前記スチレンブロック共重合体は、化学結合性の架橋部位を有さないものである。ここにいう「化学結合性の架橋部位を有さない」とは、前述のα-オレフィン系樹脂において説明したものと同義である。従って、化学結合性の架橋部位を有さないスチレンブロック共重合体としては、化学結合による架橋点を形成するような、官能基(例えば、水酸基、カルボニル基、カルボキシル基、チオール基、アミド基、アミノ基)を含まず、更に、高分子鎖同士を直接架橋する結合部位(共有結合による架橋部位等)を含まないものが好適に用いられる。また、このような化学結合性の架橋部位を有さないスチレンブロック共重合体は、少なくとも、上述のような側鎖(a)、側鎖(a’)、側鎖(b)、側鎖(c)等を有していないポリマーとなる。
 また、ここにいう「スチレンブロック共重合体」とは、いずれかの部位にスチレンブロック構造を有するポリマーであればよい。なお、一般に、スチレンブロック共重合体は、スチレンブロック構造を有し、常温では、そのスチレンブロック構造の部位が凝集して物理的架橋点(物理的な疑似架橋点)が形成され、加熱した場合にはかかる物理的な疑似架橋点が崩壊することに基づいて、熱可塑性を有しかつ常温でゴムのような特性(弾性等)を有するものとして利用可能なものである。
 また、このような化学結合性の架橋部位を有さないスチレンブロック共重合体(以下、場合により単に「化学結合性の架橋部位を有さないスチレンブロック共重合体」と称する。)としてはゴム弾性と熱可塑性の両立の観点から、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン‐エチレン‐プロピレン-スチレンブロック共重合体(SEPS)、スチレン‐エチレン‐エチレン‐プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-ブタジエン-スチレンブロック共重合体(SIBS)、これらの水素添加物(いわゆる水添物)が好ましく、SEBS、SEEPSがより好ましい。このようなスチレンブロック共重合体は1種を単独で用いてもよく、あるいは、2種以上を組み合わせて利用してもよい。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体としては、スチレン含有量が20~40質量%(より好ましくは25~37質量%)のスチレンブロック共重合体であることが好ましい。このようなスチレン含有量が前記下限未満ではスチレンブロック成分の減少により熱可塑性が低下する傾向にあり、他方、前記上限を超えるとオレフィン成分の減少によりゴム弾性が低下する傾向にある。なお、このようなスチレンブロックスチレンブロック共重合体中のスチレン含有量は、JIS K6239(2007年発行)に記載のIR法に準拠した方法により測定できる。
 さらに、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の重量平均分子量(Mw)は、20万以上70万以下であることが好ましく、30万以上60万以下であることがより好ましく、35万以上55万以下であることが更に好ましい。このような重量平均分子量が前記下限未満では耐熱性が低下する傾向にあり、他方、前記上限を超えるとエラストマー性ポリマーとの相溶性が低下する傾向にある。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の数平均分子量(Mn)は、10万以上60万以下であることが好ましく、15万以上55万以下であることがより好ましく、20万以上50万以下であることが更に好ましい。このような数平均分子量が前記下限未満では耐熱性が低下する傾向にあり、他方、前記上限を超えるとエラストマー性ポリマー(前記エラストマー成分)との相溶性が低下する傾向にある。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の分子量分布の分散度(Mw/Mn)は5以下であることが好ましく、1~3であることがより好ましい。なお、このような重量平均分子量(Mw)や前記数平均分子量(Mn)および分子量分布の分散度(Mw/Mn)は、いわゆるゲルパーミエーションクロマトグラフィー(GPC)法により求めることができる。また、このような分子量等の測定の具体的な装置や条件としては、島津製作所製の「Prominence GPCシステム」を利用できる。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体のガラス転移点は、-80~-40℃であることが好ましく、-70~-50であることがより好ましい。このようなガラス転移点が前記下限未満では融点が低くなるため耐熱性が低下する傾向にあり、他方、前記上限を超えるとゴム弾性が低下する傾向にある。なお、ここにいう「ガラス転移点」は、前述のように、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により測定したガラス転移点である。このようなDSC測定に際しては、昇温速度は10℃/minにするのが好ましい。
 前記化学結合性の架橋部位を有さないスチレンブロック共重合体の製造するための方法は特に制限されず、公知の方法を適宜採用することができる。また、このようなスチレンブロック共重合体としては、市販品を用いてもよく、例えば、クレイトン社製の商品名「G1633」「G1640」「G1641」「G1642」「G1643」「G1645」「G1650」「G1651」「G1652」「G1654」「G1657」「G1660」;クラレ社製の商品名「S4055」「S4077」「S4099」「S8006」「S4044」「S8006」「S4033」「S8004」「S8007」「S8076」;旭化成社製の商品名「タフテックH1041」「タフテックN504」「タフテックH1272」「タフテックM1911」「タフテックM1913」「タフテックMP10」;アロン化成社製の商品名「AR-710」「AR-720」「AR-731」「AR-741」「AR-750」「AR-760」「AR-770」「AR-781」「AR-791」;等を適宜用いてもよい。
 また、本発明の熱可塑性エラストマー組成物において前記化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有させる場合、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量(含有比率)は、前記エラストマー成分100質量部に対して10~400質量部以下であることが好ましく、15~350質量部であることがより好ましく、20~300質量部であることが更に好ましく、30~250質量部であることが特に好ましい。このような化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量が前記下限未満では、化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量が少なすぎて、特に流動性及び加工性の点で十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると、架橋したエラストマーによる母体構造の特性(前記エラストマー成分に由来する特性)が希薄になる傾向にある。
 さらに、本発明の熱可塑性エラストマー組成物において前記化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有させる場合、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量は、熱可塑性エラストマー組成物の総量に対して5~60質量%であることが好ましく、7~45質量%であることがより好ましく、10~30質量%であることが更に好ましい。このような化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量が前記下限未満では、前記スチレンブロック共重合体の含有量が少なすぎて、特に流動性及び加工性の点で十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると、架橋したエラストマーによる母体構造の特性(前記エラストマー成分に由来する特性)が希薄になる傾向にある。
 なお、本発明の熱可塑性エラストマー組成物においては、前述の他のポリマーとして、例えば、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂及び前記化学結合性の架橋部位を有さないスチレンブロック共重合体以外にも、他の種類のポリマーを適宜利用することも可能である。このような他の種類のポリマーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリイソブチレン、ポリメタクリル酸メチル、ポリメタクリル酸ステアリル、ポリメタクリル酸ブチル、ポリメタクリル酸プロピル、フッ素ゴム、シリコーンゴム(MQ)、酸化ポリプロピレン、ポリジメチルシロキサン、ブチルゴム(IIR)、ポリ塩化ビニル、天然ゴム(NR)、ポリイソプレン(IR:イソプレンゴム)、ポリブタジエン(BR:ブタジエンゴム)、スチレンブタジエンゴム(SBR)、ポリスチレンが挙げられる。
 また、前記パラフィンオイルは、組成物の諸物性を低下させることなく、流動性をより向上させることが可能となるといった観点から、本発明の熱可塑性エラストマー組成物に更に含有させる他の成分(添加剤)として好適に用いることができる。なお、このようなパラフィンオイルと、前述のスチレン系ブロックポリマーとを併用した場合、オイル成分をブロックポリマー内に吸収させることが可能となり、オイル添加による加工性改善(流動性の向上)とスチレン系ブロックポリマー添加による機械特性向上とを十分に高度な水準で両立することが可能となるため、機械的特性や耐熱性をより十分に維持しつつ、押し出し加工性や射出成型性などの生産加工性をより高度なものとすることができる。また、パラフィンオイルを用いた場合には、例えば、加熱してオリフィス(例えば直径1mmの開口部を有するようなもの等)から押し出した場合に、オリフィスの開口部から押し出された紐状の熱可塑性エラストマー組成物の形状(ストランド形状)が十分に均一の太さを有するものとなり、その表面に毛羽立ちが見られない状態となるような、優れた押し出し加工性が得られる傾向にある。このようなパラフィンオイルとしては特に制限されず、公知のパラフィンオイルを適宜利用することができる。
 また、このようなパラフィンオイルとしては、そのオイルに対して、ASTM D3238-85に準拠した相関環分析(n-d-M環分析)を行って、パラフィン炭素数の全炭素数に対する百分率(パラフィン部:C)、ナフテン炭素数の全炭素数に対する百分率(ナフテン部:C)、及び、芳香族炭素数の全炭素数に対する百分率(芳香族部:C)をそれぞれ求めた場合において、パラフィン炭素数の全炭素数に対する百分率(C)が60%以上であることが好ましい。
 また、このようなパラフィンオイルとしては、JIS K 2283(2000年発行)に準拠して測定される、40℃における動粘度が50mm/s~700mm/sのものが好ましく、150~600mm/sのものがより好ましく、300~500mm/sのものが更に好ましい。このような動粘度(ν)が前記下限未満ではオイルのブリードが起こりやすくなる傾向にあり、他方、前記上限を超えると充分な流動性を付与できなくなる傾向にある。なお、このようなパラフィンオイルの動粘度は、40℃の温度条件下において、JIS K 2283(2000年発行)に準拠して測定される値を採用するが、例えば、JIS K 2283(2000年発行)に準拠したキャノン・フェンスケ式粘度計(例えば柴田科学社製の商品名「SOシリーズ」)を利用して、40℃の温度条件で自動測定した値を採用してもよい。
 さらに、このようなパラフィンオイルは、JIS K2256(2013年発行)に準拠したU字管法により測定されるアニリン点が80℃~145℃であることが好ましく、100~145℃であることがより好ましく、105~145℃であることが更に好ましい。なお、このようなパラフィンオイルのアニリン点は、JIS K2256(2013年発行)に準拠したU字管法により測定される値を採用するが、例えば、JIS K2256(2013年発行)に準拠したアニリン点測定装置(例えば田中科学機器社製の商品名「aap-6」)を利用して測定した値を採用してもよい。
 また、このようなパラフィンオイルとしては、適宜市販のものを利用することができ、例えば、JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P200」、「スーパーオイルMシリーズ P400」、「スーパーオイルMシリーズ P500S」;出光興産社製の商品名「ダイアナプロセスオイルPW90」、「ダイアナプロセスオイルPW150」、「ダイアナプロセスオイルPW380」;日本サン石油社製の商品名「SUNPARシリーズ(110、115、120、130、150、2100、2280など)」;モービル社製の商品名「ガーゴイルアークティックシリーズ(1010、1022、1032、1046、1068、1100など)」;等を適宜利用してもよい。
 また、本発明の熱可塑性エラストマー組成物において前記パラフィンオイルを更に含有させる場合、前記パラフィンオイルの含有量は、前記エラストマー成分100質量部に対して10~600質量部であることが好ましく、50~550質量部であることがより好ましく、75~500質量部であることが更に好ましく、100~400質量部であることが特に好ましい。このようなパラフィンオイルの含有量が前記下限未満では、パラフィンオイルの含有量が少なすぎて、パラフィンオイルを添加することにより得られる効果(特に流動性及び加工性を向上せしめる効果)が必ずしも十分なものではなくなる傾向にあり、他方、前記上限を超えると、パラフィンオイルのブリードが誘発されやすくなる傾向にある。
 また、本発明の熱可塑性エラストマー組成物において前記パラフィンオイルを更に含有させる場合、前記パラフィンオイルの含有量は、熱可塑性エラストマー組成物の総量に対して20~60質量%であることが好ましく、25~55質量%であることがより好ましく、35~55質量%であることが更に好ましい。このようなパラフィンオイルの含有量が前記下限未満では、パラフィンオイルの含有量が少なすぎて、特に流動性及び加工性の点で十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると、パラフィンオイルのブリードが誘発されやすくなる傾向にある。
 さらに、本発明の熱可塑性エラストマー組成物としては、流動性、機械特性改善の観点から、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂、前記パラフィンオイル及び前記化学結合性の架橋部位を有さないスチレンブロック共重合体を組み合わせて含有しているものが好ましい。すなわち、本発明の熱可塑性エラストマー組成物としては、前記エラストマー成分、前記添加成分、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂、前記パラフィンオイル及び前記化学結合性の架橋部位を有さないスチレンブロック共重合体を含有しているものがより好ましい。
 このように、前記エラストマー成分、前記添加成分、前記α-オレフィン系樹脂、前記パラフィンオイル及び前記スチレンブロック共重合体を含有する場合においては、耐摩耗性、破断強度、更には耐圧縮永久歪性等といった特性をより高度な水準でバランスよく発揮できる傾向にある。このような効果が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、先ず、前記パラフィンオイルと前記スチレンブロック共重合体とを組み合わせて利用した場合、これらの相溶性が十分に高いため、前記スチレンブロック共重合体が含まれる系中にパラフィンオイルが十分に均一に分散する。また、前記スチレンブロック共重合体と前記α-オレフィン系樹脂とは相溶性が高いため、系中で均一に分散する。また、このような前記スチレンブロック共重合体と前記α-オレフィン系樹脂とを含む系において、前記エラストマー成分が両者に対して高い相溶性を有するため、やはり組成物中において前記エラストマー成分も十分に均一に分散したものとなる。そして、前述のように、前記エラストマー成分と前記添加成分とが相互作用して面架橋を形成されるため、エラストマー成分の分散に伴って添加成分も十分に分散した状態で存在することとなる。このように、前記エラストマー成分、前記添加成分、前記α-オレフィン系樹脂、前記パラフィンオイル及び前記スチレンブロック共重合体を含有する場合においては、各成分がより十分に分散した状態で含有される。そのため、熱可塑性エラストマー組成物の特性に強く影響を与える前記エラストマー成分の状態が、前記添加成分と相互作用した状態(面架橋により強い結合を形成した状態)で十分に分散されたものとなるため、より高度な機械的強度や耐熱性をバランスよく発揮することが可能となる。更に、このような系においては、前記α-オレフィン系樹脂に起因して、より高度な流動性(加熱時の流動性)を達成することも可能である。また、前記スチレンブロック共重合体は、添加量によって機械強度を調節可能であるため、所望の機械物性に調節することも可能である。そのため、前記エラストマー成分、前記添加成分、前記α-オレフィン系樹脂、前記パラフィンオイル及び前記スチレンブロック共重合体を含有する系においては、耐摩耗性、引張強度、耐圧縮永久歪性等といった特性をより高度な水準でバランスよく発揮できるといった効果が得られるものと本発明者らは推察する。
 また、本発明の熱可塑性エラストマー組成物に更に含有させることが可能な前記補強剤(充填剤)としては、カーボンブラック、シリカ、炭酸カルシウム等を上げることができる。シリカとしては湿式シリカが好適に用いられる。
 また、前記老化防止剤としては、例えば、ヒンダードフェノール系、脂肪族および芳香族のヒンダードアミン系等の化合物を適宜利用することができる。また、前記酸化防止剤としては、例えば、ブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)等を適宜利用することができる。また、前記顔料としては、例えば、二酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩等の無機顔料、アゾ顔料、銅フタロシアニン顔料等の有機顔料等を適宜利用することができ、また、前記可塑剤としては、例えば、安息香酸、フタル酸、トリメリット酸、ピロメリット酸、アジピン酸、セバチン酸、フマル酸、マレイン酸、イタコン酸、クエン酸等の誘導体をはじめ、ポリエステル、ポリエーテル、エポキシ系等を適宜利用することができる。また、前記可塑剤(軟化剤)としては、流動性をより向上させるといった観点から、熱可塑性エラストマーに用いることが可能なものを適宜利用でき、例えば、オイル類を用いることもできる。なお、このような添加剤等としては、特開2006-131663号公報に例示されているようなものを適宜利用してもよい。
 なお、本発明の熱可塑性エラストマー組成物が、前記エラストマー成分、前記添加成分、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂、前記パラフィンオイル及び前記化学結合性の架橋部位を有さないスチレンブロック共重合体以外の他の成分(例えば、前記添加剤等)を含有する場合において、前記他の成分の含有量は特に制限されるものではないが、ポリマー類、補強材(充填剤)の場合は、それぞれ、前記エラストマー成分100質量部に対して400質量部以下であることが好ましく、20~300質量部であることがより好ましい。このような他の成分の含有量が前記下限未満では他の成分を利用することによる効果が十分に発現しなくなる傾向にあり、他方、前記上限を超えると、利用する成分の種類にもよるが、基質のエラストマーの効果が薄まって、物性が低下してしまう傾向にある。
 前述の他の成分が、その他の添加剤の場合(ポリマー類、補強材(充填剤)以外のものである場合)は、前記他の成分の含有量は、それぞれ、前記エラストマー成分100質量部に対して20質量部以下であることが好ましく、0.1~10質量部であることがより好ましい。このような他の成分の含有量が前記下限未満では他の成分を利用することによる効果が十分に発現しなくなる傾向にあり、他方、前記上限を超えると、基質のエラストマーの反応に悪影響を及ぼし、却って物性が低下してしまう傾向にある。
 本発明の熱可塑性エラストマー組成物は、加熱(例えば100~250℃に加熱)することにより、水素結合性架橋部位において形成されていた水素結合や、他の架橋構造(スチレンブロック共重合体を含む場合にはその物理架橋等)が解離する等して軟化し、流動性を付与することができる。これは、主に、加熱により分子間または分子内で形成されている側鎖同士の相互作用(主に水素結合による相互作用)が弱まるためであると考えられる。なお、本発明においては、側鎖に、少なくとも水素結合性架橋部位を含むエラストマー成分が含有されていること等から、加熱により流動性が付与された後、放置した場合に、解離した水素結合が再び結合して硬化するため、その組成によっては、熱可塑性エラストマー組成物に、より効率よくリサイクル性を発現させることも可能となる。
 また、本発明の熱可塑性エラストマー組成物は、JIS K6922-2(2010年発行)に準拠して測定される230℃、10kg荷重におけるメルトフローレート(MFR)が2g/10分以上であることが好ましく、4g/10分以上であることがより好ましく、8g/10分以上であることが更に好ましい。このようなメルトフローレート(MFR)が前記下限未満では必ずしも充分な加工性を発現できない場合も生じ得る傾向にある。なお、このようなメルトフローレート(MFR)は、JIS K6922-2(2010年発行)に記載のB法に準拠して測定される値であり、メルトフローレート測定装置として東洋精機製作所製の商品名「Melt Indexer G-01」を用いて、該装置の炉体内に熱可塑性エラストマー組成物を3g添加した後、温度を230℃にして5分間保持した後、230℃に維持しつつ10kgに荷重する条件で、前記炉体の下部に接続されている直径1mm、長さ8mmの筒状のオリフィス部材の開口部から、10分の間に流出するエラストマーの質量(g)を測定(前記炉体内において温度を230℃にして5分間保持した後に荷重を開始してから、流出するエラストマーの質量の測定を開始する。)することにより求めることができる。
 さらに、本発明の熱可塑性エラストマー組成物は、5%重量減少温度が320℃以上であることが好ましく、325℃以上であることがより好ましい。このような5%重量減少温度が前記下限未満では耐熱性に劣る傾向にある。なお、このような5%重量減少温度は、測定試料として10mgの熱可塑性エラストマー組成物を準備し、測定装置として熱重量測定装置(TGA)を用い、昇温速度10℃/minで加熱して、初期の重量(10mg)から5%重量が減少した際の温度を測定することにより求めることができる。
 本発明の熱可塑性エラストマー組成物は、例えば、ゴム弾性を活用して種々のゴム用途に使用することができる。またホットメルト接着剤として、またはこれに含ませる添加剤として使用すると、耐熱性およびリサイクル性を向上させることができるので好ましい。本発明の熱可塑性エラストマー組成物は、ホットメルト接着剤又はこれに含ませる添加剤、自動車用ゴム部品、ホース、ベルト、シート、防振ゴム、ローラー、ライニング、ゴム引布、シール材、手袋、防舷材、医療用ゴム(シリンジガスケット、チューブ、カテーテル)、ガスケット(家電用、建築用)、アスファルト改質剤、ブーツ類、グリップ類、玩具、靴、サンダル、キーパッド、ギア、ペットボトルキャプライナー、プリンター用のゴム部品、シーリング材、塗料・コーティング材、印刷用インク等の用途に好適に用いることができる。
 上記自動車用ゴム部品としては、具体的には、例えば、タイヤのトレッド、カーカス、サイドウォール、インナーライナー、アンダートレッド、ベルト部などのタイヤ各部;外装のラジエータグリル、サイドモール、ガーニッシュ(ピラー、リア、カウルトップ)、エアロパーツ(エアダム、スポイラー)、ホイールカバー、ウェザーストリップ、カウベルトグリル、エアアウトレット・ルーバー、エアスクープ、フードバルジ、換気口部品、防触対策部品(オーバーフェンダー、サイドシールパネル、モール(ウインドー、フード、ドアベルト))、マーク類;ドア、ライト、ワイパーのウェザーストリップ、グラスラン、グラスランチャンネルなどの内装窓枠用部品;エアダクトホース、ラジエターホース、ブレーキホース;クランクシャフトシール、バルブステムシール、ヘッドカバーガスケット、A/Tオイルクーラーホース、ミッションオイルシール、P/Sホース、P/Sオイルシールなどの潤滑油系部品;燃料ホース、エミッションコントロールホース、インレットフィラーホース、ダイヤフラム類などの燃料系部品;エンジンマウント、インタンクポンプマウントなどの防振用部品;CVJブーツ、ラック&ピニオンブーツ等のブーツ類;A/Cホース、A/Cシール等のエアコンデショニング用部品;タイミングベルト、補機用ベルトなどのベルト部品;ウィンドシールドシーラー、ビニルプラスチゾルシーラー、嫌気性シーラー、ボディシーラー、スポットウェルドシーラーなどのシーラー類;等が挙げられる。
 また、ゴムの改質剤として、例えば、流れ防止剤として、室温でコールドフローを起こす樹脂あるいはゴムに含ませると、押出し時の流れやコールドフローを防止することができる。
 本発明の熱可塑性エラストマー組成物は、より高度な耐熱性を有するものとすることが可能であるとともに、破断強度を基準とした引張特性をより高度なものとすることができる。なお、このような熱可塑性エラストマー組成物においては、組成を適宜変更することで、用途に応じて必要となる特性(例えば、自己修復性等の特性)も適宜発揮させることが可能である。このように、組成を適宜変更することで熱可塑性エラストマー組成物の用途に応じて、必要となる特性をバランスよく適宜発揮させることが可能であるため、上述のような各種用途に用いる場合には、その用途に応じて必要となる特性を考慮して、組成物中の成分の種類(組成)を適宜変更して利用することが好ましい。
 以上、本発明の熱可塑性エラストマー組成物について説明したが、以下において、そのような本発明の熱可塑性エラストマー組成物を製造するための方法としても好適に利用することが可能な方法について説明する。
 本発明の熱可塑性エラストマー組成物の製造するための好適な方法としては、例えば、官能基を側鎖に有するエラストマー性ポリマー(E)と、
 膨張黒鉛、カーボンナノチューブ、フラーレン、グラフェン、ケイ酸塩系天然ナノファイバー、シルセスキオキサン及び層状チタン酸化合物からなる群から選択される少なくとも1種の添加成分と、
を混合して混合物を得る第一工程と、
 前記混合物に、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)、並びに、前記化合物(I)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)の混合原料のうちの少なくとも1種の原料化合物(M)を添加し、前記エラストマー性ポリマー(E)と前記原料化合物(M)とを反応させることにより、熱可塑性エラストマー組成物を得る第二工程と、
を含み、
 前記第二工程において得られる前記熱可塑性エラストマー組成物が、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 膨張黒鉛、カーボンナノチューブ、フラーレン、グラフェン、ケイ酸塩系天然ナノファイバー、シルセスキオキサン及び層状チタン酸化合物からなる群から選択される少なくとも1種であり、かつ、含有量が前記エラストマー成分100質量部に対して20質量部以下である添加成分と、
を含有してなる組成物であること、及び、
 前記第一工程において、前記熱可塑性エラストマー組成物中の前記添加成分の含有量が前記エラストマー成分100質量部に対して20質量部以下となるような割合で前記添加成分を用いて、前記エラストマー性ポリマー(E)と、前記添加成分とを混合する方法を挙げることができる。以下、このような方法に関して、第一工程と第二工程とを分けて説明する。
 (第一工程)
 第一工程は、環状酸無水物基を側鎖に有するエラストマー性ポリマー(E)と、前記添加成分とを混合して混合物を得る工程である。
 ここで、「官能基を側鎖に有するエラストマー性ポリマー(E)」とは、ポリマーの主鎖を形成する原子に官能基(例えば環状酸無水物基)が化学的に安定な結合(共有結合)をしているエラストマー性ポリマーのことをいい、例えば、前記エラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーと、官能基(例えば環状酸無水物基)を導入し得る化合物とを反応させることにより得られるものを好適に利用することができる。
 なお、このような主鎖部分を形成することが可能なポリマーとしては、一般的に公知の天然高分子または合成高分子であって、そのガラス転移点が室温(25℃)以下のポリマーからなるものであればよく(いわゆるエラストマーからなるものであればよく)、特に限定されるものではない。
 このようなエラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーとしては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、1,2-ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、エチレン-プロピレン-ジエンゴム(EPDM)などのジエン系ゴムおよびこれらの水素添加物;エチレン-プロピレンゴム(EPM)、エチレン-アクリルゴム(AEM)、エチレン-ブテンゴム(EBM)、クロロスルホン化ポリエチレン、アクリルゴム、フッ素ゴム、ポリエチレンゴム、ポリプロピレンゴムなどのオレフィン系ゴム;エピクロロヒドリンゴム;多硫化ゴム;シリコーンゴム;ウレタンゴム;等が挙げられる。
 また、このようなエラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーとしては、樹脂成分を含むエラストマー性のポリマーであってもよく、例えば、水添されていてもよいポリスチレン系エラストマー性ポリマー(例えば、SBS、SIS、SEBS等)、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、ポリアミド系エラストマー性ポリマー等が挙げられる。
 さらに、このようなエラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーとしては、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、及び、ポリアミド系エラストマー性ポリマーの中から選択される少なくとも1種からなることが好ましい。また、このようなポリマーとしては、環状酸無水物基として好適な無水マレイン酸基の導入のし易さといった観点からは、ジエン系ゴムが好ましく、耐老化性の観点からは、オレフィン系ゴムが好ましい。
 また、前記官能基(例えば環状酸無水物基)を導入し得る化合物としては、例えば、無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸およびこれらの誘導体等の環状酸無水物が挙げられる。
 また、第一工程に用いられるエラストマー性ポリマー(E)が環状酸無水物基を側鎖に有するエラストマー性ポリマーである場合、その環状酸無水物基としては、無水コハク酸基、無水マレイン酸基、無水グルタル酸基、無水フタル酸基が好ましく、中でも、原料の反応性が高く、しかも工業的に原料の入手が容易であるといった観点からは、無水マレイン酸基がより好ましい。
 さらに、このような環状酸無水物基を側鎖に有するエラストマー性ポリマーは、通常行われる方法、例えば、エラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーに、通常行われる条件、例えば、加熱下での撹拌等により環状酸無水物をグラフト重合させる方法で製造してもよい。また、このような環状酸無水物基を側鎖に有するエラストマー性ポリマーとしては、市販品を用いてもよい。
 このような環状酸無水物基を側鎖に有するエラストマー性ポリマーの市販品としては、例えば、LIR-403(クラレ社製)、LIR-410A(クラレ社試作品)などの無水マレイン酸変性イソプレンゴム;LIR-410(クラレ社製)などの変性イソプレンゴム;クライナック110、221、231(ポリサー社製)などのカルボキシ変性ニトリルゴム;CPIB(日石化学社製)、HRPIB(日石化学社ラボ試作品)などのカルボキシ変性ポリブテン;ニュクレル(三井デュポンポリケミカル社製)、ユカロン(三菱化学社製)、タフマーM(例えば、MP0610(三井化学社製)、MP0620(三井化学社製))などの無水マレイン酸変性エチレン-プロピレンゴム;タフマーM(例えば、MA8510、MH7010、MH7020(三井化学社製)、MH5010、MH5020(三井化学社製)、MH5040(三井化学社製))などの無水マレイン酸変性エチレン-ブテンゴム;アドテックスシリーズ(無水マレイン酸変性EVA)、エチレン・メチルアクリレート・無水マレイン酸共重合体(日本ポリオレフィン社製)、HPRシリーズ(無水マレイン酸変性EEA、無水マレイン酸変性EVA(三井・ジュポンポリオレフィン社製))、ボンドファストシリーズ(無水マレイン酸変性EMA(住友化学社製))、デュミランシリーズ(無水マレイン酸変性EVOH(武田薬品工業社製))、ボンダイン(エチレン・アクリル酸エステル・無水マレイン酸三元共重合体(アトフィナ社製))、タフテック(無水マレイン酸変性SEBS、M1943(旭化成社製))、クレイトン(無水マレイン酸変性SEBS、FG1901,FG1924(クレイトンポリマー社製))、タフプレン(無水マレイン酸変性SBS、912(旭化成社製))、セプトン(無水マレイン酸変性SEPS(クラレ社製))、レクスパール(無水マレイン酸変性EVA、ET-182G、224M、234M(日本ポリオレフィン社製))、アウローレン(無水マレイン酸変性EVA、200S、250S(日本製紙ケミカル社製))などの無水マレイン酸変性ポリエチレン;アドマー(例えば、QB550、LF128(三井化学社製))などの無水マレイン酸変性ポリプロピレン;等が挙げられる。
 また、このような環状酸無水物基を側鎖に有するエラストマー性ポリマーとしては、無水マレイン酸変性エラストマー性ポリマー(E1)であることが好ましく、中でも、高分子量で高強度であるといった観点から、無水マレイン酸変性エチレン-プロピレンゴム、無水マレイン酸変性エチレン-ブテンゴム、エチレン・メチルアクリレート・無水マレイン酸共重合体がより好ましい。また、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーとしては、1種を単独であるいは2種以上を組み合わせて利用してもよい。
 また、第一工程に用いられるエラストマー性ポリマー(E)としては、前述のエラストマー性ポリマー(E1)~(E6)であることが好ましい。
 さらに、第一工程に用いられる前記前記添加成分は、上記本発明の熱可塑性エラストマー組成物において説明したものと同様のものである(その好適なものも同様である)。
 なお、本発明においては、前記エラストマー性ポリマー(E)と後述の原料化合物(M)とを反応させることにより、最終生成物(目的の生成物)である熱可塑性エラストマー組成物中のエラストマー成分(エラストマー性ポリマー(A)及び/又は(B))が形成され、前記エラストマー性ポリマー(E)の主鎖部分は、そのまま、該エラストマー成分として含まれるポリマーの主鎖部分となる。
 また、第一工程においては、前記エラストマー性ポリマー(E)と、前記添加成分とを混合して混合物を得る。ここにおいて、前記エラストマー性ポリマー(E)に添加成分を添加する際には、前記添加成分が十分に分散するように、予めエラストマー性ポリマー(E)を可塑化した後に、前記添加成分を添加することが好ましい。
 このように、前記エラストマー性ポリマー(E)を可塑化する方法としては特に制限されず、例えば、これらを可塑化することが可能となるような温度(例えば100~250℃程度)でロール、ニーダー、押出し機、万能攪拌機等を用いて素練りする方法等を適宜採用できる。このようなエラストマー性ポリマー(E)の可塑化を行う際の温度等の条件は特に制限されず、含有している成分の種類(エラストマー性ポリマー(E)の種類等)等に応じて適宜設定すればよい。
 また、このような混合物の調製工程においては、最終的に得られる熱可塑性エラストマー組成物中の前記添加成分の含有量が前記エラストマー成分100質量部に対して20質量部以下(より好ましくは0.1~10質量部、更に好ましくは0.5~5質量部、特に好ましくは1~3質量部)となるような割合で前記添加成分を用いて、前記エラストマー性ポリマー(E)と前記添加成分とを混合することが好ましい。このような添加成分の含有量が前記上限を超えると架橋が強すぎて、却って伸びや強度が低下する傾向にあり、他方、前記下限未満では、前記添加成分の量が少なすぎて、前記添加成分を用いることにより得られる効果が低下してしまう傾向にある。
 また、このような混合物中の前記添加成分の含有量としては、前記エラストマー性ポリマー(E)100質量部に対して20質量部以下であることが好ましく、0.5~5質量部であることがより好ましく、1~3質量部であることが更に好ましい。このような含有量が前記下限未満では、前記添加成分の量が少なすぎて、前記添加成分を用いることにより得られる効果が低下してしまう傾向にあり、他方、前記上限を超えると、架橋が強すぎて、却って伸びや強度が低下する傾向にある。なお、このような含有量で前記添加成分を用いることで、最終的に得られる熱可塑性エラストマー組成物中の前記添加成分の含有量が前記範囲内の値となる。
 更に、このような混合物の形成の際に用いる前記添加成分の量としては、前記エラストマー性ポリマー(E)中の官能基1mmolに対して、前記添加成分が0.01g~2.0g(より好ましくは0.02~1.0g)となるような割合で含有することが好ましい。このようなエラストマー性ポリマー(E)中の官能基1mmolに対する添加成分の割合が前記下限未満では、添加成分の量が少なすぎて効果が低下してしまう傾向にあり、他方、前記上限を超えると架橋が強すぎて、却って伸びや強度が低下する傾向にある。なお、このような割合の範囲内で添加成分を含有させることで、官能基との適正な相互作用をすることができ、前記添加成分の分散性をより高度のものとすることができる傾向にある。
 なお、このような混合物には、更に、流動性、機械強度の増加の観点から、化学結合性の架橋部位を有さないα-オレフィン系樹脂、パラフィンオイル、化学結合性の架橋部位を有さないスチレンブロック共重合体等を更に含有させてもよい。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂、パラフィンオイル及び化学結合性の架橋部位を有さないスチレンブロック共重合体は、それぞれ、上記本発明の熱可塑性エラストマー組成物において説明した、化学結合性の架橋部位を有さないα-オレフィン系樹脂、パラフィンオイル及び化学結合性の架橋部位を有さないスチレンブロック共重合体と同様のものである(それぞれ、その好適なものも同様である)。
 また、このように、化学結合性の架橋部位を有さないα-オレフィン系樹脂及び/又はパラフィンオイル及び/又は化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有させる場合において、エラストマー性ポリマー(E)と、前記添加成分と、化学結合性の架橋部位を有さないα-オレフィン系樹脂及び/又はパラフィンオイル及び/又は化学結合性の架橋部位を有さないスチレンブロック共重合体と、の添加順序は特に制限されるものではないが、前記添加成分の分散性をより向上させるといった観点から、前記エラストマー性ポリマー(E)と、前記α-オレフィン系樹脂及び/又は前記パラフィンオイル及び/又は前記化学結合性の架橋部位を有さないスチレンブロック共重合体と、を含む混合物の前駆体を調製した後、該前駆体中に前記添加成分を添加することが好ましい。
 また、前記α-オレフィン系樹脂(化学結合性の架橋部位を有さないα-オレフィン系樹脂)を前記混合物中に含有させる場合、前記α-オレフィン系樹脂の含有量は、前記エラストマー成分100質量部に対して800質量部以下(より好ましくは5~700質量部、更に好ましくは10~600質量部、特に好ましくは25~500質量部、最も好ましくは50~400質量部)であることが好ましい。このようなα-オレフィン系樹脂の含有量が前記上限を超えると機械特性(破断強度、圧縮永久歪)が低下する傾向にあり、他方、前記下限未満では、流動性が低下する傾向にある。なお、このような混合物中の前記α-オレフィン系樹脂の含有量としては、エラストマー性ポリマー(E)100質量部に対して800質量部以下(より好ましくは5~700質量部、更に好ましくは10~600質量部、特に好ましくは25~500質量部、最も好ましくは35~400質量部)とすることが好ましい。このような含有量が前記下限未満では、機械特性(破断強度、圧縮永久歪)が低下する傾向にあり、他方、前記下限未満では、流動性が低下する傾向にある。
 また、前記パラフィンオイルを前記混合物中に含有させる場合、パラフィンオイル含有量は、前記エラストマー成分100質量部に対して600質量部以下であることが好ましく、10~600質量部であることがより好ましく、50~550質量部であることが更に好ましく、75~500質量部であることが特に好ましく、100~400質量部であることが最も好ましい。また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体を前記混合物中に含有させる場合、前記エラストマー成分100質量部に対して600質量部以下であることが好ましく、10~600質量部であることがより好ましく、15~550質量部であることが更に好ましく、20~500質量部であることが特に好ましく、30~400質量部であることが最も好ましい。
 また、最終的に得られる熱可塑性エラストマー組成物の用途等に応じ、前記混合物に対して、本発明の目的を損わない範囲で、前記エラストマー成分、前記α-オレフィン系樹脂および前記スチレンブロック共重合体以外のポリマー、補強剤(充填剤)、アミノ基を導入してなる充填剤(以下、単に「アミノ基導入充填剤」という。)、該アミノ基導入充填剤以外のアミノ基含有化合物、金属元素を含む化合物(以下、単に「金属塩」という。)、無水マレイン酸変性ポリマー、老化防止剤、酸化防止剤、顔料(染料)、可塑剤、揺変性付与剤、紫外線吸収剤、難燃剤、溶剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、防錆剤、接着付与剤、帯電防止剤、フィラーなどの各種添加剤等の他の成分を更に含有することができる。このように、前記混合物に対して他の成分を含有せしめることにより、最終的に得られる熱可塑性エラストマー組成物中に、かかる成分を適宜含有せしめることが可能となる。なお、このような添加剤等は、特に制限されず、一般に用いられるものを適宜使用することができる。また、このような添加剤等としては、上記本発明の熱可塑性エラストマー組成物において説明したものを適宜利用できる。
 また、このような他の成分の含有量は、前記他の成分がポリマー類、補強材(充填剤)の場合は、前記エラストマー成分100質量部に対して500質量部以下とすることが好ましく、20~400質量部とすることがより好ましい。このような他の成分の含有量が前記下限未満では他の成分を利用することによる効果が十分に発現しなくなる傾向にあり、他方、前記上限を超えると、利用する成分の種類にもよるが、基質のエラストマーの効果が薄まって、物性が低下してしまう傾向にある。
 また、他の成分が、その他の添加剤の場合(ポリマー類、補強材(充填剤)以外のものである場合)は、前記他の成分の含有量は前記エラストマー成分100質量部に対して20質量部以下とすることが好ましく、0.1~10質量部とすることがより好ましい。このような他の成分の含有量が前記下限未満では他の成分を利用することによる効果が十分に発現しなくなる傾向にあり、他方、前記上限を超えると、基質のエラストマーの反応に悪影響を及ぼし、却って物性が低下してしまう傾向にある。
 (第二工程)
 第二工程は、前記混合物に、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)、並びに、前記化合物(I)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)の混合原料のうちの少なくとも1種の原料化合物(M)を添加し、前記ポリマーと前記原料化合物とを反応させることにより、熱可塑性エラストマー組成物を得る工程である。
 前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)としては、上記本発明の熱可塑性エラストマー組成物において説明した水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)と同様のものを好適に利用することができ、例えば、上記本発明の熱可塑性エラストマー組成物において説明した含窒素複素環そのものであってもよく、あるいは、前記含窒素複素環に無水マレイン酸等の環状酸無水物基と反応する置換基(例えば、水酸基、チオール基、アミノ基等)が結合した化合物(前記置換基を有する含窒素複素環)であってもよい。なお、このような化合物(I)としては、水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を同時に導入することが可能な化合物)を利用してもよい(なお、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖は、水素結合性架橋部位を有する側鎖の好適な一形態といえる。)。
 また、このような化合物(I)としては、特に制限されず、目的とするポリマー中の側鎖の種類(側鎖(a)又は側鎖(a’))に応じて、上述のような化合物(I)の中から好適な化合物を適宜選択して用いることができる。このような化合物(I)としては、より高い反応性が得られるといった観点からは、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよい、トリアゾール、ピリジン、チアジアゾール、イミダゾール、イソシアヌレート、トリアジンおよびヒダントインであることが好ましく、前記置換基を有している、トリアゾール、ピリジン、チアジアゾール、イミダゾール、イソシアヌレート、トリアジンおよびヒダントインであることがより好ましく、前記置換基を有しているトリアゾール、イソシアヌレート、トリアジンであることが更に好ましく、前記置換基を有しているトリアゾールが特に好ましい。なお、このような置換基を有していてもよいトリアゾール、ピリジン、チアジアゾール、イミダゾールおよびヒダントインとしては、例えば、4H-3-アミノ-1,2,4-トリアゾール、アミノピリジン、アミノイミダゾール、アミノトリアジン、アミノイソシアヌレート、ヒドロキシピリジン、ヒドロキシエチルイソシアヌレート等が挙げられる。
 また、前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)としては、上記本発明の熱可塑性エラストマー組成物において説明した「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」と同様のものを好適に利用することができる(その化合物として好適なものも同様である。)。また、このような化合物(II)としては、水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を同時に導入することが可能な化合物)を利用してもよい(なお、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖は、共有結合性架橋部位を有する側鎖の好適な一形態といえる。)。
 このような化合物(II)としては、耐圧縮永久歪性の観点から、トリスヒドロキシエチルイソシアヌレート、スルファミド、ポリエーテルポリオールが好ましく、トリスヒドロキシエチルイソシアヌレート、スルファミドがより好ましく、トリスヒドロキシエチルイソシアヌレートが更に好ましい。
 また、前記化合物(I)及び/又は(II)としては、水素結合性架橋部位を導入する観点から、水酸基、チオール基、アミノ基及びイミノ基のうちの少なくとも1種の置換基を有する化合物を利用することが好ましい。さらに、前記化合物(I)及び/又は(II)としては、より効率よく組成物中に水素結合性架橋部位及び共有結合性架橋部位の双方を導入することが可能となることから、前記官能基(例えば前記環状酸無水物基)と反応して、水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を同時に導入することが可能な化合物)を利用することが好ましい。このような水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物としては、前記複素環含有ポリオール、前記複素環含有ポリアミン、前記複素環含有ポリチオールを好適に利用することができ、中でも、トリスヒドロキシエチルイソシアヌレートが特に好ましい。
 また、前記原料化合物(M)(化合物(I)及び/又は化合物(II))の添加量は、これらの総量が(一方の化合物のみを利用する場合には、その一方の化合物の量となる。)、前記混合物中の前記エラストマー性ポリマー(E)100質量部に対して0.1~10質量部であることが好ましく、0.3~7質量部であることがより好ましく、0.5~5.0質量部であることが更に好ましい。このような化合物(I)及び化合物(II)の添加量(質量部に基づく量)が前記下限未満では少なすぎて架橋密度が上がらず所望の物性が発現しない傾向にあり、他方、前記上限を超えると多すぎてブランチが多くなり架橋密度が下がってしまう傾向にある。
 また、前記原料化合物(M)(化合物(I)及び/又は化合物(II))の添加量(化合物(I)及び/又は化合物(II)の総量:一方の化合物のみを利用する場合には、その一方の化合物の量となる。)は、特に制限されないが、該化合物中にアミン、アルコール等の活性水素が含まれる場合においては、前記官能基(例えば前記環状酸無水物基)100モル%に対して、該化合物中のアミン、アルコール等の活性水素が20~250モル%となる量であることが好ましく、50~150モル%となる量であることがより好ましく、80~120モル%となる量であることが更に好ましい。このような添加量が前記下限未満では、導入される側鎖の量が少なくなって、架橋密度を十分に高度なものとすることが困難となり、引張強度等の物性が低下する傾向にあり、他方、前記上限を超えると、用いる化合物の量が多すぎて、ブランチが多くなり、却って架橋密度が下がってしまう傾向にある。
 化合物(I)及び化合物(II)の双方を利用する場合において、化合物(I)及び化合物(II)を添加する順序は特に制限されず、どちらを先に加えても良い。また、化合物(I)及び化合物(II)の双方を利用する場合において、化合物(I)を、前記官能基(例えば前記環状酸無水物基)を側鎖に有するエラストマー性ポリマーの、前記官能基(例えば前記環状酸無水物基)の一部と反応させてもよい。これにより、未反応の前記官能基(反応させていない官能基)に、化合物(II)を反応させて共有結合性架橋部位を形成させることも可能となる。ここにいう一部とは、官能基(例えば前記環状酸無水物基)100モル%に対して1モル%以上50モル%以下であることが好ましい。この範囲であれば、得られるエラストマー性ポリマー(B)において、化合物(I)に由来した基(例えば含窒素複素環等)を導入した効果が十分に発現され、リサイクル性がより向上する傾向にある。なお、化合物(II)は、共有結合による架橋が適当な個数(例えば、1分子中に1~3個)となるように前記環状酸無水物基と反応させることが好ましい。
 前記ポリマーと前記原料化合物(化合物(I)及び/又は化合物(II))とを反応させると、前記ポリマーが有する官能基(例えば前記環状酸無水物基)と前記原料化合物(M)(前記化合物(I)及び/又は化合物(II))とが化学結合される。このような前記ポリマー(E)と前記原料化合物(M)とを反応(環状酸無水物基を開環)させる際の温度条件は特に制限されず、前記化合物と環状酸無水物基との種類に応じて、これらが反応可能な温度に調整すればよいが、軟化させて反応を瞬時に進める観点からは、100~250℃とすることが好ましく、120~230℃とすることがより好ましい。
 このような反応により、前記化合物(I)と環状酸無水物基とが反応した箇所においては、少なくとも水素結合性架橋部位が形成されるため、前記ポリマーの側鎖に水素結合性架橋部位(カルボニル含有基および/または含窒素複素環を有する部位、より好ましくはカルボニル含有基および含窒素複素環を有する部位)を含有させることが可能となる。このような反応により、形成(導入)される側鎖を、上記式(2)または(3)で表される構造を含有するものとすることも可能である。
 また、このような反応により、前記化合物(II)と環状酸無水物基とが反応した箇所においては、少なくとも、共有結合性架橋部位が形成されるため、前記ポリマーの側鎖を共有結合性架橋部を含有するもの(側鎖(b)又は側鎖(c))とすることも可能となる。そして、このような反応により、形成される側鎖を、上記式(7)~(9)で表される構造を含有するものとすることもできる。
 なお、このようなポリマー中の側鎖の各基(構造)、すなわち、未反応の環状酸無水物基、上記式(2)、(3)および(7)~(9)で表される構造等は、NMR、IRスペクトル等の通常用いられる分析手段により確認することができる。
 また、このような反応に用いる前記原料化合物(M)としては、前述の化合物(M1)~(M6)であることが好ましい。このような化合物(M1)~(M6)を用いることで、前述の反応物(I)~(VI)を調製することが可能となる。
 また、本発明においては、官能基との反応をより効率よく進行させるといった観点から、前記反応に用いる官能基を有するエラストマー性ポリマー(E)と前記原料化合物(M)との組み合わせが、下記組み合わせ(I)~(VI):
 無水マレイン酸変性エラストマー性ポリマー(E1)と前記化合物(M1)との組み合わせ(I);水酸基含有エラストマー性ポリマー(E2)と前記化合物(M2)との組み合わせ(II);カルボキシ基含有エラストマー性ポリマー(E3)と前記化合物(M3)との組み合わせ(III);アミノ基含有エラストマー性ポリマー(E4)と前記化合物(M4)との組み合わせ(IV);アルコキシシリル基含有エラストマー性ポリマー(E5)と前記化合物(M5)との組み合わせ(V);及び、エポキシ基含有エラストマー性ポリマー(E6)と前記化合物(M6)との組み合わせ(VI);
のうちのいずれかとなるようにして、前記エラストマー性ポリマー(E)及び原料化合物(M)を選択して利用することが好ましい。このようにして、前記エラストマー性ポリマー(E)及び原料化合物(M)を組み合わせて反応させることで、前記エラストマー成分を、前記反応物(I)~(VI)からなる群から選択される少なくとも1種の反応物とすることができる。
 このようにして、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 前記エラストマー成分100質量部に対して20質量部以下の含有比率の前記添加成分と、
を含有してなる組成物を得ることができる。
 なお、このようにして得られる熱可塑性エラストマー組成物中のエラストマー性ポリマー(A)、エラストマー性ポリマー(B)は、各ポリマー中の側鎖(a)、側鎖(a’)、側鎖(b)、側鎖(c)がそれぞれ環状酸無水物基との反応に由来するもの(例えば、上記式(2)、(3)および(7)~(9)で表される構造を含有する側鎖等)となる以外は、上記本発明の熱可塑性エラストマー組成物において説明したエラストマー性ポリマー(A)、エラストマー性ポリマー(B)と同様のものである。
 また、本発明においては、入手の簡便さ、反応性の高さの観点から、前記官能基を側鎖に有するエラストマー性ポリマーが無水マレイン酸変性エラストマー性ポリマー(E1)であり、前記原料化合物(M)が、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、トリスヒドロキシエチルイソシアヌレート、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物であり、かつ、前記エラストマー成分が、前記無水マレイン酸変性エラストマー性ポリマー(E1)と前記原料化合物との反応物(反応物(I)の好適な実施形態)からなる群から選択される少なくとも1種であることが好ましい。すなわち、本発明においては、前記エラストマー成分が、無水マレイン酸変性エラストマー性ポリマー(E1)と、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、トリスヒドロキシエチルイソシアヌレート、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物(前記化合物(M1)から選択される化合物)との反応物からなる群から選択される少なくとも1種であることが好ましい。
 また、反応効率が高く、形成される結合が水素結合および共有結合で、添加成分とより高度に相互作用できるといった観点からは、前記エラストマー成分を、無水マレイン酸変性エラストマー性ポリマー(E1)と水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物のうちの少なくとも1種の化合物との反応物(I’)及び前記反応物(II)~(VI)からなる群から選択される少なくとも1種の反応物とすることが好ましい。
 このような第一工程及び第二工程を含む方法によって、十分に高度な引張強度及び十分に高度な耐摩擦性を有することが可能な、本発明の熱可塑性エラストマー組成物を効率よく製造することが可能となる。
 なお、本発明においては、例えば、エラストマー性ポリマー(A)をエラストマー成分とする熱可塑性エラストマー組成物と、エラストマー性ポリマー(B)をエラストマー成分とする熱可塑性エラストマー組成物とをそれぞれ別々に製造した後、これを混合して、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を含有する熱可塑性エラストマー組成物としてもよい。また、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を組み合わせて含有する熱可塑性エラストマー組成物を製造する場合には、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)の比率を適宜変更して、組成物中に存在する水素結合性架橋部位と共有結合性架橋部位の比率等を適宜変更することで、所望の特性を発揮させることも可能である。
 以上、本発明の熱可塑性エラストマー組成物を製造するための方法として好適に利用可能な方法である、本発明の熱可塑性エラストマー組成物の製造方法を説明したが、本発明の熱可塑性エラストマー組成物を製造するための方法は、上記本発明の熱可塑性エラストマー組成物の製造方法に限定されるものではなく、他の方法を適宜採用してもよい。このような他の方法としては、例えば、前記エラストマー性ポリマー(D)と、前記ポリマー(Z)と、前記原料化合物と、前記添加成分とを同時に添加して混合物を形成し、前記エラストマー性ポリマー(D)と前記原料化合物とを反応せしめて熱可塑性エラストマー組成物を得る方法、前記エラストマー性ポリマー(D)と、前記ポリマー(Z)と、前記原料化合物との混合物を形成し、該混合物中において前記エラストマー性ポリマー(D)と前記原料化合物とを反応せしめてエラストマー成分を形成した後、該エラストマー成分を含む混合物中に前記添加成分を添加する方法等、を適宜採用してもよい。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 先ず、各実施例及び各比較例で得られた熱可塑性エラストマー組成物の特性の評価方法について説明する。
 <破断強度及び100%モジュラスの測定>
 先ず、各実施例及び各比較例で得られた熱可塑性エラストマー組成物をそれぞれ42g用いて、該熱可塑性エラストマーを、温度:200℃、予熱3分の条件で加熱した厚さ2mm、縦150mm、横150mmの金型に入れた後、温度:200℃、圧力:18MPa、加圧時間:5分の条件の加熱プレスにより加圧を加えた後、水冷冷却プレスで圧力:18MPa、加圧時間:2分の条件で加圧を加え、金型から取り出すことにより、2mm厚のシート(厚さ2mm、縦150mm、横150mm)をそれぞれ形成した。次に、上述のようにして得られた2mm厚の各シート(厚さ2mm、縦150mm、横150mm)を利用して、3号ダンベル状の試験片をそれぞれ作成し、引張速度500mm/分での引張試験をJIS K6251(2010年発行)に準拠して行い、破断強度(T)[単位:MPa]及び100%モジュラス(M100)[MPa]を室温(25℃)にて測定した。
 <耐摩耗性>
 先ず、各実施例及び各比較例で得られた熱可塑性エラストマー組成物をそれぞれ15g用いて、専用の型(専用モールド)を用いて、直径16.0mm、厚さ8mmの円盤状の試料をそれぞれ調製した。次に、得られた円盤状の試料をそれぞれ用いて、JIS K6264-2(2005年発行)に準拠して、DIN摩耗試験機(回転円筒型摩耗試験機:安田精機社製の商品名「DIN摩耗試験機」を用いて、温度:室温(25℃)、荷重:2.5N、ドラム回転速度:40rpm、試料横送り速度:2.8mm/secの条件で耐摩耗試験を行って、摩耗量(体積基準:摩耗前の総体積に対する試験により摩耗した体積の割合(体積%))を測定した。なお、かかる摩耗量が少ないほど耐摩耗性が高いものとなる。
 (実施例1)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):クレイトン社製の商品名「G1633」、分子量:40万~50万、スチレン含有量:30質量%)20.0gを加圧ニーダーに投入して、180℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P500S」、動粘度:472mm/s、Cp値:68.7%、アニリン点:123℃)40.0gを滴下し、スチレン-エチレン-ブチレン-スチレンブロック共重合体とパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM:三井化学社製の商品名「タフマーMH5040」、結晶化度:4%)10.0g、α-オレフィン系樹脂であるエチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」、結晶化度:10%、MFR:35g/10分(2.16kg、190℃)、Mw:100000)7.5gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.078gを更に投入し、温度を180℃として2分間素練りして第一の混合物(PPとマレイン化EBMとを含む混合物)を得た。なお、かかる素練り工程により、前記第一の混合物は可塑化された。次に、前記加圧ニーダー中の前記第一の混合物に対して、カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)0.03gを更に加えて、180℃で4分間混練して第二の混合物を得た。次に、前記加圧ニーダー中の前記第二の混合物にトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g加え、180℃で8分間混合し、熱可塑性エラストマー組成物を調製した。
 なお、このような組成物においては、用いた原料化合物の赤外分光分析の結果から、無水マレイン酸変性エチレン-ブテン共重合体中の無水マレイン酸基とトリスヒドロキシエチルイソシアヌレートとが反応して、下記式(26)で表される構造を含有する側鎖(以下、場合により単に「側鎖(i)」と称する。)、下記式(27)で表される構造を含有する側鎖(以下、場合により単に「側鎖(ii)」と称する。)、及び、下記式(28)で表される構造を含有する側鎖(以下、場合により単に「側鎖(iii)」と称する。)のうちの、前記側鎖(iii)を主として有するエラストマー性ポリマーが形成されたことが分かる(なお、このような側鎖(i)~(iii)に関して、用いた原料から化学量論的に考慮すれば、主として側鎖(iii)が形成されていることが明らかであるが、ポリマーの側鎖の位置等によっては、側鎖(i)及び/又は側鎖(ii)が形成され得る。以下、用いた原料に基づいて、反応により形成される側鎖の種類が主として側鎖(iii)となると考えられるエラストマー性ポリマーについては、場合により、単に「側鎖(iii)を主として有するエラストマー性ポリマー」と称する。)。また、このようなエラストマー性ポリマーは、主鎖がエチレン-ブテン共重合体(エチレンとブテンと)からなっているため、ガラス転移点は25℃以下のものであることが分かった。また、このようなエラストマー性ポリマーは、用いた原料の種類(無水マレイン酸変性エチレン-ブテン共重合体)から、SP値が8.0であるとみなすことができる。
Figure JPOXMLDOC01-appb-C000016
[式(26)~(28)中、α及びβで示される炭素は、それらの炭素の位置(α位又はβ位)のいずれかにおいてエラストマー性ポリマーの主鎖に結合していることを示す。]
 このようにして得られた熱可塑性エラストマー性組成物42gを、200℃に加熱したシート形成用のモールド(厚み2mm、縦150mm、横150mm)内に導入して、圧力をかけずに3分間予熱し、次に200℃の条件下において、16MPaで5分間加圧して成形し、次いで、水冷プレスで16MPaで2分間冷却することにより、前記熱可塑性エラストマー組成物のシート(厚み2mm、縦150mm、横150mm)を得た。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表1に示す。
 (実施例2)
 カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに、ケイ酸塩系の天然ナノファイバー(アステック社製の商品名「イモゴライト」)を0.03g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。
 (実施例3)
 カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに層状チタン酸化合物(東京化成社製の商品名「チタン酸カリウム」、化学式:KTi13、粉末状)を0.03g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。
 (比較例1)
 カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに、カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」)を0.03g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表1に示す。
 (比較例2)
 カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに、シリカ(日本シリカ社製の商品名「ニップシルAQ」)を0.03g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表1に示す。
 (比較例3)
 カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに、酸化チタン(堺化学工業株式会社製の商品名「A-110」)を0.03g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000017
 表1に示す結果からも明らかなように、実施例1~3と比較例1~3とを対比すると、実施例1~3においては添加成分(カーボンナノチューブ、天然ナノファイバー、又は、層状チタン酸化合物)を利用しているのに対して、比較例1~3においては前記添加成分の代わりに、いわゆるフィラー(カーボンブラック、シリカ又は酸化チタン)を利用している点において組成が異なるが、前記添加成分を利用した場合(実施例1~3)には、いわゆるフィラー(カーボンブラック、シリカ又は酸化チタン)を利用した場合(比較例1~3)と比べて、100%モジュラス及び破断強度を基準とした引張強度がより高い水準のものとなっているばかりか、摩耗量がより減少しており、耐摩耗性がより高度なものとなることが確認された。このような結果から、本発明(実施例1)によれば、100%モジュラス及び破断強度を基準とする引張強度をより高度なものとすることが可能であり、しかも十分に高度な耐摩耗性を有することを可能となることが確認された。
 (実施例4)
 エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g利用する代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g利用する代わりに、ペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.102g利用し、更に、カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに、天然ナノファイバー(アステック社製の商品名「イモゴライト」)を0.03g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分は無水マレイン酸変性エチレン-ブテン共重合体とペンタエリスリトールとの反応物となり、側鎖が無水マレイン酸基とペンタエリスリトールのヒドロキシ基との反応により形成され、カルボン酸エステル基(結合部分)を含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例5)
 エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g利用する代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g利用する代わりに、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン(日本触媒社製の商品名「ベンゾグアナミン」)を0.282g利用し、更に、カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに層状チタン酸化合物(東京化成社製の商品名「チタン酸カリウム」、化学式:KTi13、粉末状)を0.03g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分は無水マレイン酸変性エチレン-ブテン共重合体と2,4-ジアミノ-6-フェニル-1,3,5-トリアジンとの反応物となり、側鎖が無水マレイン酸基と2,4-ジアミノ-6-フェニル-1,3,5-トリアジン中のアミノ基(-NH)との反応により形成され、トリアジン環とアミド結合(式:-CONH-)とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例6)
 トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g利用する代わりに、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート(SC有機化学社製の商品名「トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート」)を0.527g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分は無水マレイン酸変性エチレン-ブテン共重合体とトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートとの反応物となり、側鎖が無水マレイン酸基とトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート中のチオール基(-SH)との反応により形成され、側鎖にイソシアヌレート環と、チオエステル(式:-CO-S-で表される基)、カルボキシ基とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例7)
 エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g利用する代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15.0g利用し、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりに水酸基両末端ポリブタジエン(出光興産社製の商品名「Polybd R-45HT」、水酸基当量:1400)を10.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g利用する代わりに2,6-ピリジンジカルボン酸(エア・ウォーター社製の商品名「2,6-ピリジンジカルボン酸」)を0.597g利用し、更に、カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに天然ナノファイバー(アステック社製の商品名「イモゴライト」)を0.03g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分は水酸基両末端ポリブタジエンと2,6-ピリジンジカルボン酸との反応物となり、側鎖が水酸基と2,6-ピリジンジカルボン酸中のカルボキシ基との反応により形成され、側鎖にピリジン環と、カルボン酸エステル基(結合部分)とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例8)
 エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g利用する代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15.0g利用し、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりにカルボキシ基含有ポリイソプレン(クラレ社製の商品名「LIR-410」、カルボキシ当量:4000)を10.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)の使用量を0.262gから0.218gに変更し、更に、カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに層状チタン酸化合物(東京化成社製の商品名「チタン酸カリウム」、化学式:KTi13」粉末状)を0.03g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分はカルボキシ基含有ポリイソプレンとトリスヒドロキシエチルイソシアヌレートとの反応物となり、側鎖がカルボキシ基とトリスヒドロキシエチルイソシアヌレートの水酸基との反応により形成され、側鎖にイソシアヌレート環と、カルボン酸エステル基(結合部分)とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例9)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりにカルボキシ基含有ポリイソプレン(クラレ社製の商品名「LIR-410」、カルボキシ当量:4000)を10.0g利用し、更に、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g利用する代わりにペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.0085g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分はカルボキシ基含有ポリイソプレンとトリスヒドロキシエチルイソシアヌレートとの反応物となり、側鎖がカルボキシ基とペンタエリスリトールの水酸基との反応により形成され、側鎖にカルボン酸エステル基(結合部分)を含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例10)
 エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g利用する代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15.0g利用し、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりにカルボキシ基含有ポリイソプレン(クラレ社製の商品名「LIR-410」、カルボキシ当量:4000)を10.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g利用する代わりに2,4-ジアミノ-6-フェニル-1,3,5-トリアジン(日本触媒社製の商品名「ベンゾグアナミン」)を0.234g利用し、更に、カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに天然ナノファイバー(アステック社製の商品名「イモゴライト」)を0.03g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分はカルボキシ基含有ポリイソプレンと2,4-ジアミノ-6-フェニル-1,3,5-トリアジンとの反応物となり、側鎖がカルボキシ基と2,4-ジアミノ-6-フェニル-1,3,5-トリアジン中のアミノ基(-NH)との反応により形成され、トリアジン環とアミド結合(式:-CONH-)とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。
 (実施例11)
 エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g利用する代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15.0g利用し、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりにカルボキシ基含有ポリイソプレン(クラレ社製の商品名「LIR-410」、カルボキシ当量:4000)を10.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g利用する代わりにトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート(SC有機化学社製の商品名「トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート」)を0.438g利用し、更に、カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに層状チタン酸化合物(東京化成社製の商品名「チタン酸カリウム」、化学式:KTi13」、粉末状)を0.03g利用した以外は実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分はカルボキシ基含有ポリイソプレンとトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートとの反応物となり、側鎖がカルボキシ基とトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート中のチオール基(-SH)との反応により形成され、側鎖にイソシアヌレート環と、チオエステル(式:-CO-S-で表される基)とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例12)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりにアミノ基含有ポリエチレンイミン(日本触媒社製の商品名「エポミンSP-200」、アミン価:18mmol/g)を10.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g利用する代わりに2,6-ピリジンジカルボン酸(エア・ウォーター社製の商品名「2,6-ピリジンジカルボン酸」)を1.504g利用した以外は実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分はアミノ基含有ポリエチレンイミンと2,6-ピリジンジカルボン酸との反応物となり、側鎖がアミノ基と2,6-ピリジンジカルボン酸中のカルボキシ基との反応により形成され、側鎖にピリジン環とアミド結合(式:-CONH-で表される結合部位)とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例13)
 エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g利用する代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15.0g利用し、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりにアミノ基含有ポリエチレンイミン(日本触媒社製の商品名「エポミンSP-200」、アミン価:18mmol/g)を10.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g利用する代わりにトリスエポキシプロピルイソシアヌレート(トリス-(2,3-エポキシプロピル)-イソシアヌレート:日産化学化学社製の商品名「テピック」)1.784g利用し、カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに天然ナノファイバー(アステック社製の商品名「イモゴライト」)を0.03g利用した以外は、実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分はアミノ基含有ポリエチレンイミンとトリスエポキシプロピルイソシアヌレートとの反応物となり、側鎖がアミノ基とトリスエポキシプロピルイソシアヌレート中のエポキシ基との反応により形成され、側鎖にイソシアヌレート環と水酸基とイミノ結合とを含む架橋構造が形成され得る(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となり得る。)とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例14)
 エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g利用する代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15.0g利用し、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりにアルコキシシリル基含有ポリエチレン(三菱化学社製の商品名「リンクロン」)を10.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)の使用量を0.262gから0.087gに変更し、更に、カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに層状チタン酸化合物(東京化成社製の商品名「チタン酸カリウム」、化学式:KTi13粉末状)を0.03g利用した以外は実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分はアルコキシシリル基含有ポリエチレンとトリスヒドロキシエチルイソシアヌレートとの反応物となり、側鎖がアルコキシシリル基とトリスヒドロキシエチルイソシアヌレート中の水酸基(ヒドロキシ基)との反応により形成され、側鎖にイソシアヌレート環とシリルオキシ結合とを含む架橋構造が形成され得る(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となり得る。)とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例15)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりにアルコキシシリル基含有ポリエチレン(三菱化学社製の商品名「リンクロン」)を10.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262gを利用する代わりにペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.034g利用した以外は実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分はアルコキシシリル基含有ポリエチレンとペンタエリスリトールとの反応物となり、側鎖がアルコキシシリル基とトリスヒドロキシエチルイソシアヌレート中の水酸基(ヒドロキシ基)との反応により形成され、側鎖にシリルオキシ結合を含む架橋構造が形成され得る(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となり得る。)とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例16)
 エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g利用する代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15.0g利用し、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりにアルコキシシリル基含有ポリエチレン(三菱化学社製の商品名「リンクロン」)を10.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262gを利用する代わりに2,4-ジアミノ-6-フェニル-1,3,5-トリアジン(日本触媒社製の商品名「ベンゾグアナミン」)を0.094g利用し、更に、カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに天然ナノファイバー(アステック社製の商品名「イモゴライト」)を0.03g利用した以外は実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分はアルコキシシリル基含有ポリエチレンとトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートとの反応物となり、側鎖がアルコキシシリル基とトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート中のチオール基(-SH)との反応により形成され、側鎖にイソシアヌレート環とメルカプトシリル結合とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)
 (実施例17)
 エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g利用する代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15.0g利用し、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりにスチレン-ブタジエンブロック共重合体のエポキシ化物(ダイセル社製の商品名「エポフレンド」)を10.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262gを利用する代わりに2,4-ジアミノ-6-フェニル-1,3,5-トリアジン(日本触媒社製の商品名「ベンゾグアナミン」)を0.936g利用し、更に、カーボンナノチューブ(日本ゼオン社製の商品名「ZeonanoSG101」)を0.03g利用する代わりに層状チタン酸化合物(東京化成社製の商品名「チタン酸カリウム」、化学式:KTi13粉末状)を0.03g利用した以外は実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分はスチレン-ブタジエンブロック共重合体のエポキシ化物と2,4-ジアミノ-6-フェニル-1,3,5-トリアジンとの反応物となり、側鎖がエポキシ基とトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート中のチオール基(-SH)との反応により形成され、側鎖にイソシアヌレート環と水酸基、イミノ結合とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
 (実施例18)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10.0g利用する代わりにスチレン-ブタジエンブロック共重合体のエポキシ化物(ダイセル社製の商品名「エポフレンド」)を10.0g利用し、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g利用する代わりにトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート(SC有機化学社製の商品名「トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート」)を1.75g利用した以外は実施例1と同様にして熱可塑性エラストマー組成物を調製した。このようにして得られた熱可塑性エラストマー組成物の特性の評価結果を表2に示す。
 なお、エラストマー成分はスチレン-ブタジエンブロック共重合体のエポキシ化物とトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートとの反応物となり、側鎖がエポキシ基とトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート中のチオール基(-SH)との反応により形成され、側鎖にイソシアヌレート環と、水酸基、チオエーテル基とを含む架橋構造を有するものとなる(水素結合性架橋部位と共有結合性架橋部位を有するものとなる。)。
Figure JPOXMLDOC01-appb-T000018
 表1及び表2に示す結果からも明らかなように、エラストマー成分の種類以外は実施例1と同様の組成を有する実施例6、9、12、15、18で得られた熱可塑性エラストマー組成物においては、いずれも実施例1と同等程度の引張強度及び耐摩耗性が得られており、更に、比較例1~3で得られた熱可塑性エラストマー組成物と比較しても、より高度な引張強度及び耐摩耗性が達成されていることが確認された。このような結果から、上記エラストマー性ポリマー(A)及び上記エラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、添加成分(カーボンナノチューブ、ケイ酸塩系の天然ナノファイバー又は層状チタン酸化合物)とを組み合わせて利用することで、より高度な引張強度及び耐摩耗性が達成されることが分かった。また、実施例4~5、7~8、10~11、13~14、16~17で得られた熱可塑性エラストマー組成物はいずれも、実施例1と同様の組成を有する実施例6、9、12、15、18で得られた熱可塑性エラストマー組成物と対比しても、より高度な引張強度及び耐摩耗性が達成されており、本発明によれば、100%モジュラス及び破断強度を基準とする引張強度をより高度なものとすることが可能であり、しかも十分に高度な耐摩耗性を有することを可能となることが分かった。
 以上説明したように、本発明によれば、100%モジュラス及び破断強度を基準とする引張強度をより高度なものとすることが可能であり、しかも十分に高度な耐摩耗性を有することを可能とする熱可塑性エラストマー組成物を提供することが可能となる。
 したがって、本発明の熱可塑性エラストマー組成物は、上述のような各種特性をバランスよく発揮することが可能であるため、例えば、電気・電子、家電、化学、医薬品、ガラス、土石、鉄鋼、非鉄金属、機械、精密機器、化粧品、繊維、鉱業、パルプ、紙、建築・土木・建設、食料・飲料、一般消費財・サービス、運送用機器、建機、電気機器、設備(産業、空調、給湯、エネファーム)、金属、メディア、情報、通信機器、照明、ディスプレイ、農業、漁業、林業、水産業、アグリビジネス、バイオテクノロジー、ナノテクノロジー、等の分野において利用する各種ゴム部品(より具体的には、自動車周りの商品、ホース、ベルト、シート、防振ゴム、ローラー、ライニング、ゴム引布、シール材、手袋、防舷材、医療用ゴム(シリンジガスケット、チューブ、カテーテル)、ガスケット(家電用、建築用)、アスファルト改質剤、ホットメルト接着剤、ブーツ類、グリップ類、玩具、靴、サンダル、キーパッド、ギア、ペットボトルキャプライナー、プリンター用のゴム部品、シーリング材、塗料・コーティング材、印刷用インク等の用途に用いる商品等)を製造するための材料等として有用である。

Claims (3)

  1.  カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
     膨張黒鉛、カーボンナノチューブ、フラーレン、グラフェン、ケイ酸塩系天然ナノファイバー、シルセスキオキサン及び層状チタン酸化合物からなる群から選択される少なくとも1種であり、かつ、含有量が前記エラストマー成分100質量部に対して20質量部以下である添加成分と、
    を含有してなる熱可塑性エラストマー組成物。
  2.  前記エラストマー成分が、下記反応物(I)~(VI):
    [反応物(I)] 無水マレイン酸変性エラストマー性ポリマーと、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物、トリスヒドロキシエチルイソシアヌレート、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物との反応物
    [反応物(II)] 水酸基含有エラストマー性ポリマーと、カルボキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物との反応物
    [反応物(III)] カルボキシ基含有エラストマー性ポリマーと、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物との反応物
    [反応物(IV)] アミノ基含有エラストマー性ポリマーと、カルボキシ基、エポキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物との反応物
    [反応物(V)] アルコキシシリル基含有エラストマー性ポリマーと、水酸基、カルボキシ基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物との反応物
    [反応物(VI)] エポキシ基含有エラストマー性ポリマーと、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物との反応物
    からなる群から選択される少なくとも1種の反応物である請求項1に記載の熱可塑性エラストマー組成物。
  3.  前記エラストマー成分として含まれるポリマーの主鎖が、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、及び、ポリアミド系エラストマー性ポリマーの中から選択される少なくとも1種からなる請求項1又は2に記載の熱可塑性エラストマー組成物。
PCT/JP2017/017641 2016-05-17 2017-05-10 熱可塑性エラストマー組成物及びその製造方法 WO2017199805A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016099023A JP2017206604A (ja) 2016-05-17 2016-05-17 熱可塑性エラストマー組成物及びその製造方法
JP2016-099023 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017199805A1 true WO2017199805A1 (ja) 2017-11-23

Family

ID=60325872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017641 WO2017199805A1 (ja) 2016-05-17 2017-05-10 熱可塑性エラストマー組成物及びその製造方法

Country Status (3)

Country Link
JP (1) JP2017206604A (ja)
TW (1) TW201815980A (ja)
WO (1) WO2017199805A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104774A (ja) * 2017-12-08 2019-06-27 Jxtgエネルギー株式会社 樹脂組成物の製造方法
US20200338869A1 (en) * 2017-12-20 2020-10-29 Eaton Intelligent Power Limited Hydraulic hose
CN114133570A (zh) * 2021-11-16 2022-03-04 北京科技大学 一种自修复聚硅氧烷弹性体及其制备方法
PL442882A1 (pl) * 2022-11-18 2024-05-20 Centralny Instytut Ochrony Pracy - Państwowy Instytut Badawczy Kompozycja bezhalogenowych środków ograniczających palność i dymotwórczość pianek poliizocyjanurowych

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225682A1 (ja) * 2017-06-06 2018-12-13 国立大学法人東京工業大学 フルオロエラストマー組成物及びその成形品
CN110734593B (zh) * 2018-07-19 2021-11-30 中国石油天然气股份有限公司 一种改性石墨烯制备乳聚丁苯橡胶的方法
WO2020027109A1 (ja) 2018-07-30 2020-02-06 Jxtgエネルギー株式会社 樹脂組成物
JP7341695B2 (ja) * 2019-03-27 2023-09-11 バンドー化学株式会社 伝動ベルト
US20230167290A1 (en) 2020-06-24 2023-06-01 Eneos Corporation Rubber composition and cross-linked rubber composition
JP2023103770A (ja) 2022-01-14 2023-07-27 Eneos株式会社 ポリマー組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169527A (ja) * 1998-10-02 2000-06-20 Yokohama Rubber Co Ltd:The 熱可塑性エラストマ―、熱可塑性樹脂、およびそれらの製造方法
JP2006131663A (ja) * 2004-11-02 2006-05-25 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー
WO2006090687A1 (ja) * 2005-02-24 2006-08-31 The Yokohama Rubber Co., Ltd. 発泡体用組成物および発泡体
JP2007056145A (ja) * 2005-08-25 2007-03-08 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
JP2007326896A (ja) * 2006-06-06 2007-12-20 Yokohama Rubber Co Ltd:The エネルギー変換熱可塑性エラストマー組成物
WO2015029656A1 (ja) * 2013-08-29 2015-03-05 住友理工株式会社 柔軟導電材料およびトランスデューサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169527A (ja) * 1998-10-02 2000-06-20 Yokohama Rubber Co Ltd:The 熱可塑性エラストマ―、熱可塑性樹脂、およびそれらの製造方法
JP2006131663A (ja) * 2004-11-02 2006-05-25 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー
WO2006090687A1 (ja) * 2005-02-24 2006-08-31 The Yokohama Rubber Co., Ltd. 発泡体用組成物および発泡体
JP2007056145A (ja) * 2005-08-25 2007-03-08 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
JP2007326896A (ja) * 2006-06-06 2007-12-20 Yokohama Rubber Co Ltd:The エネルギー変換熱可塑性エラストマー組成物
WO2015029656A1 (ja) * 2013-08-29 2015-03-05 住友理工株式会社 柔軟導電材料およびトランスデューサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104774A (ja) * 2017-12-08 2019-06-27 Jxtgエネルギー株式会社 樹脂組成物の製造方法
US20200338869A1 (en) * 2017-12-20 2020-10-29 Eaton Intelligent Power Limited Hydraulic hose
CN114133570A (zh) * 2021-11-16 2022-03-04 北京科技大学 一种自修复聚硅氧烷弹性体及其制备方法
CN114133570B (zh) * 2021-11-16 2022-10-04 北京科技大学 一种自修复聚硅氧烷弹性体及其制备方法
PL442882A1 (pl) * 2022-11-18 2024-05-20 Centralny Instytut Ochrony Pracy - Państwowy Instytut Badawczy Kompozycja bezhalogenowych środków ograniczających palność i dymotwórczość pianek poliizocyjanurowych

Also Published As

Publication number Publication date
TW201815980A (zh) 2018-05-01
JP2017206604A (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6991065B2 (ja) 熱可塑性エラストマー組成物及びその製造方法
WO2017199805A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP5918878B1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP6949830B2 (ja) 熱可塑性エラストマー組成物及びその製造方法、並びに、エラストマー成形体
JP2017057393A (ja) 熱可塑性エラストマー組成物、その製造方法及び積層体
JP2017057323A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2017057322A (ja) 熱可塑性エラストマー組成物及びその製造方法
WO2017199806A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2017206589A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2007070447A (ja) 熱可塑性エラストマー組成物
JP2008088194A (ja) 熱可塑性エラストマー組成物
JP6453803B2 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP3998690B2 (ja) 熱可塑性エラストマー組成物
JP2006232983A (ja) 熱可塑性エラストマーの製造方法
JP2017197637A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP7320005B2 (ja) 熱可塑性エラストマー組成物、及び熱可塑性エラストマー組成物の製造方法
JP2020114902A (ja) 熱可塑性エラストマー組成物の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799230

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799230

Country of ref document: EP

Kind code of ref document: A1