WO2017193507A1 - 一种压电二相流超声雾化喷头 - Google Patents
一种压电二相流超声雾化喷头 Download PDFInfo
- Publication number
- WO2017193507A1 WO2017193507A1 PCT/CN2016/097486 CN2016097486W WO2017193507A1 WO 2017193507 A1 WO2017193507 A1 WO 2017193507A1 CN 2016097486 W CN2016097486 W CN 2016097486W WO 2017193507 A1 WO2017193507 A1 WO 2017193507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- horn
- piezoelectric
- end cap
- hole
- end cover
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
- B05B17/0615—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
- B05B17/0623—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
- B05B17/063—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn having an internal channel for supplying the liquid or other fluent material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
- B05B17/0623—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
- B05B17/0653—Details
- B05B17/0669—Excitation frequencies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/12—Spray pistols; Apparatus for discharge designed to control volume of flow, e.g. with adjustable passages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
- B05B7/0416—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
- B05B7/0483—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with gas and liquid jets intersecting in the mixing chamber
Definitions
- the invention belongs to the field of ultrasonic atomizing nozzles, and in particular relates to a piezoelectric two-phase flow ultrasonic atomizing nozzle.
- the atomization nozzle produced by the electro-acoustic transducer has uniform droplets and low energy consumption.
- the droplet size changes with the design frequency of the piezoelectric vibrator. The higher the frequency, the droplet size.
- the hydrodynamic ultrasonic atomization method used, the atomization amount is large and the droplets can be directed to blow the droplets to the designated area, and the disadvantage is that the gas pressure is relatively high. In hours, the droplet size is coarse and uneven. If you want to get fine droplets, you need to provide high pressure, large flow of compressed air, and the energy consumption is high.
- the present invention provides a piezoelectric two-phase flow ultrasonic atomizing nozzle by using a piezoelectric ultrasonic mist.
- the combination of chemical and fluid-powered ultrasonic atomization enables the production of a large number of ultra-fine droplets under low-energy conditions.
- the present invention achieves the above technical objects by the following technical means.
- Piezoelectric two-phase flow ultrasonic atomizing nozzle comprising an air inlet joint, a connecting bolt, a piezoelectric vibrator, a horn, a Laval valve core, a stepped cone valve, a second end cover and a first end cover;
- the piezoelectric vibrator and the horn are fixedly connected by a hollow connecting bolt;
- the connecting bolt tail is connected with the air inlet joint;
- the front end of the horn is fixedly connected with the second end cover;
- the Laval valve core is One end is fixed in the stepped hole at the top of the horn, and the other end is fixed in the groove of the rear end surface of the second end cover;
- the inlet wall of the stepped hole of the horn is provided with a liquid inlet hole;
- a plurality of flow guiding holes are radially opened near the outlet;
- a ring cavity is formed between the outer circular surface of the Laval valve core and the inner circular surface of the stepped hole of the horn; the middle
- the stepped cone valve has a taper angle of 40°, the conical surface is stepped, and the height and width of the step are both 1.5mm, the bottom of the stepped cone valve is uniformly distributed with three positioning keys along the circumference; the radial positioning ring is uniformly opened with three rectangular grooves along the circumference; the three positioning keys of the stepped cone valve are respectively located in the radial direction In the three rectangular grooves of the ring; the tapered angle of the tapered hole of the second end cover is 40°, and the diameter of the entrance of the tapered hole is 4.5 mm.
- the vibrating partition plate is a circular plate, and five through holes are uniformly opened;
- the first end cover is a circular end cover, and five through holes are uniformly opened; and
- the resonance chamber is provided with 5
- the root hose has an inlet and outlet connection at an angle of 21° to the first end cap axis, and the hose and the vibration baffle and the first end cover are connected by a plug connector.
- the inlet of the Laval type spool has a diameter of 5 mm
- the throat has a diameter of 2 mm
- the outlet of the expansion section has a diameter of 3.5 mm.
- the inlet and outlet ends of the Laval type spool are provided with a boss, and the inlet end is convex.
- the card is in the rear end of the stepped hole at the top of the horn, and the boss at the outlet end is caught in the groove of the second end cover.
- the liquid inlet hole is located at the center of the hole wall surface of the stepped hole of the horn, the annular cavity has a thickness of 1.3-1.7 mm, and the diameter of the flow guiding hole is 1.5-2 mm; the Laval valve The core has three flow guiding holes uniformly in the radial direction near the outlet.
- the outer end surface of the open end of the first end cover is conical, and the outer end of the first end cover and the second end cover are sleeved with a lock nut; the contact portion between the lock nut and the first end cover is inner
- the conical surface, the conical angle of the inner conical surface is equal to the conical angle of the outer conical surface of the first end cap, both 10-15°.
- the inner conical surface of the locknut is an eccentric structure, and the axis of the shaft is offset from the axis of the outer conical surface of the first end cap by 1-1.2 mm; the outer end surface of the first end cap is provided with a flange .
- the piezoelectric vibrator includes a piezoelectric vibrator rear cover, a copper plate electrode, and a piezoelectric vibrator front cover; the piezoelectric vibrator rear cover, the copper electrode, the piezoelectric vibrator front cover, and the variable amplitude A metal glue is fixedly connected between the rod and the second end cover.
- the material of the first end cover, the second end cover and the vibration diaphragm is stainless steel 304; the horn is a stepped horn with a conical transition surface, and the material is hard aluminum 7075.
- the distance L from the rear end of the piezoelectric vibrator to the front end of the horn is 94 mm; the length L1 of the horn is a wavelength of the acoustic wave in the horn, that is, 66 mm, and the diameter of the small end of the horn is 19 mm.
- the distance L2 from the lower end surface of the second end cover to the upper end surface of the first end cover is half of the wavelength of the acoustic wave in the second end cover and the first end cover, that is, 26 mm; the diameter of the piezoelectric vibrator is the same as the diameter d1 of the horn , both are 30 mm; the connecting bolt and the horn have a center hole diameter d2 of 5 mm.
- the piezoelectric two-phase flow ultrasonic atomizing nozzle of the present invention uses the piezoelectric two-phase flow ultrasonic atomizing nozzle of the present invention, so that the droplets are subjected to ultrasonic atomization before The first atomization occurs under the action of the strong energy of the ultrasonic wave, and the second atomization occurs after striking the stepped cone valve under the action of the supersonic flow, and then the atomized droplet group is subjected to the action of the high pressure gas.
- the eigenfrequency of the resonance chamber and the pulsation frequency of the two-phase fluid are resonating, and the third atomization is realized in the resonance chamber, and after three times of atomization, the droplets fly out of the nozzle.
- the fourth atomization is achieved under the ultrasonic vibration by the end surface of the closed end of the first end cover; while the object of the conventional piezoelectric ultrasonic atomizer is liquid film, the present invention is more than the conventional piezoelectric ultrasonic wave.
- the atomizing nozzle has a larger amount of atomization and a smaller droplet.
- the stepped cone valve is arranged at the front end of the Laval valve core, so that the two-phase fluid from the Laval valve core increases the chance of collision with the cone valve when passing through the annular passage at a high speed, which is beneficial to the further development of the droplet. broken.
- the two-phase fluid passes through the outlet of the Laval-type spool expansion section into the annular passage between the stepped cone valve and the conical surface of the second end cap.
- the two-phase fluid oscillates, and the oscillation state is affected by various factors such as the supply pressure, the supply pressure, the supply amount, and the liquid density.
- the second end cap and the stepped cone valve will undergo axial vibration, but due to the different amplitudes of the two, the cross-sectional area of the annular channel changes periodically, thereby causing the two-phase fluid. Periodic pulsation.
- the pulsation of the two-phase fluid causes periodic vibration of the vibration chamber of the resonance chamber, and resonance occurs when the eigenfrequency of the resonance chamber coincides with the pulsation frequency of the two-phase fluid.
- the pulsation frequency of the two-phase fluid is greatly affected by the ambient temperature, and the eigenfrequency of the resonance chamber is basically constant. Therefore, the conventional fluid-dynamic ultrasonic atomizing nozzle makes it difficult to generate ultrasonic vibration in the resonance chamber.
- the two-fluid pulsation frequency according to the present invention is mainly affected by the axial vibration frequency of the horn, and largely relies on the dependence on environmental temperature and the like.
- FIG. 1 is a schematic structural view of a piezoelectric two-phase flow ultrasonic atomizing nozzle according to the present invention.
- Figure 2 is a partial enlarged view of a portion A in Figure 1.
- Figure 3 is an exploded view of B in Figure 2.
- Figure 4 is a schematic view showing the assembly of a stepped cone valve and a radial positioning ring.
- Figure 5 shows the relationship between the position of the nozzle section and its corresponding axial displacement amplitude.
- a piezoelectric two-phase flow ultrasonic atomizing nozzle includes an air inlet joint 2, a connecting bolt 4, a piezoelectric vibrator 6, a horn 8, a Laval valve core 9, and a ladder.
- the front end of the horn 8 is fixedly connected to the second end cover 12 by a metal glue.
- the horn 8 is a stepped horn with a conical transition surface, the material is hard aluminum 7075; the length L1 of the horn 8 is a wavelength of the acoustic wave at the horn 8, ie 66 mm, the horn 8 small end diameter is 19mm; the top of the horn 8 is provided with a stepped hole, the depth of the stepped hole is 10-13mm; the center of the upper end surface of the stepped hole of the horn 8 is provided with a liquid inlet hole 10, and the liquid inlet hole 10 is The center point of the axis of the Laval valve core 9 corresponds to the same; the rear end surface of the second end cover 12 is provided with a groove, the middle hole of the second end cover 12 is conical, and the cone of the second end cover 12 The hole taper angle is 40° and the taper hole inlet diameter is 4.5 mm.
- the Laval type spool 9 has a contraction section inlet diameter of 5 mm, a throat diameter of 2 mm, and a contraction section axial length of 4-6 times the throat area.
- the outlet diameter of the expansion section is 3.5 mm, the design of the expansion section is the Vitosinsky curve, and the throat section is designed as an arc.
- Both the inlet end and the outlet end of the Laval type spool 9 are provided with a boss, the inlet end boss is caught in the rear end of the stepped hole at the top of the horn 8, and the boss at the outlet end is caught in the groove of the second end cover 12, This ensures the concentricity of the Laval valve plug 9 with the outer circumference of the nozzle when it is installed.
- the Laval valve core 9 has three drainage holes 11 uniformly open in the radial direction near the outlet, and the diameter of the drainage hole 11 is 1.5-2 mm; the outer circular surface and the variable amplitude of the Laval valve core 9 A ring cavity is formed between the inner circular faces of the stepped holes of the rod 8.
- the second end cover 12 is screwed to the first end cover 14; the outer end surface of the open end of the first end cover 14 is conical, and the outer end of the first end cover 14 and the second end cover 12 are covered with a lock nut. 13; the contact portion of the lock nut 13 and the first end cover 14 is an inner conical surface, and the conical angle of the inner conical surface is equal to the conical angle of the outer conical surface of the first end cover 14, both being 10-15°,
- the concave surface of the loose nut 13 is eccentric so that the locknut 13 wedges the first end cap 14 like a wedge to prevent the first end cap 14 from loosening during high frequency vibration.
- the annular cavity has a thickness of 1.3-1.7 mm; the end surface of the first end cover 14 has a maximum amplitude position, and the liquid in the channel forms a liquid film, and the thickness of the liquid film is 1.3-1.7 mm, and the liquid film is Ultrasonic atomization occurs on the end face of the first end cap 14.
- a radial positioning ring 20 is disposed at the rear end of the first end cover 14; as shown in FIG. 3 and FIG. 4, the stepped cone valve 21 has a cone angle of 40 ° C, the conical surface is stepped, and the height of the step is The width is 1.5mm, the bottom of the stepped cone valve 21 is evenly distributed with three positioning keys; the radial positioning ring 20 is evenly opened with three rectangular grooves; three positions of the stepped cone valve 21 The keys are respectively located in three rectangular slots of the radial positioning ring 20, and the position of the stepped cone valve 21 relative to the outlet of the Laval spool 9 can be adjusted along the axis by the adjusting bolt 16, and the outlet of the Laval spool 9 The cross-sectional area also changes to adjust the velocity of the fluid at the outlet of the Laval valve plug 9; the axial adjustment range of the stepped poppet valve 21 is 0-6 mm, so that the fluid at the outlet of the Laval spool 9 The speed varies between 1.8 and 2.2 Mach, and the theoretical
- Q A ⁇ V
- Q is the flow rate
- A is the cross-sectional area of the tube
- V is the air flow velocity at the cross-section A.
- the fluid velocity becomes larger as the cross-sectional area becomes larger, and becomes smaller as the cross-sectional area becomes smaller; when the fluid velocity is less than the sonic velocity, the fluid velocity becomes smaller as the cross-sectional area becomes smaller, and vice versa.
- A is the cross-sectional area of any position of the pipeline
- A* is the cross-sectional area of the throat
- ⁇ is the specific heat capacity ratio
- M is the Mach number of the fluid at any position of the pipeline.
- the initial diameter of the outlet of the Laval tube expansion section is 3.5mm
- the throat diameter is 2mm
- the Mach number at the exit of the expansion section of the Laval tube is 2.2
- the position changes the cross-sectional area of the flow channel at the outlet of the Laval tube to a range of 4.5-9.6 mm 2 , so that the fluid velocity at the outlet varies from 1.8 to 2.2 Mach.
- the stepped cone valve 21 has a threaded hole at the bottom thereof, and the vibration diaphragm 19 has a threaded hole in the center thereof, and the stepped cone valve 21 and the vibration diaphragm 19 are connected by an adjusting bolt 16.
- the vibrating partition plate 19 is a circular plate, and five through holes are uniformly opened; the first end cover 14 is a circular end cover, and five through holes are uniformly opened; the vibrating partition 19 and the first A resonance chamber 17 is formed between the top ends of the end caps 14, and the eigenfrequency of the resonance chambers 17 is 55-65 kHz.
- hoses 15 are disposed in the resonance chamber 17, and one end of each of the hoses 15 is connected to the through hole of the vibrating partition 19, and the other end is connected to the through hole of the first end cover 14.
- the inlet and outlet connections of the hose 15 are at an angle of 21° to the axis of the first end cap 14.
- the hose 15 and the vibrating partition 19 and the first end cover 14 are connected by plugging and unplugging; Vibrating partition 19
- the plastic hose 15 will stretch and compress as it is in the axial position.
- the outer end surface of the first end cover 14 is provided with a flange 18 for limiting the axial amplitude of the first end cover 14 to reduce the eigenfrequency of the resonance chamber 17 due to the vibration of the horn 8. Impact.
- the piezoelectric vibrator 6 includes a piezoelectric vibrator rear cover 1, a copper plate electrode 5, and a piezoelectric vibrator front cover 7 in sequence; a piezoelectric vibrator rear cover 1, three copper electrode 5, and a piezoelectric vibrator
- the vibration frequency of the main body of the ultrasonic atomizing nozzle composed of the front cover 7 and the horn 8 is 55-65 kHz; the piezoelectric vibrating rear cover 1, the three copper electrode 5, the piezoelectric vibrator front cover 7 and The horns 8 are fixedly connected by metal glue.
- the material of the first end cover 14, the second end cover 12, and the vibration diaphragm 19 is stainless steel 304.
- the distance L from the rear end of the piezoelectric vibrator 6 to the front end of the horn 8 is 94 mm; the distance L2 from the lower end surface of the second end cover 12 to the upper end surface of the first end cover 14 is a sound wave at the second end cover. 12 and half of the wavelength in the first end cover 14, that is, 26 mm; the diameter of the piezoelectric vibrator 6 and the diameter d1 of the horn 8 are both 30 mm; the inner diameter d2 of the connecting bolt 4 and the horn 8 is 5 mm. .
- the high pressure gas of the invention is supplied by the air compressor, and the intake pipe is connected with the air inlet hole 3 at the tail of the nozzle; the liquid to be atomized is pumped by the rehydration pump to the liquid inlet hole 10; the main body of the ultrasonic atomizing nozzle is driven by the driving power source, first
- the three copper electrodes 5 are connected to the negative pole of the power supply, and the second copper electrode 5 is connected to the positive pole of the power supply, and the driving frequency is 55-65 kHz.
- the high-pressure gas (4.5-5.5 bar) enters from the inlet port 2 at the end of the nozzle. After passing through the Laval-type spool 9, the gas is accelerated to supersonic speed (1.8-2.2 Mach), and the liquid to be atomized is pumped from the rehydration pump to the inlet.
- the hole 10 flows in, and the liquid fills the gap between the Laval valve core 9 and the inner surface of the stepped hole of the horn 8. After passing through the flow guiding hole 11, it flows in near the outlet of the Laval valve core 9 and merges with the supersonic airflow.
- the first atomization is realized, and the atomized droplet collides with the stepped cone valve 21 to achieve the second atomization with the high-speed airflow; the two-phase fluid passes through the expansion of the Laval-type spool 9 to enter the stepped cone valve 21 and the first
- the annular passage between the conical surfaces of the two end caps 12 causes pressure fluctuations, causing oscillation of the two-phase fluid, and at the same time, under the action of the horn 8, the second end cap 12 and the stepped cone valve 21 will generate an axis.
- the cross-sectional area of the annular channel changes periodically, causing periodic pulsation of the two-phase fluid, the eigenfrequency of the resonance chamber 17 and the pulsation frequency of the two-phase fluid Resonance occurs when consistent, and the droplets are atomized after two atomizations Under the action of the gas, it enters the hose 15 in the resonance chamber 17, and the droplets in the resonance chamber 17 realize the third atomization.
- the pulse state of the two-phase fluid and the eigenfrequency of the resonance chamber are subject to more The influence of various factors, such as pressure, temperature, liquid density, etc., needs to be repeatedly tested to find the resonance point; the first end cover 14 is ultrasonically vibrated in the axial direction under the action of the piezoelectric vibrator 6, and the droplets are atomized by three times. After flying out, a part of the droplet hits the end surface of the first end cover 14, and the fourth atomization is realized under the action of ultrasonic vibration, and remains on the end surface of the first end cover 14.
- the liquid film achieves ultrasonic atomization under the action of ultrasonic vibration.
- Each atomization further reduces the particle diameter of the larger diameter droplets in the droplet group, and after four atomizations, the droplet size is more uniform, and the atomization amount is remarkably improved.
Landscapes
- Special Spraying Apparatus (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
一种压电二相流超声雾化喷头,包括压电振子(6)、变幅杆(8)、第二端盖(12)和第一端盖(14);压电振子(6)和变幅杆(8)通过连接螺栓(4)连接;连接螺栓(4)尾部安装进气口接头(2);变幅杆(8)前端固定第二端盖(12);拉瓦尔式阀芯(9)固定在变幅杆(8)的阶梯孔和第二端盖(12)的凹槽内;变幅杆(8)阶梯孔的孔壁面上设有进液孔(10);拉瓦尔式阀芯(9)靠近出口处沿径向开有多个导流孔(11);第二端盖(12)螺纹连接第一端盖(14);第一端盖(14)后端的卡槽处设置有径向定位圈(20);径向定位圈(20)上安装阶梯型锥阀(21);阶梯型锥阀(21)和振动隔板(19)通过调节螺栓(16)连接;振动隔板(19)和第一端盖(14)顶端之间构成共鸣室(17);共鸣室(17)内设置有多根软管(15)。所述压电二相流超声雾化喷头能够在低能耗工况下产生大量的超细雾滴,克服传统技术无法同时兼顾雾化量大、粒径细、功耗低、定向喷雾的不足。
Description
本发明属于超声雾化喷头领域,尤其是涉及一种压电二相流超声雾化喷头。
目前,在超声雾化技术领域,产生超声振动的方法主要有两种:一种是利用电声换能器产生超声,另一种是利用流体做动力来产生超声。这两种方法有各自的优缺点,利用电声换能器雾化喷头产生的雾滴均匀、能耗小,雾滴粒径随压电振子设计频率变化而变化,频率越高雾滴粒径越小,缺点是雾化量小,且雾滴随意飘散没有方向性;利用流体动力式超声雾化方式,雾化量大且可以定向将雾滴吹送到指定区域,其缺点是在气体压力较小时,其雾滴粒径粗大且不均匀,若想得到精细雾滴则需提供高压力、大流量的压缩空气,能耗较高。
发明内容
针对现有技术中存在无法同时兼具雾化量大、粒径细、功耗低、定向喷雾的不足,本发明提供了一种压电二相流超声雾化喷头,通过将压电超声雾化和流体动力式超声雾化的有机结合,能够实现低能耗工况下产生大量的超细雾滴。
本发明是通过以下技术手段实现上述技术目的的。
一种压电二相流超声雾化喷头,包括进气口接头、连接螺栓、压电振子、变幅杆、拉瓦尔式阀芯、阶梯型锥阀、第二端盖和第一端盖;所述压电振子和变幅杆通过中空的连接螺栓固定连接;所述连接螺栓尾部与进气口接头连接;所述变幅杆前端固定连接第二端盖;所述拉瓦尔式阀芯的一端固定在变幅杆顶部的阶梯孔内,另一端固定在所述第二端盖后端面的凹槽内;所述变幅杆阶梯孔的孔壁面上设有进液孔;所述拉瓦尔式阀芯靠近出口处沿径向开有多个导流孔;拉瓦尔式阀芯外圆面和变幅杆阶梯孔的内圆面之间形成环型腔;所述第二端盖的中孔为圆锥形;所述第二端盖螺纹连接第一端盖;所述第一端盖后端的卡槽处设置有径向定位圈;所述径向定位圈上安装有阶梯型锥阀;所述阶梯型锥阀的底部开有螺纹孔,振动隔板中心开有螺纹孔,所述阶梯型锥阀和振动隔板通过调节螺栓连接;所述振动隔板和第一端盖顶端之间构成共鸣室;所述共鸣室内设置有多根软管;所述软管的一端连接振动隔板的通孔,另一端连接第一端盖的通孔。
进一步的,所述阶梯型锥阀锥角为40°,圆锥面为阶梯型,阶梯的高度和宽度均为
1.5mm,阶梯型锥阀的底部沿圆周均布3个定位键;所述径向定位圈沿圆周均匀开设有3个矩形槽;所述阶梯型锥阀的3个定位键分别位于径向定位圈的3个矩形槽中;所述第二端盖的圆锥孔锥角为40°,圆锥孔入口直径为4.5mm。
进一步的,所述振动隔板为圆形板,且均匀开设有5个通孔;所述第一端盖为圆形端盖,且均匀开设有5个通孔;所述共鸣室内设置有5根软管,所述软管的入口和出口连线与第一端盖轴线成21°夹角,所述软管和振动隔板、第一端盖之间采用插拔插头连接。
进一步的,所述拉瓦尔式阀芯收缩段入口直径为5mm,喉口直径为2mm,扩张段出口直径为3.5mm,拉瓦尔式阀芯入口端和出口端都设置有凸台,入口端凸台卡在变幅杆顶部阶梯孔后端内,出口端的凸台卡在第二端盖的凹槽内。
进一步的,所述进液孔位于变幅杆阶梯孔的孔壁面中心处,所述环型腔厚度为1.3-1.7mm,所述导流孔的直径为1.5-2mm;所述拉瓦尔式阀芯靠近出口处沿径向均匀开有3个导流孔。
进一步的,所述第一端盖开口端外圆面为圆锥形,所述第一端盖和第二端盖外侧套有防松螺母;所述防松螺母与第一端盖接触部位为内圆锥面,内圆锥面的圆锥角与第一端盖的外圆锥面的圆锥角相等,均为10-15°。
进一步的,所述防松螺母的内圆锥面为偏心结构,其轴心与第一端盖外圆锥面的轴心偏离1-1.2mm;所述第一端盖外圆面上设有法兰。
进一步的,所述压电振子依次包括压电振子后盖板、铜片电极和压电振子前盖板;所述压电振子后盖板、铜片电极、压电振子前盖板、变幅杆和第二端盖之间均采用金属胶固定连接。
进一步的,所述第一端盖、第二端盖、振动隔板的材料为不锈钢304;所述变幅杆为带圆锥过渡面的阶梯型变幅杆,材料为硬铝7075。
进一步的,所述压电振子后端至变幅杆前端距离L为94mm;所述变幅杆的长度L1为声波在变幅杆中的一个波长,即66mm,变幅杆小端直径为19mm;第二端盖下端面至第一端盖上端面的距离L2为声波在第二端盖和第一端盖内波长的一半,即26mm;所述压电振子直径和变幅杆直径d1相同,均为30mm;所述连接螺栓和变幅杆中心孔直径d2为5mm。
本发明的有益效果:
(1)利用本发明所述压电二相流超声雾化喷头,使得雾滴在受到超声雾化之前,在
超音波的强能量的作用下发生第一次雾化,又在超音速气流带动下撞击阶梯型锥阀发生第二次雾化,之后经过两次雾化的雾滴群在高压气体的作用下进入共鸣室内的软管中,共鸣室的本征频率和二相流体的脉动频率一致时产生共振,在共鸣室内液滴实现第三次雾化,经过三次雾化的雾滴,飞出喷嘴后打在第一端盖封闭端端面上,在超声振动作用下实现第四次雾化;而传统的压电式超声雾化器雾化的对象是液膜,所以本发明比传统压电式超声雾化喷头的雾化量更大,雾滴更小。
(2)在变幅杆作用下,第二端盖和阶梯型锥阀会发生轴向振动,但由于两者振幅不同,使得环型通道的通道截面积发生周期性的变化,二流体射流通过拉瓦尔式阀芯扩张段出口进入阶梯型锥阀和第二端盖内圆锥面之间的环型通道时,产生压力波动,在周期性压力波动的作用下会变为超音速脉动流体,脉动气流对雾滴的进一步破裂起到积极作用;在喷头出口处增加了共鸣室,经过三次雾化的雾滴在共鸣室里在声波的作用下进一步破裂变小,使雾滴更加均匀。
(3)在拉瓦尔式阀芯前端设置阶梯型锥阀,使得由拉瓦尔式阀芯出来的二相流体在高速通过环型通道时增加了与锥阀撞击的机会,有利于雾滴的进一步破碎。
(4)与传统哈特曼式共振腔的共振方式不同,本发明中二相流体通过拉瓦尔式阀芯扩张段出口进入阶梯型锥阀和第二端盖内圆锥面之间的环型通道时,产生压力波动,引起二相流体的振荡,其振荡状态受供气压力、供液压力、供气量、液体密度等多种因素的影响。同时,在变幅杆作用下,第二端盖和阶梯型锥阀会发生轴向振动,但由于两者振幅不同,使得环型通道的横截面积发生周期性的变化,从而引起二相流体周期性的脉动。二相流体的脉动引起共鸣室振动隔板周期性的振动,当共鸣室的本征频率和二相流体的脉动频率一致时即发生共振。二相流体的脉动频率受环境温度影响较大,而共鸣室的本征频率是基本不变的,所以传统的流体动力式超声雾化喷头使共鸣室产生超声振动比较困难。而本发明所述的二流体脉动频率主要受变幅杆的轴向振动频率的影响,而在很大程度上减弱了对环境温度等因素的依赖。
图1为本发明所述压电二相流超声雾化喷头的结构示意图。
图2为图1中A处局部放大图。
图3为图2中B处的爆炸图。
图4为阶梯型锥阀和径向定位圈的装配示意图。
图5为喷头截面位置与其对应轴向位移幅值关系。
附图标记说明如下:
1-压电振子后盖板,2-进气口接头,3-进气孔,4-连接螺栓,5-铜片电极,6-压电振子,7-压电振子前盖板,8-变幅杆,9-拉瓦尔式阀芯,10-进液孔,11-导流孔,12-第二端盖,13-防松螺母,14-第一端盖,15-软管,16-调节螺栓,17-共鸣室,18-法兰,19-振动隔板,20-径向定位圈,21-阶梯型锥阀。
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1和图2所示,一种压电二相流超声雾化喷头,包括进气口接头2、连接螺栓4、压电振子6、变幅杆8、拉瓦尔式阀芯9、阶梯型锥阀21、第二端盖12和第一端盖14;所述压电振子6和变幅杆8通过中空的连接螺栓4固定连接;所述连接螺栓4尾部与进气口接头2连接;所述变幅杆8前端采用金属胶固定连接第二端盖12。所述变幅杆8为带圆锥过渡面的阶梯型变幅杆,材料为硬铝7075;所述变幅杆8的长度L1为声波在变幅杆8的一个波长,即66mm,变幅杆8小端直径为19mm;变幅杆8的顶部开设有阶梯孔,阶梯孔的深度为10-13mm;变幅杆8的阶梯孔上端面中心处开有进液孔10,进液孔10与拉瓦尔式阀芯9轴线中点相对应;所述第二端盖12的后端面开设有凹槽,所述第二端盖12的中孔为圆锥形,所述第二端盖12的圆锥孔锥角为40°,圆锥孔入口直径为4.5mm。所述拉瓦尔式阀芯9收缩段入口直径为5mm,喉口直径为2mm,收缩段的轴向长度为喉口面积的4-6倍。扩张段出口直径为3.5mm,扩张段的设计形式是维托辛思基曲线,喉口部位设计为圆弧。拉瓦尔式阀芯9入口端和出口端都设置有凸台,入口端凸台卡在变幅杆8顶部阶梯孔后端内,出口端的凸台卡在第二端盖12的凹槽内,这样就保证了拉瓦尔式阀芯9安装时与喷头外圆面的同心度。所述拉瓦尔式阀芯9靠近出口处沿径向均匀开有3个导流孔11,所述导流孔11的直径为1.5-2mm;;拉瓦尔式阀芯9外圆面和变幅杆8阶梯孔的内圆面之间形成环型腔。
所述第二端盖12螺纹连接第一端盖14;所述第一端盖14开口端外圆面为圆锥形,所述第一端盖14和第二端盖12外侧套有防松螺母13;所述防松螺母13与第一端盖14接触部位为内圆锥面,内圆锥面的圆锥角与第一端盖14的外圆锥面的圆锥角相等,均为10-15°,防松螺母13的凹面是偏心的,这样防松螺母13像楔子一样将第一端盖14楔紧,以防止第一端盖14在高频振动时松动。所述环型腔厚度为1.3-1.7mm;第一端盖14端面为最大振幅位置,该通道内的液体形成一层液膜,液膜的厚度为1.3-1.7mm,液膜在
第一端盖14端面上发生超声雾化。
所述第一端盖14后端的卡槽处设置有径向定位圈20;如图3和图4所示,阶梯型锥阀21锥角为40℃,圆锥面为阶梯型,阶梯的高度和宽度均为1.5mm,阶梯型锥阀21的底部沿圆周均布3个定位键;所述径向定位圈20沿圆周均匀开设有3个矩形槽;所述阶梯型锥阀21的3个定位键分别位于径向定位圈20的3个矩形槽中,并可通过调节螺栓16沿轴线调节阶梯型锥阀21相对于拉瓦尔式阀芯9出口的位置,拉瓦尔式阀芯9出口处的横截面积也随之发生变化,从而调节拉瓦尔式阀芯9出口处流体的速度;所述阶梯型锥阀21的轴向调节范围为0-6mm,使得拉瓦尔式阀芯9出口处流体的速度在1.8至2.2马赫之间变化,其理论依据如下所述:
Q=AρV,Q是流量,A是管的截面积,V是在截面A处的气流速度,
再由气体运动欧拉方程dP=-dVρV,
因此当流体速度大于音速时,流体速度随截面积变大而变大,随截面积变小而变小;当流体速度小于音速时,流体速度随截面积变小而变小,反之亦然。
其中A是管道任意位置截面积,A*是喉管截面积了,γ是比热容比,M是管道任意位置流体马赫数。取空气的比热容比γ=1.4,拉瓦尔管扩张段出口初始直径为3.5mm,喉口直径2mm,得到拉瓦尔管扩张段出口处马赫数为2.2,同时,通过调节阶梯型锥阀的轴向位置,使拉瓦尔管出口处的流道截面积发生变化,变化范围为4.5-9.6mm2,从而出口处流体速度变化范围为1.8-2.2马赫。
所述阶梯型锥阀21的底部开有螺纹孔,振动隔板19中心开有螺纹孔,所述阶梯型锥阀21和振动隔板19通过调节螺栓16连接。所述振动隔板19为圆形板,且均匀开设有5个通孔;所述第一端盖14为圆形端盖,且均匀开设有5个通孔;所述振动隔板19和第一端盖14顶端之间构成共鸣室17,所述共鸣室17的本征频率为55-65kHz。所述共鸣室17内设置有5根软管15,每根软管15的一端连接振动隔板19的通孔,另一端连接第一端盖14的通孔。所述软管15的入口和出口连线与第一端盖14轴线成21°夹角,所述软管15和振动隔板19、第一端盖14之间采用插拔插头连接;当调节振动隔板19
的轴向位置时,塑胶软管15会随着拉伸和压缩。所述第一端盖14外圆面上设有法兰18,法兰18用以限制第一端盖14的轴向振幅,以减小由于变幅杆8的振动对共鸣室17本征频率的影响。
所述压电振子6依次包括压电振子后盖板1、3片铜片电极5和压电振子前盖板7;由压电振子后盖板1、3片铜片电极5、压电振子前盖板7和变幅杆8组成的超声雾化喷头的主体的振动频率为55-65kHz;所述压电振子后盖板1、3片铜片电极5、压电振子前盖板7和变幅杆8之间均采用金属胶固定连接。所述第一端盖14、第二端盖12、振动隔板19的材料为不锈钢304。
如图5所示,所述压电振子6后端至变幅杆8前端距离L为94mm;第二端盖12下端面至第一端盖14上端面的距离L2为声波在第二端盖12和第一端盖14内波长的一半,即26mm;所述压电振子6直径和变幅杆8直径d1相同,均为30mm;所述连接螺栓4和变幅杆8的内径d2为5mm。本发明高压气体由空压机供给,进气管道与喷头尾部的进气孔3连接;待雾化液体由补液泵抽送至进液孔10;超声雾化喷头的主体由驱动电源驱动,第一、三片铜片电极5接电源负极,第二片铜片电极5接电源正极,驱动频率为55-65kHz。
工作过程:
高压气体(4.5-5.5bar)由喷头尾部的进气接口2进入,经过拉瓦尔式阀芯9后气体被加速至超音速(1.8-2.2马赫),待雾化液体由补液泵抽送至进液孔10流入,液体充满拉瓦尔式阀芯9与变幅杆8阶梯孔内圆面之间的空隙后,经过导流孔11,在拉瓦尔式阀芯9出口附近流入并与超音速气流汇合实现第一次雾化,雾化后的液滴随高速气流撞击阶梯型锥阀21实现第二次雾化;二相流体通过拉瓦尔式阀芯9扩张段出口进入阶梯型锥阀21和第二端盖12内圆锥面之间的环型通道时,产生压力波动,引起二相流体的振荡,同时,在变幅杆8作用下,第二端盖12和阶梯型锥阀21会发生轴向振动,但由于两者振幅不同,使得环型通道的横截面积发生周期性的变化,从而引起二相流体周期性的脉动,所述共鸣室17的本征频率和二相流体的脉动频率一致时产生共振,经过两次雾化的雾滴群在高压气体的作用下进入共鸣室17内的软管15中,在共鸣室17内液滴实现第三次雾化,需要说明的是,二相流体的脉冲状态及共鸣室的本征频率会受多种因素的影响,比如压力、温度、液体密度等,需要经过反复试验找到共振点;第一端盖14在压电振子6的作用下沿轴向超声振动,经过三次雾化的液滴由喷嘴飞出后,一部分液滴撞击到第一端盖14的端面,在超声振动作用下实现第四次雾化,同时,残留在第一端盖14端面
的液膜在超声振动作用下实现超声雾化。每一次雾化都使雾滴群中直径较大的雾滴粒径进一步变小,经过四次雾化后雾滴粒径更加均匀,雾化量显著提高。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。
Claims (10)
- 一种压电二相流超声雾化喷头,其特征在于,包括进气口接头(2)、连接螺栓(4)、压电振子(6)、变幅杆(8)、拉瓦尔式阀芯(9)、阶梯型锥阀(21)、第二端盖(12)和第一端盖(14);所述压电振子(6)和变幅杆(8)通过中空的连接螺栓(4)固定连接;所述连接螺栓(4)尾部与进气口接头(2)连接;所述变幅杆(8)前端固定连接第二端盖(12);所述拉瓦尔式阀芯(9)的一端固定在变幅杆(8)顶部的阶梯孔内,另一端固定在所述第二端盖(12)后端面的凹槽内;所述变幅杆(8)阶梯孔的孔壁面上设有进液孔(10);所述拉瓦尔式阀芯(9)靠近出口处沿径向开有多个导流孔(11);拉瓦尔式阀芯(9)外圆面和变幅杆(8)阶梯孔的内圆面之间形成环型腔;所述第二端盖(12)的中孔为圆锥形;所述第二端盖(12)螺纹连接第一端盖(14);所述第一端盖(14)后端的卡槽处设置有径向定位圈(20);所述径向定位圈(20)上安装有阶梯型锥阀(21);所述阶梯型锥阀(21)的底部开有螺纹孔,振动隔板(19)中心开有螺纹孔,所述阶梯型锥阀(21)和振动隔板(19)通过调节螺栓(16)连接;所述振动隔板(19)和第一端盖(14)顶端之间构成共鸣室(17);所述共鸣室(17)内设置有多根软管(15);所述软管(15)的一端连接振动隔板(19)的通孔,另一端连接第一端盖(14)的通孔。
- 根据权利要求1所述的一种压电二相流超声雾化喷头,其特征在于,所述阶梯型锥阀(21)锥角为40°,圆锥面为阶梯型,阶梯的高度和宽度均为1.5mm,阶梯型锥阀(21)的底部沿圆周均布3个定位键;所述径向定位圈(20)沿圆周均匀开设有3个矩形槽;所述阶梯型锥阀(21)的3个定位键分别位于径向定位圈(20)的3个矩形槽中;所述第二端盖(12)的圆锥孔锥角为40°,圆锥孔入口直径为4.5mm。
- 根据权利要求1或2所述的一种压电二相流超声雾化喷头,其特征在于,所述振动隔板(19)为圆形板,且均匀开设有5个通孔;所述第一端盖(14)为圆形端盖,且均匀开设有5个通孔;所述共鸣室(17)内设置有5根软管(15),所述软管(15)的入口和出口连线与第一端盖(14)轴线成21°夹角,所述软管(15)和振动隔板(19)、第一端盖(14)之间采用插拔插头连接。
- 根据权利要求1或2所述的一种压电二相流超声雾化喷头,其特征在于,所述拉瓦尔式阀芯(9)收缩段入口直径为5mm,喉口直径为2mm,扩张段出口直径为3.5mm,拉瓦尔式阀芯(9)入口端和出口端都设置有凸台,入口端凸台卡在变幅杆(8)顶部阶梯孔 后端内,出口端的凸台卡在第二端盖(12)的凹槽内。
- 根据权利要求1或2所述的一种压电二相流超声雾化喷头,其特征在于,所述进液孔(10)位于变幅杆(8)阶梯孔的孔壁面中心处,所述环型腔厚度为1.3-1.7mm,所述导流孔的直径为1.5-2mm;所述拉瓦尔式阀芯(9)靠近出口处沿径向均匀开有3个导流孔(11)。
- 根据权利要求1或2所述的一种压电二相流超声雾化喷头,其特征在于,所述第一端盖(14)开口端外圆面为圆锥形,所述第一端盖(14)和第二端盖(12)外侧套有防松螺母(13);所述防松螺母(13)与第一端盖(14)接触部位为内圆锥面,内圆锥面的圆锥角与第一端盖(14)的外圆锥面的圆锥角相等,均为10-15°。
- 根据权利要求6所述的一种压电二相流超声雾化喷头,其特征在于,所述防松螺母(13)的内圆锥面为偏心结构,其轴心与第一端盖(14)外圆锥面的轴心偏离1-1.2mm;所述第一端盖(14)外圆面上设有法兰(18)。
- 根据权利要求1或2所述的一种压电二相流超声雾化喷头,其特征在于,所述压电振子(6)依次包括压电振子后盖板(1)、铜片电极(5)和压电振子前盖板(7);所述压电振子后盖板(1)、铜片电极(5)、压电振子前盖板(7)、变幅杆(8)和第二端盖(12)之间均采用金属胶固定连接。
- 根据权利要求1或2所述的一种压电二相流超声雾化喷头,其特征在于,所述第一端盖(14)、第二端盖(12)、振动隔板(19)的材料为不锈钢304;所述变幅杆(8)为带圆锥过渡面的阶梯型变幅杆,材料为硬铝7075。
- 根据权利要求1或2所述的一种压电二相流超声雾化喷头,其特征在于,所述压电振子(6)后端至变幅杆(8)前端距离L为94mm;所述变幅杆(8)的长度L1为声波在变幅杆(8)中的一个波长,即66mm,变幅杆(8)小端直径为19mm;第二端盖(12)下端面至第一端盖(14)上端面的距离L2为声波在第二端盖(12)和第一端盖(14)内波长的一半,即26mm;所述压电振子(6)直径和变幅杆(8)直径d1相同,均为30mm;所述连接螺栓(4)和变幅杆(8)中心孔直径d2为5mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/081,423 US20190054492A1 (en) | 2016-05-13 | 2016-08-31 | Piezoelectric two-phase flow ultrasonic atomization nozzle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610319946.3A CN105834054B (zh) | 2016-05-13 | 2016-05-13 | 一种压电二相流超声雾化喷头 |
CN201610319946.3 | 2016-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017193507A1 true WO2017193507A1 (zh) | 2017-11-16 |
Family
ID=56591146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/097486 WO2017193507A1 (zh) | 2016-05-13 | 2016-08-31 | 一种压电二相流超声雾化喷头 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20190054492A1 (zh) |
CN (1) | CN105834054B (zh) |
WO (1) | WO2017193507A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108580153A (zh) * | 2018-07-09 | 2018-09-28 | 中国船舶重工集团公司第七0三研究所 | 一种大流量超声精细雾化喷嘴 |
CN110314776A (zh) * | 2019-08-02 | 2019-10-11 | 中国人民解放军96771部队 | 一种可自清洗喷头 |
CN113617549A (zh) * | 2021-08-17 | 2021-11-09 | 太原理工大学 | 一种针对微米级粉尘的新型音爆雾化喷嘴 |
CN117839888A (zh) * | 2024-03-05 | 2024-04-09 | 山东大学 | 喉部开度可调式喷射器 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105834054B (zh) * | 2016-05-13 | 2018-02-27 | 江苏大学 | 一种压电二相流超声雾化喷头 |
TWI626088B (zh) * | 2016-10-12 | 2018-06-11 | 財團法人金屬工業研究發展中心 | 微粒噴頭 |
CN106694296A (zh) * | 2016-12-13 | 2017-05-24 | 江苏省农业科学院 | 压电二相流超声雾化喷头 |
CN106925453B (zh) * | 2017-04-10 | 2022-04-26 | 农业部南京农业机械化研究所 | 一种二次气液二相流静电喷头 |
CN107096677B (zh) * | 2017-04-18 | 2019-06-28 | 江苏大学 | 一种大雾化量的低频超声雾化装置 |
CN107185765B (zh) | 2017-05-04 | 2019-04-30 | 江苏大学 | 一种带可旋涡流叶轮的阶梯腔式低频超声雾化喷头 |
CN107670893B (zh) * | 2017-08-17 | 2019-08-02 | 江苏大学 | 一种拉瓦尔-低频静电超声复合雾化喷头 |
CN107587519A (zh) * | 2017-09-18 | 2018-01-16 | 中国三冶集团有限公司 | 一种t梁预制场台座结构及施工方法 |
WO2019198162A1 (ja) * | 2018-04-10 | 2019-10-17 | 日本たばこ産業株式会社 | 霧化ユニット |
CN108745676B (zh) * | 2018-06-14 | 2024-06-18 | 汇专科技集团股份有限公司 | 一种气流约束型微细油雾喷嘴装置 |
CN109201365B (zh) * | 2018-09-26 | 2021-04-20 | 江苏大学 | 一种压电-气力复合超声雾化喷头 |
CN109759255B (zh) * | 2019-03-05 | 2024-08-23 | 深圳万苍科技有限公司 | 一种注射喷涂阀 |
CN110064890B (zh) * | 2019-05-24 | 2021-06-15 | 河南理工大学 | 一种声液固耦合二维超声深滚加工装置 |
CN110149824B (zh) * | 2019-05-28 | 2022-02-15 | 江苏大学 | 一种温室用旋耕消毒联合作业机械 |
CN110268948B (zh) * | 2019-06-19 | 2023-11-10 | 浙江师范大学 | 一种压电微喷装置及使用该装置的幼苗培养设备 |
CN110302931B (zh) * | 2019-06-19 | 2024-08-20 | 浙江师范大学 | 一种低功耗的微型喷洒器及使用该喷洒器的芯片冷却装置 |
CN110293023B (zh) * | 2019-06-19 | 2024-06-28 | 浙江师范大学 | 一种便携式压电微喷洒器 |
CN110465418A (zh) * | 2019-09-03 | 2019-11-19 | 镇江市长江机电设备厂有限公司 | 一种用于雾化净油器的雾化喷头 |
CN111889292B (zh) | 2020-06-24 | 2021-06-22 | 江苏大学 | 一种气助式静电超声雾化喷头及方法 |
CN112620058B (zh) * | 2020-12-23 | 2022-01-25 | 北京强度环境研究所 | 一种带拉瓦尔喷管的哈特曼声波发生器 |
CN112701954B (zh) * | 2020-12-24 | 2022-01-11 | 江苏大学 | 一种超声步进超细单雾滴发生器 |
CN114688528A (zh) * | 2020-12-31 | 2022-07-01 | 大连理工大学 | 一种阶梯型预膜式气体辅助雾化喷嘴 |
CN114688529A (zh) * | 2020-12-31 | 2022-07-01 | 大连理工大学 | 一种具有凸起脊结构的预膜式气体辅助雾化喷嘴 |
CN112945389B (zh) * | 2021-01-29 | 2023-10-31 | 华中科技大学 | 一种涡轮机末级动叶片温度的非接触式测量系统及方法 |
CN113318254B (zh) * | 2021-06-15 | 2023-08-22 | 苏州艾贝欧生物科技有限公司 | 过氧化氢冲击汽化消毒器 |
US11872504B2 (en) * | 2021-06-30 | 2024-01-16 | Worcester Polytechnic Institute | Atomizing device for use in a spray dryer |
CN113798076A (zh) * | 2021-10-18 | 2021-12-17 | 秦皇岛首创思泰意达环保科技有限公司 | 一种双流体喷嘴 |
CN114308504B (zh) * | 2021-12-16 | 2023-05-05 | 江苏大学 | 一种压电低频超声纳米雾化器及使用方法 |
CN114345571B (zh) * | 2021-12-23 | 2023-02-17 | 江苏大学 | 一种气助式超声磁化静电喷头 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB767886A (en) * | 1954-03-12 | 1957-02-06 | George Herbert Alexander | Improved adjustable nozzle for hoses or sprays |
DE2330168A1 (de) * | 1973-06-14 | 1975-01-02 | Robert Williams Hengesbach | Ventil |
CN1764505A (zh) * | 2003-03-24 | 2006-04-26 | 约瑟夫·艾安 | 用于过热液体的喷射喷嘴 |
CN201052492Y (zh) * | 2007-05-08 | 2008-04-30 | 中国矿业大学 | 超声雾化喷嘴 |
CN102500502A (zh) * | 2011-10-10 | 2012-06-20 | 苏州科技学院 | 一种二级超声振动雾化器 |
CN205020305U (zh) * | 2015-09-22 | 2016-02-10 | 东莞市长原喷雾技术有限公司 | 一种一体式超声波喷嘴 |
CN105834054A (zh) * | 2016-05-13 | 2016-08-10 | 江苏大学 | 一种压电二相流超声雾化喷头 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1555427B1 (en) * | 2004-01-13 | 2007-10-10 | Delphi Technologies, Inc. | Fuel injector |
US20090134240A1 (en) * | 2007-11-27 | 2009-05-28 | Caterpillar Inc. | Method of making piezoelectrically actuated device |
CN101905207A (zh) * | 2010-09-03 | 2010-12-08 | 任保林 | 涡流脉冲共振射流喷头装置 |
CN102071080B (zh) * | 2011-01-04 | 2013-04-24 | 重庆科技学院 | 一种天然气分离装置 |
-
2016
- 2016-05-13 CN CN201610319946.3A patent/CN105834054B/zh not_active Expired - Fee Related
- 2016-08-31 WO PCT/CN2016/097486 patent/WO2017193507A1/zh active Application Filing
- 2016-08-31 US US16/081,423 patent/US20190054492A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB767886A (en) * | 1954-03-12 | 1957-02-06 | George Herbert Alexander | Improved adjustable nozzle for hoses or sprays |
DE2330168A1 (de) * | 1973-06-14 | 1975-01-02 | Robert Williams Hengesbach | Ventil |
CN1764505A (zh) * | 2003-03-24 | 2006-04-26 | 约瑟夫·艾安 | 用于过热液体的喷射喷嘴 |
CN201052492Y (zh) * | 2007-05-08 | 2008-04-30 | 中国矿业大学 | 超声雾化喷嘴 |
CN102500502A (zh) * | 2011-10-10 | 2012-06-20 | 苏州科技学院 | 一种二级超声振动雾化器 |
CN205020305U (zh) * | 2015-09-22 | 2016-02-10 | 东莞市长原喷雾技术有限公司 | 一种一体式超声波喷嘴 |
CN105834054A (zh) * | 2016-05-13 | 2016-08-10 | 江苏大学 | 一种压电二相流超声雾化喷头 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108580153A (zh) * | 2018-07-09 | 2018-09-28 | 中国船舶重工集团公司第七0三研究所 | 一种大流量超声精细雾化喷嘴 |
CN108580153B (zh) * | 2018-07-09 | 2024-04-09 | 中国船舶重工集团公司第七0三研究所 | 一种大流量超声精细雾化喷嘴 |
CN110314776A (zh) * | 2019-08-02 | 2019-10-11 | 中国人民解放军96771部队 | 一种可自清洗喷头 |
CN113617549A (zh) * | 2021-08-17 | 2021-11-09 | 太原理工大学 | 一种针对微米级粉尘的新型音爆雾化喷嘴 |
CN117839888A (zh) * | 2024-03-05 | 2024-04-09 | 山东大学 | 喉部开度可调式喷射器 |
CN117839888B (zh) * | 2024-03-05 | 2024-05-07 | 山东大学 | 喉部开度可调式喷射器 |
Also Published As
Publication number | Publication date |
---|---|
US20190054492A1 (en) | 2019-02-21 |
CN105834054B (zh) | 2018-02-27 |
CN105834054A (zh) | 2016-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017193507A1 (zh) | 一种压电二相流超声雾化喷头 | |
WO2021259349A1 (zh) | 一种气助式静电超声雾化喷头及方法 | |
US11161138B2 (en) | Low-frequency ultrasonic atomizing device having large atomization quantity | |
TW565472B (en) | Multiple horn atomizer with high frequency capability and method thereof | |
CN109663679B (zh) | 一种低频超声静电式雾化喷嘴 | |
US7830070B2 (en) | Ultrasound atomization system | |
CN104324839B (zh) | 一种自然聚焦式超声雾化喷头 | |
CN104209222B (zh) | 一种伯努利双扭线型低频超声三次雾化喷头 | |
CN103817028A (zh) | 一种腔长连续可调高压自激振荡脉冲射流喷嘴 | |
CN110052340B (zh) | 一种多级超声波雾化喷射装置 | |
US3326467A (en) | Atomizer with multi-frequency exciter | |
CN105944898B (zh) | 一种窄缝气流振荡搅拌下水流超声高效雾化装置 | |
CN102527567B (zh) | 一种用于煤矿井下的超声雾化降尘喷嘴 | |
CN107199148A (zh) | 一种低压驱动移轴维氏曲线型低频超声三次雾化喷头 | |
CN104307675A (zh) | 一种蔓叶线型低频超声三次雾化喷头 | |
CN108787299A (zh) | 一种气助式三参数威布尔低频超声雾化喷头 | |
CN105201697A (zh) | 频率可调气动式超声波雾化装置 | |
CN109201365B (zh) | 一种压电-气力复合超声雾化喷头 | |
CN209866390U (zh) | 一种多级超声波雾化喷射装置 | |
CN217250121U (zh) | 一种超声波雾化器 | |
RU2618702C1 (ru) | Акустическая головка кочетова к форсункам для распыливания жидкостей | |
RU151190U1 (ru) | Стержневой пневмоакустический распылитель | |
RU2570678C1 (ru) | Пневмоакустический распылитель жидкости | |
RU2220373C1 (ru) | Акустическое устройство | |
RU2019123793A (ru) | Акустическая форсунка для распыливания жидкостей |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16901462 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16901462 Country of ref document: EP Kind code of ref document: A1 |