[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017191766A1 - 多分岐ポリマーの製造方法及び多分岐ポリマー - Google Patents

多分岐ポリマーの製造方法及び多分岐ポリマー Download PDF

Info

Publication number
WO2017191766A1
WO2017191766A1 PCT/JP2017/016008 JP2017016008W WO2017191766A1 WO 2017191766 A1 WO2017191766 A1 WO 2017191766A1 JP 2017016008 W JP2017016008 W JP 2017016008W WO 2017191766 A1 WO2017191766 A1 WO 2017191766A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
vinyl monomer
carbon atoms
general formula
polymer
Prior art date
Application number
PCT/JP2017/016008
Other languages
English (en)
French (fr)
Inventor
茂 山子
山本 実
Original Assignee
国立大学法人京都大学
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 大塚化学株式会社 filed Critical 国立大学法人京都大学
Priority to AU2017259457A priority Critical patent/AU2017259457B2/en
Priority to CN201780027425.3A priority patent/CN109071697B/zh
Priority to EP17792699.5A priority patent/EP3453726B1/en
Priority to US16/096,825 priority patent/US10808065B2/en
Priority to JP2018515424A priority patent/JP6754124B2/ja
Publication of WO2017191766A1 publication Critical patent/WO2017191766A1/ja
Priority to AU2021229164A priority patent/AU2021229164B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/04Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation

Definitions

  • the present invention relates to a method for producing a multibranched polymer and a multibranched polymer.
  • the multi-branched polymer is a polymer having many branched structures represented by dendron (dendritic) and dendrimer. Since the multi-branched polymer has a smaller hydrodynamic radius than the linear polymer, it has characteristics such as greatly improved solubility, greatly reduced viscosity, and a large change in glass transition temperature. Therefore, the utilization method is widely studied in the medical industry, the chemical industry, and the like.
  • the other is a method for synthesizing a multi-branched polymer using a monomer having a polymerizable functional group and a polymerization initiating group in the same molecule called an inimer (see Scheme 2 below.
  • B * is a polymerization initiating group.
  • Patent Document 1 is disclosed.
  • An object of the present invention is to solve the problems of inimer and to provide a multibranched polymer production method and a multibranched polymer that can produce a multibranched polymer having a narrow molecular weight distribution in one pot.
  • the present invention provides the following multibranched polymer production method and multibranched polymer.
  • Item 1 A multi-branch comprising a step of living radical polymerization of a first vinyl monomer having a polymerization initiating group at the ⁇ -position of a vinyl bond and a second vinyl monomer having no polymerization initiating group at the ⁇ -position of the vinyl bond A method for producing a polymer.
  • Item 2 The living radical polymerization is obtained from an organic tellurium compound represented by the following general formula (5), the following general formula (6), the following general formula (7) or the following general formula (8), or the organic tellurium compound.
  • Item 2. The method for producing a multibranched polymer according to Item 1, wherein the macrochain transfer agent is living radical polymerization using the chain transfer agent as a chain transfer agent.
  • R 3 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group.
  • R 4 and R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • R 6 represents an alkyl group having 1 to 8 carbon atoms, aryl group, substituted aryl group, aromatic heterocyclic group, alkoxy group, acyl group, amide group, oxycarbonyl group, cyano group, allyl group or propargyl group.
  • R 7 represents an alkylene group having 1 to 18 carbon atoms.
  • X 1 represents an oxygen atom or —NZ—, N represents a nitrogen atom, Z represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a phenyl group.
  • X 2 represents a divalent organic group
  • X 2 represents a trivalent organic group
  • X 2 represents a tetravalent organic group. . ]
  • Item 3 The method for producing a multibranched polymer according to Item 1 or 2, wherein the first vinyl monomer is a vinyl monomer represented by the following general formula (9).
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aryl group, an aromatic heterocyclic group, an alkoxy group, an acyl group, an amide group, an oxycarbonyl group or a cyano group.
  • R 2 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, an aromatic heterocyclic group, a silyl group, or a fluorine atom.
  • Item 4 The use ratio of the first vinyl monomer to the second vinyl monomer (first vinyl monomer: second vinyl monomer) is 0.01: 99.99 to 50:50 in molar ratio.
  • Item 4. The method for producing a multi-branched polymer according to any one of Items 1 to 3, wherein
  • Item 5 A multi-branched polymer manufactured by the method according to any one of Items 1 to 4.
  • Item 6 A structural unit derived from a first vinyl monomer having a polymerization initiating group at the ⁇ -position of a vinyl bond, and a structural unit derived from a second vinyl monomer having no polymerization initiating group at the ⁇ -position of the vinyl bond Including multi-branched polymers.
  • Item 7 The multi-branched polymer according to Item 6, wherein the molecular weight distribution (PDI) measured by GPC method is less than 2.5.
  • PDI molecular weight distribution
  • Item 8 The multi-branched polymer according to Item 6 or 7, wherein the absolute molecular weight is 1,000 to 3,000,000.
  • FIG. 1 is a schematic diagram showing the molecular structure of the hyperbranched polymer obtained in Example 1.
  • FIG. 2 is a diagram showing a GPC trace over time in the first embodiment.
  • the production method of the present invention comprises living radical polymerization of a first vinyl monomer having a polymerization initiating group at the ⁇ -position of a vinyl bond and a second vinyl monomer having no polymerization initiating group at the ⁇ -position of the vinyl bond. It is a manufacturing method provided with.
  • “vinyl bond” means a carbon-carbon double bond capable of radical polymerization
  • “vinyl monomer” means a monomer having a carbon-carbon double bond capable of radical polymerization in the molecule. That means.
  • the first vinyl monomer is not particularly limited as long as it is a vinyl monomer having a functional group (polymerization initiation group) that functions as a polymerization initiation site for living radical polymerization at the ⁇ -position of the vinyl bond, but the following general formula (1) Preferably used.
  • Z represents a polymerization initiating group.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aryl group, an aromatic heterocyclic group, an alkoxy group, an acyl group, an amide group, an oxycarbonyl group or a cyano group.
  • the group represented by R 1 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aryl group, an aromatic heterocyclic group, an alkoxy group, an acyl group, an amide group, an oxycarbonyl group, a cyano group, A group, a silyl group or a fluorine atom, specifically as follows.
  • alkyl group having 1 to 8 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl.
  • the alkyl group may be substituted with a hetero element functional group.
  • a linear or branched alkyl group having 1 to 8 carbon atoms is preferred.
  • aryl group examples include a phenyl group and a naphthyl group.
  • aromatic heterocyclic group examples include a pyridyl group, a furyl group, and a thienyl group.
  • the alkoxy group is preferably a group in which an alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom.
  • a methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tet- A butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, and the like can be given.
  • acyl group examples include an acetyl group, a propionyl group, and a benzoyl group.
  • Examples of the amide group include —CONR 111 R 112 (R 111 and R 112 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group).
  • oxycarbonyl group a group represented by —COOR 12 (R 12 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group) is preferable, and examples thereof include a carboxyl group, a methoxycarbonyl group, an ethoxycarbonyl group, propylene. Examples thereof include a xoxycarbonyl group, an n-butoxycarbonyl group, a sec-butoxycarbonyl group, a ter-butoxycarbonyl group, an n-pentoxycarbonyl group, and a phenoxycarbonyl group.
  • Preferred oxycarbonyl groups are a methoxycarbonyl group and an ethoxycarbonyl group.
  • silyl group examples include a trimethylsilyl group and a triethylsilyl group.
  • the group represented by Z is a polymerization initiating group and is not particularly limited as long as it is a functional group (polymerization initiating group) that functions as a polymerization initiating site for living radical polymerization.
  • the polymerization initiating group is preferably —Te—R 2 .
  • the group represented by R 2 is an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group, and is specifically as follows.
  • alkyl group having 1 to 8 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl.
  • a straight chain or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
  • aryl group examples include a phenyl group and a naphthyl group.
  • aromatic heterocyclic group examples include a pyridyl group, a furyl group, and a thienyl group.
  • the bond dissociation energy of C-TeMe in the compound is calculated to be 216 kJ / mol by molecular orbital calculation.
  • the bond dissociation energy of C-TeMe in the following general formula (3) is calculated to be 160 kJ / mol
  • the following general formula (4) is a chain transfer agent of a living radical polymerization method (TERP method) using an organic tellurium compound.
  • the bond dissociation energy of C-TeMe is calculated as 154 kJ / mol.
  • the polymerization initiator group of the first vinyl monomer since the polymerization initiator group of the first vinyl monomer is directly bonded to the sp 2 carbon (at the ⁇ position of the vinyl bond), it does not function as a polymerization initiator group as it is. It is considered that the monomer vinyl bond functions as a polymerization initiating group only when it becomes a bond with sp 3 carbon by radical polymerization. Therefore, it is considered that the reactivity of the polymerizable functional group (vinyl bond) and the polymerization initiating group is linked, and the first vinyl monomer used in the present invention (hereinafter also referred to as a “blmer”) is used with a chain transfer agent.
  • branched structure can be uniformly controlled by living radical polymerization (see Scheme 3 below.
  • B * is a polymerization initiating group).
  • the second vinyl monomer may be any vinyl monomer that does not have the polymerization initiation group shown in the first vinyl monomer described above at the ⁇ -position of the vinyl bond and can be radically polymerized. It is preferable not to have a polymerization initiating group in the molecule. Specifically, the following vinyl monomers can be mentioned.
  • “(meth) acryl” means “at least one of acrylic and methacrylic”
  • “(meth) acrylic acid” means “at least one of acrylic acid and methacrylic acid”
  • “Acrylate” means "at least one of acrylate and methacrylate”.
  • (Meth) acrylates having an alicyclic alkyl group such as cyclohexyl (meth) acrylate, methyl cyclohexyl (meth) acrylate, cyclododecyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate, and the like.
  • (Meth) acrylate having an aromatic ring group such as benzyl (meth) acrylate, phenyl (meth) acrylate, and phenoxyethyl (meth) acrylate.
  • (Meth) acrylates having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like.
  • Aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, 4-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methoxystyrene, 2-hydroxymethylstyrene, 1-vinylnaphthalene.
  • a vinyl monomer having a carboxyl group such as a monomer obtained by reacting an acid anhydride such as phthalic acid.
  • Vinyl monomers having a sulfonic acid group such as styrene sulfonic acid, dimethylpropyl sulfonic acid (meth) acrylamide, ethyl sulfonate (meth) acrylate, ethyl sulfonate (meth) acrylamide, and vinyl sulfonic acid.
  • Vinyl monomers having a phosphate group such as methacryloyloxyethyl phosphate.
  • (Meth) acrylamides such as (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide and the like.
  • Secondary amine-containing unsaturated monomer such as N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylamide, 2- (dimethylamino) ethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, etc.
  • Quaternary ammonium base-containing unsaturated monomers such as N-2-hydroxy-3-acryloyloxypropyl-N, N, N-trimethylammonium chloride and N-methacryloylaminoethyl-N, N, N-dimethylbenzylammonium chloride.
  • Epoxy group-containing unsaturated monomers such as glycidyl (meth) acrylate.
  • Heterocyclic-containing unsaturated monomers such as 2-vinylthiophene, N-methyl-2-vinylpyrrole, 1-vinyl-2-pyrrolidone, 2-vinylpyridine, 4-vinylpyridine and the like.
  • Vinyl amides such as N-vinylformamide and N-vinylacetamide.
  • ⁇ -olefins such as 1-hexene, 1-octene and 1-decene.
  • Dienes such as butadiene, isoprene, 4-methyl-1,4-hexadiene, 7-methyl-1,6-octadiene.
  • (meth) acrylate having an aliphatic alkyl group (meth) acrylate having an alicyclic alkyl group, (meth) acrylate having a hydroxyl group, aromatic vinyl monomer, (meth) acrylamide, tertiary Amine-containing unsaturated monomers and heterocyclic-containing unsaturated monomers are preferred.
  • Living radical polymerization uses different chain transfer agents depending on the method used to stabilize the polymerization growth terminal. Examples include a method using a transition metal catalyst (ATRP method), a method using a sulfur-based reversible chain transfer agent (RAFT method), a method using an organic tellurium compound (TERP method), and a method using an organic iodine compound. Can do. Among these, the TERP method is preferable from the viewpoint of the diversity of monomers that can be used.
  • the average number of branches of a multi-branched polymer having a dendrimer-like structure can be controlled by controlling the amount of the first vinyl monomer used relative to the polymerization chain transfer agent. That is, in order to synthesize the N generation dendrimer, (2 N ⁇ 1) mol of the first vinyl monomer may be used with respect to 1 mol of the chain transfer agent.
  • the second vinyl monomer with respect to 1 mol of the chain transfer agent in the production method of the present invention is preferably used in an amount exceeding [2 (N + 1) ⁇ 1] mol with respect to 1 mol of the chain transfer agent, and the amount can be arbitrarily selected depending on the desired dendrimer-like structure. More preferably, the amount of the second vinyl monomer used relative to 1 mol of the chain transfer agent is 1 to 10,000 times the average number of molecular chains, more preferably 5 to 1,000 times.
  • the amount of the second vinyl monomer used can be, for example, 10 to 50,000 mol of the second vinyl monomer with respect to 1 mol of the chain transfer agent, preferably 25 to 10, 000 mol, more preferably 50 to 5,000 mol, still more preferably 75 to 1,000 mol.
  • the use ratio of the first vinyl monomer and the second vinyl monomer in the production method of the present invention is, for example, the first vinyl monomer and the second vinyl monomer Can be used in a molar ratio of 0.01: 99.99 to 50:50, preferably 0.1: 99.9 to 25:75, and more preferably 0.1: 99.99. 9 to 20:80, more preferably 0.5: 99.5 to 15:85.
  • the method using an organic tellurium compound is an organic tellurium compound represented by the following general formula (5), general formula (6), general formula (7) or general formula (8) as a chain transfer agent, or This is living radical polymerization using a macro chain transfer agent obtained from the organic tellurium compound (hereinafter collectively referred to simply as an organic tellurium compound) or the like as a chain transfer agent.
  • an organic tellurium compound hereinafter collectively referred to simply as an organic tellurium compound
  • one type of chain transfer agent may be selected from organic tellurium compounds, or two or more types may be used in combination.
  • a macro chain transfer agent is a living radical polymerization of a vinyl monomer using an organic tellurium compound represented by the following general formula (5), general formula (6), general formula (7) or general formula (8). Since it is a vinyl polymer obtained and the growth end of the vinyl copolymer is in the form of -TeR 3 derived from a tellurium compound (wherein R 3 is the same as the following), a chain transfer agent for living radical polymerization Can be used as The vinyl monomer can be arbitrarily selected from the structure of the desired multi-branched polymer, for example, from among the second vinyl monomers.
  • R 3 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group.
  • R 4 and R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • R 6 represents an alkyl group having 1 to 8 carbon atoms, aryl group, substituted aryl group, aromatic heterocyclic group, alkoxy group, acyl group, amide group, oxycarbonyl group, cyano group, allyl group or propargyl group.
  • R 7 represents an alkylene group having 1 to 18 carbon atoms.
  • X 1 represents an oxygen atom or —NZ—, N represents a nitrogen atom, Z represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a phenyl group.
  • X 2 represents a divalent organic group
  • X 2 represents a trivalent organic group
  • X 2 represents a tetravalent organic group. . ]
  • the group represented by R 3 is an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group, specifically as follows.
  • alkyl group having 1 to 8 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl.
  • a straight chain or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
  • aryl group examples include a phenyl group and a naphthyl group.
  • aromatic heterocyclic group examples include a pyridyl group, a furyl group, and a thienyl group.
  • R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Specific examples are as follows.
  • alkyl group having 1 to 8 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl.
  • a straight chain or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
  • the group represented by R 6 is a C 1-8 alkyl group, aryl group, substituted aryl group, aromatic heterocyclic group, alkoxy group, acyl group, amide group, oxycarbonyl group, cyano group, allyl group or A propargyl group, specifically as follows.
  • alkyl group having 1 to 8 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl.
  • a straight chain or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
  • aryl group examples include a phenyl group and a naphthyl group.
  • a phenyl group is preferred.
  • Examples of the substituted aryl group include a phenyl group having a substituent and a naphthyl group having a substituent.
  • Examples of the substituent of the aryl group having the above substituent include a halogen atom, a hydroxyl group, an alkoxy group, an amino group, a nitro group, a cyano group, and a carbonyl-containing group represented by —COR 61 (R 61 represents a carbon number). 1-8 alkyl groups, aryl groups, C 1-8 alkoxy groups or aryloxy groups), sulfonyl groups, trifluoromethyl groups, and the like. These substituents are preferably substituted by 1 or 2 substituents.
  • aromatic heterocyclic group examples include a pyridyl group, a furyl group, and a thienyl group.
  • the alkoxy group is preferably a group in which an alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom.
  • a methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tet- A butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, and the like can be given.
  • acyl group examples include an acetyl group, a propionyl group, and a benzoyl group.
  • amide group examples include —CONR 621 R 622 (R 621 and R 622 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group).
  • oxycarbonyl group a group represented by —COOR 63 (R 63 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group) is preferable.
  • R 63 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group
  • R 63 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group
  • R 63 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group
  • R 63 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group
  • R 63 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group
  • a carboxyl group a methoxycarbonyl group, an ethoxycarbonyl group, propoxy group
  • Examples thereof include a carbonyl group, an n-
  • R 641 and R 642 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 643 , R 644 , R 642 645 is each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group, and each substituent may be linked by a cyclic structure).
  • R 651 and R 652 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 653 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • Aryl group or silyl group are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 7 is an alkylene group having 1 to 18 carbon atoms, and is specifically as follows.
  • alkylene group having 1 to 18 carbon atoms examples include methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, isobutylene group, s-butylene group, t-butylene group, n-pentylene group, 1 -Methyl-n-butylene group, 2-methyl-n-butylene group, 3-methyl-n-butylene group, 1,1-dimethyl-n-propylene group, 1,2-dimethyl-n-propylene group, 2, 2-dimethyl-n-propylene group, 1-ethyl-n-propylene group, n-hexylene group, 1-methyl-n-pentylene group, 2-methyl-n-pentylene group, 3-methyl-n-pentylene group, 4-methyl-n-pentylene group, 1,1-dimethyl-n-butylene group, 1,2-dimethyl-n-butylene group, 1,3-dimethyl-
  • the group represented as X 1 is an oxygen atom or —NZ—.
  • N is a nitrogen atom
  • Z is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a phenyl group.
  • -NH- is preferred.
  • the group represented by X 2 is a polyvalent organic group and is not particularly limited as long as it connects a plurality of R 7 .
  • X 2 represents a divalent organic group
  • X 2 represents a trivalent organic group
  • X 2 represents a tetravalent organic group.
  • X 2 in the general formula (6) includes groups represented by —NH—, —CH 2 —, —O— and the like.
  • Examples of X 2 in the general formula (7) include groups represented by —N ⁇ , —CH ⁇ and the like.
  • Examples of X 2 in the general formula (8) include groups represented by> C ⁇ and the like.
  • organic tellurium compound represented by the general formula (5) examples include (methylterranylmethyl) benzene, (methylterranylmethyl) naphthalene, ethyl-2-methyl-2-methylterranyl-propionate, and ethyl-2-methyl.
  • -2-n-butylterranyl-propionate (2-trimethylsiloxyethyl) -2-methyl-2-methylterranyl-propionate
  • (2-hydroxyethyl) -2-methyl-2-methylterranyl-propionate (2-trimethylsilylpropargyl)
  • -2-methyl-2-methylterranyl-propinate examples include (methylterranylmethyl) benzene, (methylterranylmethyl) naphthalene, ethyl-2-methyl-2-methylterranyl-propionate, and ethyl-2-methyl.
  • -2-n-butylterranyl-propionate (2-trimethylsil
  • the first vinyl monomer is preferably a vinyl monomer represented by the general formula (9).
  • R 1 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aryl group, an aromatic heterocyclic group, an alkoxy group, an acyl group, an amide group, an oxycarbonyl group, or a cyano group silyl group. Or represents a fluorine atom.
  • R 2 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group.
  • the group represented by R 1 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aryl group, an aromatic heterocyclic group, an alkoxy group, an acyl group, an amide group, an oxycarbonyl group or a cyano group. Specifically, it is as follows.
  • alkyl group having 1 to 8 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl.
  • a straight chain or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
  • aryl group examples include a phenyl group and a naphthyl group.
  • aromatic heterocyclic group examples include a pyridyl group, a furyl group, and a thienyl group.
  • the alkoxy group is preferably a group in which an alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom.
  • a methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tet- A butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, and the like can be given.
  • acyl group examples include an acetyl group, a propionyl group, and a benzoyl group.
  • Examples of the amide group include —CONR 111 R 112 (R 111 and R 112 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group).
  • oxycarbonyl group a group represented by —COOR 12 (R 12 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group) is preferable, and examples thereof include a carboxyl group, a methoxycarbonyl group, an ethoxycarbonyl group, propylene. Examples thereof include a xoxycarbonyl group, an n-butoxycarbonyl group, a sec-butoxycarbonyl group, a ter-butoxycarbonyl group, an n-pentoxycarbonyl group, and a phenoxycarbonyl group.
  • Preferred oxycarbonyl groups are a methoxycarbonyl group and an ethoxycarbonyl group.
  • silyl group examples include a trimethylsilyl group and a triethylsilyl group.
  • the group represented by R 2 is an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group, and is specifically as follows.
  • alkyl group having 1 to 8 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl.
  • a straight chain or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
  • aryl group examples include a phenyl group and a naphthyl group.
  • aromatic heterocyclic group examples include a pyridyl group, a furyl group, and a thienyl group.
  • vinyl monomer represented by the general formula (9) examples include 2-methyl teranyl propene, 2-butyl teranyl propene, 2-phenyl terranyl propene, 2-methyl teranyl butene, and 2-butyl terrane. And nylbutene.
  • the TERP method may be performed by further adding an azo polymerization initiator and / or an organic ditellurium compound represented by the general formula (10) for the purpose of accelerating the reaction and controlling the molecular weight according to the type of vinyl monomer. Good.
  • a method of producing a vinyl polymer by polymerizing a first vinyl monomer and a second vinyl monomer using any of the following (a) to (d) can be mentioned.
  • A Organic tellurium compound.
  • B A mixture of an organic tellurium compound and an azo polymerization initiator.
  • C A mixture of an organic tellurium compound and an organic ditellurium compound.
  • D A mixture of an organic tellurium compound, an azo polymerization initiator, and an organic ditellurium compound.
  • R 3 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group.
  • organic ditellurium compound represented by the general formula (10) include dimethylditelluride, diethylditelluride, di-n-propylditelluride, diisopropylditelluride, dicyclopropylditelluride, N-butyl ditelluride, di-s-butyl ditelluride, di-t-butyl ditelluride, dicyclobutyl ditelluride, diphenyl ditelluride, bis- (p-methoxyphenyl) ditelluride, bis- (p-aminophenyl) ditelluride, bis -(P-nitrophenyl) ditelluride, bis- (p-cyanophenyl) ditelluride, bis- (p-sulfonylphenyl) ditelluride, dinaphthyl ditelluride, dipyridyl ditelluride and the like can be mentioned.
  • the azo polymerization initiator can be used without particular limitation as long as it is an azo polymerization initiator used in normal radical polymerization.
  • 2,2′-azobis isobutyronitrile) (AIBN), 2,2′-azobis (2-methylbutyronitrile) (AMBN), 2,2′-azobis (2,4-dimethylvaleronitrile) (ADVN), 1,1′-azobis (1-cyclohexanecarbonitrile) (ACHN), dimethyl-2,2′-azobisisobutyrate (MAIB), 4,4′-azobis (4-cyanovaleric acid) (ACVA), 1,1′-azobis (1-acetoxy-1-phenylethane), 2,2′-azobis (2-methylbutyramide), 2,2′-azobis (4-methoxy-2,4- Dimethylvaleronitrile) (V-70), 2,2′-azobis (2-methylamidinopropane) dihydrochloride, 2,2′-azobis [2- (2-imida
  • the polymerization process is a container substituted with an inert gas, and the first vinyl monomer, the second vinyl monomer and the organic tellurium compound are further mixed with an azo compound for the purpose of promoting the reaction or controlling the molecular weight according to the type of vinyl monomer.
  • a system polymerization initiator and / or an organic ditellurium compound are mixed.
  • the inert gas include nitrogen, argon, helium and the like. Argon and nitrogen are preferable. Nitrogen is particularly preferable.
  • the amount of the second vinyl monomer used in the above (a), (b), (c) and (d) can be appropriately adjusted depending on the structure of the target vinyl polymer.
  • the amount of the second vinyl monomer can be 10 to 50,000 mol, preferably 25 to 10,000 mol, more preferably 50 to 5,000 mol, and still more preferably 1 mol of the organic tellurium compound. Is 75 to 1,000 mol.
  • the use ratio of the first vinyl monomer and the second vinyl monomer in the above (a), (b), (c) and (d) can be appropriately adjusted depending on the degree of branching of the target vinyl copolymer. it can.
  • the use ratio of the first vinyl monomer to the second vinyl monomer can be 0.01: 99.99 to 50:50 in molar ratio.
  • the amount of the azo polymerization initiator used is usually 0.01 to 1 mol of the azo polymerization initiator with respect to 1 mol of the organic tellurium compound. It is preferably 25 to 5,000, more preferably 50 to 1,000.
  • the organic ditellurium compound is usually used in an amount of 0.1 to 10 mol per 1 mol of the organic tellurium compound.
  • the amount of the azo polymerization initiator used is usually an azo polymerization start relative to a total of 1 mol of the organic tellurium compound and the organic ditellurium compound.
  • the agent can be 0.01 to 10 mol.
  • the polymerization step can be carried out without a solvent, but using a solvent (aprotic solvent or protic solvent) generally used in radical polymerization and stirring the above mixture.
  • a solvent aprotic solvent or protic solvent
  • the aprotic solvent that can be used is not particularly limited.
  • examples include paol, chloroform, carbon tetrachloride, tetrahydrofuran (THF), ethyl acetate, trifluoromethylbenzene, propylene glycol monomethyl ether acetate and the like.
  • protic solvents examples include water, methanol, ethanol, isopropanol, n-butanol, ethyl cellosolve, butyl cellosolve, 1-methoxy-2-propanol, diacetone alcohol, and the like.
  • the amount of the solvent used may be appropriately adjusted. For example, it is usually in the range of 0.001 to 50 ml, preferably in the range of 0.01 to 10 ml, more preferably 0. It is in the range of 02 to 3 ml.
  • reaction temperature and reaction time may be adjusted as appropriate depending on the molecular weight or molecular weight distribution of the target vinyl polymer, and the mixture is usually stirred in the range of 0 ° C to 150 ° C for 1 minute to 150 hours.
  • the growth terminal of the vinyl copolymer obtained by the polymerization step is -TeR 2 (wherein R 2 is the same as above) and -TeR 3 (wherein R 3 is the same as above) derived from an organic tellurium compound. Therefore, it is possible to improve the function of the vinyl polymer by introducing various substituents / functional groups at the growth terminal. It can also be used as a macro chain transfer agent.
  • the solvent and residual monomer are removed from the polymerization solution under reduced pressure to take out the target vinyl polymer, or the target vinyl polymer is isolated by reprecipitation using an insoluble solvent. be able to.
  • the growth terminal of the obtained vinyl polymer is deactivated, but tellurium atoms may remain. Since the vinyl polymer having a tellurium atom remaining at the terminal is colored or inferior in thermal stability, a radical reduction method using tributylstannane or a thiol compound, and further, activated carbon, silica gel, activated alumina, activated clay, molecular sieves and A method of adsorbing with a polymer adsorbent, a method of adsorbing a metal with an ion exchange resin, etc., adding a peroxide such as hydrogen peroxide or benzoyl peroxide, or blowing air or oxygen into the system Liquid-liquid extraction method or solid-liquid extraction method that removes residual tellurium compounds by oxidizing and decomposing tellurium atoms at the end of vinyl polymer with water and combining with an appropriate solvent.
  • a purification method in a solution state such as ultrafiltration can
  • a method using a transition metal catalyst includes an organic halogen compound or a macro chain transfer agent obtained from the organic halogen compound in the presence of a Redox catalyst comprising a transition metal complex (hereinafter collectively referred to as an ATRP initiator). Is a living radical polymerization method using a chain transfer agent.
  • one type of chain transfer agent may be selected from organic halogen compounds, or two or more types may be used in combination.
  • the transition metal complex used as the redox catalyst is a complex of a metal element selected from Groups 8 to 11 of the periodic table.
  • the transition metal complex is composed of a transition metal and an organic ligand.
  • Specific examples of the transition metal are copper, nickel, ruthenium or iron.
  • a copper complex is preferable from the viewpoint of reaction control and cost.
  • Examples of the monovalent copper compound include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, and cuprous perchlorate. Of these, cuprous chloride and cuprous bromide are preferred from the viewpoint of polymerization control.
  • Polymerization can also be carried out by adding a reducing agent to cupric chloride and cupric bromide, which are more stable and easy to handle, to cause cuprous chloride and cuprous bromide to emit in the polymerization system.
  • the organic ligand that forms a complex with the transition metal is preferably a bidentate or more nitrogen ligand, such as 2,2′-bipyridyl, 4,4′-bipyridyl, ethylenediamine, tetramethylethylenediamine, N , N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, tris [2- (dimethylamino) ethyl] amine, tris [2- (pyridyl) methyl] amine and the like.
  • nitrogen ligand such as 2,2′-bipyridyl, 4,4′-bipyridyl, ethylenediamine, tetramethylethylenediamine, N , N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, tris [2- (dimethylamino) ethyl] amine, tris [2- (pyridyl) methyl] amine and
  • the transition metal salt and the organic ligand may be added separately to form a transition metal complex in the polymerization system, or the transition metal complex prepared in advance from the transition metal salt and the organic ligand. May be added to the polymerization system.
  • the former method is preferable when the transition metal is copper, and the latter method is preferable when ruthenium, iron, or nickel.
  • organic halogen compound various organic compounds having one or more carbon-halogen bonds in the molecule (where halogen is other than fluorine) can be used, including aliphatic hydrocarbon halides and aromatic hydrocarbons. System halides and the like.
  • aliphatic hydrocarbon halide examples include 2-chloropropionamide, 2-bromopropionamide, 2-chloroacetamide, ethyl 2-bromoisobutyrate, methyl 2-bromopropionate, t-bromopropionate t- Examples include butyl, methyl 2-bromoisobutyrate, 2-hydroxyethyl 2-bromoisobutyrate, and the like.
  • aromatic hydrocarbon halide examples include benzal chloride, benzyl bromide, 4-bromobenzyl bromide, benzenesulfonyl chloride and the like.
  • the first vinyl monomer is preferably a vinyl monomer represented by the general formula (11).
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aryl group, an aromatic heterocyclic group, an alkoxy group, an acyl group, an amide group, an oxycarbonyl group, a cyano group, a silyl group, Represents a group or a fluorine atom.
  • Z 2 represents chlorine or iodine.
  • the group represented by R 1 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aryl group, an aromatic heterocyclic group, an alkoxy group, an acyl group, an amide group, an oxycarbonyl group or a cyano group. Specifically, it is as follows.
  • alkyl group having 1 to 8 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl.
  • a linear or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or an ethyl group is more preferable.
  • aryl group examples include a phenyl group and a naphthyl group.
  • aromatic heterocyclic group examples include a pyridyl group, a furyl group, and a thienyl group.
  • the alkoxy group is preferably a group in which an alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom.
  • a methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tet- A butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, and the like can be given.
  • acyl group examples include an acetyl group, a propionyl group, and a benzoyl group.
  • Examples of the amide group include —CONR 111 R 112 (R 111 and R 112 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group).
  • oxycarbonyl group a group represented by —COOR 12 (R 12 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group) is preferable, and examples thereof include a carboxyl group, a methoxycarbonyl group, an ethoxycarbonyl group, propylene. Examples thereof include a xoxycarbonyl group, an n-butoxycarbonyl group, a sec-butoxycarbonyl group, a ter-butoxycarbonyl group, an n-pentoxycarbonyl group, and a phenoxycarbonyl group.
  • Preferred oxycarbonyl groups include methoxycarbonyl group and ethoxycarbonyl group.
  • silyl group examples include a trimethylsilyl group and a triethylsilyl group.
  • the first vinyl monomer, the second vinyl monomer, the transition metal complex, and the ATRP initiator are mixed in a container.
  • the reaction after mixing is preferably performed in an inert gas atmosphere such as nitrogen, argon or helium in order to suppress side reactions.
  • the amount of the second vinyl monomer used can be appropriately adjusted depending on the physical properties of the target vinyl polymer.
  • the second vinyl monomer can be 10 to 50,000 mol, preferably 25 to 10,000 mol, more preferably 50 to 5,000 mol, and still more preferably Is 75 to 1,000 mol.
  • the use ratio of the first vinyl monomer and the second vinyl monomer can be appropriately adjusted depending on the degree of branching of the target vinyl copolymer.
  • the use ratio of the first vinyl monomer to the second vinyl monomer (first vinyl monomer: second vinyl monomer) can be 0.01: 99.99 to 50:50 in molar ratio.
  • the ratio is preferably 0.1: 99.9 to 25:75, more preferably 0.1: 99.9 to 20:80, and still more preferably 0.5: 99.5 to 15:85.
  • the amount of the transition metal complex used is 0.03 to 3 mol, preferably 0.1 to 2 mol, relative to 1 mol of the ATRP initiator.
  • the amount of the organic ligand used is usually 1 to 5 mol, preferably 1 to 3 mol with respect to 1 mol of the transition metal.
  • the polymerization step can be carried out without solvent, but can also be carried out by stirring the above mixture using a solvent used in the ATRP method.
  • reaction temperature and reaction time may be appropriately adjusted depending on the molecular weight or molecular weight distribution of the target vinyl polymer, and are usually stirred in the range of 0 to 150 ° C. for 1 minute to 150 hours.
  • the vinyl polymer obtained by the polymerization step has a polymerization initiating group at the growth end, various substituents and functional groups can be introduced at the growth end to improve the function of the vinyl polymer. It can also be used as a macro chain transfer agent.
  • the solvent used and residual monomers are removed from the polymerization solution under reduced pressure to take out the desired vinyl polymer, or the desired vinyl polymer is isolated by reprecipitation using an insoluble solvent. can do.
  • the multi-branched polymer of the present invention comprises a structural unit derived from a first vinyl monomer having a polymerization initiating group at the ⁇ -position of a vinyl bond, and a second vinyl monomer having no polymerization initiating group at the ⁇ -position of the vinyl bond. It is a vinyl polymer containing the derived structural unit.
  • the multibranched polymer of the present invention can be obtained, for example, by the production method described above.
  • the absolute molecular weight of the vinyl polymer (multi-branched polymer) obtained by the production method of the present invention can be appropriately adjusted depending on the reaction time and the amount of the chain transfer agent, etc., but should be 1,000 to 3,000,000. Is more preferable, 3,000 to 1,000,000 is more preferable, and 5,000 to 500,000 is still more preferable.
  • the absolute molecular weight of the vinyl polymer is determined by the nuclear magnetic resonance spectrum (hereinafter referred to as “NMR”) method or gel permeation chromatography (hereinafter referred to as “GPC”) / multi-angle light scattering (MALLS).
  • NMR nuclear magnetic resonance spectrum
  • GPC gel permeation chromatography
  • MALLS multi-angle light scattering
  • the molecular weight obtained by the GPC method is estimated to be smaller than the absolute molecular weight. Therefore, the degree of branching of the multi-branched polymer can also be judged from the difference between the molecular weight obtained by the GPC method and the absolute molecular weight.
  • the molecular weight distribution (PDI) measured by the GPC method of the vinyl polymer (multi-branched polymer) obtained by the production method of the present invention can be controlled to less than 2.5, preferably less than 2.3, and more Preferably it is less than 2.0.
  • PDI is determined by (weight average molecular weight of vinyl polymer (Mw (GPC))) / (number average molecular weight of vinyl polymer (Mn (GPC))).
  • Mw weight average molecular weight of vinyl polymer
  • Mn number average molecular weight of vinyl polymer
  • the first vinyl monomer is considered to be a branched portion of the multi-branched polymer.
  • the second vinyl monomer can be appropriately adjusted according to the ratio of use.
  • the production method of the present invention is an industrially advantageous method because there is a method in which a multi-branched polymer having a narrow molecular weight distribution can be obtained by a simple production method as described above. Further, the multi-branched polymer obtained by the production method of the present invention is highly controlled in branching, and it is possible to introduce a substituent and a functional group as appropriate to the polymer terminal, for example, diagnosis, drug transport system, etc. It can be suitably used for medical applications, environmental materials such as batteries, catalyst carriers, lubricating oil additives, aviation fuel additives, and the like.
  • Dimethylditelluride (1.43 g, 5 mmol) and 20 mL of THF are added to a separately prepared dried, nitrogen-substituted 50 mL two-necked flask, and bromine (0.26 mL, 5 mmol) is further added thereto at 0 ° C. Stir for minutes.
  • the solution was added to the previously prepared solution using a cannula. After stirring for 30 minutes at this temperature, the solution was poured into 300 mL of ice water to stop the reaction.
  • the organic phase was extracted with 30 mL of pentane, and this operation was performed 5 times.
  • the collected organic phase was washed 10 times with 20 mL of water, and then the organic phase was dried over MgSO 4 and then filtered. After the solvent was carefully distilled off, 0.79 g of product was obtained by distillation under reduced pressure (51-53 ° C./33 mmHg). Yield 43%.
  • VT3 Hexylterranilethene
  • the obtained Int2 was dissolved in 5 mL of THF, Bu 3 SnH (100 ⁇ L, 0.4 mmol) was added, and the mixture was stirred at 60 ° C. for 1 hour under white LED (6W) irradiation.
  • the polymer obtained by adding the reaction solution to 100 mL of hexane and reprecipitating the polymer (twice) has a number average molecular weight (Mn (GPC)) by GPC method of 15,100 and PDI of 1.12. there were.
  • Int3 A compound represented by the following formula (hereinafter referred to as Int3) was synthesized by the following method.
  • COMMU 1.1 g, 2 mmol was added to a solution of 2-methyl-2- (methylterranyl) propanoic acid (0.55 g, 2.5 mmol) and DIEA (0.85 mL, 5.0 mmol) in DMF (10 mL) under a nitrogen gas atmosphere. 0.5 mmol was added and stirred at room temperature for 30 minutes, then tris (2-aminoethyl) amine (0.11 mL, 0.75 mmol) was added, and the mixture was stirred at room temperature for 3 hours.
  • the obtained Int5 was dissolved in 5 mL of THF, Bu 3 SnH (100 ⁇ L, 0.4 mmol) was added, and the mixture was stirred at 60 ° C. for 1 hour under irradiation with white LED (6W).
  • the polymer obtained by adding the reaction solution to 100 mL of hexane and reprecipitating the polymer (twice) has a number average molecular weight (Mn (GPC)) of 14,972 by the GPC method and PDI of 1.17. there were.
  • Example 1 A flask equipped with a stirrer is charged with MA (0.45 mL, 5 mmol) as a second vinyl monomer, a benzene solution of AIBN (12 ⁇ L, 0.002 mmol), and hydroquinone dimethyl ether (3.0 mg, 0.022 mmol) as an internal standard. After substitution with nitrogen, Int1 (1.8 ⁇ L, 0.01 mmol) as a chain transfer agent and VT1 (19.5 ⁇ L, 0.15 mmol) as a first vinyl monomer were added, and the temperature was 60 ° C. for 24 hours in the dark. Stir. The change with time (polymerization rate) of the consumption of VT1 and MA was monitored by 1 H-NMR, and was finally 99% or more and 89%, respectively.
  • the produced polymer was dissolved in 5 mL of THF, Bu 3 SnH (100 ⁇ L, 0.4 mmol) was added, and the mixture was stirred at 60 ° C. for 1 hour under irradiation with a white LED (6 W).
  • the reaction solution was added to 100 mL of hexane to reprecipitate the polymer (twice) to obtain 0.41 g of the polymer.
  • the number average molecular weight (Mn (GPC)) and PDI were calculated
  • Mw (MALLS) was calculated
  • Mn (MALLS) was computed from Mw (MALLS) and PDI
  • Mn (MALLS) was made into the absolute molecular weight.
  • Mw (MALLS) was calculated
  • Mn (MALLS) was computed from Mw (MALLS) and PDI
  • Mw (MALLS) was calculated
  • Mn (MALLS) was computed from Mw (MALLS) and PDI
  • Mn (MALLS) was made into the absolute molecular weight.
  • Example 2 The same procedure as in Example 1 was performed except that the amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer. Further, Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as an absolute molecular weight. The results are shown in Table 1.
  • Example 3 The same procedure as in Example 1 was performed except that the amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer. Further, Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as an absolute molecular weight. The results are shown in Table 1.
  • Example 4 The same procedure as in Example 1 was performed except that the amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer.
  • Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as the absolute molecular weight. The results are shown in Table 1. Further, the intrinsic viscosity of the obtained polymer was 0.0213 L / g determined by a viscometer.
  • Example 5 The same procedure as in Example 1 was performed except that the amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer.
  • Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as the absolute molecular weight. The results are shown in Table 1. Further, the intrinsic viscosity of the obtained polymer was 0.0284 L / g determined by a viscometer.
  • Example 6 The same procedure as in Example 1 was performed except that the amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer. Further, Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as an absolute molecular weight. The results are shown in Table 1.
  • Example 7 The same procedure as in Example 1 was performed except that the amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer. Further, Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as an absolute molecular weight. The results are shown in Table 1.
  • Example 8 The amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1, and when the polymerization process stirring was 24 hours, AIBN benzene solution (12 ⁇ L, The same procedure as in Example 1 was performed except that 0.002 mmol) was added.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer. Further, Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as an absolute molecular weight. The results are shown in Table 1.
  • Example 9 The amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1, and when the polymerization process stirring was 24 hours, AIBN benzene solution (12 ⁇ L, The same procedure as in Example 1 was performed except that 0.002 mmol) was added.
  • Table 1 shows Mn (MALLS), Mn (GPC) and PDI which are absolute molecular weights of the obtained polymer.
  • Example 10 The amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1, and when the polymerization process was stirred for 11 hours and 71 hours, a solution of AIBN in benzene The same operation as in Example 1 was carried out except that (12 ⁇ L, 0.002 mmol) was added.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer. Further, Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as an absolute molecular weight. The results are shown in Table 1.
  • Example 11 Example 1 except that the first vinyl monomer was changed from VT1 to VT2, and the amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1. It carried out similarly. Table 1 shows Mn (GPC) and PDI of the obtained polymer. Further, Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as an absolute molecular weight. The results are shown in Table 1.
  • Example 12 The polymerization initiator was changed from Int1 to Int2, and the amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1, as in Example 1. Carried out. Table 1 shows Mn (GPC) and PDI of the obtained polymer. Further, Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, Mn (MALLS) was defined as the absolute molecular weight, and the results are shown in Table 1.
  • Example 13 The polymerization initiator was changed from Int1 to Int3, the chain transfer agent, the amount ratio of the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1, and the stirring during the polymerization step was 12 hours.
  • the same procedure as in Example 1 was performed except that a benzene solution of AIBN (12 ⁇ L, 0.002 mmol) was added at the time point.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer. Further, Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as an absolute molecular weight. The results are shown in Table 1.
  • Example 14 The polymerization initiator was changed from Int1 to Int4, the chain transfer agent, the first vinyl monomer and the second vinyl monomer were changed in quantity ratio and reaction time as shown in Table 1, and the stirring during the polymerization was 72 hours.
  • the same procedure as in Example 1 was performed except that a benzene solution of AIBN (12 ⁇ L, 0.002 mmol) was added at the time point.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer. Further, Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as an absolute molecular weight. The results are shown in Table 1.
  • Example 15 The polymerization initiator was changed from Int1 to Int5, and the amount ratio of the chain transfer agent, the first vinyl monomer and the second vinyl monomer and the reaction time were changed as shown in Table 1, as in Example 1. Carried out. Table 1 shows Mn (GPC) and PDI of the obtained polymer. Moreover, about the obtained polymer, the number average molecular weight (Mn (NMR)) was calculated
  • Example 16 Except that the second vinyl monomer was changed to acrylic acid (AA), the chain transfer agent, the amount ratio of the first vinyl monomer and the second vinyl monomer, and the reaction time were changed as shown in Table 1. Performed as in Example 1. Table 1 shows Mn (GPC) and PDI of the obtained polymer. Moreover, Mn (NMR) of the obtained polymer was calculated
  • Example 17 Except for changing the second vinyl monomer to N, N-dimethylacrylamide (DMAA), changing the chain transfer agent, the amount ratio of the first vinyl monomer and the second vinyl monomer, and the reaction time as shown in Table 1. This was carried out in the same manner as in Example 1.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer.
  • Mn (NMR) of the obtained polymer was calculated
  • Example 18 In a nitrogen atmosphere, a flask equipped with a stirrer was charged with Int1 (1.8 ⁇ L, 0.01 mmol) as the chain transfer agent, VT3 (32.5 ⁇ L, 0.15 mmol) as the first vinyl monomer, and methacrylic as the second vinyl monomer. Methyl acid (hereinafter referred to as MMA, 0.53 mL, 5 mmol) and a solution of AIBN in benzene (12 ⁇ L, 0.002 mmol) were added, and the mixture was stirred at a temperature of 60 ° C. in the dark for 15 hours.
  • MMA Methyl acid
  • AIBN AIBN
  • Example 1 The same procedure as in Example 1 was performed except that the first vinyl monomer was not used and the reaction time was changed as shown in Table 1.
  • Table 1 shows Mn (GPC) and PDI of the obtained polymer. Further, Mn (MALLS) was calculated from Mw (MALLS) and PDI of the obtained polymer, and Mn (MALLS) was defined as an absolute molecular weight. The results are shown in Table 1.
  • FIG. 2 is a diagram showing the GPC trace over time in Example 1.
  • FIG. 2 it can be seen that during polymerization, the GPC trace is always unimodal and the branching is controlled.
  • Mn (GPC) tends to decrease as the amount of the first vinyl monomer used increases, but the absolute molecular weight changes greatly. I can't see it. From this, it can be seen that the degree of branching increases as the amount of the first vinyl monomer used increases. From the results of Examples 1 to 3, Mn (GPC) and the absolute molecular weight increase with an increase in the amount of the second vinyl monomer used, so that the molecular weight increases with an increase in the amount of the second vinyl monomer used. Recognize. In addition, it can be seen from the results of Examples 1, 4 and 5 that the intrinsic viscosity decreases as the degree of branching increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Abstract

分子量分布の幅の狭い多分岐ポリマーを、ワンポットで製造することができる、多分岐ポリマーの製造方法及び多分岐ポリマーを提供する。 ビニル結合のα位に重合開始基を有する第一のビニルモノマーと、ビニル結合のα位に重合開始基を有さない第二のビニルモノマーとをリビングラジカル重合する工程を備える、多分岐ポリマーの製造方法である。

Description

多分岐ポリマーの製造方法及び多分岐ポリマー
 本発明は、多分岐ポリマーの製造方法及び多分岐ポリマーに関する。
 多分岐ポリマーは、デンドロン(樹枝状)やデンドリマーに代表される数多くの枝分かれ構造を持つポリマーである。多分岐ポリマーは直鎖状ポリマーに比べ流体力学半径が小さいことから、溶解性が大きく向上、粘度が大きく低下、ガラス転移温度が大きく変化する等の特徴を有している。そのため、医療業界、化学業界等において、その利用方法が広く検討されている。
 多分岐ポリマーの合成法としてこれまで二つが知られている。一つは、デンドリマーの合成法であり、AB型モノマー(A及びBは、互いに異なる官能基a及びbを有する有機基であり、官能基a及びbは、互いに化学的に縮合反応や、付加反応を起こすことができるものである。)を段階的に反応させる方法(下記スキーム1参照)である。これにより核となる分子を中心に樹枝状分岐した構造を持つポリマーが得られるが、モノマー、オリゴマー、ポリマー同士が互いに反応することにより、分岐構造が不均一であるとともに、多分散のポリマーが得られる。規則正しく完全に樹枝状分岐した構造を持つ単分散のポリマーが得られる方法も知られているが、その製造工程は非常に煩雑である。このため、デンドリマーが実用化された例はこれまでない。
 スキーム1:AB型モノマーを使用する方法
Figure JPOXMLDOC01-appb-C000006
 もう一つが、イニマーと呼ばれる同一分子内に重合性官能基及び重合開始基を有するモノマーを用いた多分岐ポリマーの合成法(下記スキーム2参照。スキーム2中、Bは重合開始基である。)である。例えば、特許文献1が開示されている。
 スキーム2:イニマーを使用する方法
Figure JPOXMLDOC01-appb-C000007
特開2013-148798号公報
 特許文献1のように、イニマーを用いる製造方法は容易であるが、重合性官能基と重合開始基との反応性が連動しないため重合の制御が困難である。そのため、モノマー、オリゴマー及びポリマー同士が互いに反応することにより、分岐構造が不均一であるとともに、多分散で分子量分布の広いポリマーが生成してしまうという問題がある。また、イニマーを別に製造してから多分岐ポリマーを製造する必要がある。
 本発明の目的は、イニマーの問題点を解決し、分子量分布の幅が狭い多分岐ポリマーを、ワンポットで製造することができる、多分岐ポリマーの製造方法及び多分岐ポリマーを提供することにある。
 本発明は、以下の多分岐ポリマーの製造方法及び多分岐ポリマーを提供する。
 項1 ビニル結合のα位に重合開始基を有する第一のビニルモノマーと、ビニル結合のα位に重合開始基を有さない第二のビニルモノマーとをリビングラジカル重合する工程を備える、多分岐ポリマーの製造方法。
 項2 前記リビングラジカル重合が、下記一般式(5)、下記一般式(6)、下記一般式(7)若しくは下記一般式(8)で表される有機テルル化合物、又は前記有機テルル化合物から得られるマクロ連鎖移動剤を連鎖移動剤として用いるリビングラジカル重合であることを特徴とする、項1に記載の多分岐ポリマーの製造方法。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 〔一般式(5)~(8)において、Rは炭素数1~8のアルキル基、アリール基又は芳香族ヘテロ環基を表す。R及びRは、それぞれ独立に水素原子又は炭素数1~8のアルキル基を表す。Rは炭素数1~8のアルキル基、アリール基、置換アリール基、芳香族へテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基、シアノ基、アリル基又はプロパルギル基を表す。Rは、炭素数1~18のアルキレン基を表す。Xは、酸素原子又は-NZ-を表し、Nは窒素原子を表し、Zは水素原子、炭素数1~8のアルキル基又はフェニル基を表す。一般式(6)においてXは2価の有機基を表し、一般式(7)においてXは3価の有機基を表し、一般式(8)においてXは4価の有機基を表す。〕
 項3 前記第一のビニルモノマーが下記一般式(9)で表されるビニルモノマーであることを特徴とする、項1又は2に記載の多分岐ポリマーの製造方法。
Figure JPOXMLDOC01-appb-C000012
 〔一般式(9)において、Rは水素原子、炭素数1~8のアルキル基、アリール基、芳香族へテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基又はシアノ基を表す。Rは炭素数1~8のアルキル基、アリール基、芳香族ヘテロ環基、シリル基又はフッ素原子を表す。〕
 項4 前記第一のビニルモノマーと前記第二のビニルモノマーとの使用比率(第一のビニルモノマー:第二のビニルモノマー)がモル比で、0.01:99.99~50:50であることを特徴とする、項1~3のいずれか一項に記載の多分岐ポリマーの製造方法。
 項5 項1~4のいずれか一項に記載の製造方法で製造されたことを特徴とする、多分岐ポリマー。
 項6 ビニル結合のα位に重合開始基を有する第一のビニルモノマーに由来する構造単位と、ビニル結合のα位に重合開始基を有さない第二のビニルモノマーに由来する構造単位とを含む、多分岐ポリマー。
 項7 GPC法により測定される分子量分布(PDI)が2.5未満であることを特徴とする、項6に記載の多分岐ポリマー。
 項8 絶対分子量が1,000~3,000,000であることを特徴とする、項6又は7に記載の多分岐ポリマー。
 本発明によれば、分子量分布の幅が狭い多分岐ポリマーを、ワンポットで製造することができる、多分岐ポリマーの製造方法及び多分岐ポリマーを提供することができる。
図1は、実施例1で得られた多分岐ポリマーの分子構造を示す模式図である。 図2は、実施例1における経時的なGPCトレースを示す図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、以下の実施形態は単なる例示である。本発明は以下の実施形態に何ら限定されない。
 <製造方法>
 本発明の製造方法は、ビニル結合のα位に重合開始基を有する第一のビニルモノマーと、ビニル結合のα位に重合開始基を有さない第二のビニルモノマーとをリビングラジカル重合する工程を備える、製造方法である。なお、本発明において、「ビニル結合」とはラジカル重合可能な炭素-炭素二重結合のことをいい、「ビニルモノマー」とは分子中にラジカル重合可能な炭素-炭素二重結合を有するモノマーのことをいう。
 第一のビニルモノマーとしては、ビニル結合のα位にリビングラジカル重合の重合開始部位として機能する官能基(重合開始基)を有するビニルモノマーであれば特に限定されないが、下記一般式(1)が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000013
 〔一般式(1)において、Zは重合開始基を表す。Rは、水素原子、炭素数1~8のアルキル基、アリール基、芳香族へテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基又はシアノ基を表す。〕
 Rとして表される基は、上記のように、水素原子、炭素数1~8のアルキル基、アリール基、芳香族へテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基、シアノ基、シリル基又はフッ素原子であり、具体的には次の通りである。
 炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖アルキル基、シクロヘキシル基等の環状アルキル基等を挙げることができる。また、上記アルキル基はヘテロ元素官能基が置換していてもよい。好ましくは炭素数1~8の直鎖又は分岐鎖アルキル基である。
 アリール基としては、フェニル基、ナフチル基等を挙げることができる。
 芳香族へテロ環基としては、ピリジル基、フリル基、チエニル基等を挙げることができる。
 アルコキシ基としては、炭素数1~8のアルキル基が酸素原子に結合した基が好ましく、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tet-ブトキシ基、ペンチロキシ基、ヘキシロキシ基、ヘプチロキシ基、オクチロキシ基等を挙げることができる。
 アシル基としては、アセチル基、プロピオニル基、ベンゾイル基等を挙げることができる。
 アミド基としては、-CONR111112(R111、R112は、それぞれ独立に水素原子、炭素数1~8のアルキル基又はアリール基)を挙げることができる。
 オキシカルボニル基としては、-COOR12(R12は、水素原子、炭素数1~8のアルキル基又はアリール基)で表される基が好ましく、例えばカルボキシル基、メトキシカルボニル基、エトキシカルボニル基、プロピキシカルボニル基、n-ブトキシカルボニル基、sec-ブトキシカルボニル基、ter-ブトキシカルボニル基、n-ペントキシカルボニル基、フェノキシカルボニル基等を挙げることができる。好ましいオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基がよい。
 シリル基としては、トリメチルシリル基、トリエチルシリル基等を挙げることができる。
 Zで表される基は、重合開始基であり、リビングラジカル重合の重合開始部位として機能する官能基(重合開始基)であれば特に制限はないが、該重合開始基としては-Te-R、-Cl、-Br、-I、-SC(=S)R、-SC(=S)OR、-S(C=S)NR 等が挙げられる。これらのなかでも使用できるモノマーの多様性の観点から、重合開始基としては、好ましくは-Te-Rがよい。
 Rとして表される基は炭素数1~8のアルキル基、アリール基又は芳香族ヘテロ環基であり、具体的には次の通りである。
 炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖アルキル基、シクロヘキシル基等の環状アルキル基等を挙げることができる。好ましくは炭素数1~4の直鎖又は分岐鎖アルキル基であり、さらに好ましくはメチル基又はエチル基である。
 アリール基としては、フェニル基、ナフチル基等を挙げることができる。
 芳香族へテロ環基としては、ピリジル基、フリル基、チエニル基等を挙げることができる。
 本発明で用いる第一のビニルモノマーは、例えば、下記一般式(2)で表される化合物の場合、該化合物におけるC-TeMeの結合解離エネルギーは分子軌道計算により216kJ/molと算出される。そして、例えば、下記一般式(3)におけるC-TeMeの結合解離エネルギーは160kJ/molと算出され、下記一般式(4)は有機テルル化合物を用いるリビングラジカル重合法(TERP法)の連鎖移動剤であり、C-TeMeの結合解離エネルギーは154kJ/molと算出される。
Figure JPOXMLDOC01-appb-C000014
 この計算結果から、第一のビニルモノマーの重合開始基は、sp炭素と直接結合している(ビニル結合のα位にある)ため、このままでは重合開始基として機能しないが、第一のビニルモノマーのビニル結合がラジカル重合によりsp炭素との結合になることで、はじめて重合開始基として機能すると考えられる。そのため、重合性官能基(ビニル結合)と重合開始基の反応性が連動するものと考えられ、本発明で使用する第一のビニルモノマー(以下、ブランマーともいう。)を、連鎖移動剤を用いてリビングラジカル重合(下記スキーム3参照。Bは重合開始基である。)すると、分岐構造が均一に制御できるものと考えられる。これに後述する第二のビニルモノマーを併用することで、分子量、分岐度等が高度に制御された多分岐ポリマーを製造できる。
 スキーム3:ブランマーを使用する方法
Figure JPOXMLDOC01-appb-C000015
 第二のビニルモノマーとしては、前述の第一のビニルモノマーに示される重合開始基をビニル結合のα位に有さないビニルモノマーであって、ラジカル重合可能なものであればよいが、好ましくは分子内に重合開始基を有さないことがよい。具体的には下記のビニルモノマーを挙げることができる。なお、本発明において、「(メタ)アクリル」とは「アクリル及びメタクリルの少なくとも一方」をいい、「(メタ)アクリル酸」とは「アクリル酸及びメタクリル酸の少なくとも一方」をいい、「(メタ)アクリレート」とは「アクリレート及びメタクリレートの少なくとも一方」をいう。
 (メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸2-エチルヘキシル等の脂肪族アルキル基を有する(メタ)アクリレート。
 (メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸シクロドデシル、(メタ)アクリル酸ボルニル、(メタ)アクリル酸イソボルニル等の脂環族アルキル基を有する(メタ)アクリレート。
 (メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸フェノキシエチル等の芳香環基を有する(メタ)アクリレート。
 (メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基を有する(メタ)アクリレート。
 ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート等のポリエチレングリコール構造単位を有する(メタ)アクリレート。
 スチレン、α-メチルスチレン、4-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メトキシスチレン、2-ヒドロキシメチルスチレン、1-ビニルナフタレン等の芳香族ビニルモノマー。
 (メタ)アクリル酸、クロトン酸、マレイン酸、イタコン酸、2-ヒドロキシエチル(メタ)アクリレートや4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートに無水マレイン酸、無水コハク酸、無水フタル酸等の酸無水物を反応させたモノマー等のカルボキシル基を有するビニルモノマー。
 スチレンスルホン酸、ジメチルプロピルスルホン酸(メタ)アクリルアミド、スルホン酸エチル(メタ)アクリレート、スルホン酸エチル(メタ)アクリルアミド、ビニルスルホン酸等のスルホン酸基を有するビニルモノマー。
 メタクリロイロキシエチルリン酸エステル等のリン酸基を有するビニルモノマー。
 (メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の(メタ)アクリルアミド。
 N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリルアミド、2-(ジメチルアミノ)エチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート等の3級アミン含有不飽和モノマー。
 N-2-ヒドロキシ-3-アクリロイルオキシプロピル-N,N,N-トリメチルアンモニウムクロライド、N-メタクリロイルアミノエチル-N,N,N-ジメチルベンジルアンモニウムクロライド等の4級アンモニウム塩基含有不飽和モノマー。
 (メタ)アクリル酸グリシジル等のエポキシ基含有不飽和モノマー。
 2-ビニルチオフェン、N-メチル-2-ビニルピロール、1-ビニル-2-ピロリドン、2-ビニルピリジン、4-ビニルピリジン等のヘテロ環含有不飽和モノマー。
 N-ビニルホルムアミド、N-ビニルアセトアミド等のビニルアミド。
 1-ヘキセン、1-オクテン、1-デセン等のα-オレフィン。
 ブタジエン、イソプレン、4-メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエン等のジエン類。
 (メタ)アクリロニトリル、メチルビニルケトン、塩化ビニル、塩化ビニリデン。
 これらのなかでも、好ましくは脂肪族アルキル基を有する(メタ)アクリレート、脂環族アルキル基を有する(メタ)アクリレート、水酸基を有する(メタ)アクリレート、芳香族ビニルモノマー、(メタ)アクリルアミド、3級アミン含有不飽和モノマー、ヘテロ環含有不飽和モノマーがよい。
 リビングラジカル重合は、重合成長末端を安定化させる手法の違いにより、使用する連鎖移動剤も異なる。例えば、遷移金属触媒を用いる方法(ATRP法)、硫黄系の可逆的連鎖移動剤を用いる方法(RAFT法)、有機テルル化合物を用いる方法(TERP法)、有機ヨウ素化合物を用いる方法等を挙げることができる。これらのなかでも使用できるモノマーの多様性の観点からTERP法が好ましい。
 本発明の製造方法において、重合の連鎖移動剤に対する第一のビニルモノマーの使用量を制御することで生成するデンドリマー状構造を持つ多分岐ポリマーの平均分岐数を制御できる。すなわち、N世代のデンドリマーを合成するには、連鎖移動剤1molに対して第一のビニルモノマーを(2-1)mol用いればよい。世代Nは1以上の任意の世代を製造することができ、好ましくはN=1~15であり、より好ましくはN=3~10である。
 本発明で製造されるデンドリマー状構造を持つ多分岐ポリマーの分岐鎖の平均数は〔2(N+1)-1〕となることから、本発明の製造方法における連鎖移動剤1molに対する第二のビニルモノマーの使用量は、連鎖移動剤1molに対して〔2(N+1)-1〕molを超える量を用いることが好ましく、その量は所望するデンドリマー状構造により任意に選択することができる。さらに好ましくは、連鎖移動剤1molに対する第二のビニルモノマーの使用量が、平均分子鎖数の1~10,000倍量であり、より好ましくは5~1,000倍量である。
 本発明の製造方法における、第二のビニルモノマーの使用量としては、例えば連鎖移動剤1molに対して、第二のビニルモノマーを10~50,000molとすることができ、好ましくは25~10,000molであり、より好ましくは50~5,000molであり、さらに好ましくは75~1,000molである。
 本発明の製造方法における第一のビニルモノマーと第二のビニルモノマーとの使用比率(第一のビニルモノマー:第二のビニルモノマー)は、例えば、第一のビニルモノマーと第二のビニルモノマーとの使用比率がモル比で、0.01:99.99~50:50とすることができ、好ましくは0.1:99.9~25:75であり、より好ましくは0.1:99.9~20:80であり、さらに好ましくは0.5:99.5~15:85である。
 (重合方法(TERP法))
 有機テルル化合物を用いる方法(TERP法)は、連鎖移動剤として下記の一般式(5)、一般式(6)、一般式(7)若しくは一般式(8)で表される有機テルル化合物、又は該有機テルル化合物から得られるマクロ連鎖移動剤(以下、これらを総称して単に有機テルル化合物という)等を連鎖移動剤とするリビングラジカル重合である。また、TERP法において、連鎖移動剤は有機テルル化合物の中から1種を選択して使用してもよいし、2種以上を併用してもよい。
 マクロ連鎖移動剤とは、ビニルモノマーを下記の一般式(5)、一般式(6)、一般式(7)若しくは一般式(8)で表される有機テルル化合物を用いてリビングラジカル重合して得られるビニル重合体であり、ビニル共重合体の成長末端がテルル化合物由来の-TeR(式中、Rは下記と同じである)の形態であることから、リビングラジカル重合の連鎖移動剤として用いることができる。ビニルモノマーは、求める多分岐ポリマーの構造から、例えば、第二のビニルモノマーのなかから任意に選択することができる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 〔一般式(5)~(8)において、Rは炭素数1~8のアルキル基、アリール基又は芳香族ヘテロ環基を表す。R及びRは、それぞれ独立に水素原子又は炭素数1~8のアルキル基を表す。Rは炭素数1~8のアルキル基、アリール基、置換アリール基、芳香族へテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基、シアノ基、アリル基又はプロパルギル基を表す。Rは、炭素数1~18のアルキレン基を表す。Xは、酸素原子又は-NZ-を表し、Nは窒素原子を表し、Zは水素原子、炭素数1~8のアルキル基又はフェニル基を表す。一般式(6)においてXは2価の有機基を表し、一般式(7)においてXは3価の有機基を表し、一般式(8)においてXは4価の有機基を表す。〕
 上記のように、Rで表される基は、炭素数1~8のアルキル基、アリール基又は芳香族ヘテロ環基であり、具体的には次の通りである。
 炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖アルキル基、シクロヘキシル基等の環状アルキル基等を挙げることができる。好ましくは炭素数1~4の直鎖又は分岐鎖アルキル基であり、さらに好ましくはメチル基又はエチル基である。
 アリール基としては、フェニル基、ナフチル基等を挙げることができる。
 芳香族ヘテロ環基としては、ピリジル基、フリル基、チエニル基等を挙げることができる。
 R及びRで表される基は、それぞれ独立に水素原子又は炭素数1~8のアルキル基であり、具体的には次の通りである。
 炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖アルキル基、シクロヘキシル基等の環状アルキル基等を挙げることができる。好ましくは炭素数1~4の直鎖又は分岐鎖アルキル基であり、さらに好ましくはメチル基又はエチル基である。
 Rで表される基は、炭素数1~8のアルキル基、アリール基、置換アリール基、芳香族ヘテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基、シアノ基、アリル基又はプロパルギル基であり、具体的には次の通りである。
 炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖アルキル基、シクロヘキシル基等の環状アルキル基等を挙げることができる。好ましくは炭素数1~4の直鎖又は分岐鎖アルキル基であり、さらに好ましくはメチル基又はエチル基である。
 アリール基としては、フェニル基、ナフチル基等を挙げることができる。好ましくはフェニル基である。
 置換アリール基としては、置換基を有しているフェニル基、置換基を有しているナフチル基等を挙げることができる。上記置換基を有しているアリール基の置換基としては、例えば、ハロゲン原子、水酸基、アルコキシ基、アミノ基、ニトロ基、シアノ基、-COR61で示されるカルボニル含有基(R61は炭素数1~8のアルキル基、アリール基、炭素数1~8のアルコキシ基又はアリーロキシ基)、スルホニル基、トリフルオロメチル基等を挙げることができる。また、これらの置換基は、1個又は2個置換しているのがよい。
 芳香族ヘテロ環基としては、ピリジル基、フリル基、チエニル基等を挙げることができる。
 アルコキシ基としては、炭素数1~8のアルキル基が酸素原子に結合した基が好ましく、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tet-ブトキシ基、ペンチロキシ基、ヘキシロキシ基、ヘプチロキシ基、オクチロキシ基等を挙げることができる。
 アシル基としては、アセチル基、プロピオニル基、ベンゾイル基等を挙げることができる。
 アミド基としては、-CONR621622(R621、R622は、それぞれ独立に水素原子、炭素数1~8のアルキル基又はアリール基)を挙げることがきる。
 オキシカルボニル基としては、-COOR63(R63は水素原子、炭素数1~8のアルキル基又はアリール基)で表される基が好ましく、例えばカルボキシル基、メトキシカルボニル基、エトキシカルボニル基、プロピキシカルボニル基、n-ブトキシカルボニル基、sec-ブトキシカルボニル基、ter-ブトキシカルボニル基、n-ペントキシカルボニル基、フェノキシカルボニル基等を挙げることができる。好ましいオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基がよい。
 アリル基としては、-CR641642-CR643=CR644645(R641、R642は、それぞれ独立に水素原子又は炭素数1~8のアルキル基であり、R643、R644、R645は、それぞれ独立に水素原子、炭素数1~8のアルキル基又はアリール基であり、それぞれの置換基が環状構造で繋がっていてもよい)等を挙げることができる。
 プロパルギル基としては、-CR651652-C≡CR653(R651、R652は、水素原子又は炭素数1~8のアルキル基、R653は、水素原子、炭素数1~8のアルキル基、アリール基又はシリル基)等を挙げることができる。
 Rとして表される基は炭素数1~18のアルキレン基であり、具体的には次の通りである。
 炭素数1~18のアルキレン基としては、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、s-ブチレン基、t-ブチレン基、n-ペンチレン基、1-メチル-n-ブチレン基、2-メチル-n-ブチレン基、3-メチル-n-ブチレン基、1,1-ジメチル-n-プロピレン基、1,2-ジメチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基、1-エチル-n-プロピレン基、n-ヘキシレン基、1-メチル-n-ペンチレン基、2-メチル-n-ペンチレン基、3-メチル-n-ペンチレン基、4-メチル-n-ペンチレン基、1,1-ジメチル-n-ブチレン基、1,2-ジメチル-n-ブチレン基、1,3-ジメチル-n-ブチレン基、2,2-ジメチル-n-ブチレン基、2,3-ジメチル-n-ブチレン基、3,3-ジメチル-n-ブチレン基、1-エチル-n-ブチレン基、2-エチル-n-ブチレン基、1,1,2-トリメチル-n-プロピレン基、1,2,2-トリメチル-n-プロピレン基、1-エチル-1-メチル-n-プロピレン基、1-エチル-2-メチル-n-プロピレン基等の直鎖又は分岐鎖アルキル基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基等の環状アルキル基等を挙げることができる。好ましくは炭素数1~4の直鎖又は分岐鎖アルキレン基であり、さらに好ましくはメチレン基又はエチレン基である。
 Xとして表される基は、酸素原子又は-NZ-である。Nは窒素原子であり、Zは水素原子、炭素数1~8のアルキル基又はフェニル基である。好ましくは-NH-である。
 Xして表される基は多価の有機基であり、複数のRをつなぐものであれば特に制限はない。一般式(6)においてXは2価の有機基を表し、一般式(7)においてXは3価の有機基を表し、一般式(8)においてXは4価の有機基を表す。一般式(6)におけるXは、-NH-、-CH-、-O-等で表される基が挙げられる。一般式(7)におけるXは、-N<、-CH<等で表される基が挙げられる。一般式(8)におけるXは、>C<等で表される基が挙げられる。
 一般式(5)で示される有機テルル化合物は、具体的には(メチルテラニルメチル)ベンゼン、(メチルテラニルメチル)ナフタレン、エチル-2-メチル-2-メチルテラニル-プロピオネート、エチル-2-メチル-2-n-ブチルテラニル-プロピオネート、(2-トリメチルシロキシエチル)-2-メチル-2-メチルテラニル-プロピネート、(2-ヒドロキシエチル)-2-メチル-2-メチルテラニル-プロピネート、(3-トリメチルシリルプロパルギル)-2-メチル-2-メチルテラニル-プロピネート等を挙げることができる。
 リビングラジカル重合がTERP法である場合、第一のビニルモノマーとしては、一般式(9)で表されるビニルモノマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 〔一般式(9)において、Rは水素原子、炭素数1~8のアルキル基、アリール基、芳香族へテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基、シアノ基シリル基又はフッ素原子を表す。Rは炭素数1~8のアルキル基、アリール基又は芳香族ヘテロ環基を表す。〕
 上記のように、Rとして表される基は、水素原子、炭素数1~8のアルキル基、アリール基、芳香族へテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基又はシアノ基であり、具体的には次の通りである。 
 炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖アルキル基、シクロヘキシル基等の環状アルキル基等を挙げることができる。好ましくは炭素数1~4の直鎖又は分岐鎖アルキル基であり、さらに好ましくはメチル基又はエチル基である。
 アリール基としては、フェニル基、ナフチル基等を挙げることができる。
 芳香族へテロ環基としては、ピリジル基、フリル基、チエニル基等を挙げることができる。
 アルコキシ基としては、炭素数1~8のアルキル基が酸素原子に結合した基が好ましく、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tet-ブトキシ基、ペンチロキシ基、ヘキシロキシ基、ヘプチロキシ基、オクチロキシ基等を挙げることができる。
 アシル基としては、アセチル基、プロピオニル基、ベンゾイル基等を挙げることができる。
 アミド基としては、-CONR111112(R111、R112は、それぞれ独立に水素原子、炭素数1~8のアルキル基又はアリール基)を挙げることができる。
 オキシカルボニル基としては、-COOR12(R12は、水素原子、炭素数1~8のアルキル基又はアリール基)で表される基が好ましく、例えばカルボキシル基、メトキシカルボニル基、エトキシカルボニル基、プロピキシカルボニル基、n-ブトキシカルボニル基、sec-ブトキシカルボニル基、ter-ブトキシカルボニル基、n-ペントキシカルボニル基、フェノキシカルボニル基等を挙げることができる。好ましいオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基がよい。
 シリル基としては、トリメチルシリル基、トリエチルシリル基等をあげることができる。
 Rとして表される基は炭素数1~8のアルキル基、アリール基又は芳香族ヘテロ環基であり、具体的には次の通りである。
 炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖アルキル基、シクロヘキシル基等の環状アルキル基等を挙げることができる。好ましくは炭素数1~4の直鎖又は分岐鎖アルキル基であり、さらに好ましくはメチル基又はエチル基である。
 アリール基としては、フェニル基、ナフチル基等を挙げることができる。
 芳香族へテロ環基としては、ピリジル基、フリル基、チエニル基等を挙げることができる。
 一般式(9)で表されるビニルモノマーとしては、具体的には2-メチルテラニルプロペン、2-ブチルテラニルプロペン、2-フェニルテラニルプロペン、2-メチルテラニルブテン、2-ブチルテラニルブテン等を挙げることができる。
 TERP法は、ビニルモノマーの種類に応じ反応促進、分子量の制御等の目的で、さらにアゾ系重合開始剤及び/又は一般式(10)で表される有機ジテルル化合物を加えて重合を行ってもよい。
 具体的には、第一のビニルモノマーと第二のビニルモノマーとを、下記(a)~(d)のいずれかを用いて重合し、ビニル重合体を製造する方法が挙げられる。
 (a)有機テルル化合物。
 (b)有機テルル化合物とアゾ系重合開始剤との混合物。
 (c)有機テルル化合物と有機ジテルル化合物との混合物。
 (d)有機テルル化合物とアゾ系重合開始剤と有機ジテルル化合物との混合物。
 (RTe)      (10)
 〔一般式(10)において、Rは、炭素数1~8のアルキル基、アリール基又は芳香族ヘテロ環基を表す。〕
 一般式(10)で示される有機ジテルル化合物は、具体的には、ジメチルジテルリド、ジエチルジテルリド、ジ-n-プロピルジテルリド、ジイソプロピルジテルリド、ジシクロプロピルジテルリド、ジ-n-ブチルジテルリド、ジ-s-ブチルジテルリド、ジ-t-ブチルジテルリド、ジシクロブチルジテルリド、ジフェニルジテルリド、ビス-(p-メトキシフェニル)ジテルリド、ビス-(p-アミノフェニル)ジテルリド、ビス-(p-ニトロフェニル)ジテルリド、ビス-(p-シアノフェニル)ジテルリド、ビス-(p-スルホニルフェニル)ジテルリド、ジナフチルジテルリド、ジピリジルジテルリド等を挙げることができる。
 アゾ系重合開始剤は、通常のラジカル重合で使用するアゾ系重合開始剤であれば特に制限なく使用することができる。例えば2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス(2-メチルブチロニトリル)(AMBN)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)(ACHN)、ジメチル-2,2’-アゾビスイソブチレート(MAIB)、4,4’-アゾビス(4-シアノバレリアン酸)(ACVA)、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビス(2-メチルブチルアミド)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70)、2,2’-アゾビス(2-メチルアミジノプロパン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2-シアノ-2-プロピルアゾホルムアミド、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)等を挙げることができる。
 重合工程は、不活性ガスで置換した容器で、第一のビニルモノマー、第二のビニルモノマーと有機テルル化合物とに、ビニルモノマーの種類に応じ反応促進、分子量の制御等の目的で、さらにアゾ系重合開始剤及び/又は有機ジテルル化合物を混合する。このとき、不活性ガスとしては、窒素、アルゴン、ヘリウム等を挙げることができる。好ましくは、アルゴン、窒素が良い。特に好ましくは、窒素がよい。
 上記(a)、(b)、(c)及び(d)における第二のビニルモノマーの使用量としては、目的とするビニル重合体の構造により適宜調節することができる。例えば、有機テルル化合物1molに対して、第二のビニルモノマーを10~50,000molとすることができ、好ましくは25~10,000molであり、より好ましくは50~5,000molであり、さらに好ましくは75~1,000molである。
 上記(a)、(b)、(c)及び(d)における第一のビニルモノマーと第二のビニルモノマーとの使用比率は、目的とするビニル共重合体の分岐度により適宜調節することができる。例えば、第一のビニルモノマーと第二のビニルモノマーとの使用比率(第一のビニルモノマー:第二のビニルモノマー)がモル比で0.01:99.99~50:50とすることができ、好ましくは0.1:99.9~25:75であり、より好ましくは0.1:99.9~20:80であり、さらに好ましくは0.5:99.5~15:85である。
 有機テルル化合物とアゾ系重合開始剤とを併用する場合、アゾ系重合開始剤の使用量としては、通常、有機テルル化合物1molに対して、アゾ系重合開始剤を0.01~1molとすることができ、好ましくは25~5,000であり、より好ましくは50~1,000である。
 有機テルル化合物と有機ジテルル化合物を併用する場合、有機ジテルル化合物の使用量としては、通常、有機テルル化合物1molに対して、有機ジテルル化合物を0.1~10molとすることができる。
 有機テルル化合物と有機ジテルル化合物とアゾ系重合開始剤とを併用する場合、アゾ系重合開始剤の使用量としては、通常、有機テルル化合物と有機ジテルル化合物の合計1molに対して、アゾ系重合開始剤を0.01~10molとすることができる。
 重合工程は、無溶剤でも行うことができるが、ラジカル重合で一般に使用される溶媒(非プロトン性溶媒又はプロトン性溶媒)を使用し、上記混合物を撹拌して行われる。
 使用できる非プロトン性溶媒としては、特に限定はなく、例えば、ベンゼン、トルエン、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、アセトン、2-ブタノン(メチルエチルケトン)、ジオキサン、ヘキサフルオロイソプロパオール、クロロホルム、四塩化炭素、テトラヒドロフラン(THF)、酢酸エチル、トリフルオロメチルベンゼン、プロピレングリコールモノメチルエーテルアセテート等を挙げることができる。
 使用できるプロトン性溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、n-ブタノール、エチルセロソルブ、ブチルセロソルブ、1-メトキシ-2-プロパノール、ジアセトンアルコール等が挙げられる。
 溶媒の使用量としては、適宜調節すればよく、例えば、ビニルモノマー1gに対して、通常0.001~50mlの範囲であり、好ましくは0.01~10mlの範囲であり、より好ましくは0.02~3mlの範囲である。
 反応温度及び反応時間は、目的とするビニル重合体の分子量或いは分子量分布により適宜調節すればよく、通常、0℃~150℃の範囲で、1分~150時間撹拌する。
 重合工程により得られるビニル共重合体の成長末端は、有機テルル化合物由来の-TeR(式中、Rは上記と同じである)及び-TeR(式中、Rは上記と同じである)の形態であることから、成長末端に様々な置換基・官能基を導入しビニル重合体の機能向上が可能である。また、マクロ連鎖移動剤として用いることもできる。
 重合工程の終了後、重合溶液から使用溶媒や残存モノマーを減圧下除去して目的とするビニル重合体を取り出したり、不溶溶媒を使用して再沈殿処理により目的とするビニル重合体を単離することができる。
 重合工程終了後の空気中の操作により、得られたビニル重合体の成長末端は失活していくが、テルル原子が残存する場合がある。テルル原子が末端に残存したビニル重合体は着色したり、熱安定性に劣ることから、トリブチルスタンナン又はチオール化合物等を用いるラジカル還元方法、さらに活性炭、シリカゲル、活性アルミナ、活性白土、モレキュラーシーブス及び高分子吸着剤等で吸着する方法、イオン交換樹脂等で金属を吸着する方法や、また過酸化水素水や過酸化ベンゾイル等の過酸化物を添加したり、空気や酸素を系中に吹き込むことでビニル重合体末端のテルル原子を酸化分解させ、水洗や適切な溶媒を組み合わせることにより残留テルル化合物を除去する液-液抽出法や固-液抽出法、特定の分子量以下のもののみを抽出除去する限界ろ過等の溶液状態での精製方法を用いることができ、また、これらの方法を組み合わせることもできる。
 (重合方法(ATRP法))
 遷移金属触媒を用いる方法(ATRP法)は、遷移金属錯体からなるレッドクス触媒の存在下、有機ハロゲン化合物、又は該有機ハロゲン化合物から得られるマクロ連鎖移動剤(以下、これらを総称してATRP開始剤という)を連鎖移動剤とするリビングラジカル重合法である。また、ATRP法において、連鎖移動剤は、有機ハロゲン化合物の中から1種を選択して使用してもよいし、2種以上を併用してもよい。
 レドックス触媒として用いられる遷移金属錯体は、周期表第8族~第11族から選ばれる金属元素の錯体である。遷移金属錯体は、遷移金属、及び有機配位子からなる。遷移金属の具体例としては、銅、ニッケル、ルテニウム又は鉄である。これらの中でも、反応制御やコストの観点から銅の錯体が好ましい。1価の銅化合物としては、例えば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅などが挙げられる。その中でも塩化第一銅、臭化第一銅が、重合制御の観点から好ましい。より安定で取扱いの容易な塩化第二銅、臭化第二銅に還元剤を加え、重合系中で塩化第一銅、臭化第一銅を発せさせ、重合を行うこともできる。
 また、遷移金属とともに錯体を形成する有機配位子としては、2座以上の窒素配位子が好ましく、例えば、2,2’-ビピリジル、4,4’-ビピリジル、エチレンジアミン、テトラメチルエチレンジアミン、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、トリス[2-(ジメチルアミノ)エチル]アミン、トリス[2-(ピリジル)メチル]アミンなどが挙げられる。
 上記遷移金属の塩と有機配位子とは、別々に添加して重合系中で遷移金属錯体を生成させてもよいし、予め遷移金属の塩と有機配位子とから調製した遷移金属錯体を重合系中へ添加してもよい。遷移金属が銅である場合には前者の方法が好ましく、ルテニウム、鉄、ニッケルの場合は後者の方法が好ましい。
 有機ハロゲン化合物としては、分子内に1個以上の炭素-ハロゲン結合(但し、ハロゲンはフッ素以外とする)を有する種々の有機化合物が使用でき、脂肪族炭化水素系ハロゲン化物、芳香族系炭化水素系ハロゲン化物などが挙げられる。
 脂肪族炭化水素系ハロゲン化物の具体例としては、2-クロロプロピオンアミド、2-ブロモプロピオンアミド、2-クロロアセトアミド、2-ブロモイソ酪酸エチル、2-ブロモプロピオン酸メチル、2-ブロモプロピオン酸t-ブチル、2-ブロモイソ酪酸メチル、2-ブロモイソ酪酸2-ヒドロキシエチル等が挙げられる。
 芳香族系炭化水素系ハロゲン化物の具体例としては、ベンザルクロリド、ベンジルブロミド、4-ブロモベンジルブロミド、ベンゼンスルホニルクロリド等が挙げられる。
 リビングラジカル重合がATRP法である場合、第一のビニルモノマーとしては、一般式(11)で表されるビニルモノマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 〔一般式(11)において、Rは水素原子、炭素数1~8のアルキル基、アリール基、芳香族へテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基、シアノ基、シリル基又はフッ素原子を表す。Zは塩素又はヨウ素を表す。〕
 上記のように、Rとして表される基は、水素原子、炭素数1~8のアルキル基、アリール基、芳香族へテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基又はシアノ基であり、具体的には次の通りである。
 炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖アルキル基、シクロヘキシル基等の環状アルキル基等を挙げることができる。好ましくは炭素数1~4の直鎖又は分岐鎖アルキル基であり、より好ましくはメチル基又はエチル基である。
 アリール基としては、フェニル基、ナフチル基等を挙げることができる。
 芳香族へテロ環基としては、ピリジル基、フリル基、チエニル基等を挙げることができる。
 アルコキシ基としては、炭素数1~8のアルキル基が酸素原子に結合した基が好ましく、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tet-ブトキシ基、ペンチロキシ基、ヘキシロキシ基、ヘプチロキシ基、オクチロキシ基等を挙げることができる。
 アシル基としては、アセチル基、プロピオニル基、ベンゾイル基等を挙げることができる。
 アミド基としては、-CONR111112(R111、R112は、それぞれ独立に水素原子、炭素数1~8のアルキル基又はアリール基)を挙げることができる。
 オキシカルボニル基としては、-COOR12(R12は、水素原子、炭素数1~8のアルキル基又はアリール基)で表される基が好ましく、例えばカルボキシル基、メトキシカルボニル基、エトキシカルボニル基、プロピキシカルボニル基、n-ブトキシカルボニル基、sec-ブトキシカルボニル基、ter-ブトキシカルボニル基、n-ペントキシカルボニル基、フェノキシカルボニル基等を挙げることができる。好ましいオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基が挙げられる。
 シリル基としては、トリメチルシリル基、トリエチルシリル基等をあげることができる。
 重合工程では、容器で、第一のビニルモノマーと、第二のビニルモノマーと、遷移金属錯体と、ATRP開始剤とを混合する。混合時、混合後の反応は、副反応を抑制するため窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下で行うのが好ましい。
 第二のビニルモノマーの使用量としては、目的とするビニル重合体の物性により適宜調節することができる。例えば、ATRP開始剤1molに対して、第二のビニルモノマーを10~50,000molとすることができ、好ましくは25~10,000molであり、より好ましくは50~5,000molであり、さらに好ましくは75~1,000molである。
 第一のビニルモノマーと第二のビニルモノマーとの使用比率は、目的とするビニル共重合体の分岐度により適宜調節することができる。例えば、第一のビニルモノマーと第二のビニルモノマーとの使用比率(第一のビニルモノマー:第二のビニルモノマー)がモル比で0.01:99.99~50:50とすることができ、好ましくは0.1:99.9~25:75であり、より好ましくは0.1:99.9~20:80であり、さらに好ましくは0.5:99.5~15:85ある。
 遷移金属錯体の使用量は、ATRP開始剤1molに対して0.03~3mol、好ましくは0.1~2molの割合で用いられる。また、有機配位子の使用量は、遷移金属1molに対し、通常1~5mol、好ましくは1~3molである。
 重合工程は、無溶剤でも行うことができるが、ATRP法で使用される溶媒を使用し、上記混合物を攪拌して行うこともできる。
 反応温度及び反応時間は、目的とするビニル重合体の分子量あるいは分子量分布により適宜調節すればよく、通常、0~150℃の範囲で、1分~150時間攪拌する。
 重合工程により得られるビニル重合体の成長末端には重合開始基を有していることから、成長末端に様々な置換基・官能基を導入しビニル重合体の機能向上が可能である。また、マクロ連鎖移動剤として用いることもできる。
 重合工程の終了後、重合溶液から使用溶媒や残存モノマーを減圧下除去して目的とするビニル重合体を取り出したり、不溶溶媒を使用して再沈殿処理により目的とするビニル重合体を単離したりすることができる。
 <多分岐ポリマー>
 本発明の多分岐ポリマーは、ビニル結合のα位に重合開始基を有する第一のビニルモノマーに由来する構造単位と、ビニル結合のα位に重合開始基を有さない第二のビニルモノマーに由来する構造単位とを含む、ビニル重合体である。本発明の多分岐ポリマーは、例えば、上述した製造方法により得ることができる。
 本発明の製造方法で得られるビニル重合体(多分岐ポリマー)の絶対分子量は、反応時間及び連鎖移動剤等の量により適宜調整可能であるが、1,000~3,000,000であることが好ましく、3,000~1,000,000であることがより好ましく、5,000~500,000であることが更に好ましい。
 本発明において、ビニル重合体(多分岐ポリマー)の絶対分子量は、核磁気共鳴スペクトル(以下「NMR」という)法又はゲルパーミエーションクロマトグラフィー(以下「GPC」という)/多角度光散乱(MALLS)法により測定される数平均分子量であり、得られるビニル重合体の特性に適した測定方法を選択すればよい。また、GPC/MALLS法の数平均分子量(Mn(MALLS))は、実測したGPC/MALLS法により得られる重量平均分子量(Mw(MALLS))と、GPC法により測定される分子量分布(PDI)により算出してもよい。
 多分岐ポリマーは線状ポリマーに比べて流体力学半径が小さいため、GPC法で得られる分子量は絶対分子量よりも小さく見積もられる。そのため、多分岐ポリマーの分岐度は、GPC法に得られる分子量と絶対分子量との差により判断することも可能である。
 本発明の製造方法で得られるビニル重合体(多分岐ポリマー)のGPC法により測定される分子量分布(PDI)は2.5未満に制御することができ、好ましくは2.3未満であり、より好ましくは2.0未満である。PDIとは、(ビニル重合体の重量平均分子量(Mw(GPC)))/(ビニル重合体の数平均分子量(Mn(GPC)))によって求められるものであり、PDIは小さいほど分子量分布の幅が狭い、分子量のそろったビニル重合体となり、その値が1.0のとき最も分子量分布の幅が狭い。反対に、PDIが大きいほど設計したビニル重合体の分子量に比べて、分子量が小さいものや、分子量の大きいものが含まれることになる。
 本発明の製造方法で得られるビニル重合体(多分岐ポリマー)は、第一のビニルモノマーが多分岐ポリマーの分岐部になるものと考えられ、多分岐ポリマーの分岐度は、第一のビニルモノマーと第二のビニルモノマーとの使用比率により適宜調節することがでる。
 本発明の製造方法は、上述のようにワンポットで行うことができ簡便な製造方法で分子量分布の幅が狭い多分岐ポリマーを得ることができる方法あり、工業的に有利な方法である。また、本発明の製造方法で得られる多分岐ポリマーは、高度に分岐が制御されており、またポリマー末端も適宜置換基、官能基を導入することが可能であり、例えば診断や薬物輸送システム等の医療用途、電池等の環境材料、触媒の担持体、潤滑油添加剤、航空燃料への添加剤等で好適に用いることができる。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (合成例1)
 2-メチルテラニルプロペン(以下、VT1という。)を以下の方法で合成した。
Figure JPOXMLDOC01-appb-C000022
 50mLの滴下ロートと還流管を装着し乾燥した100mLの三ツ口フラスコに、金属マグネシウム(0.27g、11mol)とヨウ素をひとかけら加え窒素置換し、THF(5mL)を加えた。そこに、2-ブロモプロペン(0.9mL、10mmol)を20mLのTHFに溶解した溶液を滴下ロートからゆっくりと滴下した後、2時間室温で撹拌し、-78℃に冷却した。別途用意した乾燥、窒素置換した50mLの二口フラスコにジメチルジテルリド(1.43g、5mmol)と20mLのTHFを加え、さらにそこに臭素(0.26mL,5mmol)を0℃で加え、30分撹拌した。その溶液を、カニュラを用いて先に調製した溶液に加えた。この温度で30分撹拌した後、溶液を300mLの氷水にあけて反応を停止した。有機相を30mLのペンタンを用い抽出し、この操作を計5回行った。集めた有機相を20mLの水で10回洗浄したのち、有機相をMgSOで乾燥した後、ろ過した。溶媒を注意深く留去した後、減圧蒸留(51~53℃/33mmHg)により生成物0.79gを得た。収率43%。
 H-NMR、13C-NMR、IRより、2-メチルテラニルプロペンであることを確認した。
 (合成例2)
 2-メチルテラニル-1-デセン(以下、VT2という。)を以下の方法で合成した。
Figure JPOXMLDOC01-appb-C000023
 窒素雰囲気下、ジメチルジテルリド(0.72g、2.5mol)の入った三ツ口フラスコに水素化ジイソブチルアルミニウム3.5mL(1.0Mトルエン溶液、5.3mmol)を室温にて加えた後、30分間80℃で撹拌した。そこに、1-デシン(2.5mL、13mmol)を加えた後、46時間80℃で撹拌した。脱気した酒石酸ナトリウム水溶液50mL(0.12M水溶液、5.9mmol)を加え、反応を停止した。20mLのヘキサンを用い抽出し、この操作を計5回行った。有機相をMgSOで乾燥、減圧留去、分取用GPCを用いた精製により生成物0.58gを得た。収率48%。
 H-NMR、13C-NMR、IRより、2-メチルテラニル-1-デセンであることを確認した。
 (合成例3)
 ヘキシルテラニルエテン(以下、VT3という。)を以下の方法で合成した。
Figure JPOXMLDOC01-appb-C000024
 窒素ガス雰囲気下、金属テルル1.3g(10.1mmol)をTHF10mLに懸濁させ、ビニルマグネシウムブロミド10mL(1.0Mテトラヒドロフラン溶液、10mmol)を室温で加え、1時間撹拌した。1-ブロモヘキサン2.4mL(17.2mmol)を0℃で加え、2時間撹拌した。脱気した水50mLを加え、ジエチルエーテル10mLを用い抽出し、この操作を計5回行った。有機相をMgSOで乾燥、減圧留去した。得られた混合物を減圧蒸留(7.8Torr、82~83℃)することにより生成物1.1gを得た。収率45%。
 H-NMRより、ヘキシルテラニルエテンであることを確認した。
 (合成例4)
 エチル-2-メチル-2-メチルテラニル-プロピオネート(以下、Int1という。)を以下の方法で合成した。
 窒素ガス雰囲気下、金属テルル〔Aldrich社製、商品名:Tellurium(-40mesh)〕6.38g(50mmol)をTHF50mLに懸濁させ、これにメチルリチウム52.9mL(1.04Mジエチルエーテル溶液、55mmol)を、室温でゆっくり滴下した(10分間)。この反応溶液を金属テルルが完全に消失するまで撹拌した(20分間)。この反応溶液に、エチル-2-ブロモ-イソブチレート10.7g(55mmol)を室温で加え、2時間撹拌した。反応終了後、減圧下で溶媒を濃縮し、続いて減圧蒸留して、黄色油状物(6.53g、収率51%)を得た。
 H-NMR、13C-NMR、HRMS、IRより、エチル-2-メチル-2-メチルテラニル-プロピネートであることを確認した。
 (合成例5)
 下記式に示す化合物(以下、Int2という。)を以下の方法で合成した。
Figure JPOXMLDOC01-appb-C000025
 窒素ガス雰囲気下、攪拌機を備えたフラスコに、Int1(3.5μL、10mmol)、アクリル酸メチル(以下、MAという。0.9mL、10mmol)を仕込み、白色LED(6W)照射下、60℃で15分間撹拌した。MAの消費の経時変化(重合率)はH-NMRにより追跡し、最終的にはそれぞれ32%であった。
 得られたInt2を、5mLのTHFに溶解し、BuSnH(100μL、0.4mmol)を加え、白色LED(6W)照射下、60℃で1時間撹拌した。反応溶液を100mLのヘキサンに加えてポリマーを再沈殿(2回)することで得られたポリマーについて、GPC法による数平均分子量(Mn(GPC))が15,100、及びPDIが1.12であった。
 (合成例6)
 下記式に示す化合物(以下、Int3という。)を以下の方法で合成した。
Figure JPOXMLDOC01-appb-C000026
 窒素ガス雰囲気下、2-メチル-2-(メチルテラニル)プロパン酸(0.55g、2.5mmol)、N,N-ジイソプロピルエチルアミン(DIEA、0.85mL、5.0mmol)のDMF(10mL)溶液に(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノモルホリノカルベニウムヘキサフルオロフォスフェート(COMU、1.1g、2.5mmol)を加え、室温下で30分間撹拌した後、ジエチレントリアミン(0.14mL、1.3mmol)を加え、室温下で3時間撹拌した。反応溶液にジエチルエーテル(25mL)を加え、飽和炭酸水素ナトリウム水溶液(10mL)にて3回洗浄、飽和塩化ナトリウム水溶液(10mL)にて洗浄した後、有機相をMgSOとセライトにて濾過し、溶媒を減圧留去することでInt3を収率90%で得た。
 (合成例7)
 下記式に示す化合物(以下、Int4という。)を以下の方法で合成した。
Figure JPOXMLDOC01-appb-C000027
 窒素ガス雰囲気下、2-メチル-2-(メチルテラニル)プロパン酸(0.55g、2.5mmol)、DIEA(0.85mL、5.0mmol)のDMF(10mL)溶液にCOMU(1.1g、2.5mmol)を加え、室温下30分間撹拌した後、トリス(2-アミノエチル)アミン(0.11mL、0.75mmol)を加え、室温下3時間撹拌した。反応溶液にジエチルエーテル(25mL)を加え、飽和炭酸水素ナトリウム水溶液(10mL)にて3回洗浄、飽和塩化ナトリウム水溶液(10mL)にて洗浄した後、有機相をMgSOとセライトにて濾過し、溶媒を減圧留去することでInt4を収率92%で得た。
 (合成例8)
 下記式に示す化合物(以下、Int5という。)を以下の方法で合成した。
Figure JPOXMLDOC01-appb-C000028
 窒素ガス雰囲気下、攪拌機を備えたフラスコに、Int1(4.4μL、0.025mmol)、スチレン(以下、Stという。0.72mL、6.5mmol)を仕込み、100℃で42時間撹拌した。Stの消費の経時変化(重合率)はH-NMRにより追跡し、最終的には86%であった。
 得られたInt5を、5mLのTHFに溶解し、BuSnH(100μL、0.4mmol)を加え、白色LED(6W)照射下、60℃で1時間撹拌した。反応溶液を100mLのヘキサンに加えてポリマーを再沈殿(2回)することで得られたポリマーについて、GPC法による数平均分子量(Mn(GPC))が14,972、及びPDIが1.17であった。
 (合成例9)
 下記式に示す化合物(以下、Inimer1という。)を以下の方法で合成した。
Figure JPOXMLDOC01-appb-C000029
 窒素ガス雰囲気下、金属テルル0.39g(3.1mmol)をTHF3mLに懸濁させ、これにメチルリチウム1.7mL(1.75Mペンタン溶液、3.0mmol)を0℃で加え、15分間撹拌した。さらに4-ビニルベンジルクロライド0.4mL(2.8mmol)を0℃で加え、15分間撹拌した後、脱気した飽和アンモニア水50mL中に加え、ジエチルエーテル40mLを用い抽出した。有機相を脱気した水20mLで4回洗浄した。有機相をMgSOで乾燥、減圧留去、分取用GPCを用いた精製により生成物0.43gを得た。収率60%。
 H-NMR、13C-NMRより、Inimer1であることを確認した。
 (実施例1)
 攪拌機を備えたフラスコに、第二のビニルモノマーとしてMA(0.45mL、5mmol)、AIBNのベンゼン溶液(12μL、0.002mmol)、内部標準としてヒドロキノンジメチルエーテル(3.0mg、0.022mmol)を仕込み、窒素置換後、連鎖移動剤としてInt1(1.8μL、0.01mmol)と第一のビニルモノマーとしてVT1(19.5μL、0.15mmol)を加え、60℃の温度で暗所にて24時間撹拌した。VT1及びMAの消費の経時変化(重合率)はH-NMRにより追跡し、最終的にはそれぞれ99%以上、89%であった。
 生成したポリマーを5mLのTHFに溶解し、BuSnH(100μL、0.4mmol)を加え、白色LED(6W)照射下、60℃で1時間撹拌した。反応溶液を100mLのヘキサンに加えてポリマーを再沈殿(2回)することで、0.41gのポリマーを得た。
 得られたポリマー(ビニル重合体)について、GPC法により数平均分子量(Mn(GPC))及びPDIを求めた。また、GPC/MALLS法により重量平均分子量(Mw(MALLS))を求め、Mw(MALLS)とPDIから数平均分子量(Mn(MALLS))を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。また、得られたポリマーの固有粘度は粘度計により求め0.0143L/gであった。
 なお、得られた多分岐ポリマーの分子構造を図1に示す。
 (実施例2)
 連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。
 (実施例3)
 連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。
 (実施例4)
 連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。また、得られたポリマーの固有粘度は粘度計により求め0.0213L/gであった。
 (実施例5)
 連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。また、得られたポリマーの固有粘度は粘度計により求め0.0284L/gであった。
 (実施例6)
 連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。
 (実施例7)
 連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。
 (実施例8)
 連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更し、重合時工程の攪拌が24時間経過した時点でAIBNのベンゼン溶液(12μL、0.002mmol)を追加した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。
 (実施例9)
 連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更し、重合時工程の攪拌が24時間経過した時点でAIBNのベンゼン溶液(12μL、0.002mmol)を追加した以外は、実施例1と同様に実施した。得られたポリマーの絶対分子量であるMn(MALLS)、Mn(GPC)及びPDIを表1に示す。
 (実施例10)
 連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更し、重合時工程の攪拌が11時間及び71時間経過した時点でAIBNのベンゼン溶液(12μL、0.002mmol)を追加した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。
 (実施例11)
 第一のビニルモノマーをVT1からVT2に変更し、連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。
 (実施例12)
 重合開始剤をInt1からInt2に変更し、連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とし、結果を表1に示す。
 (実施例13)
 重合開始剤をInt1からInt3に変更し、連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更し、重合時工程の攪拌が12時間経過した時点でAIBNのベンゼン溶液(12μL、0.002mmol)を追加した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。
 (実施例14)
 重合開始剤のInt1からInt4に変更し、連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更し、重合時工程の攪拌が72時間経過した時点でAIBNのベンゼン溶液(12μL、0.002mmol)を追加した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。
 (実施例15)
 重合開始剤のInt1からInt5に変更し、連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーについて、NMR法により数平均分子量(Mn(NMR))を求め、Mn(NMR)を絶対分子量とした。結果を表1に示す。
 (実施例16)
 第二のビニルモノマーをアクリル酸(AA)に変更したこと、連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMn(NMR)を求め、Mn(NMR)を絶対分子量とした。結果を表1に示す。
 (実施例17)
 第二のビニルモノマーをN,N-ジメチルアクリルアミド(DMAA)に変更、連鎖移動剤、第一のビニルモノマー及び第二のビニルモノマーの量比及び反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMn(NMR)を求め、Mn(NMR)を絶対分子量とした。結果を表1に示す。
 (実施例18)
 窒素雰囲気下、攪拌機を備えたフラスコに、連鎖移動剤としてInt1(1.8μL、0.01mmol)、第一のビニルモノマーとしてVT3(32.5μL、0.15mmol)、第二のビニルモノマーとしてメタクリル酸メチル(以下、MMAという。0.53mL、5mmol)、AIBNのベンゼン溶液(12μL、0.002mmol)を加え、60℃の温度で暗所にて15時間撹拌した。H-NMRによりVT3及びMMAの重合率の経時変化を追跡し、GPC法により得られたポリマーの数平均分子量(Mn(GPC))及びPDIの経時変化を追跡した。その結果を表2に示した。
 (比較例1)
 第一のビニルモノマーを使用せず、反応時間を表1に示すように変更した以外は、実施例1と同様に実施した。得られたポリマーのMn(GPC)及びPDIを表1に示す。また、得られたポリマーのMw(MALLS)とPDIよりMn(MALLS)を算出し、Mn(MALLS)を絶対分子量とした。結果を表1に示す。
 (比較例2)
 窒素雰囲気下、攪拌機を備えたフラスコに、連鎖移動剤としてInt1(1.8μL、0.01mmol)、Inimer1(25μL、0.15mmol)、第二のビニルモノマーとしてMA(0.45mL、5mmol)、AIBNのベンゼン溶液(12μL、0.002mmol)を加え、60℃の温度で暗所にて56時間撹拌した。H-NMRによりInimer1及びMAの重合率の経時変化を追跡し、GPC法により得られたポリマーの数平均分子量(Mn(GPC))及びPDIの経時変化を追跡した。結果を表2に示す。
 (比較例3)
 窒素雰囲気下、攪拌機を備えたフラスコに、Inimer1(25μL、0.15mmol)、第二のビニルモノマーとしてMA(0.45mL、5mmol)、AIBNのベンゼン溶液(12μL、0.002mmol)を加え、60℃の温度で暗所にて56時間撹拌した。H-NMRによりInimer1及びMAの重合率の経時変化を追跡し、GPC法により得られたポリマーの数平均分子量(Mn(GPC))及びPDIの経時変化を追跡した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 図2は、実施例1の経時的なGPCトレースを示す図である。図2に示すように、重合の間、GPCトレースは常に単峰であり、分岐が制御されていることがわかる。
 表1に示す実施例1、4、5、及び7~9の結果から、第一のビニルモノマーの使用量の増加にともないMn(GPC)は小さくなる傾向にあるが、絶対分子量は大きな変化がみられない。このことから、第一のビニルモノマーの使用量の増加により分岐度が大きくなっていることがわかる。実施例1~3の結果から、第二のビニルモノマーの使用量の増加にともないMn(GPC)及び絶対分子量が大きくなることから第二のビニルモノマーの使用量の増加により分子量が大きくなることがわかる。また、実施例1、4及び5の結果から分岐度が上がるにつれて固有粘度が低下することがわかる。
 表2に示すイニマーを用いた比較例2、3の結果から、第二のビニルモノマーの消費に比べてイニマーの消費が圧倒的に早く起こり、最初は分岐度が大きいが、直ぐに分岐がなくなることが分かる。それに対し、第一のビニルモノマーを用いた実施例18は、PDIが常に2.5以下であり、さらに第一のビニルモノマーと第二のビニルモノマーの消費がほぼ同じ速度で起こることから、分岐密度が一定のポリマーが得られていることがわかる。

Claims (8)

  1.  ビニル結合のα位に重合開始基を有する第一のビニルモノマーと、ビニル結合のα位に重合開始基を有さない第二のビニルモノマーとをリビングラジカル重合する工程を備える、多分岐ポリマーの製造方法。
  2.  前記リビングラジカル重合が、下記一般式(5)、下記一般式(6)、下記一般式(7)若しくは下記一般式(8)で表される有機テルル化合物、又は前記有機テルル化合物から得られるマクロ連鎖移動剤を連鎖移動剤として用いるリビングラジカル重合であることを特徴とする、請求項1に記載の多分岐ポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
     〔一般式(5)~(8)において、Rは炭素数1~8のアルキル基、アリール基又は芳香族ヘテロ環基を表す。R及びRは、それぞれ独立に水素原子又は炭素数1~8のアルキル基を表す。Rは炭素数1~8のアルキル基、アリール基、置換アリール基、芳香族へテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基、シアノ基、アリル基又はプロパルギル基を表す。Rは、炭素数1~18のアルキレン基を表す。Xは、酸素原子又は-NZ-を表し、Nは窒素原子を表し、Zは水素原子、炭素数1~8のアルキル基又はフェニル基を表す。一般式(6)においてXは2価の有機基を表し、一般式(7)においてXは3価の有機基を表し、一般式(8)においてXは4価の有機基を表す。〕
  3.  前記第一のビニルモノマーが下記一般式(9)で表されるビニルモノマーであることを特徴とする、請求項1又は2に記載の多分岐ポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000005
     〔一般式(9)において、Rは水素原子、炭素数1~8のアルキル基、アリール基、芳香族へテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基又はシアノ基を表す。Rは炭素数1~8のアルキル基、アリール基、芳香族ヘテロ環基、シリル基又はフッ素原子を表す。〕
  4.  前記第一のビニルモノマーと前記第二のビニルモノマーとの使用比率(第一のビニルモノマー:第二のビニルモノマー)がモル比で、0.01:99.99~50:50であることを特徴とする、請求項1~3のいずれか一項に記載の多分岐ポリマーの製造方法。
  5.  請求項1~4のいずれか一項に記載の製造方法で製造されたことを特徴とする、多分岐ポリマー。
  6.  ビニル結合のα位に重合開始基を有する第一のビニルモノマーに由来する構造単位と、ビニル結合のα位に重合開始基を有さない第二のビニルモノマーに由来する構造単位とを含む、多分岐ポリマー。
  7.  GPC法により測定される分子量分布(PDI)が2.5未満であることを特徴とする、請求項6に記載の多分岐ポリマー。
  8.  絶対分子量が1,000~3,000,000であることを特徴とする、請求項6又は7に記載の多分岐ポリマー。
PCT/JP2017/016008 2016-05-02 2017-04-21 多分岐ポリマーの製造方法及び多分岐ポリマー WO2017191766A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2017259457A AU2017259457B2 (en) 2016-05-02 2017-04-21 Method for producing multibranched polymer and multibranched polymer
CN201780027425.3A CN109071697B (zh) 2016-05-02 2017-04-21 多支链聚合物的制造方法和多支链聚合物
EP17792699.5A EP3453726B1 (en) 2016-05-02 2017-04-21 Method for producing multibranched polymer and multibranched polymer
US16/096,825 US10808065B2 (en) 2016-05-02 2017-04-21 Method for producing multibranched polymer and multibranched polymer
JP2018515424A JP6754124B2 (ja) 2016-05-02 2017-04-21 多分岐ポリマーの製造方法及び多分岐ポリマー
AU2021229164A AU2021229164B2 (en) 2016-05-02 2021-09-07 Method for producing multibranched polymer and multibranched polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016092424 2016-05-02
JP2016-092424 2016-05-02

Publications (1)

Publication Number Publication Date
WO2017191766A1 true WO2017191766A1 (ja) 2017-11-09

Family

ID=60202940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016008 WO2017191766A1 (ja) 2016-05-02 2017-04-21 多分岐ポリマーの製造方法及び多分岐ポリマー

Country Status (6)

Country Link
US (1) US10808065B2 (ja)
EP (1) EP3453726B1 (ja)
JP (1) JP6754124B2 (ja)
CN (1) CN109071697B (ja)
AU (2) AU2017259457B2 (ja)
WO (1) WO2017191766A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194291A (ja) * 2018-05-02 2019-11-07 国立大学法人京都大学 多分岐ポリマーの製造方法及び多分岐ポリマー、共役ジエンモノマー
WO2022130919A1 (ja) * 2020-12-14 2022-06-23 Agc株式会社 テルル含有化合物、重合体、及び重合体の製造方法
WO2023022095A1 (ja) * 2021-08-17 2023-02-23 国立大学法人京都大学 多分岐ポリマーの製造方法、多分岐ポリマー及びポリマー粒子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322013A (ja) * 1993-05-11 1994-11-22 Kuraray Co Ltd 重合開始剤、重合方法および重合体
JPH0881513A (ja) * 1994-09-13 1996-03-26 Mitsubishi Chem Corp 球状架橋重合体の製造方法
JPH08176114A (ja) * 1994-12-27 1996-07-09 Asahi Chem Ind Co Ltd アゾ化合物及びその製造方法、ならびにグラフトポリマーの製造方法
JPH08217741A (ja) * 1995-02-15 1996-08-27 Asahi Chem Ind Co Ltd 重合性アゾ化合物及びその製造方法ならびにグラフトポリマーの製造方法
JP2005298768A (ja) * 2004-04-15 2005-10-27 Nippon Soda Co Ltd 新規化合物及び新規高分子化合物
JP2008291216A (ja) * 2007-04-26 2008-12-04 Toagosei Co Ltd 多官能リビングラジカル重合開始剤および重合体の製造方法
JP2010506000A (ja) * 2006-10-04 2010-02-25 ザ ユニバーシティ オブ アクロン イニマーおよびハイパーブランチポリマーの合成
JP2013148798A (ja) * 2012-01-23 2013-08-01 Konica Minolta Inc 静電荷像現像用トナー
WO2015080189A1 (ja) * 2013-11-27 2015-06-04 日本ゼオン株式会社 ラジカル重合開始剤、および重合体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541580B1 (en) * 1995-03-31 2003-04-01 Carnegie Mellon University Atom or group transfer radical polymerization
US5789487A (en) * 1996-07-10 1998-08-04 Carnegie-Mellon University Preparation of novel homo- and copolymers using atom transfer radical polymerization
US6255424B1 (en) * 1997-11-25 2001-07-03 Colorado School Of Mines Dendritic polymers and convergent method of synthesis
JP2002520432A (ja) * 1998-07-10 2002-07-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ミクロゲルおよびその調製方法
US9777082B2 (en) * 2011-10-05 2017-10-03 The University Of Akron Synthesis of hyperbranched polyacrylates by emulsion polymerizsation of inimers
US10106699B2 (en) * 2013-02-20 2018-10-23 Wisconsin Alumni Research Foundation Inimer-containing random copolymers and crosslinked copolymer films for dense polymer brush growth
US20150266986A1 (en) * 2014-03-20 2015-09-24 National University Of Ireland, Galway Multifunctional Hyperbranched Polymers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322013A (ja) * 1993-05-11 1994-11-22 Kuraray Co Ltd 重合開始剤、重合方法および重合体
JPH0881513A (ja) * 1994-09-13 1996-03-26 Mitsubishi Chem Corp 球状架橋重合体の製造方法
JPH08176114A (ja) * 1994-12-27 1996-07-09 Asahi Chem Ind Co Ltd アゾ化合物及びその製造方法、ならびにグラフトポリマーの製造方法
JPH08217741A (ja) * 1995-02-15 1996-08-27 Asahi Chem Ind Co Ltd 重合性アゾ化合物及びその製造方法ならびにグラフトポリマーの製造方法
JP2005298768A (ja) * 2004-04-15 2005-10-27 Nippon Soda Co Ltd 新規化合物及び新規高分子化合物
JP2010506000A (ja) * 2006-10-04 2010-02-25 ザ ユニバーシティ オブ アクロン イニマーおよびハイパーブランチポリマーの合成
JP2008291216A (ja) * 2007-04-26 2008-12-04 Toagosei Co Ltd 多官能リビングラジカル重合開始剤および重合体の製造方法
JP2013148798A (ja) * 2012-01-23 2013-08-01 Konica Minolta Inc 静電荷像現像用トナー
WO2015080189A1 (ja) * 2013-11-27 2015-06-04 日本ゼオン株式会社 ラジカル重合開始剤、および重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3453726A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194291A (ja) * 2018-05-02 2019-11-07 国立大学法人京都大学 多分岐ポリマーの製造方法及び多分岐ポリマー、共役ジエンモノマー
JP7070897B2 (ja) 2018-05-02 2022-05-18 国立大学法人京都大学 多分岐ポリマーの製造方法及び多分岐ポリマー、共役ジエンモノマー
WO2022130919A1 (ja) * 2020-12-14 2022-06-23 Agc株式会社 テルル含有化合物、重合体、及び重合体の製造方法
WO2023022095A1 (ja) * 2021-08-17 2023-02-23 国立大学法人京都大学 多分岐ポリマーの製造方法、多分岐ポリマー及びポリマー粒子

Also Published As

Publication number Publication date
EP3453726B1 (en) 2021-03-03
AU2021229164A1 (en) 2021-09-30
JP6754124B2 (ja) 2020-09-09
AU2021229164B2 (en) 2023-01-05
CN109071697B (zh) 2021-04-23
US20190106524A1 (en) 2019-04-11
CN109071697A (zh) 2018-12-21
JPWO2017191766A1 (ja) 2019-03-07
AU2017259457B2 (en) 2021-07-01
EP3453726A1 (en) 2019-03-13
AU2017259457A1 (en) 2018-10-25
EP3453726A4 (en) 2020-01-08
US10808065B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
AU2021229164B2 (en) Method for producing multibranched polymer and multibranched polymer
JP4107996B2 (ja) リビングラジカルポリマーの製造方法及びポリマー
JP5193480B2 (ja) リビングラジカルポリマーの製造方法およびポリマー
JP2010513612A5 (ja)
WO2017166914A1 (zh) 一种具有平面共轭结构的三臂atrp引发剂及其制备方法
JP5083556B2 (ja) リビングラジカル重合開始剤及び重合体の製造方法
JP5380709B2 (ja) リビングラジカル重合反応助触媒
JP5101816B2 (ja) 多分岐高分子
WO2018159740A1 (ja) グラフトポリマーの製造方法、グラフトポリマー、グラフトポリマーの開始剤
JP5003550B2 (ja) 多官能リビングラジカル重合開始剤および重合体の製造方法
JP7070897B2 (ja) 多分岐ポリマーの製造方法及び多分岐ポリマー、共役ジエンモノマー
JP7113509B2 (ja) 高分子金属錯体の製造方法
JP5963516B2 (ja) ポリマーの製造方法及び該方法により製造されたポリマー
Chu et al. Synthesis of thiophene-containing acyclic alkoxyamine for nitroxide-mediated radical polymerization of acrylates and styrene
US12065519B2 (en) Synthesis of polymer under conditions of enhanced catalyzed radical termination
JP6619688B2 (ja) ビニル重合体の製造方法
EP3790906A1 (en) Light as catalytic switch: metal-organic insertion/light initiated radical (milrad) polymerization
WO2023022095A1 (ja) 多分岐ポリマーの製造方法、多分岐ポリマー及びポリマー粒子
Li et al. Synthesis of Four-Armed Star-Shaped Poly (N, N-Diethylacrylamide) by Group Transfer Polymerization in the Presence of Hydrosilylane
JP2009215472A (ja) 末端に官能基を有するリビングラジカルポリマーの製造方法
Woodruff et al. Synthesis of Star Polymers with Epoxide-Containing Highly Branched Cores by Low-Catalyst Concentration Atom Transfer Radical Polymerization and Post-Polymerization Modifications
JP2002293850A (ja) ブロック共重合体およびその製造方法
菊地誠也 Controlled/living Group Transfer Polymerization of Acrylamide using Organic Acid Leading to Linear, Cyclic, and Star-shaped Macromolecular Architectures
JP2023118366A (ja) 触媒およびポリマーの製造方法
JP2008266490A (ja) N−メタクリロイルアゼチジン系ブロック共重合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018515424

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2017259457

Country of ref document: AU

Date of ref document: 20170421

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017792699

Country of ref document: EP

Effective date: 20181203