WO2017199896A1 - Printing material production method - Google Patents
Printing material production method Download PDFInfo
- Publication number
- WO2017199896A1 WO2017199896A1 PCT/JP2017/018155 JP2017018155W WO2017199896A1 WO 2017199896 A1 WO2017199896 A1 WO 2017199896A1 JP 2017018155 W JP2017018155 W JP 2017018155W WO 2017199896 A1 WO2017199896 A1 WO 2017199896A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ink
- actinic ray
- cationic polymerizable
- ray curable
- curable cationic
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F13/00—Coverings or linings, e.g. for walls or ceilings
- E04F13/07—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
- E04F13/08—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
Definitions
- the present invention relates to a method for producing a printing material having an ink layer having excellent adhesion to an ink receiving layer that is a cured product of a resin composition.
- printing materials are often used as interior and exterior wall materials for buildings.
- the printing material is manufactured by applying a desired pattern to the surface of a base material processed into a desired shape by inkjet printing or the like.
- a pattern is imparted to a printing material by ink jet printing, weather resistance, ink curability, ink adhesion on the substrate surface, and the like are important.
- the printing material has a metal plate, an ink receiving layer disposed on the surface of the metal plate, and an ink layer disposed on the surface of the ink receiving layer.
- a printing material is activated, for example, by irradiating actinic rays (for example, ultraviolet rays) after inkjet printing of actinic ray curable cationic polymerizable ink on the surface of a metal plate having an ink receiving layer disposed on the surface. It is produced by curing a photocurable cationic polymerizable ink.
- the actinic ray curable cationic polymerizable ink contains a cationic polymerizable compound and a photopolymerization initiator.
- actinic light is irradiated to the actinic ray curable cationic polymerizable ink printed on the surface of the ink receiving layer, the photopolymerization initiator is decomposed to become active species.
- This active species then reacts with the cationic polymerizable compound to produce a new active species.
- New active species are cationically polymerized with other cationically polymerizable compounds, and this reaction is repeated to polymerize and cure.
- Patent Document 1 discloses an actinic ray curable cationic polymerizable ink having a cationic polymerizable compound, an oxetane compound and a photopolymerization initiator.
- the actinic ray curable cationic polymerizable ink described in Patent Document 1 is excellent in curability by blending an oxetane compound, and is excellent in adhesion even at high humidity.
- the printing material produced using the actinic ray curable cationic polymerizable ink described in Patent Document 1 has insufficient weather resistance.
- Patent Document 2 discloses an actinic ray curable cationic polymerizable ink having a cationic polymerizable compound, a compound having a siloxane bond and an oxetanyl group, and a photopolymerization initiator.
- the actinic ray curable cationic polymerizable ink described in Patent Document 2 is excellent in weather resistance by blending a compound having a siloxane bond, and is excellent in curability even at high humidity.
- the present inventors tried to cure the actinic ray curable cationic polymerizable ink by lowering the humidity. As a result, even when the humidity was kept low, there were cases where the actinic ray curable cationic polymerizable ink was properly cured and cases where the actinic ray curable cationic polymerizable ink was not properly cured. From this, the present inventors considered that other elements were important in addition to humidity as conditions for curing the actinic ray curable cationic polymerizable ink.
- the present invention has been made in view of such points, and an object of the present invention is to provide a method for producing a printing material capable of stably producing a printing material having excellent adhesion and curability of an ink layer.
- the present inventors have found that the above-mentioned problems can be solved by bringing the absolute humidity and temperature during irradiation with actinic rays to the actinic ray curable cationic polymerizable ink within a predetermined range, Further studies were made to complete the present invention.
- Applying the actinic ray curable cationic polymerizable ink on the receiving layer, irradiating and curing the actinic ray to form an ink layer, and the actinic ray curable cationic polymerizable ink comprises: Actinically polymerizable compound, 0.5 to 10.0% by mass of an epoxy group-containing silane coupling agent, 10 to 50% by mass of a hydroxyl group-containing oxetane compound, and a photopolymerization initiator, The absolute humidity VH (g / m 3 ) and temperature T (° C.) during irradiation with the actinic ray to cure the curable cationic polymerizable ink are expressed by
- a printing material manufacturing method that satisfies the above. 6 ⁇ VH ⁇ 103 ⁇ T ⁇ 10 ⁇ VH-5 (1) 15 ⁇ T ⁇ 40 (2) [2] A step of measuring and adjusting the absolute humidity VH (g / m 3 ) and the temperature T (° C.) while irradiating the actinic ray to cure the actinic ray curable cationic polymerizable ink.
- the ink layer is formed when the absolute humidity VH (g / m 3 ) during irradiation with the actinic ray for curing the actinic ray curable cationic polymerizable ink is 10 g / m 3 or more.
- step of performing within 2 minutes after irradiating the actinic ray, heat treatment is started at a temperature of 50 ° C. or higher to further cure the actinic ray curable cationic polymerizable ink [1] or [2]
- the manufacturing method of the printing material as described in 2.
- the ink layer is formed when the absolute humidity VH (g / m 3 ) during irradiation with the actinic ray is 10 g / m 3 or more in order to cure the actinic ray curable cationic polymerizable ink.
- step of, within 2 minutes after irradiating the actinic ray heat treatment is started at a temperature of 50 ° C. or higher and 145 ° C.
- the present invention it is possible to provide a method for producing a printing material capable of stably producing a printing material having excellent adhesion and curability of the ink layer.
- the printing material obtained by the manufacturing method of the printing material of this invention has a base material, the ink receiving layer arrange
- the printing material may further have an overcoat layer disposed on the ink layer.
- the printing material obtained by the method for producing a printing material of the present invention can be suitably used as a building material used as, for example, a building interior material and an outer wall material. Hereinafter, each component of the printing material will be described.
- Base material The kind of base material is not specifically limited.
- the substrate include a metal-based substrate (metal plate) and a ceramic-based substrate.
- metal base materials include plated steel sheets such as hot-dip Zn-55% Al alloy-plated steel sheets, steel sheets such as ordinary steel sheets and stainless steel sheets, aluminum plates, and copper plates. These metal base materials may be embossed or drawn and subjected to uneven processing such as tile tone, brick tone, and wood grain. Furthermore, for the purpose of improving heat insulation and soundproofing, the back surface of the metal base material may be covered with aluminum laminated kraft paper using an inorganic material such as a resin foam or gypsum board as a core material.
- Ceramic base materials include unglazed porcelain plates, glazed and fired porcelain plates, cement plates, and plate materials formed using cementitious materials and fiber materials. Moreover, you may give uneven
- the base material may have a chemical conversion treatment film or an undercoat film formed on the surface thereof.
- the chemical conversion film is formed on the entire surface of the base material, and improves coating film adhesion and corrosion resistance.
- the kind of chemical conversion treatment which forms a chemical conversion treatment film is not specifically limited. Examples of the chemical conversion treatment include chromate treatment, chromium-free treatment, and phosphate treatment.
- the adhesion amount of the chemical conversion coating is not particularly limited as long as it is within a range effective for improving coating film adhesion and corrosion resistance. For example, in the case of a chromate film, the adhesion amount may be adjusted so that the total Cr conversion adhesion amount is 5 to 100 mg / m 2 .
- the Ti-Mo composite coating has a range of 10 to 500 mg / m 2
- the fluoroacid-based coating has a fluorine equivalent or total metal element equivalent deposit of 3 to 100 mg / m 2.
- the adhesion amount may be adjusted. In the case of a phosphate film, the adhesion amount may be adjusted so as to be 5 to 500 mg / m 2 .
- the undercoat coating film is formed on the entire surface of the base material or the chemical conversion coating film, and improves the adhesion and corrosion resistance of the coating film.
- the undercoating film is formed, for example, by applying an undercoating paint containing a resin to the surface of the base material or the chemical conversion film and drying (or curing).
- the kind of resin contained in the undercoat paint is not particularly limited. Examples of resin types include polyester, epoxy resin, acrylic resin, and the like. Epoxy resins are particularly preferred because of their high polarity and good adhesion.
- the thickness of the undercoat coating film is not particularly limited as long as the above function can be exhibited.
- the film thickness of the undercoat coating film is, for example, about 5 ⁇ m.
- the ink receiving layer is a layer for receiving the actinic ray curable cationic polymerizable ink disposed on the entire surface of the base material or the undercoat coating film.
- the ink receiving layer includes a resin serving as a matrix.
- the type of resin used as the matrix is not particularly limited.
- the resin serving as the matrix include polyester, acrylic resin, polyvinylidene fluoride, polyurethane, epoxy resin, polyvinyl alcohol, and phenol resin.
- the resin used as the matrix preferably contains polyester from the viewpoint of high weather resistance and adhesion to the actinic ray curable cationic polymerizable ink.
- the resin used as the matrix does not form a porous ink receiving layer for water-based ink. This is because the porous ink-receiving layer may have poor water resistance and weather resistance, and is not suitable for applications such as building materials.
- the polyester resin composition for forming the matrix contains, for example, polyester and melamine resin, contains polyester and urethane resin, or contains polyester, melamine resin and urethane resin. Moreover, the polyester resin composition which has polyester and a melamine resin further contains a catalyst and an amine.
- a cured product (ink receiving layer) of such a resin composition has a high crosslinking density and is impermeable to actinic ray curable cationic polymerizable ink.
- the ink receiving layer (cured product of the resin composition) is impermeable to the actinic ray curable cationic polymerizable ink because the cross section of the ink receiving layer and the ink layer can be measured with a microscope at a magnification of 100 to 200 times.
- the ink receiving layer is impermeable, the interface between the ink receiving layer and the ink layer can be clearly identified.
- the ink receiving layer is permeable, the interface between the ink receiving layer and the ink layer is unclear and difficult to distinguish.
- the type of polyester is not particularly limited as long as it can cause a crosslinking reaction with melamine resin, urethane resin, or a combination thereof.
- the number average molecular weight of the polyester is not particularly limited, but is preferably 5000 or more from the viewpoint of processability.
- the hydroxyl value of the polyester is not particularly limited, but is preferably 40 mgKOH / g or less.
- the glass transition point of the polyester is not particularly limited, but is preferably in the range of 0 to 70 ° C. When the glass transition point is less than 0 ° C., the hardness of the ink receiving layer may be insufficient. On the other hand, when the glass transition point is higher than 70 ° C., the workability may be reduced.
- Melamine resin is a polyester cross-linking agent. Although the kind of melamine resin is not specifically limited, It is preferable that it is a methylated melamine resin.
- the methylated melamine resin preferably has a methoxy group content in the functional groups in the molecule of 80 mol% or more.
- the methylated melamine resin may be used alone or in combination with other melamine resins.
- the catalyst promotes the reaction of melamine resin.
- the catalyst include dodecylbenzenesulfonic acid, paratoluenesulfonic acid, and benzenesulfonic acid.
- the blending amount of the catalyst is preferably in the range of 0.1 to 8.0% with respect to the resin solid content.
- the amine neutralizes the catalytic reaction.
- examples of the amine include triethylamine, dimethylethanolamine, dimethylaminoethanol, monoethanolamine, and isopropanolamine.
- the compounding quantity of an amine is not specifically limited, It is preferable that it is the quantity of 50% or more of an equivalent with respect to an acid (catalyst).
- Urethane resin is a polyester cross-linking agent.
- aliphatic diisocyanate or alicyclic diisocyanate is preferable instead of aromatic diisocyanate from the viewpoint of enhancing weather resistance.
- examples of the aliphatic diisocyanate and the alicyclic diisocyanate include hexamethylene diisocyanate, isophorone diisocyanate, and 1,3-bis (isocyanomethyl) cyclohexane.
- the urethane resin the aforementioned urethane resin may be used alone, or two or more kinds of urethane resins may be used in combination.
- the arithmetic average roughness Ra of the ink receiving layer measured in accordance with JIS B B0601 is preferably in the range of 400 to 3000 nm.
- the wetting and spreading property of the actinic ray curable cationic polymerizable ink on the surface of the ink receiving layer is good.
- the method for forming fine irregularities on the surface of the ink receiving layer satisfying the condition of the arithmetic average roughness Ra is not particularly limited. Examples of such a method include a nanoimprint method and a shot peening method.
- a mold provided with a texture (unevenness) that satisfies the arithmetic average roughness Ra and an ink receiving layer formed on a substrate are pressed while being heated.
- the mold used in the nanoimprint method can be manufactured by using a known direct plate making or electronic engraving plate making.
- an oxide-based abrasive is used in the shot peening method.
- predetermined irregularities can be formed on the surface of the ink receiving layer by appropriately adjusting the particle diameter of the abrasive, the speed of the shot grains, the peening time, and the like.
- the film thickness of the ink receiving layer is not particularly limited, but is preferably in the range of 10 to 40 ⁇ m. If the film thickness is less than 10 ⁇ m, the durability and concealment of the ink receiving layer may be insufficient. In addition, when the film thickness is more than 40 ⁇ m, the manufacturing cost increases and there is a risk of occurrence of cracks during baking. In addition, the surface of the ink receiving layer may have a cocoon skin shape and the appearance may be deteriorated.
- the ink layer is disposed on the ink receiving layer.
- the ink layer is disposed on the entire surface or a part of the ink receiving layer so that a desired image is formed on the surface of the ink receiving layer.
- the ink layer is formed by inkjet printing the actinic ray curable cationic polymerizable ink on the surface of the ink receiving layer and irradiating the actinic ray to cure the actinic ray curable cationic polymerizable ink.
- the actinic ray curable cationic polymerizable ink is preferably a cationic polymerization type UV ink that is cured by irradiation with ultraviolet rays (active rays).
- the actinic ray curable cationic polymerizable ink contains a cationic polymerizable compound, an epoxy group-containing silane coupling agent, a hydroxyl group-containing oxetane compound, and a photopolymerization initiator.
- the actinic ray curable cationic polymerizable ink may further contain a pigment and a dispersant.
- the type of the cationic polymerizable compound is not particularly limited as long as it is a monomer capable of cationic polymerization.
- the cationically polymerizable compound include oxetane compounds other than aromatic epoxides, alicyclic epoxides, aliphatic epoxides, and hydroxyl group-containing oxetane compounds.
- aromatic epoxides include di- or polyglycidyl ethers of bisphenol A or alkylene oxide adducts thereof, di- or polyglycidyl ethers of hydrogenated bisphenol A or alkylene oxide adducts thereof, and novolak-type epoxy resins.
- alicyclic epoxides examples include cyclohexene oxide obtained by epoxidizing a compound having at least one cycloalkane ring such as cyclohexene or cyclopentene ring with an oxidizing agent such as hydrogen peroxide or peracid. Or a cyclopentene oxide containing compound is included.
- aliphatic epoxides include diglycidyl ether of ethylene glycol, diglycidyl ether of propylene glycol, diglycidyl ether of alkylene glycol such as diglycidyl ether of 1,6-hexanediol, diglycidyl or adduct of alkylene oxide thereof.
- polyglycidyl ether of polyhydric alcohol such as triglycidyl ether, diglycidyl ether of polyalkylene glycol such as polyethylene glycol or diglycidyl ether of alkylene oxide adduct thereof, polypropylene glycol or diglycidyl ether of alkylene oxide adduct thereof It is. Since the oxetane compound easily undergoes a growth reaction, it can be increased in molecular weight by cationic polymerization. Examples of the oxetane compound include known oxetane compounds described in JP-A Nos. 2001-220526 and 2001-310937.
- the oxetane compound may be used alone, or a monofunctional oxetane compound containing one oxetane ring and a polyfunctional oxetane compound containing two or more oxetane rings may be used in combination.
- the content of the cationic polymerizable compound in the actinic ray curable cationic polymerizable ink is preferably in the range of 60 to 95% by mass.
- the cationically polymerizable compound is less than 60% by mass, there is a possibility that the curing component becomes too small to form an ink layer.
- the amount of the cationically polymerizable compound is more than 95% by mass, the amount of the photopolymerization initiator added may be too small to sufficiently cure the ink layer.
- the epoxy group-containing silane coupling agent improves the weather resistance of the ink layer by forming a siloxane bond with a cationically polymerizable compound or a hydroxyl group-containing oxetane compound.
- the kind of epoxy group-containing silane coupling agent is not particularly limited.
- Examples of the epoxy group-containing silane coupling agent include (3- (2,3 epoxypropoxy) propyl) trimethyltrimethoxysilane, 3-gridoxypropylmethoxysilane, and an epoxy-containing oligomer type silane coupling agent. These epoxy group-containing silane coupling agents may be produced by using known methods, or commercially available products may be used.
- epoxy group-containing silane coupling agents examples include “KBM-303; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane”, “KBM-403; 3-glycid” manufactured by Shin-Etsu Chemical Co., Ltd. Xylpropyltrimethoxysilane ". Since the epoxy group-containing silane coupling agent has an epoxy group, the initiation reaction of cationic polymerization is likely to proceed.
- the content of the epoxy group-containing silane coupling agent in the actinic ray curable cationic polymerizable ink is in the range of 0.5 to 10.0% by mass.
- the epoxy group-containing silane coupling agent is less than 0.5% by mass, the siloxane bond is insufficient, and the weather resistance may be lowered.
- the epoxy group-containing silane coupling agent exceeds 10.0% by mass, self-condensation may occur and adhesion to the ink receiving layer may be reduced.
- the hydroxyl group-containing oxetane compound is a compound having one or more hydroxyl groups in the molecule.
- the kind of hydroxyl group-containing oxetane compound is not particularly limited.
- Examples of hydroxyl group-containing oxetane compounds include 3-ethyl-3-hydroxymethyloxetane.
- the hydroxyl group-containing oxetane compound may be produced using a known method, or a commercially available product may be used.
- Examples of commercially available hydroxyl group-containing oxetane compounds include “OXT-101; 3-ethyl-3-hydroxymethyloxetane” manufactured by Toa Gosei Co., Ltd. In such a hydroxyl group-containing oxetane compound, the initiation reaction is unlikely to proceed, but the polymerization reaction is likely to proceed.
- the content of the hydroxyl group-containing oxetane compound in the actinic ray curable cationic polymerizable ink is in the range of 10 to 50% by mass.
- the hydroxyl group-containing oxetane compound is less than 10% by mass, the proportion of the epoxy group-containing silane coupling agent in the actinic ray curable cationic polymerizable ink is increased, and the adhesion of the ink layer to the ink receiving layer is reduced. There is a fear.
- the actinic ray curable cationic polymerizable ink may not be cured because it absorbs moisture in the air.
- the photopolymerization initiator initiates cationic polymerization by irradiation with actinic rays.
- the type of photopolymerization initiator is not particularly limited as long as cationic polymerization can be initiated by irradiation with actinic rays, but is preferably an onium salt that generates a Lewis acid by irradiation with actinic rays.
- Examples of photopolymerization initiators include Lewis acid diazonium salts, Lewis acid iodonium salts, Lewis acid sulfonium salts, and the like.
- onium salts, and the cationic moiety comprising an aromatic diazonium, aromatic iodonium, or an aromatic sulfonium, anionic portion is BF 4 -, PF 6 -, SbF 6 -, or [BX 4] - (X is at least And an anionic moiety including a phenyl group substituted with two or more fluorine or trifluoromethyl groups.
- the content of the photopolymerization initiator in the actinic ray curable cationic polymerizable ink is preferably in the range of 3 to 15% by mass.
- the photopolymerization initiator is less than 3% by mass, a sufficient degree of polymerization cannot be obtained, so that an ink layer may not be formed.
- the photopolymerization initiator is more than 15% by mass, the difference in the degree of cure between the surface layer and the deep layer of the ink layer increases, which may cause distortion and reduce the adhesion.
- the type of pigment is not particularly limited as long as it is an organic pigment or an inorganic pigment.
- organic pigments include nitroso, dyed lakes, azo lakes, insoluble azos, monoazos, disazos, condensed azos, benzimidazolones, phthalocyanines, anthraquinones, perylenes, quinacridones, dioxazines , Isoindolines, azomethines and pyrrolopyrroles.
- inorganic pigments include oxides, hydroxides, sulfides, ferrocyanides, chromates, carbonates, silicates, phosphates, carbons (carbon black) and metals Contains flour.
- the pigment is preferably blended in the actinic ray curable cationic polymerizable ink within a range of 0.5 to 20% by mass.
- the pigment is less than 0.5% by mass, coloring may be insufficient and a desired image may not be formed.
- the pigment is more than 20% by mass, the viscosity of the actinic ray curable cationic polymerizable ink becomes too high, and there is a risk of causing ejection failure from the inkjet head.
- the dispersant makes each component of the actinic ray curable cationic polymerizable ink dispersed.
- the dispersant any of a low molecular dispersant and a high molecular dispersant can be used.
- the dispersant may be manufactured using a known method, or a commercially available product may be used. Examples of such commercially available dispersants include “Ajisper PB822” and “Ajisper PB821” (both are Ajinomoto Fine Techno Co., Ltd.).
- FIG. 1 is a structural diagram showing an outline of a crosslinked siloxane oligomer.
- the silane coupling agent generates a plurality of silanol groups by hydrolysis of a plurality of alkoxy groups on the silicon atom.
- the silanol group forms a crosslinked siloxane oligomer by forming a double or triple siloxane bond using a strong acid generated from a photopolymerization initiator as an acid catalyst. Since this crosslinkable siloxane oligomer has a high cure shrinkage ratio, it can cause a decrease in the adhesion of the ink layer. Therefore, in order to improve the adhesion of the ink layer to the ink receiving layer, it is necessary to suppress the formation of this crosslinked siloxane oligomer.
- the present inventors can suppress the formation of a crosslinked siloxane oligomer by a three-dimensional crosslinking reaction between silane coupling agents and improve the adhesion of the ink layer. I found it.
- silane coupling agent An epoxy group capable of cationic polymerization is introduced into the molecular structure of the silane coupling agent.
- a silane coupling agent becomes a part of cationic polymerization polymer chain. For this reason, it can suppress that a silane coupling agent adjoins by a hydrogen bond, and three-dimensionally crosslinks and forms a crosslinked siloxane oligomer.
- the content of the epoxy group-containing silane coupling agent is 0.5 to 10% by mass, which is smaller than the content of the hydroxy group-containing oxetane, and the cationic polymerizable functional group introduced into the silane coupling agent is oxetane.
- an epoxy compound that is a cationically polymerizable monomer has a property that the curing reaction starts quickly but the polymerization rate does not increase so much.
- the oxetane compound, which is a cationic polymerization monomer has a characteristic that the initiation of curing is slow, but the curing rate is increased in the latter half of the reaction, and the polymerization rate is increased.
- the ring has an inverse characteristic that the epoxy group is larger in the epoxy group than the oxetane ring and the basicity is larger in the oxetane ring than the epoxy group.
- the epoxy group-containing silane coupling agent is introduced at the polymerization starting point of the cationic polymerization polymer by the above (1) to (3), the possibility that the silane coupling agent continuously undergoes cationic polymerization due to the properties of the epoxy group is Extremely low. This is also considered to suppress the formation of a crosslinked siloxane oligomer due to the proximity of the silane coupling agents.
- the addition amount of the epoxy group-containing silane coupling agent exceeds 10% by mass, the silane coupling agents not introduced at the polymerization starting point of the cationic polymerization polymer are close to each other by a hydrogen bond to form a crosslinked siloxane oligomer. Since it may produce
- the printing material of the present invention may further have an overcoat layer on the ink layer.
- the type of overcoat paint for forming the overcoat layer is not particularly limited.
- overcoat paints include organic solvent-type paints, water-based paints, and powder paints.
- the kind of the resin component used for these paints is not particularly limited.
- the resin component include acrylic resin, polyester, alkyd resin, silicone-modified acrylic resin, silicone-modified polyester, silicone resin, and fluororesin. These resin components may be used alone or in combination of two or more. Moreover, you may mix
- the manufacturing method of the printing material according to the present invention includes a step of preparing a base material, a step of forming an ink receiving layer on the base material, and a step of forming an ink layer on the ink receiving layer. And having. Moreover, you may have the process of measuring and adjusting temperature and absolute humidity as needed, and the process of forming an overcoat layer on an ink layer.
- the aforementioned metal base material or ceramic base material is prepared.
- a chemical conversion treatment film can be formed by applying a chemical conversion treatment liquid on the surface of a base material, and making it dry.
- the method for applying the chemical conversion liquid is not particularly limited, and may be appropriately selected from known methods. Examples of such a coating method include a roll coating method, a curtain flow method, a spin coating method, an air spray method, an airless spray method, and a dip pulling method. What is necessary is just to set suitably the drying conditions of a chemical conversion liquid according to the composition of a chemical conversion liquid, etc.
- the base material coated with the chemical conversion treatment solution is put into a drying oven without being washed with water, and heated so that the ultimate plate temperature is in the range of 80 to 250 ° C., thereby forming a uniform chemical conversion on the surface of the base material.
- a treatment film can be formed.
- an undercoat coating film can be formed by apply
- the method for applying the undercoat paint the same method as the method for applying the chemical conversion treatment liquid can be used. What is necessary is just to set suitably the drying conditions of an under_coat_film according to the kind etc. of resin.
- a uniform undercoat film can be formed on the surface of the chemical conversion film by heating so that the ultimate plate temperature is in the range of 150 to 250 ° C.
- the ink receiving layer is formed by applying the above-mentioned resin composition to the surface of the base material (or chemical conversion coating or undercoat coating) and drying (or curing) it.
- the application method of the resin composition is not particularly limited, and may be appropriately selected from known methods. Examples of such a coating method include a roll coating method, a curtain flow method, a spin coating method, an air spray method, an airless spray method, and a dip pulling method.
- the drying conditions for the resin composition are not particularly limited. For example, by drying the base material coated with the resin composition so that the ultimate plate temperature is in the range of 150 to 250 ° C., the ink receiving layer is formed on the surface of the base material (or chemical conversion coating or undercoat coating film). Can be formed.
- irregularities having an arithmetic average roughness Ra measured in accordance with JIS B B0601 in the range of 400 to 3000 nm may be formed by a nanoimprint method or a shot peening method.
- the above-mentioned actinic ray curable cationic polymerizable ink is ink jet printed on the surface of the ink receiving layer using an ink jet printer, and the integrated light quantity is 100 to 800 mJ / Actinic rays (for example, ultraviolet rays) are irradiated so as to be in the range of cm 2 to cure the actinic ray curable cationic polymerizable ink.
- Actinic rays for example, ultraviolet rays
- the actinic ray curable cationic polymerizable ink includes a cationic polymerizable compound, 0.5 to 10.0% by mass of an epoxy group-containing silane coupling agent, and 10 to 50% by mass of a hydroxyl group-containing oxetane.
- the total amount of ultraviolet light can be measured using a UV illuminometer / light meter (UV-351-25; Oak Manufacturing Co., Ltd.) in a measurement wavelength range: 240 to 275 nm, a measurement wavelength center: 254 nm.
- the present inventors examined environmental parameters for curing the actinic ray curable cationic polymerizable ink.
- the present inventors have important relationships between the ambient absolute humidity and temperature when curing the actinic radiation curable cationic polymerizable ink. I found out.
- the absolute humidity VH during irradiation of the actinic ray curable cationic polymerizable ink with actinic rays is used.
- temperature T ° C.
- the actinic ray curable cationic polymerizable ink may not be properly cured, and the actinic ray curable cationic polymerizable ink may not adhere to the ink receiving layer.
- a method for controlling the absolute humidity VH (g / m 3 ) and the temperature T (° C.) to satisfy the expressions (1) and (2) is not particularly limited. It is preferable to control the absolute humidity and temperature (temperature) after enclosing the atmosphere in the region irradiated with actinic rays so that the atmosphere can be kept constant.
- the air temperature may be controlled by an air conditioner.
- the humidity control when the absolute humidity is high may be performed by dehumidifying with a dehumidifier.
- the humidity control when the absolute humidity is low may be performed by humidifying with a humidifier.
- the absolute humidity VH (g / m 3 ) during irradiation of the actinic ray to the actinic ray curable cationic polymerizable ink further satisfies the following formula (3). 4.2 ⁇ VH ⁇ 19.8 (3)
- the actinic ray curable cationic polymerizable ink may be heated at a predetermined temperature after irradiation with actinic rays.
- the actinic ray curable cationic polymerizable ink is easily polymerized by both actinic ray irradiation and heat treatment.
- the absolute humidity upon irradiation with actinic rays is 10 g / m 3 or more, the ink may be insufficiently cured after irradiation with actinic rays, so heat treatment is performed after irradiation with actinic rays. Is preferred.
- the interval from the end of the actinic ray irradiation to the start of the heat treatment is preferably within 2 minutes. More preferably, it is within minutes. If the interval between irradiation of actinic rays and heat treatment is more than 2 minutes, the ink layer absorbs moisture in the air and the reaction activity is lost, so that the ink layer may not be cured sufficiently even after heat treatment. is there.
- the temperature of the heat processing after actinic ray irradiation is 50 degreeC or more.
- the temperature of the heat treatment is lower than 50 ° C., the curing of the ink layer even if the heat treatment may be insufficient. Therefore, when actinic rays are irradiated under conditions where the absolute humidity is 10 g / m 3 or more, the temperature of the heat treatment is more preferably 60 ° C. or more, and further preferably 70 ° C. or more.
- the metal base material has a larger coefficient of thermal expansion than the ceramic base material, when it is heated to 150 ° C. or higher, there is a possibility that a defect may occur in the product shape due to thermal strain. In particular, this problem is remarkable in an aluminum-based metal substrate.
- ceramic base materials often contain bubbles or the like in the base material compared to metal base materials, so when heated to 150 ° C. or higher, the thermal conductivity becomes low and the temperature of the base material is unlikely to decrease.
- the ink receiving layer is a resin composition, when it is kept at 150 ° C. or higher for a long time, there is a high possibility that problems such as a change in color tone and a decrease in adhesion occur due to thermal degradation.
- the absolute humidity VH upon irradiation with actinic rays is in the range of 4.5 to 9.9 g / m 3 and heat treatment is performed after irradiation with actinic rays, the adhesion of the ink layer and the curability of the ink layer are further improved. (See Examples).
- the temperature and absolute humidity of the environment for curing the actinic ray curable cationic polymerizable ink are measured, and the temperature and absolute humidity are expressed by the above formulas (1) and (2). Adjust to meet.
- the air temperature may be controlled by an air conditioner.
- the humidity control when the absolute humidity is high may be performed by dehumidifying with a dehumidifier.
- the humidity control when the absolute humidity is low may be performed by humidifying with a humidifier.
- the overcoat layer is formed.
- the overcoat layer is formed by applying an overcoat paint to the surface of the ink layer and drying (or curing).
- the method for applying the overcoat paint is not particularly limited, and may be appropriately selected from known methods. Examples of such a coating method include a roll coating method, a curtain flow method, a spin coating method, an air spray method, an airless spray method, and a dip pulling method.
- the drying conditions for the overcoat paint are not particularly limited.
- the overcoat layer can be formed on the surface of the printing material by drying the printing material coated with the overcoat paint so that the ultimate plate temperature is in the range of 60 to 150 ° C.
- the printing method of the present invention is characterized by using an actinic ray curable cationic polymerizable ink containing a predetermined amount of an epoxy group-containing silane coupling agent and a hydroxyl group-containing oxetane compound, and adjusting the absolute humidity and temperature.
- Actinic light is irradiated in a controlled environment to cure the actinic ray curable cationic polymerizable ink.
- VH absolute humidity
- T temperature
- the printing material produced by the method is excellent in the adhesion of the ink layer to the ink receiving layer while the actinic ray curable cationic polymerizable ink is appropriately cured.
- Example 1 Preparation of printing material (1) Substrate As a coating original plate, a molten Zn-55% Al alloy plated steel plate having a plate thickness of 0.27 mm and a coating adhesion amount per side of 90 g / m 2 was prepared. A coating-type chromate treatment liquid (NRC300NS; Nippon Paint Co., Ltd.) was applied to the surface of the alkali degreased coating original plate to form a chemical conversion treatment film having a total chromium equivalent adhesion amount of 50 mg / m 2 .
- NRC300NS Nippon Paint Co., Ltd.
- a polyester primer coating (700P; Nippon Fine Coatings Co., Ltd.) is applied onto the chemical conversion film using a bar coater and baked at a final plate temperature of 215 ° C. to form an undercoat film having a dry film thickness of 5 ⁇ m. Formed.
- the resin composition for forming the ink receiving layer is applied onto the undercoat film using a bar coater, and baked at a final plate temperature of 225 ° C. for 1 minute to obtain a dry film thickness.
- a 20 ⁇ m ink receiving layer was formed.
- the resin composition (white paint) consists of polyester (number average molecular weight 5000, glass transition temperature 30 ° C., hydroxyl value 28 mg KOH / g; DIC Corporation) and methylated melamine resin (Cymel 303; Mitsui Cytec Corporation) as a crosslinking agent. And a base resin obtained by mixing at 70:30 with a catalyst, an amine and a color pigment.
- a catalyst 1% by mass of dodecylbenzenesulfonic acid was added to the resin solid content.
- As an amine dimethylaminoethanol was added in an amount equivalent to 1.25 times as an amine equivalent to an acid equivalent of dodecylbenzenesulfonic acid.
- As the color pigment titanium oxide (JR-603; Teika Co., Ltd.) having an average particle size of 0.28 ⁇ m was added in an amount of 45 mass% based on the resin solid content.
- Actinic ray curable cationic polymerizable ink was prepared by mixing 18% by mass of a cationic photopolymerization initiator (CPI-100P; San Apro Co., Ltd.) with the pigment dispersion.
- CPI-100P cationic photopolymerization initiator
- Inkjet printing used an inkjet head having a nozzle diameter of 35 ⁇ m.
- the head heating temperature during ink jet printing is 45 ° C.
- the applied voltage is 11.5 V
- the pulse width is 10.0 ⁇ s
- the drive frequency is 3483 Hz
- the ink droplet volume is 42 pl
- the resolution is 360 dpi
- the ink application amount is 8.4 g. It printed so that it might become / m ⁇ 2 > (amount that an ink layer should be formed without a gap).
- UV irradiation For coating materials after inkjet printing, using a high-pressure mercury lamp (H bulb; Fusion UV Systems Japan Co., Ltd.), with a lamp output of 200 W / cm, integrated light amount: 600 mJ / cm 2 (infrared light meter) UV-351-25; measured by Oak Manufacturing Co., Ltd.). After inkjet printing, the ambient temperature (air temperature) and humidity of the coating material were adjusted as appropriate during irradiation with ultraviolet rays.
- H bulb Fusion UV Systems Japan Co., Ltd.
- the temperature was controlled using an air conditioner.
- the humidity was controlled by dehumidifying with a desiccant dehumidifier (dry save (registered trademark) R-060BP type; Seibu Giken Co., Ltd.) or by humidifying with a PTC steam humidifier (Humidas; Yucan Co., Ltd.).
- the temperature and humidity were measured using a humidity indicator HMI41 (Vaisala Co., Ltd.) equipped with a temperature / humidity probe HMP46.
- UV ink layer was rubbed 100 times with 1 cm ⁇ 1 cm absorbent cotton containing 99% ethanol solution against the printing material, and the appearance of the UV ink layer was visually observed. It was evaluated by. If the appearance of the UV ink layer does not change, it is evaluated as “ ⁇ ”, and if it is glossy, it is evaluated as “ ⁇ ”. The UV ink layer dissolves to the substrate, and the exposed area of the substrate is 0%. Those exceeding 20% and less than 20% were evaluated as “ ⁇ ”, and those having a substrate exposure exceeding 20% were evaluated as “x”. If the evaluation of the adhesion of the UV ink layer is ⁇ or more, it is practical.
- FIG. 2 is a graph in which the evaluation results in Table 1 are plotted, and is a graph showing the relationship between the absolute humidity VH and temperature T and the ink adhesion.
- the relationship between absolute humidity VH and temperature T during irradiation with ultraviolet rays was T ⁇ 6 VH-103 or T> 10 VH-5.
- the printing materials of 25 to 29 were inferior in either adhesion or curability.
- the relationship between the absolute humidity VH and the temperature T during the irradiation with ultraviolet rays satisfies the conditions of 6VH ⁇ 103 ⁇ T ⁇ 10VH-5 and 15 ⁇ T ⁇ 40.
- the adhesiveness and curability were within the practical range.
- the absolute humidity VH during irradiation with ultraviolet rays was within the range of 4.2 ⁇ VH ⁇ 19.8, the adhesion and curability were good.
- the absolute humidity VH during irradiation with ultraviolet rays is in the range of 4.5 ⁇ VH ⁇ 9.9, and no.
- the printing materials of 2, 4, 6 to 8, 16, 19, and 24 had particularly good adhesion and curability.
- Example 2 In Example 2, about 20 seconds after the end of irradiation with ultraviolet rays, an automatic discharge dryer (AT0-101 type; Tojo Thermal Co., Ltd.) was used for 5 minutes at a furnace temperature of 50 ° C. or 145 ° C. No. in Example 1 except that post-heating treatment was performed. In the same manner as the printing materials 1 to 4, 6 to 12, 14 to 19, and 21 to 29, no. 30 to 81 printing materials were obtained. Further, in the same manner as in Example 1, evaluation of the ink layer, evaluation of adhesion, evaluation of curability, and comprehensive evaluation were performed.
- AT0-101 type Tojo Thermal Co., Ltd.
- Table 2 shows the printing material No. when the post-heating temperature is 50 ° C. Absolute humidity, temperature, relative humidity and various evaluation results are shown.
- Table 3 shows the printing material No. when the post-heating temperature is 145 ° C. Absolute humidity, temperature, relative humidity and various evaluation results are shown.
- FIG. 3 is a graph in which the evaluation results in Table 2 are plotted
- FIG. 4 is a graph in which the evaluation results in Table 3 are plotted.
- 3 and 4 are graphs showing the relationship between the absolute humidity VH and temperature T and the ink adhesion.
- the printing material with a post-heating treatment temperature of 70 ° C. has a better evaluation result than the printing material with a post-heating treatment temperature of 50 ° C. This is considered because the ink layer is cured without absorbing moisture in the air.
- a comparison between a printing material with a post-heating treatment temperature of 70 ° C. and a printing material with a post-heating treatment temperature of 145 ° C. shows a large difference in evaluation results even when the post-heating treatment temperature exceeds 70 ° C. Was not seen.
- the printing material heated to a temperature of 150 ° C. or higher after the post-heating treatment has a defective product shape due to thermal strain, or the adhesion of the ink layer is lowered.
- the method for producing a printing material of the present invention can produce a printing material excellent in adhesion and curability of actinic ray curable cationic polymerizable ink.
- the printing material produced by the method for producing a printing material of the present invention is excellent in the adhesion and curability of the cured product of the actinic ray curable cationic polymerizable ink, and is useful, for example, as an interior material and an outer wall material of a building. is there.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Architecture (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
Abstract
In the present invention, a substrate that is a metallic substrate or a ceramic substrate is prepared. A resin composition is applied on the substrate and an ink-receiving layer is formed. An active ray-curable cationically polymerizable ink is applied on the ink-receiving layer and an ink layer is formed. The active ray-curable cationically polymerizable ink contains a cationically polymerizable compound, 0.5-10 mass% of an epoxy-containing silane coupling agent, 10-50 mass% of a hydroxyl group-containing oxetane compound, and a photopolymerization initiator. The absolute humidity VH (g/m3) and the air temperature T (°C) while irradiating with active rays in order to cure the active ray-curable cationically polymerizable ink satisfy 6VH - 103 ≤ T ≤ 10VH - 5 and 15 ≤ T ≤ 40.
Description
本発明は、樹脂組成物の硬化物であるインキ受理層に対して密着性の優れたインキ層を有する印刷材の製造方法に関する。
The present invention relates to a method for producing a printing material having an ink layer having excellent adhesion to an ink receiving layer that is a cured product of a resin composition.
従来、建物の内装材および外壁材として印刷材が多く用いられている。印刷材は、所望の形状に加工した基材の表面に、インクジェット印刷などにより所望の模様を付与することで製造される。印刷材にインクジェット印刷により模様を付与する場合は、耐候性やインキの硬化性、基材表面におけるインキの密着性などが重要である。
Conventionally, printing materials are often used as interior and exterior wall materials for buildings. The printing material is manufactured by applying a desired pattern to the surface of a base material processed into a desired shape by inkjet printing or the like. When a pattern is imparted to a printing material by ink jet printing, weather resistance, ink curability, ink adhesion on the substrate surface, and the like are important.
たとえば、印刷材は、金属板と、金属板の表面に配置されたインキ受理層と、インキ受理層の表面に配置されたインキ層とを有する。このような印刷材は、例えば、表面に配置されたインキ受理層を有する金属板の表面に活性光線硬化型カチオン重合性インキをインクジェット印刷した後、活性光線(例えば紫外線)を照射することで活性光線硬化型カチオン重合性インキを硬化して製造される。
For example, the printing material has a metal plate, an ink receiving layer disposed on the surface of the metal plate, and an ink layer disposed on the surface of the ink receiving layer. Such a printing material is activated, for example, by irradiating actinic rays (for example, ultraviolet rays) after inkjet printing of actinic ray curable cationic polymerizable ink on the surface of a metal plate having an ink receiving layer disposed on the surface. It is produced by curing a photocurable cationic polymerizable ink.
活性光線硬化型カチオン重合性インキは、カチオン重合性化合物および光重合開始剤を含む。インキ受理層の表面に印刷された活性光線硬化型カチオン重合性インキに活性光線を照射すると、光重合開始剤が分解して活性種となる。次いで、この活性種がカチオン重合性化合物と反応して新たな活性種を生成する。そして、新たな活性種が、他のカチオン重合性化合物とカチオン重合し、この反応が繰り返されることで高分子化し、硬化する。
The actinic ray curable cationic polymerizable ink contains a cationic polymerizable compound and a photopolymerization initiator. When actinic light is irradiated to the actinic ray curable cationic polymerizable ink printed on the surface of the ink receiving layer, the photopolymerization initiator is decomposed to become active species. This active species then reacts with the cationic polymerizable compound to produce a new active species. New active species are cationically polymerized with other cationically polymerizable compounds, and this reaction is repeated to polymerize and cure.
一方、カチオン重合は、水により反応が阻害されることが知られている。水は、カチオン重合性化合物が活性種となる割合を低下させ、カチオン重合の反応速度を遅くする。すなわち、活性光線硬化型カチオン重合性インキは、高湿度の条件下では、カチオン重合が十分に進行しない。このため、カチオン重合型インキは、高湿度の条件下では、硬化性に劣り、かつインキ受理層に対して密着しない。
On the other hand, it is known that the reaction of cationic polymerization is inhibited by water. Water reduces the rate at which the cationic polymerizable compound becomes an active species, and slows the reaction rate of cationic polymerization. That is, the actinic ray curable cationic polymerizable ink does not sufficiently undergo cationic polymerization under high humidity conditions. For this reason, the cationic polymerization type ink is inferior in curability under high humidity conditions and does not adhere to the ink receiving layer.
このような問題に対して、特許文献1には、カチオン重合性化合物、オキセタン化合物および光重合開始剤を有する活性光線硬化型カチオン重合性インキが開示されている。特許文献1に記載の活性光線硬化型カチオン重合性インキは、オキセタン化合物を配合することにより、硬化性に優れ、かつ高湿度であっても密着性に優れる。しかしながら、特許文献1に記載の活性光線硬化型カチオン重合性インキを用いて製造された印刷材は、耐候性が不十分であった。
For such problems, Patent Document 1 discloses an actinic ray curable cationic polymerizable ink having a cationic polymerizable compound, an oxetane compound and a photopolymerization initiator. The actinic ray curable cationic polymerizable ink described in Patent Document 1 is excellent in curability by blending an oxetane compound, and is excellent in adhesion even at high humidity. However, the printing material produced using the actinic ray curable cationic polymerizable ink described in Patent Document 1 has insufficient weather resistance.
また、特許文献2には、カチオン重合性化合物と、シロキサン結合およびオキセタニル基を有する化合物と、光重合開始剤とを有する活性光線硬化型カチオン重合性インキが開示されている。特許文献2に記載の活性光線硬化型カチオン重合性インキは、シロキサン結合を有する化合物を配合することにより、耐候性に優れ、かつ高湿度であっても硬化性に優れる。
Patent Document 2 discloses an actinic ray curable cationic polymerizable ink having a cationic polymerizable compound, a compound having a siloxane bond and an oxetanyl group, and a photopolymerization initiator. The actinic ray curable cationic polymerizable ink described in Patent Document 2 is excellent in weather resistance by blending a compound having a siloxane bond, and is excellent in curability even at high humidity.
しかしながら、特許文献2に記載の活性光線硬化型カチオン重合性インキでは、シロキサン結合およびオキセタニル基を有する化合物同士が脱水縮合することにより水が生成してしまう。このため、特許文献2に記載の活性光線硬化型カチオン重合性インキでは、この生成された水によりカチオン重合が阻害されてしまい、十分に硬化しなかった。
However, in the actinic ray curable cationic polymerizable ink described in Patent Document 2, water is generated by dehydration condensation between compounds having a siloxane bond and an oxetanyl group. For this reason, in the actinic ray curable cationic polymerizable ink described in Patent Document 2, the generated water hinders cationic polymerization and does not sufficiently cure.
そこで、本発明者らは、湿度を下げて活性光線硬化型カチオン重合性インキを硬化させることを試みた。その結果、湿度を低く維持した状態であっても、活性光線硬化型カチオン重合性インキが適切に硬化する場合と、活性光線硬化型カチオン重合性インキが適切に硬化しない場合とがあった。このことから、本発明者らは、活性光線硬化型カチオン重合性インキを硬化させる条件として、湿度に加え、他の要素も重要であると考えた。
Therefore, the present inventors tried to cure the actinic ray curable cationic polymerizable ink by lowering the humidity. As a result, even when the humidity was kept low, there were cases where the actinic ray curable cationic polymerizable ink was properly cured and cases where the actinic ray curable cationic polymerizable ink was not properly cured. From this, the present inventors considered that other elements were important in addition to humidity as conditions for curing the actinic ray curable cationic polymerizable ink.
本発明は、かかる点に鑑みてなされたものであり、インキ層の密着性および硬化性に優れる印刷材を安定して製造できる印刷材の製造方法を提供することを目的とする。
The present invention has been made in view of such points, and an object of the present invention is to provide a method for producing a printing material capable of stably producing a printing material having excellent adhesion and curability of an ink layer.
本発明者らは、活性光線硬化型カチオン重合性インキに対して活性光線を照射している間の絶対湿度および気温を所定の範囲内にすることにより、上記課題を解決させうることを見出し、さらに検討を加えて本発明を完成させた。
The present inventors have found that the above-mentioned problems can be solved by bringing the absolute humidity and temperature during irradiation with actinic rays to the actinic ray curable cationic polymerizable ink within a predetermined range, Further studies were made to complete the present invention.
すなわち、本発明は、以下の印刷材の製造方法に関する。
[1]金属系基材または窯業系基材である基材を準備する工程と、前記基材の上に樹脂組成物を塗布し、硬化させて、インキ受理層を形成する工程と、前記インキ受理層の上に活性光線硬化型カチオン重合性インキを塗布し、活性光線を照射して硬化させて、インキ層を形成する工程と、を有し、前記活性光線硬化型カチオン重合性インキは、カチオン重合性化合物と、0.5~10.0質量%のエポキシ基含有シランカップリング剤と、10~50質量%のヒドロキシル基含有オキセタン化合物と、光重合開始剤と、を含み、前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)および気温T(℃)は、以下の式(1)および式(2)を満たす、印刷材の製造方法。
6×VH-103≦T≦10×VH-5 …(1)
15≦T≦40 …(2)
[2]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の前記絶対湿度VH(g/m3)および前記気温T(℃)を測定および調整する工程をさらに含む、[1]に記載の印刷材の製造方法。
[3]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)が10g/m3以上のとき、前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、[1]または[2]に記載の印刷材の製造方法。
[4]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)が10g/m3以上のとき、前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上145℃以下の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、[1]または[2]に記載の印刷材の製造方法。
[5]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)は、さらに以下の式(3)を満たす、[1]~[4]のいずれか一項に記載の印刷材の製造方法。
4.2≦VH≦19.8 …(3)
[6]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)は、さらに以下の式(4)を満たし、前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、[1]または[2]に記載の印刷材の製造方法。
4.5≦VH≦9.9 …(4)
[7]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)は、さらに以下の式(4)を満たし、前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上145℃以下の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、[1]または[2]に記載の印刷材の製造方法。
4.5≦VH≦9.9 …(4)
[8]前記樹脂組成物は、ポリエステルおよびメラミン樹脂を含むか、ポリエステルおよびウレタン樹脂を含むか、またはポリエステル、メラミン樹脂およびウレタン樹脂を含む、[1]~[7]のいずれか一項に記載の印刷材の製造方法。 That is, this invention relates to the manufacturing method of the following printing materials.
[1] A step of preparing a base material which is a metal base material or a ceramic base material, a step of applying a resin composition on the base material and curing the base material, and forming an ink receiving layer, and the ink Applying the actinic ray curable cationic polymerizable ink on the receiving layer, irradiating and curing the actinic ray to form an ink layer, and the actinic ray curable cationic polymerizable ink comprises: Actinically polymerizable compound, 0.5 to 10.0% by mass of an epoxy group-containing silane coupling agent, 10 to 50% by mass of a hydroxyl group-containing oxetane compound, and a photopolymerization initiator, The absolute humidity VH (g / m 3 ) and temperature T (° C.) during irradiation with the actinic ray to cure the curable cationic polymerizable ink are expressed by the following formulas (1) and (2). A printing material manufacturing method that satisfies the above.
6 × VH−103 ≦ T ≦ 10 × VH-5 (1)
15 ≦ T ≦ 40 (2)
[2] A step of measuring and adjusting the absolute humidity VH (g / m 3 ) and the temperature T (° C.) while irradiating the actinic ray to cure the actinic ray curable cationic polymerizable ink. The method for producing a printing material according to [1], further comprising:
[3] The ink layer is formed when the absolute humidity VH (g / m 3 ) during irradiation with the actinic ray for curing the actinic ray curable cationic polymerizable ink is 10 g / m 3 or more. In the step of performing, within 2 minutes after irradiating the actinic ray, heat treatment is started at a temperature of 50 ° C. or higher to further cure the actinic ray curable cationic polymerizable ink [1] or [2] The manufacturing method of the printing material as described in 2.
[4] The ink layer is formed when the absolute humidity VH (g / m 3 ) during irradiation with the actinic ray is 10 g / m 3 or more in order to cure the actinic ray curable cationic polymerizable ink. In the step of, within 2 minutes after irradiating the actinic ray, heat treatment is started at a temperature of 50 ° C. or higher and 145 ° C. or lower to further cure the actinic ray curable cationic polymerizable ink [1] or The manufacturing method of the printing material as described in [2].
[5] The absolute humidity VH (g / m 3 ) during irradiation with the actinic ray for curing the actinic ray curable cationic polymerizable ink further satisfies the following formula (3): [1 ] To [4] The method for producing a printing material according to any one of [4].
4.2 ≦ VH ≦ 19.8 (3)
[6] The absolute humidity VH (g / m 3 ) during irradiation with the actinic ray to cure the actinic ray curable cationic polymerizable ink further satisfies the following formula (4), and the ink: In the step of forming a layer, within 2 minutes after the irradiation with the actinic ray, heat treatment is started at a temperature of 50 ° C. or higher to further cure the actinic ray curable cationic polymerizable ink [1] or The manufacturing method of the printing material as described in [2].
4.5 ≦ VH ≦ 9.9 (4)
[7] The absolute humidity VH (g / m 3 ) during irradiation with the actinic ray in order to cure the actinic ray curable cationic polymerizable ink further satisfies the following formula (4), and the ink In the step of forming a layer, heat treatment is started at a temperature of 50 ° C. or more and 145 ° C. or less within 2 minutes after the irradiation with the actinic ray, and the actinic ray curable cationic polymerizable ink is further cured. [1] A method for producing a printing material according to [2].
4.5 ≦ VH ≦ 9.9 (4)
[8] The resin composition according to any one of [1] to [7], including a polyester and a melamine resin, a polyester and a urethane resin, or a polyester, a melamine resin, and a urethane resin. Printing material manufacturing method.
[1]金属系基材または窯業系基材である基材を準備する工程と、前記基材の上に樹脂組成物を塗布し、硬化させて、インキ受理層を形成する工程と、前記インキ受理層の上に活性光線硬化型カチオン重合性インキを塗布し、活性光線を照射して硬化させて、インキ層を形成する工程と、を有し、前記活性光線硬化型カチオン重合性インキは、カチオン重合性化合物と、0.5~10.0質量%のエポキシ基含有シランカップリング剤と、10~50質量%のヒドロキシル基含有オキセタン化合物と、光重合開始剤と、を含み、前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)および気温T(℃)は、以下の式(1)および式(2)を満たす、印刷材の製造方法。
6×VH-103≦T≦10×VH-5 …(1)
15≦T≦40 …(2)
[2]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の前記絶対湿度VH(g/m3)および前記気温T(℃)を測定および調整する工程をさらに含む、[1]に記載の印刷材の製造方法。
[3]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)が10g/m3以上のとき、前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、[1]または[2]に記載の印刷材の製造方法。
[4]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)が10g/m3以上のとき、前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上145℃以下の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、[1]または[2]に記載の印刷材の製造方法。
[5]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)は、さらに以下の式(3)を満たす、[1]~[4]のいずれか一項に記載の印刷材の製造方法。
4.2≦VH≦19.8 …(3)
[6]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)は、さらに以下の式(4)を満たし、前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、[1]または[2]に記載の印刷材の製造方法。
4.5≦VH≦9.9 …(4)
[7]前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)は、さらに以下の式(4)を満たし、前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上145℃以下の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、[1]または[2]に記載の印刷材の製造方法。
4.5≦VH≦9.9 …(4)
[8]前記樹脂組成物は、ポリエステルおよびメラミン樹脂を含むか、ポリエステルおよびウレタン樹脂を含むか、またはポリエステル、メラミン樹脂およびウレタン樹脂を含む、[1]~[7]のいずれか一項に記載の印刷材の製造方法。 That is, this invention relates to the manufacturing method of the following printing materials.
[1] A step of preparing a base material which is a metal base material or a ceramic base material, a step of applying a resin composition on the base material and curing the base material, and forming an ink receiving layer, and the ink Applying the actinic ray curable cationic polymerizable ink on the receiving layer, irradiating and curing the actinic ray to form an ink layer, and the actinic ray curable cationic polymerizable ink comprises: Actinically polymerizable compound, 0.5 to 10.0% by mass of an epoxy group-containing silane coupling agent, 10 to 50% by mass of a hydroxyl group-containing oxetane compound, and a photopolymerization initiator, The absolute humidity VH (g / m 3 ) and temperature T (° C.) during irradiation with the actinic ray to cure the curable cationic polymerizable ink are expressed by the following formulas (1) and (2). A printing material manufacturing method that satisfies the above.
6 × VH−103 ≦ T ≦ 10 × VH-5 (1)
15 ≦ T ≦ 40 (2)
[2] A step of measuring and adjusting the absolute humidity VH (g / m 3 ) and the temperature T (° C.) while irradiating the actinic ray to cure the actinic ray curable cationic polymerizable ink. The method for producing a printing material according to [1], further comprising:
[3] The ink layer is formed when the absolute humidity VH (g / m 3 ) during irradiation with the actinic ray for curing the actinic ray curable cationic polymerizable ink is 10 g / m 3 or more. In the step of performing, within 2 minutes after irradiating the actinic ray, heat treatment is started at a temperature of 50 ° C. or higher to further cure the actinic ray curable cationic polymerizable ink [1] or [2] The manufacturing method of the printing material as described in 2.
[4] The ink layer is formed when the absolute humidity VH (g / m 3 ) during irradiation with the actinic ray is 10 g / m 3 or more in order to cure the actinic ray curable cationic polymerizable ink. In the step of, within 2 minutes after irradiating the actinic ray, heat treatment is started at a temperature of 50 ° C. or higher and 145 ° C. or lower to further cure the actinic ray curable cationic polymerizable ink [1] or The manufacturing method of the printing material as described in [2].
[5] The absolute humidity VH (g / m 3 ) during irradiation with the actinic ray for curing the actinic ray curable cationic polymerizable ink further satisfies the following formula (3): [1 ] To [4] The method for producing a printing material according to any one of [4].
4.2 ≦ VH ≦ 19.8 (3)
[6] The absolute humidity VH (g / m 3 ) during irradiation with the actinic ray to cure the actinic ray curable cationic polymerizable ink further satisfies the following formula (4), and the ink: In the step of forming a layer, within 2 minutes after the irradiation with the actinic ray, heat treatment is started at a temperature of 50 ° C. or higher to further cure the actinic ray curable cationic polymerizable ink [1] or The manufacturing method of the printing material as described in [2].
4.5 ≦ VH ≦ 9.9 (4)
[7] The absolute humidity VH (g / m 3 ) during irradiation with the actinic ray in order to cure the actinic ray curable cationic polymerizable ink further satisfies the following formula (4), and the ink In the step of forming a layer, heat treatment is started at a temperature of 50 ° C. or more and 145 ° C. or less within 2 minutes after the irradiation with the actinic ray, and the actinic ray curable cationic polymerizable ink is further cured. [1] A method for producing a printing material according to [2].
4.5 ≦ VH ≦ 9.9 (4)
[8] The resin composition according to any one of [1] to [7], including a polyester and a melamine resin, a polyester and a urethane resin, or a polyester, a melamine resin, and a urethane resin. Printing material manufacturing method.
本発明によれば、インキ層の密着性および硬化性に優れる印刷材を安定して製造することができる印刷材の製造方法を提供することができる。
According to the present invention, it is possible to provide a method for producing a printing material capable of stably producing a printing material having excellent adhesion and curability of the ink layer.
1.印刷材
本発明の印刷材の製造方法によって得られる印刷材は、基材と、基材の上に配置されたインキ受理層と、インキ受理層の上に配置されたインキ層とを有する。また、この印刷材は、インキ層の上に配置されたオーバーコート層をさらに有していてもよい。本発明の印刷材の製造方法によって得られる印刷材は、例えば、建物の内装材および外壁材として使用される建築材料として好適に使用することができる。以下、印刷材の各構成要素について説明する。 1. Printing material The printing material obtained by the manufacturing method of the printing material of this invention has a base material, the ink receiving layer arrange | positioned on a base material, and the ink layer arrange | positioned on an ink receiving layer. The printing material may further have an overcoat layer disposed on the ink layer. The printing material obtained by the method for producing a printing material of the present invention can be suitably used as a building material used as, for example, a building interior material and an outer wall material. Hereinafter, each component of the printing material will be described.
本発明の印刷材の製造方法によって得られる印刷材は、基材と、基材の上に配置されたインキ受理層と、インキ受理層の上に配置されたインキ層とを有する。また、この印刷材は、インキ層の上に配置されたオーバーコート層をさらに有していてもよい。本発明の印刷材の製造方法によって得られる印刷材は、例えば、建物の内装材および外壁材として使用される建築材料として好適に使用することができる。以下、印刷材の各構成要素について説明する。 1. Printing material The printing material obtained by the manufacturing method of the printing material of this invention has a base material, the ink receiving layer arrange | positioned on a base material, and the ink layer arrange | positioned on an ink receiving layer. The printing material may further have an overcoat layer disposed on the ink layer. The printing material obtained by the method for producing a printing material of the present invention can be suitably used as a building material used as, for example, a building interior material and an outer wall material. Hereinafter, each component of the printing material will be described.
(基材)
基材の種類は、特に限定されない。基材の例には、金属系基材(金属板)および窯業系基材が含まれる。 (Base material)
The kind of base material is not specifically limited. Examples of the substrate include a metal-based substrate (metal plate) and a ceramic-based substrate.
基材の種類は、特に限定されない。基材の例には、金属系基材(金属板)および窯業系基材が含まれる。 (Base material)
The kind of base material is not specifically limited. Examples of the substrate include a metal-based substrate (metal plate) and a ceramic-based substrate.
金属系基材の例には、溶融Zn-55%Al合金めっき鋼板などのめっき鋼板、普通鋼板やステンレス鋼板などの鋼板、アルミニウム板および銅板が含まれる。これらの金属系基材には、エンボス加工や絞り成型加工などを行って、タイル調やレンガ調、木目調などの凹凸加工を施してもよい。さらに、断熱性や防音性を高める目的で、樹脂発泡体や石膏ボードなどの無機素材を芯材としたアルミラミネートクラフト紙などで、金属系基材の裏面を被覆してもよい。
Examples of metal base materials include plated steel sheets such as hot-dip Zn-55% Al alloy-plated steel sheets, steel sheets such as ordinary steel sheets and stainless steel sheets, aluminum plates, and copper plates. These metal base materials may be embossed or drawn and subjected to uneven processing such as tile tone, brick tone, and wood grain. Furthermore, for the purpose of improving heat insulation and soundproofing, the back surface of the metal base material may be covered with aluminum laminated kraft paper using an inorganic material such as a resin foam or gypsum board as a core material.
窯業系基材の例には、素焼陶板、施釉および焼成した陶板、セメント板、セメント質原料や繊維質原料などを用いて成形した板材が含まれる。また、これらの窯業系基材の表面にも、タイル調やレンガ調、木目調などの凹凸加工を施してもよい。
Examples of ceramic base materials include unglazed porcelain plates, glazed and fired porcelain plates, cement plates, and plate materials formed using cementitious materials and fiber materials. Moreover, you may give uneven | corrugated processes, such as a tile tone, a brick tone, and a woodgrain, also to the surface of these ceramics-type base materials.
基材は、その表面に化成処理皮膜や下塗り塗膜などが形成されていてもよい。化成処理皮膜は、基材の表面全体に形成されており、塗膜密着性および耐食性を向上させる。化成処理皮膜を形成する化成処理の種類は、特に限定されない。化成処理の例には、クロメート処理、クロムフリー処理、リン酸塩処理が含まれる。化成処理皮膜の付着量は、塗膜密着性および耐食性の向上に有効な範囲内であれば特に限定されない。たとえば、クロメート皮膜の場合、全Cr換算付着量が5~100mg/m2となるように付着量を調整すればよい。また、クロムフリー皮膜の場合、Ti-Mo複合皮膜では10~500mg/m2、フルオロアシッド系皮膜ではフッ素換算付着量または総金属元素換算付着量が3~100mg/m2の範囲内となるように付着量を調整すればよい。また、リン酸塩皮膜の場合、5~500mg/m2となるように付着量を調整すればよい。
The base material may have a chemical conversion treatment film or an undercoat film formed on the surface thereof. The chemical conversion film is formed on the entire surface of the base material, and improves coating film adhesion and corrosion resistance. The kind of chemical conversion treatment which forms a chemical conversion treatment film is not specifically limited. Examples of the chemical conversion treatment include chromate treatment, chromium-free treatment, and phosphate treatment. The adhesion amount of the chemical conversion coating is not particularly limited as long as it is within a range effective for improving coating film adhesion and corrosion resistance. For example, in the case of a chromate film, the adhesion amount may be adjusted so that the total Cr conversion adhesion amount is 5 to 100 mg / m 2 . In the case of a chromium-free coating, the Ti-Mo composite coating has a range of 10 to 500 mg / m 2 , and the fluoroacid-based coating has a fluorine equivalent or total metal element equivalent deposit of 3 to 100 mg / m 2. The adhesion amount may be adjusted. In the case of a phosphate film, the adhesion amount may be adjusted so as to be 5 to 500 mg / m 2 .
下塗り塗膜は、基材または化成処理皮膜の表面全体に形成されており、塗膜密着性および耐食性を向上させる。下塗り塗膜は、例えば樹脂を含む下塗り塗料を、基材または化成処理皮膜の表面に塗布し、乾燥(または硬化)させることで形成される。下塗り塗料に含まれる樹脂の種類は、特に限定されない。樹脂の種類の例には、ポリエステルやエポキシ樹脂、アクリル樹脂などが含まれる。エポキシ樹脂は、極性が高く、かつ密着性が良好なため特に好ましい。下塗り塗膜の膜厚は、上記の機能を発揮することができれば、特に限定されない。下塗り塗膜の膜厚は、例えば5μm程度である。
The undercoat coating film is formed on the entire surface of the base material or the chemical conversion coating film, and improves the adhesion and corrosion resistance of the coating film. The undercoating film is formed, for example, by applying an undercoating paint containing a resin to the surface of the base material or the chemical conversion film and drying (or curing). The kind of resin contained in the undercoat paint is not particularly limited. Examples of resin types include polyester, epoxy resin, acrylic resin, and the like. Epoxy resins are particularly preferred because of their high polarity and good adhesion. The thickness of the undercoat coating film is not particularly limited as long as the above function can be exhibited. The film thickness of the undercoat coating film is, for example, about 5 μm.
(インキ受理層)
インキ受理層は、基材または下塗り塗膜の表面全体に配置されている、活性光線硬化型カチオン重合性インキを受理するための層である。インキ受理層は、マトリックスとなる樹脂を含む。 (Ink receiving layer)
The ink receiving layer is a layer for receiving the actinic ray curable cationic polymerizable ink disposed on the entire surface of the base material or the undercoat coating film. The ink receiving layer includes a resin serving as a matrix.
インキ受理層は、基材または下塗り塗膜の表面全体に配置されている、活性光線硬化型カチオン重合性インキを受理するための層である。インキ受理層は、マトリックスとなる樹脂を含む。 (Ink receiving layer)
The ink receiving layer is a layer for receiving the actinic ray curable cationic polymerizable ink disposed on the entire surface of the base material or the undercoat coating film. The ink receiving layer includes a resin serving as a matrix.
マトリックスとなる樹脂の種類は、特に限定されない。マトリックスとなる樹脂の例には、ポリエステル、アクリル樹脂、ポリフッ化ビニリデン、ポリウレタン、エポキシ樹脂、ポリビニルアルコールおよびフェノール樹脂が含まれる。マトリックスとなる樹脂は、高耐候性および活性光線硬化型カチオン重合性インキとの密着性の観点から、ポリエステルを含むことが好ましい。なお、マトリックスとなる樹脂は、水性インキ用の多孔質なインキ受理層を形成するものでない。多孔質のインキ受理層は、耐水性および耐候性が悪い場合があり、建築材などの用途に適さないためである。
The type of resin used as the matrix is not particularly limited. Examples of the resin serving as the matrix include polyester, acrylic resin, polyvinylidene fluoride, polyurethane, epoxy resin, polyvinyl alcohol, and phenol resin. The resin used as the matrix preferably contains polyester from the viewpoint of high weather resistance and adhesion to the actinic ray curable cationic polymerizable ink. The resin used as the matrix does not form a porous ink receiving layer for water-based ink. This is because the porous ink-receiving layer may have poor water resistance and weather resistance, and is not suitable for applications such as building materials.
マトリックスを形成するためのポリエステル樹脂組成物は、例えばポリエステルおよびメラミン樹脂を含むか、ポリエステルおよびウレタン樹脂を含むか、またはポリエステル、メラミン樹脂およびウレタン樹脂を含む。また、ポリエステルおよびメラミン樹脂を有するポリエステル樹脂組成物は、触媒およびアミンをさらに含む。このような樹脂組成物の硬化物(インキ受理層)は、架橋密度が高く、活性光線硬化型カチオン重合性インキに対して非浸透性である。なお、インキ受理層(樹脂組成物の硬化物)が活性光線硬化型カチオン重合性インキに対して非浸透性であることは、インキ受理層およびインキ層の断面を100~200倍の倍率で顕微鏡観察することにより、確認することができる。インキ受理層が非浸透性の場合は、インキ受理層とインキ層との界面を明確に識別することができる。一方、インキ受理層が浸透性の場合は、インキ受理層とインキ層との界面が不明確となり識別することが困難である。
The polyester resin composition for forming the matrix contains, for example, polyester and melamine resin, contains polyester and urethane resin, or contains polyester, melamine resin and urethane resin. Moreover, the polyester resin composition which has polyester and a melamine resin further contains a catalyst and an amine. A cured product (ink receiving layer) of such a resin composition has a high crosslinking density and is impermeable to actinic ray curable cationic polymerizable ink. The ink receiving layer (cured product of the resin composition) is impermeable to the actinic ray curable cationic polymerizable ink because the cross section of the ink receiving layer and the ink layer can be measured with a microscope at a magnification of 100 to 200 times. This can be confirmed by observing. When the ink receiving layer is impermeable, the interface between the ink receiving layer and the ink layer can be clearly identified. On the other hand, when the ink receiving layer is permeable, the interface between the ink receiving layer and the ink layer is unclear and difficult to distinguish.
ポリエステルの種類は、メラミン樹脂、ウレタン樹脂、またはこれらの組み合わせと架橋反応を起こすことができれば、特に限定されない。ポリエステルの数平均分子量は、特に限定されないが、加工性の観点からは5000以上であることが好ましい。また、ポリエステルの水酸基価も、特に限定されないが、40mgKOH/g以下であることが好ましい。ポリエステルのガラス転移点は、特に限定されないが、0~70℃の範囲内であることが好ましい。ガラス転移点が0℃未満の場合、インキ受理層の硬度が不足するおそれがある。一方、ガラス転移点が70℃超の場合、加工性が低下するおそれがある。
The type of polyester is not particularly limited as long as it can cause a crosslinking reaction with melamine resin, urethane resin, or a combination thereof. The number average molecular weight of the polyester is not particularly limited, but is preferably 5000 or more from the viewpoint of processability. The hydroxyl value of the polyester is not particularly limited, but is preferably 40 mgKOH / g or less. The glass transition point of the polyester is not particularly limited, but is preferably in the range of 0 to 70 ° C. When the glass transition point is less than 0 ° C., the hardness of the ink receiving layer may be insufficient. On the other hand, when the glass transition point is higher than 70 ° C., the workability may be reduced.
メラミン樹脂は、ポリエステルの架橋剤である。メラミン樹脂の種類は、特に限定されないが、メチル化メラミン樹脂であることが好ましい。また、メチル化メラミン樹脂は、分子中の官能基に占めるメトキシ基の量が80mol%以上であることが好ましい。メチル化メラミン樹脂は、単独で使用してもよいし、他のメラミン樹脂と併用してもよい。メラミン樹脂の配合量は、ポリエステル:メラミン樹脂=60:40~80:20(質量比)の範囲内であることが好ましい。
Melamine resin is a polyester cross-linking agent. Although the kind of melamine resin is not specifically limited, It is preferable that it is a methylated melamine resin. The methylated melamine resin preferably has a methoxy group content in the functional groups in the molecule of 80 mol% or more. The methylated melamine resin may be used alone or in combination with other melamine resins. The blending amount of the melamine resin is preferably within the range of polyester: melamine resin = 60: 40 to 80:20 (mass ratio).
触媒は、メラミン樹脂の反応を促進させる。触媒の例には、ドデシルベンゼンスルフォン酸、パラトルエンスルフォン酸、ベンゼンスルフォン酸が含まれる。触媒の配合量は、樹脂固形分に対して0.1~8.0%の範囲内であることが好ましい。
The catalyst promotes the reaction of melamine resin. Examples of the catalyst include dodecylbenzenesulfonic acid, paratoluenesulfonic acid, and benzenesulfonic acid. The blending amount of the catalyst is preferably in the range of 0.1 to 8.0% with respect to the resin solid content.
アミンは、触媒反応を中和する。アミンの例には、トリエチルアミン、ジメチルエタノールアミン、ジメチルアミノエタノール、モノエタノールアミン、イソプロパノールアミンが含まれる。アミンの配合量は、特に限定されないが、酸(触媒)に対して当量の50%以上の量であることが好ましい。
The amine neutralizes the catalytic reaction. Examples of the amine include triethylamine, dimethylethanolamine, dimethylaminoethanol, monoethanolamine, and isopropanolamine. Although the compounding quantity of an amine is not specifically limited, It is preferable that it is the quantity of 50% or more of an equivalent with respect to an acid (catalyst).
ウレタン樹脂は、ポリエステルの架橋剤である。ウレタン樹脂の種類は、特に限定されないが、耐候性を高める観点から芳香族ジイソシアネートではなく、脂肪族ジイソシアネートまたは脂環式ジイソシアネートが好ましい。脂肪族ジイソシアネートおよび脂環式ジイソシアネートの例には、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアノメチル)シクロヘキサンが含まれる。ウレタン樹脂は、前述したウレタン樹脂を単独で使用してもよいし、2種以上のウレタン樹脂を併用してもよい。ウレタン樹脂の配合量は、ポリエステル:ウレタン樹脂=60:40~80:20(質量比)の範囲内であることが好ましい。
Urethane resin is a polyester cross-linking agent. Although the kind of urethane resin is not particularly limited, aliphatic diisocyanate or alicyclic diisocyanate is preferable instead of aromatic diisocyanate from the viewpoint of enhancing weather resistance. Examples of the aliphatic diisocyanate and the alicyclic diisocyanate include hexamethylene diisocyanate, isophorone diisocyanate, and 1,3-bis (isocyanomethyl) cyclohexane. As the urethane resin, the aforementioned urethane resin may be used alone, or two or more kinds of urethane resins may be used in combination. The blending amount of the urethane resin is preferably within the range of polyester: urethane resin = 60: 40 to 80:20 (mass ratio).
インキ受理層の、JIS B 0601に準拠して測定した算術平均粗さRaは、400~3000nmの範囲内であることが好ましい。算術平均粗さRaが上記の範囲内であると、インキ受理層の表面における活性光線硬化型カチオン重合性インキの濡れ広がり性が良好である。また、算術平均粗さRaの条件を満たす微細な凹凸をインキ受理層の表面に形成する方法は、特に限定されない。そのような方法の例には、ナノインプリント法や、ショットピーニング法などが含まれる。
The arithmetic average roughness Ra of the ink receiving layer measured in accordance with JIS B B0601 is preferably in the range of 400 to 3000 nm. When the arithmetic average roughness Ra is within the above range, the wetting and spreading property of the actinic ray curable cationic polymerizable ink on the surface of the ink receiving layer is good. Further, the method for forming fine irregularities on the surface of the ink receiving layer satisfying the condition of the arithmetic average roughness Ra is not particularly limited. Examples of such a method include a nanoimprint method and a shot peening method.
ナノインプリント法では、算術平均粗さRaを満たすテクスチャー(凹凸)を付与した型と、基材の上に形成されたインキ受理層とを、加熱しながら押圧する。ナノインプリント法に使用される型は、公知のダイレクト製版または電子彫刻製版を利用することで製造されうる。また、ショットピーニング方法では、酸化物系の研削材を使用する。ショットピーニング法では、研削材の粒径、ショット粒の速度、ピーニング時間などを適宜調整することで、インキ受理層の表面に所定の凹凸を形成することができる。
In the nanoimprint method, a mold provided with a texture (unevenness) that satisfies the arithmetic average roughness Ra and an ink receiving layer formed on a substrate are pressed while being heated. The mold used in the nanoimprint method can be manufactured by using a known direct plate making or electronic engraving plate making. In the shot peening method, an oxide-based abrasive is used. In the shot peening method, predetermined irregularities can be formed on the surface of the ink receiving layer by appropriately adjusting the particle diameter of the abrasive, the speed of the shot grains, the peening time, and the like.
インキ受理層の膜厚は、特に限定されないが、10~40μmの範囲内であることが好ましい。膜厚が10μm未満の場合、インキ受理層の耐久性および隠蔽性が不十分となるおそれがある。また、膜厚が40μm超の場合、製造コストが増大するとともに、焼付け時にワキが発生しやすくなるおそれがある。また、インキ受理層の表面が柚子肌状となってしまい、外観が劣化してしまうおそれがある。
The film thickness of the ink receiving layer is not particularly limited, but is preferably in the range of 10 to 40 μm. If the film thickness is less than 10 μm, the durability and concealment of the ink receiving layer may be insufficient. In addition, when the film thickness is more than 40 μm, the manufacturing cost increases and there is a risk of occurrence of cracks during baking. In addition, the surface of the ink receiving layer may have a cocoon skin shape and the appearance may be deteriorated.
(インキ層)
インキ層は、インキ受理層の上に配置されている。インキ層は、インキ受理層の表面に所望の画像が形成されるように、インキ受理層の表面全体または一部に配置されている。インキ層は、活性光線硬化型カチオン重合性インキをインキ受理層の表面にインクジェット印刷して、活性光線を照射して活性光線硬化型カチオン重合性インキを硬化させることで形成される。活性光線硬化型カチオン重合性インキは、紫外線(活性光線)を照射することにより硬化するカチオン重合型のUVインキであることが好ましい。 (Ink layer)
The ink layer is disposed on the ink receiving layer. The ink layer is disposed on the entire surface or a part of the ink receiving layer so that a desired image is formed on the surface of the ink receiving layer. The ink layer is formed by inkjet printing the actinic ray curable cationic polymerizable ink on the surface of the ink receiving layer and irradiating the actinic ray to cure the actinic ray curable cationic polymerizable ink. The actinic ray curable cationic polymerizable ink is preferably a cationic polymerization type UV ink that is cured by irradiation with ultraviolet rays (active rays).
インキ層は、インキ受理層の上に配置されている。インキ層は、インキ受理層の表面に所望の画像が形成されるように、インキ受理層の表面全体または一部に配置されている。インキ層は、活性光線硬化型カチオン重合性インキをインキ受理層の表面にインクジェット印刷して、活性光線を照射して活性光線硬化型カチオン重合性インキを硬化させることで形成される。活性光線硬化型カチオン重合性インキは、紫外線(活性光線)を照射することにより硬化するカチオン重合型のUVインキであることが好ましい。 (Ink layer)
The ink layer is disposed on the ink receiving layer. The ink layer is disposed on the entire surface or a part of the ink receiving layer so that a desired image is formed on the surface of the ink receiving layer. The ink layer is formed by inkjet printing the actinic ray curable cationic polymerizable ink on the surface of the ink receiving layer and irradiating the actinic ray to cure the actinic ray curable cationic polymerizable ink. The actinic ray curable cationic polymerizable ink is preferably a cationic polymerization type UV ink that is cured by irradiation with ultraviolet rays (active rays).
活性光線硬化型カチオン重合性インキは、カチオン重合性化合物、エポキシ基含有シランカップリング剤、ヒドロキシル基含有オキセタン化合物および光重合開始剤を含む。また、活性光線硬化型カチオン重合性インキは、顔料および分散剤をさらに含んでいてもよい。
The actinic ray curable cationic polymerizable ink contains a cationic polymerizable compound, an epoxy group-containing silane coupling agent, a hydroxyl group-containing oxetane compound, and a photopolymerization initiator. The actinic ray curable cationic polymerizable ink may further contain a pigment and a dispersant.
カチオン重合性化合物の種類は、カチオン重合可能なモノマーであれば、特に限定されない。カチオン重合性化合物の例には、芳香族エポキシド、脂環式エポキシド、脂肪族エポキシドおよびヒドロキシル基含有オキセタン化合物以外のオキセタン化合物が含まれる。芳香族エポキシドの例には、ビスフェノールAまたはそのアルキレンオキサイド付加体のジもしくはポリグリシジルエーテル、水素添加ビスフェノールAまたはそのアルキレンオキサイド付加体のジもしくはポリグリシジルエーテル、およびノボラック型エポキシ樹脂が含まれる。脂環式エポキシドの例には、少なくとも1個のシクロへキセンまたはシクロペンテン環などのシクロアルカン環を有する化合物を、過酸化水素や過酸などの酸化剤でエポキシ化することによって得られる、シクロヘキセンオキサイドまたはシクロペンテンオキサイド含有化合物が含まれる。脂肪族エポキシドの例には、エチレングリコールのジグリシジルエーテルやプロピレングリコールのジグリシジルエーテル、1,6-ヘキサンジオールのジグリシジルエーテルなどのアルキレングリコールのジグリシジルエーテル、グリセリンまたはそのアルキレンオキサイド付加体のジもしくはトリグリシジルエーテルなどの多価アルコールのポリグリシジルエーテルやポリエチレングリコールまたはそのアルキレンオキサイド付加体のジグリシジルエーテル、ポリプロピレングリコールまたはそのアルキレンオキサイド付加体のジグリシジルエーテルなどのポリアルキレングリコールのジグリシジルエーテルが含まれる。オキセタン化合物は、成長反応しやすいため、カチオン重合することで高分子量化することができる。オキセタン化合物の例には、特開2001-220526号公報や特開2001-310937号公報などに記載されている既知のオキセタン化合物が含まれる。また、オキセタン化合物は、単独で使用してもよいし、オキセタン環を1個含有する単官能オキセタン化合物と、オキセタン環を2個以上含有する多官能オキセタン化合物とを併用することもできる。
The type of the cationic polymerizable compound is not particularly limited as long as it is a monomer capable of cationic polymerization. Examples of the cationically polymerizable compound include oxetane compounds other than aromatic epoxides, alicyclic epoxides, aliphatic epoxides, and hydroxyl group-containing oxetane compounds. Examples of aromatic epoxides include di- or polyglycidyl ethers of bisphenol A or alkylene oxide adducts thereof, di- or polyglycidyl ethers of hydrogenated bisphenol A or alkylene oxide adducts thereof, and novolak-type epoxy resins. Examples of alicyclic epoxides include cyclohexene oxide obtained by epoxidizing a compound having at least one cycloalkane ring such as cyclohexene or cyclopentene ring with an oxidizing agent such as hydrogen peroxide or peracid. Or a cyclopentene oxide containing compound is included. Examples of aliphatic epoxides include diglycidyl ether of ethylene glycol, diglycidyl ether of propylene glycol, diglycidyl ether of alkylene glycol such as diglycidyl ether of 1,6-hexanediol, diglycidyl or adduct of alkylene oxide thereof. Or polyglycidyl ether of polyhydric alcohol such as triglycidyl ether, diglycidyl ether of polyalkylene glycol such as polyethylene glycol or diglycidyl ether of alkylene oxide adduct thereof, polypropylene glycol or diglycidyl ether of alkylene oxide adduct thereof It is. Since the oxetane compound easily undergoes a growth reaction, it can be increased in molecular weight by cationic polymerization. Examples of the oxetane compound include known oxetane compounds described in JP-A Nos. 2001-220526 and 2001-310937. The oxetane compound may be used alone, or a monofunctional oxetane compound containing one oxetane ring and a polyfunctional oxetane compound containing two or more oxetane rings may be used in combination.
活性光線硬化型カチオン重合性インキ中のカチオン重合性化合物の含有量は、60~95質量%の範囲内が好ましい。カチオン重合性化合物が60質量%未満の場合、硬化成分が少なくなりすぎてインキ層が形成されないおそれがある。一方、カチオン重合性化合物が95質量%超の場合、光重合開始剤の添加量が少なくなりすぎて、インキ層を十分に硬化させることができないおそれがある。
The content of the cationic polymerizable compound in the actinic ray curable cationic polymerizable ink is preferably in the range of 60 to 95% by mass. When the cationically polymerizable compound is less than 60% by mass, there is a possibility that the curing component becomes too small to form an ink layer. On the other hand, when the amount of the cationically polymerizable compound is more than 95% by mass, the amount of the photopolymerization initiator added may be too small to sufficiently cure the ink layer.
エポキシ基含有シランカップリング剤は、カチオン重合性化合物やヒドロキシル基含有オキセタン化合物などとシロキサン結合を形成してインキ層の耐候性を向上させる。エポキシ基含有シランカップリング剤の種類は、特に限定されない。エポキシ基含有シランカップリング剤の例には、(3-(2,3エポキシプロポキシ)プロピル)トリメチルトリメトキシシラン、3-グリドキシプロピルメトキシシラン、エポキシ含有オリゴマー型のシランカップリング剤が含まれる。これらのエポキシ基含有シランカップリング剤は、公知の方法を用いて製造したものでもよいし、市販品を利用してもよい。市販のエポキシ基含有シランカップリング剤の例には、信越化学工業株式会社の「KBM-303;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン」、「KBM-403;3-グリシドキシプロピルトリメトキシシラン」が含まれる。エポキシ基含有シランカップリング剤は、エポキシ基を有しているため、カチオン重合の開始反応が進みやすい。
The epoxy group-containing silane coupling agent improves the weather resistance of the ink layer by forming a siloxane bond with a cationically polymerizable compound or a hydroxyl group-containing oxetane compound. The kind of epoxy group-containing silane coupling agent is not particularly limited. Examples of the epoxy group-containing silane coupling agent include (3- (2,3 epoxypropoxy) propyl) trimethyltrimethoxysilane, 3-gridoxypropylmethoxysilane, and an epoxy-containing oligomer type silane coupling agent. These epoxy group-containing silane coupling agents may be produced by using known methods, or commercially available products may be used. Examples of commercially available epoxy group-containing silane coupling agents include “KBM-303; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane”, “KBM-403; 3-glycid” manufactured by Shin-Etsu Chemical Co., Ltd. Xylpropyltrimethoxysilane ". Since the epoxy group-containing silane coupling agent has an epoxy group, the initiation reaction of cationic polymerization is likely to proceed.
活性光線硬化型カチオン重合性インキ中のエポキシ基含有シランカップリング剤の含有量は、0.5~10.0質量%の範囲内である。エポキシ基含有シランカップリング剤が0.5質量%未満の場合、シロキサン結合が不十分となるため、耐候性が低くなってしまうおそれがある。一方、エポキシ基含有シランカップリング剤が10.0質量%超の場合、自己縮合してしまい、インキ受理層に対する密着性が低下してしまうおそれがある。
The content of the epoxy group-containing silane coupling agent in the actinic ray curable cationic polymerizable ink is in the range of 0.5 to 10.0% by mass. When the epoxy group-containing silane coupling agent is less than 0.5% by mass, the siloxane bond is insufficient, and the weather resistance may be lowered. On the other hand, when the epoxy group-containing silane coupling agent exceeds 10.0% by mass, self-condensation may occur and adhesion to the ink receiving layer may be reduced.
ヒドロキシル基含有オキセタン化合物は、分子内に1または2以上のヒドロキシル基を有する化合物である。ヒドロキシル基含有オキセタン化合物の種類は、特に限定されない。ヒドロキシル基含有オキセタン化合物の例には、3-エチル-3-ヒドロキシメチルオキセタンが含まれる。ヒドロキシル基含有オキセタン化合物は、公知の方法を用いて製造したものでもよいし、市販品を利用してもよい。市販のヒドロキシル基含有オキセタン化合物の例には、東亜合成株式会社の「OXT-101;3-エチル-3-ヒドロキシメチルオキセタン」が含まれる。このようなヒドロキシル基含有オキセタン化合物は、開始反応が進みにくいが、重合反応が進みやすい。
The hydroxyl group-containing oxetane compound is a compound having one or more hydroxyl groups in the molecule. The kind of hydroxyl group-containing oxetane compound is not particularly limited. Examples of hydroxyl group-containing oxetane compounds include 3-ethyl-3-hydroxymethyloxetane. The hydroxyl group-containing oxetane compound may be produced using a known method, or a commercially available product may be used. Examples of commercially available hydroxyl group-containing oxetane compounds include “OXT-101; 3-ethyl-3-hydroxymethyloxetane” manufactured by Toa Gosei Co., Ltd. In such a hydroxyl group-containing oxetane compound, the initiation reaction is unlikely to proceed, but the polymerization reaction is likely to proceed.
活性光線硬化型カチオン重合性インキ中のヒドロキシル基含有オキセタン化合物の含有量は、10~50質量%の範囲内である。ヒドロキシル基含有オキセタン化合物が10質量%未満の場合、活性光線硬化型カチオン重合性インキ中のエポキシ基含有シランカップリング剤の割合が多くなり、インキ層のインキ受理層に対する密着性が低下してしまうおそれがある。一方、ヒドロキシル基含有オキセタン化合物が50質量%超の場合、空気中の水分を吸収するため、活性光線硬化型カチオン重合性インキが硬化しないおそれがある。
The content of the hydroxyl group-containing oxetane compound in the actinic ray curable cationic polymerizable ink is in the range of 10 to 50% by mass. When the hydroxyl group-containing oxetane compound is less than 10% by mass, the proportion of the epoxy group-containing silane coupling agent in the actinic ray curable cationic polymerizable ink is increased, and the adhesion of the ink layer to the ink receiving layer is reduced. There is a fear. On the other hand, when the hydroxyl group-containing oxetane compound is more than 50% by mass, the actinic ray curable cationic polymerizable ink may not be cured because it absorbs moisture in the air.
光重合開始剤は、活性光線の照射によりカチオン重合を開始させる。光重合開始剤の種類は、活性光線の照射によりカチオン重合を開始させることができればとくに限定されないが、活性光線の照射によりルイス酸を発生させるオニウム塩であることが好ましい。光重合開始剤の例には、ルイス酸のジアゾニウム塩、ルイス酸のヨードニウム塩、ルイス酸のスルホニウム塩などが含まれる。これらのオニウム塩は、芳香族ジアゾニウム、芳香族ヨードニウム、または芳香族スルホニウムなどを含むカチオン部分と、アニオン部分がBF4-、PF6-、SbF6-、または[BX4]-(Xは少なくとも2つ以上のフッ素またはトリフルオロメチル基で置換されたフェニル基)などを含むアニオン部分とを有する。具体的には、四フッ化ホウ素のフェニルジアゾニウム塩、六フッ化リンのジフェニルヨードニウム塩、六フッ化アンチモンのジフェニルヨードニウム塩、六フッ化ヒ素のトリ-4-メチルフェニルスルホニウム塩、四フッ化アンチモンのトリ-4-メチルフェニルスルホニウム塩、テトラキス(ペンタフルオロフェニル)ホウ素のジフェニルヨードニウム塩、アセチルアセトンアルミニウム塩とオルトニトロベンジルシリルエーテル混合体、フェニルチオピリジウム塩、六フッ化リンアレン-鉄錯体などである。
The photopolymerization initiator initiates cationic polymerization by irradiation with actinic rays. The type of photopolymerization initiator is not particularly limited as long as cationic polymerization can be initiated by irradiation with actinic rays, but is preferably an onium salt that generates a Lewis acid by irradiation with actinic rays. Examples of photopolymerization initiators include Lewis acid diazonium salts, Lewis acid iodonium salts, Lewis acid sulfonium salts, and the like. These onium salts, and the cationic moiety comprising an aromatic diazonium, aromatic iodonium, or an aromatic sulfonium, anionic portion is BF 4 -, PF 6 -, SbF 6 -, or [BX 4] - (X is at least And an anionic moiety including a phenyl group substituted with two or more fluorine or trifluoromethyl groups. Specifically, boron difluoride phenyldiazonium salt, phosphorus hexafluoride diphenyliodonium salt, antimony hexafluoride diphenyliodonium salt, arsenic hexafluoride tri-4-methylphenylsulfonium salt, antimony tetrafluoride Tri-4-methylphenylsulfonium salt, tetrakis (pentafluorophenyl) boron diphenyliodonium salt, acetylacetone aluminum salt and orthonitrobenzylsilyl ether mixture, phenylthiopyridium salt, phosphorus hexafluoride allene-iron complex, etc. .
活性光線硬化型カチオン重合性インキ中の光重合開始剤の含有量は、3~15質量%の範囲内であることが好ましい。光重合開始剤が3質量%未満の場合、十分な重合度が得られないため、インキ層が形成されないおそれがある。一方、光重合開始剤が15質量%超の場合、インキ層の表層と深層の硬化度の差が大きくなることにより歪が発生し、密着性が低下するおそれがある。
The content of the photopolymerization initiator in the actinic ray curable cationic polymerizable ink is preferably in the range of 3 to 15% by mass. When the photopolymerization initiator is less than 3% by mass, a sufficient degree of polymerization cannot be obtained, so that an ink layer may not be formed. On the other hand, when the photopolymerization initiator is more than 15% by mass, the difference in the degree of cure between the surface layer and the deep layer of the ink layer increases, which may cause distortion and reduce the adhesion.
顔料の種類は、有機顔料または無機顔料であれば、特に限定されない。有機顔料の例には、ニトロソ類、染付レーキ類、アゾレーキ類、不溶性アゾ類、モノアゾ類、ジスアゾ類、縮合アゾ類、ベンゾイミダゾロン類、フタロシアニン類、アントラキノン類、ペリレン類、キナクリドン類、ジオキサジン類、イソインドリン類、アゾメチン類およびピロロピロール類が含まれる。また、無機顔料の例には、酸化物類、水酸化物類、硫化物類、フェロシアン化物類、クロム酸塩類、炭酸塩類、ケイ酸塩類、リン酸塩類、炭素類(カーボンブラック)および金属粉類が含まれる。顔料は、活性光線硬化型カチオン重合性インキ中に0.5~20質量%の範囲内で配合されていることが好ましい。顔料が0.5質量%未満の場合、着色が不充分となり、所望の画像が形成できないおそれがある。一方、顔料が20質量%超の場合、活性光線硬化型カチオン重合性インキの粘度が高くなりすぎて、インクジェットヘッドからの吐出不良を生じるおそれがある。
The type of pigment is not particularly limited as long as it is an organic pigment or an inorganic pigment. Examples of organic pigments include nitroso, dyed lakes, azo lakes, insoluble azos, monoazos, disazos, condensed azos, benzimidazolones, phthalocyanines, anthraquinones, perylenes, quinacridones, dioxazines , Isoindolines, azomethines and pyrrolopyrroles. Examples of inorganic pigments include oxides, hydroxides, sulfides, ferrocyanides, chromates, carbonates, silicates, phosphates, carbons (carbon black) and metals Contains flour. The pigment is preferably blended in the actinic ray curable cationic polymerizable ink within a range of 0.5 to 20% by mass. When the pigment is less than 0.5% by mass, coloring may be insufficient and a desired image may not be formed. On the other hand, when the pigment is more than 20% by mass, the viscosity of the actinic ray curable cationic polymerizable ink becomes too high, and there is a risk of causing ejection failure from the inkjet head.
分散剤は、活性光線硬化型カチオン重合性インキの各成分を分散状態にする。分散剤としては、低分子分散剤および高分子分散剤のいずれも使用することができる。分散剤は、公知の方法を用いて製造したものでもよいし、市販品を利用してもよい。このような市販の分散剤の例には、「アジスパーPB822」、「アジスパーPB821」(いずれも、味の素ファインテクノ株式会社)が含まれる。
The dispersant makes each component of the actinic ray curable cationic polymerizable ink dispersed. As the dispersant, any of a low molecular dispersant and a high molecular dispersant can be used. The dispersant may be manufactured using a known method, or a commercially available product may be used. Examples of such commercially available dispersants include “Ajisper PB822” and “Ajisper PB821” (both are Ajinomoto Fine Techno Co., Ltd.).
図1は、架橋型シロキサンオリゴマーの概略を示した構造図である。図1に示されるように、シランカップリング剤は、ケイ素原子上にある複数のアルコキシ基の加水分解により複数のシラノール基を生じる。このシラノール基は、光重合開始剤から発生する強酸を酸触媒として、2重、3重にシロキサン結合を形成して架橋型シロキサンオリゴマーとなる。この架橋型シロキサンオリゴマーは、硬化収縮率が高いためインキ層の密着性低下の原因となりうる。したがって、インキ受理層に対するインキ層の密着性を向上させるためには、この架橋型シロキサンオリゴマーの生成を抑制する必要がある。
FIG. 1 is a structural diagram showing an outline of a crosslinked siloxane oligomer. As shown in FIG. 1, the silane coupling agent generates a plurality of silanol groups by hydrolysis of a plurality of alkoxy groups on the silicon atom. The silanol group forms a crosslinked siloxane oligomer by forming a double or triple siloxane bond using a strong acid generated from a photopolymerization initiator as an acid catalyst. Since this crosslinkable siloxane oligomer has a high cure shrinkage ratio, it can cause a decrease in the adhesion of the ink layer. Therefore, in order to improve the adhesion of the ink layer to the ink receiving layer, it is necessary to suppress the formation of this crosslinked siloxane oligomer.
本発明者らは、以下の(1)~(3)により、シランカップリング剤同士の3次元架橋反応による架橋型シロキサンオリゴマーの生成を抑制して、インキ層の密着性を向上させうることを見出した。
According to the following (1) to (3), the present inventors can suppress the formation of a crosslinked siloxane oligomer by a three-dimensional crosslinking reaction between silane coupling agents and improve the adhesion of the ink layer. I found it.
(1)活性光線硬化型カチオン重合性インキ中に、シランカップリング剤中のシラノール基と反応可能なヒドロキシル基含有オキセタン化合物を10~50質量%を添加する。
(1) 10-50% by mass of a hydroxyl group-containing oxetane compound capable of reacting with a silanol group in a silane coupling agent is added to an actinic ray curable cationic polymerizable ink.
(2)シランカップリング剤の分子構造内にカチオン重合可能なエポキシ基を導入する。これにより、シランカップリング剤は、カチオン重合ポリマー鎖の一部となる。このため、シランカップリング剤同士が水素結合により近接した後、3次元架橋して架橋型シロキサンオリゴマーが生成するのを抑制することができる。
(2) An epoxy group capable of cationic polymerization is introduced into the molecular structure of the silane coupling agent. Thereby, a silane coupling agent becomes a part of cationic polymerization polymer chain. For this reason, it can suppress that a silane coupling agent adjoins by a hydrogen bond, and three-dimensionally crosslinks and forms a crosslinked siloxane oligomer.
(3)エポキシ基含有シランカップリング剤の含有量をヒドロキシ基含有オキセタンの含有量よりも少ない0.5~10質量%とするとともに、シランカップリング剤に導入したカチオン重合性の官能基をオキセタン環ではなくエポキシ基とする。一般的に、カチオン重合性モノマーであるエポキシ化合物は、硬化反応の開始は速いが、重合率はあまり大きくならない特性を有する。一方、カチオン重合モノマーであるオキセタン化合物は、硬化の開始は遅いが、反応の後半で硬化速度が速くなり、重合率が高くなる特性を有する。エポキシ化合物とオキセタン化合物のカチオン重合特性の違いは、それぞれが有する環状エーテルの環の歪と塩基性とから説明される。すなわち、環の歪はエポキシ基の方がオキセタン環よりも大きく、塩基性はオキセタン環の方がエポキシ基よりも大きい、という逆の特性を有する。
(3) The content of the epoxy group-containing silane coupling agent is 0.5 to 10% by mass, which is smaller than the content of the hydroxy group-containing oxetane, and the cationic polymerizable functional group introduced into the silane coupling agent is oxetane. Use an epoxy group instead of a ring. In general, an epoxy compound that is a cationically polymerizable monomer has a property that the curing reaction starts quickly but the polymerization rate does not increase so much. On the other hand, the oxetane compound, which is a cationic polymerization monomer, has a characteristic that the initiation of curing is slow, but the curing rate is increased in the latter half of the reaction, and the polymerization rate is increased. The difference in the cationic polymerization characteristics between the epoxy compound and the oxetane compound is explained from the ring strain and basicity of the cyclic ether each has. In other words, the ring has an inverse characteristic that the epoxy group is larger in the epoxy group than the oxetane ring and the basicity is larger in the oxetane ring than the epoxy group.
上記(1)~(3)により、カチオン重合ポリマーの重合開始点にエポキシ基含有シランカップリング剤が導入されるものの、エポキシ基の特性からシランカップリング剤が連続してカチオン重合する可能性は極めて低くなる。これもシランカップリング剤同士が近接して架橋型シロキサンオリゴマーが生成するのを抑制すると考えられる。なお、エポキシ基含有シランカップリング剤の添加量が10質量%超の場合、カチオン重合ポリマーの重合開始点に導入されなかったシランカップリング剤同士が、水素結合により近接して架橋型シロキサンオリゴマーを生成してインキ層の密着性が低下するおそれがあるので好ましくない。
Although the epoxy group-containing silane coupling agent is introduced at the polymerization starting point of the cationic polymerization polymer by the above (1) to (3), the possibility that the silane coupling agent continuously undergoes cationic polymerization due to the properties of the epoxy group is Extremely low. This is also considered to suppress the formation of a crosslinked siloxane oligomer due to the proximity of the silane coupling agents. In addition, when the addition amount of the epoxy group-containing silane coupling agent exceeds 10% by mass, the silane coupling agents not introduced at the polymerization starting point of the cationic polymerization polymer are close to each other by a hydrogen bond to form a crosslinked siloxane oligomer. Since it may produce | generate and the adhesiveness of an ink layer may fall, it is unpreferable.
(オーバーコート層)
前述のように、本発明の印刷材は、インキ層の上にオーバーコート層をさらに有していてもよい。 (Overcoat layer)
As described above, the printing material of the present invention may further have an overcoat layer on the ink layer.
前述のように、本発明の印刷材は、インキ層の上にオーバーコート層をさらに有していてもよい。 (Overcoat layer)
As described above, the printing material of the present invention may further have an overcoat layer on the ink layer.
オーバーコート層を形成するためのオーバーコート塗料の種類は、特に限定されない。オーバーコート塗料の例には、有機溶剤型塗料、水系塗料、粉体塗料が含まれる。これらの塗料に用いられる樹脂成分の種類は、特に限定されない。樹脂成分の例には、アクリル樹脂系、ポリエステル系、アルキド樹脂系、シリコーン変性アクリル樹脂系、シリコーン変性ポリエステル系、シリコーン樹脂系、フッ素樹脂系が含まれる。これらの樹脂成分は、単独で使用してもよいし、2種以上を併用してもよい。また、オーバーコート塗料には、必要に応じてポリイソシアネート化合物、アミノ樹脂、エポキシ基含有化合物、カルボキシ基含有化合物などの架橋剤を配合してもよい。
The type of overcoat paint for forming the overcoat layer is not particularly limited. Examples of overcoat paints include organic solvent-type paints, water-based paints, and powder paints. The kind of the resin component used for these paints is not particularly limited. Examples of the resin component include acrylic resin, polyester, alkyd resin, silicone-modified acrylic resin, silicone-modified polyester, silicone resin, and fluororesin. These resin components may be used alone or in combination of two or more. Moreover, you may mix | blend crosslinking agents, such as a polyisocyanate compound, an amino resin, an epoxy group containing compound, and a carboxy group containing compound, with an overcoat coating material as needed.
2.印刷材の製造方法
本発明に係る印刷材の製造方法は、基材を準備する工程と、基材の上にインキ受理層を形成する工程と、インキ受理層の上にインキ層を形成する工程と、を有する。また、必要に応じて、温度および絶対湿度を測定および調整する工程と、インキ層の上にオーバーコート層を形成する工程と、有していてもよい。 2. Manufacturing method of printing material The manufacturing method of the printing material according to the present invention includes a step of preparing a base material, a step of forming an ink receiving layer on the base material, and a step of forming an ink layer on the ink receiving layer. And having. Moreover, you may have the process of measuring and adjusting temperature and absolute humidity as needed, and the process of forming an overcoat layer on an ink layer.
本発明に係る印刷材の製造方法は、基材を準備する工程と、基材の上にインキ受理層を形成する工程と、インキ受理層の上にインキ層を形成する工程と、を有する。また、必要に応じて、温度および絶対湿度を測定および調整する工程と、インキ層の上にオーバーコート層を形成する工程と、有していてもよい。 2. Manufacturing method of printing material The manufacturing method of the printing material according to the present invention includes a step of preparing a base material, a step of forming an ink receiving layer on the base material, and a step of forming an ink layer on the ink receiving layer. And having. Moreover, you may have the process of measuring and adjusting temperature and absolute humidity as needed, and the process of forming an overcoat layer on an ink layer.
基材を準備する工程では、前述した金属系基材または窯業系基材を準備する。なお、準備した基材の上に化成処理皮膜および下塗り塗膜を形成してもよい。基材の表面に化成処理皮膜を形成する場合、化成処理皮膜は、基材の表面に化成処理液を塗布し、乾燥させることで形成されうる。化成処理液の塗布方法は、特に限定されず、公知の方法から適宜選択すればよい。そのような塗布方法の例には、ロールコート法やカーテンフロー法、スピンコート法、エアースプレー法、エアーレススプレー法、浸漬引き上げ法などが含まれる。化成処理液の乾燥条件は、化成処理液の組成などに応じて適宜設定すればよい。たとえば、化成処理液を塗布した基材を水洗することなく乾燥オーブン内に投入し、到達板温が80~250℃の範囲内となるように加熱することで、基材の表面に均一な化成処理皮膜を形成することができる。また、下塗り塗膜をさらに形成する場合、下塗り塗膜は、化成処理皮膜の表面に下塗り塗料を塗布し、乾燥させることで形成されうる。下塗り塗料の塗布方法は、化成処理液の塗布方法と同じ方法を使用することができる。下塗り塗膜の乾燥条件は、樹脂の種類などに応じて適宜設定すればよい。たとえば、到達板温が150~250℃の範囲内となるように加熱することで、化成処理皮膜の表面に均一な下塗り塗膜を形成することができる。
In the step of preparing the base material, the aforementioned metal base material or ceramic base material is prepared. In addition, you may form a chemical conversion treatment film and undercoat on the prepared base material. When forming a chemical conversion treatment film on the surface of a base material, a chemical conversion treatment film can be formed by applying a chemical conversion treatment liquid on the surface of a base material, and making it dry. The method for applying the chemical conversion liquid is not particularly limited, and may be appropriately selected from known methods. Examples of such a coating method include a roll coating method, a curtain flow method, a spin coating method, an air spray method, an airless spray method, and a dip pulling method. What is necessary is just to set suitably the drying conditions of a chemical conversion liquid according to the composition of a chemical conversion liquid, etc. For example, the base material coated with the chemical conversion treatment solution is put into a drying oven without being washed with water, and heated so that the ultimate plate temperature is in the range of 80 to 250 ° C., thereby forming a uniform chemical conversion on the surface of the base material. A treatment film can be formed. Moreover, when forming an undercoat coating film further, an undercoat coating film can be formed by apply | coating undercoat paint to the surface of a chemical conversion treatment film, and making it dry. As the method for applying the undercoat paint, the same method as the method for applying the chemical conversion treatment liquid can be used. What is necessary is just to set suitably the drying conditions of an under_coat_film according to the kind etc. of resin. For example, a uniform undercoat film can be formed on the surface of the chemical conversion film by heating so that the ultimate plate temperature is in the range of 150 to 250 ° C.
基材の上にインキ受理層を形成する工程では、基材(または化成処理皮膜もしくは下塗り塗膜)の表面に、前述の樹脂組成物を塗布し、乾燥(または硬化)させることでインキ受理層を形成する。樹脂組成物の塗布方法は、特に限定されず、公知の方法から適宜選択すればよい。そのような塗布方法の例には、ロールコート法やカーテンフロー法、スピンコート法、エアースプレー法、エアーレススプレー法、浸漬引き上げ法などが含まれる。樹脂組成物の乾燥条件は、特に限定されない。たとえば、樹脂組成物を塗布した基材を到達板温が150~250℃の範囲内となるように乾燥させることで、基材(または化成処理皮膜もしくは下塗り塗膜)の表面にインキ受理層を形成することができる。
In the step of forming the ink receiving layer on the base material, the ink receiving layer is formed by applying the above-mentioned resin composition to the surface of the base material (or chemical conversion coating or undercoat coating) and drying (or curing) it. Form. The application method of the resin composition is not particularly limited, and may be appropriately selected from known methods. Examples of such a coating method include a roll coating method, a curtain flow method, a spin coating method, an air spray method, an airless spray method, and a dip pulling method. The drying conditions for the resin composition are not particularly limited. For example, by drying the base material coated with the resin composition so that the ultimate plate temperature is in the range of 150 to 250 ° C., the ink receiving layer is formed on the surface of the base material (or chemical conversion coating or undercoat coating film). Can be formed.
インキ受理層の表面には、JIS B 0601に準拠して測定した算術平均粗さRaが400~3000nmの範囲内の凹凸を、ナノインプリント法や、ショットピーニング法などによって形成してもよい。
On the surface of the ink receiving layer, irregularities having an arithmetic average roughness Ra measured in accordance with JIS B B0601 in the range of 400 to 3000 nm may be formed by a nanoimprint method or a shot peening method.
インキ受理層の上にインキ層を形成する工程では、インキ受理層の表面に、インクジェットプリンターを用いて、前述の活性光線硬化型カチオン重合性インキをインクジェット印刷した後、積算光量が100~800mJ/cm2の範囲内となるように活性光線(例えば紫外線)を照射して、活性光線硬化型カチオン重合性インキを硬化させる。前述したように、活性光線硬化型カチオン重合性インキは、カチオン重合性化合物と、0.5~10.0質量%のエポキシ基含有シランカップリング剤と、10~50質量%のヒドロキシル基含有オキセタン化合物と、光重合開始剤とを含む。紫外線の積算光量は、紫外線照度計・光量計(UV-351-25;株式会社オーク製作所)を用いて、測定波長域;240~275nm、測定波長中心;254nmで測定することができる。
In the step of forming the ink layer on the ink receiving layer, the above-mentioned actinic ray curable cationic polymerizable ink is ink jet printed on the surface of the ink receiving layer using an ink jet printer, and the integrated light quantity is 100 to 800 mJ / Actinic rays (for example, ultraviolet rays) are irradiated so as to be in the range of cm 2 to cure the actinic ray curable cationic polymerizable ink. As described above, the actinic ray curable cationic polymerizable ink includes a cationic polymerizable compound, 0.5 to 10.0% by mass of an epoxy group-containing silane coupling agent, and 10 to 50% by mass of a hydroxyl group-containing oxetane. A compound and a photopolymerization initiator. The total amount of ultraviolet light can be measured using a UV illuminometer / light meter (UV-351-25; Oak Manufacturing Co., Ltd.) in a measurement wavelength range: 240 to 275 nm, a measurement wavelength center: 254 nm.
ここで、本発明者らは、活性光線硬化型カチオン重合性インキを硬化させる環境のパラメータを検討した。その結果、本発明者らは、活性光線硬化型カチオン重合性インキを適切に硬化させるためには、活性光線硬化型カチオン重合性インキを硬化させるときの周囲の絶対湿度および気温の関係が重要であることを見出した。具体的には、インキ受理層に塗布された活性光線硬化型カチオン重合性インキを硬化させるために、活性光線硬化型カチオン重合性インキに活性光線(紫外線)を照射している間の絶対湿度VH(g/m3)および気温T(℃)は、以下の式(1)および式(2)を満たす必要がある。
6×VH-103≦T≦10×VH-5 …(1)
15≦T≦40 …(2) Here, the present inventors examined environmental parameters for curing the actinic ray curable cationic polymerizable ink. As a result, in order to properly cure the actinic radiation curable cationic polymerizable ink, the present inventors have important relationships between the ambient absolute humidity and temperature when curing the actinic radiation curable cationic polymerizable ink. I found out. Specifically, in order to cure the actinic ray curable cationic polymerizable ink applied to the ink receiving layer, the absolute humidity VH during irradiation of the actinic ray curable cationic polymerizable ink with actinic rays (ultraviolet rays) is used. (G / m 3 ) and temperature T (° C.) must satisfy the following formulas (1) and (2).
6 × VH−103 ≦ T ≦ 10 × VH-5 (1)
15 ≦ T ≦ 40 (2)
6×VH-103≦T≦10×VH-5 …(1)
15≦T≦40 …(2) Here, the present inventors examined environmental parameters for curing the actinic ray curable cationic polymerizable ink. As a result, in order to properly cure the actinic radiation curable cationic polymerizable ink, the present inventors have important relationships between the ambient absolute humidity and temperature when curing the actinic radiation curable cationic polymerizable ink. I found out. Specifically, in order to cure the actinic ray curable cationic polymerizable ink applied to the ink receiving layer, the absolute humidity VH during irradiation of the actinic ray curable cationic polymerizable ink with actinic rays (ultraviolet rays) is used. (G / m 3 ) and temperature T (° C.) must satisfy the following formulas (1) and (2).
6 × VH−103 ≦ T ≦ 10 × VH-5 (1)
15 ≦ T ≦ 40 (2)
絶対湿度および気温が式(1)を満たさない場合、活性光線硬化型カチオン重合性インキが適切に硬化しないばかりでなく、活性光線硬化型カチオン重合性インキがインキ受理層に密着しないおそれがある。
When the absolute humidity and temperature do not satisfy the formula (1), the actinic ray curable cationic polymerizable ink may not be properly cured, and the actinic ray curable cationic polymerizable ink may not adhere to the ink receiving layer.
絶対湿度VH(g/m3)および気温T(℃)が式(1)および式(2)を満たすように制御する方法は、特に限定されない。活性光線を照射する領域の雰囲気を一定に維持できるように囲った上で、絶対湿度および気温(温度)を制御することが好ましい。例えば、気温の制御は、エアーコンディショナーで行ってもよい。絶対湿度が高い場合の湿度制御は、除湿器で除湿することにより行ってもよい。また、絶対湿度が低い場合の湿度制御は、加湿器で加湿することにより行ってもよい。
A method for controlling the absolute humidity VH (g / m 3 ) and the temperature T (° C.) to satisfy the expressions (1) and (2) is not particularly limited. It is preferable to control the absolute humidity and temperature (temperature) after enclosing the atmosphere in the region irradiated with actinic rays so that the atmosphere can be kept constant. For example, the air temperature may be controlled by an air conditioner. The humidity control when the absolute humidity is high may be performed by dehumidifying with a dehumidifier. The humidity control when the absolute humidity is low may be performed by humidifying with a humidifier.
また、活性光線硬化型カチオン重合性インキに活性光線を照射している間の絶対湿度VH(g/m3)は、さらに以下の式(3)を満たすことが好ましい。
4.2≦VH≦19.8 …(3) Moreover, it is preferable that the absolute humidity VH (g / m 3 ) during irradiation of the actinic ray to the actinic ray curable cationic polymerizable ink further satisfies the following formula (3).
4.2 ≦ VH ≦ 19.8 (3)
4.2≦VH≦19.8 …(3) Moreover, it is preferable that the absolute humidity VH (g / m 3 ) during irradiation of the actinic ray to the actinic ray curable cationic polymerizable ink further satisfies the following formula (3).
4.2 ≦ VH ≦ 19.8 (3)
活性光線照射時の絶対湿度VHが4.2~19.8g/m3の範囲内であれば、インキ層の密着性およびインキ層の硬化性が特に優れる(実施例参照)。
When the absolute humidity VH upon irradiation with actinic rays is in the range of 4.2 to 19.8 g / m 3 , the adhesion of the ink layer and the curability of the ink layer are particularly excellent (see Examples).
インキ受理層の上にインキ層を形成する工程では、活性光線を照射した後に、所定の温度で活性光線硬化型カチオン重合性インキを加熱してもよい。活性光線硬化型カチオン重合性インキは、活性光線の照射と熱処理の両方で重合が進行しやすくなる。特に、活性光線の照射時の絶対湿度が10g/m3以上の場合には、活性光線の照射後のインキの硬化が不十分である場合があることから、活性光線の照射後に熱処理を行うことが好ましい。印刷材を活性光線照射装置から熱処理装置に搬送する間の湿度の影響を少なくする観点からは、活性光線の照射の終了から熱処理の開始までの間隔は、2分以内であることが好ましく、1分以内であることがより好ましい。活性光線の照射から熱処理までの間隔が2分超の場合、その間にインキ層が空気中の水分を吸収して反応活性が失われることから、熱処理しても十分にインキ層が硬化しないおそれがある。活性光線の照射時の絶対湿度が高いほど、活性光線の照射の終了から熱処理の開始までの間隔は短くする必要があり、活性光線の照射の終了から熱処理の開始までの間隔は、30秒以内がさらに好ましい。
In the step of forming the ink layer on the ink receiving layer, the actinic ray curable cationic polymerizable ink may be heated at a predetermined temperature after irradiation with actinic rays. The actinic ray curable cationic polymerizable ink is easily polymerized by both actinic ray irradiation and heat treatment. In particular, when the absolute humidity upon irradiation with actinic rays is 10 g / m 3 or more, the ink may be insufficiently cured after irradiation with actinic rays, so heat treatment is performed after irradiation with actinic rays. Is preferred. From the viewpoint of reducing the influence of humidity during the conveyance of the printing material from the actinic ray irradiation device to the heat treatment device, the interval from the end of the actinic ray irradiation to the start of the heat treatment is preferably within 2 minutes. More preferably, it is within minutes. If the interval between irradiation of actinic rays and heat treatment is more than 2 minutes, the ink layer absorbs moisture in the air and the reaction activity is lost, so that the ink layer may not be cured sufficiently even after heat treatment. is there. The higher the absolute humidity during irradiation with actinic rays, the shorter the interval from the end of irradiation with actinic rays to the start of heat treatment, and the interval between the end of irradiation with actinic rays and the start of heat treatment is within 30 seconds. Is more preferable.
また、活性光線照射後の熱処理の温度は、50℃以上であることが好ましい。たとえば、絶対湿度が10g/m3以上の条件において活性光線を照射した場合、熱処理の温度が50℃未満であると、熱処理をしたとしてもインキ層の硬化が不十分となるおそれがある。したがって、絶対湿度が10g/m3以上の条件において活性光線を照射した場合、熱処理の温度は、60℃以上がより好ましく、70℃以上がさらに好ましい。特に、金属系基材は、窯業系基材と比較して熱膨張係数が大きいため、150℃以上に加熱すると、熱歪によって製品形状に不具合が発生するおそれがある。特に、この不具合は、アルミニウム系の金属系基材において顕著である。また、窯業系基材は、金属系基材と比較して基材中に気泡等を含む場合が多いため、150℃以上に加熱すると、熱伝導度が低くなり、基材の温度が下がりにくい。インキ受理層は、樹脂組成物であるため、長時間150℃以上に保持されると熱劣化して、色調変化、密着性低下などの問題が発生する可能性が高くなる。
Moreover, it is preferable that the temperature of the heat processing after actinic ray irradiation is 50 degreeC or more. For example, when the absolute humidity is irradiated with active light rays in 10 g / m 3 or more conditions, the temperature of the heat treatment is lower than 50 ° C., the curing of the ink layer even if the heat treatment may be insufficient. Therefore, when actinic rays are irradiated under conditions where the absolute humidity is 10 g / m 3 or more, the temperature of the heat treatment is more preferably 60 ° C. or more, and further preferably 70 ° C. or more. In particular, since the metal base material has a larger coefficient of thermal expansion than the ceramic base material, when it is heated to 150 ° C. or higher, there is a possibility that a defect may occur in the product shape due to thermal strain. In particular, this problem is remarkable in an aluminum-based metal substrate. In addition, ceramic base materials often contain bubbles or the like in the base material compared to metal base materials, so when heated to 150 ° C. or higher, the thermal conductivity becomes low and the temperature of the base material is unlikely to decrease. . Since the ink receiving layer is a resin composition, when it is kept at 150 ° C. or higher for a long time, there is a high possibility that problems such as a change in color tone and a decrease in adhesion occur due to thermal degradation.
このように活性光線照射後に熱処理を行う場合、活性光線硬化型カチオン重合性インキに活性光線を照射している間の絶対湿度VH(g/m3)は、さらに以下の式(4)を満たすことが特に好ましい。
4.5≦VH≦9.9 …(4) Thus, when heat processing is performed after actinic light irradiation, absolute humidity VH (g / m < 3 >) during actinic light irradiation to actinic-light-curable cationic polymerizable ink further satisfy | fills the following formula | equation (4). It is particularly preferred.
4.5 ≦ VH ≦ 9.9 (4)
4.5≦VH≦9.9 …(4) Thus, when heat processing is performed after actinic light irradiation, absolute humidity VH (g / m < 3 >) during actinic light irradiation to actinic-light-curable cationic polymerizable ink further satisfy | fills the following formula | equation (4). It is particularly preferred.
4.5 ≦ VH ≦ 9.9 (4)
活性光線照射時の絶対湿度VHが4.5~9.9g/m3の範囲内であって、かつ活性光線照射後に熱処理を行えば、インキ層の密着性およびインキ層の硬化性がさらに優れる(実施例参照)。
If the absolute humidity VH upon irradiation with actinic rays is in the range of 4.5 to 9.9 g / m 3 and heat treatment is performed after irradiation with actinic rays, the adhesion of the ink layer and the curability of the ink layer are further improved. (See Examples).
温度および絶対湿度を測定および調整する工程では、活性光線硬化型カチオン重合性インキを硬化させる環境の温度および絶対湿度を測定し、かつ温度および絶対湿度が上記式(1)および式(2)を満たすように調整する。例えば、気温の制御は、エアーコンディショナーで行ってもよい。絶対湿度が高い場合の湿度制御は、除湿器で除湿することにより行ってもよい。また、絶対湿度が低い場合の湿度制御は、加湿器で加湿することにより行ってもよい。
In the step of measuring and adjusting the temperature and absolute humidity, the temperature and absolute humidity of the environment for curing the actinic ray curable cationic polymerizable ink are measured, and the temperature and absolute humidity are expressed by the above formulas (1) and (2). Adjust to meet. For example, the air temperature may be controlled by an air conditioner. The humidity control when the absolute humidity is high may be performed by dehumidifying with a dehumidifier. The humidity control when the absolute humidity is low may be performed by humidifying with a humidifier.
オーバーコート層を形成する工程では、オーバーコート層を形成する。オーバーコート層は、オーバーコート塗料をインキ層の表面に塗布し、乾燥(または硬化)させることで形成される。オーバーコート塗料の塗布方法は、特に限定されず、公知の方法から適宜選択すればよい。そのような塗布方法の例には、ロールコート法やカーテンフロー法、スピンコート法、エアースプレー法、エアーレススプレー法、浸漬引き上げ法などが含まれる。オーバーコート塗料の乾燥条件は、特に限定されない。たとえば、オーバーコート塗料を塗布した印刷材を到達板温が60~150℃の範囲内となるように乾燥させることで、印刷材の表面にオーバーコート層を形成することができる。
In the step of forming the overcoat layer, the overcoat layer is formed. The overcoat layer is formed by applying an overcoat paint to the surface of the ink layer and drying (or curing). The method for applying the overcoat paint is not particularly limited, and may be appropriately selected from known methods. Examples of such a coating method include a roll coating method, a curtain flow method, a spin coating method, an air spray method, an airless spray method, and a dip pulling method. The drying conditions for the overcoat paint are not particularly limited. For example, the overcoat layer can be formed on the surface of the printing material by drying the printing material coated with the overcoat paint so that the ultimate plate temperature is in the range of 60 to 150 ° C.
以上のように、本発明の印刷材の製造方法の特徴は、エポキシ基含有シランカップリング剤およびヒドロキシル基含有オキセタン化合物を所定量含む活性光線硬化型カチオン重合性インキを用い、絶対湿度および気温を制御された環境で活性光線を照射して活性光線硬化型カチオン重合性インキを硬化することである。このとき、絶対湿度(VH)および気温(T)が6×VH-103≦T≦10×VH-5および15≦T≦40を満たすように制御されているため、本発明の印刷材の製造方法によって製造される印刷材は、活性光線硬化型カチオン重合性インキが適切に硬化するとともに、インキ受理層に対するインキ層の密着性に優れる。
As described above, the printing method of the present invention is characterized by using an actinic ray curable cationic polymerizable ink containing a predetermined amount of an epoxy group-containing silane coupling agent and a hydroxyl group-containing oxetane compound, and adjusting the absolute humidity and temperature. Actinic light is irradiated in a controlled environment to cure the actinic ray curable cationic polymerizable ink. At this time, since the absolute humidity (VH) and temperature (T) are controlled to satisfy 6 × VH−103 ≦ T ≦ 10 × VH-5 and 15 ≦ T ≦ 40, the production of the printing material of the present invention is performed. The printing material produced by the method is excellent in the adhesion of the ink layer to the ink receiving layer while the actinic ray curable cationic polymerizable ink is appropriately cured.
以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
[実施例1]
1.印刷材の作製
(1)基材
塗装原板として、板厚が0.27mm、片面当たりのめっき付着量が90g/m2の溶融Zn-55%Al合金めっき鋼板を準備した。アルカリ脱脂した塗装原板の表面に塗布型クロメート処理液(NRC300NS;日本ペイント株式会社)を塗布し、全クロム換算付着量が50mg/m2の化成処理皮膜を形成した。次いで、ポリエステル系プライマー塗料(700P;日本ファインコーティングス株式会社)を、バーコーターを用いて化成処理皮膜の上に塗布し、到達板温215℃で焼き付けて、乾燥膜厚5μmの下塗り塗膜を形成した。 [Example 1]
1. Preparation of printing material (1) Substrate As a coating original plate, a molten Zn-55% Al alloy plated steel plate having a plate thickness of 0.27 mm and a coating adhesion amount per side of 90 g / m 2 was prepared. A coating-type chromate treatment liquid (NRC300NS; Nippon Paint Co., Ltd.) was applied to the surface of the alkali degreased coating original plate to form a chemical conversion treatment film having a total chromium equivalent adhesion amount of 50 mg / m 2 . Next, a polyester primer coating (700P; Nippon Fine Coatings Co., Ltd.) is applied onto the chemical conversion film using a bar coater and baked at a final plate temperature of 215 ° C. to form an undercoat film having a dry film thickness of 5 μm. Formed.
1.印刷材の作製
(1)基材
塗装原板として、板厚が0.27mm、片面当たりのめっき付着量が90g/m2の溶融Zn-55%Al合金めっき鋼板を準備した。アルカリ脱脂した塗装原板の表面に塗布型クロメート処理液(NRC300NS;日本ペイント株式会社)を塗布し、全クロム換算付着量が50mg/m2の化成処理皮膜を形成した。次いで、ポリエステル系プライマー塗料(700P;日本ファインコーティングス株式会社)を、バーコーターを用いて化成処理皮膜の上に塗布し、到達板温215℃で焼き付けて、乾燥膜厚5μmの下塗り塗膜を形成した。 [Example 1]
1. Preparation of printing material (1) Substrate As a coating original plate, a molten Zn-55% Al alloy plated steel plate having a plate thickness of 0.27 mm and a coating adhesion amount per side of 90 g / m 2 was prepared. A coating-type chromate treatment liquid (NRC300NS; Nippon Paint Co., Ltd.) was applied to the surface of the alkali degreased coating original plate to form a chemical conversion treatment film having a total chromium equivalent adhesion amount of 50 mg / m 2 . Next, a polyester primer coating (700P; Nippon Fine Coatings Co., Ltd.) is applied onto the chemical conversion film using a bar coater and baked at a final plate temperature of 215 ° C. to form an undercoat film having a dry film thickness of 5 μm. Formed.
(2)インキ受理層
次いで、インキ受理層を形成するための樹脂組成物を、バーコーターを用いて下塗り塗膜の上に塗布し、到達板温225℃で1分間焼き付けることで、乾燥膜厚20μmのインキ受理層を形成した。樹脂組成物(白色塗料)は、ポリエステル(数平均分子量5000、ガラス転移温度30℃、水酸基価28mgKOH/g;DIC株式会社)と、架橋剤としてのメチル化メラミン樹脂(サイメル303;三井サイテック株式会社)とを70:30で混合して得られたベース樹脂に、さらに触媒、アミンおよび着色顔料を配合することで調製した。触媒としては、ドデシルベンゼンスルフォン酸を樹脂固形分に対して1質量%添加した。また、アミンとしては、ジメチルアミノエタノールを、ドデシルベンゼンスルフォン酸の酸等量に対してアミン等量として1.25倍の量を加えた。着色顔料としては、平均粒径0.28μmの酸化チタン(JR-603;テイカ株式会社)を樹脂固形分に対して45質量%添加した。 (2) Ink Receiving Layer Next, the resin composition for forming the ink receiving layer is applied onto the undercoat film using a bar coater, and baked at a final plate temperature of 225 ° C. for 1 minute to obtain a dry film thickness. A 20 μm ink receiving layer was formed. The resin composition (white paint) consists of polyester (number average molecular weight 5000,glass transition temperature 30 ° C., hydroxyl value 28 mg KOH / g; DIC Corporation) and methylated melamine resin (Cymel 303; Mitsui Cytec Corporation) as a crosslinking agent. And a base resin obtained by mixing at 70:30 with a catalyst, an amine and a color pigment. As a catalyst, 1% by mass of dodecylbenzenesulfonic acid was added to the resin solid content. As an amine, dimethylaminoethanol was added in an amount equivalent to 1.25 times as an amine equivalent to an acid equivalent of dodecylbenzenesulfonic acid. As the color pigment, titanium oxide (JR-603; Teika Co., Ltd.) having an average particle size of 0.28 μm was added in an amount of 45 mass% based on the resin solid content.
次いで、インキ受理層を形成するための樹脂組成物を、バーコーターを用いて下塗り塗膜の上に塗布し、到達板温225℃で1分間焼き付けることで、乾燥膜厚20μmのインキ受理層を形成した。樹脂組成物(白色塗料)は、ポリエステル(数平均分子量5000、ガラス転移温度30℃、水酸基価28mgKOH/g;DIC株式会社)と、架橋剤としてのメチル化メラミン樹脂(サイメル303;三井サイテック株式会社)とを70:30で混合して得られたベース樹脂に、さらに触媒、アミンおよび着色顔料を配合することで調製した。触媒としては、ドデシルベンゼンスルフォン酸を樹脂固形分に対して1質量%添加した。また、アミンとしては、ジメチルアミノエタノールを、ドデシルベンゼンスルフォン酸の酸等量に対してアミン等量として1.25倍の量を加えた。着色顔料としては、平均粒径0.28μmの酸化チタン(JR-603;テイカ株式会社)を樹脂固形分に対して45質量%添加した。 (2) Ink Receiving Layer Next, the resin composition for forming the ink receiving layer is applied onto the undercoat film using a bar coater, and baked at a final plate temperature of 225 ° C. for 1 minute to obtain a dry film thickness. A 20 μm ink receiving layer was formed. The resin composition (white paint) consists of polyester (number average molecular weight 5000,
(3)インキ層
A.活性光線硬化型カチオン重合性インキの調製
ガラス瓶に、エポキシ化合物(CEL2021P、CEL3000; 株式会社ダイセル)合計10質量%、オキセタン化合物(OXT-221、OXT-212;東亜合成株式会社)合計35.5質量%、エポキシ基含有シランカップリング剤(KBM-403;信越化学工業株式会社)5.0質量%、ヒドロキシル基含有オキセタン化合物(OXT-101;東亜合成株式会社)25.0質量%、黒色顔料(チャンネルブラック RCF♯33;三菱化学株式会社)3.0質量部、顔料分散剤(PB822;味の素ファインテクノ株式会社)3.5質量%との混合物およびジルコニアビーズ(直径1mm)200gを入れて密栓した。次いで、ペイントシェーカーで4時間分散処理した。分散処理後、ジルコニアビーズを除去して顔料分散体を調製した。顔料分散体に、光カチオン重合開始剤(CPI-100P;サンアプロ株式会社)18質量%を混合して、活性光線硬化型カチオン重合性インキを調製した。 (3) Ink layer Preparation of actinic ray curable cationicpolymerizable ink Total 10 mass% of epoxy compounds (CEL2021P, CEL3000; Daicel Corporation) and 35.5 masses of oxetane compounds (OXT-221, OXT-212; Toagosei Co., Ltd.) in a glass bottle %, Epoxy group-containing silane coupling agent (KBM-403; Shin-Etsu Chemical Co., Ltd.) 5.0 mass%, hydroxyl group-containing oxetane compound (OXT-101; Toagosei Co., Ltd.) 25.0 mass%, black pigment ( Channel black RCF # 33; Mitsubishi Chemical Co., Ltd.) 3.0 parts by mass, pigment dispersant (PB822; Ajinomoto Fine Techno Co., Ltd.) 3.5% by mass and 200 g of zirconia beads (diameter 1 mm) were placed and sealed. . Next, dispersion treatment was performed for 4 hours using a paint shaker. After the dispersion treatment, zirconia beads were removed to prepare a pigment dispersion. Actinic ray curable cationic polymerizable ink was prepared by mixing 18% by mass of a cationic photopolymerization initiator (CPI-100P; San Apro Co., Ltd.) with the pigment dispersion.
A.活性光線硬化型カチオン重合性インキの調製
ガラス瓶に、エポキシ化合物(CEL2021P、CEL3000; 株式会社ダイセル)合計10質量%、オキセタン化合物(OXT-221、OXT-212;東亜合成株式会社)合計35.5質量%、エポキシ基含有シランカップリング剤(KBM-403;信越化学工業株式会社)5.0質量%、ヒドロキシル基含有オキセタン化合物(OXT-101;東亜合成株式会社)25.0質量%、黒色顔料(チャンネルブラック RCF♯33;三菱化学株式会社)3.0質量部、顔料分散剤(PB822;味の素ファインテクノ株式会社)3.5質量%との混合物およびジルコニアビーズ(直径1mm)200gを入れて密栓した。次いで、ペイントシェーカーで4時間分散処理した。分散処理後、ジルコニアビーズを除去して顔料分散体を調製した。顔料分散体に、光カチオン重合開始剤(CPI-100P;サンアプロ株式会社)18質量%を混合して、活性光線硬化型カチオン重合性インキを調製した。 (3) Ink layer Preparation of actinic ray curable cationic
B.インクジェット印刷
インクジェット印刷は、ノズル径が35μmのインクジェットヘッドを使用した。また、インクジェット印刷時のヘッド加熱温度は45℃、印加電圧は11.5V、パルス幅は10.0μs、駆動周波数は3483Hz、インキ滴の体積は42pl、解像度は360dpiでインキ塗布量:8.4g/m2(インキ層が隙間なく形成されるべき量)となるように印刷した。 B. Inkjet printing Inkjet printing used an inkjet head having a nozzle diameter of 35 μm. In addition, the head heating temperature during ink jet printing is 45 ° C., the applied voltage is 11.5 V, the pulse width is 10.0 μs, the drive frequency is 3483 Hz, the ink droplet volume is 42 pl, the resolution is 360 dpi, and the ink application amount is 8.4 g. It printed so that it might become / m < 2 > (amount that an ink layer should be formed without a gap).
インクジェット印刷は、ノズル径が35μmのインクジェットヘッドを使用した。また、インクジェット印刷時のヘッド加熱温度は45℃、印加電圧は11.5V、パルス幅は10.0μs、駆動周波数は3483Hz、インキ滴の体積は42pl、解像度は360dpiでインキ塗布量:8.4g/m2(インキ層が隙間なく形成されるべき量)となるように印刷した。 B. Inkjet printing Inkjet printing used an inkjet head having a nozzle diameter of 35 μm. In addition, the head heating temperature during ink jet printing is 45 ° C., the applied voltage is 11.5 V, the pulse width is 10.0 μs, the drive frequency is 3483 Hz, the ink droplet volume is 42 pl, the resolution is 360 dpi, and the ink application amount is 8.4 g. It printed so that it might become / m < 2 > (amount that an ink layer should be formed without a gap).
C.紫外線照射
インクジェット印刷後の塗装材に対して、高圧水銀ランプ(Hバルブ;フュージョンUVシステムズ・ジャパン株式会社)を用いて、200W/cmのランプ出力で、積算光量:600mJ/cm2(赤外線光量計UV-351-25;株式会社オーク製作所で測定)となるように、紫外線を照射した。インクジェット印刷後、紫外線を照射している間の塗装材の周囲の温度(気温)および湿度を適宜調整した。 C. UV irradiation For coating materials after inkjet printing, using a high-pressure mercury lamp (H bulb; Fusion UV Systems Japan Co., Ltd.), with a lamp output of 200 W / cm, integrated light amount: 600 mJ / cm 2 (infrared light meter) UV-351-25; measured by Oak Manufacturing Co., Ltd.). After inkjet printing, the ambient temperature (air temperature) and humidity of the coating material were adjusted as appropriate during irradiation with ultraviolet rays.
インクジェット印刷後の塗装材に対して、高圧水銀ランプ(Hバルブ;フュージョンUVシステムズ・ジャパン株式会社)を用いて、200W/cmのランプ出力で、積算光量:600mJ/cm2(赤外線光量計UV-351-25;株式会社オーク製作所で測定)となるように、紫外線を照射した。インクジェット印刷後、紫外線を照射している間の塗装材の周囲の温度(気温)および湿度を適宜調整した。 C. UV irradiation For coating materials after inkjet printing, using a high-pressure mercury lamp (H bulb; Fusion UV Systems Japan Co., Ltd.), with a lamp output of 200 W / cm, integrated light amount: 600 mJ / cm 2 (infrared light meter) UV-351-25; measured by Oak Manufacturing Co., Ltd.). After inkjet printing, the ambient temperature (air temperature) and humidity of the coating material were adjusted as appropriate during irradiation with ultraviolet rays.
気温の制御は、エアーコンディショナーを用いて行った。湿度の制御は、デシカント除湿機(ドライセーブ(登録商標)R-060BP型;株式会社西部技研)で除湿するか、またはPTC蒸気加湿器(ヒュミダス;ユーキャン株式会社)で加湿することで行った。気温および湿度の測定は、温度湿度プローブHMP46を取り付けた湿度指示計HMI41(ヴァイサラ株式会社)を用いて行った。
The temperature was controlled using an air conditioner. The humidity was controlled by dehumidifying with a desiccant dehumidifier (dry save (registered trademark) R-060BP type; Seibu Giken Co., Ltd.) or by humidifying with a PTC steam humidifier (Humidas; Yucan Co., Ltd.). The temperature and humidity were measured using a humidity indicator HMI41 (Vaisala Co., Ltd.) equipped with a temperature / humidity probe HMP46.
また、必要に応じて、紫外線の照射を終了してから約20秒後に、自動排出型乾燥機(AT0-101型;株式会社東上熱学)を使用して70℃の炉温で5分間、後加熱処理を行った。
In addition, if necessary, about 20 seconds after the end of the ultraviolet irradiation, using an automatic discharge dryer (AT0-101 type; Tojo Thermal Co., Ltd.) at a furnace temperature of 70 ° C. for 5 minutes, Post-heat treatment was performed.
2.インキ層の評価
(1)密着性の評価
印刷材に対して、JIS K5600-5-6に準拠した碁盤目試験を実施した。具体的には、印刷材の表面に、1mm間隔で100個のマス目ができるように基盤目状の切り込みを入れ、当該部分にテープを貼り付けた。テープ剥離後、インキ層の残存率を観察した。インキ層の剥離面積が0%のものを「◎」と評価し、剥離面積が0%超かつ10%以内であったものを「○」と評価し、剥離面積が10%超かつ20%以内であったものを「△」と評価し、剥離面積が20%を超えたものを「×」として評価した。UVインキ層の密着性の評価が△以上であれば実用可能である。 2. Evaluation of ink layer (1) Evaluation of adhesion A cross-cut test based on JIS K5600-5-6 was performed on the printing material. Specifically, a base-like cut was made on the surface of the printing material so that 100 squares were formed at 1 mm intervals, and a tape was attached to the portion. After the tape was peeled off, the residual ratio of the ink layer was observed. When the peeled area of the ink layer is 0%, it is evaluated as “◎”, and when the peeled area is more than 0% and within 10%, it is evaluated as “◯”, and the peeled area is more than 10% and within 20%. Were evaluated as “Δ”, and those with a peeled area exceeding 20% were evaluated as “x”. If the evaluation of the adhesion of the UV ink layer is Δ or more, it is practical.
(1)密着性の評価
印刷材に対して、JIS K5600-5-6に準拠した碁盤目試験を実施した。具体的には、印刷材の表面に、1mm間隔で100個のマス目ができるように基盤目状の切り込みを入れ、当該部分にテープを貼り付けた。テープ剥離後、インキ層の残存率を観察した。インキ層の剥離面積が0%のものを「◎」と評価し、剥離面積が0%超かつ10%以内であったものを「○」と評価し、剥離面積が10%超かつ20%以内であったものを「△」と評価し、剥離面積が20%を超えたものを「×」として評価した。UVインキ層の密着性の評価が△以上であれば実用可能である。 2. Evaluation of ink layer (1) Evaluation of adhesion A cross-cut test based on JIS K5600-5-6 was performed on the printing material. Specifically, a base-like cut was made on the surface of the printing material so that 100 squares were formed at 1 mm intervals, and a tape was attached to the portion. After the tape was peeled off, the residual ratio of the ink layer was observed. When the peeled area of the ink layer is 0%, it is evaluated as “◎”, and when the peeled area is more than 0% and within 10%, it is evaluated as “◯”, and the peeled area is more than 10% and within 20%. Were evaluated as “Δ”, and those with a peeled area exceeding 20% were evaluated as “x”. If the evaluation of the adhesion of the UV ink layer is Δ or more, it is practical.
(2)硬化性の評価
印刷材に対して、99%エタノール溶液を含有させた1cm×1cmの脱脂綿で500gの荷重をかけてUVインキ層を100回往復で擦り、UVインキ層の外観を目視により評価した。UVインキ層の外観に変化が認められないものを「◎」と評価し、艶引けが認められるものを「○」と評価し、UVインキ層が素地まで溶解し、素地の露出面積が0%超であって20%以内であったものを「△」と評価し、素地の露出が20%超であったものを「×」として評価した。UVインキ層の密着性の評価が△以上であれば実用可能である。 (2) Evaluation of curability The UV ink layer was rubbed 100 times with 1 cm × 1 cm absorbent cotton containing 99% ethanol solution against the printing material, and the appearance of the UV ink layer was visually observed. It was evaluated by. If the appearance of the UV ink layer does not change, it is evaluated as “◎”, and if it is glossy, it is evaluated as “○”. The UV ink layer dissolves to the substrate, and the exposed area of the substrate is 0%. Those exceeding 20% and less than 20% were evaluated as “Δ”, and those having a substrate exposure exceeding 20% were evaluated as “x”. If the evaluation of the adhesion of the UV ink layer is Δ or more, it is practical.
印刷材に対して、99%エタノール溶液を含有させた1cm×1cmの脱脂綿で500gの荷重をかけてUVインキ層を100回往復で擦り、UVインキ層の外観を目視により評価した。UVインキ層の外観に変化が認められないものを「◎」と評価し、艶引けが認められるものを「○」と評価し、UVインキ層が素地まで溶解し、素地の露出面積が0%超であって20%以内であったものを「△」と評価し、素地の露出が20%超であったものを「×」として評価した。UVインキ層の密着性の評価が△以上であれば実用可能である。 (2) Evaluation of curability The UV ink layer was rubbed 100 times with 1 cm × 1 cm absorbent cotton containing 99% ethanol solution against the printing material, and the appearance of the UV ink layer was visually observed. It was evaluated by. If the appearance of the UV ink layer does not change, it is evaluated as “◎”, and if it is glossy, it is evaluated as “○”. The UV ink layer dissolves to the substrate, and the exposed area of the substrate is 0%. Those exceeding 20% and less than 20% were evaluated as “Δ”, and those having a substrate exposure exceeding 20% were evaluated as “x”. If the evaluation of the adhesion of the UV ink layer is Δ or more, it is practical.
(3)総合評価
インキ層の総合評価は、前述の密着性の評価および硬化性の評価の評価結果に基づいて行った。密着性および硬化性の評価で×があったものを「×」と評価し、密着性および硬化性の評価で×がなく△があったものを「△」と評価し、密着性および硬化性の評価で×および△がなく○があったものを「○」と評価し、密着性および硬化性の評価がいずれも◎であったものを「◎」と評価した。総合評価が△以上であれば実用可能である。 (3) Comprehensive evaluation Comprehensive evaluation of the ink layer was performed based on the evaluation result of the above-mentioned evaluation of adhesiveness and evaluation of curability. If the evaluation of adhesion and curability is x, the evaluation is "x", and if the evaluation of adhesion and curability is not x, the evaluation is "△". Adhesion and curability In the evaluation, the case where there was no X and Δ and there was ○ was evaluated as “◯”, and the case where both the adhesion and curability were evaluated as “◎” was evaluated as “◎”. If the overall evaluation is Δ or more, it is practical.
インキ層の総合評価は、前述の密着性の評価および硬化性の評価の評価結果に基づいて行った。密着性および硬化性の評価で×があったものを「×」と評価し、密着性および硬化性の評価で×がなく△があったものを「△」と評価し、密着性および硬化性の評価で×および△がなく○があったものを「○」と評価し、密着性および硬化性の評価がいずれも◎であったものを「◎」と評価した。総合評価が△以上であれば実用可能である。 (3) Comprehensive evaluation Comprehensive evaluation of the ink layer was performed based on the evaluation result of the above-mentioned evaluation of adhesiveness and evaluation of curability. If the evaluation of adhesion and curability is x, the evaluation is "x", and if the evaluation of adhesion and curability is not x, the evaluation is "△". Adhesion and curability In the evaluation, the case where there was no X and Δ and there was ○ was evaluated as “◯”, and the case where both the adhesion and curability were evaluated as “◎” was evaluated as “◎”. If the overall evaluation is Δ or more, it is practical.
(4)結果
図2は、表1の評価結果をプロットしたグラフであり、絶対湿度VHおよび気温Tとインクの密着性との関係を示すグラフである。図2のグラフにおいて、直線L1は、T=10VH-5を示しており、直線L2は、T=6VH-103を示している。また、直線L3は、T=40を示しており、直線L4は、T=15を示している。また、点線は、VH=4.2を示し、破線は、VH=4.5を示し、一点鎖線は、VH=19.8を示し、二点破線は、VH=9.9を示す。 (4) Results FIG. 2 is a graph in which the evaluation results in Table 1 are plotted, and is a graph showing the relationship between the absolute humidity VH and temperature T and the ink adhesion. In the graph of FIG. 2, the straight line L1 indicates T = 10VH-5, and the straight line L2 indicates T = 6VH-103. A straight line L3 indicates T = 40, and a straight line L4 indicates T = 15. Further, the dotted line indicates VH = 4.2, the broken line indicates VH = 4.5, the alternate long and short dash line indicates VH = 19.8, and the two-dot broken line indicates VH = 9.9.
図2は、表1の評価結果をプロットしたグラフであり、絶対湿度VHおよび気温Tとインクの密着性との関係を示すグラフである。図2のグラフにおいて、直線L1は、T=10VH-5を示しており、直線L2は、T=6VH-103を示している。また、直線L3は、T=40を示しており、直線L4は、T=15を示している。また、点線は、VH=4.2を示し、破線は、VH=4.5を示し、一点鎖線は、VH=19.8を示し、二点破線は、VH=9.9を示す。 (4) Results FIG. 2 is a graph in which the evaluation results in Table 1 are plotted, and is a graph showing the relationship between the absolute humidity VH and temperature T and the ink adhesion. In the graph of FIG. 2, the straight line L1 indicates T = 10VH-5, and the straight line L2 indicates T = 6VH-103. A straight line L3 indicates T = 40, and a straight line L4 indicates T = 15. Further, the dotted line indicates VH = 4.2, the broken line indicates VH = 4.5, the alternate long and short dash line indicates VH = 19.8, and the two-dot broken line indicates VH = 9.9.
図2に示されるように、紫外線を照射している間の絶対湿度VHと気温Tの関係がT<6VH-103、またはT>10VH-5であったNo.25~29の印刷材は、密着性および硬化性のいずれかが劣っていた。
As shown in FIG. 2, the relationship between absolute humidity VH and temperature T during irradiation with ultraviolet rays was T <6 VH-103 or T> 10 VH-5. The printing materials of 25 to 29 were inferior in either adhesion or curability.
一方、紫外線を照射している間の絶対湿度VHと気温Tの関係が6VH-103≦T≦10VH-5および15≦T≦40の条件を満たすNo.1~24の印刷材は、密着性および硬化性が実用に耐えうる範囲内であった。また、紫外線を照射している間の絶対湿度VHが4.2≦VH≦19.8の範囲内の場合、密着性および硬化性が良好であった。さらに、紫外線を照射している間の絶対湿度VHが4.5≦VH≦9.9の範囲内であって、かつ後加熱処理を行ったNo.2、4、6~8、16、19、24の印刷材は、密着性および硬化性が特に良好であった。
On the other hand, the relationship between the absolute humidity VH and the temperature T during the irradiation with ultraviolet rays satisfies the conditions of 6VH−103 ≦ T ≦ 10VH-5 and 15 ≦ T ≦ 40. In the printing materials 1 to 24, the adhesiveness and curability were within the practical range. Further, when the absolute humidity VH during irradiation with ultraviolet rays was within the range of 4.2 ≦ VH ≦ 19.8, the adhesion and curability were good. Further, the absolute humidity VH during irradiation with ultraviolet rays is in the range of 4.5 ≦ VH ≦ 9.9, and no. The printing materials of 2, 4, 6 to 8, 16, 19, and 24 had particularly good adhesion and curability.
[実施例2]
実施例2では、紫外線の照射を終了してから約20秒後に、自動排出型乾燥機(AT0-101型;株式会社東上熱学)を使用して50℃または145℃の炉温で5分間、後加熱処理を行ったこと以外は、実施例1におけるNo.1~4、6~12、14~19および21~29の印刷材と同様にして、No.30~81の印刷材を得た。また、実施例1と同様に、インキ層の評価、密着性の評価、硬化性の評価および総合評価を行った。 [Example 2]
In Example 2, about 20 seconds after the end of irradiation with ultraviolet rays, an automatic discharge dryer (AT0-101 type; Tojo Thermal Co., Ltd.) was used for 5 minutes at a furnace temperature of 50 ° C. or 145 ° C. No. in Example 1 except that post-heating treatment was performed. In the same manner as theprinting materials 1 to 4, 6 to 12, 14 to 19, and 21 to 29, no. 30 to 81 printing materials were obtained. Further, in the same manner as in Example 1, evaluation of the ink layer, evaluation of adhesion, evaluation of curability, and comprehensive evaluation were performed.
実施例2では、紫外線の照射を終了してから約20秒後に、自動排出型乾燥機(AT0-101型;株式会社東上熱学)を使用して50℃または145℃の炉温で5分間、後加熱処理を行ったこと以外は、実施例1におけるNo.1~4、6~12、14~19および21~29の印刷材と同様にして、No.30~81の印刷材を得た。また、実施例1と同様に、インキ層の評価、密着性の評価、硬化性の評価および総合評価を行った。 [Example 2]
In Example 2, about 20 seconds after the end of irradiation with ultraviolet rays, an automatic discharge dryer (AT0-101 type; Tojo Thermal Co., Ltd.) was used for 5 minutes at a furnace temperature of 50 ° C. or 145 ° C. No. in Example 1 except that post-heating treatment was performed. In the same manner as the
表2に後加熱処理の温度が50℃の場合の印刷材No.、絶対湿度、気温、相対湿度および各種評価結果を示す。また、表3に後加熱処理の温度が145℃の場合の印刷材No.、絶対湿度、気温、相対湿度および各種評価結果を示す。
Table 2 shows the printing material No. when the post-heating temperature is 50 ° C. Absolute humidity, temperature, relative humidity and various evaluation results are shown. Table 3 shows the printing material No. when the post-heating temperature is 145 ° C. Absolute humidity, temperature, relative humidity and various evaluation results are shown.
図3は、表2の評価結果をプロットしたグラフであり、図4は、表3の評価結果をプロットしたグラフである。図3および図4は、絶対湿度VHおよび気温Tとインクの密着性との関係を示すグラフである。図3および図4のグラフにおいて、直線L1は、T=10VH-5を示しており、直線L2は、T=6VH-103を示している。また、直線L3は、T=40を示しており、直線L4は、T=15を示している。また、破線は、VH=4.2を示し、点線は、VH=4.5を示し、一点鎖線は、VH=19.8を示し、二点破線は、VH=9.9を示す。
FIG. 3 is a graph in which the evaluation results in Table 2 are plotted, and FIG. 4 is a graph in which the evaluation results in Table 3 are plotted. 3 and 4 are graphs showing the relationship between the absolute humidity VH and temperature T and the ink adhesion. In the graphs of FIGS. 3 and 4, the straight line L1 indicates T = 10VH−5, and the straight line L2 indicates T = 6VH−103. A straight line L3 indicates T = 40, and a straight line L4 indicates T = 15. Moreover, a broken line shows VH = 4.2, a dotted line shows VH = 4.5, a dashed-dotted line shows VH = 19.8, and a dashed-two dotted line shows VH = 9.9.
図2~4に示されるように、絶対湿度が3g/m3未満の場合には、活性光線硬化型カチオン重合性インキの硬化収縮が大きくなりすぎるため、活性光線硬化型カチオン重合性インキの硬化性は十分であるが、実用可能な密着性は得られなかった。また、絶対湿度が3~4.5g/m3の場合には、後加熱処理の温度に関わらず、活性光線硬化型カチオン重合性インキの硬化反応が進行するため、密着性および硬化性に大きな変化は見られなかった。また、絶対湿度が10~20g/m3の場合には、絶対湿度に関わらず、UVインキ層の外観に変化が確認された。また、絶対湿度が20g/m3超の場合には、絶対湿度が高すぎたために、後加熱処理の温度に関わらず、十分な硬化性は得られなかった。
As shown in FIGS. 2 to 4, when the absolute humidity is less than 3 g / m 3 , the curing shrinkage of the actinic ray curable cationic polymerizable ink becomes too large, so that the actinic ray curable cationic polymerizable ink is cured. However, no practical adhesion was obtained. In addition, when the absolute humidity is 3 to 4.5 g / m 3 , the curing reaction of the actinic ray curable cationic polymerizable ink proceeds regardless of the temperature of the post-heating treatment, so that the adhesion and curability are large. There was no change. When the absolute humidity was 10 to 20 g / m 3 , changes in the appearance of the UV ink layer were confirmed regardless of the absolute humidity. Further, when the absolute humidity was over 20 g / m 3 , the absolute humidity was too high, so that sufficient curability could not be obtained regardless of the temperature of the post-heating treatment.
また、後加熱処理の温度を70℃とした印刷材は、後加熱処理の温度を50℃とした印刷材と比較して、評価結果が良好になることが分かる。これは、インキ層が空気中の水分を吸収することなく硬化するためと考えられる。また、後加熱処理の温度を70℃とした印刷材と、後加熱処理の温度を145℃とした印刷材との比較から、後加熱処理の温度を70℃超にしても評価結果に大きな差異はみられなかった。なお、特に結果は示していないが、後加熱処理の温度を150℃以上に加熱した印刷材は、熱歪により製品形状が不良であるか、インキ層の密着性が低下してしまった。
In addition, it can be seen that the printing material with a post-heating treatment temperature of 70 ° C. has a better evaluation result than the printing material with a post-heating treatment temperature of 50 ° C. This is considered because the ink layer is cured without absorbing moisture in the air. In addition, a comparison between a printing material with a post-heating treatment temperature of 70 ° C. and a printing material with a post-heating treatment temperature of 145 ° C. shows a large difference in evaluation results even when the post-heating treatment temperature exceeds 70 ° C. Was not seen. In addition, although the result is not shown in particular, the printing material heated to a temperature of 150 ° C. or higher after the post-heating treatment has a defective product shape due to thermal strain, or the adhesion of the ink layer is lowered.
以上の結果から、本発明の印刷材の製造方法は、活性光線硬化型カチオン重合性インキの密着性および硬化性に優れる印刷材を製造できることがわかる。
From the above results, it can be seen that the method for producing a printing material of the present invention can produce a printing material excellent in adhesion and curability of actinic ray curable cationic polymerizable ink.
本出願は、2016年5月16日出願の特願2016-098016および2017年5月11日出願の特願2017-094896に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
This application claims priority based on Japanese Patent Application No. 2016-098016 filed on May 16, 2016 and Japanese Patent Application No. 2017-094896 filed on May 11, 2017. The contents described in the application specification and the drawings are all incorporated herein.
本発明の印刷材の製造方法によって製造される印刷材は、活性光線硬化型カチオン重合性インキの硬化物の密着性および硬化性に優れるため、例えば、建築物の内装材および外壁材として有用である。
The printing material produced by the method for producing a printing material of the present invention is excellent in the adhesion and curability of the cured product of the actinic ray curable cationic polymerizable ink, and is useful, for example, as an interior material and an outer wall material of a building. is there.
Claims (8)
- 金属系基材または窯業系基材である基材を準備する工程と、
前記基材の上に樹脂組成物を塗布し、硬化させて、インキ受理層を形成する工程と、
前記インキ受理層の上に活性光線硬化型カチオン重合性インキを塗布し、活性光線を照射して硬化させて、インキ層を形成する工程と、を有し、
前記活性光線硬化型カチオン重合性インキは、カチオン重合性化合物と、0.5~10.0質量%のエポキシ基含有シランカップリング剤と、10~50質量%のヒドロキシル基含有オキセタン化合物と、光重合開始剤と、を含み、
前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)および気温T(℃)は、以下の式(1)および式(2)を満たす、
印刷材の製造方法。
6×VH-103≦T≦10×VH-5 …(1)
15≦T≦40 …(2) Preparing a base material that is a metal base material or a ceramic base material;
Applying a resin composition on the substrate and curing to form an ink receiving layer;
Applying actinic ray curable cationic polymerizable ink on the ink receiving layer, irradiating and curing actinic rays to form an ink layer, and
The actinic ray curable cationic polymerizable ink includes a cationic polymerizable compound, 0.5 to 10.0% by mass of an epoxy group-containing silane coupling agent, 10 to 50% by mass of a hydroxyl group-containing oxetane compound, light A polymerization initiator, and
The absolute humidity VH (g / m 3 ) and temperature T (° C.) during irradiation with the actinic ray to cure the actinic ray curable cationic polymerizable ink are expressed by the following equations (1) and ( Satisfy 2)
Manufacturing method of printing material.
6 × VH−103 ≦ T ≦ 10 × VH-5 (1)
15 ≦ T ≦ 40 (2) - 前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の前記絶対湿度VH(g/m3)および前記気温T(℃)を測定および調整する工程をさらに含む、請求項1に記載の印刷材の製造方法。 The method further includes the step of measuring and adjusting the absolute humidity VH (g / m 3 ) and the temperature T (° C.) during irradiation with the actinic ray in order to cure the actinic ray curable cationic polymerizable ink. The manufacturing method of the printing material of Claim 1.
- 前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)が10g/m3以上のとき、前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、請求項1または請求項2に記載の印刷材の製造方法。 In the step of forming the ink layer when the absolute humidity VH (g / m 3 ) during irradiation with the actinic ray to cure the actinic ray curable cationic polymerizable ink is 10 g / m 3 or more, The heat ray curable cationic polymerizable ink is further cured by starting a heat treatment at a temperature of 50 ° C. or more within 2 minutes after the irradiation with the actinic ray. Manufacturing method of printing material.
- 前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)が10g/m3以上のとき、前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上145℃以下の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、請求項1または請求項2に記載の印刷材の製造方法。 In the step of forming the ink layer when the absolute humidity VH (g / m 3 ) during irradiation with the actinic ray to cure the actinic ray curable cationic polymerizable ink is 10 g / m 3 or more, The heat ray curable cationic polymerizable ink is further cured by starting a heat treatment at a temperature of 50 ° C. or higher and 145 ° C. or lower within 2 minutes after the irradiation with the active light ray. The manufacturing method of the printing material as described in 2.
- 前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)は、さらに以下の式(3)を満たす、請求項1~4のいずれか一項に記載の印刷材の製造方法。
4.2≦VH≦19.8 …(3) The absolute humidity VH (g / m 3 ) during irradiation with the actinic ray to cure the actinic ray curable cationic polymerizable ink further satisfies the following formula (3): The manufacturing method of the printing material as described in any one of these.
4.2 ≦ VH ≦ 19.8 (3) - 前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)は、さらに以下の式(4)を満たし、
前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、
請求項1または請求項2に記載の印刷材の製造方法。
4.5≦VH≦9.9 …(4) The absolute humidity VH (g / m 3 ) during irradiation with the actinic ray to cure the actinic ray curable cationic polymerizable ink further satisfies the following formula (4):
In the step of forming the ink layer, within 2 minutes after the irradiation with the active light, heat treatment is started at a temperature of 50 ° C. or higher to further cure the active light curable cationic polymerizable ink.
The manufacturing method of the printing material of Claim 1 or Claim 2.
4.5 ≦ VH ≦ 9.9 (4) - 前記活性光線硬化型カチオン重合性インキを硬化させるために前記活性光線を照射している間の絶対湿度VH(g/m3)は、さらに以下の式(4)を満たし、
前記インキ層を形成する工程では、前記活性光線を照射し終わった後2分以内に、50℃以上145℃以下の温度で熱処理を開始して前記活性光線硬化型カチオン重合性インキをさらに硬化させる、
請求項1または請求項2に記載の印刷材の製造方法。
4.5≦VH≦9.9 …(4) The absolute humidity VH (g / m 3 ) during irradiation with the actinic ray to cure the actinic ray curable cationic polymerizable ink further satisfies the following formula (4):
In the step of forming the ink layer, heat treatment is started at a temperature of 50 ° C. or more and 145 ° C. or less within 2 minutes after the irradiation with the actinic ray to further cure the actinic ray curable cationic polymerizable ink. ,
The manufacturing method of the printing material of Claim 1 or Claim 2.
4.5 ≦ VH ≦ 9.9 (4) - 前記樹脂組成物は、ポリエステルおよびメラミン樹脂を含むか、ポリエステルおよびウレタン樹脂を含むか、またはポリエステル、メラミン樹脂およびウレタン樹脂を含む、請求項1~7のいずれか一項に記載の印刷材の製造方法。 The production of a printing material according to any one of claims 1 to 7, wherein the resin composition comprises polyester and melamine resin, comprises polyester and urethane resin, or comprises polyester, melamine resin and urethane resin. Method.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016098016 | 2016-05-16 | ||
JP2016-098016 | 2016-05-16 | ||
JP2017094896A JP2017206016A (en) | 2016-05-16 | 2017-05-11 | Method for producing printing material |
JP2017-094896 | 2017-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017199896A1 true WO2017199896A1 (en) | 2017-11-23 |
Family
ID=60325968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/018155 WO2017199896A1 (en) | 2016-05-16 | 2017-05-15 | Printing material production method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017199896A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006037021A (en) * | 2004-07-29 | 2006-02-09 | Toshiba Tec Corp | Inkjet ink, printed matter, and inkjet printing method |
JP2008248071A (en) * | 2007-03-30 | 2008-10-16 | Fujifilm Corp | Ink set for inkjet-recording and method of inkjet-recording |
JP2011195731A (en) * | 2010-03-19 | 2011-10-06 | Fujifilm Corp | Cured film and method for forming cured film |
JP2012116933A (en) * | 2010-11-30 | 2012-06-21 | Seiko Epson Corp | Ultraviolet curable ink composition for inkjet, recorded matter, and inkjet recording method |
WO2013190913A1 (en) * | 2012-06-19 | 2013-12-27 | ナトコ 株式会社 | Active energy ray curable composition, and cured product and use thereof |
WO2015053164A1 (en) * | 2013-10-07 | 2015-04-16 | 東京インキ株式会社 | Photocationic curable inkjet ink, production method for photocationic curable inkjet ink, printed article, and production method for printed article |
WO2015092976A1 (en) * | 2013-12-18 | 2015-06-25 | 日新製鋼株式会社 | Printing material |
JP2016199034A (en) * | 2015-04-09 | 2016-12-01 | 日新製鋼株式会社 | Method for producing printing material |
-
2017
- 2017-05-15 WO PCT/JP2017/018155 patent/WO2017199896A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006037021A (en) * | 2004-07-29 | 2006-02-09 | Toshiba Tec Corp | Inkjet ink, printed matter, and inkjet printing method |
JP2008248071A (en) * | 2007-03-30 | 2008-10-16 | Fujifilm Corp | Ink set for inkjet-recording and method of inkjet-recording |
JP2011195731A (en) * | 2010-03-19 | 2011-10-06 | Fujifilm Corp | Cured film and method for forming cured film |
JP2012116933A (en) * | 2010-11-30 | 2012-06-21 | Seiko Epson Corp | Ultraviolet curable ink composition for inkjet, recorded matter, and inkjet recording method |
WO2013190913A1 (en) * | 2012-06-19 | 2013-12-27 | ナトコ 株式会社 | Active energy ray curable composition, and cured product and use thereof |
WO2015053164A1 (en) * | 2013-10-07 | 2015-04-16 | 東京インキ株式会社 | Photocationic curable inkjet ink, production method for photocationic curable inkjet ink, printed article, and production method for printed article |
WO2015092976A1 (en) * | 2013-12-18 | 2015-06-25 | 日新製鋼株式会社 | Printing material |
JP2016199034A (en) * | 2015-04-09 | 2016-12-01 | 日新製鋼株式会社 | Method for producing printing material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5695726B1 (en) | Printing material | |
JP5597296B1 (en) | Manufacturing method of decorative building board | |
JP6568497B2 (en) | Manufacturing method of printing materials | |
JP5357348B1 (en) | Painting materials, printing materials and coating materials | |
JP2010194462A (en) | Method of manufacturing construction board | |
JP6105327B2 (en) | Printing materials and coating materials | |
CN107683181A (en) | Preprocess method for application or printing | |
JP5893878B2 (en) | Manufacturing method of colored plate | |
CN107735186B (en) | Preprocess method for coating or printing | |
WO2017199275A1 (en) | Printing material production method | |
WO2017199896A1 (en) | Printing material production method | |
JP6153030B2 (en) | Manufacturing method of decorative building board | |
JP6289357B2 (en) | Fluorinated organosiloxane network composition | |
JP2015123588A (en) | Coated metal plate, coated metal plate molding and method for producing the same | |
WO2014132309A1 (en) | Production method and production device for metal siding | |
JP7402397B2 (en) | Manufacturing method of painted metal plate | |
JP7514780B2 (en) | Metal substrate for printing, its manufacturing method, and coated metal material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17799320 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17799320 Country of ref document: EP Kind code of ref document: A1 |