WO2017191733A1 - 燃料噴射制御装置 - Google Patents
燃料噴射制御装置 Download PDFInfo
- Publication number
- WO2017191733A1 WO2017191733A1 PCT/JP2017/014476 JP2017014476W WO2017191733A1 WO 2017191733 A1 WO2017191733 A1 WO 2017191733A1 JP 2017014476 W JP2017014476 W JP 2017014476W WO 2017191733 A1 WO2017191733 A1 WO 2017191733A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- injection
- valve
- electromagnetic coil
- amount
- injection amount
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/32—Controlling fuel injection of the low pressure type
- F02D41/34—Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
- F02D41/345—Controlling injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2464—Characteristics of actuators
- F02D41/2467—Characteristics of actuators for injectors
- F02D41/247—Behaviour for small quantities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3094—Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/202—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
- F02D2041/2055—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/202—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
- F02D2041/2058—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D2041/389—Controlling fuel injection of the high pressure type for injecting directly into the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0614—Actual fuel mass or fuel injection amount
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present disclosure relates to a fuel injection control device that controls an injection amount of fuel injected from a fuel injection valve.
- Patent Document 1 discloses a fuel injection valve for injecting fuel by opening a valve body by electromagnetic force generated by energization of an electromagnetic coil. Further, a fuel injection control device is disclosed that controls the valve opening time of the valve body by controlling the energization time to the electromagnetic coil, thereby controlling the injection amount injected by one valve opening of the valve body. Yes. The energization time is set to a time corresponding to the requested injection amount (requested injection amount).
- An object of the present disclosure is to provide a fuel injection control device designed to control the fuel injection amount in the partial lift injection with high accuracy.
- a fuel injection control device includes a valve body that opens and closes a nozzle hole for injecting fuel, a movable core that is attracted and moved by an electromagnetic force generated by energization of the electromagnetic coil and the electromagnetic coil, And an electric actuator for opening the valve body.
- the valve opening time of the valve body is controlled by controlling the energization time to the electromagnetic coil, thereby opening the valve body once. Controls the injection amount injected by the valve.
- the fuel injection control device is used to start energization of the electromagnetic coil when performing partial lift injection that starts the valve closing operation before reaching the maximum valve opening position after the valve body starts the valve opening operation.
- a detection unit that detects a current increase rate that is a rate at which the current flowing through the electromagnetic coil increases, and a correction value for the requested injection amount that is a required injection amount are calculated based on the current increase rate detected by the detection unit.
- an energization time calculation unit that calculates an energization time to the electromagnetic coil when performing partial lift injection based on the required injection amount corrected with the correction value.
- the change in the injection characteristics according to the temperature is highly correlated with the speed at which the current flowing through the electromagnetic coil increases with the start of energization of the electromagnetic coil.
- the speed at which the current flowing through the electromagnetic coil rises is detected, and a correction value for the required injection amount is calculated based on the detected current rise speed.
- the required injection amount is corrected with the correction value. Therefore, when carrying out partial lift injection, the electromagnetic coil can be controlled with an energization time suitable for the injection characteristics that change according to temperature, so that the fuel injection amount in partial lift injection can be controlled with high accuracy. It becomes possible.
- FIG. 1 is a diagram illustrating a fuel injection system according to a first embodiment.
- FIG. 2 is a cross-sectional view showing the fuel injection valve
- FIG. 3 is a graph showing the relationship between the energization time and the injection amount
- FIG. 4 is a graph showing the behavior of the valve body
- FIG. 5 is a graph showing the relationship between voltage and difference
- FIG. 6 is a graph for explaining the detection range
- FIG. 7 is a flowchart showing the injection control process.
- FIG. 2 is a cross-sectional view showing the fuel injection valve
- FIG. 3 is a graph showing the relationship between the energization time and the injection amount
- FIG. 4 is a graph showing the behavior of the valve body
- FIG. 5 is a graph showing the relationship between voltage and difference
- FIG. 6 is a graph for explaining the detection range
- FIG. 7 is a flowchart showing the injection control process.
- FIG. 1 is a diagram illustrating a fuel injection system according to a first embodiment.
- FIG. 8 is a diagram showing temporal changes in coil current and injection rate in partial injection, and is a diagram showing an example in which the injection amount decreases due to an increase in electrical resistance due to high temperature
- FIG. 9 is a diagram showing temporal changes in coil current and injection rate in partial injection, and is a diagram showing an example in which the injection amount increases due to an increase in electrical resistance due to high temperature
- FIG. 10 is a diagram showing a change in the injection characteristics depending on the temperature.
- a fuel injection system 100 shown in FIG. 1 includes a plurality of fuel injection valves 10 and a fuel injection control device 20.
- the fuel injection control device 20 controls opening and closing of the plurality of fuel injection valves 10 to control fuel injection into the combustion chamber 2 of the internal combustion engine E.
- a plurality of fuel injection valves 10 are mounted on an ignition internal combustion engine E, for example, a gasoline engine, and directly inject fuel into each of the plurality of combustion chambers 2 of the internal combustion engine E.
- the cylinder head 3 that forms the combustion chamber 2 is provided with a mounting hole 4 that is coaxial with the axis C of the cylinder.
- the fuel injection valve 10 is inserted and fixed in the mounting hole 4 so that the tip is exposed to the combustion chamber 2.
- the fuel supplied to the fuel injection valve 10 is stored in a fuel tank (not shown).
- the fuel in the fuel tank is pumped up by the low pressure pump 41, the fuel pressure is increased by the high pressure pump 40, and sent to the delivery pipe 30.
- the high-pressure fuel in the delivery pipe 30 is distributed and supplied to the fuel injection valve 10 of each cylinder.
- a spark plug 6 is attached to the cylinder head 3 at a position facing the combustion chamber 2. The spark plug 6 is disposed in the vicinity of the tip of the fuel injection valve 10.
- the fuel injection valve 10 includes a body 11, a valve body 12, an electromagnetic coil 13, a fixed core 14, a movable core 15, and a housing 16.
- the body 11 is made of a magnetic material.
- a fuel passage 11 a is formed inside the body 11.
- a valve body 12 is accommodated inside the body 11.
- the valve body 12 is formed in a column shape as a whole by a metal material.
- the valve body 12 can be reciprocally displaced in the axial direction inside the body 11.
- the body 11 includes a valve seat 17b on which a valve body 12 is seated at a tip portion and an injection hole body 17 in which an injection hole 17a for injecting fuel is formed.
- a plurality of nozzle holes 17 a are provided radially from the inner side to the outer side of the body 11. High-pressure fuel is injected into the combustion chamber 2 through the injection hole 17a.
- the main body of the valve body 12 has a cylindrical shape.
- the distal end portion of the valve body 12 has a conical shape extending from the distal end of the main body portion toward the injection hole 17a.
- a portion of the valve body 12 that is seated on the valve seat 17b is a seat surface 12a.
- the seat surface 12 a is formed at the tip of the valve body 12.
- valve body 12 When the valve body 12 is closed so that the seat surface 12a is seated on the valve seat 17b, the fuel passage 11a is closed and fuel injection from the injection hole 17a is stopped.
- valve element 12 When the valve element 12 is opened so as to separate the seat surface 12a from the valve seat 17b, the fuel passage 11a is opened and fuel is injected from the injection hole 17a.
- the electromagnetic coil 13 biases the movable core 15 with a magnetic attractive force in the valve opening direction.
- the electromagnetic coil 13 is configured by being wound around a resin bobbin 13a, and is sealed by a bobbin 13a and a resin material 13b. That is, the electromagnetic coil 13, the bobbin 13a, and the resin material 13b constitute a cylindrical coil body.
- the fixed core 14 is formed of a magnetic material in a cylindrical shape and is fixed to the body 11.
- a fuel passage 14 a is formed inside the cylinder of the fixed core 14.
- the housing 16 is formed in a cylindrical shape from a metallic magnetic material.
- a lid member 18 formed of a metal magnetic material is attached to the opening end of the housing 16. As a result, the coil body is surrounded by the body 11, the housing 16 and the lid member 18.
- the movable core 15 is held by the valve body 12 so as to be relatively displaceable in the driving direction of the valve body 12.
- the movable core 15 is formed in a disk shape from a metal magnetic material and is inserted into the inner peripheral surface of the body 11.
- the body 11, the valve body 12, the coil body, the fixed core 14, the movable core 15, and the housing 16 are arranged so that their center lines coincide with each other.
- the movable core 15 is disposed on the side of the injection hole 17a with respect to the fixed core 14, and is disposed opposite the fixed core 14 so as to have a predetermined gap with the fixed core 14 when the electromagnetic coil 13 is not energized. ing.
- the body 11, the housing 16, the lid member 18, and the fixed core 14 that surround the coil body are formed of a magnetic material, and thus form a magnetic circuit serving as a path for magnetic flux generated by energization of the electromagnetic coil 13.
- Components such as the fixed core 14, the movable core 15, and the electromagnetic coil 13 correspond to the electric actuator EA that opens the valve body 12.
- the outer peripheral surface of the portion of the body 11 that is located closer to the injection hole 17 a than the housing 16 is in contact with the lower inner peripheral surface 4 b of the mounting hole 4.
- a gap is formed between the outer peripheral surface of the housing 16 and the upper inner peripheral surface 4 a of the mounting hole 4.
- a through-hole 15a is formed in the movable core 15, and the valve body 12 is slidably attached to the movable core 15 by being inserted and disposed in the through-hole 15a. ing.
- the locking portion 12d moves while being locked to the movable core 15, so that the valve moves along with the upward movement of the movable core 15.
- the body 12 also moves. Even when the movable core 15 is in contact with the fixed core 14, the valve element 12 can move relative to the movable core 15 and lift up.
- a main spring SP1 is disposed on the side opposite to the injection hole of the valve body 12, and a sub spring SP2 is disposed on the injection hole 17a side of the movable core 15.
- the elastic force of the main spring SP1 is applied to the valve body 12 as a reaction force from the adjustment pipe 101 in the valve closing direction on the lower side in FIG.
- the elastic force of the subspring SP2 is applied to the movable core 15 in the suction direction as a reaction force from the recess 11b of the body 11.
- valve body 12 is sandwiched between the main spring SP1 and the valve seat 17b, and the movable core 15 is sandwiched between the sub spring SP2 and the locking portion 12d. Then, the elastic force of the sub spring SP2 is transmitted to the locking portion 12d through the movable core 15, and is given to the valve body 12 in the valve opening direction. Therefore, it can be said that the elastic force obtained by subtracting the sub elastic force from the main elastic force is applied to the valve body 12 in the valve closing direction.
- the fuel pressure in the fuel passage 11a is applied to the entire surface of the valve body 12, but the force that pushes the valve body 12 toward the valve closing side is more than the force that pushes the valve body 12 toward the valve opening side. large. Therefore, the valve body 12 is pressed in the valve closing direction by the fuel pressure. No fuel pressure is applied to the surface of the valve body 12 on the downstream side of the seat surface 12a when the valve is closed. And with valve opening, the pressure of the fuel which flows into a front-end
- the fuel injection control device 20 is realized by an electronic control device (abbreviated as ECU).
- the fuel injection control device 20 includes a control circuit 21, a booster circuit 22, a voltage detection unit 23, a current detection unit 24 and a switch unit 25.
- the control circuit 21 is also called a microcomputer.
- the fuel injection control device 20 acquires information from various sensors. For example, as shown in FIG. 1, the fuel pressure supplied to the fuel injection valve 10 is detected by a fuel pressure sensor 31 attached to the delivery pipe 30, and the detection result is given to the fuel injection control device 20.
- the fuel injection control device 20 controls the driving of the high-pressure pump 40 based on the detection result of the fuel pressure sensor 31.
- the control circuit 21 includes a central processing unit, a non-volatile memory (ROM), a volatile memory (RAM), and the like. Based on the load of the internal combustion engine E and the engine speed, the required injection amount and the required injection of fuel. Calculate the start time. Storage media such as ROM and RAM are non-transitional tangible storage media that non-temporarily store computer-readable programs and data.
- the control circuit 21 functions as an injection control unit, tests in advance the injection characteristics indicating the relationship between the energization time Ti and the injection amount Q, stores them in the ROM, and supplies the electromagnetic coil 13 in accordance with the injection characteristics. By controlling Ti, the injection amount Q is controlled.
- the control circuit 21 outputs an injection command pulse, which is a pulse signal that commands energization of the electromagnetic coil 13, and the energization time of the electromagnetic coil 13 is controlled by the pulse-on period (pulse width) of this pulse signal.
- the voltage detection unit 23 and the current detection unit 24 detect the voltage and current applied to the electromagnetic coil 13 and give the detection result to the control circuit 21.
- the voltage detector 23 detects the negative terminal voltage of the electromagnetic coil 13.
- a flyback voltage is generated in the electromagnetic coil 13.
- an induced electromotive force is generated in the electromagnetic coil 13 by interrupting the current and displacing the valve body 12 and the movable core 15 in the valve closing direction. Therefore, as the energization of the electromagnetic coil 13 is turned off, a voltage having a value in which the voltage due to the induced electromotive force is superimposed on the flyback voltage is generated in the electromagnetic coil 13.
- the voltage detection unit 23 detects the change in the induced electromotive force as a voltage value by interrupting the current supplied to the electromagnetic coil 13 and displacing the valve body 12 and the movable core 15 in the valve closing direction. I can say that. Furthermore, the voltage detection unit 23 detects a change in induced electromotive force as a voltage value due to the relative displacement of the movable core 15 with respect to the valve body 12 after the valve seat 17b and the valve body 12 come into contact with each other.
- the valve closing detection unit 54 detects the valve closing timing at which the valve body 12 is closed using the detected voltage.
- the valve closing detection unit 54 detects the valve closing timing for the fuel injection valve 10 for each cylinder.
- the control circuit 21 includes a charge control unit 51, a discharge control unit 52, a current control unit 53, a valve closing detection unit 54, an injection amount estimation unit 55, and a current gradient detection unit 56.
- the booster circuit 22 and the switch unit 25 operate based on the injection command signal output from the control circuit 21.
- the injection command signal is a signal for instructing the energization state of the electromagnetic coil 13 of the fuel injection valve 10 and is set using the required injection amount and the required injection start timing.
- the current gradient detection unit 56 corresponds to a detection unit.
- the booster circuit 22 applies the boosted boost voltage to the electromagnetic coil 13.
- the booster circuit 22 includes a booster coil, a capacitor, and a switching element.
- the battery voltage applied from the battery terminal of the battery 102 is boosted by the booster coil and stored in the capacitor.
- the voltage of the electric power boosted and stored in this way corresponds to the boost voltage.
- the discharge controller 52 applies a boost voltage to the electromagnetic coil 13 of the fuel injection valve 10 when a predetermined switching element is turned on so that the booster circuit 22 is discharged.
- the discharge controller 52 turns off a predetermined switching element of the booster circuit 22 when stopping the voltage application to the electromagnetic coil 13.
- the current control unit 53 controls the current flowing through the electromagnetic coil 13 by controlling on / off of the switch unit 25 using the detection result of the current detection unit 24.
- the switch unit 25 applies the battery voltage or the boost voltage from the booster circuit 22 to the electromagnetic coil 13 when turned on, and stops the application when the switch unit 25 is turned off.
- the current control unit 53 starts energization by turning on the switch unit 25 and applying a boost voltage, for example, at a voltage application start time commanded by an injection command signal. Then, the coil current increases with the start of energization.
- the current control unit 53 turns off the energization by the boost voltage.
- control is performed so as to increase the coil current to the target value Ith by applying the boost voltage by the first energization. Further, the current control unit 53 controls energization by the battery voltage so that the coil current is maintained at a value set to a value lower than the target value Ith after the boost voltage is applied.
- the injection characteristic map representing the relationship between the injection command pulse width and the injection amount includes a full lift region where the injection command pulse width is relatively long, and a partial lift region where the injection command pulse width is relatively short. It is divided into.
- the valve body 12 In the full lift region, the valve body 12 is opened until the lift amount of the valve body 12 reaches the full lift position, that is, the position where the movable core 15 hits the fixed core 14, and the valve closing operation is started from the hit position.
- the valve body 12 is opened to the partial lift state where the lift amount of the valve body 12 does not reach the full lift position, that is, the position just before the movable core 15 hits the fixed core 14, and the valve body 12 is closed from the partial lift position. Start valve operation.
- the fuel injection control device 20 executes full lift injection that opens the fuel injection valve 10 with an injection command pulse in which the lift amount of the valve body 12 reaches the full lift position in the full lift region.
- the fuel injection control device 20 performs partial lift injection that opens the fuel injection valve 10 with an injection command pulse that enters a partial lift state in which the lift amount of the valve element 12 does not reach the full lift position in the partial lift region.
- FIG. 4 shows the waveform of the negative terminal voltage of the electromagnetic coil 13 after the energization of the electromagnetic coil 13 is turned off, and the waveform of the flyback voltage when the energization is turned off is enlarged. As shown. Since the flyback voltage is a negative value, it is shown upside down in FIG. In other words, FIG. 4 shows a waveform in which the polarity of the voltage is reversed.
- the valve closing detection unit 54 detects a physical quantity correlated with the actually injected injection quantity (actual injection quantity) when the partial lift injection is performed.
- the valve closing detection unit 54 selects any one of the detection methods: a timing detection unit 54a that detects the valve closing timing by the timing detection method, and an electromotive force amount detection unit 54b that detects the valve closing timing by the electromotive force amount detection method. And a selection switching unit 54c for switching.
- the valve closing detection unit 54 cannot detect the valve closing timing simultaneously by both detection methods, and detects the valve closing timing at which the valve body 12 is closed using either one of the detection methods.
- the timing at which the integrated value of the induced electromotive force reaches a predetermined amount is detected as a physical quantity correlated with the actual injection amount.
- integration timing the timing at which the valve body 12 is actually seated on the valve seat 17b and closed
- the timing at which the valve body 12 actually opens from the valve seat 17b has a high correlation with the energization start timing, and thus can be regarded as a known timing. Therefore, it can be said that if the integrated timing highly correlated with the actual valve closing timing is detected, the actual injection period (actual injection period) can be estimated, and consequently the actual injection amount can be estimated. That is, it can be said that the integration timing is a physical quantity correlated with the actual injection quantity.
- the minus terminal voltage changes due to the induced electromotive force after time t1 when the injection command pulse is turned off. Comparing the detected voltage waveform (see symbol L1) with the voltage waveform when no induced electromotive force is generated (see symbol L2), the detected voltage waveform shows the fraction of the induced electromotive force indicated by the diagonal lines in FIG. It can only be seen that the voltage has increased.
- the induced electromotive force is generated when the movable core 15 passes through the magnetic field between the start of the valve closing operation and the completion of the valve closing.
- the negative terminal voltage changes around the valve closing timing. Change characteristics change. That is, the voltage waveform has a shape in which an inflection point (voltage inflection point) appears at the valve closing timing. The timing at which the voltage inflection point appears and the integration timing are highly correlated.
- the electromotive force detection unit 54b detects the voltage inflection time as information relating to the integration timing highly correlated with the valve closing timing as follows.
- the electromotive force detection unit 54b uses a first filter voltage Vsm1 obtained by filtering (smoothing) the negative terminal voltage Vm of the fuel injection valve 10 with a first low-pass filter after the injection command pulse for partial lift injection is turned off. calculate.
- the first low-pass filter uses a first frequency lower than the frequency of the noise component as a cutoff frequency.
- the valve closing detection unit 54 performs a filtering process (smoothing process) on the minus terminal voltage Vm of the fuel injection valve 10 using a second low-pass filter whose cutoff frequency is a second frequency lower than the first frequency. 2 filter voltage Vsm2.
- the first filter voltage Vsm1 obtained by removing the noise component from the negative terminal voltage Vm and the second filter voltage Vsm2 for detecting the voltage inflection point can be calculated.
- the time from the predetermined reference timing to the timing at which the difference Vdiff exceeds the predetermined threshold Vt is calculated as the voltage inflection time Tdiff.
- the difference Vdiff corresponds to the integrated value of the induced electromotive force
- the threshold value Vt corresponds to a predetermined reference amount.
- the timing at which the difference Vdiff reaches the threshold value Vt corresponds to the integration timing.
- the reference timing calculates the voltage inflection time Tdiff as the time t2 when the difference occurs.
- the threshold value Vt is a fixed value or a value calculated by the control circuit 21 according to the fuel pressure, fuel temperature, or the like.
- the injection amount fluctuates and the valve closing timing fluctuates due to variations in the lift amount of the fuel injection valve 10, so that there is a gap between the fuel injection valve 10 injection amount and the valve closing timing. There is a correlation. Further, since the voltage inflection point time Tdiff changes according to the closing timing of the fuel injection valve 10, there is a correlation between the voltage inflection point time Tdiff and the injection amount. Paying attention to such a relationship, the fuel injection control device 20 corrects the injection command pulse of the partial lift injection based on the voltage inflection time Tdiff.
- the timing at which the integrated value of the induced electromotive force reaches a predetermined amount is detected as a physical quantity correlated with the actual injection amount.
- the timing detection unit 54a detects the timing at which the increase amount of the induced electromotive force per unit time starts to decrease as the valve closing timing.
- the valve closing timing is detected by detecting the change in the acceleration of the movable core 15 as the change in the induced electromotive force generated in the electromagnetic coil 13.
- a change in acceleration of the movable core 15 can be detected by a second-order differential value of the voltage detected by the voltage detection unit 23.
- the movable core 15 is switched from the upward displacement to the downward displacement in conjunction with the valve body 12.
- the force in the valve closing direction that has been working on the movable core 15 through the valve body 12 so far that is, the load by the main spring SP1 and the fuel pressure. Power is lost. Accordingly, the load of the sub spring SP2 acts on the movable core 15 as a force in the valve opening direction.
- the valve body 12 When the valve body 12 reaches the valve closing position and the direction of the force acting on the movable core 15 changes from the valve closing direction to the valve opening direction, the increase in the induced electromotive force, which has been increasing gently until now, decreases.
- the second-order differential value of the voltage starts to decrease.
- the timing detection unit 54a detects the timing at which the second-order differential value of the minus terminal voltage becomes the maximum value, so that the valve closing timing of the valve body 12 can be detected with high accuracy.
- the fuel injection control device 20 corrects the injection command pulse of the partial lift injection based on the valve closing time.
- the injection time varies depending on the required injection amount.
- the detection range of the electromotive force detection method is different from the detection range W of the timing detection method.
- the detection range W of the timing detection method is on the side where the required injection amount is larger than the reference ratio in the partial lift region.
- the electromotive force detection method is from the minimum injection amount ⁇ min to a value in the vicinity of the maximum injection amount ⁇ max. Therefore, the detection range of the electromotive force detection method includes the detection range W of the timing detection method and is wider than the detection range W of the timing detection method.
- the timing detection method is superior in the detection accuracy of the valve closing timing.
- the selection switching unit 54c selects which detection method to switch to.
- the injection amount estimation unit 55 estimates the actual injection amount based on the detection result of the valve closing detection unit 54. For example, in the case of the timing detection method, the injection amount estimation unit 55 estimates the actual injection amount based on the detection result of the timing detection unit 54a, that is, the timing at which the second-order differential value of the minus terminal voltage becomes the maximum value. Specifically, the relationship between the timing at which the second-order differential value reaches the maximum value, the energization time and the supply fuel pressure, and the actual injection amount is stored in advance as a timing detection map. The injection amount estimation unit 55 estimates the actual injection amount with reference to the timing detection map based on the detection value of the timing detection unit 54a, the supply fuel pressure detected by the fuel pressure sensor 31 and the energization time.
- the injection amount estimation unit 55 estimates the actual injection amount based on the detection result of the electromotive force detection unit 54b, that is, the voltage inflection time. Specifically, the relationship between the voltage inflection time, the energization time, the supply fuel pressure, and the actual injection amount is stored in advance as an electromotive force detection map. The injection amount estimation unit 55 estimates the actual injection amount with reference to the electromotive force detection map based on the detection value of the electromotive force detection unit 54b, the supply fuel pressure detected by the fuel pressure sensor 31 and the energization time.
- the processor included in the control circuit 21 executes a learning process described below.
- a learning value used in S11 of FIG. 7, that is, an actual injection correction value that is a correction value for correcting the required injection amount is acquired.
- An actual injection correction value for the injection amount is calculated and learned.
- the ratio of the required injection amount to the actual injection amount is used as the actual injection correction value. Therefore, when the actual injection amount is larger than the required injection amount, the actual injection correction value is less than 1 to reduce the next required injection amount. When the actual injection amount is less than the required injection amount, the next request The actual injection correction value becomes a value larger than 1 in order to increase the injection amount.
- the selection switching unit 54 c switches to the timing detection method when the required injection amount is equal to or larger than the reference amount, and switches to the electromotive force amount detection method when it is not equal to or larger than the reference amount. Switch.
- the learning is performed based on the actual injection amount estimated from the detection result of the timing detection unit 54a, and when it is not equal to or greater than the reference amount, the electromotive force amount detection unit The above learning is performed based on the actual injection amount estimated from the detection result of 54b.
- the current gradient detection unit 56 detects the speed at which the current flowing through the electromagnetic coil 13 increases with the start of energization of the electromagnetic coil 13. This current rising speed corresponds to the slope of the current waveform indicated by the symbol ⁇ I of the current waveform shown in the upper part of FIGS. Specifically, the current gradient detection unit 56 detects the required time from the start of energization to the electromagnetic coil 13 until it reaches a predetermined value, and regards the required time as the current increase rate.
- the predetermined value is the above-described target value Ith used by the current control unit 53. That is, the current gradient detection unit 56 detects the time required from when the injection command pulse is turned on until the current detection unit 24 detects that the coil current has reached the target value Ith.
- FIG. 7 is a flowchart illustrating a procedure in which a processor included in the control circuit 21 repeatedly executes a program stored in a memory included in the control circuit 21 at a predetermined period.
- the required injection amount is calculated based on the load of the internal combustion engine E and the engine speed.
- the actual injection correction value for the required injection amount calculated in S10 is set using the learning value obtained in the learning process described above.
- the coefficient value multiplied by the required injection amount is used as the actual injection correction value, and the actual injection correction value is multiplied by the required injection amount for correction.
- the deviation amount between the actual injection amount and the required injection amount is The actual injection correction value may be used, and the actual injection correction value may be corrected by adding to or subtracting from the required injection amount.
- a correction coefficient for temperature characteristics (temperature-specific correction coefficient) is set based on the current rising speed detected by the current gradient detector 56. For example, the relationship between the current rise rate and the temperature special correction coefficient is previously mapped and stored, and the temperature special correction coefficient is set based on the current rise speed with reference to the correction coefficient map.
- a correction coefficient map is created in association with the supply fuel pressure to the fuel injection valve 10 in addition to the current increase speed, and the temperature special correction coefficient is set with reference to the correction coefficient map based on the current increase speed and the supply fuel pressure. May be.
- an offset correction amount for the temperature characteristic is set based on the current rising speed detected by the current gradient detector 56. For example, the relationship between the current rise rate and the temperature special offset correction amount is previously mapped and stored, and the temperature special offset correction amount is set based on the current rise rate with reference to the offset correction amount map. Note that an offset correction amount map is created in association with the supply fuel pressure in addition to the current increase rate, and the temperature specific offset correction amount is set with reference to the offset correction amount map based on the current increase rate and the supply fuel pressure. Good.
- the required injection amount calculated in S10 is corrected with the actual injection correction value, the temperature special correction coefficient, and the temperature special offset correction amount set in S11, S12, and S13. Specifically, the actual injection correction value and the temperature special correction coefficient are multiplied by the required injection amount, and the temperature special offset correction amount is added to the required injection amount for correction.
- an injection characteristic map representing the relationship between the energization time and the injection amount is stored in the control circuit 21 in advance.
- the energization time corresponding to the corrected requested injection amount calculated in S14 is calculated with reference to the injection characteristic map.
- a plurality of injection characteristic maps are stored according to the supply fuel pressure detected by the fuel pressure sensor 31, and the energization time is calculated with reference to the injection characteristic map corresponding to the supply fuel pressure at that time.
- the electromagnetic coil 13 is energized based on the energization time calculated in S15. Specifically, the pulse width of the injection command pulse is set to the calculated length of energization time.
- control circuit 21 when executing the processes of S12 and S13 corresponds to a correction value calculation unit that calculates a correction value for the required injection amount based on the current rising speed.
- control circuit 21 during the process of S13 corresponds to an offset correction amount calculation unit that calculates the offset correction amount as a correction value
- the control circuit 21 during the process of S12 calculates a correction coefficient that uses the correction coefficient as a correction value. It corresponds to the calculation unit.
- the control circuit 21 when executing the process of S15 corresponds to an energization time calculation unit that calculates the energization time to the electromagnetic coil 13 corresponding to the required injection amount.
- the rate of increase of the coil current immediately after the start of energization varies depending on the temperature of the electromagnetic coil 13.
- the injection characteristic changes as described above. 8 and 9, the solid line shows the current waveform and the injection rate waveform at normal temperature, and the dotted line shows the current waveform and the injection rate waveform at high temperature.
- the injection rate is an amount injected from the injection hole 17a per unit time.
- a value obtained by integrating the injection rate, that is, an area surrounded by the injection rate waveform and the horizontal axis indicates the injection amount by one valve opening.
- the amount of injection decreases at a higher temperature than at a normal temperature.
- the reason is that the valve opening start timing is delayed because it takes time for the suction force to increase to the value at which the valve opening operation is started due to the decrease in the slope ⁇ I of the current waveform at high temperatures.
- the energization time Ti is slightly longer than in the case of FIG.
- the injection amount increases at a higher temperature than at a normal temperature. The reason is that, at high temperature, the current waveform slope ⁇ I is small, so that energy loss due to eddy current generation is small, and the valve opening speed of the valve body 12 is high.
- valve opening start time is delayed at a high temperature
- valve opening speed is fast. Therefore, if the energizing time Ti is longer than a predetermined value, the area of the injection rate waveform becomes larger than that at a low temperature, and the injection amount increases. Become.
- the supply fuel pressure is 20 MPa
- the electric resistance of the electromagnetic coil 13 is 0.25 ⁇ higher than the solid line in the case of the dotted line, and 0.75 ⁇ higher than the solid line in the case of the alternate long and short dash line. High value.
- the injection characteristic line L includes the first region A1 until the inclination of the injection characteristic line L gradually increases and reaches a predetermined inclination as the energization time increases, and the energization time than the first region A1.
- a second region A2 which is a long region and has a straight line with a constant inclination of the injection characteristic line L is included.
- the inclination in the second region A2 of the injection characteristic line L at normal temperature is ⁇ Q
- the inclination in the second region A2 of the injection characteristic line La at high temperature is ⁇ Qa.
- the ratio of the slope ⁇ Qa at the high temperature to the slope ⁇ Q at the normal temperature corresponds to the temperature special correction coefficient.
- the higher the temperature the lower the energy loss.
- the slope ⁇ Qa at the high temperature is larger than the slope ⁇ Q at the normal temperature. That is, as the temperature is higher, the temperature special correction coefficient is set to a larger value.
- the slope of the injection characteristic line in the second region and the current rise speed are highly correlated, the relationship between the slope of the injection characteristic line and the current rise speed in the second region can be obtained by testing in advance.
- the slope of the injection characteristic line is used as the temperature special correction coefficient.
- a temperature constant correction coefficient is obtained by adding a predetermined constant to the slope or multiplying by a predetermined coefficient. Therefore, the above-described correction coefficient map is created based on the test result.
- the injection characteristic line in the second region A2 has a linear shape with a constant slope, and among the values on the virtual straight line Lv obtained by extending the straight line, the energization time value at which the injection amount becomes zero is the virtual time Tv. And This virtual time Tv corresponds to the above-described invalid injection period.
- a value obtained by multiplying a time difference Ta between the virtual time Tv at normal temperature and the virtual time Tva at high temperature by a predetermined coefficient corresponds to the temperature special offset correction amount. As described above, the higher the temperature, the longer the ineffective injection period becomes. As shown in FIG. 10, the virtual time Tva at the high temperature is longer than the virtual time Tv at the normal temperature. . That is, the higher the temperature is, the larger the temperature-specific offset correction amount is set.
- the relationship between the virtual time Tva and the current rising speed can be obtained by testing in advance, and based on the virtual time Tva.
- a temperature-specific offset correction amount is calculated. For example, the difference between the virtual time Tva and the virtual time Tv at normal temperature is used as the temperature-specific offset correction amount.
- a temperature constant offset amount is obtained by adding a predetermined constant to the difference or multiplying a predetermined coefficient. Therefore, the offset correction amount map described above is created based on the test result.
- the temperature special offset correction amount In short, the first phenomenon in which the energy loss decreases as the temperature rises is reflected in the temperature special correction coefficient, and the second phenomenon in which the invalid injection period becomes longer as the temperature increases, the temperature special offset correction amount. It is reflected in.
- the first phenomenon is to increase the injection amount as the temperature is higher, and the second phenomenon is to decrease the injection amount as the temperature is higher.
- the two types of conflicting phenomena are reflected in the correction value after being divided into the temperature-specific offset correction amount and the temperature-specific correction coefficient.
- the current gradient detection unit 56 that detects the current rising speed when performing the partial lift injection, the correction value calculation unit by S12 and S13, and the energization time calculation unit by S15.
- the correction value calculation unit calculates a correction value for the required injection amount based on the detected current rise speed
- the energization time calculation unit performs partial lift injection based on the required injection amount corrected by the correction value.
- the energization time is calculated. Since the change in the injection characteristic according to the temperature has a high correlation with the current increasing speed, according to the present embodiment, when performing the partial lift injection, the energization time suitable for the injection characteristic that changes according to the temperature is obtained. Can be controlled. Therefore, the fuel injection amount in the partial lift injection can be controlled with high accuracy.
- the correction value calculation unit has an offset correction amount calculation unit in S13 and a correction coefficient calculation unit in S12.
- the offset correction amount calculation unit calculates an offset correction amount to be corrected by adding to or subtracting from the required injection amount based on the current increasing speed.
- the correction coefficient calculation unit calculates a correction coefficient to be corrected by multiplying the required injection amount based on the current rising speed.
- the correction coefficient calculation unit calculates the temperature special correction coefficient based on the slope ⁇ Qa in the second region A2 of the injection characteristic line La estimated from the correlation with the current rising speed. For this reason, the degree of the first phenomenon described above, in which the energy loss is reduced as the temperature is higher, is reflected in the temperature special correction coefficient, so that the correction accuracy for the required injection amount can be improved.
- the offset correction amount calculation unit calculates the temperature-specific offset correction amount based on the virtual time Tv estimated from the correlation with the current rising speed. For this reason, the degree of the second phenomenon that the ineffective injection period becomes longer as the temperature is higher is reflected in the temperature special offset correction amount, so that the correction accuracy for the required injection amount can be improved.
- the current gradient detection unit 56 detects the required time from the start of energization to the electromagnetic coil 13 until the current flowing through the electromagnetic coil 13 reaches a predetermined value (for example, the target value Ith). Get the rising speed. According to this, it is information used by the current control unit 53 to control the energization state of the electromagnetic coil 13 and uses information such as whether or not the coil current has reached the target value Ith. Is acquired. Therefore, the current rise speed can be acquired without using a dedicated circuit for calculating the correction value, and the circuit configuration of the fuel injection control device can be simplified.
- a predetermined value for example, the target value Ith
- the timing detection method and the induced electromotive force detection method have advantages and disadvantages. Therefore, it is desirable to detect the valve closing timing simultaneously by both detection methods.
- the valve closing detection unit 54 selects either the timing detection type timing detection unit 54a, the induced electromotive force detection type electromotive force detection unit 54b, or both types.
- the current gradient detection unit 56 acquires the current increase speed by detecting the time from when the energization to the electromagnetic coil 13 is started until the coil current reaches a predetermined value.
- the current increase rate may be acquired by detecting the amount of current increase until a predetermined time elapses from the start of energization of the electromagnetic coil 13.
- the temperature special correction coefficient and the temperature special offset correction amount are calculated separately based on the current rising speed, and the required injection amount is calculated for each of the temperature special correction coefficient and the temperature special offset correction amount. Is corrected.
- either the correction coefficient for multiplication or the correction amount for addition may be calculated based on the current rising speed, and the required injection amount may be corrected with the calculated correction coefficient or correction amount.
- the fuel injection valve 10 has a configuration in which the valve body 12 and the movable core 15 are separated, but the valve body 12 and the movable core 15 may be configured integrally. When it is integral, when the movable core 15 is sucked, the valve body 12 is also displaced together with the movable core 15 in the valve opening direction to open.
- the fuel injection valve 10 is configured to start the movement of the valve body 12 simultaneously with the start of the movement of the movable core 15, but is not limited to such a configuration. For example, even if the movement of the movable core 15 is started, the valve body 12 does not start opening, and when the movable core 15 moves a predetermined amount, the movable core 15 engages with the valve body 12 and starts valve opening. It may be.
- the voltage detection unit 23 detects the negative terminal voltage of the electromagnetic coil 13, but may detect the positive terminal voltage, or the terminal voltage between the positive terminal and the negative terminal. It may be detected.
- the valve closing detection unit 54 detects the terminal voltage of the electromagnetic coil 13 as a physical quantity correlated with the actual injection quantity.
- the injection amount estimation unit 55 estimates the actual injection amount by estimating the valve closing timing based on the detected waveform representing the change in voltage.
- the actual fuel injection amount may be estimated by detecting the supply fuel pressure as a physical quantity correlated with the actual injection amount and estimating the valve closing timing based on the waveform representing the detected change in the fuel pressure.
- the engine speed may be detected as a physical quantity correlated with the actual injection quantity, and the actual injection quantity may be estimated based on a waveform representing a change in the engine speed.
- the function realized by the fuel injection control device 20 may be realized by hardware and software different from those described above, or a combination thereof.
- the control device may communicate with another control device, and the other control device may execute part or all of the processing.
- the control device is realized by an electronic circuit, it can be realized by a digital circuit including a large number of logic circuits, or an analog circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
燃料噴射制御装置は、検出部(56)と、補正値算出部(S12、S13)と、通電時間算出部(S15)と、を備える。検出部は、弁体が開弁作動を開始してから最大開弁位置に達する前に閉弁作動を開始することとなるパーシャルリフト噴射を実施する場合に、電磁コイルへの通電開始に伴い電磁コイルを流れる電流が上昇する速度である電流上昇速度を検出する。補正値算出部は、検出された電流上昇速度に基づき要求噴射量に対する補正値を算出する。通電時間算出部は、補正値で補正された要求噴射量に基づき、パーシャルリフト噴射を実施する場合の電磁コイルへの通電時間を算出する。
Description
本出願は、2016年5月6日に出願された日本特許出願番号2016-93320号に基づくもので、ここにその記載内容を援用する。
本開示は、燃料噴射弁から噴射される燃料の噴射量を制御する燃料噴射制御装置に関する。
特許文献1には、電磁コイルへの通電により生じた電磁力で弁体を開弁作動させて燃料を噴射させる燃料噴射弁が開示されている。また、電磁コイルへの通電時間を制御することで、弁体の開弁時間を制御して、弁体の1回の開弁で噴射される噴射量を制御する燃料噴射制御装置が開示されている。上記通電時間は、要求されている噴射量(要求噴射量)に対応する時間に設定される。
ここで、近年では、弁体が開弁作動を開始してから最大開弁位置に達する前に閉弁作動を開始することとなるパーシャルリフト噴射(特許文献1参照)の開発が進んできている。パーシャルリフト噴射では通電時間が極めて短いため、通電開始直後の期間であって通電しているにも拘らず電磁力が小さいため開弁作動を開始できずに噴射されない期間(つまり無効噴射期間)が、通電時間に対して大きな割合を占めることとなる。そのため、パーシャルリフト噴射では、無効噴射期間が僅かに異なるだけで噴射量が大きく異なってくる。
しかしながら、電磁コイルの温度が変化すると、電磁コイルの電気抵抗が変化するため、通電開始直後に電磁コイルに流れる電流(コイル電流)の上昇速度が変化する。その結果、無効噴射期間が変化して、要求噴射量と通電時間との対応関係(つまり噴射特性)が変化してしまい、パーシャルリフト噴射における燃料噴射量を高精度で制御できなくなる。
本開示の目的は、パーシャルリフト噴射での燃料噴射量を高精度で制御することを図った、燃料噴射制御装置を提供することにある。
本開示の一態様による燃料噴射制御装置は、燃料を噴射する噴孔を開閉させる弁体と、電磁コイルおよび電磁コイルへの通電により生じた電磁力により吸引されて移動する可動コアを有し、弁体を開弁作動させる電気アクチュエータと、を備える燃料噴射弁に適用され、電磁コイルへの通電時間を制御することで、弁体の開弁時間を制御して、弁体の1回の開弁で噴射される噴射量を制御する。燃料噴射制御装置は、弁体が開弁作動を開始してから最大開弁位置に達する前に閉弁作動を開始することとなるパーシャルリフト噴射を実施する場合に、電磁コイルへの通電開始に伴い電磁コイルを流れる電流が上昇する速度である電流上昇速度を検出する検出部と、検出部により検出された電流上昇速度に基づき、要求されている噴射量である要求噴射量に対する補正値を算出する補正値算出部と、補正値で補正された要求噴射量に基づき、パーシャルリフト噴射を実施する場合の電磁コイルへの通電時間を算出する通電時間算出部と、を備える。
ここで、温度に応じた噴射特性の変化は、電磁コイルへの通電開始に伴い電磁コイルを流れる電流が上昇する速度と相関性が高い。この点を鑑みた上記開示によれば、パーシャルリフト噴射を実施する場合に、電磁コイルを流れる電流が上昇する速度を検出し、検出された電流上昇速度に基づき要求噴射量に対する補正値を算出し、その補正値で要求噴射量を補正する。そのため、パーシャルリフト噴射を実施するにあたり、温度に応じて変化する噴射特性に適した通電時間で電磁コイルを制御することができるので、パーシャルリフト噴射での燃料噴射量を高精度で制御することが可能となる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の燃料噴射システムを示す図であり、
図2は、燃料噴射弁を示す断面図であり、
図3は、通電時間と噴射量との関係を示すグラフであり、
図4は、弁体の挙動を示すグラフであり、
図5は、電圧と差分との関係を示すグラフであり、
図6は、検出範囲を説明するためのグラフであり、
図7は、噴射制御処理を示すフローチャートであり、
図8は、パーシャル噴射におけるコイル電流と噴射率の時間変化を示す図であって、高温により電気抵抗が大きくなることに起因して噴射量が低下する場合の一例を示す図であり、
図9は、パーシャル噴射におけるコイル電流と噴射率の時間変化を示す図であって、高温により電気抵抗が大きくなることに起因して噴射量が増加する場合の一例を示す図であり、
図10は、温度に応じた噴射特性の変化を示す図である。
以下、図面を参照しながら開示を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。
(第1実施形態)
本開示の第1実施形態に関して、図1~図10を用いて説明する。図1に示す燃料噴射システム100は、複数の燃料噴射弁10および燃料噴射制御装置20を含んで構成される。燃料噴射制御装置20は、複数の燃料噴射弁10の開閉を制御し、内燃機関Eの燃焼室2への燃料噴射を制御する。燃料噴射弁10は、点火式の内燃機関E、たとえばガソリンエンジンに複数搭載されており、内燃機関Eの複数の燃焼室2のそれぞれに直接燃料を噴射する。燃焼室2を形成するシリンダヘッド3には、シリンダの軸線Cと同軸の貫通する取付け穴4が形成されている。燃料噴射弁10は、先端が燃焼室2に露出するように取付け穴4に挿入されて固定されている。
本開示の第1実施形態に関して、図1~図10を用いて説明する。図1に示す燃料噴射システム100は、複数の燃料噴射弁10および燃料噴射制御装置20を含んで構成される。燃料噴射制御装置20は、複数の燃料噴射弁10の開閉を制御し、内燃機関Eの燃焼室2への燃料噴射を制御する。燃料噴射弁10は、点火式の内燃機関E、たとえばガソリンエンジンに複数搭載されており、内燃機関Eの複数の燃焼室2のそれぞれに直接燃料を噴射する。燃焼室2を形成するシリンダヘッド3には、シリンダの軸線Cと同軸の貫通する取付け穴4が形成されている。燃料噴射弁10は、先端が燃焼室2に露出するように取付け穴4に挿入されて固定されている。
燃料噴射弁10へ供給される燃料は、図示しない燃料タンクに貯蔵されている。燃料タンク内の燃料は、低圧ポンプ41によりくみ上げられ、高圧ポンプ40により燃圧が高められてデリバリパイプ30へ送られる。デリバリパイプ30内の高圧燃料は、各気筒の燃料噴射弁10へ分配して供給される。シリンダヘッド3うち、燃焼室2に臨む位置に点火プラグ6が取り付けられている。また点火プラグ6は、燃料噴射弁10の先端の近傍に配置されている。
次に、燃料噴射弁10の構成に関して、図2を用いて説明する。図2に示すように、燃料噴射弁10は、ボデー11、弁体12、電磁コイル13、固定コア14、可動コア15、およびハウジング16を含んで構成される。ボデー11は、磁性材料で形成されている。ボデー11の内部には、燃料通路11aが形成されている。
またボデー11の内部には、弁体12が収容されている。弁体12は、金属材料によって全体として円柱状に形成されている。弁体12は、ボデー11の内部で軸方向に往復変位可能である。ボデー11は、先端部に弁体12が着座する弁座17b、および燃料を噴射する噴孔17aが形成された噴孔体17を有して構成されている。噴孔17aは、ボデー11の内側から外側に向けて放射状に複数設けられている。噴孔17aを通じて、高圧の燃料が燃焼室2内に噴射される。
弁体12の本体部は、円柱形状である。弁体12の先端部は、本体部の噴孔17a側先端から噴孔17aに向けて延びる円錐形状である。弁体12のうち弁座17bに着座する部分がシート面12aである。シート面12aは、弁体12の先端部に形成されている。
シート面12aを弁座17bに着座させるよう弁体12を閉弁作動させると、燃料通路11aが閉鎖されて噴孔17aからの燃料噴射が停止される。シート面12aを弁座17bから離座させるよう弁体12を開弁作動させると、燃料通路11aが開放されて噴孔17aから燃料が噴射される。
電磁コイル13は、可動コア15に開弁方向の磁気吸引力を付勢する。電磁コイル13は、樹脂製のボビン13aに巻き回して構成され、ボビン13aと樹脂材13bにより封止されている。つまり、電磁コイル13、ボビン13aおよび樹脂材13bにより、円筒形状のコイル体が構成されている。固定コア14は、磁性材料にて円筒形状に形成され、ボデー11に固定されている。固定コア14の円筒内部には、燃料通路14aが形成されている。
さらに、電磁コイル13を封止する樹脂材13bの外周面は、ハウジング16により覆われている。ハウジング16は、金属製の磁性材料にて円筒形状に形成されている。ハウジング16の開口端部には、金属製の磁性材料にて形成される蓋部材18が取り付けられている。これにより、コイル体は、ボデー11、ハウジング16および蓋部材18により取り囲まれることとなる。
可動コア15は、弁体12の駆動方向に相対変位可能に弁体12に保持される。可動コア15は、金属製の磁性材料にて円盤形状に形成され、ボデー11の内周面に挿入されている。ボデー11、弁体12、コイル体、固定コア14、可動コア15およびハウジング16は、各々の中心線が一致するように配置されている。そして、可動コア15は、固定コア14に対して噴孔17aの側に配置されており、電磁コイル13への非通電時には固定コア14と所定のギャップを有するよう、固定コア14に対向配置されている。
前述のように、コイル体を取り囲むボデー11、ハウジング16、蓋部材18および固定コア14は、磁性材料により形成されるため、電磁コイル13への通電により生じた磁束の通路となる磁気回路を形成することとなる。固定コア14、可動コア15および電磁コイル13等の部品は、弁体12を開弁作動させる電気アクチュエータEAに相当する。
図1に示すように、ボデー11のうちハウジング16よりも噴孔17a側に位置する部分の外周面は、取付け穴4の下方側内周面4bに接触している。またハウジング16の外周面は、取付け穴4の上方側内周面4aとの間に隙間を形成している。
可動コア15には貫通孔15aが形成されており、この貫通孔15aに弁体12が挿入配置されることで、弁体12は可動コア15に対して摺動して相対移動可能に組み付けられている。弁体12の図2の上方側である反噴孔側端部には、本体部から拡径した係止部12dが形成されている。可動コア15が固定コア14に吸引されて上方側に移動する際には、係止部12dが可動コア15に係止された状態で移動するので、可動コア15の上方への移動に伴い弁体12も移動する。可動コア15が固定コア14に接触した状態であっても、弁体12は可動コア15に対して相対移動してリフトアップすることが可能である。
弁体12の反噴孔側にはメインスプリングSP1が配置され、可動コア15の噴孔17a側にはサブスプリングSP2が配置されている。メインスプリングSP1の弾性力は、調整パイプ101からの反力として弁体12へ図2の下方側である閉弁方向に付与される。サブスプリングSP2の弾性力は、ボデー11の凹部11bからの反力として可動コア15へ吸引方向に付与される。
要するに、弁体12は、メインスプリングSP1と弁座17bとの間に挟まれており、可動コア15は、サブスプリングSP2と係止部12dとの間に挟まれている。そして、サブスプリングSP2の弾性力は、可動コア15を介して係止部12dに伝達され、弁体12へ開弁方向に付与されることとなる。したがって、メイン弾性力からサブ弾性力を差し引いた弾性力が、弁体12へ閉弁方向に付与されているとも言える。
ここで、燃料通路11a内の燃料の圧力は弁体12の表面全体にかかっているが、閉弁側に弁体12を押す力の方が、開弁側に弁体12を押す力よりも大きい。よって、燃圧により弁体12は閉弁方向へ押し付けられる。弁体12のうちシート面12aよりも下流側部分の面については、閉弁時には燃圧がかからない。そして、開弁とともに、先端部に流れ込む燃料の圧力が徐々に上昇して、先端部を開弁側に押す力が増大する。したがって、開弁とともに先端部近傍の燃圧が上昇し、その結果、燃圧閉弁力が低下していく。以上の理由により、燃圧閉弁力の大きさは、閉弁時が最大であり、弁体12の開弁移動量が大きくなるに連れて徐々に小さくなっていく。
次に電磁コイル13への通電による挙動に関して説明する。電磁コイル13へ通電して固定コア14に電磁吸引力を生じさせると、この電磁吸引力により可動コア15が固定コア14に引き寄せられる。電磁吸引力は電磁力ともいう。その結果、可動コア15に連結されている弁体12は、メインスプリングSP1の弾性力および燃圧閉弁力に抗して開弁作動する。一方、電磁コイル13への通電を停止させると、メインスプリングSP1の弾性力により、弁体12は可動コア15とともに閉弁作動する。
次に、燃料噴射制御装置20の構成に関して説明する。燃料噴射制御装置20は、電子制御装置(略称ECU)によって実現される。燃料噴射制御装置20は、制御回路21、昇圧回路22、電圧検出部23、電流検出部24およびスイッチ部25を含んで構成される。制御回路21は、マイクロコンピュータとも呼ばれる。燃料噴射制御装置20は、各種のセンサからの情報を取得する。たとえば燃料噴射弁10への供給燃圧は、図1に示すように、デリバリパイプ30に取り付けられた燃圧センサ31により検出され、燃料噴射制御装置20に検出結果が与えられる。燃料噴射制御装置20は、燃圧センサ31の検出結果に基づいて、高圧ポンプ40の駆動を制御する。
制御回路21は、中央演算装置、不揮発性メモリ(ROM)および揮発性メモリ(RAM)等を有して構成され、内燃機関Eの負荷および機関回転速度に基づき、燃料の要求噴射量および要求噴射開始時期を算出する。ROMおよびRAMなどの記憶媒体は、コンピュータによって読み取り可能なプログラムおよびデータを非一時的に格納する非遷移的実体的記憶媒体である。制御回路21は、噴射制御部として機能し、通電時間Tiと噴射量Qとの関係を示す噴射特性を予め試験してROMに記憶しておき、その噴射特性にしたがって電磁コイル13への通電時間Tiを制御することで、噴射量Qを制御する。制御回路21は、電磁コイル13への通電を指令するパルス信号である噴射指令パルスを出力し、このパルス信号のパルスオン期間(パルス幅)により、電磁コイル13への通電時間が制御される。
電圧検出部23および電流検出部24は、電磁コイル13に印加された電圧および電流を検出し、検出結果を制御回路21に与える。電圧検出部23は、電磁コイル13のマイナス端子電圧を検出する。電磁コイル13に供給される電流を遮断すると、電磁コイル13にフライバック電圧が生じる。さらに電磁コイル13には、電流を遮断して弁体12および可動コア15が閉弁方向に変位することによる誘導起電力が生じる。したがって、電磁コイル13への通電オフに伴い、誘導起電力による電圧がフライバック電圧に重畳した値の電圧が電磁コイル13に生じる。よって、電圧検出部23は、電磁コイル13に供給される電流を遮断して弁体12および可動コア15が閉弁方向に変位することによる誘導起電力の変化を電圧値として検出していると言える。さらに電圧検出部23は、弁座17bと弁体12とが接触してから可動コア15が弁体12に対して相対変位することによる誘導起電力の変化を電圧値として検出する。閉弁検出部54は、検出された電圧を用いて、弁体12が閉弁する閉弁タイミングを検出する。閉弁検出部54は、気筒毎の燃料噴射弁10に対して閉弁タイミングの検出を実施する。
制御回路21は、充電制御部51、放電制御部52、電流制御部53、閉弁検出部54、噴射量推定部55および電流傾き検出部56を有する。昇圧回路22およびスイッチ部25は、制御回路21から出力された噴射指令信号に基づき作動する。噴射指令信号は、燃料噴射弁10の電磁コイル13への通電状態を指令する信号であり、要求噴射量および要求噴射開始時期を用いて設定される。本実施形態では、電流傾き検出部56は、検出部に相当する。
昇圧回路22は、昇圧したブースト電圧を電磁コイル13に印加する。昇圧回路22は、昇圧コイル、コンデンサおよびスイッチング素子を備え、バッテリ102のバッテリ端子から印加されるバッテリ電圧が昇圧コイルにより昇圧(ブースト)されて、コンデンサに蓄電される。このように昇圧されて蓄電された電力の電圧がブースト電圧に相当する。
放電制御部52は、昇圧回路22が放電するように所定のスイッチング素子をオン作動させると、燃料噴射弁10の電磁コイル13へブースト電圧が印加される。放電制御部52は、電磁コイル13への電圧印加を停止させる場合には、昇圧回路22の所定のスイッチング素子をオフ作動させる。
電流制御部53は、電流検出部24の検出結果を用いて、スイッチ部25のオンオフを制御して、電磁コイル13に流れる電流を制御する。スイッチ部25は、オン状態になるとバッテリ電圧または昇圧回路22からのブースト電圧を電磁コイル13に印加し、オフ状態になると印加を停止する。電流制御部53は、たとえば噴射指令信号により指令される電圧印加開始時期に、スイッチ部25をオンにしてブースト電圧を印加して通電を開始する。すると、通電開始に伴いコイル電流が上昇する。電流検出部24の検出結果に基づきコイル電流検出値が目標値Ith(図8、図9参照)に達したことが検知されると、電流制御部53はブースト電圧による通電をオフさせる。要するに、初回の通電によるブースト電圧印加により、目標値Ithまでコイル電流を上昇させるように制御する。また電流制御部53は、ブースト電圧を印加後は目標値Ithよりも低い値に設定された値にコイル電流が維持されるように、バッテリ電圧による通電を制御する。
図3に示すように、噴射指令パルス幅と噴射量との関係を表わす噴射特性マップは、噴射指令パルス幅が比較的長くなるフルリフト領域と、噴射指令パルス幅が比較的短くなるパーシャルリフト領域とに区分される。フルリフト領域では、弁体12のリフト量がフルリフト位置、すなわち可動コア15が固定コア14に突き当たる位置に到達するまで弁体12が開弁作動し、その突き当たった位置から閉弁作動を開始する。しかしパーシャルリフト領域では、弁体12のリフト量がフルリフト位置に到達しないパーシャルリフト状態、すなわち可動コア15が固定コア14に突き当たる手前の位置まで弁体12が開弁作動し、パーシャルリフト位置から閉弁作動を開始する。
燃料噴射制御装置20は、フルリフト領域では弁体12のリフト量がフルリフト位置に到達する噴射指令パルスで燃料噴射弁10を開弁駆動するフルリフト噴射を実行する。また燃料噴射制御装置20は、パーシャルリフト領域では弁体12のリフト量がフルリフト位置に到達しないパーシャルリフト状態となる噴射指令パルスで燃料噴射弁10を開弁駆動するパーシャルリフト噴射を実行する。
次に、閉弁検出部54の検出方式に関して、図4を用いて説明する。図4の上のグラフでは、電磁コイル13への通電をオンからオフにした後の電磁コイル13のマイナス端子電圧の波形を示しており、通電をオフにしたときのフライバック電圧の波形を拡大して示している。フライバック電圧は、負の値であるので、図4では上下を反転して示している。換言すると、図4では電圧の正負を逆転した波形を示している。
閉弁検出部54は、パーシャルリフト噴射を実施した場合の、実際に噴射された噴射量(実噴射量)と相関のある物理量を検出する。閉弁検出部54は、タイミング検出方式で閉弁タイミングを検出するタイミング検出部54aと、起電力量検出方式で閉弁タイミングを検出する起電力量検出部54bと、いずれかの検出方式を選択して切り替える選択切替部54cと、を有する。閉弁検出部54は、両方の検出方式で同時に閉弁タイミングを検出することはできず、いずれか一方の検出方式を用いて弁体12が閉弁した閉弁タイミングを検出する。
まず、起電力量検出方式に関して説明する。
概略、起電力量検出方式では、誘導起電力の積算値が所定量に達したタイミング(積算タイミング)を、実噴射量と相関のある物理量として検出する方式である。実際に弁体12が弁座17bに着座して閉弁したタイミング(実閉弁タイミング)と積算タイミングとは相関が高い。そして、実際に弁体12が弁座17bから離座して開弁したタイミング(実開弁タイミング)は、通電開始タイミングと相関が高いため、既知のタイミングとみなすことができる。したがって、実閉弁タイミングと相関の高い積算タイミングを検出すれば、実際に噴射した期間(実噴射期間)を推定でき、ひいては実噴射量を推定できると言える。つまり、積算タイミングは、実噴射量と相関のある物理量であると言える。
さて、図4に示すように、噴射指令パルスのオフした時刻t1後に誘導起電力によってマイナス端子電圧が変化する。検出した電圧波形(符号L1参照)と、仮に誘導起電力が生じなかった場合の電圧波形(符号L2参照)とを比べると、検出した電圧波形では、図4の斜線で示す誘導起電力の分だけ、電圧が増加していることがわかる。誘導起電力は、閉弁作動を開始してから閉弁を完了するまでの間に、可動コア15が磁界を通過するときに発生する。
弁体12の閉弁タイミングで、弁体12の変化速度および可動コア15の変化速度が比較的大きく変化して、マイナス端子電圧の変化特性が変化するので、閉弁タイミング付近でマイナス端子電圧の変化特性が変化する。つまり、電圧波形は、閉弁タイミングで変曲点(電圧変曲点)が現れる形状となる。そして、電圧変曲点が現れるタイミングと積算タイミングとは相関が高い。
このような特性に着目して、起電力量検出部54bは、閉弁タイミングと相関の高い積算タイミングに関連する情報として、電圧変曲点時間を次のようにして検出する。起電力量検出部54bは、パーシャルリフト噴射の噴射指令パルスのオフ後に、燃料噴射弁10のマイナス端子電圧Vmを第1のローパスフィルタでフィルタ処理(なまし処理)した第1のフィルタ電圧Vsm1を算出する。第1のローパスフィルタは、ノイズ成分の周波数よりも低い第1の周波数をカットオフ周波数とする。さらに閉弁検出部54は、燃料噴射弁10のマイナス端子電圧Vmを第1の周波数よりも低い第2の周波数をカットオフ周波数とする第2のローパスフィルタでフィルタ処理(なまし処理)した第2のフィルタ電圧Vsm2を算出する。これにより、マイナス端子電圧Vmからノイズ成分を除去した第1のフィルタ電圧Vsm1と電圧変曲点検出用の第2のフィルタ電圧Vsm2を算出することができる。
さらに、起電力量検出部54bは、第1のフィルタ電圧Vsm1と第2のフィルタ電圧Vsm2との差分Vdiff(=Vsm1-Vsm2)を算出する。さらに閉弁検出部54は、所定の基準タイミングから差分Vdiffが変曲点となるタイミングまでの時間を電圧変曲点時間Tdiffとして算出する。この際、図5に示すように、差分Vdiffが所定の閾値Vtを越えるタイミングを、差分Vdiffが変曲点となるタイミングとして電圧変曲点時間Tdiffを算出する。つまり、所定の基準タイミングから差分Vdiffが所定の閾値Vtを越えるタイミングまでの時間を電圧変曲点時間Tdiffとして算出する。差分Vdiffは、誘導起電力の積算値に相当し、閾値Vtが所定の基準量に相当する。差分Vdiffが閾値Vtに達したタイミングが積算タイミングに相当する。本実施形態では、基準タイミングは、差分が発生した時刻t2として電圧変曲点時間Tdiffを算出する。閾値Vtは、固定値であるか、燃圧や燃温等に応じて制御回路21が算出した値である。
燃料噴射弁10のパーシャルリフト領域では、燃料噴射弁10のリフト量のばらつきによって噴射量が変動すると共に閉弁タイミングが変動するため、燃料噴射弁10の噴射量と閉弁タイミングとの間には相関関係がある。さらに、燃料噴射弁10の閉弁タイミングに応じて電圧変曲点時間Tdiffが変化するため、電圧変曲点時間Tdiffと噴射量との間には相関関係がある。このような関係に着目して、燃料噴射制御装置20は、電圧変曲点時間Tdiffに基づいてパーシャルリフト噴射の噴射指令パルスを補正する。
次に、タイミング検出方式に関して説明する。
概略、起電力量検出方式では、誘導起電力の積算値が所定量に達したタイミング(積算タイミング)を、実噴射量と相関のある物理量として検出する方式である。タイミング検出部54aは、誘導起電力の単位時間当りの増加量が減少し始めるタイミングを閉弁タイミングとして検出する。
弁体12が開弁状態から閉弁作動を開始し、弁座17bと接触した瞬間に、可動コア15が弁体12から離間するので、弁座17bに接触した瞬間に可動コア15の加速度が変化する。タイミング検出方式では、可動コア15の加速度の変化を、電磁コイル13に発生する誘導起電力の変化として検出することによって、閉弁タイミングを検出する。可動コア15の加速度の変化は、電圧検出部23が検出した電圧の2階微分値で検出することができる。
具体的には、図4に示すように、時刻t1にて電磁コイル13への通電が停止された後、弁体12と連動して可動コア15が上方への変位から下方の変位に切り替わる。そして弁体12が閉弁後に、可動コア15が弁体12から離間すると、これまで弁体12を介して可動コア15に働いていた閉弁方向の力すなわちメインスプリングSP1による荷重と燃料圧力による力がなくなる。したがって可動コア15には、サブスプリングSP2の荷重が開弁方向の力として働く。弁体12が閉弁位置に到達して可動コア15に作用する力の向きが閉弁方向から開弁方向へ変化すると、これまで緩やかに増加していた誘導起電力の増加が減少し、閉弁した時刻t3で電圧の2階微分値が減少に転ずる。このマイナス端子電圧の2階微分値が最大値となるタイミングをタイミング検出部54aが検出することで、弁体12の閉弁タイミングを精度よく検出することが可能である。
起電力量検出方式と同様に、通電オフから閉弁タイミングまでの閉弁時間と噴射量との間には相関関係がある。このような関係に着目して、燃料噴射制御装置20は、閉弁時間に基づいてパーシャルリフト噴射の噴射指令パルスを補正する。
図6に示すように、要求噴射量によって噴射時間が異なる。そしてパーシャルリフト領域において、起電力量検出方式の検出範囲とタイミング検出方式の検出範囲Wとは異なる。具体的には、タイミング検出方式の検出範囲Wは、パーシャルリフト領域において、要求噴射量が基準割合よりも大きい側となる。起電力量検出方式は、最小噴射量τminから最大噴射量τmaxの近傍の値までである。したがって起電力量検出方式の検出範囲は、タイミング検出方式の検出範囲Wを含み、タイミング検出方式の検出範囲Wよりも広い。しかし閉弁タイミングの検出精度は、タイミング検出方式の方が優れる。要するに、起電力量検出方式はタイミング検出方式に比べて検出範囲が広く、タイミング検出方式は起電力量検出方式に比べて検出精度が高い、との知見を本発明者らは得ている。この知見に基づき、いずれの検出方式に切り替えるかを選択切替部54cは選択する。
噴射量推定部55は、閉弁検出部54の検出結果に基づき実噴射量を推定する。例えばタイミング検出方式の場合、タイミング検出部54aの検出結果、つまりマイナス端子電圧の2階微分値が最大値となるタイミングに基づき、噴射量推定部55は実噴射量を推定する。具体的には、2階微分値が最大値となるタイミング、通電時間および供給燃圧と、実噴射量との関係を予めタイミング検出マップとして記憶させておく。そして噴射量推定部55は、タイミング検出部54aの検出値、燃圧センサ31で検出される供給燃圧および通電時間に基づき、タイミング検出マップを参照して実噴射量を推定する。
また、例えば起電力量検出方式の場合、起電力量検出部54bの検出結果、つまり電圧変曲点時間に基づき、噴射量推定部55は実噴射量を推定する。具体的には、電圧変曲点時間、通電時間および供給燃圧と、実噴射量との関係を予め起電力量検出マップとして記憶させておく。そして噴射量推定部55は、起電力量検出部54bの検出値、燃圧センサ31で検出される供給燃圧および通電時間に基づき、起電力量検出マップを参照して実噴射量を推定する。
制御回路21が有するプロセッサは、以下に説明する学習処理を実行する。この学習処理では、図7のS11で用いる学習値、つまり要求噴射量を補正する補正値である実噴射補正値を取得する。具体的には、閉弁検出部54の検出結果に基づき推定された実噴射量と、その実噴射に係る指令通電時間に対応する噴射量つまり補正後の要求噴射量とのズレ量に基づき、要求噴射量に対する実噴射補正値を算出して学習する。本実施形態では、実噴射量に対する要求噴射量の割合を実噴射補正値としている。したがって、実噴射量が要求噴射量より多い場合には、次回の要求噴射量を減らすべく実噴射補正値が1未満の値となり、実噴射量が要求噴射量より少ない場合には、次回の要求噴射量を増やすべく実噴射補正値が1より大きい値となる。
なお、図6に示す先述の知見を鑑みて、選択切替部54cは、要求噴射量が基準量以上である場合にはタイミング検出方式に切り替え、基準量以上でない場合には起電力量検出方式に切り替える。これにより、要求噴射量が基準量以上である場合には、タイミング検出部54aの検出結果で推定された実噴射量に基づき上記学習を行い、基準量以上でない場合には、起電力量検出部54bの検出結果で推定された実噴射量に基づき上記学習を行う。
電流傾き検出部56は、電磁コイル13への通電開始に伴い電磁コイル13を流れる電流が上昇する速度を検出する。この電流上昇速度は、図8および図9の上段に示す電流波形の符号ΔIに示す電流波形の傾きに相当する。具体的には、電磁コイル13への通電開始から所定値に達するまでの所要時間を電流傾き検出部56は検出し、その所要時間を電流上昇速度とみなす。上記所定値は、電流制御部53が用いる先述の目標値Ithである。つまり、電流傾き検出部56は、噴射指令パルスのオンタイミングから、電流検出部24によりコイル電流が目標値Ithに達したことが検知されるまでの所要時間を検出する。
図7は、制御回路21が有するプロセッサが、制御回路21が有するメモリに記憶されたプログラムを所定周期で繰り返し実行する手順を示すフローチャートである。図7に示す噴射制御の処理では、先ずS10において、内燃機関Eの負荷および機関回転速度に基づき要求噴射量を算出する。S11では、先述した学習処理で得られた学習値を用いて、S10で算出した要求噴射量に対する実噴射補正値を設定する。本実施形態では、要求噴射量に乗算する係数値を実噴射補正値とし、実噴射補正値を要求噴射量に乗算して補正しているが、実噴射量と要求噴射量とのズレ量を実噴射補正値とし、その実噴射補正値を要求噴射量に加減算して補正してもよい。
S12では、電流傾き検出部56により検出された電流上昇速度に基づき、温度特性用の補正係数(温特用補正係数)を設定する。例えば、電流上昇速度と温特用補正係数との関係を予めマップ化して記憶させておき、その補正係数マップを参照して電流上昇速度に基づき温特用補正係数を設定する。なお、電流上昇速度に加えて燃料噴射弁10への供給燃圧とも関連付けて補正係数マップを作成しておき、電流上昇速度および供給燃圧に基づき補正係数マップを参照して温特用補正係数を設定してもよい。
S13では、電流傾き検出部56により検出された電流上昇速度に基づき、温度特性用のオフセット補正量を設定する。例えば、電流上昇速度と温特用オフセット補正量との関係を予めマップ化して記憶させておき、そのオフセット補正量マップを参照して電流上昇速度に基づき温特用オフセット補正量を設定する。なお、電流上昇速度に加えて供給燃圧とも関連付けてオフセット補正量マップを作成しておき、電流上昇速度および供給燃圧に基づきオフセット補正量マップを参照して温特用オフセット補正量を設定してもよい。
S14では、S11、S12、S13で設定された実噴射補正値、温特用補正係数および温特用オフセット補正量で、S10で算出した要求噴射量を補正する。具体的には、実噴射補正値および温特用補正係数を要求噴射量に乗算するとともに、温特用オフセット補正量を要求噴射量に加算して補正する。
ここで、通電時間と噴射量との関係を表した噴射特性マップが、制御回路21には予め記憶されている。そしてS15では、この噴射特性マップを参照して、S14で算出した補正後の要求噴射量に対応する通電時間を算出する。噴射特性マップは、燃圧センサ31で検出される供給燃圧に応じて複数記憶されており、その時々の供給燃圧に応じた噴射特性マップを参照して通電時間は算出される。S16では、S15で算出された通電時間に基づき電磁コイル13へ通電する。具体的には、噴射指令パルスのパルス幅を、算出された通電時間の長さに設定する。
なお、S12、S13の処理を実行している時の制御回路21は、電流上昇速度に基づき、要求噴射量に対する補正値を算出する補正値算出部に相当する。特に、S13の処理時の制御回路21は、オフセット補正量を補正値として算出するオフセット補正量算出部に相当し、S12の処理時の制御回路21は、補正係数を補正値として算出する補正係数算出部に相当する。また、S15の処理を実行している時の制御回路21は、要求噴射量に対応する電磁コイル13への通電時間を算出する通電時間算出部に相当する。
次に、温特用オフセット補正量および温特用補正係数で補正することの技術的意義について、図8、図9および図10を用いて説明する。
通電開始直後のコイル電流の上昇速度は、電磁コイル13の温度に応じて異なってくる。その結果、噴射特性が変化することは先述した通りである。図8および図9中の実線は、常温時の電流波形および噴射率波形を示し、点線は、高温時の電流波形および噴射率波形を示す。噴射率とは、単位時間当りに噴孔17aから噴射される量のことである。そして、噴射率を積算した値、つまり噴射率波形と横軸とで囲まれた面積は、1回の開弁による噴射量を示す。
図8に示す例では、高温時の方が常温時に比べて噴射量が減少する。その理由は、高温時には電流波形の傾きΔIが小さくなることに起因して、開弁作動を開始させる値にまで吸引力が上昇するのに時間を要するため、開弁開始時期が遅れるからである。一方、図9に示す例では、図8の場合に比べて通電時間Tiが僅かに長い。そして図9の例では、高温時の方が常温時に比べて噴射量が増加する。その理由は、高温時には電流波形の傾きΔIが小さくなることに起因して、渦電流発生によるエネルギ損失が少なく、弁体12の開弁速度が速いからである。それ故、高温時には開弁開始時期が遅れるものの、開弁速度が速いため、通電時間Tiが所定以上に長ければ、低温時に比べて噴射率波形の面積が大きくなり、噴射量が増加することとなる。
要するに、高温時には、開弁開始時期が遅くなり、通電開始から開弁作動開始までの無効噴射期間が長くなる一方で、高温時には、電磁コイル13へ供給する電気エネルギの損失が少なくなる。そのため、図10に示すように、通電時間Tiが所定以上に長ければ、一点鎖線や点線に示す高温時の方が、実線に示す常温時に比べて噴射量は多くなる。但し、通電時間Tiが所定未満であれば、一点鎖線や点線に示す高温時の方が、実線に示す常温時に比べて噴射量は少なくなる。なお、図10は供給燃圧を20MPaにした場合の例であり、電磁コイル13の電気抵抗は、点線の場合は実線に比べて0.25Ω高く、一点鎖線の場合は実線に比べて0.75Ω高い値である。
ここで、噴射特性線Lには、通電時間の増大に伴って噴射特性線Lの傾きが徐々に増大して所定傾きに達するまでの第1領域A1と、第1領域A1よりも通電時間が長い側の領域であって噴射特性線Lの傾きが一定の直線となる第2領域A2とが含まれている。例えば、常温時の噴射特性線Lのうち、第2領域A2での傾きをΔQとし、高温時の噴射特性線Laのうち、第2領域A2での傾きをΔQaとする。常温時の傾きΔQに対する高温時の傾きΔQaの比率が、温特用補正係数に相当する。先述したように、高温であるほどエネルギ損失が少なくなることに起因して、図10に示すように、高温時の傾きΔQaの方が常温時の傾きΔQに比べて大きくなっている。つまり、高温であるほど、温特用補正係数は大きい値に設定される。
そして、第2領域における噴射特性線の傾きと電流上昇速度とは相関が高いので、第2領域における噴射特性線の傾きと電流上昇速度との関係を予め試験して取得しておくことができ、その噴射特性線の傾きが温特用補正係数として用いられている。或いは、上記傾きに所定の定数を加算あるいは所定の係数を乗算して温特用補正係数とする。したがって、先述した補正係数マップは、上記試験結果に基づき作成されている。
また、第2領域A2での噴射特性線は傾きが一定の直線形状であり、その直線を延長させた仮想直線Lv上の値のうち、噴射量がゼロとなる通電時間の値を仮想時間Tvとする。この仮想時間Tvは、先述した無効噴射期間に相当する。常温時の仮想時間Tvと高温時の仮想時間Tvaとの時間差Taに所定の係数を乗算した値が、温特用オフセット補正量に相当する。先述したように、高温であるほど無効噴射期間が長くなることに起因して、図10に示すように、高温時の仮想時間Tvaの方が常温時の仮想時間Tvに比べて長くなっている。つまり、高温であるほど、温特用オフセット補正量は大きい値に設定される。
そして、無効噴射期間である仮想時間Tvaと電流上昇速度とは相関が高いので、仮想時間Tvaと電流上昇速度との関係を予め試験して取得しておくことができ、その仮想時間Tvaに基づき温特用オフセット補正量が算出される。例えば、常温時の仮想時間Tvに対する仮想時間Tvaの差分が温特用オフセット補正量として用いられている。或いは、上記差分に所定の定数を加算あるいは所定の係数を乗算して温特用オフセット量とする。したがって、先述したオフセット補正量マップは、上記試験結果に基づき作成されている。
要するに、高温であるほどエネルギ損失が少なくなる第1の現象については、温特用補正係数に反映させ、高温であるほど無効噴射期間が長くなる第2の現象については、温特用オフセット補正量に反映させている。第1の現象は、高温であるほど噴射量を多くさせるものであり、第2の現象は、高温であるほど噴射量を少なくさせるものである。このように相反する2種類の現象は、温特用オフセット補正量および温特用補正係数の各々に区分けされた上で、補正値として反映される。
以上説明したように、本実施形態では、パーシャルリフト噴射を実施する場合に電流上昇速度を検出する電流傾き検出部56と、S12、S13による補正値算出部と、S15による通電時間算出部とを備える。補正値算出部は、検出された電流上昇速度に基づき要求噴射量に対する補正値を算出し、通電時間算出部は、補正値で補正された要求噴射量に基づき、パーシャルリフト噴射を実施する場合の通電時間を算出する。そして、温度に応じた噴射特性の変化は電流上昇速度と相関性が高いので、本実施形態によれば、パーシャルリフト噴射を実施するにあたり、温度に応じて変化する噴射特性に適した通電時間で制御できる。よって、パーシャルリフト噴射での燃料噴射量を高精度で制御することが可能となる。
さらに本実施形態では、補正値算出部は、S13によるオフセット補正量算出部、およびS12による補正係数算出部を有する。オフセット補正量算出部は、電流上昇速度に基づき、要求噴射量に対して加減算して補正するオフセット補正量を算出する。補正係数算出部は、電流上昇速度に基づき、要求噴射量に対して乗算して補正する補正係数を算出する。これによれば、図8~図10を用いて先述したように、2種類の現象が、温特用オフセット補正量および温特用補正係数の各々に区分けされた上で、補正値として反映される。そのため、パーシャルリフト噴射での燃料噴射量を、より一層高精度で制御できる。特に、燃料噴射弁10の種類毎に噴射特性は大きく異なってくるが、機種の違いにより噴射特性が大きく異なる場合であっても、同様にして高精度で制御でき、噴射特性の機種の違いに対する制御のロバスト性を向上できる。
さらに本実施形態では、補正係数算出部は、電流上昇速度との相関関係から推定される、噴射特性線Laの第2領域A2における傾きΔQaに基づき、温特用補正係数を算出する。そのため、先述した、高温であるほどエネルギ損失が少なくなるといった第1の現象の度合いが、温特用補正係数に反映されるので、要求噴射量に対する補正の精度を向上できる。
さらに本実施形態では、噴射特性線Lの第2領域A2における直線を延長させた仮想直線Lv上の値であって、噴射量がゼロとなる通電時間の値を仮想時間Tvとする。そして、オフセット補正量算出部は、電流上昇速度との相関関係から推定される仮想時間Tvに基づき、温特用オフセット補正量を算出する。そのため、先述した、高温であるほど無効噴射期間が長くなるといった第2の現象の度合いが、温特用オフセット補正量に反映されるので、要求噴射量に対する補正の精度を向上できる。
さらに本実施形態では、電流傾き検出部56は、電磁コイル13への通電開始から、電磁コイル13を流れる電流が所定値(例えば目標値Ith)に達するまでの所要時間を検出することで、電流上昇速度を取得する。これによれば、電磁コイル13への通電状態を電流制御部53が制御することに用いられる情報であって、コイル電流が目標値Ithに達したか否かといった情報を用いて、電流上昇速度が取得される。よって、補正値を算出する専用の回路を用いることなく電流上昇速度を取得できるので、燃料噴射制御装置の回路構成を簡素化できる。
ここで、先述した通り、タイミング検出方式および誘導起電力検出方式には一長一短がある。そのため、両方の検出方式で閉弁タイミングを同時に検出することが望ましい。しかし両方の検出方式を同時に実施可能にするためには、制御回路21の処理能力を高める必要があり、燃料噴射制御装置20の実装規模が大型化するおそれがある。この点を鑑み、本実施形態に係る閉弁検出部54は、タイミング検出方式のタイミング検出部54aと、誘導起電力検出方式の起電力量検出部54bと、両方式のいずれかを選択して切り替える選択切替部54cと、を有する。そのため、閉弁検出部54は、両方式の長所が発揮されるように切り替えることが可能となり、両方式を同時実施する構成よりも小型化することができる。
(その他の実施形態)
以上、本開示の好ましい実施形態について説明したが、本開示は前述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。前述の実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。
以上、本開示の好ましい実施形態について説明したが、本開示は前述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。前述の実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。
前述の第1実施形態では、電流傾き検出部56は、電磁コイル13への通電開始から、コイル電流が所定値に達するまでの時間を検出することで、電流上昇速度を取得している。この検出手法に替えて、電磁コイル13への通電開始から所定時間が経過するまでの電流上昇量を検出することで、電流上昇速度を取得してもよい。
前述の第1実施形態では、温特用補正係数および温特用オフセット補正量を電流上昇速度に基づき別々に算出し、温特用補正係数および温特用オフセット補正量の各々で、要求噴射量を補正している。これに対し、電流上昇速度に基づき、乗算用の補正係数および加算用の補正量のいずれかを算出し、算出された補正係数または補正量で要求噴射量を補正してもよい。
前述の第1実施形態では、燃料噴射弁10は弁体12と可動コア15とが別体の構成であったが、弁体12と可動コア15とが一体に構成であってもよい。一体であると、可動コア15が吸引されると、弁体12も可動コア15と一緒に開弁方向に変位して開弁する。
前述の第1実施形態では、燃料噴射弁10は、可動コア15の移動開始と同時に弁体12も移動を開始するように構成されているがこのような構成に限るものではない。たとえば可動コア15の移動を開始しても弁体12は開弁を開始せず、可動コア15が所定量移動した時点で可動コア15が弁体12に係合して開弁を開始する構成であってもよい。
前述の第1実施形態では、電圧検出部23は、電磁コイル13のマイナス端子電圧を検出しているが、プラス端子電圧を検出しても良いし、プラス端子とマイナス端子との端子間電圧を検出しても良い。
前述の第1実施形態では、閉弁検出部54は、実噴射量と相関のある物理量として、電磁コイル13の端子電圧を検出する。そして噴射量推定部55は、検出された電圧の変化を表わす波形に基づき閉弁タイミングを推定して実噴射量を推定している。これに対し、実噴射量と相関のある物理量として供給燃圧を検出し、検出された燃圧の変化を表わす波形に基づき閉弁タイミングを推定して実噴射量を推定してもよい。或いは、実噴射量と相関のある物理量としてエンジン回転数を検出し、エンジン回転数の変化を表わす波形に基づき実噴射量を推定してもよい。
前述の第1実施形態において、燃料噴射制御装置20によって実現されていた機能は、前述のものとは異なるハードウェアおよびソフトウェア、またはこれらの組み合わせによって実現してもよい。制御装置は、たとえば他の制御装置と通信し、他の制御装置が処理の一部または全部を実行してもよい。制御装置が電子回路によって実現される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって実現することができる。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (5)
- 燃料を噴射する噴孔(17a)を開閉させる弁体(12)と、
電磁コイル(13)および前記電磁コイルへの通電により生じた電磁力により吸引されて移動する可動コア(15)を有し、前記弁体を開弁作動させる電気アクチュエータ(EA)と、
を備える燃料噴射弁(10)に適用され、
前記電磁コイルへの通電時間を制御することで、前記弁体の開弁時間を制御して、前記弁体の1回の開弁で噴射される噴射量を制御する燃料噴射制御装置において、
前記弁体が開弁作動を開始してから最大開弁位置に達する前に閉弁作動を開始することとなるパーシャルリフト噴射を実施する場合に、前記電磁コイルへの通電開始に伴い前記電磁コイルを流れる電流が上昇する速度である電流上昇速度を検出する検出部(56)と、
前記検出部により検出された電流上昇速度に基づき、要求されている前記噴射量である要求噴射量に対する補正値を算出する補正値算出部(S12、S13)と、
前記補正値で補正された前記要求噴射量に基づき、前記パーシャルリフト噴射を実施する場合の前記電磁コイルへの前記通電時間を算出する通電時間算出部(S15)と、
を備える燃料噴射制御装置。 - 前記補正値算出部は、
前記電流上昇速度に基づき、前記要求噴射量に対して加減算して補正するオフセット補正量を算出するオフセット補正量算出部(S13)と、
前記電流上昇速度に基づき、前記要求噴射量に対して乗算して補正する補正係数を算出する補正係数算出部(S12)と、
を有する請求項1に記載の燃料噴射制御装置。 - 前記パーシャルリフト噴射における、前記通電時間と前記噴射量との関係を表した噴射特性線には、前記通電時間の増大に伴って噴射特性線の傾きが徐々に増大して所定傾きに達するまでの第1領域と、前記第1領域よりも前記通電時間が長い側の領域であって前記噴射特性線の傾きが一定の直線となる第2領域とが含まれており、
前記補正係数算出部は、前記電流上昇速度との相関関係から推定される、前記第2領域における前記噴射特性線の傾きに基づき、前記補正係数を算出する請求項2に記載の燃料噴射制御装置。 - 前記パーシャルリフト噴射における、前記通電時間と前記噴射量との関係を表した噴射特性線には、前記通電時間の増大に伴って噴射特性線の傾きが徐々に増大して所定傾きに達するまでの第1領域と、前記第1領域よりも前記通電時間が長い側の領域であって前記噴射特性線の傾きが一定の直線となる第2領域とが含まれており、
前記直線を延長させた仮想直線上の値であって、前記噴射量がゼロとなる前記通電時間の値を仮想時間とし、
前記オフセット補正量算出部は、前記電流上昇速度との相関関係から推定される前記仮想時間に基づき、前記オフセット補正量を算出する請求項2または3に記載の燃料噴射制御装置。 - 前記検出部は、前記電磁コイルへの通電開始から、前記電磁コイルを流れる電流が所定値に達するまでの所要時間を検出することで、前記電流上昇速度を取得する請求項1~4のいずれか1つに記載の燃料噴射制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/092,831 US10578046B2 (en) | 2016-05-06 | 2017-04-07 | Fuel injection control device |
EP17792666.4A EP3453862B1 (en) | 2016-05-06 | 2017-04-07 | Fuel injection control device |
CN201780027486.XA CN109328262B (zh) | 2016-05-06 | 2017-04-07 | 燃料喷射控制装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-093320 | 2016-05-06 | ||
JP2016093320A JP6544293B2 (ja) | 2016-05-06 | 2016-05-06 | 燃料噴射制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017191733A1 true WO2017191733A1 (ja) | 2017-11-09 |
Family
ID=60202906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/014476 WO2017191733A1 (ja) | 2016-05-06 | 2017-04-07 | 燃料噴射制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10578046B2 (ja) |
EP (1) | EP3453862B1 (ja) |
JP (1) | JP6544293B2 (ja) |
CN (1) | CN109328262B (ja) |
WO (1) | WO2017191733A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10612480B2 (en) | 2016-05-06 | 2020-04-07 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device |
US10683826B2 (en) | 2016-05-06 | 2020-06-16 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device |
US10711727B2 (en) | 2016-05-06 | 2020-07-14 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device |
US10731584B2 (en) | 2016-05-06 | 2020-08-04 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device |
US10808642B2 (en) | 2016-05-06 | 2020-10-20 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device |
JP2021148117A (ja) * | 2020-03-24 | 2021-09-27 | 日立Astemo株式会社 | 電磁弁駆動装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6981366B2 (ja) * | 2018-05-25 | 2021-12-15 | 株式会社デンソー | 燃料噴射弁の制御装置およびその方法 |
IT201800005760A1 (it) * | 2018-05-28 | 2019-11-28 | Metodo per determinare un istante di chiusura di un iniettore elettromagnetico di carburante | |
JP7266705B2 (ja) * | 2019-11-21 | 2023-04-28 | 日立Astemo株式会社 | 燃料噴射制御装置 |
JP7560987B2 (ja) | 2020-10-09 | 2024-10-03 | 株式会社Subaru | エンジン制御装置 |
JPWO2023166665A1 (ja) * | 2022-03-03 | 2023-09-07 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014092089A (ja) * | 2012-11-05 | 2014-05-19 | Denso Corp | 燃料噴射制御装置および燃料噴射システム |
JP2014218983A (ja) * | 2013-05-10 | 2014-11-20 | トヨタ自動車株式会社 | 燃料噴射弁の制御装置 |
JP2015096720A (ja) * | 2013-10-11 | 2015-05-21 | 株式会社デンソー | 内燃機関の燃料噴射制御装置 |
JP2015101977A (ja) * | 2013-11-21 | 2015-06-04 | 株式会社デンソー | 燃料噴射制御装置および燃料噴射システム |
WO2016021122A1 (ja) * | 2014-08-06 | 2016-02-11 | 株式会社デンソー | 内燃機関の燃料噴射制御装置 |
JP2016048069A (ja) * | 2015-12-03 | 2016-04-07 | 株式会社デンソー | 燃料噴射制御装置および燃料噴射システム |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4119116B2 (ja) * | 2001-08-02 | 2008-07-16 | 株式会社ミクニ | 燃料噴射方法 |
US7273038B2 (en) * | 2002-12-10 | 2007-09-25 | Mikuni Corporation | Fuel injection control method and fuel-injection control device |
KR20050097519A (ko) * | 2003-02-03 | 2005-10-07 | 가부시키가이샤 미쿠니 | 연료분사제어방법 및 제어장치 |
JP2008208813A (ja) * | 2007-02-28 | 2008-09-11 | Hitachi Ltd | 内燃機関の燃料噴射弁,当該燃料噴射弁の制御方法,燃料噴射弁の制御回路装置及び筒内噴射型内燃機関の燃料噴射装置 |
JP2010255444A (ja) * | 2009-04-21 | 2010-11-11 | Hitachi Automotive Systems Ltd | 内燃機関の燃料噴射制御装置及び方法 |
JP5982484B2 (ja) | 2012-06-21 | 2016-08-31 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置 |
JP5874607B2 (ja) * | 2012-11-05 | 2016-03-02 | 株式会社デンソー | 燃料噴射制御装置および燃料噴射システム |
JP5849975B2 (ja) | 2013-02-25 | 2016-02-03 | 株式会社デンソー | 燃料噴射制御装置および燃料噴射システム |
JP5831502B2 (ja) * | 2013-06-07 | 2015-12-09 | トヨタ自動車株式会社 | 燃料噴射弁の制御装置 |
JP6233080B2 (ja) * | 2014-02-10 | 2017-11-22 | 株式会社デンソー | 燃料噴射制御装置 |
JP6520816B2 (ja) | 2016-05-06 | 2019-05-29 | 株式会社デンソー | 燃料噴射制御装置 |
JP6512167B2 (ja) | 2016-05-06 | 2019-05-15 | 株式会社デンソー | 燃料噴射制御装置 |
JP6520814B2 (ja) | 2016-05-06 | 2019-05-29 | 株式会社デンソー | 燃料噴射制御装置 |
JP6544292B2 (ja) | 2016-05-06 | 2019-07-17 | 株式会社デンソー | 燃料噴射制御装置 |
JP6520815B2 (ja) | 2016-05-06 | 2019-05-29 | 株式会社デンソー | 燃料噴射制御装置 |
-
2016
- 2016-05-06 JP JP2016093320A patent/JP6544293B2/ja active Active
-
2017
- 2017-04-07 US US16/092,831 patent/US10578046B2/en not_active Expired - Fee Related
- 2017-04-07 EP EP17792666.4A patent/EP3453862B1/en active Active
- 2017-04-07 CN CN201780027486.XA patent/CN109328262B/zh not_active Expired - Fee Related
- 2017-04-07 WO PCT/JP2017/014476 patent/WO2017191733A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014092089A (ja) * | 2012-11-05 | 2014-05-19 | Denso Corp | 燃料噴射制御装置および燃料噴射システム |
JP2014218983A (ja) * | 2013-05-10 | 2014-11-20 | トヨタ自動車株式会社 | 燃料噴射弁の制御装置 |
JP2015096720A (ja) * | 2013-10-11 | 2015-05-21 | 株式会社デンソー | 内燃機関の燃料噴射制御装置 |
JP2015101977A (ja) * | 2013-11-21 | 2015-06-04 | 株式会社デンソー | 燃料噴射制御装置および燃料噴射システム |
WO2016021122A1 (ja) * | 2014-08-06 | 2016-02-11 | 株式会社デンソー | 内燃機関の燃料噴射制御装置 |
JP2016048069A (ja) * | 2015-12-03 | 2016-04-07 | 株式会社デンソー | 燃料噴射制御装置および燃料噴射システム |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10612480B2 (en) | 2016-05-06 | 2020-04-07 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device |
US10683826B2 (en) | 2016-05-06 | 2020-06-16 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device |
US10711727B2 (en) | 2016-05-06 | 2020-07-14 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device |
US10731584B2 (en) | 2016-05-06 | 2020-08-04 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device |
US10808642B2 (en) | 2016-05-06 | 2020-10-20 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device |
JP2021148117A (ja) * | 2020-03-24 | 2021-09-27 | 日立Astemo株式会社 | 電磁弁駆動装置 |
JP7361644B2 (ja) | 2020-03-24 | 2023-10-16 | 日立Astemo株式会社 | 電磁弁駆動装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2017201160A (ja) | 2017-11-09 |
EP3453862A4 (en) | 2019-06-05 |
EP3453862A1 (en) | 2019-03-13 |
US10578046B2 (en) | 2020-03-03 |
JP6544293B2 (ja) | 2019-07-17 |
CN109328262B (zh) | 2021-08-06 |
US20190120167A1 (en) | 2019-04-25 |
EP3453862B1 (en) | 2020-07-29 |
CN109328262A (zh) | 2019-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017191733A1 (ja) | 燃料噴射制御装置 | |
JP6520815B2 (ja) | 燃料噴射制御装置 | |
JP6520814B2 (ja) | 燃料噴射制御装置 | |
JP6520816B2 (ja) | 燃料噴射制御装置 | |
US9970376B2 (en) | Fuel injection controller and fuel injection system | |
JP6597535B2 (ja) | 弁体作動推定装置 | |
WO2017191731A1 (ja) | 燃料噴射制御装置 | |
JP6512167B2 (ja) | 燃料噴射制御装置 | |
WO2015118854A1 (ja) | 燃料噴射制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17792666 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017792666 Country of ref document: EP Effective date: 20181206 |