[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017195534A1 - 土壌状態評価装置、該方法および該プログラム - Google Patents

土壌状態評価装置、該方法および該プログラム Download PDF

Info

Publication number
WO2017195534A1
WO2017195534A1 PCT/JP2017/015487 JP2017015487W WO2017195534A1 WO 2017195534 A1 WO2017195534 A1 WO 2017195534A1 JP 2017015487 W JP2017015487 W JP 2017015487W WO 2017195534 A1 WO2017195534 A1 WO 2017195534A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaluation
field
temperature
soil
unit
Prior art date
Application number
PCT/JP2017/015487
Other languages
English (en)
French (fr)
Inventor
康男 小柳
片桐 哲也
弘志 藤井
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018516906A priority Critical patent/JP6881440B2/ja
Priority to KR1020187032176A priority patent/KR102163610B1/ko
Priority to CN201780027935.0A priority patent/CN109154591B/zh
Publication of WO2017195534A1 publication Critical patent/WO2017195534A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means

Definitions

  • the present invention relates to a soil state evaluation apparatus, a soil state evaluation method, and a soil state evaluation program for evaluating the state of soil in a field from a reducing viewpoint.
  • Patent Document 1 Such a technique for evaluating the state of the soil is disclosed in Patent Document 1, for example.
  • the soil analysis method disclosed in Patent Document 1 is a soil analysis method for analyzing the amount of nutrients for growing various crops in a predetermined soil, the step of cutting out the predetermined soil at a predetermined depth and collecting a sample And a step of treating the collected sample with a treatment solution containing a strong acid to obtain an extract, and chemically analyzing the obtained extract with an ion chromatograph to accurately grasp the amount of nutrients in the soil, It comprises.
  • the soil analysis method disclosed in Patent Document 1 is considered to be able to analyze the nutrient content of the soil relatively accurately because a sample is actually collected from the soil and chemically analyzed by an ion chromatograph.
  • the [0012] paragraph states that "sampling may be performed at a plurality of locations appropriately distributed so that necessary data can be collected from the whole farm so that an accurate analysis result can be obtained.
  • the sampling point is a total of 6 points, which are arbitrary 2 points on the four corners and diagonal lines of the whole farm.
  • This invention is an invention made
  • the objective is by providing the soil condition evaluation apparatus, the soil condition evaluation method, and the soil condition evaluation program which can evaluate the degree of reducibility more efficiently. is there.
  • a heat distribution image in the field to be evaluated is acquired, the temperature of the field is acquired, and the acquired heat distribution image of the field is acquired. And an evaluation value representing the degree of reducibility in the soil of the field based on the acquired temperature of the field.
  • FIG. 1 is a diagram for explaining the correlation between the occurrence of a reduction disorder in a field and the temperature of a crop.
  • FIG. 1A is a diagram showing a heat distribution image of a paddy field
  • FIG. 1B is a diagram showing an average value of the number of spikes in rice grown in the paddy field.
  • the paddy field to be tested is an area where 20 kg of lime nitrogen is supplied per 10 ares (a) as a material for improving reduction disorder, and is a lime N area shown on the left side of the page, and an area where the material is not supplied. It was divided into the control group shown on the right side.
  • the darker the color on the gray scale the higher the heat radiation from the paddy field, in other words, the temperature of the paddy field, and in other words, the higher the temperature of the rice.
  • the temperature of the surrounding environment of the paddy field when the heat distribution image of the paddy field shown in FIG. 1A was taken was 31.2 ° C.
  • FIG. 1B in the control section on the right side of the page, there are 9 sub-regions with an average number of rice spikes of 400 / m 2 and an average value of rice spikes of 500 / m 2 .
  • an average value of 600 rice spikes / m is two sub-areas is twelve.
  • the degree of reducibility is small in most areas due to the material of lime nitrogen, and the occurrence of reductive damage is suppressed. As a result, rice grows smoothly.
  • the degree of reducibility is increased in some places, reducing damage occurs in the places, and rice growth is not smooth.
  • the average number of rice ears is 435 / m 2 to 498 / m 2 in the sub-region. It has become a poor growth due to a reduction disorder.
  • the lime N district has a relatively high number of sub-regions (the rice field temperature is high, the rice temperature is high) less than the control zone. It can be seen that the temperature of the paddy field (rice temperature) in the lime N zone is lower than the temperature of the paddy field (rice temperature) in the control zone. In particular, the temperature (rice temperature) of the nine sub-regions indicated by circles in FIG. 1B is clearly higher than the temperature (rice temperature) of the paddy field in the lime N district adjacent thereto.
  • FIG. 3 is a diagram showing an evaluation material conversion information table stored in the soil condition evaluation device of the soil condition evaluation system.
  • the soil condition evaluation apparatus is an apparatus that evaluates the condition of the soil, and acquires a heat distribution image acquisition unit that acquires a heat distribution image in the evaluation target field, and the temperature of the field. Based on the field temperature acquisition unit, the heat distribution image of the field acquired by the heat distribution image acquisition unit, and the field temperature acquired by the field temperature acquisition unit. A soil reducibility evaluation unit for obtaining an evaluation value representing the degree.
  • the heat distribution image acquisition unit captures infrared rays emitted from the field to be evaluated, and generates a heat distribution image (thermogram) representing the heat distribution as a diagram.
  • the heat distribution image acquisition unit wirelessly receives a heat distribution image in a field to be evaluated from the heat distribution image generation device.
  • a communication interface unit for example, a communication card.
  • the soil state evaluation system S includes a heat distribution image generation device M and a soil state evaluation device P connected to the heat distribution image generation device M so as to be wirelessly communicable.
  • the heat distribution image generation device M is a device that generates a heat distribution image SP in the field AR to be evaluated.
  • the heat distribution image generation device M is attached to the tip of a long rod such as a cocoon, for example, and generates a heat distribution image SP of the field overlooking the field AR from above, or is relatively adjacent to the field AR. If there is a high building, the heat distribution image SP of the field may be generated from the building, but in this embodiment, an aircraft is provided so that the heat distribution image SP of the field is generated from the sky. It is configured.
  • the heat distribution image generation device M includes a GPS 21, a temperature measurement unit 22, a control unit 23, a heat distribution image generation unit 24, a storage unit 25, and a communication interface unit 26. And an aircraft 27.
  • the aircraft 27 is a device that flies in the atmosphere, such as a balloon, an airship, an airplane, a helicopter, and a multicopter.
  • the aircraft 27 may be a manned aircraft, but is preferably an unmanned aircraft (drone) by radio controlled flight (guided flight) or autonomous flight.
  • the aircraft 27 is connected to the control unit 23 and flies according to the control of the control unit 23 by guided flight or autonomous flight.
  • a GPS (Global Positioning System) 21 is a device that is connected to the control unit 23 and measures the position Pap of the aircraft 27 by a satellite positioning system for measuring the current position on the earth according to the control of the control unit 23.
  • the positioning result (position Pap (latitude Xap, longitude Yap, altitude Zap)) is output to the control unit 23.
  • the GPS 21 may be a GPS having a correction function for correcting an error such as DGSP (Differential GSP).
  • the temperature measuring unit 22 is connected to the control unit 23 and is a temperature sensor that measures the field temperature Ts under the control of the control unit 23, and outputs the temperature Ts of the measurement result to the control unit 23.
  • the temperature measuring unit 22 mounted on the aircraft 27 since the temperature Ts of the field is measured by the temperature measuring unit 22 mounted on the aircraft 27, it is preferable that the aircraft 27 fly in a relatively low sky.
  • the temperature measuring unit 22 mounted on the aircraft 27 is different from the actual temperature Tr of the field on the ground, the temperature is measured by the temperature measuring unit 22 mounted on the aircraft 27.
  • the difference between the measured field temperature Ts and the actual field temperature Tr on the ground is measured by a plurality of samples in advance for each altitude of the aircraft 27, and by using this result, the temperature mounted on the aircraft 27 is measured.
  • the field temperature Ts measured by the measurement unit 22 may be corrected so as to be the actual field temperature Tr of the field on the ground.
  • the heat distribution image generation unit 24 is connected to the control unit 23, and in accordance with the control of the control unit 23, captures infrared rays emitted from the evaluation target field AR, and displays the heat distribution as a diagram (thermogram). It is a heat distribution image generation device (thermograph, infrared camera) that generates SP, and outputs the generated heat distribution image SP to the control unit 23.
  • a heat distribution image generation unit 24 is, for example, an image forming optical system that forms an image of infrared rays in the field AR to be evaluated on a predetermined image forming surface, and a light receiving surface that is aligned with the image forming surface.
  • An infrared image sensor that converts the image into an electrical signal, and an output of the infrared image sensor is subjected to image processing such as conversion of infrared radiation amount into heat (temperature).
  • image processing such as conversion of infrared radiation amount into heat (temperature).
  • An image processing unit that generates SP is provided.
  • the communication interface unit (communication IF unit) 26 is a communication circuit that is connected to the control unit 23 and performs wireless communication under the control of the control unit 23.
  • the communication IF unit 26 generates a communication signal containing data to be transferred input from the control unit 23 according to a communication protocol used between the heat distribution image generation device M and the soil condition evaluation device P. The generated communication signal is transmitted to the soil condition evaluation device P.
  • the communication IF unit 26 receives a communication signal from the soil condition evaluation device P, extracts data from the received communication signal, converts the extracted data into data in a format that can be processed by the control unit 23, and controls the control unit 23. Output to.
  • the communication IF unit 26 includes, for example, a communication interface circuit that conforms to the IEEE 802.11 standard or the like.
  • the storage unit 25 is a circuit that is connected to the control unit 23 and stores various predetermined programs and various predetermined data under the control of the control unit 23.
  • Examples of the various predetermined programs include a control program for controlling each unit 21, 22, 24 to 27 of the heat distribution image generating apparatus M according to the function of each unit, positioning by the GPS 21, and a temperature measuring unit 22.
  • the GPS 21, the air temperature measurement unit 22, and the heat distribution image generation unit 24 respectively perform the positioning, the temperature measurement, and the imaging so that the temperature measurement by the image capturing and the image capturing by the heat distribution image generation unit 24 are synchronized with each other.
  • a data transmission program for transmitting the heat distribution image SP from the communication IF unit 26 to the soil condition evaluation device P using a communication signal It includes control processing program and the like.
  • the various kinds of predetermined data include data necessary for processing to capture and generate a heat distribution image SP of a field, such as a communication address of the soil condition evaluation device P, for example.
  • the storage unit 25 includes, for example, a ROM (Read Only Memory) that is a nonvolatile storage element, an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a rewritable nonvolatile storage element, and the like.
  • the storage unit 25 includes a RAM (Random Access Memory) serving as a working memory of the control unit 23 that stores data generated during execution of the predetermined program.
  • the control unit 23 controls each unit 21, 22, 24 to 27 of the heat distribution image generating apparatus M according to the function of each unit, and controls the entire heat distribution image generating apparatus M.
  • the control unit 23 performs the positioning, the temperature measurement, and the imaging to the GPS 21, the temperature measurement by the temperature measurement unit 22, the temperature measurement by the temperature measurement unit 22, and the imaging by the heat distribution image generation unit 24, respectively.
  • the temperature measurement unit 22 and the heat distribution image generation unit 24 are each executed.
  • the control unit 23 obtains the positioning result Pap obtained by the GPS 21, the temperature measuring unit 22 and the heat distribution image generating unit 24, the temperature Ts of the measurement result, and the heat distribution image SP generated by imaging,
  • a communication signal is transmitted from the communication IF unit 26 to the soil condition evaluation apparatus P.
  • the controller 23 includes, for example, a CPU (Central Processing Unit) and its peripheral circuits.
  • storage part 25, and the communication IF part 26 are mounted in the aircraft 27, and are arrange
  • the soil condition evaluation apparatus P includes a communication IF unit 11, a control processing unit 12, a storage unit 13, an input unit 14, and an output unit 15.
  • the communication IF unit 11 is a communication circuit that is connected to the control processing unit 12 and performs wireless communication under the control of the control processing unit 12, similarly to the communication IF unit 26.
  • the communication IF unit 11 includes, for example, a communication interface circuit that complies with the IEEE 802.11 standard or the like.
  • the communication IF unit 11 corresponds to an example of a heat distribution image acquisition unit that acquires the heat distribution image SP in the field AR, and also corresponds to an example of a field temperature acquisition unit that acquires the temperature Ts of the field.
  • the input unit 14 is connected to the control processing unit 12 and, for example, various commands such as a command for instructing start of evaluation, and various data necessary for evaluating the field AR such as the name of the field AR and evaluation conditions, for example.
  • a device that inputs to the soil condition evaluation apparatus P for example, a plurality of input switches assigned with predetermined functions, a keyboard, a mouse, and the like.
  • the evaluation condition is a predetermined condition set in advance when actually measuring the heat distribution image SP and the temperature Ts of the field, and is compared with the set evaluation condition stored in the setting evaluation condition information storage unit 135 described later. Is done.
  • the set evaluation condition is a condition for determining whether or not an evaluation value is significantly obtained by a soil reducibility evaluation unit 123 described later.
  • the setting evaluation condition preferably includes that the field temperature Ts is equal to or higher than a predetermined temperature Th set in advance, and in this embodiment, the weather is sunny or sunny. It further includes that the time is from 9:00 to 15:00. For this reason, the evaluation condition includes the temperature Ts of the field.
  • the temperature Ts of the field is measured by the temperature measuring unit 22, and the measured temperature Ts of the field is acquired from the heat distribution image generating device M by the communication IF unit 11. Therefore, the communication IF unit 11 corresponds to an example of an evaluation condition receiving unit that receives an evaluation condition from the outside.
  • the predetermined temperature Th is set to an appropriate value, for example, 25 ° C., 28 ° C., 30 ° C., or the like by considering the reduction disorder process.
  • the evaluation condition includes weather and time. These weather and time are input from the input unit 14. Therefore, the input unit 14 corresponds to another example of an evaluation condition receiving unit that receives an evaluation condition from the outside.
  • the output unit 15 is connected to the control processing unit 12, and according to the control of the control processing unit 12, the command and data input from the input unit 14, the evaluation value EV and the amount of material obtained by the soil condition evaluation device P
  • a device that outputs MV or the like for example, a display device such as a CRT display, LCD, or organic EL display, or a printing device such as a printer.
  • a touch panel may be configured from the input unit 14 and the output unit 15.
  • the input unit 14 is a position input device that detects and inputs an operation position such as a resistive film method or a capacitance method
  • the output unit 15 is a display device.
  • a position input device is provided on the display surface of the display device, one or more input content candidates that can be input to the display device are displayed, and the user touches the display position where the input content to be input is displayed. Then, the position is detected by the position input device, and the display content displayed at the detected position is input to the soil condition evaluation device P as the operation input content of the user.
  • the soil condition evaluation device P that is easy for the user to handle is provided.
  • the temperature Ts of the field is acquired from the heat distribution image generation device M by the communication IF unit 11, and the operator measures the temperature at the field AR with a thermometer, and this measured temperature is the temperature of the field.
  • This method is particularly useful when the above-described heat distribution image generation device is attached to the tip of the rod to acquire the heat distribution image SP of the field, or when the heat distribution image SP of the field is acquired from an adjacent building or the like. It is. Therefore, in such a case, the input unit 14 corresponds to another example of the field temperature acquisition unit that acquires the temperature Ts of the field.
  • the storage unit 13 is a circuit that is connected to the control processing unit 12 and stores various predetermined programs and various predetermined data under the control of the control processing unit 12.
  • Examples of the various predetermined programs include a control program for controlling the units 11 and 13 to 15 of the soil condition evaluation apparatus P according to the functions of the units, and the heat distribution of the field acquired by the communication IF unit 11. Reduction in the soil of the field based on the field temperature processing program for obtaining the temperature Tar of the field based on the image SP and the heat distribution image SP of the field acquired by the communication IF unit 11 and the temperature Ts of the field.
  • the amount of material for obtaining the amount MV of the material for improving the reducibility based on the evaluation value EV obtained by the soil reducibility evaluation program for obtaining the evaluation value EV representing the degree of nature A control processing program such as a processing program is included.
  • the various predetermined data include the communication address of the heat distribution image generation device M, the heat distribution image SP of the field, the temperature conversion information for obtaining the temperature distribution Tar of the field from the heat distribution image SP of the field, From the temperature distribution information Tarp, the evaluation value conversion information for obtaining the evaluation value EV from the difference between the field temperature Tar and the field temperature Ts, the field reducibility evaluation map EVm, and the field reducibility evaluation map EVm Data necessary for evaluating the soil condition of the field such as the material amount conversion information for obtaining the material amount map MVm, the field material amount map MVm, and the like are included.
  • the storage unit 13 includes, for example, a ROM or an EEPROM.
  • the storage unit 13 includes a RAM serving as a working memory for the so-called control processing unit 12 that stores data generated during execution of the predetermined program. And in order to memorize
  • a setting evaluation condition information storage unit 135 and a conversion information storage unit 136 are provided.
  • the heat distribution information storage unit 131 stores the heat distribution image (heat distribution image data) SP of the field.
  • the heat distribution information storage unit 131 is synchronized with the heat distribution image SP of the field received by the communication IF unit 11 and the imaging of the heat distribution image generation unit 24 to generate the heat distribution image SP.
  • the position Pap of the positioning result of the GPS 21 and the temperature Ts of the measurement result of the temperature measuring unit 22 obtained in association with each other are stored in association with each other.
  • the temperature distribution information storage unit 132 stores the temperature distribution image Tarp of the field.
  • the temperature distribution information storage unit 132 stores the temperature distribution image Tarp of the farm field obtained based on the heat distribution image SP of the farm field by using the temperature conversion information by the farm temperature processing unit 122 described later. To do.
  • the field temperature distribution image Tarp is stored in the temperature distribution information storage unit 132 in association with the position Pap and the field temperature Ts associated with the field heat distribution image SP used to obtain the field temperature distribution image Tarp.
  • the reducibility evaluation information storage unit 133 stores the reducibility evaluation map EVm of the field.
  • the reducibility evaluation information storage unit 133 is obtained based on the field temperature Tar and the field temperature Ts by using the evaluation value conversion information by the soil reducibility evaluation unit 123 described later.
  • a field reducibility evaluation map EVm is stored.
  • the field reducibility evaluation map EVm is associated with the position Pap and the field temperature Ts associated with the field temperature distribution image Tarp (that is, the field heat distribution image SP) used to obtain the map. And stored in the reducibility evaluation information storage unit 133.
  • the material amount information storage unit 134 stores the material amount map MVm of the field.
  • the material amount information storage unit 134 uses the material amount conversion information by the material amount processing unit 124 to be described later, so that the material amount map of the field obtained based on the field reducibility evaluation map EVm.
  • This field material amount map MVm is stored in the material amount information storage unit 134 in association with the position Pap associated with the reducibility evaluation map EVm (that is, the heat distribution image SP of the field) used when obtaining this field map.
  • the setting evaluation condition information storage unit 135 stores the setting evaluation condition.
  • the setting evaluation condition information storage unit 135 stores, as one of the setting evaluation conditions, that the field temperature Ts of the field is equal to or higher than the predetermined temperature Th. Is clear or sunny and the time is from 9 o'clock to 15 o'clock, is stored as another setting evaluation condition.
  • the conversion information storage unit 136 stores the temperature conversion information, evaluation value conversion information, and material amount conversion information. These temperature conversion information, evaluation value conversion information, and material amount conversion information are generated by measuring a plurality of samples in advance and statistically processing the measurement results, and are stored in the conversion information storage unit 136. In this embodiment, the evaluation value conversion information and the material amount conversion information are collected in one table in a table format and stored in the conversion information storage unit 136.
  • the evaluation material conversion information table CT for registering the evaluation value conversion information and the material amount conversion information is, for example, as shown in FIG. 3, a difference ⁇ T for registering a difference between the field temperature Tar and the field temperature Ts.
  • a material amount field 313 for registering MV which has a record corresponding to the number of types of evaluation values EV.
  • the evaluation value EV is multistage and includes an evaluation indicating whether or not a reduction disorder has occurred. More specifically, in this embodiment, the evaluation value EV has four stages of “no reduction”, “weak reduction”, “medium reduction”, and “strong reduction”, and the “no reduction” “Represents” no occurrence of reduction failure ", and” strong reduction “represents” occurrence of reduction failure ".
  • the evaluation material conversion information table CT shown in FIG. 3 has four records.
  • the first record when the difference ⁇ T obtained by subtracting the field temperature Ts from the field temperature Tar by each field 311 to 313 is 0 or less ( ⁇ T ⁇ 0), It is registered that the evaluation value EV is not reducing and the material amount MV is 0 [kg / 10a] (0 kg per 10 ares).
  • the difference ⁇ T obtained by subtracting the field temperature Ts from the field temperature Tar from each field 311 to 313 is greater than 0 and less than Th1 (0 ⁇ ⁇ T ⁇ Th1), the evaluation value EV is weakly reducing, and the material amount MV is registered as V1 [kg / 10a] (V1 kg per 10 ares).
  • the third record includes a case where a difference ⁇ T obtained by subtracting the field temperature Ts from the field temperature Tar from each field 311 to 313 is greater than Th1 and less than Th2 (Th1 ⁇ ⁇ T ⁇ Th2), the evaluation value EV is moderately reducible, and the material amount MV is registered as V2 [kg / 10a] (V2 kg per 10 ares).
  • the Th1 is + 1.5 ° C., + 2 ° C., + 2.5 ° C. or the like, and the Th2 is + 3.5 ° C., + 4 ° C., + 4.5 ° C., or the like, and Th1 ⁇ Th2.
  • the V1 is 10 [kg / 10a]
  • the V2 is 20 [kg / 10a]
  • the V3 is 30 [kg / 10a]
  • V1 ⁇ V2 ⁇ V3. is there.
  • the control processing unit 12 controls the units 11 and 13 to 15 of the soil condition evaluation device P according to the functions of the components, obtains an evaluation value EV and a material amount MV, and controls the soil condition evaluation device P overall. Is.
  • the control processing unit 12 includes, for example, a CPU (Central Processing Unit) and its peripheral circuits. By executing the control processing program in the control processing unit 12, a control unit 121, a field temperature processing unit 122, a soil reducibility evaluation unit 123, and a material amount processing unit 124 are functionally configured.
  • the control part 121 controls each part 11, 13-15 of the said soil condition evaluation apparatus P according to the function of the said each part.
  • the control unit 121 receives the heat distribution image SP, the position Pap, and the temperature Ts of the farm housed in the communication signal. Are associated with each other and stored in the heat distribution information storage unit 131.
  • the field temperature processing unit 122 calculates the temperature Tar of the field based on the heat distribution image SP of the field received by the communication IF unit 11. More specifically, the field temperature processing unit 122 uses the temperature conversion information stored in the conversion information storage unit 136 to set each pixel in the heat distribution image SP of the field to a temperature corresponding to the pixel value. By converting, an image (temperature distribution image) Tarp representing the temperature distribution of the field is obtained. Accordingly, each pixel of the temperature distribution image Tarp of the field represents the temperature Tar of the field at the pixel position. The field temperature processing unit 122 stores the obtained temperature distribution image Tarp in the temperature distribution information storage unit 132 in association with the position Pap and the temperature Ts associated with the heat distribution image SP of the field.
  • the soil state evaluation unit 123 calculates the evaluation value of the field based on the difference between the temperature distribution image Tarp of the field obtained by the field temperature processing unit 122 and the temperature Ts of the field received by the communication IF unit 11. EV is obtained in multiple stages. More specifically, the soil condition evaluation unit 123 uses the evaluation value conversion information stored in the conversion information storage unit 136 to evaluate the difference between the field temperature distribution image Tarp and the field temperature Ts. Convert to value EV. Although the conversion to the evaluation value EV may be executed for each pixel, in the present embodiment, the soil state evaluation unit 123 converts the temperature distribution image Tarp of the field into a sub-region having a predetermined predetermined width.
  • the field temperature Ts is considered to be the same (in each sub-region SAR) throughout the field.
  • a reduction evaluation map EVm to which an evaluation value EV (SAR) is assigned for each sub-region SAR is created.
  • the sub-region SAR has an arbitrary shape (for example, a triangle, a quadrangle, a hexagon, etc.) and an arbitrary width (0.5 are, 1 are, 2 are, etc.) as long as the field AR can be divided without gaps. Although it is good, in one example, it is a square of 5 m or 10 m on a side.
  • the representative value may be, for example, an average value of all pixels in the sub-region SAR, or may be a median value of the sub-region SAR, for example.
  • the soil reducibility evaluation unit 123 associates the obtained reducibility evaluation map EVm with the position Pap associated with the temperature distribution image Tarp of the field and the field temperature Ts of the field, and the reducibility evaluation information storage unit. 133 to store.
  • the soil reducibility evaluation unit 123 when the evaluation condition received by the communication IF unit 11 or the input unit 14 satisfies the setting evaluation condition stored in the setting evaluation condition information storage unit 135, The evaluation value EV obtained as described above is obtained as the final evaluation value EV. More specifically, the soil reducibility evaluation unit 123 determines the evaluation value EV as the final evaluation value EV when the field temperature Ts received by the communication IF unit 11 is equal to or higher than the predetermined temperature Th. To do. Furthermore, in this embodiment, the soil reducibility evaluation unit 123 performs the evaluation when the heat distribution image SP of the field is clear or sunny and is captured at any time between 9:00 and 15:00. The value EV is set as the final evaluation value EV.
  • the material amount processing unit 124 obtains the amount MV of material for improving the reducibility based on the evaluation value EV obtained by the soil reducibility evaluation unit 123. More specifically, the material amount processing unit 124 uses each of the material amount conversion information stored in the conversion information storage unit 136 to use each sub-unit of the reducibility evaluation map EVm stored in the reducibility evaluation information storage unit 133. Each evaluation value EV (SAR) associated with the area SAR is converted into a material amount MV (SAR). As a result, a material amount map MVm to which a material amount MV (SAR) is assigned for each sub-region SAR is created. Then, the material quantity processing unit 124 stores the obtained material quantity map MVm in the material quantity information storage unit 134 in association with the position Pap associated with the field reducibility evaluation map EVm.
  • FIG. 4 is a flowchart showing the operation of the soil condition evaluation apparatus of the soil condition evaluation system.
  • FIG. 5 is a schematic diagram showing a temperature distribution image of an agricultural field as an example.
  • FIG. 6 is a diagram showing an evaluation value map obtained based on the temperature distribution image of the field schematically shown in FIG.
  • FIG. 7 is a diagram showing a material amount map obtained based on the evaluation value map shown in FIG.
  • the control processing unit 12 is functionally configured with a control unit 121, a field temperature processing unit 122, a soil reducibility evaluation unit 123, and a material amount processing unit 124.
  • the heat distribution image generation device M flies in accordance with the control of the control unit 23 by guided flight or autonomous flight, images the field AR to be evaluated from above, measures the position by the GPS 21 in synchronization with the image capturing, and performs the temperature measurement by the temperature measurement unit 22. Measure temperature. Then, the heat distribution image generation device M is generated by the control unit 23 by imaging the GPS 21, the temperature measurement unit 22, and the heat distribution image generation unit 24 obtained by the positioning result Pap, the measurement result temperature Ts, and the measurement result.
  • the transmitted heat distribution image SP (not shown) is transmitted from the communication IF unit 26 to the soil condition evaluation device P as a communication signal.
  • the soil condition evaluation apparatus P obtains the positioning result Pap (position Pap), the measurement result temperature Ts (field temperature Ts), and the field heat distribution image SP from the heat distribution image generation apparatus M by the communication IF unit 11.
  • position Pap position Pap
  • field temperature Ts field temperature
  • field heat distribution image SP field heat distribution image SP
  • the acquired position Pap, field temperature Ts, and field heat distribution image SP are associated with each other and stored in the heat distribution information storage unit 131 of the storage unit 13 (S11).
  • Evaluation conditions are acquired (S12).
  • the evaluation condition may be received by the input unit 14, stored in the storage unit 13, and the evaluation condition stored in the storage unit 13 may be acquired.
  • the evaluation condition may be acquired by receiving the input of the evaluation condition by the input unit 14. good.
  • This evaluation condition input operation may be executed at predetermined time intervals (for example, every 30 minutes, every hour, every two hours, or the like).
  • weather and time are input from the input unit 14 as one of the evaluation conditions.
  • the temperature Ts of the field is received as another one of the evaluation conditions by the communication IF unit 11 as described above.
  • the soil state evaluation apparatus P obtains the temperature distribution image Tarp of the field by obtaining the temperature Tar of the field based on the heat distribution image SP of the field by the field temperature processing unit 122 of the control processing unit 12 and stores it. (S13). More specifically, the field temperature processing unit 122 uses the temperature conversion information stored in the conversion information storage unit 136 to calculate each pixel in the heat distribution image SP of the field acquired in step S11 as a pixel value. An image (temperature distribution image) Tarp representing the temperature distribution of the field is obtained by converting the temperature into a temperature corresponding to. Then, the field temperature processing unit 122 stores the obtained temperature distribution image Tarp in the temperature distribution information storage unit 132 in association with the position Pap and the temperature Ts acquired in step S11.
  • the soil condition evaluation apparatus P obtains an evaluation value EV by the soil reducibility evaluation unit 123 of the control processing unit 12 (S14). More specifically, the soil reducibility evaluation unit 123 determines the difference between the field temperature distribution image Tarp obtained by the field temperature processing unit 122 in step S13 and the field temperature Ts acquired in step S11. Based on this, the field evaluation value EV is determined in multiple stages. More specifically, the soil reducibility evaluation unit 123 determines, for each of the plurality of sub-regions SAR into which the field AR is divided, the representative value of the temperature Tar of the sub-region SAR from the field temperature distribution image Tarp obtained in step S13.
  • the difference ⁇ T between the obtained representative value temperature Tar and the field temperature Ts is obtained, and this difference ⁇ T is evaluated using the evaluation material conversion information table CT stored in the conversion information storage unit 136. Convert to EV (SAR). Thereby, the reducibility evaluation map EVm is created.
  • the soil condition evaluation apparatus P determines whether the received evaluation condition satisfies the set evaluation condition stored in the set evaluation condition information storage unit 135 by the soil reducibility evaluation unit 123 (S15). As a result of this determination, when the evaluation condition satisfies the set evaluation condition (Yes), the soil reducibility evaluation unit 123 sets the evaluation value EV obtained in the process S14 as the finally obtained evaluation value EV, When the evaluation condition does not satisfy the set evaluation condition (No), the soil reducibility evaluation unit 123 does not use the evaluation value EV obtained in the processing S14 as an error as the evaluation value EV finally obtained.
  • the soil reducibility evaluation unit 123 determines whether or not the field temperature Ts acquired in the process S11 is equal to or higher than the predetermined temperature Th, and the weather received in the process S12 is clear or sunny. Then, it is determined whether or not the time received in the process S12 is from 9:00 to 15:00. As a result of this determination, the soil reducibility evaluation unit 123 determines that the field temperature Ts acquired in the process S11 is equal to or higher than the predetermined temperature Th, and the weather received in the process S12 is clear or sunny, and the When the time received in process S12 is from 9:00 to 15:00, it is determined that the evaluation condition satisfies the set evaluation condition (Yes), and the soil reducibility evaluation unit 123 determines the evaluation value obtained in process S14.
  • the soil reducibility evaluation unit 123 indicates that the field temperature Ts acquired in the process S11 is not equal to or higher than the predetermined temperature Th, or the weather received in the process S12 is not clear or sunny, or When the time received in the process S12 is not from 9:00 to 15:00 (that is, the field temperature Ts acquired in the process S11 is equal to or higher than the predetermined temperature Th, the weather received in the process S12 is clear or When the evaluation condition does not satisfy the set evaluation condition (if no one of the clear sky and the time received in the process S12 is from 9:00 to 15:00) ) And the soil reducibility evaluation unit 123 does not use the evaluation value EV obtained in the process S14 as the evaluation value EV finally obtained as an error.
  • the soil condition evaluation apparatus P uses the soil reducibility evaluation unit 123 to calculate the evaluation value EV (in this embodiment, the reducibility evaluation map EVm) obtained in the process S14, the determination result of the process S15, and the process S11.
  • the obtained position Pap and the temperature Ts are associated with each other and stored in the reducing ability evaluation information storage unit 133 (S16).
  • the soil condition evaluation apparatus P uses the material amount processing unit 124 of the control processing unit 12 to increase the reducibility based on the evaluation value EV obtained by the soil reducibility evaluation unit 123.
  • MV is obtained and stored (S17). More specifically, the material amount processing unit 124 uses the material amount conversion information stored in the conversion information storage unit 136 to associate with each sub-region SAR of the reducibility evaluation map EVm obtained in step S14. Each evaluation value EV (SAR) thus obtained is converted into a material amount MV (SAR). Then, the material amount processing unit 124 stores the obtained material amount map MVm in the material amount information storage unit 134 in association with the position Pap acquired in step S11.
  • the soil condition evaluation apparatus P outputs the evaluation value EV and its material amount MV for the field AR to be evaluated from the output unit 15 by the control processing unit 12 (S18), and ends the process. More specifically, the control processing unit 12 outputs, from the output unit 15, the reducibility evaluation map EVm obtained in the process S14 and the material amount map MVm in the process S16 according to the determination result of the process S15. More specifically, for example, the control processing unit 12 determines the evaluation value EV (this embodiment) in which the determination result of the process S15 is finally obtained from the evaluation value EV (in this embodiment, the reducibility evaluation map EVm) obtained in the process S14.
  • the reducibility evaluation map EVm obtained in step S14 and the material amount map MVm are output from the output unit 15 in step S16, and the control processing unit 12 determines the determination result in step S15. Is an error, the setting evaluation condition is not satisfied and an error is output from the output unit 15.
  • the control processing unit 12 outputs the fact that the setting evaluation condition is not satisfied and the error is output from the output unit 15, and the reducibility obtained in the process S14 as reference information.
  • the material amount map MVm may be output from the output unit 15 in the evaluation map EVm and processing S16.
  • the temperature distribution image Tarp shown in FIG. For example, by converting the pixel value of each pixel from the heat distribution image SP in the evaluation target field AR using the temperature conversion information, the temperature distribution image Tarp shown in FIG.
  • a representative value of the temperature Tar of the sub-region SAR is obtained, and the representative value of the temperature Tar of the sub-region SAR is obtained as an evaluation material conversion information table.
  • CT a reduction evaluation map EVm shown in FIG. 6 is obtained.
  • the evaluation value EV (SAR) of the sub-region SAR is converted using the evaluation material conversion information table CT.
  • the soil condition evaluation apparatus P receives the communication signal which accommodated the positioning result Pap (position Pap), the temperature Ts (temperature Ts of field) of the measurement result, and the heat distribution image SP of the field from the heat distribution image generation apparatus M.
  • the above-described processes S11 to S18 are executed.
  • the plurality of reducibility evaluation maps EVm (Par) are connected to the plurality of reducibility evaluation maps EVm.
  • (Par) Linked based on each position Pap corresponding to each.
  • a position on the map EVm (Par) is obtained, and the reduction evaluation is performed from the angle of view of the heat distribution image generation unit 24, the position Pap, and the position on the reduction evaluation map EVm (Par) corresponding to the position Pap.
  • the position of the peripheral part of the map EVm (Par) is obtained. Based on the respective positions of the respective peripheral portions of the respective reducibility evaluation maps EVm (Par) obtained in this way, the mutual positional relationship of the respective reducibility evaluation maps EVm (Par) is obtained.
  • EVm (Par) is connected. Even when a plurality of material amount maps MVm (Par) corresponding to each position Pap are connected, a plurality of material amount maps MVm ( Par) is connected based on each position Pap corresponding to each of the plurality of material amount maps MVm (Par).
  • the soil state evaluation system S, the soil state evaluation device P, and the soil state evaluation method and the soil state evaluation program implemented therein are the field heat distribution image SP and the field temperature Ts. Therefore, it is not necessary to sample a sample from the soil, and the heat distribution image SP is obtained by, for example, a heat distribution image generation device or the like. Since a relatively wide range can be obtained at a time, the degree of reducibility can be evaluated more efficiently.
  • the soil state evaluation system S, the soil state evaluation device P, the soil state evaluation method, and the soil state evaluation program increase the evaluation value EV based on the difference ⁇ T between the field temperature Tar and the field temperature Ts. Since it calculates
  • the above-described soil condition evaluation system S, soil condition evaluation apparatus P, soil condition evaluation method, and soil condition evaluation program include an evaluation in which the evaluation value EV indicates whether or not a reduction disorder has occurred. It can be obtained, and it can be known whether or not a reduction disorder has occurred.
  • the degree of reduction can be suitably evaluated when the temperature is relatively high or when the weather is fine.
  • the soil reducibility evaluation unit 123 stores the received evaluation conditions in the setting evaluation condition information storage unit 135. When the evaluation condition is satisfied, the final evaluation value EV is obtained, so that a more appropriate evaluation value EV can be obtained.
  • One of the set evaluation conditions is that the soil state evaluation system S, the soil state evaluation device P, the soil state evaluation method, and the soil state evaluation program indicate that the acquired temperature Ts of the field is equal to or higher than a predetermined temperature Th. Therefore, a more appropriate evaluation value can be obtained in view of the above-described reduction failure process.
  • the soil condition evaluation system S, the soil condition evaluation apparatus P, the soil condition evaluation method, and the soil condition evaluation program are one of the set evaluation conditions that the weather is fine or clear and the time is from 9:00 to 15:00. Therefore, a more appropriate evaluation value can be obtained in view of the above-described reduction failure process.
  • the soil state evaluation system S Since the soil state evaluation system S, the soil state evaluation device P, the soil state evaluation method, and the soil state evaluation program obtain the evaluation values for each of the plurality of sub-regions, the two-dimensional spatial resolution can be improved. The degree of reducibility generated can be evaluated.
  • materials for improving the reducibility such as lime nitrogen
  • materials for improving the reducibility such as lime nitrogen
  • the degree of reduction is unknown, and therefore, the material is supplied to the entire field AR in a uniform amount.
  • the soil state evaluation system S, the soil state evaluation device P, the soil state evaluation method, and the soil state evaluation program obtain the amount MV of the material based on the evaluation value EV, the material can be supplied to the field AR in a more appropriate amount. .
  • the amount MV of the material can be reduced compared to the case where the material is supplied to the field AR in a uniform amount, so that the cost can be reduced and the cost effectiveness can be improved.
  • the amount of material MV (SAR) is obtained for each of the plurality of sub-regions SAR. Accordingly, the material can be supplied to the individual sub-regions SAR, so that the material can be supplied to the field AR more efficiently.
  • the material amount is obtained regardless of whether or not the setting evaluation condition is satisfied.
  • the material amount may be obtained only when the setting evaluation condition is satisfied. That is, when the set evaluation condition is not satisfied, the execution of the process S17 for obtaining and storing the material amount is skipped.
  • the soil condition evaluation apparatus P acquires the heat distribution image SP from the heat distribution image generation apparatus M by wireless communication.
  • the heat distribution image generation apparatus M and the soil condition evaluation apparatus P are cables.
  • the soil condition evaluation device P may acquire the heat distribution image SP from the heat distribution image generation device M via the cable.
  • the heat distribution image acquisition unit is an interface unit that receives the heat distribution image SP in the field to be evaluated from the heat distribution image generation device M by wire.
  • the soil state evaluation apparatus P may acquire the heat distribution image SP from a server apparatus that stores and manages the heat distribution image SP via a communication line.
  • the heat distribution image acquisition unit is a communication interface unit that receives the heat distribution image SP via a communication line from the server device that stores and manages the heat distribution image SP in the field AR to be evaluated.
  • the soil condition evaluation apparatus P may acquire the heat distribution image SP from a recording medium on which the heat distribution image SP is recorded.
  • the heat distribution image acquisition unit reads the heat distribution image SP from a recording medium on which the heat distribution image SP in the field AR to be evaluated is recorded, for example, a storage device (for example, an HDD drive device or a CD). -ROM drive device).
  • the heat distribution image acquisition unit is a USB (Universal Serial Bus) interface unit.
  • the soil condition evaluation apparatus is acquired by a heat distribution image acquisition unit that acquires a heat distribution image in a field to be evaluated, a field temperature acquisition unit that acquires a temperature of the field, and the heat distribution image acquisition unit. And a soil reducibility evaluation unit that obtains an evaluation value representing a degree of reducibility in the soil of the field based on the heat distribution image of the field and the field temperature acquired by the field temperature acquisition unit.
  • the heat distribution image acquisition unit captures infrared rays radiated from the field to be evaluated, and generates heat distribution images (thermograms) representing the heat distribution as a diagram. It is a distribution image generation device (thermograph, infrared camera).
  • the heat distribution image acquisition unit is an interface unit that receives, from the heat distribution image generation device, a heat distribution image in a field to be evaluated by wire.
  • the heat distribution image acquisition unit wirelessly receives a heat distribution image in an evaluation target field from the heat distribution image generation device (for example, a communication card). It is.
  • the heat distribution image acquisition unit receives the heat distribution image via a communication line from a server device that stores and manages the heat distribution image in the field to be evaluated. Part.
  • the heat distribution image acquisition unit reads the heat distribution image from a recording medium on which the heat distribution image in the evaluation target field is recorded (for example, a storage device corresponding to the storage medium (for example, HDD drive device, CD-ROM drive device, etc.).
  • a recording medium on which the heat distribution image in the evaluation target field is recorded for example, a storage device corresponding to the storage medium (for example, HDD drive device, CD-ROM drive device, etc.).
  • So-called reduction failure is considered to occur by the following process. That is, for example, when hydrogen sulfide or an organic acid is generated in soil in a field such as a paddy field, for example, root elongation and activity in a crop such as rice are inhibited. As a result, the growth of the crop is suppressed and the moisture of the crop is sucked up. Ability weakens. For this reason, for example, when the temperature is high in a relatively hot season in summer, for example, moisture is not transferred to the entire crop, and the amount of transpiration from the pores decreases. As a result, the temperature of the crop itself (corresponding to the body temperature in the case of the person) cannot be lowered sufficiently, such as human heat stroke, resulting in poor growth or withering. If such a reduction hindrance occurs, the yield of the crop will decrease and the quality will deteriorate.
  • the present inventor has found that the presence or absence of reduction damage in the field correlates with the temperature of the crop in view of such a reduction damage process.
  • the soil condition evaluation apparatus obtains an evaluation value indicating the degree of reducibility in the soil of the field based on the heat distribution image of the field and the temperature of the field, so there is no need to sample a sample from the soil, Since the distribution image can be obtained in a relatively wide range at a time by, for example, a heat distribution image generation device or the like, the degree of reduction can be evaluated more efficiently.
  • the soil condition evaluation apparatus further includes a field temperature processing unit that calculates a temperature of the field based on the heat distribution image acquired by the heat distribution image acquisition unit, and the soil reducibility evaluation The unit obtains the evaluation value in multiple stages based on a difference between the field temperature obtained by the field temperature processing unit and the field temperature obtained by the field temperature obtaining unit.
  • the greater the difference between the field temperature and the field temperature the greater the degree of reduction. Since the said soil condition evaluation apparatus calculates
  • the evaluation value includes an evaluation indicating whether or not a reduction disorder has occurred.
  • the evaluation value includes an evaluation indicating whether or not a reduction disorder has occurred, it is possible to determine whether or not a reduction disorder has occurred and to know whether or not a reduction disorder has occurred.
  • an evaluation condition storage unit that stores a set evaluation condition when the evaluation value is obtained by the soil reducibility evaluation unit, and an evaluation condition reception that receives the evaluation condition from the outside
  • the soil reducibility evaluation unit obtains the evaluation value when the evaluation condition received by the evaluation condition reception unit satisfies the set evaluation condition stored in the evaluation condition storage unit.
  • the soil condition evaluation apparatus obtains an evaluation value when the evaluation condition received by the evaluation condition receiving unit by the soil reducibility evaluation unit satisfies the set evaluation condition stored in the evaluation condition storage unit. The value can be determined.
  • the evaluation condition storage unit is configured so that the temperature of the field acquired by the field temperature acquisition unit is equal to or higher than a predetermined temperature.
  • the evaluation condition accepting unit includes the field temperature obtaining unit.
  • Such a soil condition evaluation apparatus can obtain a more appropriate evaluation value in view of the above-described reduction disorder process.
  • the evaluation condition storage unit stores, as one of the set evaluation conditions, that the weather is fine or clear and the time is from 9:00 to 15:00.
  • the evaluation condition receiving unit is an input unit that receives data input from the outside.
  • Such a soil condition evaluation apparatus can obtain a more appropriate evaluation value in view of the above-described reduction disorder process.
  • the field to be evaluated includes a plurality of sub-regions divided, and the soil reducibility evaluation unit performs the evaluation on each of the plurality of sub-regions. Find each value.
  • Such a soil condition evaluation apparatus obtains an evaluation value for each of a plurality of sub-regions, so that the two-dimensional spatial resolution can be improved, and the degree of reducibility generated at various places in the field can be evaluated.
  • a material amount processing unit for obtaining an amount of material for improving the reducibility based on the evaluation value obtained by the soil reducibility evaluation unit Prepare.
  • the degree of reducibility When the degree of reducibility has deteriorated, materials for improving the reducibility, such as lime nitrogen, are supplied to the field in preparation for the growth of the next crop.
  • the degree of reduction is unknown, so that a uniform amount of material has been supplied to the entire field. Since the said soil condition evaluation apparatus calculates
  • the evaluation values are obtained for each of the plurality of sub-regions, the amount of material is obtained for each of the plurality of sub-regions. Since it can be supplied, materials can be supplied to the field more efficiently.
  • the soil state evaluation method includes a heat distribution image acquisition step of acquiring a heat distribution image in a field to be evaluated, a field temperature acquisition step of acquiring the temperature of the field, and the heat distribution image acquisition step.
  • a soil reducibility evaluation step of obtaining an evaluation value representing a degree of reducibility in the soil of the field based on the acquired heat distribution image of the field and the temperature of the field acquired in the field temperature acquisition step.
  • the soil condition evaluation program includes, in a computer, a heat distribution image acquisition step of acquiring a heat distribution image in an evaluation target field, a field temperature acquisition step of acquiring the temperature of the field, and the heat distribution image.
  • Soil reducibility evaluation for obtaining an evaluation value representing the degree of reducibility in the soil of the field based on the heat distribution image of the field acquired in the acquisition step and the field temperature acquired in the field temperature acquisition step This is a program for executing a process.
  • Such a soil condition evaluation method and a soil condition evaluation program obtain an evaluation value indicating the degree of reducibility in the soil of the field based on the heat distribution image of the field and the temperature of the field. Since there is no need to sample and a heat distribution image can be obtained at a relatively wide range at a time by, for example, a heat distribution image generation device or the like, the degree of reduction can be evaluated more efficiently.
  • a soil condition evaluation apparatus a soil condition evaluation method, and a soil condition evaluation program can be provided.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本発明にかかる土壌状態評価装置、土壌状態評価方法および土壌状態評価プログラムでは、評価対象の圃場における熱分布画像が取得され、前記圃場の気温が取得され、この取得された前記圃場の熱分布画像と前記取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値が求められる。

Description

土壌状態評価装置、該方法および該プログラム
 本発明は、圃場における土壌の状態を還元性の観点から評価する土壌状態評価装置、土壌状態評価方法および土壌状態評価プログラムに関する。
 農作物は、一般に、土壌で育成されるため、土壌の状態は、その農作物の収量および品質に影響する。特に、近年の地球温暖化の影響により、農作物に障害が発生し、その健全性を損なう頻度が上昇傾向にある。一方、農業経営の環境は、厳しく、生産コストの低減が求められている。このため、土壌の状態を適切に評価し、その評価結果に応じた対策を適切に実施することが望ましく、土壌の状態を適切に評価する技術が要望されている。
 このような土壌の状態を評価する技術は、例えば、特許文献1に開示されている。この特許文献1に開示された土壌分析方法は、所定の土壌における各種作物育成のための養分量を分析する土壌分析方法であって、所定の土壌を所定深さで切り取り、試料を採取するステップ、及び採取した試料を、強酸を含んでなる処理液により処理して抽出液を得、得られた抽出液をイオンクロマト装置により化学分析して、上記土壌における養分量を正確に把握するステップ、を具備する。
 ところで、前記特許文献1に開示された土壌分析方法は、土壌から実際に試料を採取してイオンクロマト装置により化学分析するので、比較的、正確に土壌の養分量を分析できると考えられる。そして、前記特許文献1には、その[0012]段落に「サンプリングは、正確な分析結果が得られるように農場全体から必要なデータ収集が行えるように適当に分散された複数個所で行えばよいが、農場全体の四隅及び対角線上の任意の2点の計6点をサンプリング個所とするのが好ましい。」と提案されている。
 一方、いわゆる還元障害を評価する場合、還元障害は、圃場全体に発生するケースは、少なく、圃場の所々で発生するケースが多い。このため、前記特許文献1に開示された土壌分析方法のように、土壌から試料をサンプリングすることによって還元障害を評価しようとすると、圃場全体に亘って多数の箇所でサンプリングしなければならず、手間がかかり、非効率となる。そもそも、土壌から試料をサンプリングすること自体に、手間がかかる。
特開2014-106089号公報(特許第5351325号公報)
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、還元性の度合いをより効率よく評価できる土壌状態評価装置、土壌状態評価方法および土壌状態評価プログラムを提供することである。
 本発明にかかる土壌状態評価装置、土壌状態評価方法および土壌状態評価プログラムでは、評価対象の圃場における熱分布画像が取得され、前記圃場の気温が取得され、この取得された前記圃場の熱分布画像と前記取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値が求められる。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
圃場における還元障害の発生と作物の温度との相関関係を説明するための図である。 実施形態における土壌状態評価システムの構成を示すための図である。 前記土壌状態評価システムの土壌状態評価装置に記憶される評価資材変換情報テーブルを示す図である。 前記土壌状態評価システムの土壌状態評価装置の動作を示すフローチャートである。 一例として、圃場の温度分布画像を示す模式図である。 図5に模式的に示す圃場の温度分布画像に基づいて求められる評価値マップを示す図である。 図6に示す評価値マップに基づいて求められる資材量マップを示す図である。
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
 (相関性)
 まず、圃場における還元性の度合いと、作物の温度との相関関係について、一実験例に基づいて説明する。
 図1は、圃場における還元障害の発生と作物の温度との相関関係を説明するための図である。図1Aは、水田の熱分布画像を示す図であり、図1Bは、前記水田で生育された稲における穂数の平均値を示す図である。実験対象の水田は、還元障害を改善する資材として10アール(a)当たり石灰窒素20kgを供給した領域である、紙面左側に示す石灰N区と、前記資材を供給しないそのままの領域である、紙面右側に示す対照区とに区分けした。これら石灰N区と対照区との水田には、紙面上方に示す“水口”から水が引き入れられ、紙面上方から紙面下方へ流れ、“水尻”から排水される。石灰N区および対照区それぞれは、領域上、紙面横方向に3個に分けられ、そして、紙面縦方向に6個に分けられ、3×6=18のサブ領域に分けられている。稲の穂数の平均値は、1個のサブ領域内に生育する稲の穂数を平均した数値であり、本/m単位で図1Bに表示されている。図1Aに示す水田の熱分布画像では、グレースケールで色が濃いほど水田からの熱放射、言い換えれば、水田の温度、さらに言い換えれば、稲の温度が高いことを示している。この図1Aに示す水田の熱分布画像を撮像したときの水田の周囲環境の気温は、31.2℃であった。
 図1Bにおいて、紙面右側の対照区では、稲の穂数の平均値が400本/m台であるサブ領域が9個であり、稲の穂数の平均値が500本/m台であるサブ領域が8個であり、稲の穂数の平均値が600本/m台であるサブ領域が1個である一方、紙面左側の石灰N区では、稲の穂数の平均値が400本/m台であるサブ領域が2個であり、稲の穂数の平均値が500本/m台であるサブ領域が4個であり、稲の穂数の平均値が600本/m台であるサブ領域が12個である。したがって、石灰N区は、石灰窒素の資材により、大部分の領域で、還元性の度合いが小さく、還元障害の発生が抑制され、この結果、稲が順調に生育している。一方、対照区は、逆に、還元性の度合いが所々大きくなって、前記所々で還元障害が発生し、稲の生育が順調ではない。対照区おいて、特に、図1Bに○で囲むことによって示す9個のサブ領域では、稲の穂数がサブ領域の平均値で435本/m~498本/mであり、明らかに、還元障害によって生育不良となっている。
 一方、これを熱分布画像で見ると、図1Aに示すように、石灰N区は、比較的熱の高い(水田の温度の高い、稲の温度の高い)サブ領域の個数が対照区より少なく、石灰N区における水田の温度(稲の温度)は、対照区における水田の温度(稲の温度)より低いことが分かる。特に、図1Bで○囲むことによって示す9個のサブ領域の水田の温度(稲の温度)は、これに隣接する石灰N区の水田の温度(稲の温度)より明らかに高い。
 これは、石灰N区では、石灰窒素の資材により、大部分の領域で、還元性の度合いが小さく、還元障害の発生が抑制され、この結果、稲が順調に生育し、気温が31.2℃で比較的暑いにもかかわらず、稲全体に水分が運ばれ、気孔からの蒸散量が順調であり、そのため、水田の温度(稲の温度)が低くなったためであると考察され、一方、対照区では、逆に、還元性の度合いが所々大きくなって、前記所々で還元障害が発生し、稲の生育が順調ではなく、気温が31.2℃で比較的暑いと、稲全体に水分が運ばれず、気孔からの蒸散量が少なくなり、そのため、水田の温度(稲の温度)が高くなったためであると考察される。
 このように、圃場における還元性の度合いと、作物の温度との間には、相関関係が認められる。
 (土壌状態評価システムS(熱分布画像生成装置M、土壌状態評価装置P))
 図2は、実施形態における土壌状態評価システムの構成を示すための図である。図3は、前記土壌状態評価システムの土壌状態評価装置に記憶される評価資材変換情報テーブルを示す図である。
 このような知見から、本実施形態における土壌状態評価装置は、土壌の状態を評価する装置であり、評価対象の圃場における熱分布画像を取得する熱分布画像取得部と、前記圃場の気温を取得する圃場気温取得部と、前記熱分布画像取得部で取得された前記圃場の熱分布画像と前記圃場気温取得部で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価部とを備える。このような土壌状態評価装置において、前記熱分布画像取得部は、評価対象の圃場から放射された赤外線を撮像し、熱分布を図として表した熱分布画像(サーモグラム)を生成する熱分布画像生成装置(サーモグラフ、赤外線カメラ)自体であって良いが、以下では、一例として、前記熱分布画像取得部は、前記熱分布画像生成装置から、評価対象の圃場における熱分布画像を無線によって受信する通信インターフェース部(例えば通信カード等)である。
 より具体的には、図2において、土壌状態評価システムSは、熱分布画像生成装置Mと、この熱分布画像生成装置Mと無線で通信可能に接続される土壌状態評価装置Pとを備える。
 熱分布画像生成装置Mは、評価対象の圃場ARにおける熱分布画像SPを生成する装置である。熱分布画像生成装置Mは、例えば竿等の長尺なロッドの先端に取り付けられ、上方から圃場ARを俯瞰した前記圃場の熱分布画像SPを生成したり、前記圃場ARに隣接して比較的高い建物があれば、前記建物から前記圃場の熱分布画像SPを生成したり等しても良いが、本実施形態では、航空機を備え、上空から前記圃場の熱分布画像SPを生成するように構成されている。
 より詳しくは、熱分布画像生成装置Mは、図2に示すように、GPS21と、気温測定部22と、制御部23と、熱分布画像生成部24と、記憶部25と、通信インターフェース部26と、航空機27とを備える。
 航空機27は、大気中を飛行する装置であり、例えば、気球、飛行船、飛行機、ヘリコプタおよびマルチコプタ等である。航空機27は、有人機であって良いが、好ましくは、無線操縦飛行(誘導飛行)または自律飛行による無人機(ドローン)である。航空機27は、本実施形態では、制御部23に接続され、誘導飛行または自律飛行による制御部23の制御に従って飛行する。
 GPS(Global Positioning System)21は、制御部23に接続され、制御部23の制御に従って、地球上における現在位置を測定するための衛星測位システムによって、航空機27の位置Papを測定する装置であり、その測位結果(位置Pap(緯度Xap、経度Yap、高度Zap))を制御部23へ出力する。なお、GPS21は、DGSP(Differential GSP)等の誤差を補正する補正機能を持ったGPSであっても良い。
 気温測定部22は、制御部23に接続され、制御部23の制御に従って、圃場の気温Tsを測定する温度センサであり、その測定結果の気温Tsを制御部23へ出力する。本実施形態では、航空機27に搭載される気温測定部22によって圃場の気温Tsが測定されるので、航空機27は、比較的、低空で飛行することが好ましい。また、この航空機27に搭載された気温測定部22によって測定された圃場の気温Tsが地上における圃場の実際の気温Trと差がある場合には、航空機27に搭載された気温測定部22によって測定された圃場の気温Tsと、地上における圃場の実際の気温Trとの差が、航空機27の高度ごとに、予め複数のサンプルによって測定され、この結果を用いることによって、航空機27に搭載された気温測定部22によって測定された圃場の気温Tsが、地上における圃場の実際の気温Trとなるように、補正されても良い。
 熱分布画像生成部24は、制御部23に接続され、制御部23の制御に従って、評価対象の圃場ARから放射された赤外線を撮像し、熱分布を図として表した熱分布画像(サーモグラム)SPを生成する熱分布画像生成装置(サーモグラフ、赤外線カメラ)であり、その生成した熱分布画像SPを制御部23へ出力する。このような熱分布画像生成部24は、例えば、評価対象の圃場ARにおける赤外線による像を所定の結像面上に結像する結像光学系、前記結像面に受光面を一致させて配置され、前記像を電気的な信号に変換する赤外線イメージセンサ、および、赤外線イメージセンサの出力を、赤外線放射量を熱(温度)に換算するなどの、画像処理することで熱分布画像(熱分布画像データ)SPを生成する画像処理部等を備える。
 通信インターフェース部(通信IF部)26は、制御部23に接続され、制御部23の制御に従って無線で通信を行うための通信回路である。通信IF部26は、制御部23から入力された転送すべきデータを収容した通信信号を、これら熱分布画像生成装置Mと土壌状態評価装置Pとの間で用いられる通信プロトコルに従って生成し、この生成した通信信号を土壌状態評価装置Pへ送信する。通信IF部26は、土壌状態評価装置Pから通信信号を受信し、この受信した通信信号からデータを取り出し、この取り出したデータを制御部23が処理可能な形式のデータに変換して制御部23へ出力する。通信IF部26は、例えば、IEEE802.11規格等に従った通信インターフェース回路を備えて構成される。
 記憶部25は、制御部23に接続され、制御部23の制御に従って、各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、当該熱分布画像生成装置Mの各部21、22、24~27を当該各部の機能に応じて制御する制御プログラムや、GPS21による測位と、気温測定部22による測温と、熱分布画像生成部24による撮像とが互いに同期するように、前記測位、前記測温および前記撮像それぞれを、前記GPS21、前記気温測定部22および前記熱分布画像生成部24それぞれに実行させるデータ測定プログラムや、前記測定制御プログラムによって前記GPS21、前記気温測定部22および前記熱分布画像生成部24それぞれで得られた測位結果Pap、測定結果の気温Tsおよび撮像して生成された熱分布画像SPを通信信号で通信IF部26から土壌状態評価装置Pへ送信するデータ送信プログラム等の等の制御処理プログラムが含まれる。前記各種の所定のデータには、例えば土壌状態評価装置Pの通信アドレス等の、圃場の熱分布画像SPを撮像して生成する処理に必要なデータが含まれる。記憶部25は、例えば不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)等を備える。そして、記憶部25は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御部23のワーキングメモリとなるRAM(Random Access Memory)等を含む。
 制御部23は、当該熱分布画像生成装置Mの各部21、22、24~27を当該各部の機能に応じて制御し、熱分布画像生成装置Mの全体制御を司るものである。制御部23は、GPS21による測位と、気温測定部22による測温と、熱分布画像生成部24による撮像とが互いに同期するように、前記測位、前記測温および前記撮像それぞれを、前記GPS21、前記気温測定部22および前記熱分布画像生成部24それぞれに実行させる。制御部23は、前記GPS21、前記気温測定部22および前記熱分布画像生成部24それぞれで得られた測位結果Pap、測定結果の気温Ts、および、撮像して生成された熱分布画像SPを、通信信号で通信IF部26から土壌状態評価装置Pへ送信する。制御部23は、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。
 そして、これらGPS21、気温測定部22、制御部23、熱分布画像生成部24、記憶部25および通信IF部26は、航空機27に搭載され、適宜な位置に配置される。
 一方、土壌状態評価装置Pは、図2に示すように、通信IF部11と、制御処理部12と、記憶部13と、入力部14と、出力部15とを備える。
 通信IF部11は、通信IF部26と同様に、制御処理部12に接続され、制御処理部12の制御に従って無線で通信を行うための通信回路である。通信IF部11は、例えば、IEEE802.11規格等に従った通信インターフェース回路を備えて構成される。
 後述するように、評価対象の圃場ARにおける熱分布画像SP、および、前記圃場の気温Tsは、通信IF部11によって熱分布画像生成装置Mから取得するので、通信IF部11は、評価対象の圃場ARにおける熱分布画像SPを取得する熱分布画像取得部の一例に相当し、前記圃場の気温Tsを取得する圃場気温取得部の一例にも相当する。
 入力部14は、制御処理部12に接続され、例えば、評価開始を指示するコマンド等の各種コマンド、および、例えば圃場ARの名称や評価条件等の圃場ARを評価する上で必要な各種データを土壌状態評価装置Pに入力する機器であり、例えば、所定の機能を割り付けられた複数の入力スイッチや、キーボードやマウス等である。前記評価条件は、圃場の熱分布画像SPおよび気温Tsを実際に測定した際の、予め設定された所定の条件であり、後述の設定評価条件情報記憶部135に記憶された設定評価条件と対比される。本実施形態では、前記設定評価条件は、後述の土壌還元性評価部123で有意に評価値が求められるか否かを決定するための条件である。上述の還元障害のプロセスに鑑み、前記設定評価条件は、前記圃場の気温Tsが予め設定された所定の温度Th以上であることを、好ましくは含み、本実施形態では、天候が快晴または晴天であって時刻が9時から15時まであることを、さらに含む。このため、前記評価条件は、前記圃場の気温Tsを含む。この前記圃場の気温Tsは、気温測定部22によって測定され、この測定された前記圃場の気温Tsは、熱分布画像生成装置Mから通信IF部11で取得される。したがって、通信IF部11は、外部から評価条件を受け付ける評価条件受付部の一例にも相当する。前記所定の温度Thは、還元障害のプロセスに考慮することによって適宜な値、例えば25℃、28℃および30℃等に設定される。また、上述から、前記評価条件は、天候および時刻を含む。これら天候および時刻は、入力部14から入力される。したがって、入力部14は、外部から評価条件を受け付ける評価条件受付部の他の一例に相当する。
 出力部15は、制御処理部12に接続され、制御処理部12の制御に従って、入力部14から入力されたコマンドやデータ、および、当該土壌状態評価装置Pによって求められた評価値EVや資材量MV等を出力する機器であり、例えばCRTディスプレイ、LCDおよび有機ELディスプレイ等の表示装置やプリンタ等の印刷装置等である。
 なお、入力部14および出力部15からタッチパネルが構成されてもよい。このタッチパネルを構成する場合において、入力部14は、例えば抵抗膜方式や静電容量方式等の操作位置を検出して入力する位置入力装置であり、出力部15は、表示装置である。このタッチパネルでは、表示装置の表示面上に位置入力装置が設けられ、表示装置に入力可能な1または複数の入力内容の候補が表示され、ユーザが、入力したい入力内容を表示した表示位置を触れると、位置入力装置によってその位置が検出され、検出された位置に表示された表示内容がユーザの操作入力内容として土壌状態評価装置Pに入力される。このようなタッチパネルでは、ユーザは、入力操作を直感的に理解し易いので、ユーザにとって取り扱い易い土壌状態評価装置Pが提供される。
 なお、本実施形態では、前記圃場の気温Tsは、熱分布画像生成装置Mから通信IF部11で取得されるが、オペレータが、圃場ARで温度計で測定し、この測定温度を圃場の気温Tsとして入力部14から入力しても良い。特に、上述した熱分布画像生成装置をロッドの先端に取り付けて圃場の熱分布画像SPを取得する場合や、隣接する建物等から圃場の熱分布画像SPを取得する場合には、この方法が有用である。したがって、このような場合では、入力部14は、前記圃場の気温Tsを取得する圃場気温取得部の他の一例に相当する。
 記憶部13は、制御処理部12に接続され、制御処理部12の制御に従って、各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、当該土壌状態評価装置Pの各部11、13~15を当該各部の機能に応じて制御する制御プログラムや、通信IF部11で取得された圃場の熱分布画像SPに基づいて前記圃場の温度Tarを求める圃場温度処理プログラムや、通信IF部11で取得された前記圃場の熱分布画像SPと前記圃場の気温Tsとに基づいて、前記圃場の土壌における還元性の度合いを表す評価値EVを求める土壌還元性評価プログラムや、前記土壌還元性評価プログラムで求められた評価値EVに基づいて、前記還元性を改善するための資材の量MVを求める資材量処理プログラム等の制御処理プログラムが含まれる。前記各種の所定のデータには、例えば、熱分布画像生成装置Mの通信アドレス、圃場の熱分布画像SP、圃場の熱分布画像SPから圃場の温度分布Tarを求めるための温度変換情報、圃場の温度分布情報Tarp、圃場の温度Tarと圃場の気温Tsとの差から評価値EVを求めるための評価値変換情報、圃場の還元性評価マップEVm、および、圃場の還元性評価マップEVmから圃場の資材量マップMVmを求めるための資材量変換情報、圃場の資材量マップMVm等の圃場の土壌状態を評価する上で必要なデータが含まれる。記憶部13は、例えばROMやEEPROM等を備える。そして、記憶部13は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御処理部12のワーキングメモリとなるRAM等を含む。そして、これら上述の各情報を記憶するために、記憶部13は、機能的に、熱分布情報記憶部131、温度分布情報記憶部132、還元性評価情報記憶部133、資材量情報記憶部134、設定評価条件情報記憶部135および変換情報記憶部136を備える。
 熱分布情報記憶部131は、前記圃場の熱分布画像(熱分布画像データ)SPを記憶するものである。本実施形態では、熱分布情報記憶部131は、通信IF部11で受信された圃場の熱分布画像SPと、この熱分布画像SPを生成するために熱分布画像生成部24の撮像に同期して得られた、GPS21の測位結果の位置Pap、および、気温測定部22の測定結果の気温Tsとを互いに対応付けて記憶する。
 温度分布情報記憶部132は、前記圃場の温度分布画像Tarpを記憶するものである。本実施形態では、温度分布情報記憶部132は、後述の圃場温度処理部122によって、温度変換情報を用いることで、圃場の熱分布画像SPに基づいて求められた圃場の温度分布画像Tarpを記憶する。この圃場の温度分布画像Tarpは、これを求める際に用いた前記圃場の熱分布画像SPに対応付けられた位置Papおよび圃場の気温Tsと対応付けて温度分布情報記憶部132に記憶される。
 還元性評価情報記憶部133は、前記圃場の還元性評価マップEVmを記憶するものである。本実施形態では、還元性評価情報記憶部133は、後述の土壌還元性評価部123によって、評価値変換情報を用いることで、前記圃場の温度Tarと圃場の気温Tsとに基づいて求められた圃場の還元性評価マップEVmを記憶する。この圃場の還元性評価マップEVmは、これを求める際に用いた前記圃場の温度分布画像Tarp(すなわち、前記圃場の熱分布画像SP)に対応付けられた位置Papおよび圃場の気温Tsと対応付けて還元性評価情報記憶部133に記憶される。
 資材量情報記憶部134は、前記圃場の資材量マップMVmを記憶するものである。本実施形態では、資材量情報記憶部134は、後述の資材量処理部124によって、資材量変換情報を用いることで、前記圃場の還元性評価マップEVmに基づいて求められた圃場の資材量マップMVmを記憶する。この圃場の資材量マップMVmは、これを求める際に用いた還元性評価マップEVm(すなわち、前記圃場の熱分布画像SP)に対応付けられた位置Papと対応付けて資材量情報記憶部134に記憶される。
 設定評価条件情報記憶部135は、前記設定評価条件を記憶するものである。本実施形態では、上述したように、設定評価条件情報記憶部135は、前記圃場の気温Tsが前記所定の温度Th以上であることを、前記設定評価条件の1つとして記憶し、さらに、天候が快晴または晴天であって時刻が9時から15時まであることを、前記設定評価条件の他の1つとして記憶する。
 変換情報記憶部136は、前記温度変換情報、評価値変換情報および資材量変換情報を記憶するものである。これら温度変換情報、評価値変換情報および資材量変換情報は、それぞれ、予め複数のサンプルを測定してその測定結果を統計処理することによって生成され、変換情報記憶部136に記憶される。そして、本実施形態では、評価値変換情報および資材量変換情報は、テーブル形式で1つのテーブルに纏められ、変換情報記憶部136に記憶される。
 これら評価値変換情報および資材量変換情報を登録する評価資材変換情報テーブルCTは、例えば、図3に示すように、前記圃場の温度Tarと前記圃場の気温Tsとの差を登録する差△Tフィールド311と、この差△Tフィールド311に登録された差△Tに対応する評価値EVを登録する評価値フィールド312と、この評価値フィールドに対応する資材量(言い換えれば差△Tフィールド311に登録された差△Tに対応する資材量)MVを登録する資材量フィールド313とを備え、評価値EVの種類の個数に応じてレコードを持つ。
 評価値EVは、多段階であり、還元障害の発生の有無を表す評価を含む。より具体的には、本実施形態では、評価値EVは、“還元性なし”、“弱還元性”、“中還元性”および“強還元性”の4段階であり、前記“還元性なし”が“還元障害の発生無し”を表し、前記“強還元性”が“還元障害の発生有り”を表す。
 したがって、本実施形態では、図3に示す評価資材変換情報テーブルCTは、4個のレコードを持つ。その1番目のレコードには、各フィールド311~313によって、前記圃場の温度Tarから前記圃場の気温Tsを減算することによって求められた差△Tが0以下である場合(△T≦0)、評価値EVが還元性無しであり、資材量MVが0[kg/10a](10アール当たり0kg)であることが登録されている。その2番目のレコードには、各フィールド311~313によって、前記圃場の温度Tarから前記圃場の気温Tsを減算することによって求められた差△Tが0より大きく、Th1以下である場合(0<△T≦Th1)、評価値EVが弱還元性であり、資材量MVがV1[kg/10a](10アール当たりV1kg)であることが登録されている。その3番目のレコードには、各フィールド311~313によって、前記圃場の温度Tarから前記圃場の気温Tsを減算することによって求められた差△TがTh1より大きく、Th2以下である場合(Th1<△T≦Th2)、評価値EVが中還元性であり、資材量MVがV2[kg/10a](10アール当たりV2kg)であることが登録されている。そして、その4番目のレコードには、各フィールド311~313によって、前記圃場の温度Tarから前記圃場の気温Tsを減算することによって求められた差△TがTh2より大きい場合(Th2<△T)、評価値EVが強還元性であり、資材量MVがV3[kg/10a](10アール当たりV1kg)であることが登録されている。
 一例では、前記Th1は、+1.5℃、+2℃および+2.5℃等であり、前記Th2は、+3.5℃、+4℃および+4.5℃等であり、Th1<Th2である。一例では、前記V1は、10[kg/10a]であり、前記V2は、20[kg/10a]であり、そして、前記V3は、30[kg/10a]であり、V1<V2<V3である。
 制御処理部12は、当該土壌状態評価装置Pの各部11、13~15を当該各部の機能に応じて制御し、評価値EVおよび資材量MVを求め、土壌状態評価装置Pの全体制御を司るものである。制御処理部12は、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。制御処理部12には、その制御処理プログラムが実行されることによって、制御部121、圃場温度処理部122、土壌還元性評価部123および資材量処理部124が機能的に構成される。
 制御部121は、当該土壌状態評価装置Pの各部11、13~15を当該各部の機能に応じて制御するものである。制御部121は、圃場の熱分布画像SP等を熱分布画像生成装置Mから通信信号によって通信IF部11で受信すると、前記通信信号に収容された圃場の熱分布画像SP、位置Papおよび気温Tsを互いに対応付けて熱分布情報記憶部131に記憶する。
 圃場温度処理部122は、通信IF部11で受信された前記圃場の熱分布画像SPに基づいて前記圃場の温度Tarを求めるものである。より具体的には、圃場温度処理部122は、変換情報記憶部136に記憶された前記温度変換情報を用いて、前記圃場の熱分布画像SPにおける各画素を、その画素値に応じた温度に変換することで、前記圃場の温度分布を表す画像(温度分布画像)Tarpを求める。したがって、この圃場の温度分布画像Tarpの各画素は、その画素位置における前記圃場の温度Tarを表す。そして、圃場温度処理部122は、この求めた温度分布画像Tarpを、前記圃場の熱分布画像SPに対応付けられていた位置Papおよび気温Tsと対応付けて温度分布情報記憶部132に記憶する。
 土壌状態評価部123は、圃場温度処理部122で求められた前記圃場の温度分布画像Tarpと、通信IF部11で受信された前記圃場の気温Tsとの差に基づいて、前記圃場の評価値EVを多段階で求めるものである。より具体的には、土壌状態評価部123は、変換情報記憶部136に記憶された前記評価値変換情報を用いて、前記圃場の温度分布画像Tarpと前記圃場の気温Tsとの差を、評価値EVへ変換する。この評価値EVへの変換は、画素ごとに実行されてもよいが、本実施形態では、土壌状態評価部123は、圃場の温度分布画像Tarpを、予め設定された所定の広さのサブ領域SARに区分けし、これら各サブ領域SARごとに温度Tarの代表値を求め、この求めた代表値の温度Tarと前記圃場の気温Tsとの差を求め、この差を、前記評価値変換情報を用いて評価値EVへ変換する。1つの熱分布画像SP、すなわち、これに対応する1つの温度分布画像Tarpでは、圃場の気温Tsは、前記圃場全体に亘って(各サブ領域SARで)同一であるとみなしている。これによって各サブ領域SARごとに評価値EV(SAR)が付与された還元性評価マップEVmが作成される。前記サブ領域SARは、前記圃場ARを隙間無く区分けできれば任意の形状(例えば三角形、四角形、六角形等)であって任意の広さ(0.5アール、1アール、2アール等)であって良いが、一例では、一辺5mや10m等の正方形である。前記代表値は、例えば、当該サブ領域SARにおける全画素の平均値であって良く、また例えば当該サブ領域SARの中央値であって良い。そして、土壌還元性評価部123は、この求めた還元性評価マップEVmを、前記圃場の温度分布画像Tarpに対応付けられていた位置Papおよび圃場の気温Tsと対応付けて還元性評価情報記憶部133に記憶する。
 ここで、本実施形態では、土壌還元性評価部123は、通信IF部11や入力部14で受け付けられた評価条件が設定評価条件情報記憶部135に記憶された設定評価条件を満たす場合に、上述のように求められた評価値EVを最終的な評価値EVとして求める。より具体的には、土壌還元性評価部123は、通信IF部11で受信した前記圃場の気温Tsが前記所定の温度Th以上である場合に、前記評価値EVを最終的な評価値EVとする。さらに、本実施形態では、土壌還元性評価部123は、前記圃場の熱分布画像SPが快晴または晴天であって9時から15時まで間のいずれかの時刻で撮像された場合に、前記評価値EVを最終的な評価値EVとする。
 資材量処理部124は、土壌還元性評価部123で求められた評価値EVに基づいて、前記還元性を改善するための資材の量MVを求めるものである。より具体的には、資材量処理部124は、変換情報記憶部136に記憶された前記資材量変換情報を用いて、還元性評価情報記憶部133に記憶された還元性評価マップEVmの各サブ領域SARに対応付けられた各評価値EV(SAR)を、資材量MV(SAR)へ変換する。これによって各サブ領域SARごとに資材量MV(SAR)が付与された資材量マップMVmが作成される。そして、資材量処理部124は、この求めた資材量マップMVmを、前記圃場の還元性評価マップEVmに対応付けられていた位置Papと対応付けて資材量情報記憶部134に記憶する。
 次に、本実施形態における土壌状態評価システムS(熱分布画像生成装置M、土壌状態評価装置P)の動作について説明する。図4は、前記土壌状態評価システムの土壌状態評価装置の動作を示すフローチャートである。図5は、一例として、圃場の温度分布画像を示す模式図である。図6は、図5に模式的に示す圃場の温度分布画像に基づいて求められる評価値マップを示す図である。図7は、図6に示す評価値マップに基づいて求められる資材量マップを示す図である。
 このような土壌状態評価システムSでは、まず、熱分布画像生成装置Mおよび土壌状態評価装置Pは、それぞれ、電源が投入されると、必要な各部の初期化を実行し、その稼働を始める。土壌状態評価装置Pでは、その制御処理プログラムの実行により、制御処理部12には、制御部121、圃場温度処理部122、土壌還元性評価部123および資材量処理部124が機能的に構成される。
 熱分布画像生成装置Mは、誘導飛行または自律飛行による制御部23の制御に従って飛行し、評価対象の圃場ARを上空から撮像し、その撮像と同期してGPS21により測位し、気温測定部22により測温する。そして、熱分布画像生成装置Mは、制御部23によって、前記GPS21、前記気温測定部22および前記熱分布画像生成部24それぞれで得られた測位結果Pap、測定結果の気温Tsおよび撮像して生成された熱分布画像SP(不図示)を通信信号で通信IF部26から土壌状態評価装置Pへ送信する。
 図4において、土壌状態評価装置Pは、熱分布画像生成装置Mから通信IF部11で測位結果Pap(位置Pap)、測定結果の気温Ts(圃場の気温Ts)および圃場の熱分布画像SPを受信して取得すると、この取得した位置Pap、圃場の気温Tsおよび圃場の熱分布画像SPを互いに対応付けて記憶部13の熱分布情報記憶部131に記憶し(S11)、制御処理部12によって、評価条件を取得する(S12)。この評価条件は、例えば、土壌状態評価装置Pの稼働後に、入力部14で評価条件の入力を受け付け、記憶部13に記憶され、この記憶部13に記憶された評価条件を取得して良い。また例えば、前記評価条件は、熱分布画像生成装置Mから位置Pap、圃場の気温Tsおよび圃場の熱分布画像SPを取得した際に、入力部14で評価条件の入力を受け付けて取得しても良い。この評価条件の入力操作は、所定の時間間隔(例えば30分ごと、1時間ごと、2時間ごと等)で実行されて良い。本実施形態では、入力部14から天候および時刻が評価条件の1つとして入力される。一方、前記圃場の気温Tsは、上述のように通信IF部11で評価条件の他の1つとしても受信される。
 次に、土壌状態評価装置Pは、制御処理部12の圃場温度処理部122によって、前記圃場の熱分布画像SPに基づいて前記圃場の温度Tarを求めて圃場の温度分布画像Tarpを求め、記憶する(S13)。より具体的には、圃場温度処理部122は、変換情報記憶部136に記憶された前記温度変換情報を用いて、処理S11で取得された圃場の熱分布画像SPにおける各画素を、その画素値に応じた温度に変換することで、前記圃場の温度分布を表す画像(温度分布画像)Tarpを求める。そして、圃場温度処理部122は、この求めた温度分布画像Tarpを、処理S11で取得された位置Papおよび気温Tsと対応付けて温度分布情報記憶部132に記憶する。
 次に、土壌状態評価装置Pは、制御処理部12の土壌還元性評価部123によって、評価値EVを求める(S14)。より具体的には、土壌還元性評価部123は、処理S13で圃場温度処理部122によって求められた前記圃場の温度分布画像Tarpと、処理S11で取得された前記圃場の気温Tsとの差に基づいて、前記圃場の評価値EVを多段階で求める。より詳しくは、土壌還元性評価部123は、圃場ARを区分けした複数のサブ領域SARそれぞれについて、当該サブ領域SARの温度Tarの代表値を、処理S13で求めた前記圃場の温度分布画像Tarpから求め、この求めた代表値の温度Tarと前記圃場の気温Tsとの差△Tを求め、この差△Tを、変換情報記憶部136に記憶された評価資材変換情報テーブルCTを用いて評価値EV(SAR)へ変換する。これによって還元性評価マップEVmが作成される。
 次に、土壌状態評価装置Pは、土壌還元性評価部123によって、受け付けた評価条件が設定評価条件情報記憶部135に記憶された設定評価条件を満たすか否かを判定する(S15)。この判定の結果、前記評価条件が前記設定評価条件を満たす場合(Yes)には、土壌還元性評価部123は、処理S14で求めた評価値EVを最終的に求められた評価値EVとし、前記評価条件が前記設定評価条件を満たさない場合(No)には、土壌還元性評価部123は、処理S14で求めた評価値EVをエラーとして最終的に求められた評価値EVとしない。より具体的には、土壌還元性評価部123は、処理S11で取得した圃場の気温Tsが前記所定の温度Th以上であるか否か、および、処理S12で受け付けた天候が快晴または晴天であって前記処理S12で受け付けた時刻が9時から15時まであるか否かを判定する。この判定の結果、土壌還元性評価部123は、処理S11で取得した圃場の気温Tsが前記所定の温度Th以上であり、かつ、処理S12で受け付けた天候が快晴または晴天であり、かつ、前記処理S12で受け付けた時刻が9時から15時まである場合を、前記評価条件が前記設定評価条件を満たす場合(Yes)と判定し、土壌還元性評価部123は、処理S14で求めた評価値EVを最終的に求められた評価値EVとする。一方、前記判定の結果、土壌還元性評価部123は、処理S11で取得した圃場の気温Tsが前記所定の温度Th以上ではない、または、処理S12で受け付けた天候が快晴または晴天ではない、または、前記処理S12で受け付けた時刻が9時から15時まではない場合(すなわち、処理S11で取得した圃場の気温Tsが前記所定の温度Th以上であること、処理S12で受け付けた天候が快晴または晴天であること、および、前記処理S12で受け付けた時刻が9時から15時まであることのうち、いずれか1つが成立しない場合)を、前記評価条件が前記設定評価条件を満たさない場合(No)と判定し、土壌還元性評価部123は、処理S14で求めた評価値EVをエラーとして最終的に求められた評価値EVとしない。
 次に、土壌状態評価装置Pは、土壌還元性評価部123によって、処理S14で求めた評価値EV(本実施形態では還元性評価マップEVm)を、処理S15の判定結果、ならびに、処理S11で取得された位置Papおよび気温Tsと対応付けて還元性評価情報記憶部133に記憶する(S16)。
 次に、土壌状態評価装置Pは、制御処理部12の資材量処理部124によって、土壌還元性評価部123で求められた評価値EVに基づいて、前記還元性を改善するための資材の量MVを求め、記憶する(S17)。より具体的には、資材量処理部124は、変換情報記憶部136に記憶された前記資材量変換情報を用いて、処理S14で求められた還元性評価マップEVmの各サブ領域SARに対応付けられた各評価値EV(SAR)を、資材量MV(SAR)へ変換する。そして、資材量処理部124は、この求めた資材量マップMVmを、処理S11で取得された位置Papと対応付けて資材量情報記憶部134に記憶する。
 そして、土壌状態評価装置Pは、制御処理部12によって、評価対象の圃場ARに対する評価値EVおよびその資材量MVを出力部15から出力し(S18)、処理を終了する。より具体的には、制御処理部12は、処理S15の判定結果に応じて、処理S14で求めた還元性評価マップEVmおよび処理S16で資材量マップMVmを出力部15から出力する。より詳しくは、例えば、制御処理部12は、処理S15の判定結果が処理S14で求めた評価値EV(本実施形態では還元性評価マップEVm)を最終的に求められた評価値EV(本実施形態では還元性評価マップEVm)とする場合では、処理S14で求めた還元性評価マップEVmおよび処理S16で資材量マップMVmを出力部15から出力し、制御処理部12は、処理S15の判定結果がエラーである場合には、設定評価条件を満たさず、エラーである旨を出力部15から出力する。なお、処理S15の判定結果がエラーである場合、制御処理部12は、設定評価条件を満たさず、エラーである旨を出力部15から出力するとともに、参考情報として、処理S14で求めた還元性評価マップEVmおよび処理S16で資材量マップMVmを出力部15から出力しても良い。
 例えば、評価対象の圃場ARにおける熱分布画像SPから、各画素それぞれについて、当該画素値を前記温度変換情報を用いて変換することで、図5に示す温度分布画像Tarpが処理S13によって得られる。処理S14では、図5に示す温度分布画像Tarpの各サブ領域SARそれぞれについて、当該サブ領域SARの温度Tarの代表値が求められ、当該サブ領域SARの温度Tarの代表値を評価資材変換情報テーブルCTを用いて変換することで、図6に示す還元性評価マップEVmが求められる。そして、処理S17では、図6に示す還元性評価マップEVmの各サブ領域SARそれぞれについて、当該サブ領域SARの評価値EV(SAR)を評価資材変換情報テーブルCTを用いて変換することで、図7に示す資材量マップMVmが求められる。
 そして、土壌状態評価装置Pは、熱分布画像生成装置Mから、測位結果Pap(位置Pap)、測定結果の気温Ts(圃場の気温Ts)および圃場の熱分布画像SPを収容した通信信号を受信するたびに、上述の各処理S11~S18を実行する。このような動作によって、各位置Papそれぞれに応じた複数の還元性評価マップEVm(Par)を連結する場合には、複数の還元性評価マップEVm(Par)は、これら複数の還元性評価マップEVm(Par)それぞれに対応する各位置Papに基づいて連結される。例えば、複数の還元性評価マップEVm(Par)それぞれについて、熱分布画像生成部24の撮像方向(光軸方向)から、位置Papに対応する熱分布画像SP上の位置、すなわち、当該還元性評価マップEVm(Par)上の位置が求められ、熱分布画像生成部24の画角、位置Papおよび前記位置Papに対応する当該還元性評価マップEVm(Par)上の前記位置から、当該還元性評価マップEVm(Par)の周辺部分の位置が求められる。このように求められた各還元性評価マップEVm(Par)の各周辺部分の各位置に基づいて、これら各還元性評価マップEVm(Par)の互いの位置関係が求められ、各還元性評価マップEVm(Par)が連結される。各位置Papそれぞれに応じた複数の資材量マップMVm(Par)を連結する場合も、上述の複数の還元性評価マップEVmを連結する場合の処理と同様の処理によって、複数の資材量マップMVm(Par)は、これら複数の資材量マップMVm(Par)それぞれに対応する各位置Papに基づいて連結される。
 以上説明したように、本実施形態における土壌状態評価システムS、土壌状態評価装置Pならびにこれに実装された土壌状態評価方法および土壌状態評価プログラムは、圃場の熱分布画像SPと前記圃場の気温Tsとに基づいて、評価対象の圃場ARの土壌における還元性の度合いを表す評価値EVを求めるので、土壌から試料をサンプリングする必要が無く、熱分布画像SPが例えば熱分布画像生成装置等によって、比較的広い範囲を1度で得られるから、還元性の度合いをより効率よく評価できる。
 上述の還元障害のプロセスから、前記圃場の温度Tarと前記圃場の気温Tsとの差が大きいほど、還元性の度合いは、大きくなる。上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、前記圃場の温度Tarと前記圃場の気温Tsとの差△Tに基づいて、前記評価値EVを多段階で求めるので、適切な評価値EVを求めることができる。
 上述の土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、前記評価値EVが還元障害の発生の有無を表す評価を含むので、還元障害の発生の有無を求めることができ、還元障害の発生の有無が分かる。
 上述の還元障害のプロセスから、比較的高温の場合や晴天の場合等に好適に還元性の度合いが評価できる。上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、土壌還元性評価部123が前記受け付けられた評価条件が設定評価条件情報記憶部135に記憶された設定評価条件を満たす場合に、最終的な評価値EVを求めるので、より適切な評価値EVを求めることができる。
 上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、前記取得された前記圃場の気温Tsが所定の温度Th以上であることを前記設定評価条件の1つとして用いるので、上述の還元障害のプロセスに鑑み、より適切な評価値を求めることができる。
 上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、天候が快晴または晴天であって時刻が9時から15時まであることを前記設定評価条件の1つとして用いるので、上述の還元障害のプロセスに鑑み、より適切な評価値を求めることができる。
 上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、複数のサブ領域それぞれについて、評価値をそれぞれ求めるので、2次元空間分解能が向上でき、圃場の所々で発生する還元性の度合いを評価できる。
 還元性の度合いが悪くなってしまった場合、次の作物の生育に備え、圃場ARには、例えば石灰窒素等の、前記還元性を改善するための資材が供給される。従前では、還元障害が発生すると、還元性の度合いが不明であるので、一律な量で圃場AR全体に資材が供給されていた。上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、評価値EVに基づいて資材の量MVを求めるので、より適切な量で圃場ARに資材を供給できる。この結果、一律な量で資材を圃場ARに供給する場合に比べて、資材の量MVを低減できるので、コストを低減でき、費用対効果が改善できる。特に、前記複数のサブ領域SARそれぞれについて前記評価値EV(SAR)がそれぞれ求められる場合には、前記複数のサブ領域SARそれぞれについて資材の量MV(SAR)がそれぞれ求められるので、還元性の度合いに応じて個々のサブ領域SARに資材を供給できるから、より効率良く資材を圃場ARに供給できる。
 なお、上述の実施形態では、設定評価条件を満たすか否かにかかわらず、資材量が求められたが、設定評価条件を満たす場合のみ、資材量が求められても良い。すなわち、設定評価条件を満たさない場合には、資材量を求めて記憶する処理S17の実行がスキップされる。
 また、上述の実施形態では、土壌状態評価装置Pは、熱分布画像SPを、熱分布画像生成装置Mから無線通信によって取得したが、熱分布画像生成装置Mと土壌状態評価装置Pとがケーブル等によって互いにデータ交換可能に接続され、土壌状態評価装置Pは、熱分布画像SPを、熱分布画像生成装置Mから前記ケーブルを介して取得してもよい。この場合では、前記熱分布画像取得部は、前記熱分布画像生成装置Mから、評価対象の圃場における熱分布画像SPを有線によって受信するインターフェース部である。また、土壌状態評価装置Pは、熱分布画像SPを、これを記憶および管理するサーバ装置から通信回線を介して取得しても良い。この場合では、前記熱分布画像取得部は、評価対象の圃場ARにおける熱分布画像SPを記憶および管理する前記サーバ装置から通信回線を介して前記熱分布画像SPを受信する通信インターフェース部である。また、土壌状態評価装置Pは、熱分布画像SPを、これを記録した記録媒体から取得しても良い。この場合では、前記熱分布画像取得部は、評価対象の圃場ARにおける熱分布画像SPを記録した記録媒体から前記熱分布画像SPを読み取る前記記憶媒体に応じたストレージ装置(例えばHDDドライブ装置やCD-ROMドライブ装置等)である。あるいは、前記記録媒体がUSBメモリ等である場合には、前記熱分布画像取得部は、USB(Universal Serial Bus)インターフェース部である。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 一態様にかかる土壌状態評価装置は、評価対象の圃場における熱分布画像を取得する熱分布画像取得部と、前記圃場の気温を取得する圃場気温取得部と、前記熱分布画像取得部で取得された前記圃場の熱分布画像と前記圃場気温取得部で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価部とを備える。好ましくは、上述の土壌状態評価装置において、前記熱分布画像取得部は、評価対象の圃場から放射された赤外線を撮像し、熱分布を図として表した熱分布画像(サーモグラム)を生成する熱分布画像生成装置(サーモグラフ、赤外線カメラ)である。また好ましくは、上述の土壌状態評価装置において、前記熱分布画像取得部は、前記熱分布画像生成装置から、評価対象の圃場における熱分布画像を有線によって受信するインターフェース部である。また好ましくは、上述の土壌状態評価装置において、前記熱分布画像取得部は、前記熱分布画像生成装置から、評価対象の圃場における熱分布画像を無線によって受信する通信インターフェース部(例えば通信カード等)である。また好ましくは、上述の土壌状態評価装置において、前記熱分布画像取得部は、評価対象の圃場における熱分布画像を記憶および管理するサーバ装置から通信回線を介して前記熱分布画像を受信する通信インターフェース部である。また好ましくは、上述の土壌状態評価装置において、前記熱分布画像取得部は、評価対象の圃場における熱分布画像を記録した記録媒体から前記熱分布画像を読み取る前記記憶媒体に応じたストレージ装置(例えばHDDドライブ装置やCD-ROMドライブ装置等)である。
 いわゆる還元障害は、次のプロセスによって発生すると考えられる。すなわち、例えば水田等の圃場における土壌中で硫化水素や有機酸が発生すると、例えば稲等の作物における根の伸長や活性が阻害され、この結果、作物の生育が抑制され、作物の水分を吸い上げる能力が弱まる。このため、例えば夏期の比較的暑い時期等において、気温が高くなると、作物全体に水分が運ばれず、気孔からの蒸散量が少なくなる。この結果、例えば人の熱中症のように、作物自体の温度(前記人で言えば体温に相当する)が充分に下げられず、生育不良や立ち枯れ等が発生する。このような還元障害が発生すれば、作物の収量は、低下し、その品質も悪くなってしまう。
 本発明者は、このような還元障害のプロセスに鑑み、圃場における還元障害の発生の有無は、作物の温度と相関があることを見出した。
 上記土壌状態評価装置は、圃場の熱分布画像と前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求めるので、土壌から試料をサンプリングする必要が無く、熱分布画像が例えば熱分布画像生成装置等によって、比較的広い範囲を1度で得られるから、還元性の度合いをより効率よく評価できる。
 他の一態様では、上述の土壌状態評価装置において、前記熱分布画像取得部で取得された前記熱分布画像に基づいて前記圃場の温度を求める圃場温度処理部をさらに備え、前記土壌還元性評価部は、前記圃場温度処理部で求められた前記圃場の温度と前記圃場気温取得部で取得された前記圃場の気温との差に基づいて、前記評価値を多段階で求める。
 上述の還元障害のプロセスから、前記圃場の温度と前記圃場の気温との差が大きいほど、還元性の度合いは、大きくなる。上記土壌状態評価装置は、前記圃場の温度と前記圃場の気温との差に基づいて、前記評価値を多段階で求めるので、適切な評価値を求めることができる。
 他の一態様では、これら上述の土壌状態評価装置において、前記評価値は、還元障害の発生の有無を表す評価を含む。
 このような土壌状態評価装置は、前記評価値が還元障害の発生の有無を表す評価を含むので、還元障害の発生の有無を求めることができ、還元障害の発生の有無が分かる。
 他の一態様では、これら上述の土壌状態評価装置において、前記土壌還元性評価部によって前記評価値を求める場合の設定評価条件を記憶する評価条件記憶部と、外部から評価条件を受け付ける評価条件受付部とをさらに備え、前記土壌還元性評価部は、前記評価条件受付部で受け付けられた評価条件が前記評価条件記憶部に記憶された設定評価条件を満たす場合に、前記評価値を求める。
 上述の還元障害のプロセスから、比較的高温の場合や晴天の場合等に好適に還元性の度合いが評価できる。上記土壌状態評価装置は、土壌還元性評価部が評価条件受付部で受け付けられた評価条件が評価条件記憶部に記憶された設定評価条件を満たす場合に、評価値を求めるので、より適切な評価値を求めることができる。
 他の一態様では、これら上述の土壌状態評価装置において、前記評価条件記憶部は、前記圃場気温取得部で取得された前記圃場の気温が所定の温度以上であることを前記設定評価条件の1つとして記憶し、前記評価条件受付部は、前記圃場気温取得部とを含む。
 このような土壌状態評価装置は、上述の還元障害のプロセスに鑑み、より適切な評価値を求めることができる。
 他の一態様では、これら上述の土壌状態評価装置において、前記評価条件記憶部は、天候が快晴または晴天であって時刻が9時から15時まであることを前記設定評価条件の1つとして記憶し、前記評価条件受付部は、外部からデータの入力を受け付ける入力部である。
 このような土壌状態評価装置は、上述の還元障害のプロセスに鑑み、より適切な評価値を求めることができる。
 他の一態様では、これら上述の土壌状態評価装置において、前記評価対象の圃場は、区分けされた複数のサブ領域を備え、前記土壌還元性評価部は、前記複数のサブ領域それぞれについて、前記評価値をそれぞれ求める。
 このような土壌状態評価装置は、複数のサブ領域それぞれについて、評価値をそれぞれ求めるので、2次元空間分解能が向上でき、圃場の所々で発生する還元性の度合いを評価できる。
 他の一態様では、これら上述の土壌状態評価装置において、前記土壌還元性評価部で求められた評価値に基づいて、前記還元性を改善するための資材の量を求める資材量処理部をさらに備える。
 還元性の度合いが悪くなってしまった場合、次の作物の生育に備え、圃場には、例えば石灰窒素等の、前記還元性を改善するための資材が供給される。従前では、還元障害が発生すると、還元性の度合いが不明であるので、一律な量で圃場全体に資材が供給されていた。上記土壌状態評価装置は、評価値に基づいて資材の量を求めるので、より適切な量で圃場に資材を供給できる。この結果、一律な量で資材を圃場に供給する場合に比べて、資材の量を低減できるので、コストを低減でき、費用対効果が改善できる。特に、前記複数のサブ領域それぞれについて前記評価値がそれぞれ求められる場合には、前記複数のサブ領域それぞれについて資材の量がそれぞれ求められるので、還元性の度合いに応じて個々のサブ領域に資材を供給できるから、より効率良く資材を圃場に供給できる。
 他の一態様にかかる土壌状態評価方法は、評価対象の圃場における熱分布画像を取得する熱分布画像取得工程と、前記圃場の気温を取得する圃場気温取得工程と、前記熱分布画像取得工程で取得された前記圃場の熱分布画像と前記圃場気温取得工程で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価工程とを備える。
 他の一態様にかかる土壌状態評価プログラムは、コンピュータに、評価対象の圃場における熱分布画像を取得する熱分布画像取得工程と、前記圃場の気温を取得する圃場気温取得工程と、前記熱分布画像取得工程で取得された前記圃場の熱分布画像と前記圃場気温取得工程で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価工程とを実行させるためのプログラムである。
 このような土壌状態評価方法および土壌状態評価プログラムは、圃場の熱分布画像と前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求めるので、土壌から試料をサンプリングする必要が無く、熱分布画像が例えば熱分布画像生成装置等によって、比較的広い範囲を1度で得られるから、還元性の度合いをより効率よく評価できる。
 この出願は、2016年5月10日に出願された日本国特許出願特願2016-94866を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、土壌状態評価装置、土壌状態評価方法および土壌状態評価プログラムが提供できる。
 

Claims (10)

  1.  評価対象の圃場における熱分布画像を取得する熱分布画像取得部と、
     前記圃場の気温を取得する圃場気温取得部と、
     前記熱分布画像取得部で取得された前記圃場の熱分布画像と前記圃場気温取得部で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価部とを備える、
     土壌状態評価装置。
  2.  前記熱分布画像取得部で取得された前記熱分布画像に基づいて前記圃場の温度を求める圃場温度処理部をさらに備え、
     前記土壌還元性評価部は、前記圃場温度処理部で求められた前記圃場の温度と前記圃場気温取得部で取得された前記圃場の気温との差に基づいて、前記評価値を多段階で求める、
     請求項1に記載の土壌状態評価装置。
  3.  前記評価値は、還元障害の発生の有無を表す評価を含む、
     請求項1または請求項2に記載の土壌状態評価装置。
  4.  前記土壌還元性評価部によって前記評価値を求める場合の設定評価条件を記憶する評価条件記憶部と、
     外部から評価条件を受け付ける評価条件受付部とをさらに備え、
     前記土壌還元性評価部は、前記評価条件受付部で受け付けられた評価条件が前記評価条件記憶部に記憶された設定評価条件を満たす場合に、前記評価値を求める、
     請求項1ないし請求項3のいずれか1項に記載の土壌状態評価装置。
  5.  前記評価条件記憶部は、前記圃場気温取得部で取得された前記圃場の気温が所定の温度以上であることを前記設定評価条件の1つとして記憶し、
     前記評価条件受付部は、前記圃場気温取得部とを含む、
     請求項2または請求項3を引用する請求項4に記載の土壌状態評価装置。
  6.  前記評価条件記憶部は、天候が快晴または晴天であって時刻が9時から15時まであることを前記設定評価条件の1つとして記憶し、
     前記評価条件受付部は、外部からデータの入力を受け付ける入力部である、
     請求項2もしくは請求項3を引用する請求項4、または、請求項5に記載の土壌状態評価装置。
  7.  前記評価対象の圃場は、区分けされた複数のサブ領域を備え、
     前記土壌還元性評価部は、前記複数のサブ領域それぞれについて、前記評価値をそれぞれ求める、
     請求項1ないし請求項6のいずれか1項に記載の土壌状態評価装置。
  8.  前記土壌還元性評価部で求められた評価値に基づいて、前記還元性を改善するための資材の量を求める資材量処理部をさらに備える、
     請求項1ないし請求項7のいずれか1項に記載の土壌状態評価装置。
  9.  評価対象の圃場における熱分布画像を取得する熱分布画像取得工程と、
     前記圃場の気温を取得する圃場気温取得工程と、
     前記熱分布画像取得工程で取得された前記圃場の熱分布画像と前記圃場気温取得工程で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価工程とを備える、
     土壌状態評価方法。
  10.  コンピュータに、
     評価対象の圃場における熱分布画像を取得する熱分布画像取得工程と、
     前記圃場の気温を取得する圃場気温取得工程と、
     前記熱分布画像取得工程で取得された前記圃場の熱分布画像と前記圃場気温取得工程で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価工程とを実行させるための土壌状態評価プログラム。
PCT/JP2017/015487 2016-05-10 2017-04-17 土壌状態評価装置、該方法および該プログラム WO2017195534A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018516906A JP6881440B2 (ja) 2016-05-10 2017-04-17 土壌状態評価装置、該方法および該プログラム
KR1020187032176A KR102163610B1 (ko) 2016-05-10 2017-04-17 토양 상태 평가 장치, 해당 방법 및 해당 프로그램
CN201780027935.0A CN109154591B (zh) 2016-05-10 2017-04-17 土壤状态评价装置、其方法以及其程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016094866 2016-05-10
JP2016-094866 2016-05-10

Publications (1)

Publication Number Publication Date
WO2017195534A1 true WO2017195534A1 (ja) 2017-11-16

Family

ID=60267620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015487 WO2017195534A1 (ja) 2016-05-10 2017-04-17 土壌状態評価装置、該方法および該プログラム

Country Status (4)

Country Link
JP (1) JP6881440B2 (ja)
KR (1) KR102163610B1 (ja)
CN (1) CN109154591B (ja)
WO (1) WO2017195534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161356A (ja) * 2018-03-09 2019-09-19 三菱重工業株式会社 温度管理装置、温度管理システム、温度管理方法、およびプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110175870A (zh) * 2019-05-08 2019-08-27 深圳中大环保科技创新工程中心有限公司 土壤资源价值确定方法及相关产品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004147651A (ja) * 2002-10-11 2004-05-27 Three N Gijutsu Consultant:Kk 植生のヘルスモニタリング方法
JP2007143490A (ja) * 2005-11-29 2007-06-14 Yamaguchi Univ 気球空撮マルチバンドセンシングにより植生を診断する方法
JP2010068719A (ja) * 2008-09-16 2010-04-02 Hitachi Software Eng Co Ltd 緑地監視システム及び緑地監視配信方法
JP2012200194A (ja) * 2011-03-25 2012-10-22 Tokyo Electric Power Co Inc:The 土中温度計測装置および土中温度計測方法
JP2015008699A (ja) * 2013-07-01 2015-01-19 株式会社日立ソリューションズ 植物計測処理装置、植物計測処理方法および植物計測処理プログラム
US20160073573A1 (en) * 2014-09-12 2016-03-17 The Climate Corporation Methods and systems for managing agricultural activities
WO2016147870A1 (ja) * 2015-03-16 2016-09-22 コニカミノルタ株式会社 植物健全性診断装置、該方法および該プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2079664C (en) * 1992-08-03 2001-01-30 Lloyd C. Fons Methods for locating oil or gas deposits employing earth surface temperatures
JP4437451B2 (ja) * 2005-03-28 2010-03-24 国立大学法人豊橋技術科学大学 水分測定装置およびその水分測定装置を備えた土壌灌水制御システム
CN202025424U (zh) * 2011-03-15 2011-11-02 北京农业智能装备技术研究中心 农田墒情信息自动采集系统
WO2014073570A1 (ja) * 2012-11-08 2014-05-15 小松精練株式会社 土壌改良材およびそれを含む培土
JP5351325B1 (ja) 2012-11-27 2013-11-27 株式会社みらい蔵 土壌分析システム及び土壌分析用プログラム
CN203772311U (zh) * 2014-03-18 2014-08-13 舟山市农林与渔农村委员会 一种土壤环境监测系统
CN204440130U (zh) * 2015-01-09 2015-07-01 河南慧之盟电子科技有限公司 一种基于农业物联网技术的智能化农业管理系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004147651A (ja) * 2002-10-11 2004-05-27 Three N Gijutsu Consultant:Kk 植生のヘルスモニタリング方法
JP2007143490A (ja) * 2005-11-29 2007-06-14 Yamaguchi Univ 気球空撮マルチバンドセンシングにより植生を診断する方法
JP2010068719A (ja) * 2008-09-16 2010-04-02 Hitachi Software Eng Co Ltd 緑地監視システム及び緑地監視配信方法
JP2012200194A (ja) * 2011-03-25 2012-10-22 Tokyo Electric Power Co Inc:The 土中温度計測装置および土中温度計測方法
JP2015008699A (ja) * 2013-07-01 2015-01-19 株式会社日立ソリューションズ 植物計測処理装置、植物計測処理方法および植物計測処理プログラム
US20160073573A1 (en) * 2014-09-12 2016-03-17 The Climate Corporation Methods and systems for managing agricultural activities
WO2016147870A1 (ja) * 2015-03-16 2016-09-22 コニカミノルタ株式会社 植物健全性診断装置、該方法および該プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161356A (ja) * 2018-03-09 2019-09-19 三菱重工業株式会社 温度管理装置、温度管理システム、温度管理方法、およびプログラム
JP7081945B2 (ja) 2018-03-09 2022-06-07 三菱重工業株式会社 温度管理装置、温度管理システム、温度管理方法、およびプログラム

Also Published As

Publication number Publication date
KR20180127494A (ko) 2018-11-28
JPWO2017195534A1 (ja) 2019-03-07
JP6881440B2 (ja) 2021-06-02
CN109154591B (zh) 2021-06-01
CN109154591A (zh) 2019-01-04
KR102163610B1 (ko) 2020-10-08

Similar Documents

Publication Publication Date Title
Shi et al. Unmanned aerial vehicles for high-throughput phenotyping and agronomic research
Bai et al. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding
Gil-Docampo et al. Above-ground biomass estimation of arable crops using UAV-based SfM photogrammetry
US11543836B2 (en) Unmanned aerial vehicle action plan creation system, method and program
Meron et al. Foliage temperature extraction from thermal imagery for crop water stress determination
US10585210B2 (en) Apparatus for radiometric correction and orthorectification of aerial imagery
Atkinson et al. Field phenotyping for the future
JP6589978B2 (ja) 植物健全性診断装置、該方法および該プログラム
WO2019076759A1 (en) AERIAL VEHICLE WITHOUT PILOT
WO2018048387A1 (en) Systems and methods for mapping emerged plants
JP2017035055A (ja) 植物生育指標測定装置、該方法および該プログラム
CN104732564A (zh) 一种玉米叶面积无损动态监测装置与方法
JPWO2019017095A1 (ja) 情報処理装置、情報処理方法、プログラム、情報処理システム
CN111095339A (zh) 作物栽培支持装置
CN108801350A (zh) 一种基于无人机低空遥感技术的果树生长监测系统
Long et al. Row and water front detection from UAV thermal-infrared imagery for furrow irrigation monitoring
WO2017195534A1 (ja) 土壌状態評価装置、該方法および該プログラム
Pierzchała et al. Automatic recognition of work phases in cable yarding supported by sensor fusion
Kallimani et al. UAV-based Multispectral & Thermal dataset for exploring the diurnal variability, radiometric & geometric accuracy for precision agriculture
Das et al. A high-throughput phenotyping pipeline for rapid evaluation of morphological and physiological crop traits across large fields
US20220172306A1 (en) Automated mobile field scouting sensor data and image classification devices
JP6862299B2 (ja) 圃場の空撮システム
Tumlisan Monitoring growth development and yield estimation of maize using very high-resolution UAV-images in Gronau, Germany
Dong et al. 4D mapping of fields using autonomous ground and aerial vehicles
EP3554094B1 (en) Remote control system, remote control method, and program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516906

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187032176

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795895

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795895

Country of ref document: EP

Kind code of ref document: A1