[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017195679A1 - Rubber composition and pneumatic tire using same - Google Patents

Rubber composition and pneumatic tire using same Download PDF

Info

Publication number
WO2017195679A1
WO2017195679A1 PCT/JP2017/017055 JP2017017055W WO2017195679A1 WO 2017195679 A1 WO2017195679 A1 WO 2017195679A1 JP 2017017055 W JP2017017055 W JP 2017017055W WO 2017195679 A1 WO2017195679 A1 WO 2017195679A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
butadiene
component
weight
rubber composition
Prior art date
Application number
PCT/JP2017/017055
Other languages
French (fr)
Japanese (ja)
Inventor
関根 優子
芦浦 誠
史 八柳
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2017195679A1 publication Critical patent/WO2017195679A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a rubber composition in which tensile stress and tensile strength at break are improved to the conventional levels and a pneumatic tire using the rubber composition.
  • Patent Document 1 a pneumatic tire using a rubber composition blended with a styrene-butadiene copolymer having a specific arrangement of styrene units and silica as a tread has a wet skid resistance, a rolling resistance and an abrasion resistance at the same time. State that you are satisfied. However, this rubber composition cannot sufficiently improve the tensile stress and the tensile strength at break, so that it cannot satisfy the demands of consumers.
  • Patent Document 2 the ozonolysis product of a styrene-butadiene copolymer is analyzed by gel permeation chromatography (GPC), the content ratio of the long chain styrene block to the total amount of styrene, the content of a single chain with one styrene unit. It is described that the ratio is measured.
  • the long chain styrene block is 5% by weight or less
  • the single chain having one styrene unit is 50% by weight or more
  • the total styrene content is styrene-butadiene based on the total styrene content in the styrene-butadiene copolymer.
  • a styrene-butadiene copolymer is described that is 10-30% by weight of the copolymer.
  • the rubber composition comprising this styrene-butadiene copolymer has not always been able to sufficiently improve the rubber strength, tensile stress and tensile breaking strength.
  • the analysis by GPC in Patent Document 2 shows that the ozonolysis product of the styrene-butadiene copolymer can be fractionated based on the number of styrene units and a chain consisting only of styrene units, but 1 of butadiene in the ozonization product. The number of units derived from 2-bond cannot be identified. Further, the analysis by GPC in Patent Document 2 calculates the ratio of the amount of styrene in the decomposed product to the total amount of styrene, and does not accurately quantify the amount of each decomposed product.
  • An object of the present invention is to provide a rubber composition in which the tensile stress and tensile strength at break are improved to the conventional levels or more.
  • the rubber composition of the present invention that achieves the above object is a rubber composition comprising a diene rubber containing at least one styrene-butadiene copolymer and a reinforcing filler, wherein the at least one styrene-butadiene is used.
  • the styrene-butadiene copolymer component comprising a copolymer has the following characteristics (1) to (4).
  • the content of bound styrene is 5 to 50% by weight
  • one 1,2-bonded butadiene-derived unit is included in 100 mol% of the total of decomposition components containing styrene-derived units and / or 1,2-bonded butadiene-derived units.
  • the decomposition component V1 contained is less than 25 mol%.
  • styrene-derived units in a total of 100 mol% of decomposition components containing styrene-derived units and / or 1,2-bonded butadiene-derived units The decomposition component S2V1 containing two benzene and one 1,2-bonded butadiene-derived unit is less than 5 mol%.
  • the vinyl content in the butadiene portion is 50% or more.
  • the rubber composition of the present invention has (1) a content of bound styrene of 5 to 50% by weight, and (2) among components obtained by ozonolysis, styrene-derived units and / or 1,2-bonded.
  • the decomposition component V1 containing one 1,2-bonded butadiene-derived unit is less than 25 mol%.
  • the diene rubber may contain at least one diene rubber other than the above-described styrene-butadiene copolymer.
  • the reinforcing filler may be at least one selected from silica and carbon black.
  • the rubber composition described above is suitable for use in pneumatic tires, particularly for cap treads. Since this pneumatic tire is made of a rubber composition having high tensile stress and high tensile breaking strength, steering stability and fracture resistance are superior to conventional levels.
  • FIG. 1 is an example of a calibration curve showing the correlation between the concentration of the standard sample and the ionic strength.
  • FIG. 2 is an example of another calibration curve showing the correlation between the concentration of the standard sample and the ionic strength.
  • FIG. 3 is an explanatory diagram showing the relationship between the chain component and the slope of the calibration curve and the estimated slope of the calibration curve.
  • FIG. 4 is an explanatory diagram showing a relationship between another chain component and the slope of the calibration curve and the estimated slope of the calibration curve.
  • FIG. 5 is an explanatory diagram showing the relationship between yet another chain component and the slope of the calibration curve and the estimated slope of the calibration curve.
  • FIG. 6 is a partial cross-sectional view in the tire meridian direction showing an example of an embodiment of a pneumatic tire using the rubber composition of the present invention.
  • FIG. 6 is a cross-sectional view showing an example of an embodiment of a pneumatic tire using a rubber composition.
  • the pneumatic tire includes a tread portion 1, a sidewall portion 2, and a bead portion 3.
  • two carcass layers 4 in which reinforcing cords extending in the tire radial direction are arranged at predetermined intervals in the tire circumferential direction between the left and right bead portions 3 and embedded in the rubber layer are extended.
  • the portion is folded back from the inner side in the tire axial direction so as to sandwich the bead filler 6 around the bead core 5 embedded in the bead portion 3.
  • An inner liner layer 7 is disposed inside the carcass layer 4.
  • a belt cover layer 9 is disposed on the outer peripheral side of the belt layer 8.
  • tread portion 1 is formed by tread rubber layers 10a and 10b.
  • the tread rubber layers 10a and 10b are a cap tread and a base tread, and can preferably be constituted by the rubber composition of the present invention.
  • the rubber composition of the present invention comprises a diene rubber and a reinforcing filler.
  • the diene rubber necessarily contains at least one styrene-butadiene copolymer.
  • a polymer component comprising at least one styrene-butadiene copolymer may be referred to as a “styrene-butadiene copolymer component”.
  • the styrene-butadiene copolymer component satisfies all the following characteristics (1) to (4).
  • the content of bound styrene is 5 to 50% by weight
  • one 1,2-bonded butadiene-derived unit is included in 100 mol% of the total of decomposition components containing styrene-derived units and / or 1,2-bonded butadiene-derived units.
  • the decomposition component V1 contained is less than 25 mol%.
  • styrene-derived units in a total of 100 mol% of decomposition components containing styrene-derived units and / or 1,2-bonded butadiene-derived units The decomposition component S2V1 containing two benzene and one 1,2-bonded butadiene-derived unit is less than 5 mol%.
  • the vinyl content in the butadiene portion is 50% or more.
  • the styrene-butadiene copolymer component is composed of a single styrene-butadiene copolymer
  • the styrene-butadiene copolymer needs to satisfy all the characteristics (1) to (4) described above.
  • the styrene-butadiene copolymer component when the styrene-butadiene copolymer component is composed of a blend of a plurality of styrene-butadiene copolymers, the styrene-butadiene copolymer component as a whole has all of the characteristics (1) to (4) described above. It is necessary to satisfy. As long as the styrene-butadiene copolymer component as a whole satisfies all of the properties (1) to (4), each styrene-butadiene copolymer constituting the blend has the above-mentioned (1) to (4). It may or may not satisfy all the characteristics.
  • the styrene-butadiene copolymer constituting the blend satisfies all the properties (1) to (4).
  • the rubber composition has excellent tensile stress and tensile breaking strength. Can be a thing.
  • a tensile stress shall mean the tensile stress at the time of 100% elongation in the tensile test based on JISK6251.
  • the styrene-butadiene copolymer component has (1) a content of bound styrene of 5 to 50% by weight, preferably 10 to 40% by weight.
  • a content of bound styrene of 5 to 50% by weight, preferably 10 to 40% by weight.
  • the glass transition temperature (Tg) of the styrene-butadiene copolymer component rises, the balance of viscoelastic properties is deteriorated, and the heat generation is increased. . That is, the balance between hysteresis loss and wet skid characteristics deteriorates.
  • the styrene content of the styrene-butadiene copolymer component is measured by 1 H-NMR.
  • the styrene-butadiene copolymer component used in the present invention is measured by a mass spectrometer after the decomposition component obtained by ozonolysis is separated by liquid chromatogram in two stages using two columns having different characteristics. (Hereafter, it may be described as “LC ⁇ LCMS analysis”).
  • the composition and amount of the ozonolysis component can be analyzed in more detail by this LC ⁇ LCMS analysis, and in addition to the styrene-derived unit in the ozonolysis component, the 1,2-bond-derived unit of butadiene can be quantified.
  • the styrene-butadiene copolymer is a copolymer of styrene and butadiene, and includes a styrene repeating unit (styrene unit) and a butadiene repeating unit (butadiene unit).
  • the butadiene unit consists of a portion where butadiene is polymerized with 1,2-bonds (a repeating unit of ethylene having a vinyl group in the side chain) and a portion where butadiene is polymerized with a 1,4-bond (a repeating unit of 2-butylene divalent groups). Consists of.
  • the portion polymerized by 1,4-bond is composed of a repeating unit of trans-2-butylene structure and a repeating unit of cis-2-butylene structure.
  • the styrene-butadiene copolymer When the styrene-butadiene copolymer is subjected to ozonolysis, the butadiene portion polymerized by 1,4-bonds is cleaved. Further, the vinyl group in the side chain of the butadiene moiety polymerized by 1,2-bond is oxidized to a hydroxymethyl group. Thereby, in the styrene-butadiene copolymer, a repeating unit sandwiched between two butadiene units polymerized by two adjacent 1,4-bonds is generated as an ozonolysis component.
  • a compound represented by the following general formula (I) is obtained.
  • the compound represented by the general formula (I) is referred to as “ozone decomposition component V1”.
  • the direction of linking with adjacent units may be head-to-tail bond or head-to-head bond, and the head-to-tail bond / head-to-head bond represented by the chemical formula shall be replaced with each other. .
  • ozone decomposition component S2V1 a decomposition component composed of two styrene-derived units and one butadiene-derived unit polymerized by 1,2-bond.
  • the compound represented by the general formula (II) is selected from the order of arrangement of two styrene-derived units and one 1,2-bonded butadiene-derived unit, head-to-tail bond / head-to-head bond, and the order thereof. It is intended to include compounds wherein at least one of the different compounds.
  • the portion sandwiched between two butadiene units polymerized by two adjacent 1,4-bonds is obtained by ozonolysis, wherein styrene-derived units and / or 1,2-bonded butadiene-derived units are hydroxyethyl groups at both ends. It is generated as a decomposition component sandwiched between. Further, 1,4-butanediol is formed from a repeating portion in which two or more butadiene units polymerized by 1,4-bonds are continuous.
  • the styrene-butadiene copolymer component used in the present invention is (2) among the components obtained by ozonolysis and styrene-derived units and / or 1
  • the decomposition component V1 containing one 1,2-bonded butadiene-derived unit is less than 25 mol% in a total of 100 mol% of the decomposition components containing 1,2-bonded butadiene-derived units.
  • the decomposition component containing one 1,2-bonded butadiene-derived unit means the ozonolysis component V1 containing only one 1,2-bonded butadiene-derived unit as described above.
  • the number of moles of each decomposition component is determined.
  • the total number of moles of the decomposition component containing the styrene-derived unit and / or 1,2-bonded butadiene-derived unit produced by ozonolysis is calculated, and this is defined as 100 mol% of the ozonolysis component.
  • the amount of the decomposition component V1 containing one 1,2-bonded butadiene-derived unit is less than 25 mol%, preferably 15 mol% or more and less than 25 mol%, in 100 mol% of the ozonolysis component.
  • the styrene-butadiene copolymer component used in the present invention includes (3) two styrene-derived units and 1,2-bond when the decomposition component obtained by ozonolysis is measured by LC ⁇ LCMS analysis.
  • the decomposition component S2V1 containing one butadiene-derived unit is less than 5 mol%, preferably 2 mol% or more and less than 5 mol%.
  • the ozonolysis component S2V1 is an ozonolysis component containing only two styrene-derived units and one 1,2-bonded butadiene-derived unit as described above, and the ozonolysis component S2V1 includes the decomposition component represented by the general formula (II).
  • the number of moles of the decomposition component represented by the general formula (II) is obtained.
  • the styrene-derived units are divided into two and 1, 2, -The ozonolysis component S2V1 consisting of one unit of butadiene-derived units must be less than 5 mol%. By doing so, the tensile stress of the rubber composition can be made excellent.
  • the present invention is the number of moles of the ozonolysis component S1 containing only one styrene-derived unit and the ozonolysis component S2V1 containing two styrene-derived units and one 1,2-bonded butadiene-derived unit.
  • the analysis is performed individually by LC ⁇ LCMS analysis.
  • the conditions for measuring the ozonolysis component by LC ⁇ LCMS analysis can be as follows.
  • Liquid chromatograph comprehensive two-dimensional LC Nexera-e (manufactured by Shimadzu Corporation)
  • Mass spectrometer LCMS-8040 or LCMS-8050 (both manufactured by Shimadzu Corporation)
  • First dimension column two columns (A) whose stationary phase is a polymer gel (Shodex Mspak GF-310 2D manufactured by Showa Denko KK, inner diameter: 2.0 mm, length 150 mm, particle size 5 ⁇ m) and the stationary phase is a polymer One column (B) (Super HZ 1000 manufactured by Tosoh Corporation, inner diameter: 2.0 mm, length 250 mm, particle size 3 ⁇ m), which is a gel, is connected in series, and a total of three are used in series.
  • A whose stationary phase is a polymer gel (Shodex Mspak GF-310 2D manufactured by Showa Denko KK, inner diameter: 2.0
  • Injection volume 1 ⁇ L (sample solution) (Concentration: 10 mg / mL)
  • Mobile phase THF Flow rate: 0.02 mL / min
  • Second dimension column Column (A) whose core is a core-shell polymer gel modified with octadecyl group (Kinetex C18 manufactured by Phenomenex, inner diameter: 3.0 mm, length 50 mm, particle size 2.6 ⁇ m)
  • Mobile phase A: water: methanol 1: 1
  • Mobile phase B Methanol flow rate: 2.0 mL / min
  • Time program B conc.
  • a commercially available sample may be used as the standard sample, or a sample obtained by separating and collecting from the SBR ozone decomposition product and calculating the purity by NMR or the like may be used.
  • a standard sample can be prepared as follows.
  • a solution-polymerized SBR having a styrene content of 36% by weight and a vinyl content in butadiene of 42% was subjected to ozonolysis treatment, LC-9104 (preparative GPC) manufactured by Nippon Analytical Industrial Co., Ltd., and four low-molecular columns (JAIGEL-1H, JAIGEL -H, 2 units each) were used to fractionate a total of 7 components of S1, S1V1, S2, S2V1, S3, S3V1, and V1 with chloroform solvent, and the purity was calculated by NMR to obtain a standard sample.
  • Polybutadiene having a vinyl content of 70% is subjected to ozonolysis treatment, using a column (VP-ODS 150 mm ⁇ 4.6 mm) with an HPLC system Prominence manufactured by Shimadzu Corporation, using mobile phase A as water and mobile phase B as methanol.
  • a column VP-ODS 150 mm ⁇ 4.6 mm
  • HPLC system Prominence manufactured by Shimadzu Corporation
  • mobile phase A as water
  • mobile phase B mobile phase B as methanol.
  • the elution time of the component was confirmed by mass spectrometry ionization conditions APCI + in a 40 minute gradient measurement of 20% B-100% B at a flow rate of 1 mL / min and an injection volume of 0.2 ⁇ L, and then V1, V2, and V3
  • the purity was calculated by NMR and used as a standard sample.
  • LC ⁇ LCMS analysis can be performed by the following operation.
  • LCMS-8040 product name
  • LCMS-8050 product name
  • Shimadzu Corporation is used, and the standard sample obtained as described above is measured in the APCI positive MS mode.
  • FIGS. 1 and FIG. 2 symbols such as “S1V1”, “V1”, and “S2” represent the number of 1,2-bonded butadiene-derived units and the number of styrene-derived units of the compound showing the calibration curve.
  • the symbol “S1V1” indicates that the compound has one 1,2-bonded butadiene-derived unit and one styrene-derived unit.
  • the calibration curve differs depending on the number of styrene-derived units and the number of 1,2-bonded butadiene-derived units contained in the compound.
  • the amount of change in the slope of the calibration curve when the number of styrene chains increases by one from the calibration curve of S1 to S3 is calculated, and the chain component Sn ( The slope of n ⁇ 4) was estimated.
  • the slope of the calibration curve was estimated by the same method. The estimated slope of the calibration curve is shown in FIG.
  • the detection result of the mass spectrometer was analyzed using the analysis software ChromSquare (manufactured by Shimadzu Corporation), and the elution time of the primary column was represented by the horizontal axis, the elution time of the secondary column was represented by the vertical axis, and the signal intensity was represented by contour lines.
  • ChromSquare manufactured by Shimadzu Corporation
  • the elution time of the primary column was represented by the horizontal axis
  • the elution time of the secondary column was represented by the vertical axis
  • the signal intensity was represented by contour lines.
  • a two-dimensional chromatogram was created.
  • components with very short elution times such as S2V1 and S1V1 can be separated, so identification of the chain structure of styrene-derived units and 1,2-linked butadiene-derived units in the sample Became possible.
  • the styrene-butadiene copolymer component used in the present invention has (4) a vinyl content in the butadiene portion of 50% or more, preferably 50 to 65%.
  • a vinyl content in the butadiene portion is measured by 1 H-NMR.
  • the content of the styrene-butadiene copolymer component having the characteristics (1) to (4) is preferably 40% by weight or more, more preferably 60 to 100% by weight, and still more preferably 100% by weight of the diene rubber. 80 to 100% by weight.
  • the rubber composition can be excellent in tensile stress and tensile breaking strength.
  • the rubber composition of the present invention can contain a diene rubber other than the styrene-butadiene copolymer component that satisfies all the characteristics (1) to (4).
  • diene rubbers such as natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (low cis BR), high cis BR, high trans BR (trans bond content of butadiene part 70 to 95%), styrene -Isoprene copolymer rubber, butadiene-isoprene copolymer rubber, solution polymerization random styrene-butadiene-isoprene copolymer rubber, emulsion polymerization random styrene-butadiene-isoprene copolymer rubber, emulsion polymerization styrene-acrylonitrile-butadiene copolymer rubber, acrylonitrile- Examples thereof include butadiene copolymer rubber
  • the content of the other diene rubber is preferably 60% by weight or less, more preferably 0 to 40% by weight, and further preferably 0 to 20% by weight in 100% by weight of the diene rubber.
  • various physical properties such as wear resistance can be improved.
  • the rubber composition of the present invention contains a diene rubber and a reinforcing filler.
  • reinforcing fillers include carbon black, silica, clay, aluminum hydroxide, calcium carbonate, mica, talc, aluminum hydroxide, aluminum oxide, titanium oxide, barium sulfate, and other inorganic fillers, cellulose, lecithin, lignin, An organic filler such as a dendrimer can be exemplified. Among these, it is preferable to blend at least one selected from carbon black and silica.
  • the rubber composition By adding carbon black to the rubber composition, the rubber composition can have excellent wear resistance and rubber strength.
  • the blending amount of carbon black is not particularly limited, but is preferably 10 to 100 parts by weight, more preferably 25 to 80 parts by weight with respect to 100 parts by weight of the diene rubber.
  • carbon black such as furnace black, acetylene black, thermal black, channel black and graphite may be blended.
  • furnace black is preferable, and specific examples thereof include SAF, ISAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF, HAF-HS, HAF-LS, and FEF.
  • SAF SAF
  • ISAF ISAF-HS
  • ISAF-LS ISAF-LS
  • IISAF-HS IISAF-HS
  • HAF HAF-HS
  • HAF-LS HAF-LS
  • FEF FEF
  • the rubber composition can be made excellent in low heat build-up and wet grip performance.
  • the blending amount of silica is not particularly limited, but is preferably 10 to 150 parts by weight, more preferably 40 to 100 parts by weight with respect to 100 parts by weight of the diene rubber.
  • silica examples include silica usually used in rubber compositions for tire treads, such as wet silica, dry silica, carbon-silica (dual phase filler) with silica supported on the surface of carbon black, and silane coupling.
  • Silica treated with a compound reactive or compatible with both silica and rubber, such as an agent or polysiloxane, can be used.
  • wet method silica mainly containing hydrous silicic acid is preferable.
  • the compounding amount of the reinforcing filler containing silica and / or carbon black is preferably 10 to 150 parts by weight, more preferably 40 to 100 parts by weight with respect to 100 parts by weight of the diene rubber.
  • the blending amount of the reinforcing filler is less than 10 parts by weight, sufficient reinforcing performance cannot be obtained, and the rubber hardness and tensile strength at break are insufficient.
  • the blending amount of the reinforcing filler exceeds 150 parts by weight, the exothermic property increases and the tensile breaking elongation decreases. In addition, wear resistance is deteriorated and workability is also deteriorated.
  • the rubber composition of the present invention is preferable because the low heat build-up and wear resistance are further improved by blending a silane coupling agent with silica.
  • a silane coupling agent By compounding a silane coupling agent with silica, the dispersibility of silica is improved and the reinforcement with the diene rubber is further enhanced.
  • the silane coupling agent is preferably added in an amount of 2 to 20% by weight, more preferably 5 to 15% by weight, based on the amount of silica. When the compounding amount of the silane coupling agent is less than 2% by weight of the silica weight, the effect of improving the dispersibility of silica cannot be obtained sufficiently. On the other hand, if the silane coupling agent exceeds 20% by weight, the diene rubber component tends to be gelled, so that a desired effect cannot be obtained.
  • the silane coupling agent is not particularly limited, but a sulfur-containing silane coupling agent is preferable.
  • a sulfur-containing silane coupling agent is preferable.
  • 2006-249069 such as VP Si363 manufactured by the company, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropylbenzothiazolyl tetrasulfide, 3 -Triethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyl Tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, dimethoxy Methylsilylpropyl
  • the silane coupling agent is an organosilicon compound.
  • organosilicon compound polysiloxane, polysiloxane side chain, or both ends, one end, or both side chains and both ends are amino groups, epoxy groups, carbinol groups, or mercapto.
  • Silicone oil introduced with one or more organic groups such as a group, carboxyl group, hydrogen group, polyether group, phenol group, silanol group, acrylic group, methacryl group or long chain alkyl group, condensed with one or more organic silanes
  • Examples include silicone oligomers obtained by reaction. Of these, bis- (3-triethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) disulfide are preferable.
  • the rubber composition of the present invention includes a vulcanization or cross-linking agent, a vulcanization accelerator, an anti-aging agent, a processing aid, a plasticizer, a liquid polymer, a thermosetting resin, a thermoplastic, Various compounding agents generally used in rubber compositions for tire treads such as resins can be blended. Such a compounding agent can be kneaded by a general method to form a rubber composition, which can be used for vulcanization or crosslinking. The compounding amounts of these compounding agents can be the conventional general compounding amounts as long as they do not contradict the purpose of the present invention.
  • the tire tread rubber composition can be prepared by mixing the above-described components using a known rubber kneading machine such as a Banbury mixer, a kneader, or a roll.
  • the vulcanization or cross-linking agent is not particularly limited.
  • sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur; halogen such as sulfur monochloride and sulfur dichloride.
  • Sulfur peroxide organic peroxides such as dicumyl peroxide and ditertiary butyl peroxide.
  • sulfur is preferable, and powder sulfur is particularly preferable.
  • the mixing ratio of the vulcanizing agent is usually in the range of 0.1 to 15 parts by weight, preferably 0.3 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the diene rubber. is there.
  • the vulcanization accelerator is not particularly limited, and examples thereof include N-cyclohexyl-2-benzothiazylsulfenamide, Nt-butyl-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfuramide.
  • Sulfenamide vulcanization accelerators such as phenamide, N-oxyethylene-2-benzothiazole sulfenamide, N, N′-diisopropyl-2-benzothiazole sulfenamide; diphenyl guanidine, diortolyl guanidine, ortho Guanidine vulcanization accelerators such as trilbiguanidine; thiourea vulcanization accelerators such as diethylthiourea; thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and 2-mercaptobenzothiazole zinc salt; Tetramethylthiura Thiuram vulcanization accelerators such as monosulfide and tetramethylthiuram disulfide; Dithiocarbamate vulcanization accelerators such as sodium dimethyldithiocarbamate and zinc diethyldithiocarbamate; Sodium isopropylxanthate, zinc
  • xanthogenic acid-based vulcanization accelerators Of these, those containing a sulfenamide vulcanization accelerator are particularly preferred. These vulcanization accelerators are used alone or in combination of two or more.
  • the blending amount of the vulcanization accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the diene rubber.
  • the anti-aging agent is not particularly limited, but 2,2,4-trimethyl-1,2-dihydroquinoline polymer, p, p'-dioctyldiphenylamine, N, N'-diphenyl-p-phenylenediamine, N- Amine-based antioxidants such as phenyl-N'-1,3-dimethylbutyl-p-phenylenediamine, 2,6-di-t-butyl-4-methylphenol, 2,2'-methylenebis (4-methyl- 6-t-butylphenol) and the like. These anti-aging agents are used alone or in combination of two or more.
  • the blending amount of the antioxidant is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the diene rubber.
  • the processing aid is not particularly limited.
  • higher fatty acids such as stearic acid, higher fatty acid amides such as stearamide, aliphatic higher amines such as stearylamine, aliphatic higher alcohols such as stearyl alcohol, Fatty acid such as glycerin fatty acid ester and partial ester of polyhydric alcohol, fatty acid metal salt such as zinc stearate, zinc oxide and the like can be used.
  • the blending amount is appropriately selected, but the blending amount of the higher fatty acid, aliphatic higher amide, higher alcohol, and fatty acid metal salt is preferably 0.05 to 15 parts by weight, more preferably 100 parts by weight of the diene rubber. Is 0.5 to 5 parts by weight.
  • the compounding amount of zinc oxide is preferably 0.05 to 10 parts by weight, more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the diene rubber.
  • the plasticizer used as the compounding agent is not particularly limited, but for example, aroma-based, naphthenic, paraffinic, silicone-based extending oils are selected depending on the application.
  • the amount of the plasticizer used is usually in the range of 1 to 150 parts by weight, preferably 2 to 100 parts by weight, and more preferably 3 to 60 parts by weight per 100 parts by weight of the diene rubber. When the amount of the plasticizer used is in this range, the dispersing effect of the reinforcing agent, tensile strength, wear resistance, heat resistance and the like are balanced to a high value.
  • other plasticizers include diethylene glycol, polyethylene glycol, and silicone oil.
  • thermosetting resin is not particularly limited, and examples thereof include resorcin-formaldehyde resin, phenol-formaldehyde resin, urea-formaldehyde resin, melamine-formaldehyde resin, phenol derivative-formaldehyde resin, and specifically m-3.
  • thermosetting resins that cure or become high molecular weight by heating or by giving heat and methylene donor, other guanamine resins, diallyl phthalate
  • thermosetting resins include resins, vinyl ester resins, phenol resins, unsaturated polyester resins, furan resins, polyimide resins, polyurethane resins, melamine resins, urea resins, and epoxy resins.
  • the thermoplastic resin is not particularly limited.
  • a polystyrene resin a polyethylene resin, a polypropylene resin, a polyester resin, a polyamide resin, a polycarbonate resin, a polyurethane resin, a polysulfone resin
  • examples include polyphenylene ether resins and polyphenylene sulfide resins.
  • aromatic hydrocarbon resins such as styrene- ⁇ -methylstyrene resin, indene-isopropenyltoluene resin, coumarone-indene resin, dicyclopentadiene resin, main raw materials are 1,3-pentadiene, pentene, methylbutene, etc.
  • hydrocarbon resins such as petroleum resins, alkylphenol resins, modified phenol resins, terpene phenol resins, terpene resins, and aromatic modified terpene resins.
  • the rubber composition of the present invention has improved the tensile stress and tensile breaking strength to the conventional levels, the handling stability and fracture resistance of the pneumatic tire can be improved to the conventional levels.
  • the rubber composition of the present invention is a cross-section of a cap tread portion, an under tread portion, a sidewall portion, a bead filler portion of a pneumatic tire, a cord covering rubber such as a carcass layer, a belt layer, and a belt cover layer, and a run flat tire. It can be suitably used for a crescent-shaped side reinforcing rubber layer, a rim cushion portion, and the like.
  • 11 kinds of styrene-butadiene copolymers were blended at the blending ratios shown in Tables 1 and 2 to prepare styrene-butadiene copolymer components, and (1) bound styrene content (% by weight), (2) Mol% of ozonolysis component V1 containing one 1,2-bonded butadiene-derived unit, (3) mol of ozonolysis component S2V1 containing two styrene-derived units and one 1,2-bonded butadiene-derived unit %, And (4) the vinyl content (% by weight) of the butadiene portion.
  • the (1) bound styrene content of the styrene-butadiene copolymer component and (4) the vinyl content of the butadiene moiety were measured by 1 H-NMR.
  • the conditions for ozonolysis of the styrene-butadiene copolymer component were as described above.
  • the mole% of component S2V1 was measured based on the conditions described above for LC ⁇ LCMS analysis.
  • the compounding agent shown in Table 3 is a common compounding, and 15 kinds of blends of styrene-butadiene copolymer components (blends of a plurality of styrene-butadiene copolymers) and other diene rubbers shown in Tables 1 and 2 are used.
  • the rubber compositions (Examples 1 to 10 and Comparative Examples 1 to 5) were mixed with components other than sulfur and a vulcanization accelerator for 6 minutes using a 1.7 L closed Banbury mixer, and the mixture was removed from the mixer at 150 ° C. After release, it was cooled to room temperature.
  • a rubber composition was prepared by mixing sulfur and a vulcanization accelerator with an open roll.
  • the obtained rubber composition was vulcanized at 160 ° C. for 30 minutes using a predetermined mold to prepare a vulcanized rubber test piece.
  • the tensile stress and tensile breaking strength were evaluated by the following measuring methods.
  • NS116 NS116 manufactured by Nippon Zeon Co., Ltd., bound styrene content 20.9% by weight, vinyl content 63.8%, non-oil-extended product E581: Asahi Kasei Chemicals E581, bound styrene content 35.6% by weight, An oil-extended product having a vinyl content of 41.3%, an SBR of 100 parts by weight and an oil component of 37.5 parts by weight, NS460: NS460 manufactured by Nippon Zeon Co., Ltd., a bound styrene content of 25.1% by weight, and a vinyl content of 62.
  • HPR850 HPR850 manufactured by JSR, bound styrene content is 27.0% by weight, vinyl content is 58.8%, non-oil Exhibit / Y031: Asaprene Y031 manufactured by Asahi Kasei Chemicals Co., Ltd., bound styrene content 27.1% by weight, vinyl content 57.5%, non-oil exhibition product / Toughden 1834: Asahi Kasei Chemicals Co., Ltd. Toughden 1834, combined styrene content 18.
  • Vulcanization accelerator-1 Sunseller CM-PO (CZ) manufactured by Sanshin Chemical Co., Ltd.
  • Vulcanization accelerator-2 Sunseller DG (DPG) manufactured by Sanshin Chemical Co., Ltd.
  • the styrene-butadiene copolymer component has an ozonolysis component V1 containing one 1,2-bonded butadiene-derived unit in an amount of 25 mol% or more. Inferior.
  • the styrene-butadiene copolymer component contained 25 mol% or more of an ozonolysis component V1 containing one 1,2-bonded butadiene-derived unit, two styrene-derived units, and 1, Since the ozonolysis component S2V1 containing one 2-bonded butadiene-derived unit is 5 mol% or more and the vinyl content is less than 50%, the 100% tensile stress is inferior.
  • the rubber composition of Comparative Example 5 is inferior in 100% tensile stress because the styrene-butadiene copolymer component has a vinyl content of less than 50%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

Provided is a rubber composition with improved tensile stress and tensile stress at break compared to previous levels. The diene rubber composition contains a reinforcing filler and a diene rubber. The diene rubber includes a styrene-butadiene copolymer component comprising at least one styrene-butadiene copolymer and satisfying the following requirements: (1) bound styrene content is 5-50% by weight, (2) of the components obtained by ozonolysis, from among a total of 100 mol.% of decomposition components including 1,2-conjugated butadiene-derived units and/or styrene-derived units, decomposition component V1 which contains one 1,2-conjugated butadiene-derived unit accounts for less than 25 mol.%, (3) of the components obtained by ozonolysis, among a total of 100 mol.% of decomposition components including 1,2-conjugated butadiene-derived units and styrene-derived units, decomposition component S2V1 which includes two styrene-derived units and one 1,2-conjugated butadiene-derived unit accounts for less than 5 mol.%, (4) the vinyl content of the butadiene moiety is at least 50%.

Description

ゴム組成物およびそれを用いた空気入りタイヤRubber composition and pneumatic tire using the same
 本発明は、引張り応力および引張破断強度を従来レベル以上に向上するようにしたゴム組成物およびそれを用いた空気入りタイヤに関する。 The present invention relates to a rubber composition in which tensile stress and tensile strength at break are improved to the conventional levels and a pneumatic tire using the rubber composition.
 近年、空気入りタイヤには、高いウェットグリップ性能および低転がり抵抗性が求められている。これらを満たすためタイヤのキャップトレッドを構成するゴム組成物に、スチレン-ブタジエン共重合体やシリカ等の補強性充填剤を配合する技術が知られている。更にゴム組成物の耐摩耗性、ゴム硬度や反発弾性率を改良するため、例えばポリブタジエンや反応性が高いシリカを配合することが提案されているが、この場合ゴム強度が低下したり加工性が悪化するなどの課題があった。 In recent years, pneumatic tires are required to have high wet grip performance and low rolling resistance. In order to satisfy these requirements, a technique is known in which a reinforcing filler such as a styrene-butadiene copolymer or silica is blended with a rubber composition constituting a cap tread of a tire. Furthermore, in order to improve the wear resistance, rubber hardness and impact resilience of the rubber composition, it has been proposed to blend, for example, polybutadiene or highly reactive silica. In this case, however, the rubber strength is reduced or the workability is reduced. There were problems such as worsening.
 特許文献1は、スチレン単位の配列を特定したスチレン-ブタジエン共重合体およびシリカを配合したゴム組成物をトレッドに用いた空気入りタイヤが、耐ウェットスキッド性、転がり抵抗性および耐摩耗性を同時に満足することを記載する。しかしこのゴム組成物は、引張り応力および引張破断強度を必ずしも十分に改良することができないため需要者の要求を十分に満足させることができなかった。 In Patent Document 1, a pneumatic tire using a rubber composition blended with a styrene-butadiene copolymer having a specific arrangement of styrene units and silica as a tread has a wet skid resistance, a rolling resistance and an abrasion resistance at the same time. State that you are satisfied. However, this rubber composition cannot sufficiently improve the tensile stress and the tensile strength at break, so that it cannot satisfy the demands of consumers.
 特許文献2は、スチレン-ブタジエン共重合体のオゾン分解物をゲルパーミエーションクロマトグラフ(GPC)により分析し、全スチレン量に対する長連鎖スチレンブロックの含有割合、スチレン単位が1個の単連鎖の含有割合を測定することを記載する。そしてスチレン-ブタジエン共重合体中の全スチレン含量に対し、長連鎖スチレンブロックが5重量%以下、スチレン単位が1個の単連鎖が50重量%以上であり、および全スチレンの含量がスチレン-ブタジエン共重合体の10~30重量%であるスチレン-ブタジエン共重合体を記載する。しかし、このスチレン-ブタジエン共重合体からなるゴム組成物は、そのゴム強度、引張り応力および引張破断強度を必ずしも十分に改良することはできなかった。また特許文献2のGPCによる分析は、スチレン-ブタジエン共重合体のオゾン分解物をスチレン単位の個数およびスチレン単位のみからなる連鎖に基づき分別することはできても、オゾン分解物中のブタジエンの1,2-結合由来単位の個数を識別することができなった。さらに特許文献2のGPCによる分析は、分解物中のスチレン量の全スチレン量に対する比を算出するものであり、各分解物の量を正確に定量化するものではなかった。 In Patent Document 2, the ozonolysis product of a styrene-butadiene copolymer is analyzed by gel permeation chromatography (GPC), the content ratio of the long chain styrene block to the total amount of styrene, the content of a single chain with one styrene unit. It is described that the ratio is measured. In addition, the long chain styrene block is 5% by weight or less, the single chain having one styrene unit is 50% by weight or more, and the total styrene content is styrene-butadiene based on the total styrene content in the styrene-butadiene copolymer. A styrene-butadiene copolymer is described that is 10-30% by weight of the copolymer. However, the rubber composition comprising this styrene-butadiene copolymer has not always been able to sufficiently improve the rubber strength, tensile stress and tensile breaking strength. The analysis by GPC in Patent Document 2 shows that the ozonolysis product of the styrene-butadiene copolymer can be fractionated based on the number of styrene units and a chain consisting only of styrene units, but 1 of butadiene in the ozonization product. The number of units derived from 2-bond cannot be identified. Further, the analysis by GPC in Patent Document 2 calculates the ratio of the amount of styrene in the decomposed product to the total amount of styrene, and does not accurately quantify the amount of each decomposed product.
日本国特開平03-239737号公報Japanese Patent Laid-Open No. 03-239737 日本国特開昭57-179212号公報Japanese Unexamined Patent Publication No. 57-179212
 本発明の目的は、引張り応力および引張破断強度を従来レベル以上に向上するようにしたゴム組成物を提供することにある。 An object of the present invention is to provide a rubber composition in which the tensile stress and tensile strength at break are improved to the conventional levels or more.
 上記目的を達成する本発明のゴム組成物は、少なくとも1種のスチレン-ブタジエン共重合体を含むジエン系ゴムおよび補強性充填剤からなるゴム組成物であって、前記少なくとも1種のスチレン-ブタジエン共重合体からなるスチレン-ブタジエン共重合体成分が、下記(1)~(4)の特性を有することを特徴とする。
(1)結合スチレンの含量が5~50重量%
(2)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2-結合したブタジエン由来単位を含む分解成分の合計100モル%中、1,2-結合したブタジエン由来単位を1つ含む分解成分V1が25モル%未満
(3)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2-結合したブタジエン由来単位を含む分解成分の合計100モル%中、スチレン由来単位を2つおよび1,2-結合したブタジエン由来単位を1つ含む分解成分S2V1が5モル%未満
(4)ブタジエン部分のビニル含有量が50%以上
The rubber composition of the present invention that achieves the above object is a rubber composition comprising a diene rubber containing at least one styrene-butadiene copolymer and a reinforcing filler, wherein the at least one styrene-butadiene is used. The styrene-butadiene copolymer component comprising a copolymer has the following characteristics (1) to (4).
(1) The content of bound styrene is 5 to 50% by weight
(2) Among the components obtained by ozonolysis, one 1,2-bonded butadiene-derived unit is included in 100 mol% of the total of decomposition components containing styrene-derived units and / or 1,2-bonded butadiene-derived units. The decomposition component V1 contained is less than 25 mol%. (3) Among the components obtained by ozonolysis, styrene-derived units in a total of 100 mol% of decomposition components containing styrene-derived units and / or 1,2-bonded butadiene-derived units The decomposition component S2V1 containing two benzene and one 1,2-bonded butadiene-derived unit is less than 5 mol%. (4) The vinyl content in the butadiene portion is 50% or more.
 本発明のゴム組成物は、上記構成の通り(1)結合スチレンの含量が5~50重量%、(2)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2-結合したブタジエン由来単位を含む分解成分の合計100モル%中、1,2-結合したブタジエン由来単位を1つ含む分解成分V1が25モル%未満、(3)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2-結合したブタジエン由来単位を含む分解成分の合計100モル%中、スチレン由来単位を2つおよび1,2-結合したブタジエン由来単位を1つ含む分解成分S2V1が5モル%未満、(4)ブタジエン部分のビニル含有量が50%以上を満たす、スチレン-ブタジエン共重合体成分からなるジエン系ゴムおよび補強性充填剤を含むようにしたので、引張り応力および引張破断強度を従来レベル以上に向上することができる。 As described above, the rubber composition of the present invention has (1) a content of bound styrene of 5 to 50% by weight, and (2) among components obtained by ozonolysis, styrene-derived units and / or 1,2-bonded. Of the total 100 mol% of the decomposition components containing butadiene-derived units, the decomposition component V1 containing one 1,2-bonded butadiene-derived unit is less than 25 mol%. (3) Of the components obtained by ozonolysis, derived from styrene 5 mol of decomposition component S2V1 containing two styrene-derived units and one 1,2-bonded butadiene-derived unit in a total of 100 mol% of decomposition components containing units and / or 1,2-bonded butadiene-derived units (4) Diene rubber composed of a styrene-butadiene copolymer component and reinforcing filling, wherein the vinyl content of the butadiene portion is 50% or more. Since to include, a tensile stress and tensile strength at break can be improved to a conventional level or higher.
 前記ジエン系ゴムは、上述したスチレン-ブタジエン共重合体を除く他のジエン系ゴムを少なくとも1種含むとよい。また補強性充填剤は、シリカ、カーボンブラックから選ばれる少なくとも1種であるとよい。 The diene rubber may contain at least one diene rubber other than the above-described styrene-butadiene copolymer. The reinforcing filler may be at least one selected from silica and carbon black.
 上述したゴム組成物は空気入りタイヤに使用することが好適であり、特にキャップトレッドに使用するとよい。この空気入りタイヤは、引張り応力および引張破断強度が高いゴム組成物からなるので操縦安定性および耐破壊性が従来レベル以上に優れる。 The rubber composition described above is suitable for use in pneumatic tires, particularly for cap treads. Since this pneumatic tire is made of a rubber composition having high tensile stress and high tensile breaking strength, steering stability and fracture resistance are superior to conventional levels.
図1は、標準試料の濃度とイオン強度の相関を示す検量線の一例である。FIG. 1 is an example of a calibration curve showing the correlation between the concentration of the standard sample and the ionic strength. 図2は、標準試料の濃度とイオン強度の相関を示す別の検量線の一例である。FIG. 2 is an example of another calibration curve showing the correlation between the concentration of the standard sample and the ionic strength. 図3は、連鎖成分と検量線の傾きの関係および推定された検量線の傾きを示す説明図である。FIG. 3 is an explanatory diagram showing the relationship between the chain component and the slope of the calibration curve and the estimated slope of the calibration curve. 図4は、別の連鎖成分と検量線の傾きの関係および推定された検量線の傾きを示す説明図である。FIG. 4 is an explanatory diagram showing a relationship between another chain component and the slope of the calibration curve and the estimated slope of the calibration curve. 図5は、さらに別の連鎖成分と検量線の傾きの関係および推定された検量線の傾きを示す説明図である。FIG. 5 is an explanatory diagram showing the relationship between yet another chain component and the slope of the calibration curve and the estimated slope of the calibration curve. 図6は、本発明のゴム組成物を使用した空気入りタイヤの実施形態の一例を示すタイヤ子午線方向の部分断面図である。FIG. 6 is a partial cross-sectional view in the tire meridian direction showing an example of an embodiment of a pneumatic tire using the rubber composition of the present invention.
 図6は、ゴム組成物を使用した空気入りタイヤの実施形態の一例を示す断面図である。空気入りタイヤは、トレッド部1、サイドウォール部2、ビード部3からなる。 FIG. 6 is a cross-sectional view showing an example of an embodiment of a pneumatic tire using a rubber composition. The pneumatic tire includes a tread portion 1, a sidewall portion 2, and a bead portion 3.
 図6において、左右のビード部3間にタイヤ径方向に延在する補強コードをタイヤ周方向に所定の間隔で配列してゴム層に埋設した2層のカーカス層4が延設され、その両端部がビード部3に埋設したビードコア5の周りにビードフィラー6を挟み込むようにしてタイヤ軸方向内側から外側に折り返されている。カーカス層4の内側にはインナーライナー層7が配置されている。トレッド部1のカーカス層4の外周側には、タイヤ周方向に傾斜して延在する補強コードをタイヤ軸方向に所定の間隔で配列してゴム層に埋設した2層のベルト層8が配設されている。この2層のベルト層8の補強コードは層間でタイヤ周方向に対する傾斜方向を互いに逆向きにして交差している。ベルト層8の外周側には、ベルトカバー層9が配置されている。このベルトカバー層9の外周側に、トレッド部1がトレッドゴム層10a,10bにより形成される。トレッドゴム層10aおよび10bは、キャップトレッドおよびベーストレッドであり、好ましくは本発明のゴム組成物により構成することができる。 In FIG. 6, two carcass layers 4 in which reinforcing cords extending in the tire radial direction are arranged at predetermined intervals in the tire circumferential direction between the left and right bead portions 3 and embedded in the rubber layer are extended. The portion is folded back from the inner side in the tire axial direction so as to sandwich the bead filler 6 around the bead core 5 embedded in the bead portion 3. An inner liner layer 7 is disposed inside the carcass layer 4. On the outer peripheral side of the carcass layer 4 of the tread portion 1, there are arranged two belt layers 8 in which reinforcing cords inclined and extending in the tire circumferential direction are arranged at predetermined intervals in the tire axial direction and embedded in the rubber layer. It is installed. The reinforcing cords of the two belt layers 8 intersect each other with the inclination directions with respect to the tire circumferential direction being opposite to each other. A belt cover layer 9 is disposed on the outer peripheral side of the belt layer 8. On the outer peripheral side of the belt cover layer 9, a tread portion 1 is formed by tread rubber layers 10a and 10b. The tread rubber layers 10a and 10b are a cap tread and a base tread, and can preferably be constituted by the rubber composition of the present invention.
 本発明のゴム組成物は、ジエン系ゴムおよび補強性充填剤からなる。ジエン系ゴムは、少なくとも1種のスチレン-ブタジエン共重合体を必ず含む。本明細書において、少なくとも1種のスチレン-ブタジエン共重合体からなるポリマー成分を「スチレン-ブタジエン共重合体成分」ということがある。本発明において、スチレン-ブタジエン共重合体成分は、以下の(1)~(4)の特性をすべて満たす。
(1)結合スチレンの含量が5~50重量%
(2)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2-結合したブタジエン由来単位を含む分解成分の合計100モル%中、1,2-結合したブタジエン由来単位を1つ含む分解成分V1が25モル%未満
(3)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2-結合したブタジエン由来単位を含む分解成分の合計100モル%中、スチレン由来単位を2つおよび1,2-結合したブタジエン由来単位を1つ含む分解成分S2V1が5モル%未満
(4)ブタジエン部分のビニル含有量が50%以上
The rubber composition of the present invention comprises a diene rubber and a reinforcing filler. The diene rubber necessarily contains at least one styrene-butadiene copolymer. In the present specification, a polymer component comprising at least one styrene-butadiene copolymer may be referred to as a “styrene-butadiene copolymer component”. In the present invention, the styrene-butadiene copolymer component satisfies all the following characteristics (1) to (4).
(1) The content of bound styrene is 5 to 50% by weight
(2) Among the components obtained by ozonolysis, one 1,2-bonded butadiene-derived unit is included in 100 mol% of the total of decomposition components containing styrene-derived units and / or 1,2-bonded butadiene-derived units. The decomposition component V1 contained is less than 25 mol%. (3) Among the components obtained by ozonolysis, styrene-derived units in a total of 100 mol% of decomposition components containing styrene-derived units and / or 1,2-bonded butadiene-derived units The decomposition component S2V1 containing two benzene and one 1,2-bonded butadiene-derived unit is less than 5 mol%. (4) The vinyl content in the butadiene portion is 50% or more.
 スチレン-ブタジエン共重合体成分が単独のスチレン-ブタジエン共重合体で構成されるとき、そのスチレン-ブタジエン共重合体は上述した(1)~(4)の特性をすべて満たす必要がある。 When the styrene-butadiene copolymer component is composed of a single styrene-butadiene copolymer, the styrene-butadiene copolymer needs to satisfy all the characteristics (1) to (4) described above.
 またスチレン-ブタジエン共重合体成分が、複数のスチレン-ブタジエン共重合体のブレンド物で構成されるとき、スチレン-ブタジエン共重合体成分は全体として上述した(1)~(4)の特性をすべて満たす必要がある。スチレン-ブタジエン共重合体成分が全体として(1)~(4)の特性をすべて満たす限り、ブレンド物を構成する各スチレン-ブタジエン共重合体は、夫々が上述した(1)~(4)の特性をすべて満たしても、満たさなくてもよい。好ましくはブレンド物を構成するスチレン-ブタジエン共重合体が夫々(1)~(4)の特性をすべて満たすとよい。スチレン-ブタジエン共重合体成分を、(1)~(4)の特性をすべて満たす2種以上のスチレン-ブタジエン共重合体で構成することにより、ゴム組成物の引張り応力および引張破断強度を優れたものにすることができる。なお本明細書において、引張り応力とはJIS K6251に準拠した引張り試験における100%伸長時の引張り応力をいうものとする。 Further, when the styrene-butadiene copolymer component is composed of a blend of a plurality of styrene-butadiene copolymers, the styrene-butadiene copolymer component as a whole has all of the characteristics (1) to (4) described above. It is necessary to satisfy. As long as the styrene-butadiene copolymer component as a whole satisfies all of the properties (1) to (4), each styrene-butadiene copolymer constituting the blend has the above-mentioned (1) to (4). It may or may not satisfy all the characteristics. Preferably, the styrene-butadiene copolymer constituting the blend satisfies all the properties (1) to (4). By constituting the styrene-butadiene copolymer component with two or more styrene-butadiene copolymers satisfying all the characteristics (1) to (4), the rubber composition has excellent tensile stress and tensile breaking strength. Can be a thing. In addition, in this specification, a tensile stress shall mean the tensile stress at the time of 100% elongation in the tensile test based on JISK6251.
 本発明において、スチレン-ブタジエン共重合体成分は、(1)結合スチレンの含有量が5~50重量%、好ましくは10~40重量%である。スチレン-ブタジエン共重合体成分のスチレン含有量をこのような範囲内にすることにより、ゴム組成物の引張り応力および引張破断強度を良好にすることができる。スチレン-ブタジエン共重合体成分のスチレン含有量が5重量%未満であるとウェットスキッド特性、耐摩耗性、引張り応力および引張破断強度が悪化する。スチレン-ブタジエン共重合体成分のスチレン含有量が50重量%を超えるとスチレン-ブタジエン共重合体成分のガラス転移温度(Tg)が上昇し、粘弾性特性のバランスが悪くなり、発熱性が大きくなる。すなわちヒステリシスロスとウェットスキッド特性のバランスが悪化する。なおスチレン-ブタジエン共重合体成分のスチレン含有量は1H-NMRにより測定するものとする。 In the present invention, the styrene-butadiene copolymer component has (1) a content of bound styrene of 5 to 50% by weight, preferably 10 to 40% by weight. By setting the styrene content of the styrene-butadiene copolymer component within such a range, the tensile stress and tensile strength at break of the rubber composition can be improved. When the styrene content of the styrene-butadiene copolymer component is less than 5% by weight, wet skid characteristics, wear resistance, tensile stress and tensile breaking strength are deteriorated. When the styrene content of the styrene-butadiene copolymer component exceeds 50% by weight, the glass transition temperature (Tg) of the styrene-butadiene copolymer component rises, the balance of viscoelastic properties is deteriorated, and the heat generation is increased. . That is, the balance between hysteresis loss and wet skid characteristics deteriorates. The styrene content of the styrene-butadiene copolymer component is measured by 1 H-NMR.
 本発明で使用するスチレン-ブタジエン共重合体成分は、オゾン分解により得られる分解成分を特性が異なるカラム2本を用いて液体クロマトグラムによる分別を2段階で行った後、質量分析計により測定する(以下、「LC×LCMS分析」と記すことがある)。このLC×LCMS分析によりオゾン分解成分の組成および量をより詳しく分析することができ、オゾン分解成分中のスチレン由来単位に加え、ブタジエンの1,2-結合由来単位を定量化することができる。 The styrene-butadiene copolymer component used in the present invention is measured by a mass spectrometer after the decomposition component obtained by ozonolysis is separated by liquid chromatogram in two stages using two columns having different characteristics. (Hereafter, it may be described as “LC × LCMS analysis”). The composition and amount of the ozonolysis component can be analyzed in more detail by this LC × LCMS analysis, and in addition to the styrene-derived unit in the ozonolysis component, the 1,2-bond-derived unit of butadiene can be quantified.
 スチレン-ブタジエン共重合体は、スチレンおよびブタジエンの共重合体であり、スチレンの繰り返し単位(スチレン単位)とブタジエンの繰り返し単位(ブタジエン単位)からなる。ブタジエン単位は、ブタジエンが1,2-結合で重合する部分(側鎖にビニル基を有するエチレンの繰り返し単位)および1,4-結合で重合する部分(2-ブチレンの2価基の繰り返し単位)からなる。また1,4-結合で重合する部分は、trans-2-ブチレン構造の繰り返し単位およびcis-2-ブチレン構造の繰り返し単位からなる。 The styrene-butadiene copolymer is a copolymer of styrene and butadiene, and includes a styrene repeating unit (styrene unit) and a butadiene repeating unit (butadiene unit). The butadiene unit consists of a portion where butadiene is polymerized with 1,2-bonds (a repeating unit of ethylene having a vinyl group in the side chain) and a portion where butadiene is polymerized with a 1,4-bond (a repeating unit of 2-butylene divalent groups). Consists of. The portion polymerized by 1,4-bond is composed of a repeating unit of trans-2-butylene structure and a repeating unit of cis-2-butylene structure.
 スチレン-ブタジエン共重合体をオゾン分解すると1,4-結合で重合したブタジエン部分が開裂する。また1,2-結合で重合したブタジエン部分の側鎖のビニル基が酸化されてヒドロキシメチル基になる。これによりスチレン-ブタジエン共重合体は、隣接する2つの1,4-結合で重合したブタジエン単位に挟まれた繰り返し単位がオゾン分解成分として生成する。例えば主鎖中1つだけの1,2-結合したブタジエン単位が2つの1,4-結合で重合したブタジエン単位に挟まれた部分がオゾン分解すると下記一般式(I)で表される化合物が生成する。本明細書において、一般式(I)で表される化合物を「オゾン分解成分V1」という。なお本明細書において、隣接する単位と連鎖する方向は、頭-尾結合、頭-頭結合のどちらでもよく、化学式であらわされる頭-尾結合/頭-頭結合は相互に置き換えられるものとする。
Figure JPOXMLDOC01-appb-C000001
When the styrene-butadiene copolymer is subjected to ozonolysis, the butadiene portion polymerized by 1,4-bonds is cleaved. Further, the vinyl group in the side chain of the butadiene moiety polymerized by 1,2-bond is oxidized to a hydroxymethyl group. Thereby, in the styrene-butadiene copolymer, a repeating unit sandwiched between two butadiene units polymerized by two adjacent 1,4-bonds is generated as an ozonolysis component. For example, when a portion where only one 1,2-bonded butadiene unit in the main chain is sandwiched by two butadiene units polymerized by two 1,4-bonds is subjected to ozonolysis, a compound represented by the following general formula (I) is obtained. Generate. In this specification, the compound represented by the general formula (I) is referred to as “ozone decomposition component V1”. In this specification, the direction of linking with adjacent units may be head-to-tail bond or head-to-head bond, and the head-to-tail bond / head-to-head bond represented by the chemical formula shall be replaced with each other. .
Figure JPOXMLDOC01-appb-C000001
 また主鎖中、2つのスチレン単位および1つの1,2-結合で重合したブタジエン単位が隣接する1,4-結合で重合したブタジエン単位に挟まれた部分がオゾン分解すると下記一般式(II)で表される化合物が生成する。本明細書において2つのスチレン由来単位および1つの1,2-結合で重合したブタジエン由来単位からなる分解成分を「オゾン分解成分S2V1」という。
Figure JPOXMLDOC01-appb-C000002
In addition, when the portion of the main chain sandwiched by two styrene units and one butadiene unit polymerized by 1,2-bond and adjacent butadiene unit polymerized by 1,4-bond is decomposed by ozonolysis, the following general formula (II) Is produced. In this specification, a decomposition component composed of two styrene-derived units and one butadiene-derived unit polymerized by 1,2-bond is referred to as “ozone decomposition component S2V1”.
Figure JPOXMLDOC01-appb-C000002
 なお上記一般式(II)で表される化合物は、2つのスチレン由来単位と1つの1,2-結合したブタジエン由来単位の並び順、頭-尾結合/頭-頭結合およびその並び順から選ばれる少なくともの1つが異なる化合物をも包含するものとする。 The compound represented by the general formula (II) is selected from the order of arrangement of two styrene-derived units and one 1,2-bonded butadiene-derived unit, head-to-tail bond / head-to-head bond, and the order thereof. It is intended to include compounds wherein at least one of the different compounds.
 上記の通り隣接する2つの1,4-結合で重合したブタジエン単位に挟まれた部分は、オゾン分解により、スチレン由来単位および/または1,2-結合したブタジエン由来単位が両末端のヒドロキシエチル基で挟まれた分解成分として生成する。また1,4-結合で重合したブタジエン単位が2以上連続する繰り返し部分からは、1,4-ブタンジオールが生成する。 As described above, the portion sandwiched between two butadiene units polymerized by two adjacent 1,4-bonds is obtained by ozonolysis, wherein styrene-derived units and / or 1,2-bonded butadiene-derived units are hydroxyethyl groups at both ends. It is generated as a decomposition component sandwiched between. Further, 1,4-butanediol is formed from a repeating portion in which two or more butadiene units polymerized by 1,4-bonds are continuous.
 本発明で使用するスチレン-ブタジエン共重合体成分は、オゾン分解により得られる分解成分をLC×LCMS分析で測定したとき、(2)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2-結合したブタジエン由来単位を含む分解成分の合計100モル%中、1,2-結合したブタジエン由来単位を1つ含む分解成分V1が25モル%未満である。1,2-結合したブタジエン由来単位を1つ含む分解成分とは、上述した通り1,2-結合したブタジエン由来単位を1つだけ含むオゾン分解成分V1をいう。オゾン分解成分をLC×LCMS分析で測定することにより、各分解成分のモル数が求められる。次にオゾン分解により生成したスチレン由来単位および/または1,2-結合したブタジエン由来単位を含む分解成分のモル数の合計を算出しこれをオゾン分解成分100モル%とする。1,2-結合したブタジエン由来単位を1つ含む分解成分V1の量は、オゾン分解成分100モル%中、25モル%未満であり、好ましくは15モル%以上25モル%未満であるとよい。オゾン分解成分V1を25モル%未満にすることによりゴム組成物の引張破断強度を優れたものにすることができる。 When the decomposition component obtained by ozonolysis is measured by LC × LCMS analysis, the styrene-butadiene copolymer component used in the present invention is (2) among the components obtained by ozonolysis and styrene-derived units and / or 1 The decomposition component V1 containing one 1,2-bonded butadiene-derived unit is less than 25 mol% in a total of 100 mol% of the decomposition components containing 1,2-bonded butadiene-derived units. The decomposition component containing one 1,2-bonded butadiene-derived unit means the ozonolysis component V1 containing only one 1,2-bonded butadiene-derived unit as described above. By measuring the ozonolysis component by LC × LCMS analysis, the number of moles of each decomposition component is determined. Next, the total number of moles of the decomposition component containing the styrene-derived unit and / or 1,2-bonded butadiene-derived unit produced by ozonolysis is calculated, and this is defined as 100 mol% of the ozonolysis component. The amount of the decomposition component V1 containing one 1,2-bonded butadiene-derived unit is less than 25 mol%, preferably 15 mol% or more and less than 25 mol%, in 100 mol% of the ozonolysis component. By making the ozonolysis component V1 less than 25 mol%, the tensile strength at break of the rubber composition can be made excellent.
 また上記に加え本発明で使用するスチレン-ブタジエン共重合体成分は、(3)オゾン分解により得られる分解成分をLC×LCMS分析で測定したとき、スチレン由来単位を2つおよび1,2-結合したブタジエン由来単位を1つ含む分解成分S2V1が5モル%未満、好ましくは2モル%以上5モル%未満である。ここでオゾン分解成分S2V1は、上述した通り2つのスチレン由来単位および1つの1,2-結合したブタジエン由来単位だけを含むオゾン分解成分であり、前記一般式(II)で表される分解成分に相当する。オゾン分解成分をLC×LCMS分析で測定することにより、一般式(II)で表される分解成分のモル数が求められる。スチレン由来単位および/または1,2-結合したブタジエン由来単位を含む分解成分のモル数の合計を算出しこれをオゾン分解成分100モル%とするとき、このスチレン由来単位を2つおよび1,2-結合したブタジエン由来単位を1つからなるオゾン分解成分S2V1は5モル%未満であることが必要である。こうすることによりゴム組成物の引張り応力を優れたものにすることができる。 In addition to the above, the styrene-butadiene copolymer component used in the present invention includes (3) two styrene-derived units and 1,2-bond when the decomposition component obtained by ozonolysis is measured by LC × LCMS analysis. The decomposition component S2V1 containing one butadiene-derived unit is less than 5 mol%, preferably 2 mol% or more and less than 5 mol%. Here, the ozonolysis component S2V1 is an ozonolysis component containing only two styrene-derived units and one 1,2-bonded butadiene-derived unit as described above, and the ozonolysis component S2V1 includes the decomposition component represented by the general formula (II). Equivalent to. By measuring the ozonolysis component by LC × LCMS analysis, the number of moles of the decomposition component represented by the general formula (II) is obtained. When the total number of moles of the decomposition component containing styrene-derived units and / or 1,2-bonded butadiene-derived units is calculated to be 100 mol% of the ozonolysis component, the styrene-derived units are divided into two and 1, 2, -The ozonolysis component S2V1 consisting of one unit of butadiene-derived units must be less than 5 mol%. By doing so, the tensile stress of the rubber composition can be made excellent.
 本明細書において、スチレン-ブタジエン共重合体成分をオゾン分解する方法およびオゾン分解物の測定は、田中ら〔Polymer, 22, 1721(1981)〕および〔Macromolecules, 16, 1925(1983)〕に記載された方法に従って行うものとする。なお田中らに記載された解析方法では、スチレン由来単位を1つだけ含むオゾン分解成分S1および1つのスチレン由来単位と1以上の1,2-結合したブタジエン由来単位を含むオゾン分解成分S1Vn(nは1以上の整数)の合計を「スチレン単連鎖」と呼んでいる。これに対し本発明は、上述した通り、スチレン由来単位を1つだけ含むオゾン分解成分S1および2つのスチレン由来単位と1つの1,2-結合したブタジエン由来単位を含むオゾン分解成分S2V1のモル数に着目し、LC×LCMS分析により個別に解析を行うものである。 In this specification, the method for ozonolysis of styrene-butadiene copolymer components and the measurement of ozonolysis products are described in Tanaka et al. [Polymer, 22, 1721 (1981)] and [Macromolecules, 16, 1925 (1983)]. Shall be performed according to the method described. In the analysis method described by Tanaka et al., An ozonolysis component S1 containing only one styrene-derived unit and an ozonolysis component S1Vn (n containing one styrene-derived unit and one or more 1,2-bonded butadiene-derived units). Is an integer of 1 or more) and is called “styrene single chain”. On the other hand, as described above, the present invention is the number of moles of the ozonolysis component S1 containing only one styrene-derived unit and the ozonolysis component S2V1 containing two styrene-derived units and one 1,2-bonded butadiene-derived unit. In particular, the analysis is performed individually by LC × LCMS analysis.
 本明細書において、オゾン分解成分をLC×LCMS分析で測定する条件は、以下の通りにすることができる。
液体クロマトグラフ:包括的二次元LC Nexera‐e(島津製作所社製)
質量分析計:LCMS-8040またはLCMS-8050(いずれも島津製作所社製)
1次元目カラム:固定相がポリマーゲルであるカラム(A)(昭和電工社製Shodex Mspak GF-310 2D、内径:2.0mm、長さ150mm、粒径5μm)を2本および固定相がポリマーゲルであるカラム(B)(東ソー社製Super HZ 1000、内径:2.0mm、長さ250mm、粒径3μm)を1本、計3本を直列に連結して使用
注入量:  1μL(試料溶液濃度:10mg/mL)
移動相: THF
流速:   0.02mL/min
2次元目カラム:固定相がオクタデシル基で修飾されたコアシェルポリマーゲルであるカラム(A)(Phenomenex社製KinetexC18、内径:3.0mm、長さ50mm、粒径2.6μm)
移動相A: 水:メタノール=1:1
移動相B: メタノール
流速:   2.0mL/min
タイムプログラム:B conc.20%(0分)→100%(0.75分)→20%(0.76分)→STOP(1分)
インターフェイス温度:350℃
脱溶媒温度:200℃
インターフェイス電圧:4.5V
インターフェイス(イオン化法):(APCI positiveモード)
質量分析条件:SIM測定 9event (ev1:S1~S1V10, ev2:S2~S2V10, ev3:S3~S3V10, ev4:S4~S4V10, ev5:S5~S5V10, ev6:S6~S6V10, ev7:S7~S7V10, ev8:S8~S8V10, ev9:V1~V10) 合計98ch SIM+各分個別のSIM 98event(検量線作成用)合計107event
検出イオン:プロトン付加イオン(m/z=[M+H]+)
In this specification, the conditions for measuring the ozonolysis component by LC × LCMS analysis can be as follows.
Liquid chromatograph: comprehensive two-dimensional LC Nexera-e (manufactured by Shimadzu Corporation)
Mass spectrometer: LCMS-8040 or LCMS-8050 (both manufactured by Shimadzu Corporation)
First dimension column: two columns (A) whose stationary phase is a polymer gel (Shodex Mspak GF-310 2D manufactured by Showa Denko KK, inner diameter: 2.0 mm, length 150 mm, particle size 5 μm) and the stationary phase is a polymer One column (B) (Super HZ 1000 manufactured by Tosoh Corporation, inner diameter: 2.0 mm, length 250 mm, particle size 3 μm), which is a gel, is connected in series, and a total of three are used in series. Injection volume: 1 μL (sample solution) (Concentration: 10 mg / mL)
Mobile phase: THF
Flow rate: 0.02 mL / min
Second dimension column: Column (A) whose core is a core-shell polymer gel modified with octadecyl group (Kinetex C18 manufactured by Phenomenex, inner diameter: 3.0 mm, length 50 mm, particle size 2.6 μm)
Mobile phase A: water: methanol = 1: 1
Mobile phase B: Methanol flow rate: 2.0 mL / min
Time program: B conc. 20% (0 minutes) → 100% (0.75 minutes) → 20% (0.76 minutes) → STOP (1 minute)
Interface temperature: 350 ° C
Desolvation temperature: 200 ° C
Interface voltage: 4.5V
Interface (ionization method): (APCI positive mode)
Mass analysis conditions: SIM measurement 9 event (ev1: S1 to S1V10, ev2: S2 to S2V10, ev3: S3 to S3V10, ev4: S4 to S4V10, ev5: S5 to S5V10, ev6: S6 to S6V10, ev7: S7 to S7 ev8: S8 to S8V10, ev9: V1 to V10) Total 98ch SIM + individual SIM 98event (for calibration curve creation) total 107event
Detection ion: proton addition ion (m / z = [M + H] +)
 ここで、標準試料には市販の試料を用いても良いし、SBRのオゾン分解物から分離採取して、純度をNMR等で算出した試料を用いても良い。例えば標準試料の調製を以下の通り行うことができる。 Here, a commercially available sample may be used as the standard sample, or a sample obtained by separating and collecting from the SBR ozone decomposition product and calculating the purity by NMR or the like may be used. For example, a standard sample can be prepared as follows.
 スチレン量36重量%、ブタジエン中のビニル含量42%の溶液重合SBRをオゾン分解処理し、日本分析工業社製のLC-9104(分取GPC)と低分子用カラム4本(JAIGEL-1H、JAIGEL-2H各2本ずつ)を用いてクロロホルム溶媒にてS1、S1V1、S2、S2V1、S3、S3V1、V1の計7成分を分取し、NMRにて純度を算出して標準試料とした。 A solution-polymerized SBR having a styrene content of 36% by weight and a vinyl content in butadiene of 42% was subjected to ozonolysis treatment, LC-9104 (preparative GPC) manufactured by Nippon Analytical Industrial Co., Ltd., and four low-molecular columns (JAIGEL-1H, JAIGEL -H, 2 units each) were used to fractionate a total of 7 components of S1, S1V1, S2, S2V1, S3, S3V1, and V1 with chloroform solvent, and the purity was calculated by NMR to obtain a standard sample.
 ビニル含量70%のポリブタジエンをオゾン分解処理し、島津製作所株式会社製のHPLCシステムProminenceにてカラム(VP-ODS 150mm×4.6mm)を用い、移動相Aを水、移動相Bをメタノールとして、流速1mL/min、注入量0.2μLで20%B-100%Bの40分のグラジエント測定にてまず質量分析イオン化条件APCI+にて成分の溶出時間を確認後、V1、V2、V3を時間にて分取し、NMRにて純度を算出して標準試料とした。 Polybutadiene having a vinyl content of 70% is subjected to ozonolysis treatment, using a column (VP-ODS 150 mm × 4.6 mm) with an HPLC system Prominence manufactured by Shimadzu Corporation, using mobile phase A as water and mobile phase B as methanol. First, the elution time of the component was confirmed by mass spectrometry ionization conditions APCI + in a 40 minute gradient measurement of 20% B-100% B at a flow rate of 1 mL / min and an injection volume of 0.2 μL, and then V1, V2, and V3 The purity was calculated by NMR and used as a standard sample.
 またLC×LCMS分析は以下の操作により行うことができる。
 分析は、島津製作所株式会社製のLCMS-8040(製品名)またはLCMS-8050(製品名)を用い、APCI positive MSモードにより、上記で得られた標準試料について測定を行う。
LC × LCMS analysis can be performed by the following operation.
For analysis, LCMS-8040 (product name) or LCMS-8050 (product name) manufactured by Shimadzu Corporation is used, and the standard sample obtained as described above is measured in the APCI positive MS mode.
 質量分析計の検出結果に基づき、各標準試料の濃度とイオン強度の相関図(検量線)を作成した。作成した相関図を図1及び図2に示す。図1及び図2において、「S1V1」や「V1」、「S2」等の記号は、その検量線を示す化合物の1,2-結合したブタジエン由来単位の数とスチレン由来単位の数を表す。例えば記号「S1V1」は、その化合物が1個の1,2-結合したブタジエン由来単位と1個のスチレン由来単位を有することを表している。図1及び図2から分かるように、化合物に含まれるスチレン由来単位の数、1,2-結合したブタジエン由来単位の数によって検量線が異なることが分かる。 Based on the detection results of the mass spectrometer, a correlation diagram (calibration curve) between the concentration of each standard sample and the ionic strength was prepared. The created correlation diagrams are shown in FIGS. In FIG. 1 and FIG. 2, symbols such as “S1V1”, “V1”, and “S2” represent the number of 1,2-bonded butadiene-derived units and the number of styrene-derived units of the compound showing the calibration curve. For example, the symbol “S1V1” indicates that the compound has one 1,2-bonded butadiene-derived unit and one styrene-derived unit. As can be seen from FIGS. 1 and 2, the calibration curve differs depending on the number of styrene-derived units and the number of 1,2-bonded butadiene-derived units contained in the compound.
   <検量線の推定>
 構造が未知のSBRの場合、そのオゾン分解成分には様々な種類があり、図1及び図2に示す化合物の検量線だけでは、全ての分解物成分の定量分析を行うことができない。そこで、上述の標準試料について求めた検量線から、質量電荷比が未知の分解物成分の検量線を推定した。
<Estimation of calibration curve>
In the case of SBR whose structure is unknown, there are various types of ozonolysis components, and it is impossible to perform a quantitative analysis of all degradation product components using only the calibration curves of the compounds shown in FIGS. Therefore, a calibration curve of a decomposition product component with an unknown mass-to-charge ratio was estimated from the calibration curve obtained for the above-described standard sample.
 具体的には、スチレンのみの連鎖成分Snについては、S1~S3の検量線から、スチレンの連鎖数が1個増えたときの検量線の傾きの変化量を計算により求めて、連鎖成分Sn(n≧4)の傾きを推定した。1,2-結合したブタジエン由来単位からなる連鎖成分(Vm)についても同様の方法で検量線の傾きを推定した。推定された検量線の傾きを図3に示す。 Specifically, for the chain component Sn containing only styrene, the amount of change in the slope of the calibration curve when the number of styrene chains increases by one from the calibration curve of S1 to S3 is calculated, and the chain component Sn ( The slope of n ≧ 4) was estimated. For the chain component (Vm) composed of 1,2-bonded butadiene-derived units, the slope of the calibration curve was estimated by the same method. The estimated slope of the calibration curve is shown in FIG.
 一方、スチレン由来単位と1,2-結合したブタジエン由来単位から成る連鎖成分(SnVm)については、スチレンの連鎖数を固定して1,2-結合したブタジエンの連鎖数を変化させたときの傾きの変化量、1,2-結合したブタジエンの連鎖数を固定してスチレンの連鎖数を変化させたときの傾きの変化量から、検量線の傾きに対するスチレン及び1,2-結合したブタジエン由来単位の寄与度を求め、スチレン及び1,2-結合したブタジエン由来単位の寄与度と連鎖数から連鎖成分SnVmの検量線の傾きを推定した。図3~図5に、実際に測定した結果から求めた連鎖成分の検量線の傾き、及び上述した方法により推定した検量線の傾きを示す。 On the other hand, for chain components (SnVm) consisting of styrene-derived units and 1,2-bonded butadiene-derived units, the slope when changing the number of 1,2-bonded butadiene chains while fixing the number of styrene chains From the amount of change in slope when the number of 1,2-bonded butadiene chains is fixed and the number of styrene chains is changed, the unit derived from styrene and 1,2-bonded butadiene against the slope of the calibration curve The slope of the calibration curve of the chain component SnVm was estimated from the contribution of styrene and 1,2-bonded butadiene-derived units and the number of chains. FIG. 3 to FIG. 5 show the slope of the calibration curve of the chain component obtained from the actual measurement results and the slope of the calibration curve estimated by the above-described method.
   <二次元クロマトグラムの作成>
 次に、オゾン分解物成分をLCxLCMSにより分析した。分析に用いた装置及び分析条件は、検量線の作成に用いたものと同じである。
<Creation of two-dimensional chromatogram>
Next, the ozonolysis product component was analyzed by LCxLCMS. The apparatus and analysis conditions used for the analysis are the same as those used for preparing the calibration curve.
 質量分析計の検出結果を解析ソフトウエアChromSquare(島津製作所社製)を用いて解析し、1次カラムの溶出時間を横軸、2次カラムの溶出時間を縦軸、信号強度を等高線で表した二次元クロマトグラムを作成した。LCxLCを用いることにより、S2V1、S1V1のように溶出時間が非常に近い成分でも、分離することができるため、試料に含まれるスチレン由来単位及び1,2-結合したブタジエン由来単位の連鎖構造の同定が可能となった。 The detection result of the mass spectrometer was analyzed using the analysis software ChromSquare (manufactured by Shimadzu Corporation), and the elution time of the primary column was represented by the horizontal axis, the elution time of the secondary column was represented by the vertical axis, and the signal intensity was represented by contour lines. A two-dimensional chromatogram was created. By using LCxLC, components with very short elution times such as S2V1 and S1V1 can be separated, so identification of the chain structure of styrene-derived units and 1,2-linked butadiene-derived units in the sample Became possible.
 本発明で使用するスチレン-ブタジエン共重合体成分は、(4)ブタジエン部分のビニル含有量が50%以上、好ましくは50~65%である。スチレン-ブタジエン共重合体成分におけるブタジエン部分のビニル含有量を50%以上にすることにより、ゴム組成物の引張り応力を優れたものにすることができる。なおブタジエン部分のビニル含有量は1H-NMRにより測定するものとする。 The styrene-butadiene copolymer component used in the present invention has (4) a vinyl content in the butadiene portion of 50% or more, preferably 50 to 65%. By setting the vinyl content of the butadiene portion in the styrene-butadiene copolymer component to 50% or more, the tensile stress of the rubber composition can be made excellent. The vinyl content of the butadiene portion is measured by 1 H-NMR.
 (1)~(4)の特性を有するスチレン-ブタジエン共重合体成分の含有量は、ジエン系ゴム100重量%中、好ましくは40重量%以上、より好ましくは60~100重量%、さらに好ましくは80~100重量%である。特性(1)~(4)により特定されたスチレン-ブタジエン共重合体成分を40重量%以上含有することにより、ゴム組成物の引張り応力および引張破断強度を優れたものにすることができる。 The content of the styrene-butadiene copolymer component having the characteristics (1) to (4) is preferably 40% by weight or more, more preferably 60 to 100% by weight, and still more preferably 100% by weight of the diene rubber. 80 to 100% by weight. By containing 40% by weight or more of the styrene-butadiene copolymer component specified by the characteristics (1) to (4), the rubber composition can be excellent in tensile stress and tensile breaking strength.
 本発明のゴム組成物は、特性(1)~(4)をすべて満たすスチレン-ブタジエン共重合体成分以外の他のジエン系ゴムを含むことができる。他のジエン系ゴムとして例えば天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(低シスBR)、高シスBR、高トランスBR(ブタジエン部のトランス結合含有量70~95%)、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合ゴム、溶液重合ランダムスチレン-ブタジエン-イソプレン共重合ゴム、乳化重合ランダムスチレン-ブタジエン-イソプレン共重合ゴム、乳化重合スチレン-アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、高ビニルSBR-低ビニルSBRブロック共重合ゴム、ポリイソプレン-SBRブロック共重合ゴム、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体等を挙げることができる。 The rubber composition of the present invention can contain a diene rubber other than the styrene-butadiene copolymer component that satisfies all the characteristics (1) to (4). Other diene rubbers such as natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (low cis BR), high cis BR, high trans BR (trans bond content of butadiene part 70 to 95%), styrene -Isoprene copolymer rubber, butadiene-isoprene copolymer rubber, solution polymerization random styrene-butadiene-isoprene copolymer rubber, emulsion polymerization random styrene-butadiene-isoprene copolymer rubber, emulsion polymerization styrene-acrylonitrile-butadiene copolymer rubber, acrylonitrile- Examples thereof include butadiene copolymer rubber, high vinyl SBR-low vinyl SBR block copolymer rubber, polyisoprene-SBR block copolymer rubber, and polystyrene-polybutadiene-polystyrene block copolymer.
 他のジエン系ゴムの含有量は、ジエン系ゴム100重量%中、好ましくは60重量%以下、より好ましくは0~40重量%、さらに好ましくは0~20重量%である。他のジエン系ゴムを含有することにより耐摩耗性などの各種物性の改善が可能になる。 The content of the other diene rubber is preferably 60% by weight or less, more preferably 0 to 40% by weight, and further preferably 0 to 20% by weight in 100% by weight of the diene rubber. By containing other diene rubbers, various physical properties such as wear resistance can be improved.
 本発明のゴム組成物は、ジエン系ゴムおよび補強性充填剤を含む。補強性充填剤としては、例えばカーボンブラック、シリカ、クレイ、水酸化アルミニウム、炭酸カルシウム、マイカ、タルク、水酸化アルミニウム、酸化アルミニウム、酸化チタン、硫酸バリウム等の無機フィラーや、セルロース、レシチン、リグニン、デンドリマー等の有機フィラーを例示することができる。なかでもカーボンブラック、シリカから選ばれる少なくとも1種を配合することが好ましい。 The rubber composition of the present invention contains a diene rubber and a reinforcing filler. Examples of reinforcing fillers include carbon black, silica, clay, aluminum hydroxide, calcium carbonate, mica, talc, aluminum hydroxide, aluminum oxide, titanium oxide, barium sulfate, and other inorganic fillers, cellulose, lecithin, lignin, An organic filler such as a dendrimer can be exemplified. Among these, it is preferable to blend at least one selected from carbon black and silica.
 ゴム組成物にカーボンブラックを配合することにより、ゴム組成物の耐摩耗性およびゴム強度を優れたものにすることができる。カーボンブラックの配合量は、特に限定されるものではないが、ジエン系ゴム100重量部に対し好ましくは10~100重量部、より好ましくは25~80重量部であるとよい。 By adding carbon black to the rubber composition, the rubber composition can have excellent wear resistance and rubber strength. The blending amount of carbon black is not particularly limited, but is preferably 10 to 100 parts by weight, more preferably 25 to 80 parts by weight with respect to 100 parts by weight of the diene rubber.
 カーボンブラックとしては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどのカーボンブラックを配合してもよい。これらの中でも、ファーネスブラックが好ましく、その具体例としては、SAF、ISAF、ISAF-HS、ISAF-LS、IISAF-HS、HAF、HAF-HS、HAF-LS、FEFなどが挙げられる。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。また、これらのカーボンブラックを種々の酸化合物等で化学修飾を施した表面処理カーボンブラックも用いることができる。 As carbon black, carbon black such as furnace black, acetylene black, thermal black, channel black and graphite may be blended. Among these, furnace black is preferable, and specific examples thereof include SAF, ISAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF, HAF-HS, HAF-LS, and FEF. These carbon blacks can be used alone or in combination of two or more. Further, surface-treated carbon black obtained by chemically modifying these carbon blacks with various acid compounds or the like can also be used.
 またゴム組成物にシリカを配合することにより、ゴム組成物の低発熱性およびウェットグリップ性能を優れたものにすることができる。シリカの配合量は、特に限定されるものではないが、ジエン系ゴム100重量部に対し好ましくは10~150重量部、より好ましくは40~100重量部であるとよい。 Also, by adding silica to the rubber composition, the rubber composition can be made excellent in low heat build-up and wet grip performance. The blending amount of silica is not particularly limited, but is preferably 10 to 150 parts by weight, more preferably 40 to 100 parts by weight with respect to 100 parts by weight of the diene rubber.
 シリカとしては、タイヤトレッド用ゴム組成物に通常使用されるシリカ、例えば湿式法シリカ、乾式法シリカあるいは、カーボンブラック表面にシリカを担持させたカーボン-シリカ(デュアル・フェイズ・フィラー)、シランカップリング剤又はポリシロキサンなどシリカとゴムの両方に反応性或いは相溶性のある化合物で表面処理したシリカなどを使用することができる。これらの中でも、含水ケイ酸を主成分とする湿式法シリカが好ましい。 Examples of silica include silica usually used in rubber compositions for tire treads, such as wet silica, dry silica, carbon-silica (dual phase filler) with silica supported on the surface of carbon black, and silane coupling. Silica treated with a compound reactive or compatible with both silica and rubber, such as an agent or polysiloxane, can be used. Among these, wet method silica mainly containing hydrous silicic acid is preferable.
 本発明において、シリカおよび/またはカーボンブラックを含む補強性充填剤の配合量は、ジエン系ゴム100重量部に対し好ましくは10~150重量部、より好ましくは40~100重量部であるとよい。補強性充填剤の配合量が10重量部未満であると補強性能を十分に得ることができず、ゴム硬度、引張破断強度が不足する。また補強性充填剤の配合量が150重量部を超えると発熱性が大きくなるとともに、引張破断伸びが低下する。また耐摩耗性が悪化するとともに加工性も悪化する。 In the present invention, the compounding amount of the reinforcing filler containing silica and / or carbon black is preferably 10 to 150 parts by weight, more preferably 40 to 100 parts by weight with respect to 100 parts by weight of the diene rubber. When the blending amount of the reinforcing filler is less than 10 parts by weight, sufficient reinforcing performance cannot be obtained, and the rubber hardness and tensile strength at break are insufficient. On the other hand, when the blending amount of the reinforcing filler exceeds 150 parts by weight, the exothermic property increases and the tensile breaking elongation decreases. In addition, wear resistance is deteriorated and workability is also deteriorated.
 本発明のゴム組成物は、シリカとともにシランカップリング剤を配合することにより低発熱性および耐摩耗性がさらに改善されるので好ましい。シリカとともにシランカップリング剤を配合することにより、シリカの分散性を向上しジエン系ゴムとの補強性をより高くする。シランカップリング剤は、シリカ配合量に対して好ましくは2~20重量%、より好ましくは5~15重量%配合するとよい。シランカップリング剤の配合量がシリカ重量の2重量%未満の場合、シリカの分散性を向上する効果が十分に得られない。また、シランカップリング剤が20重量%を超えると、ジエン系ゴム成分がゲル化し易くなる傾向があるため、所望の効果を得ることができなくなる。 The rubber composition of the present invention is preferable because the low heat build-up and wear resistance are further improved by blending a silane coupling agent with silica. By compounding a silane coupling agent with silica, the dispersibility of silica is improved and the reinforcement with the diene rubber is further enhanced. The silane coupling agent is preferably added in an amount of 2 to 20% by weight, more preferably 5 to 15% by weight, based on the amount of silica. When the compounding amount of the silane coupling agent is less than 2% by weight of the silica weight, the effect of improving the dispersibility of silica cannot be obtained sufficiently. On the other hand, if the silane coupling agent exceeds 20% by weight, the diene rubber component tends to be gelled, so that a desired effect cannot be obtained.
 シランカップリング剤としては、特に制限されるものではないが、硫黄含有シランカップリング剤が好ましく、例えばビス-(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルジメチルメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、及びエボニック社製のVP Si363等の日本国特開2006-249069号公報に例示されているメルカプトシラン化合物等、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオプロピルトリエトキシシラン、3-プロピオニルチオプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシランなどを例示することができる。また、シランカップリング剤は有機ケイ素化合物であり、有機ケイ素化合物としてポリシロキサン、ポリシロキサンの側鎖又は両末端又は片末端又は側鎖と両末端両方にアミノ基又はエポキシ基又はカルビノール基又はメルカプト基又はカルボキシル基又はハイドロジェン基又はポリエーテル基又はフェノール基又はシラノール基又はアクリル基又はメタクリル基又は長鎖アルキル基などの有機基を1つ以上導入したシリコーンオイル、1種以上の有機シランを縮合反応させて得られるシリコーンオリゴマーなども例示することができる。なかでもビス-(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィドが好ましい。 The silane coupling agent is not particularly limited, but a sulfur-containing silane coupling agent is preferable. For example, bis- (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide Bis (3-triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3- Mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyldimethylmethoxysilane, 2-mercaptoethyltriethoxysilane, 3-mercaptopropyltriethoxysilane, and Evonik Mercaptosilane compounds exemplified in Japanese Patent Application Laid-Open No. 2006-249069 such as VP Si363 manufactured by the company, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropylbenzothiazolyl tetrasulfide, 3 -Triethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyl Tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, dimethoxy Methylsilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, dimethoxymethylsilylpropylbenzothiazolyl tetrasulfide, 3-octanoylthiopropyltriethoxysilane, 3-propionylthiopropyltrimethoxysilane, vinyltrimethoxysilane, vinyl Triethoxysilane, vinyltris (2-methoxyethoxy) silane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3- Examples include aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, and the like. Can. Further, the silane coupling agent is an organosilicon compound. As the organosilicon compound, polysiloxane, polysiloxane side chain, or both ends, one end, or both side chains and both ends are amino groups, epoxy groups, carbinol groups, or mercapto. Silicone oil introduced with one or more organic groups such as a group, carboxyl group, hydrogen group, polyether group, phenol group, silanol group, acrylic group, methacryl group or long chain alkyl group, condensed with one or more organic silanes Examples include silicone oligomers obtained by reaction. Of these, bis- (3-triethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) disulfide are preferable.
 本発明のゴム組成物には、上記成分以外に、常法に従って、加硫又は架橋剤、加硫促進剤、老化防止剤、加工助剤、可塑剤、液状ポリマー、熱硬化性樹脂、熱可塑性樹脂などのタイヤトレッド用ゴム組成物に一般的に使用される各種配合剤を配合することができる。このような配合剤は一般的な方法で混練してゴム組成物とし、加硫又は架橋するのに使用することができる。これらの配合剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。タイヤトレッド用ゴム組成物は、公知のゴム用混練機械、例えば、バンバリーミキサー、ニーダー、ロール等を使用して、上記各成分を混合することによって調製することができる。 In addition to the above components, the rubber composition of the present invention includes a vulcanization or cross-linking agent, a vulcanization accelerator, an anti-aging agent, a processing aid, a plasticizer, a liquid polymer, a thermosetting resin, a thermoplastic, Various compounding agents generally used in rubber compositions for tire treads such as resins can be blended. Such a compounding agent can be kneaded by a general method to form a rubber composition, which can be used for vulcanization or crosslinking. The compounding amounts of these compounding agents can be the conventional general compounding amounts as long as they do not contradict the purpose of the present invention. The tire tread rubber composition can be prepared by mixing the above-described components using a known rubber kneading machine such as a Banbury mixer, a kneader, or a roll.
 加硫又は架橋剤としては、特に限定はないが、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などのような硫黄;一塩化硫黄、二塩化硫黄などのようなハロゲン化硫黄;ジクミルパーオキシド、ジターシャリブチルパーオキシドなどのような有機過酸化物などが挙げられる。これらの中でも、硫黄が好ましく、粉末硫黄が特に好ましい。これらの加硫又は架橋剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。加硫剤の配合割合は、ジエン系ゴム100重量部に対して、通常0.1~15重量部、好ましくは0.3~10重量部、さらに好ましくは0.5~5重量部の範囲である。 The vulcanization or cross-linking agent is not particularly limited. For example, sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur; halogen such as sulfur monochloride and sulfur dichloride. Sulfur peroxide; organic peroxides such as dicumyl peroxide and ditertiary butyl peroxide. Among these, sulfur is preferable, and powder sulfur is particularly preferable. These vulcanization or cross-linking agents are used alone or in combination of two or more. The mixing ratio of the vulcanizing agent is usually in the range of 0.1 to 15 parts by weight, preferably 0.3 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the diene rubber. is there.
 加硫促進剤としては、特に限定はないが、例えば、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、Nt-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤;ジエチルチオウレアなどのチオウレア系加硫促進剤;2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド、2-メルカプトベンゾチアゾール亜鉛塩などのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸亜鉛などのジチオカルバミン酸系加硫促進剤;イソプロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸亜鉛、ブチルキサントゲン酸亜鉛などのキサントゲン酸系加硫促進剤;などの加硫促進剤が挙げられる。なかでも、スルフェンアミド系加硫促進剤を含むものが特に好ましい。これらの加硫促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。加硫促進剤の配合量は、ジエン系ゴム100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部である。 The vulcanization accelerator is not particularly limited, and examples thereof include N-cyclohexyl-2-benzothiazylsulfenamide, Nt-butyl-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfuramide. Sulfenamide vulcanization accelerators such as phenamide, N-oxyethylene-2-benzothiazole sulfenamide, N, N′-diisopropyl-2-benzothiazole sulfenamide; diphenyl guanidine, diortolyl guanidine, ortho Guanidine vulcanization accelerators such as trilbiguanidine; thiourea vulcanization accelerators such as diethylthiourea; thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and 2-mercaptobenzothiazole zinc salt; Tetramethylthiura Thiuram vulcanization accelerators such as monosulfide and tetramethylthiuram disulfide; Dithiocarbamate vulcanization accelerators such as sodium dimethyldithiocarbamate and zinc diethyldithiocarbamate; Sodium isopropylxanthate, zinc isopropylxanthate, zinc butylxanthate, etc. And xanthogenic acid-based vulcanization accelerators. Of these, those containing a sulfenamide vulcanization accelerator are particularly preferred. These vulcanization accelerators are used alone or in combination of two or more. The blending amount of the vulcanization accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the diene rubber.
 老化防止剤としては、特に制限はないが、2,2,4-トリメチル-1,2-ジヒドロキノリンポリマー、p、p′-ジオクチルジフェニルアミン、N,N′-ジフェニル-p-フェニレンジアミン、N-フェニル-N′-1,3-ジメチルブチル-p-フェニレンジアミンなどのアミン系老化防止剤、2,6-ジ-t-ブチル-4-メチルフェノール、2,2′-メチレンビス(4-メチル-6-t-ブチルフェノール)などのフェノール系老化防止剤が挙げられる。これらの老化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。老化防止剤の配合量は、ジエン系ゴム100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部である。 The anti-aging agent is not particularly limited, but 2,2,4-trimethyl-1,2-dihydroquinoline polymer, p, p'-dioctyldiphenylamine, N, N'-diphenyl-p-phenylenediamine, N- Amine-based antioxidants such as phenyl-N'-1,3-dimethylbutyl-p-phenylenediamine, 2,6-di-t-butyl-4-methylphenol, 2,2'-methylenebis (4-methyl- 6-t-butylphenol) and the like. These anti-aging agents are used alone or in combination of two or more. The blending amount of the antioxidant is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the diene rubber.
 加工助剤としては、特に制限はないが、例えばステアリン酸などの高級脂肪酸、ステアリン酸アミドのような高級脂肪酸アミド、ステアリルアミンのような脂肪族高級アミン、ステアリルアルコールのような脂肪族高級アルコール、グリセリン脂肪酸エステルなどの脂肪酸と多価アルコールの部分エステル、ステアリン酸亜鉛などの脂肪酸金属塩、酸化亜鉛などを用いることができる。配合量は適宜選択されるが、高級脂肪酸、脂肪族高級アミド、高級アルコール、脂肪酸金属塩の配合量は、ジエン系ゴム100重量部に対して、好ましくは0.05~15重量部、より好ましくは0.5~5重量部である。酸化亜鉛の配合量は、ジエン系ゴム100重量部に対して、好ましくは0.05~10重量部、より好ましくは0.5~3重量部である。 The processing aid is not particularly limited. For example, higher fatty acids such as stearic acid, higher fatty acid amides such as stearamide, aliphatic higher amines such as stearylamine, aliphatic higher alcohols such as stearyl alcohol, Fatty acid such as glycerin fatty acid ester and partial ester of polyhydric alcohol, fatty acid metal salt such as zinc stearate, zinc oxide and the like can be used. The blending amount is appropriately selected, but the blending amount of the higher fatty acid, aliphatic higher amide, higher alcohol, and fatty acid metal salt is preferably 0.05 to 15 parts by weight, more preferably 100 parts by weight of the diene rubber. Is 0.5 to 5 parts by weight. The compounding amount of zinc oxide is preferably 0.05 to 10 parts by weight, more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the diene rubber.
 配合剤として用いられる可塑剤としては、特に限定はないが、例えば、アロマ系、ナフテン系、パラフィン系、シリコーン系などの伸展油が用途に応じて選択される。可塑剤の使用量は、ジエン系ゴム100重量部あたり、通常1~150重量部、好ましくは2~100重量部、さらに好ましくは3~60重量部の範囲である。可塑剤の使用量がこの範囲にある時には、補強剤の分散効果、引張強度、耐摩耗性、耐熱性等が高値にバランスされる。その他の可塑剤として、ジエチレングリコール、ポリエチレングリコール、シリコーンオイルなどが挙げられる。 The plasticizer used as the compounding agent is not particularly limited, but for example, aroma-based, naphthenic, paraffinic, silicone-based extending oils are selected depending on the application. The amount of the plasticizer used is usually in the range of 1 to 150 parts by weight, preferably 2 to 100 parts by weight, and more preferably 3 to 60 parts by weight per 100 parts by weight of the diene rubber. When the amount of the plasticizer used is in this range, the dispersing effect of the reinforcing agent, tensile strength, wear resistance, heat resistance and the like are balanced to a high value. Examples of other plasticizers include diethylene glycol, polyethylene glycol, and silicone oil.
 熱硬化性樹脂としては、特に制限はないが、例えば、レゾルシン-ホルムアルデヒド樹脂、フェノール-ホルムアルデヒド樹脂、ウレア-ホルムアルデヒド樹脂、メラミン-ホルムアルデヒド樹脂、フェノール誘導体-ホルムアルデヒド樹脂等、具体的には、m-3,5-キシレノール-ホルムアルデヒド樹脂、5-メチルレゾルシン-ホルムアルデヒド樹脂等の、加熱により、あるいは、熱とメチレンドナーを与えることにより、硬化あるいは高分子量化する熱硬化型樹脂や、その他グアナミン樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、フラン樹脂、ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂などが挙げられる。 The thermosetting resin is not particularly limited, and examples thereof include resorcin-formaldehyde resin, phenol-formaldehyde resin, urea-formaldehyde resin, melamine-formaldehyde resin, phenol derivative-formaldehyde resin, and specifically m-3. , 5-xylenol-formaldehyde resin, 5-methylresorcin-formaldehyde resin, etc., thermosetting resins that cure or become high molecular weight by heating or by giving heat and methylene donor, other guanamine resins, diallyl phthalate Examples thereof include resins, vinyl ester resins, phenol resins, unsaturated polyester resins, furan resins, polyimide resins, polyurethane resins, melamine resins, urea resins, and epoxy resins.
 熱可塑性樹脂としては、特に制限はないが、例えば、汎用のものとしてポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、ポリスルホン系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂などが挙げられる。その他、スチレン-α-メチルスチレン樹脂、インデン-イソプロペニルトルエン樹脂、クマロン―インデン樹脂などの芳香族炭化水素系樹脂、ジシクロペンタジエン樹脂、主原料が1,3―ペンタジエン、ペンテン、メチルブテン等である石油樹脂などの炭化水素樹脂、アルキルフェノール樹脂、変性フェノール樹脂、テルペンフェノール樹脂、テルペン系樹脂、芳香族変性テルペン樹脂などが挙げられる。 The thermoplastic resin is not particularly limited. For example, as a general-purpose resin, a polystyrene resin, a polyethylene resin, a polypropylene resin, a polyester resin, a polyamide resin, a polycarbonate resin, a polyurethane resin, a polysulfone resin, Examples include polyphenylene ether resins and polyphenylene sulfide resins. In addition, aromatic hydrocarbon resins such as styrene-α-methylstyrene resin, indene-isopropenyltoluene resin, coumarone-indene resin, dicyclopentadiene resin, main raw materials are 1,3-pentadiene, pentene, methylbutene, etc. Examples thereof include hydrocarbon resins such as petroleum resins, alkylphenol resins, modified phenol resins, terpene phenol resins, terpene resins, and aromatic modified terpene resins.
 本発明のゴム組成物は、引張り応力および引張破断強度を従来レベル以上に向上するようにしたので、空気入りタイヤの操縦安定性および耐破壊性を従来レベル以上に改良することができる。 Since the rubber composition of the present invention has improved the tensile stress and tensile breaking strength to the conventional levels, the handling stability and fracture resistance of the pneumatic tire can be improved to the conventional levels.
 本発明のゴム組成物は、空気入りタイヤのキャップトレッド部、アンダートレッド部、サイドウォール部、ビードフィラー部、およびカーカス層、ベルト層、ベルトカバー層などのコード用被覆ゴム、ランフラットタイヤにおける断面三日月型のサイド補強ゴム層、リムクッション部などに好適に使用することができる。 The rubber composition of the present invention is a cross-section of a cap tread portion, an under tread portion, a sidewall portion, a bead filler portion of a pneumatic tire, a cord covering rubber such as a carcass layer, a belt layer, and a belt cover layer, and a run flat tire. It can be suitably used for a crescent-shaped side reinforcing rubber layer, a rim cushion portion, and the like.
 以下、実施例によって本発明をさらに説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples, but the scope of the present invention is not limited to these examples.
 11種類のスチレン-ブタジエン共重合体を、表1,2に示した配合比で、ブレンドしたスチレン-ブタジエン共重合体成分を調製し、(1)結合スチレンの含量(重量%)、(2)1,2-結合したブタジエン由来単位を1つ含むオゾン分解成分V1のモル%、(3)スチレン由来単位を2つおよび1,2-結合したブタジエン由来単位を1つ含むオゾン分解成分S2V1のモル%、並びに(4)ブタジエン部分のビニル含有量(重量%)を測定した。またスチレン-ブタジエン共重合体のタフデンE581,NS460,HP755B,NS522,タフデン1834,Nipol 1739は油展品であるため、実際の配合量とともに括弧内に正味のゴム成分の配合量を記載した。 11 kinds of styrene-butadiene copolymers were blended at the blending ratios shown in Tables 1 and 2 to prepare styrene-butadiene copolymer components, and (1) bound styrene content (% by weight), (2) Mol% of ozonolysis component V1 containing one 1,2-bonded butadiene-derived unit, (3) mol of ozonolysis component S2V1 containing two styrene-derived units and one 1,2-bonded butadiene-derived unit %, And (4) the vinyl content (% by weight) of the butadiene portion. Further, since the styrene-butadiene copolymers Toughden E581, NS460, HP755B, NS522, Toughden 1834, and Nipol 1739 are oil-extended products, the amount of the net rubber component is shown in parentheses together with the actual amount.
 スチレン-ブタジエン共重合体成分の(1)結合スチレンの含量、および(4)ブタジエン部分のビニル含有量は、1H-NMRにより測定した。 The (1) bound styrene content of the styrene-butadiene copolymer component and (4) the vinyl content of the butadiene moiety were measured by 1 H-NMR.
 スチレン-ブタジエン共重合体成分のオゾン分解の条件は、前述の通りにした。また(2)1,2-結合したブタジエン由来単位を1つ含むオゾン分解成分V1のモル%、(3)スチレン由来単位を2つおよび1,2-結合したブタジエン由来単位を1つ含むオゾン分解成分S2V1のモル%は、LC×LCMS分析で前述した条件に基づき測定した。 The conditions for ozonolysis of the styrene-butadiene copolymer component were as described above. (2) mol% of ozonolysis component V1 containing one 1,2-bonded butadiene-derived unit, (3) ozonolysis containing two styrene-derived units and one 1,2-bonded butadiene-derived unit The mole% of component S2V1 was measured based on the conditions described above for LC × LCMS analysis.
 表3に示す配合剤を共通配合とし、表1,2に示すスチレン-ブタジエン共重合体成分(複数のスチレン-ブタジエン共重合体のブレンド物)および他のジエン系ゴムの配合からなる15種類のゴム組成物(実施例1~10、比較例1~5)を、硫黄および加硫促進剤を除く成分を、1.7Lの密閉式バンバリーミキサーを用いて6分間混合し、150℃でミキサーから放出後、室温まで冷却した。その後、再度1.7リットルの密閉式バンバリーミキサーを用いて3分間混合し、放出後、オープンロールにて硫黄および加硫促進剤を混合することによりゴム組成物を調製した。得られたゴム組成物を所定のモールドを用いて、160℃で30分間加硫して加硫ゴム試験片を作製した。得られた加硫ゴム試験片を使用し、引張り応力および引張破断強度を以下の測定方法により評価した。 The compounding agent shown in Table 3 is a common compounding, and 15 kinds of blends of styrene-butadiene copolymer components (blends of a plurality of styrene-butadiene copolymers) and other diene rubbers shown in Tables 1 and 2 are used. The rubber compositions (Examples 1 to 10 and Comparative Examples 1 to 5) were mixed with components other than sulfur and a vulcanization accelerator for 6 minutes using a 1.7 L closed Banbury mixer, and the mixture was removed from the mixer at 150 ° C. After release, it was cooled to room temperature. Thereafter, the mixture was again mixed for 3 minutes using a 1.7 liter closed Banbury mixer, and after release, a rubber composition was prepared by mixing sulfur and a vulcanization accelerator with an open roll. The obtained rubber composition was vulcanized at 160 ° C. for 30 minutes using a predetermined mold to prepare a vulcanized rubber test piece. Using the obtained vulcanized rubber test piece, the tensile stress and tensile breaking strength were evaluated by the following measuring methods.
   引張り特性(100%引張応力および引張破断強度)
 得られた加硫ゴム試験片を使用し、JIS K6251に準拠して、ダンベルJIS3号形試験片を作製し、室温(20℃)で500mm/分の引張り速度で引張り試験を行い、100%伸長時の100%引張応力および引張破断強度を測定した。得られた結果は、比較例1の値をそれぞれ100にする指数として表1、2の「100%引張応力」および「引張破断強度」の欄に記載した。100%引張応力の指数が大きいほど100%引張応力が強くタイヤにしたとき操縦安定性が優れることを意味する。また「引張破断強度」の指数が大きいほど引張破断強度が強くタイヤにしたとき耐破壊性(グリップ性能)が優れることを意味する。
Tensile properties (100% tensile stress and tensile strength at break)
Using the obtained vulcanized rubber test piece, in accordance with JIS K6251, a dumbbell JIS No. 3 type test piece was prepared, and a tensile test was performed at a pulling speed of 500 mm / min at room temperature (20 ° C.), and 100% elongation The 100% tensile stress and the tensile strength at break were measured. The obtained results are listed in the columns of “100% tensile stress” and “tensile breaking strength” in Tables 1 and 2 as indices for setting the value of Comparative Example 1 to 100, respectively. The larger the index of 100% tensile stress, the stronger the 100% tensile stress, and the better the steering stability when the tire is made. The larger the “tensile rupture strength” index, the stronger the tensile rupture strength, and the better the fracture resistance (grip performance) when the tire is made.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1,2において、使用した原材料の種類は、以下の通りである。
・NS116:日本ゼオン社製NS116、結合スチレン量が20.9重量%、ビニル含有量が63.8%、非油展品
・E581:旭化成ケミカルズ社製E581、結合スチレン量が35.6重量%、ビニル含有量が41.3%、SBR100重量部にオイル成分37.5重量部を添加した油展品
・NS460:日本ゼオン社製NS460、結合スチレン量が25.1重量%、ビニル含有量が62.8%、SBR100重量部にオイル成分37.5重量部を添加した油展品
・HP755B:JSR社製HP755B、結合スチレン量が39.6重量%、ビニル含有量が39.4%、SBR100重量部にオイル成分37.5重量部を添加した油展品
・NS522:日本ゼオン社製NS522、結合スチレン量が39.2重量%、ビニル含有量が42.2%、SBR100重量部にオイル成分37.5重量部を添加した油展品
・HPR850:JSR社製HPR850、結合スチレン量が27.0重量%、ビニル含有量が58.8%、非油展品
・Y031:旭化成ケミカルズ社製アサプレンY031、結合スチレン量が27.1重量%、ビニル含有量が57.5%、非油展品
・タフデン1834:旭化成ケミカルズ社製タフデン1834、結合スチレン量が18.8重量%、ビニル含有量が10.2%、SBR100重量部にオイル成分37.5重量部を添加した油展品
・5270H:Korea Kumho Petrochemica社製5270H、結合スチレン量が20.6重量%、ビニル含有量が63.6%、非油展品
・5220M:Korea Kumho Petrochemica社製5220M、結合スチレン量が26.3重量%、ビニル含有量が26.5%、非油展品
・Nipol 1739:日本ゼオン社製Nipol 1739、結合スチレン量が39.8重量%、ビニル含有量が18.4%、SBR100重量部にオイル成分37.5重量部を添加した油展品
・NR:天然ゴム、TSR20
・BR:ポリブタジエン、日本ゼオン社製Nipol BR1220
・オイル:昭和シェル石油社製エクストラクト4号S
In Tables 1 and 2, the types of raw materials used are as follows.
NS116: NS116 manufactured by Nippon Zeon Co., Ltd., bound styrene content 20.9% by weight, vinyl content 63.8%, non-oil-extended product E581: Asahi Kasei Chemicals E581, bound styrene content 35.6% by weight, An oil-extended product having a vinyl content of 41.3%, an SBR of 100 parts by weight and an oil component of 37.5 parts by weight, NS460: NS460 manufactured by Nippon Zeon Co., Ltd., a bound styrene content of 25.1% by weight, and a vinyl content of 62. 8%, oil-extended product with 37.5 parts by weight of oil component added to 100 parts by weight of SBR. HP755B: HP755B made by JSR, 39.6% by weight of bound styrene, 39.4% by weight of vinyl, 3 parts by weight of SBR Oil extended product with 37.5 parts by weight of oil component NS522: NS522 manufactured by Nippon Zeon Co., Ltd., 39.2% by weight of bound styrene, vinyl content 42.2%, oil-extended product with 37.5 parts by weight of oil component added to 100 parts by weight of SBR. HPR850: HPR850 manufactured by JSR, bound styrene content is 27.0% by weight, vinyl content is 58.8%, non-oil Exhibit / Y031: Asaprene Y031 manufactured by Asahi Kasei Chemicals Co., Ltd., bound styrene content 27.1% by weight, vinyl content 57.5%, non-oil exhibition product / Toughden 1834: Asahi Kasei Chemicals Co., Ltd. Toughden 1834, combined styrene content 18. 8% by weight, vinyl content 10.2%, oil-extended product with 37.5 parts by weight of oil component added to 100 parts by weight of SBR 5270H: 5270H by Korea Kumho Petrochemica, 20.6% by weight of bound styrene, vinyl Content: 63.6%, non-oil exhibition 5220M: Korea Kumho Petrochem 5220M manufactured by ica, 26.3% by weight of bound styrene, 26.5% of vinyl content, non-oil-extended product, Nipol 1739: Nipol 1739, manufactured by Nippon Zeon Co., Ltd., 39.8% by weight of bound styrene, containing vinyl 18.4%, oil-extended product with 37.5 parts by weight of oil component added to 100 parts by weight of SBR. NR: natural rubber, TSR20
-BR: Polybutadiene, Nipol BR1220 manufactured by Nippon Zeon
・ Oil: Extract 4S made by Showa Shell Sekiyu
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、表3において使用した原材料の種類を下記に示す。
・シリカ:日本シリカ社製ニップシールAQ
・シランカップリング剤:スルフィド系シランカップリング剤、デグッサ社製Si69VP
・カーボンブラック:昭和キャボット社製ショウブラックN339M
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・ステアリン酸:日油社製ステアリン酸
・老化防止剤:Solutia Euro社製Santoflex 6PPD
・ワックス:大内新興化学工業社製パラフィンワックス
・硫黄:軽井沢精錬所製油処理硫黄
・加硫促進剤-1:三新化学社製サンセラーCM-PO(CZ)
・加硫促進剤-2:三新化学社製サンセラーD-G(DPG)
In addition, the kind of raw material used in Table 3 is shown below.
・ Silica: Nippon Silica Co., Ltd. nip seal AQ
Silane coupling agent: sulfide-based silane coupling agent, Si69VP manufactured by Degussa
・ Carbon black: Show black N339M manufactured by Showa Cabot
-Zinc oxide: 3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd.-Stearic acid: Stearic acid manufactured by NOF Corporation-Anti-aging agent: Santoflex 6PPD manufactured by Solutia Euro
・ Wax: Paraffin wax manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. ・ Sulfur: Sulfur treatment sulfur of Karuizawa Refinery ・ Vulcanization accelerator-1: Sunseller CM-PO (CZ) manufactured by Sanshin Chemical Co., Ltd.
・ Vulcanization accelerator-2: Sunseller DG (DPG) manufactured by Sanshin Chemical Co., Ltd.
 表1,2から明らかなように実施例1~10のゴム組成物は、100%引張応力および引張破断強度を改良することが確認された。 As is clear from Tables 1 and 2, it was confirmed that the rubber compositions of Examples 1 to 10 improved 100% tensile stress and tensile breaking strength.
 比較例2および3のゴム組成物は、スチレン-ブタジエン共重合体成分が、1,2-結合したブタジエン由来単位を1つ含むオゾン分解成分V1が25モル%以上であるので、引張破断強度が劣る。 In the rubber compositions of Comparative Examples 2 and 3, the styrene-butadiene copolymer component has an ozonolysis component V1 containing one 1,2-bonded butadiene-derived unit in an amount of 25 mol% or more. Inferior.
 比較例4のゴム組成物は、スチレン-ブタジエン共重合体成分が、1,2-結合したブタジエン由来単位を1つ含むオゾン分解成分V1が25モル%以上、スチレン由来単位を2つおよび1,2-結合したブタジエン由来単位を1つ含むオゾン分解成分S2V1が5モル%以上、ビニル含有量が50%未満であるので、100%引張応力が劣る。 In the rubber composition of Comparative Example 4, the styrene-butadiene copolymer component contained 25 mol% or more of an ozonolysis component V1 containing one 1,2-bonded butadiene-derived unit, two styrene-derived units, and 1, Since the ozonolysis component S2V1 containing one 2-bonded butadiene-derived unit is 5 mol% or more and the vinyl content is less than 50%, the 100% tensile stress is inferior.
 比較例5のゴム組成物は、スチレン-ブタジエン共重合体成分が、ビニル含有量が50%未満であるので、100%引張応力が劣る。 The rubber composition of Comparative Example 5 is inferior in 100% tensile stress because the styrene-butadiene copolymer component has a vinyl content of less than 50%.
 1  トレッド部
 10a,10b トレッドゴム層
1 tread portion 10a, 10b tread rubber layer

Claims (5)

  1.  少なくとも1種のスチレン-ブタジエン共重合体を含むジエン系ゴムおよび補強性充填剤からなるゴム組成物であって、前記少なくとも1種のスチレン-ブタジエン共重合体からなるスチレン-ブタジエン共重合体成分が、下記(1)~(4)の特性を有することを特徴とするゴム組成物。
    (1)結合スチレンの含量が5~50重量%
    (2)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2-結合したブタジエン由来単位を含む分解成分の合計100モル%中、1,2-結合したブタジエン由来単位を1つ含む分解成分V1が25モル%未満
    (3)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2-結合したブタジエン由来単位を含む分解成分の合計100モル%中、スチレン由来単位を2つおよび1,2-結合したブタジエン由来単位を1つ含む分解成分S2V1が5モル%未満
    (4)ブタジエン部分のビニル含有量が50%以上
    A rubber composition comprising a diene rubber containing at least one styrene-butadiene copolymer and a reinforcing filler, wherein the styrene-butadiene copolymer component comprising the at least one styrene-butadiene copolymer comprises A rubber composition having the following characteristics (1) to (4):
    (1) The content of bound styrene is 5 to 50% by weight
    (2) Among the components obtained by ozonolysis, one 1,2-bonded butadiene-derived unit is included in 100 mol% of the total of decomposition components containing styrene-derived units and / or 1,2-bonded butadiene-derived units. The decomposition component V1 contained is less than 25 mol%. (3) Among the components obtained by ozonolysis, styrene-derived units in a total of 100 mol% of decomposition components containing styrene-derived units and / or 1,2-bonded butadiene-derived units The decomposition component S2V1 containing two benzene and one 1,2-bonded butadiene-derived unit is less than 5 mol%. (4) The vinyl content in the butadiene portion is 50% or more.
  2.  さらに前記ジエン系ゴムが、前記スチレン-ブタジエン共重合体を除く他のジエン系ゴムを少なくとも1種含むことを特徴とする請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the diene rubber further contains at least one diene rubber other than the styrene-butadiene copolymer.
  3.  前記補強性充填剤が、シリカ、カーボンブラックから選ばれる少なくとも1種からなることを特徴とする請求項1または2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the reinforcing filler comprises at least one selected from silica and carbon black.
  4.  請求項1~3のいずれかに記載のゴム組成物を使用したことを特徴とする空気入りタイヤ。 A pneumatic tire using the rubber composition according to any one of claims 1 to 3.
  5.  前記ゴム組成物をキャップトレッドに使用したことを特徴とする請求項4に記載の空気入りタイヤ。 The pneumatic tire according to claim 4, wherein the rubber composition is used for a cap tread.
PCT/JP2017/017055 2016-05-10 2017-04-28 Rubber composition and pneumatic tire using same WO2017195679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016094651A JP6769099B2 (en) 2016-05-10 2016-05-10 Rubber composition and pneumatic tires using it
JP2016-094651 2016-05-10

Publications (1)

Publication Number Publication Date
WO2017195679A1 true WO2017195679A1 (en) 2017-11-16

Family

ID=60267196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017055 WO2017195679A1 (en) 2016-05-10 2017-04-28 Rubber composition and pneumatic tire using same

Country Status (2)

Country Link
JP (1) JP6769099B2 (en)
WO (1) WO2017195679A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199915A1 (en) * 2015-06-12 2016-12-15 横浜ゴム株式会社 Rubber composition and pneumatic tire using same
JP6769098B2 (en) * 2016-05-10 2020-10-14 横浜ゴム株式会社 Rubber composition and pneumatic tires using it
WO2019107390A1 (en) * 2017-11-28 2019-06-06 横浜ゴム株式会社 Pneumatic tire, and method for manufacturing tire rubber composition used in same
JP7358776B2 (en) * 2019-05-15 2023-10-11 住友ゴム工業株式会社 Rubber composition for tires and pneumatic tires

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038423A (en) * 1998-07-24 2000-02-08 Jsr Corp Conjugated diolefin copolymer rubber and rubber composition
JP2000178378A (en) * 1998-10-07 2000-06-27 Jsr Corp Oil-extended rubber and rubber composition
JP2013147532A (en) * 2012-01-17 2013-08-01 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2013213183A (en) * 2012-03-08 2013-10-17 Yokohama Rubber Co Ltd:The Rubber composition for tire tread

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038423A (en) * 1998-07-24 2000-02-08 Jsr Corp Conjugated diolefin copolymer rubber and rubber composition
JP2000178378A (en) * 1998-10-07 2000-06-27 Jsr Corp Oil-extended rubber and rubber composition
JP2013147532A (en) * 2012-01-17 2013-08-01 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2013213183A (en) * 2012-03-08 2013-10-17 Yokohama Rubber Co Ltd:The Rubber composition for tire tread

Also Published As

Publication number Publication date
JP2017203081A (en) 2017-11-16
JP6769099B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6819584B2 (en) Rubber composition and pneumatic tires using it
WO2017195677A1 (en) Rubber composition and pneumatic tire using same
WO2016199910A1 (en) Rubber composition and pneumatic tire using same
WO2016147961A1 (en) Rubber composition and pneumatic tire using same
WO2016147962A1 (en) Rubber composition and pneumatic tire using same
WO2016199912A1 (en) Rubber composition and pneumatic tire using same
WO2016199915A1 (en) Rubber composition and pneumatic tire using same
WO2016199913A1 (en) Rubber composition and pneumatic tire using same
WO2016199911A1 (en) Rubber composition and pneumatic tire using same
WO2017195679A1 (en) Rubber composition and pneumatic tire using same
WO2017195678A1 (en) Rubber composition and pneumatic tire using same
WO2017195680A1 (en) Rubber composition and pneumatic tire using same
WO2017195681A1 (en) Rubber composition and pneumatic tire using same
WO2017195675A1 (en) Rubber composition and pneumatic tire using same
WO2017195682A1 (en) Rubber composition and pneumatic tire using same
WO2017195676A1 (en) Rubber composition and pneumatic tire using same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796040

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796040

Country of ref document: EP

Kind code of ref document: A1