[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017197574A1 - 电容检测的装置 - Google Patents

电容检测的装置 Download PDF

Info

Publication number
WO2017197574A1
WO2017197574A1 PCT/CN2016/082318 CN2016082318W WO2017197574A1 WO 2017197574 A1 WO2017197574 A1 WO 2017197574A1 CN 2016082318 W CN2016082318 W CN 2016082318W WO 2017197574 A1 WO2017197574 A1 WO 2017197574A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
switch
inverter
circuit
signal
Prior art date
Application number
PCT/CN2016/082318
Other languages
English (en)
French (fr)
Inventor
吕凤铭
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201680000579.9A priority Critical patent/CN108139840A/zh
Priority to PCT/CN2016/082318 priority patent/WO2017197574A1/zh
Publication of WO2017197574A1 publication Critical patent/WO2017197574A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches

Definitions

  • the present invention relates to the field of information technology and, more particularly, to a device for capacitance detection.
  • the basic principle of the capacitive touch button is to treat the conductive material of the button area as an electrode of the capacitor, and the finger surface used as the touch as another electrode of the capacitor, and detect the change of the capacitance of the capacitor to detect the finger. Touch signal.
  • the methods for detecting the sensing capacitance mainly include CapSense Successive Approximation (CSA) and CapSense Sigma-Delta (CSD).
  • CSA CapSense Successive Approximation
  • CSD CapSense Sigma-Delta
  • One solution of the CSA is to determine whether the button is in the touch state by changing the time of the threshold voltage; the CSD always determines whether the button is in the touch state by the change of the ratio of the high state state and the low state state.
  • the current detection device has a complicated structure and high power consumption.
  • Embodiments of the present invention provide a device for detecting capacitance, which can reduce power consumption.
  • a device for capacitance detection comprising:
  • a first oscillating circuit 110 configured to generate a first oscillating signal of a predetermined frequency
  • the second oscillating circuit 120 includes a first capacitor 121.
  • the capacitance of the first capacitor 121 is variable.
  • the second oscillating circuit 120 is configured to generate a second oscillating signal.
  • the frequency of the second oscillating signal is based on the capacitance of the first capacitor 121. Change and change;
  • the control module 130 is configured to generate a switch control signal according to the first oscillating signal and the second oscillating signal, where the switch control signal is used to control the communication and disconnection of the charging circuit 140;
  • the charging circuit 140 includes a second capacitor 141 for charging the second capacitor 141 in a connected state
  • the output module 150 is configured to output the voltage on the second capacitor 141 to the processing module 160;
  • the processing module 160 is configured to determine whether the capacitance value of the first capacitor 121 changes according to the amount of change in the voltage output by the output module 150.
  • the device for detecting capacitance of the embodiment of the invention converts the change of the capacitance value into the deviation of the oscillation frequency, and accumulates the deviation into the charging time of the capacitor, converts the charging time of the capacitor into the variation of the voltage, and determines the capacitance according to the variation of the voltage. Whether the value is changed, the device used is simple, and there is no static power consumption. Therefore, the device for detecting capacitance of the embodiment of the present invention has a simple structure and low power consumption.
  • the first capacitor 121 is a touch button capacitor
  • the processing module 160 is configured to determine whether the first capacitor 121 is touched according to the amount of change in the voltage output by the output module 150.
  • the frequency of the second oscillating signal when the first capacitor 121 is not touched, the frequency of the second oscillating signal is the same as the frequency of the first oscillating signal; when the first capacitor 121 is touched, the frequency of the second oscillating signal Different from the frequency of the first oscillating signal.
  • the apparatus further includes:
  • a first counter 170 configured to generate a first count signal according to the first oscillating signal
  • a second counter 175, configured to generate a second count signal according to the second oscillating signal
  • the control module 130 is specifically configured to generate a switch control signal according to the first count signal and the second count signal.
  • the delay difference of the two oscillation circuits can be accumulated by the counter.
  • control module 130 is an exclusive OR processing module, such as an exclusive OR gate.
  • the second oscillating circuit 120 further includes a first charging branch 1211, a first comparing circuit 1212, a second comparing circuit 1213, and a first charging and discharging control circuit 1214;
  • the output end of the first charging circuit 1211 is connected to the input end of the first comparison circuit 1212.
  • One end of the first capacitor 121 is connected to the output end of the first comparison circuit 1212 and the input end of the second comparison circuit 1213.
  • the first capacitor 121 Grounded at the other end;
  • the first charge and discharge control circuit 1214 is configured to control the first charging branch 1211 to switch the charging and discharging states according to the output signal of the second comparing circuit 1213.
  • the first oscillating circuit 110 includes a fifth capacitor 111, a second charging branch 1111, a third comparing circuit 1112, a fourth comparing circuit 1113, and a second charging and discharging control circuit 1114;
  • the output end of the second charging circuit 1111 is connected to the input end of the third comparing circuit 1112, and one end of the fifth capacitor 111 is connected to the output end of the third comparing circuit 1112 and the input end of the fourth comparing circuit 1113.
  • the fifth capacitor 111 Grounded at the other end;
  • the second charge and discharge control circuit 1114 is configured to be controlled according to an output signal of the fourth comparison circuit 1113.
  • the second charging branch 1111 switches the charging and discharging states.
  • the second oscillating circuit 120 further includes a first current source 122, a first switch 123, a third capacitor 124, a first inverter 125, a second inverter 126, a first resistor 127, a third inverter 128, a fourth inverter 129 and a second switch 1210;
  • the first inverter 125, the second inverter 126, the first resistor 127, the third inverter 128, and the fourth inverter 129 are sequentially connected in series, one end of the first capacitor 121 and the third inverter 128 The input end is connected, the other end of the first capacitor 121 is grounded, one end of the third capacitor 124 is grounded, and the other end of the third capacitor 124 is connected to the input end of the first inverter 125;
  • the output signal of the third inverter 128 is used to control the turn-on and turn-off of the first switch 123
  • the output signal of the fourth inverter 129 is used to control the turn-on and turn-off of the second switch 1210, and the first switch 123 is turned on and
  • the first current source 122 charges the third capacitor 124.
  • the third capacitor 124 is discharged.
  • the first oscillating circuit 110 includes a second current source 112, a third switch 113, a fourth capacitor 114, a fifth inverter 115, a sixth inverter 116, a second resistor 117, and a a seven inverter 118, an eighth inverter 119, a fourth switch 1110 and a fifth capacitor 111;
  • the fifth inverter 115, the sixth inverter 116, the second resistor 117, the seventh inverter 118, and the eighth inverter 119 are sequentially connected in series, one end of the fifth capacitor 111 and the seventh inverter 118 The input end is connected, the other end of the fifth capacitor 111 is grounded, one end of the fourth capacitor 114 is grounded, and the other end of the fourth capacitor 114 is connected to the input end of the fifth inverter 115;
  • the output signal of the seventh inverter 118 is used to control the turn-on and turn-off of the third switch 113
  • the output signal of the eighth inverter 119 is used to control the turn-on and turn-off of the fourth switch 1110
  • the third switch 113 is turned on and
  • the fourth switch 1110 is turned off, the second current source 112 charges the fourth capacitor 114, and when the third switch 113 is turned off and the fourth switch 1110 is turned on, the fourth capacitor 114 is discharged.
  • the first oscillating circuit 110 is an oscillator.
  • the charging circuit 140 further includes a third current source 142 and a fifth switch 143;
  • the switch control signal is used to control the turn-on and turn-off of the fifth switch 143, and when the fifth switch 143 is turned on, the third current source 142 charges the second capacitor 141.
  • the charging circuit 140 further includes a sixth switch 144, and when the sixth switch 144 is turned on, the second capacitor 141 is discharged.
  • the output module 150 can be an analog to digital converter.
  • a touch button device comprising the device for capacitance detection in the first aspect or any of the possible implementations of the first aspect.
  • FIG. 1 is a schematic block diagram of an apparatus for capacitance detection according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of an apparatus for capacitance detection according to another embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of an apparatus for capacitance detection according to still another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of waveforms of inputs of a first counter and a second counter in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an apparatus for capacitance detection according to still another embodiment of the present invention.
  • the technical solutions of the embodiments of the present invention can be applied to various devices that use capacitive touch keys, such as mobile terminals, computers, home appliances, and the like.
  • the device determines whether the touch button is touched by a change in the capacitance value of the touch button capacitor.
  • the device for detecting capacitance of the embodiment of the invention may be disposed in the device for detecting whether the capacitance value of the touch button capacitor changes, and further determining whether the touch button is touched.
  • FIG. 1 shows a schematic block diagram of a device 100 for capacitance detection in accordance with an embodiment of the present invention.
  • the apparatus 100 can include a first oscillating circuit 110, a second oscillating circuit 120, a control module 130, a charging circuit 140, an output module 150, and a processing module 160.
  • the first oscillating circuit 110 is configured to generate a first oscillating signal of a predetermined frequency.
  • the predetermined frequency can be preset before detection and remains unchanged during the detection process. In this way, the second oscillating circuit 120 can generate a vibration having the same frequency or different frequency as the predetermined frequency through the variable capacitor. Swing signal.
  • the first oscillating circuit 110 may adopt a structure similar to that of the second oscillating circuit 120.
  • the first oscillating circuit 110 can also be an oscillator.
  • the frequency of the oscillator is a predetermined frequency.
  • the second oscillating circuit 120 includes a first capacitor 121.
  • the capacitance of the first capacitor 121 is variable.
  • the second oscillating circuit 120 is configured to generate a second oscillating signal. The frequency of the second oscillating signal is changed according to the capacitance of the first capacitor 121. And change.
  • the first capacitor 121 is a capacitor to be detected. That is, the device 100 is configured to detect whether the capacitance value of the first capacitor 121 changes.
  • the frequency of the second oscillating signal is the same as the frequency of the first oscillating signal, that is, both are predetermined frequencies; when the first capacitor 121 changes, the frequency of the second oscillating signal and the first oscillating signal The frequency of the signal is different.
  • the first capacitor 121 is a touch button capacitor.
  • the capacitance value of the first capacitor 121 changes. That is, when the first capacitor 121 is not touched, the frequency of the second oscillating signal is the same as the frequency of the first oscillating signal; when the first capacitor 121 is touched, the frequency of the second oscillating signal and the first oscillating signal The frequency of the signal is different.
  • the control module 130 is configured to generate a switch control signal according to the first oscillating signal and the second oscillating signal, and the switch control signal is used to control the communication and disconnection of the charging circuit 140.
  • the first oscillation signal generated by the first oscillation circuit 110 and the second oscillation signal generated by the second oscillation circuit 120 are used to generate a switch control signal to control the communication and disconnection of the charging circuit 140.
  • control module 130 can be an exclusive OR processing module, such as an exclusive OR gate.
  • exclusive OR processing module such as an exclusive OR gate.
  • a counter may be further disposed between the first oscillating circuit 110 and the second oscillating circuit 120 and the control module 130 for accumulating the oscillating signals, that is, accumulating the difference of the two oscillating signals in time.
  • the apparatus 100 may further include a first counter 170 and a second counter 175.
  • the first counter 170 is configured to generate a first count signal according to the first oscillating signal.
  • the second counter 175 is configured to generate a second count signal according to the second oscillating signal.
  • the first counter 170 and the second counter 175 may output a high level signal (or a low level signal) after counting a predetermined number of rising edge signals (or falling edge signals), respectively.
  • the counter can accumulate the delay difference.
  • control module 130 is specifically configured to generate a switch control signal according to the first count signal and the second count signal.
  • the control module 130 outputs a signal of zero, and the charging circuit 140 is in an off state;
  • the capacitor 121 changes the first oscillating signal and the second oscillating signal are different, and the first counter 170 and the second counter 175 count different times of the predetermined number of rising edge signals (or falling edge signals), and the time between the two times
  • the output signal of the control module 130 is 1, and the charging circuit 140 is in a connected state.
  • the charging circuit 140 includes a second capacitor 141 for charging the second capacitor 141 in a connected state.
  • the switch control signal output by control module 130 controls the communication and disconnection of charging circuit 140.
  • the charging circuit 140 charges the second capacitor 141 in the connected state, and does not charge the second capacitor 141 in the off state.
  • the output module 150 is configured to output the voltage on the second capacitor 141 to the processing module 160.
  • the output module 150 detects the voltage on the second capacitor 141, that is, can detect the voltage change of the second capacitor 141 in the charged or uncharged state, and outputs the voltage on the second capacitor 141 to the processing module 160.
  • the output module 150 can be an Analog to Digital Converter (ADC).
  • ADC Analog to Digital Converter
  • the processing module 160 is configured to determine whether the capacitance value of the first capacitor 121 changes according to the amount of change in the voltage output by the output module 150.
  • the processing module 160 performs processing according to the voltage output by the output module 150, and determines whether the capacitance value of the first capacitor 121 changes according to the amount of change in the voltage. For example, if the voltage does not change or the amount of change is less than a predetermined threshold, it is determined that the capacitance value of the first capacitor 121 does not change; if the voltage changes or the amount of change is not less than a predetermined threshold, it is determined that the capacitance value of the first capacitor 121 changes.
  • the processing module 160 determines whether the first capacitor 121 is touched according to the amount of change in the voltage output by the output module 150. For example, if the voltage does not change or the amount of change is less than a predetermined threshold, it is determined that the first capacitor 121 is not touched; if the voltage changes or changes It is determined that the first capacitor 121 is touched not less than the predetermined threshold.
  • the second oscillating circuit 120 may include a first capacitor 121, a first current source 122, a first switch 123, a third capacitor 124, and a first The phaser 125, the second inverter 126, the first resistor 127, the third inverter 128, the fourth inverter 129, and the second switch 1210.
  • the first inverter 125, the second inverter 126, the first resistor 127, the third inverter 128, and the fourth inverter 129 are sequentially connected in series, one end of the first capacitor 121 and the third inverter 128 The input terminal is connected, the other end of the first capacitor 121 is grounded, one end of the third capacitor 124 is grounded, and the other end of the third capacitor 124 is connected to the input end of the first inverter 125.
  • the output signal of the third inverter 128 is used to control the turn-on and turn-off of the first switch 123
  • the output signal of the fourth inverter 129 is used to control the turn-on and turn-off of the second switch 1210, and the first switch 123 is turned on and
  • the first current source 122 charges the third capacitor 124.
  • the third capacitor 124 is discharged.
  • the first oscillating circuit 110 may adopt a structure similar to that of the second oscillating circuit 120.
  • the first oscillating circuit 110 may include a second current source 112, a third switch 113, a fourth capacitor 114, a fifth inverter 115, a sixth inverter 116, a second resistor 117, and a seventh inverter. 118.
  • the fifth inverter 115, the sixth inverter 116, the second resistor 117, the seventh inverter 118, and the eighth inverter 119 are sequentially connected in series, one end of the fifth capacitor 111 and the seventh inverter 118 The input terminal is connected, the other end of the fifth capacitor 111 is grounded, one end of the fourth capacitor 114 is grounded, and the other end of the fourth capacitor 114 is connected to the input end of the fifth inverter 115.
  • the output signal of the seventh inverter 118 is used to control the turn-on and turn-off of the third switch 113
  • the output signal of the eighth inverter 119 is used to control the turn-on and turn-off of the fourth switch 1110
  • the third switch 113 is turned on and
  • the fourth switch 1110 is turned off, the second current source 112 charges the fourth capacitor 114, and when the third switch 113 is turned off and the fourth switch 1110 is turned on, the fourth capacitor 114 is discharged.
  • the working principle is as follows:
  • the first current source 122 charges the third capacitor 124, and the voltage at the input end of the first inverter 125 rises, after a certain time delay (CU/ I, where C is the capacitance value of the third capacitor 124, and I and U are respectively the charging current and voltage), the voltage at the output of the second inverter 126 is at a high level, thereby charging the first capacitor 121,
  • the voltage at the input of the third inverter 128 rises after a certain time delay (R ⁇ C TP , where R is the resistance of the first resistor 127 and C TP is the capacitance of the first capacitor 121)
  • R ⁇ C TP where R is the resistance of the first resistor 127 and C TP is the capacitance of the first capacitor 121
  • the third capacitor 124 is discharged; the voltage at the input end of the first inverter 125 is lowered, and after a certain time delay, the voltage at the output of the second inverter 126 is at a low level, and the first capacitor 121 Discharge, the voltage at the input of the third inverter 128 decreases, after a certain time delay, the third inverter 128
  • the voltage at the output is at a high level, and the voltage at the output of the fourth inverter 129 is at a low level, so that the first switch 123 is turned on, and the second switch 1210 is turned off, so that the first current source 122 is turned on the third Capacitor 124 is charged, so reciprocating.
  • the operating principle of the first oscillating circuit 110 is the same as that of the second oscillating circuit 120.
  • the first oscillating circuit 110 has the same parameter value as the other portions of the second oscillating circuit 120 except that the capacitance value C in of the fifth capacitor 111 is different from the capacitance value C TP of the first capacitor 121. After the capacitance value of the fifth capacitor 111 is fixed, the difference between the first oscillation circuit 110 and the second oscillation circuit 120 is determined by the change in the capacitance value of the first capacitor 121.
  • the value of the fifth capacitor 111 may be adjusted first, or the values of the second resistor 117 and the fifth capacitor 111 may be adjusted, so that the frequencies of the two oscillator circuits are the same or close (the frequency difference is less than a certain threshold),
  • the switch control signal output by the control module 130 is zero, the charging circuit 140 does not charge the second capacitor 141, and the output of the output module 150 is a fixed value. If the capacitance value of the first capacitor 121 changes, for example, a touch occurs, the delay difference of the two-way oscillating circuit becomes larger, and the accumulation of the delay difference corresponds to the time when the control module 130 outputs 1 and also corresponds to the charging circuit 140.
  • the time at which the second capacitor 141 is charged also:
  • C 2 represents a capacitance value of the second capacitor 141
  • I 2 represents a charging current of the second capacitor 141
  • the voltage difference of the capacitor can be detected by the output module 150 to convert the delay difference into a voltage value change, and then processed by the processing module 160 to confirm whether the capacitance value of the first capacitor 121 changes, for example, whether it is touched.
  • the delay accumulation of the first oscillating circuit 110 can be expressed as:
  • ⁇ t in ⁇ [CU/I+R ⁇ C in ] (2)
  • the delay accumulation of the second oscillating circuit 120 can be expressed as:
  • ⁇ t tp ⁇ [CU/I+R ⁇ (C TP + ⁇ C TP )] (3)
  • ⁇ C TP represents the amount of change in the capacitance value of the first capacitor 121.
  • ⁇ t delay ⁇ R ⁇ (C TP + ⁇ C TP -C in ) (4)
  • the processing module 160 can determine whether the first capacitor 121 is touched according to the amount of change in the voltage output by the output module 150.
  • FIG. 4 shows a schematic diagram of waveforms at the inputs of the first counter 170 and the second counter 175 when no touch occurs and touches occur.
  • the waveforms of the inputs of the first counter 170 and the second counter 175 are identical.
  • the first capacitor 121 is touched, there is a delay difference between the two oscillation circuits. The delay difference of multiple cycles can be further accumulated by the counter.
  • the first counter 170 and the second counter 175 are 10-bit counters, and the period of the first oscillating circuit 110 is T1, the first counter 170 outputs a high-level signal after 10 T1 cycles;
  • the capacitance value of the first capacitor 121 in the two oscillation circuits 120 is changed, so that the period of the second oscillation circuit 120 becomes T2, and similarly, after 10 T2 periods, the second counter 175 outputs a high level signal.
  • the delay difference between the counter 170 and the counter 175 outputting a high level after the accumulation of the 10-bit counter is 10 ⁇ T, therefore, within the delay difference of 10 ⁇ T, the first counter 170 and the second
  • the output signal of the control module 130 is 1
  • the charging circuit 140 charges the second capacitor 141
  • the voltage outputted by the output module 150 changes
  • the processing module 160 determines the first according to the amount of change of the voltage output by the output module 150.
  • the capacitor 121 is touched.
  • the first oscillating circuit 110 may also use an internal oscillator, that is, as long as the first oscillating circuit 110 can generate the first of the predetermined frequencies.
  • the oscillating signal is sufficient, and the present invention is not limited thereto.
  • the charging circuit 140 may include a second capacitor 141, a third current source 142, and a fifth switch 143.
  • the switch control signal output by the control module 130 is used to control the turning on and off of the fifth switch 143.
  • the third current source 142 charges the second capacitor 141.
  • the charging circuit 140 may further include a sixth switch 144.
  • the sixth switch 144 When the sixth switch 144 is turned on, the second capacitor 141 is discharged.
  • a reset circuit is constructed by the sixth switch 144, and the second capacitor 141 can be periodically discharged.
  • the structures of the first oscillating circuit 110 and the second oscillating circuit 120 in FIG. 3 are merely examples, and the two oscillating circuits may also adopt other transforming structures.
  • the first oscillating circuit 110 and the second oscillating circuit 120 may adopt the structure shown in FIG.
  • the second oscillating circuit 120 may include a first capacitor 121, a first charging branch 1211, a first comparing circuit 1212, a second comparing circuit 1213, and a first a charge and discharge control circuit 1214;
  • the output end of the first charging circuit 1211 is connected to the input end of the first comparison circuit 1212.
  • One end of the first capacitor 121 is connected to the output end of the first comparison circuit 1212 and the input end of the second comparison circuit 1213.
  • the first capacitor 121 Grounded at the other end;
  • the first charge and discharge control circuit 1214 is configured to control the first charging branch 1211 to switch the charging and discharging states according to the output signal of the second comparing circuit 1213.
  • the first charging and discharging control circuit 1214 may control the first charging branch 1211 to enter a charging state when the output signal of the second comparison circuit 1213 is at a low level, and control the first when the output signal of the second comparison circuit 1213 is at a high level.
  • the charging branch 1211 enters a discharge state.
  • the first oscillating circuit 110 may include a fifth capacitor 111, a second charging branch 1111, a third comparing circuit 1112, a fourth comparing circuit 1113, and a second charging and discharging control circuit 1114. ;
  • the output end of the second charging circuit 1111 is connected to the input end of the third comparing circuit 1112, and one end of the fifth capacitor 111 is connected to the output end of the third comparing circuit 1112 and the input end of the fourth comparing circuit 1113.
  • the fifth capacitor 111 Grounded at the other end;
  • the second charge and discharge control circuit 1114 is configured to control the second charging branch 1111 to switch the charging and discharging states according to the output signal of the fourth comparing circuit 1113.
  • the second charging and discharging control circuit 1114 can control the second charging branch 1111 to enter the charging state according to the output signal of the fourth comparison circuit 1113 being low level, and control the second according to when the output signal of the fourth comparison circuit 1113 is high level.
  • the charging branch 1111 enters a discharge state.
  • the device for detecting capacitance of the embodiment of the invention converts the change of the capacitance value into the deviation of the oscillation frequency, and accumulates the deviation into the charging time of the capacitor, converts the charging time of the capacitor into the variation of the voltage, and determines the capacitance according to the variation of the voltage. Whether the value is changed, the device used is simple, and there is no static power consumption. Therefore, the device for detecting capacitance of the embodiment of the present invention has a simple structure and low power consumption.
  • the disclosed apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Electronic Switches (AREA)

Abstract

一种电容检测的装置(100),能够降低功耗,该装置(100)包括:第一振荡电路(110),用于产生预定频率的第一振荡信号;第二振荡电路(120),包括第一电容(121),第二振荡电路(120)用于产生第二振荡信号,第二振荡信号的频率根据第一电容(121)的电容值的变化而变化;控制模块(130),用于根据第一振荡信号和第二振荡信号生成开关控制信号,开关控制信号用于控制充电回路(140)的连通和断开;充电回路(140),包括第二电容(141),用于在连通状态下对第二电容(141)充电;输出模块(150),用于将第二电容(141)上的电压输出到处理模块(160);处理模块(160),用于根据输出模块(150)输出的电压的变化量确定第一电容(121)的电容值是否发生变化。

Description

电容检测的装置 技术领域
本发明涉及信息技术领域,并且更具体地,涉及一种电容检测的装置。
背景技术
随着科技的发展和消费者对外观的追求,在越来越多的家电、消费类电子产品上,厂商逐渐用电容式触控按键取代了传统的机械按键。电容式触控按键的基本原理是把按键区域的导电材料当作电容的一个电极,而把用作触摸的手指面作为电容的另外一个电极,通过检测这个电容的电容量的变化来检测手指的触控信号。
当前,检测感应电容的方案主要有逐次逼近(CapSense Successive Approximation,CSA)和电容调制(CapSense Sigma-Delta,CSD)两种感应方式。CSA的一种方案是通过达到阈值电压的时间的变化确定按键是否处于触控状态;CSD的一直方案是通过高电平状态和低电平状态的比率的变化确定按键是否处于触控状态。目前的检测装置的结构较复杂,功耗较高。
发明内容
本发明实施例提供了一种电容检测的装置,能够降低功耗。
第一方面,提供了一种电容检测的装置,包括:
第一振荡电路110,用于产生预定频率的第一振荡信号;
第二振荡电路120,包括第一电容121,第一电容121的电容值可变,第二振荡电路120用于产生第二振荡信号,第二振荡信号的频率根据第一电容121的电容值的变化而变化;
控制模块130,用于根据第一振荡信号和第二振荡信号生成开关控制信号,开关控制信号用于控制充电回路140的连通和断开;
充电回路140,包括第二电容141,用于在连通状态下对第二电容141充电;
输出模块150,用于将第二电容141上的电压输出到处理模块160;
处理模块160,用于根据输出模块150输出的电压的变化量确定第一电容121的电容值是否发生变化。
本发明实施例的电容检测的装置,将电容值的变化转换为振荡频率的偏差,并将偏差累加成电容充电时间,将电容的充电时间转换为电压的变化量,根据电压的变化量确定电容值是否发生变化,所采用的器件简单,且没有静态功耗,因此,本发明实施例的电容检测的装置的结构简单,功耗较低。
在一些可能的实现方式中,第一电容121为触控按键电容;
处理模块160用于根据输出模块150输出的电压的变化量确定第一电容121是否被触控。
在一些可能的实现方式中,在第一电容121未被触控时,第二振荡信号的频率与第一振荡信号的频率相同;在第一电容121被触控时,第二振荡信号的频率与第一振荡信号的频率不同。
在一些可能的实现方式中,装置还包括:
第一计数器170,用于根据第一振荡信号生成第一计数信号;
第二计数器175,用于根据第二振荡信号生成第二计数信号;
控制模块130具体用于根据第一计数信号和第二计数信号生成开关控制信号。
通过计数器可以将两路振荡电路的延时差异累加。
在一些可能的实现方式中,控制模块130为异或处理模块,例如异或门。
在一些可能的实现方式中,第二振荡电路120还包括第一充电支路1211、第一比较电路1212、第二比较电路1213和第一充放电控制电路1214;
第一充电支路1211的输出端与第一比较电路1212的输入端连接,第一电容121的一端与第一比较电路1212的输出端以及第二比较电路1213的输入端连接,第一电容121的另一端接地;
第一充放电控制电路1214用于根据第二比较电路1213的输出信号控制第一充电支路1211切换充电和放电状态。
在一些可能的实现方式中,第一振荡电路110包括第五电容111、第二充电支路1111、第三比较电路1112、第四比较电路1113和第二充放电控制电路1114;
第二充电支路1111的输出端与第三比较电路1112的输入端连接,第五电容111的一端与第三比较电路1112的输出端以及第四比较电路1113的输入端连接,第五电容111的另一端接地;
第二充放电控制电路1114用于根据第四比较电路1113的输出信号控制 第二充电支路1111切换充电和放电状态。
在一些可能的实现方式中,第二振荡电路120还包括第一电流源122、第一开关123、第三电容124、第一反相器125、第二反相器126、第一电阻127、第三反相器128、第四反相器129和第二开关1210;
第一反相器125、第二反相器126、第一电阻127、第三反相器128和第四反相器129依次串联连接,第一电容121的一端与第三反相器128的输入端连接,第一电容121的另一端接地,第三电容124的一端接地,第三电容124的另一端与第一反相器125的输入端连接;
第三反相器128的输出信号用于控制第一开关123的开通和关断,第四反相器129的输出信号用于控制第二开关1210的开通和关断,第一开关123开通且第二开关1210关断时,第一电流源122对第三电容124充电,第一开关123关断且第二开关1210开通时,第三电容124放电。
在一些可能的实现方式中,第一振荡电路110包括第二电流源112、第三开关113、第四电容114、第五反相器115、第六反相器116、第二电阻117、第七反相器118、第八反相器119、第四开关1110和第五电容111;
第五反相器115、第六反相器116、第二电阻117、第七反相器118和第八反相器119依次串联连接,第五电容111的一端与第七反相器118的输入端连接,第五电容111的另一端接地,第四电容114的一端接地,第四电容114的另一端与第五反相器115的输入端连接;
第七反相器118的输出信号用于控制第三开关113的开通和关断,第八反相器119的输出信号用于控制第四开关1110的开通和关断,第三开关113开通且第四开关1110关断时,第二电流源112对第四电容114充电,第三开关113关断且第四开关1110开通时,第四电容114放电。
在一些可能的实现方式中,第一振荡电路110为振荡器。
在一些可能的实现方式中,充电回路140还包括第三电流源142和第五开关143;
开关控制信号用于控制第五开关143的开通和关断,第五开关143开通时,第三电流源142对第二电容141充电。
在一些可能的实现方式中,充电回路140还包括第六开关144,第六开关144开通时,第二电容141放电。
在一些可能的实现方式中,输出模块150可以为模数转换器。
第二方面,提供了一种触控按键设备,包括第一方面或第一方面的任一种可能的实现方式中的电容检测的装置。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的电容检测的装置的示意性框图。
图2是本发明另一实施例的电容检测的装置的示意性框图。
图3是本发明又一实施例的电容检测的装置的示意性框图。
图4是本发明实施例的第一计数器和第二计数器的输入端的波形的示意图。
图5是本发明又一实施例的电容检测的装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明实施例的技术方案可以应用于各种采用电容式触控按键(Touch Key)的设备中,例如移动终端、电脑、家电等。该设备通过触控按键电容的电容值的变化确定触控按键是否被触控。本发明实施例的电容检测的装置可以设置于该设备中,用于检测触控按键电容的电容值是否变化,并进一步确定触控按键是否被触控。
图1示出了本发明实施例的电容检测的装置100的示意性框图。如图1所示,该装置100可以包括第一振荡电路110,第二振荡电路120,控制模块130,充电回路140,输出模块150和处理模块160。
第一振荡电路110用于产生预定频率的第一振荡信号。
该预定频率可以在检测前预先设定,并在检测过程中保持不变。这样,第二振荡电路120可以通过可变电容产生频率与该预定频率相同或不同的振 荡信号。
可选地,第一振荡电路110可以采用与第二振荡电路120类似的结构。
可选地,第一振荡电路110也可以为振荡器。该振荡器的频率为预定频率。
第二振荡电路120包括第一电容121,第一电容121的电容值可变,第二振荡电路120用于产生第二振荡信号,第二振荡信号的频率根据第一电容121的电容值的变化而变化。
第一电容121为待检测电容。也就是说,该装置100用于检测第一电容121的电容值是否发生变化。
在第一电容121未发生变化时,第二振荡信号的频率与第一振荡信号的频率相同,即都为预定频率;在第一电容121发生变化时,第二振荡信号的频率与第一振荡信号的频率不同。
可选地,第一电容121为触控按键电容。在第一电容121被触控时,第一电容121的电容值发生变化。也就是说,在第一电容121未被触控时,第二振荡信号的频率与第一振荡信号的频率相同;在第一电容121被触控时,第二振荡信号的频率与第一振荡信号的频率不同。
控制模块130用于根据第一振荡信号和第二振荡信号生成开关控制信号,开关控制信号用于控制充电回路140的连通和断开。
第一振荡电路110产生的第一振荡信号和第二振荡电路120产生的第二振荡信号用于生成开关控制信号,以控制充电回路140的连通和断开。
可选地,控制模块130可以为异或处理模块,例如异或门。这样,第一电容121未变化时,第一振荡信号和第二振荡信号相同,控制模块130输出信号为零,充电回路140为断开状态;第一电容121变化时,第一振荡信号和第二振荡信号不同,控制模块130输出信号为1,充电回路140为连通状态。
可选地,第一振荡电路110和第二振荡电路120与控制模块130之间还可以设置计数器,用于对振荡信号进行累加,即对两路振荡信号的差异在时间上进行累加。如图2所示,在本发明另一个实施例中,该装置100还可以包括第一计数器170和第二计数器175。
第一计数器170用于根据第一振荡信号生成第一计数信号。
第二计数器175用于根据第二振荡信号生成第二计数信号。
例如,第一计数器170和第二计数器175可以分别在统计到预定数量的上升沿信号(或下降沿信号)后输出高电平信号(或低电平信号)。这样,在两路振荡信号频率不同时,例如,第二振荡信号相对于第一振荡信号有延时差异时,计数器可以将延时差异累加。
在这种情况下,控制模块130具体用于根据第一计数信号和第二计数信号生成开关控制信号。
例如,第一电容121未变化时,第一振荡信号和第二振荡信号相同,第一计数信号和第二计数信号相同,控制模块130输出信号为零,充电回路140为断开状态;第一电容121变化时,第一振荡信号和第二振荡信号不同,第一计数器170和第二计数器175统计到预定数量的上升沿信号(或下降沿信号)的时刻不同,两个时刻间的时间内控制模块130的输出信号为1,充电回路140为连通状态。
充电回路140包括第二电容141,用于在连通状态下对第二电容141充电。
如前所述,控制模块130输出的开关控制信号控制充电回路140的连通和断开。充电回路140在连通状态下对第二电容141充电,在断开状态下则不对第二电容141充电。
输出模块150用于将第二电容141上的电压输出到处理模块160。
输出模块150检测第二电容141上的电压,即可以检测第二电容141在充电或不充电状态下的电压变化,将第二电容141上的电压输出到处理模块160。可选地,输出模块150可以为模数转换器(Analog to Digital Converter,ADC)。
处理模块160用于根据输出模块150输出的电压的变化量确定第一电容121的电容值是否发生变化。
处理模块160根据输出模块150输出的电压进行处理,根据电压的变化量确定第一电容121的电容值是否发生变化。例如,若电压没变化或变化量小于预定阈值则确定第一电容121的电容值未发生变化;若电压发生变化或变化量不小于预定阈值则确定第一电容121的电容值发生变化。
在第一电容121为触控按键电容时,处理模块160根据输出模块150输出的电压的变化量确定第一电容121是否被触控。例如,若电压没变化或变化量小于预定阈值则确定第一电容121未被触控;若电压发生变化或变化量 不小于预定阈值则确定第一电容121被触控。
可选地,如图3所示,在本发明另一个实施例中,第二振荡电路120可以包括第一电容121、第一电流源122、第一开关123、第三电容124、第一反相器125、第二反相器126、第一电阻127、第三反相器128、第四反相器129和第二开关1210。
第一反相器125、第二反相器126、第一电阻127、第三反相器128和第四反相器129依次串联连接,第一电容121的一端与第三反相器128的输入端连接,第一电容121的另一端接地,第三电容124的一端接地,第三电容124的另一端与第一反相器125的输入端连接。
第三反相器128的输出信号用于控制第一开关123的开通和关断,第四反相器129的输出信号用于控制第二开关1210的开通和关断,第一开关123开通且第二开关1210关断时,第一电流源122对第三电容124充电,第一开关123关断且第二开关1210开通时,第三电容124放电。
可选地,第一振荡电路110可以采用与第二振荡电路120类似的结构。具体地,第一振荡电路110可以包括第二电流源112、第三开关113、第四电容114、第五反相器115、第六反相器116、第二电阻117、第七反相器118、第八反相器119、第四开关1110和第五电容111。
第五反相器115、第六反相器116、第二电阻117、第七反相器118和第八反相器119依次串联连接,第五电容111的一端与第七反相器118的输入端连接,第五电容111的另一端接地,第四电容114的一端接地,第四电容114的另一端与第五反相器115的输入端连接。
第七反相器118的输出信号用于控制第三开关113的开通和关断,第八反相器119的输出信号用于控制第四开关1110的开通和关断,第三开关113开通且第四开关1110关断时,第二电流源112对第四电容114充电,第三开关113关断且第四开关1110开通时,第四电容114放电。
以第二振荡电路120为例,其工作原理如下:
第一开关123开通且第二开关关断1210时,第一电流源122对第三电容124充电,第一反相器125的输入端处的电压升高,经过一定时间的延时(CU/I,其中C为第三电容124的电容值,I和U分别为充电电流和电压)后,第二反相器126的输出端处的电压为高电平,从而对第一电容121充电,第三反相器128的输入端处的电压升高,经过一定时间的延时(R·CTP,其 中,R为第一电阻127的电阻值,CTP为第一电容121的电容值)后,第三反相器128的输出端处的电压为低电平,第四反相器129的输出端处的电压为高电平,这样第一开关123关断,第二开关1210开通,从而第三电容124放电;第一反相器125的输入端处的电压降低,经过一定时间的延时后,第二反相器126的输出端处的电压为低电平,第一电容121放电,第三反相器128的输入端处的电压降低,经过一定时间的延时后,第三反相器128的输出端处的电压为高电平,第四反相器129的输出端处的电压为低电平,这样第一开关123开通,第二开关1210关断,从而第一电流源122对第三电容124充电,如此往复。
第一振荡电路110的工作原理与第二振荡电路120的工作原理相同。
除了第五电容111的电容值Cin与第一电容121的电容值CTP可不同外,第一振荡电路110与第二振荡电路120的其他部分的参数值相同。在第五电容111的电容值固定后,第一振荡电路110与第二振荡电路120的差异由第一电容121的电容值的变化决定。
上电工作时,可先通过调整第五电容111的值,也可以调整第二电阻117和第五电容111的值,使得两条振荡电路的频率相同或接近(频率差小于一定阈值),这样控制模块130输出的开关控制信号为零,充电回路140不对第二电容141充电,输出模块150的输出为一固定值。如果第一电容121的电容值发生变化,例如,发生触控,将使得两路振荡电路的延时差异变大,该延时差异的累加对应控制模块130输出1的时间,也对应充电回路140对第二电容141充电的时间。又:
I2·Δt=C2·ΔV               (1)
其中,C2表示第二电容141的电容值,I2表示第二电容141的充电电流。
这样可以通过输出模块150检测电容的电压值而将延时差异转换为电压值变化量,再通过处理模块160处理以确认第一电容121的电容值是否发生变化,例如是否被触控。
以图3为例,第一振荡电路110的延时累加可表示为:
Σtin=Σ[CU/I+R·Cin]          (2)
第二振荡电路120的延时累加可表示为:
Σttp=Σ[CU/I+R·(CTP+ΔCTP)]      (3)
其中,ΔCTP表示第一电容121的电容值的变化量。
将式(3)与式(2)相减可得,第二振荡电路120与第一振荡电路110延时差异累加为:
ΣΔtdelay=ΣR·(CTP+ΔCTP-Cin)        (4)
由式(4)可以看出,第一电容121的电容值的变化量ΔCTP对应延时差异累加,再根据式(1),进一步对应电压的变化量。因此,处理模块160可根据输出模块150输出的电压的变化量确定第一电容121是否被触控。
例如,图4示出了未发生触控和发生触控时第一计数器170和第二计数器175输入端的波形的示意图。如图4所示,在未发生触控时,第一计数器170和第二计数器175输入端的波形完全相同。在第一电容121被触控时,两路振荡电路间有延时差异。通过计数器可进一步将多个周期的延时差异累加。例如,假设第一计数器170和第二计数器175为10位计数器,并且第一振荡电路110的周期为T1,第一计数器170在10个T1周期后,输出高电平信号;由于触控导致第二振荡电路120中第一电容121的电容值变化,从而使得第二振荡电路120的周期变为T2,同样地,10个T2周期后,第二计数器175输出高电平信号。假设T1同T2的差异为ΔT,那么经过10位计数器的累加之后,计数器170和计数器175输出高电平的延时差异为10ΔT,因此,10ΔT的延时差异内,第一计数器170和第二计数器175的输出信号不同,控制模块130的输出信号为1,充电回路140对第二电容141充电,输出模块150输出的电压变化,处理模块160根据输出模块150输出的电压的变化量确定第一电容121被触控。
应理解,除了上述第一振荡电路110采用与第二振荡电路120类似的结构的设计外,第一振荡电路110也可以用内部振荡器,即只要第一振荡电路110可以产生预定频率的第一振荡信号即可,本发明对此并不限定。
可选地,如图3所示,在本发明另一个实施例中,充电回路140可以包括第二电容141,第三电流源142和第五开关143。
控制模块130输出的开关控制信号用于控制第五开关143的开通和关断。第五开关143开通时,第三电流源142对第二电容141充电。
可选地,在本发明另一个实施例中,充电回路140还可以包括第六开关144。第六开关144开通时,第二电容141放电。
具体而言,通过第六开关144构造复位(reset)回路,可定期对第二电容141放电。
应理解,本发明实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
例如,图3中第一振荡电路110和第二振荡电路120的结构仅仅是一种示例,这两个振荡电路还可以采用其他变换结构。作为一个举例,第一振荡电路110和第二振荡电路120可以采用图5所示的结构。
如图5所示,可选地,在本发明一个实施例中,第二振荡电路120可以包括第一电容121、第一充电支路1211、第一比较电路1212、第二比较电路1213和第一充放电控制电路1214;
第一充电支路1211的输出端与第一比较电路1212的输入端连接,第一电容121的一端与第一比较电路1212的输出端以及第二比较电路1213的输入端连接,第一电容121的另一端接地;
第一充放电控制电路1214用于根据第二比较电路1213的输出信号控制第一充电支路1211切换充电和放电状态。
例如,第一充放电控制电路1214可以根据第二比较电路1213的输出信号为低电平时控制第一充电支路1211进入充电状态,根据第二比较电路1213的输出信号为高电平时控制第一充电支路1211进入放电状态。
可选地,在本发明一个实施例中,第一振荡电路110可以包括第五电容111、第二充电支路1111、第三比较电路1112、第四比较电路1113和第二充放电控制电路1114;
第二充电支路1111的输出端与第三比较电路1112的输入端连接,第五电容111的一端与第三比较电路1112的输出端以及第四比较电路1113的输入端连接,第五电容111的另一端接地;
第二充放电控制电路1114用于根据第四比较电路1113的输出信号控制第二充电支路1111切换充电和放电状态。
例如,第二充放电控制电路1114可以根据第四比较电路1113的输出信号为低电平时控制第二充电支路1111进入充电状态,根据第四比较电路1113的输出信号为高电平时控制第二充电支路1111进入放电状态。
本发明实施例的电容检测的装置,将电容值的变化转换为振荡频率的偏差,并将偏差累加成电容充电时间,将电容的充电时间转换为电压的变化量,根据电压的变化量确定电容值是否发生变化,所采用的器件简单,且没有静态功耗,因此,本发明实施例的电容检测的装置的结构简单,功耗较低。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (11)

  1. 一种电容检测的装置,其特征在于,包括:
    第一振荡电路(110),用于产生预定频率的第一振荡信号;
    第二振荡电路(120),包括第一电容(121),所述第一电容(121)的电容值可变,所述第二振荡电路(120)用于产生第二振荡信号,所述第二振荡信号的频率根据所述第一电容(121)的电容值的变化而变化;
    控制模块(130),用于根据所述第一振荡信号和所述第二振荡信号生成开关控制信号,所述开关控制信号用于控制充电回路(140)的连通和断开;
    充电回路(140),包括第二电容(141),用于在所述充电回路(140)连通时对所述第二电容(141)充电;
    输出模块(150),用于将所述第二电容(141)上的电压输出到处理模块(160);
    处理模块(160),用于根据所述输出模块(150)输出的电压的变化量确定所述第一电容(121)的电容值是否发生变化。
  2. 根据权利要求1所述的装置,其特征在于,所述第一电容(121)为触控按键电容;
    所述处理模块(160)用于根据所述输出模块(150)输出的电压的变化量确定所述第一电容(121)是否被触控。
  3. 根据权利要求2所述的装置,其特征在于,在所述第一电容(121)未被触控时,所述第二振荡信号的频率与所述第一振荡信号的频率相同;在所述第一电容(121)被触控时,所述第二振荡信号的频率与所述第一振荡信号的频率不同。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,所述装置还包括:
    第一计数器(170),用于根据所述第一振荡信号生成第一计数信号;
    第二计数器(175),用于根据所述第二振荡信号生成第二计数信号;
    所述控制模块(130)具体用于根据所述第一计数信号和所述第二计数信号生成所述开关控制信号。
  5. 根据权利要求1至4中任一项所述的装置,其特征在于,所述控制模块(130)为异或处理模块。
  6. 根据权利要求1至5中任一项所述的装置,其特征在于,所述第二 振荡电路(120)还包括第一充电支路(1211)、第一比较电路(1212)、第二比较电路(1213)和第一充放电控制电路(1214);
    所述第一充电支路(1211)的输出端与所述第一比较电路(1212)的输入端连接,所述第一电容(121)的一端与所述第一比较电路(1212)的输出端以及所述第二比较电路(1213)的输入端连接,所述第一电容(121)的另一端接地;
    所述第一充放电控制电路(1214)用于根据所述第二比较电路(1213)的输出信号控制所述第一充电支路(1211)切换充电和放电状态。
  7. 根据权利要求1至6中任一项所述的装置,其特征在于,所述第一振荡电路(110)包括第五电容(111)、第二充电支路(1111)、第三比较电路(1112)、第四比较电路(1113)和第二充放电控制电路(1114);
    所述第二充电支路(1111)的输出端与所述第三比较电路(1112)的输入端连接,所述第五电容(111)的一端与所述第三比较电路(1112)的输出端以及所述第四比较电路(1113)的输入端连接,所述第五电容(111)的另一端接地;
    所述第二充放电控制电路(1114)用于根据所述第四比较电路(1113)的输出信号控制所述第二充电支路(1111)切换充电和放电状态。
  8. 根据权利要求1至5中任一项所述的装置,其特征在于,所述第二振荡电路(120)还包括第一电流源(122)、第一开关(123)、第三电容(124)、第一反相器(125)、第二反相器(126)、第一电阻(127)、第三反相器(128)、第四反相器(129)和第二开关(1210);
    所述第一反相器(125)、所述第二反相器(126)、所述第一电阻(127)、第三反相器(128)和第四反相器(129)依次串联连接,所述第一电容(121)的一端与所述第三反相器(128)的输入端连接,所述第一电容(121)的另一端接地,所述第三电容(124)的一端接地,所述第三电容(124)的另一端与所述第一反相器(125)的输入端连接;
    所述第三反相器(128)的输出信号用于控制所述第一开关(123)的开通和关断,所述第四反相器(129)的输出信号用于控制所述第二开关(1210)的开通和关断,所述第一开关(123)开通且所述第二开关(1210)关断时,所述第一电流源(122)对所述第三电容(124)充电,所述第一开关(123)关断且所述第二开关(1210)开通时,所述第三电容(124)放电。
  9. 根据权利要求1至6,8中任一项所述的装置,其特征在于,所述第一振荡电路(110)包括第二电流源(112)、第三开关(113)、第四电容(114)、第五反相器(115)、第六反相器(116)、第二电阻(117)、第七反相器(118)、第八反相器(119)、第四开关(1110)和第五电容(111);
    所述第五反相器(115)、所述第六反相器(116)、所述第二电阻(117)、第七反相器(118)和第八反相器(119)依次串联连接,所述第五电容(111)的一端与所述第七反相器(118)的输入端连接,所述第五电容(111)的另一端接地,所述第四电容(114)的一端接地,所述第四电容(114)的另一端与所述第五反相器(115)的输入端连接;
    所述第七反相器(118)的输出信号用于控制所述第三开关(113)的开通和关断,所述第八反相器(119)的输出信号用于控制所述第四开关(1110)的开通和关断,所述第三开关(113)开通且所述第四开关(1110)关断时,所述第二电流源(112)对所述第四电容(114)充电,所述第三开关(113)关断且所述第四开关(1110)开通时,所述第四电容(114)放电。
  10. 根据权利要求1至9中任一项所述的装置,所述充电回路(140)还包括第三电流源(142)和第五开关(143);
    所述开关控制信号用于控制所述第五开关(143)的开通和关断,所述第五开关(143)开通时,所述第三电流源(142)对所述第二电容(141)充电。
  11. 根据权利要求10所述的装置,其特征在于,所述充电回路(140)还包括第六开关(144),所述第六开关(144)开通时,所述第二电容(141)放电。
PCT/CN2016/082318 2016-05-17 2016-05-17 电容检测的装置 WO2017197574A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680000579.9A CN108139840A (zh) 2016-05-17 2016-05-17 电容检测的装置
PCT/CN2016/082318 WO2017197574A1 (zh) 2016-05-17 2016-05-17 电容检测的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082318 WO2017197574A1 (zh) 2016-05-17 2016-05-17 电容检测的装置

Publications (1)

Publication Number Publication Date
WO2017197574A1 true WO2017197574A1 (zh) 2017-11-23

Family

ID=60324671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082318 WO2017197574A1 (zh) 2016-05-17 2016-05-17 电容检测的装置

Country Status (2)

Country Link
CN (1) CN108139840A (zh)
WO (1) WO2017197574A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110991599A (zh) * 2019-12-28 2020-04-10 中原工学院 一种纸张计数显示装置
CN111819451A (zh) * 2020-03-03 2020-10-23 深圳市汇顶科技股份有限公司 电容检测电路、传感器、芯片以及电子设备
CN112906954A (zh) * 2021-02-04 2021-06-04 优方科技(东莞)有限公司 一种大面积电容感应系统
CN115333521A (zh) * 2022-08-22 2022-11-11 深圳市锦锐科技股份有限公司 一种应用于rc触摸按键的低功耗集成电路
CN115729364A (zh) * 2021-08-26 2023-03-03 比亚迪股份有限公司 电容触控芯片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1836204A (zh) * 2003-08-12 2006-09-20 崇贸科技股份有限公司 开关充电乘法器-除法器
CN102487277A (zh) * 2010-12-03 2012-06-06 新唐科技股份有限公司 感应装置及感应方法
US20130162565A1 (en) * 2011-12-21 2013-06-27 Interflex Co., Ltd. Touch sensor panel using oscillation frequency
CN103440073A (zh) * 2013-07-08 2013-12-11 安沛科技股份有限公司 排除寄生电容影响的电容感测电路
CN103823598A (zh) * 2012-11-16 2014-05-28 普诚科技股份有限公司 触控感应电路及方法
CN104935320A (zh) * 2014-03-20 2015-09-23 安凯(广州)微电子技术有限公司 一种电容式触摸按键状态的检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9298289B2 (en) * 2010-06-10 2016-03-29 Sony Corporation Method and apparatus for adjusting a function of an electronic device
US9151789B2 (en) * 2011-09-15 2015-10-06 Atmel Corporation Low power capacitive touch detector
CN103259517A (zh) * 2013-05-20 2013-08-21 百利通电子(上海)有限公司 一种电容式触摸电路及其电容检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1836204A (zh) * 2003-08-12 2006-09-20 崇贸科技股份有限公司 开关充电乘法器-除法器
CN102487277A (zh) * 2010-12-03 2012-06-06 新唐科技股份有限公司 感应装置及感应方法
US20130162565A1 (en) * 2011-12-21 2013-06-27 Interflex Co., Ltd. Touch sensor panel using oscillation frequency
CN103823598A (zh) * 2012-11-16 2014-05-28 普诚科技股份有限公司 触控感应电路及方法
CN103440073A (zh) * 2013-07-08 2013-12-11 安沛科技股份有限公司 排除寄生电容影响的电容感测电路
CN104935320A (zh) * 2014-03-20 2015-09-23 安凯(广州)微电子技术有限公司 一种电容式触摸按键状态的检测方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110991599A (zh) * 2019-12-28 2020-04-10 中原工学院 一种纸张计数显示装置
CN110991599B (zh) * 2019-12-28 2023-08-01 中原工学院 一种纸张计数显示装置
CN111819451A (zh) * 2020-03-03 2020-10-23 深圳市汇顶科技股份有限公司 电容检测电路、传感器、芯片以及电子设备
CN111819451B (zh) * 2020-03-03 2023-06-09 深圳市汇顶科技股份有限公司 电容检测电路、传感器、芯片以及电子设备
CN112906954A (zh) * 2021-02-04 2021-06-04 优方科技(东莞)有限公司 一种大面积电容感应系统
CN115729364A (zh) * 2021-08-26 2023-03-03 比亚迪股份有限公司 电容触控芯片
CN115333521A (zh) * 2022-08-22 2022-11-11 深圳市锦锐科技股份有限公司 一种应用于rc触摸按键的低功耗集成电路
CN115333521B (zh) * 2022-08-22 2023-09-12 深圳市锦锐科技股份有限公司 一种应用于rc触摸按键的低功耗集成电路

Also Published As

Publication number Publication date
CN108139840A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
US20130120053A1 (en) Touch pad capacitive sensor circuit
CN102968224B (zh) 触控面板的控制电路及控制方法
TWI531949B (zh) 電容電壓資訊感測電路及其相關抗雜訊觸控電路
US20090225044A1 (en) Determining touch on keys of touch sensitive input device
WO2017197574A1 (zh) 电容检测的装置
US10158360B2 (en) Capacitive switch having high accuracy
JP2009216506A (ja) 容量センサー
CN108777574B (zh) 一种电容触摸按键电路
CN102193032A (zh) 一种具有高精度高稳定性的自电容变化测量电路
KR102632067B1 (ko) 소음 검출 회로, 자기 정전용량 검출방법, 터치 칩 및 전자기기
US9279841B2 (en) Integratable capacitive touch sensing circuit through charge sharing
CN106033965B (zh) 一种触摸按键检测电路及其检测方法
TWI479402B (zh) 觸控感應電路及方法
CN114356145A (zh) 触摸检测电路、触摸装置和电子设备
US11281314B2 (en) Methods and apparatus for variable capacitance detection
US8878556B2 (en) Sensing device and method
US11206019B2 (en) Capacitance detection circuit, capacitance detection method, touch chip, and electronic device
CN205003650U (zh) 电容性放电电路
TWI524670B (zh) 高精度之電容式開關
CN111106820B (zh) 一种触摸按键控制系统及其控制方法
CN2938571Y (zh) 电荷转移装置、触摸感应装置
CN113541668A (zh) 触摸感测方法、电路以及电子设备
JP2004201175A (ja) 静電センサを有する入力手段
CN113949373A (zh) 使用不同电流进行充放电的接触检测电路及其运行方法
TWI470527B (zh) An integrated circuit that achieves touch capacitance sensing with charge sharing

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901960

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901960

Country of ref document: EP

Kind code of ref document: A1