WO2017191215A1 - Composition hydraulique grand froid - Google Patents
Composition hydraulique grand froid Download PDFInfo
- Publication number
- WO2017191215A1 WO2017191215A1 PCT/EP2017/060575 EP2017060575W WO2017191215A1 WO 2017191215 A1 WO2017191215 A1 WO 2017191215A1 EP 2017060575 W EP2017060575 W EP 2017060575W WO 2017191215 A1 WO2017191215 A1 WO 2017191215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition according
- base oil
- viscosity
- less
- weight
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
- C10M169/041—Mixtures of base-materials and additives the additives being macromolecular compounds only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/022—Ethene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/17—Fisher Tropsch reaction products
- C10M2205/173—Fisher Tropsch reaction products used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/36—Seal compatibility, e.g. with rubber
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/68—Shear stability
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
Definitions
- the invention relates to the field of lubricants and in particular the field of lubricant compositions used as hydraulic fluid, more particularly implemented at very low temperatures.
- lubricating compositions for use at temperatures below -40 ° C may comprise base oils having a high viscosity index, such as silicones, but this type of oil is expensive and unsuitable for industrial use .
- base oils having a high viscosity index such as silicones
- silicones such as silicones
- PMMA polymethyl methacrylate
- a problem encountered when using such hydraulic fluids at temperatures below -40 ° C is the poor shear stability of these fluids, which can result in a significant loss of kinematic viscosity of the fluid.
- This poor shear stability is due to the addition, generally important (from 30 to 50% by weight of active material), of polymer in the lubricant composition.
- such a lubricant composition may not be compatible with the joints of the plant, particularly nitrile seals, because of choice of base oil. In particular, it is possible to observe swelling of the nitrile seals in contact with the lubricating composition.
- compositions allowing the operation of machines at low temperatures, for example at temperatures below -40 ° C., in particular in a polar medium, these compositions preferably having a good shear stability and compatibility with seals acceptable.
- the invention provides a hydraulic composition which makes it possible to provide a solution to all or part of the problems of lubricating compositions intended to be used at very low temperatures.
- the present invention provides a lubricant composition comprising:
- At least one base oil whose kinematic viscosity measured at 40 ° C is less than or equal to 10 mm 2 / s and whose pour point is less than or equal to -50 ° C;
- At least one viscosity index improver At least one viscosity index improver
- said lubricating composition having a pour point less than or equal to -55 ° C.
- the lubricant composition according to the invention has a pour point less than or equal to -60 ° C.
- Pour points of -55, -56, -57, -58, -59, 60, -61, -62, -63, -64, -65 ° C may be mentioned by way of example.
- the pour point of the lubricant composition is measured according to ASTM D97.
- the lubricant composition according to the invention has a high viscosity index greater than or equal to 300 and a very low pour point less than or equal to -55 ° C.
- the lubricant composition according to the invention can be used at extreme temperatures and especially at temperatures below 40 ° C.
- the composition of the invention has good shear stability.
- the base oil of the lubricating composition according to the invention is characterized by a kinematic viscosity measured at 40 ° C. of less than or equal to 10 mm 2 / s, preferably the kinematic viscosity at 40 ° C. is between 1 and 10 mm 2 / s, preferably between 2 and 10 mm 2 / s, more preferably between 2 and 8 mm 2 / s and advantageously the kinematic viscosity at 40 ° C of the base oil is between 2 and 4 mm 2 / s.
- the viscosity of the base oil of the composition according to the invention at 40 ° C. is measured according to the ISO 3104 standard of July 15, 1997.
- the base oil of the lubricating composition according to the invention is characterized by a pour point less than or equal to -50 ° C.
- the pour point is measured according to ISO 3016 of 1 August 1994.
- the base oil (s) used in the lubricating compositions according to the invention must have the above physical characteristics and may be chosen in a wide range.
- the base oil of the lubricant composition used according to the invention may especially be chosen from mineral, bio-sourced, animal or vegetable oils or synthetic oils.
- the base oil (s) according to the invention may be biobased oils, oils of vegetable origin, mineral or synthetic, chosen from oils of groups III to V according to the classes defined in the API classification (or their equivalents according to US Pat. ATIEL classification) (Table A), alone or in mixtures.
- the mineral base oils useful according to the invention include all types of bases obtained by atmospheric and vacuum distillation of crude oil, followed by refining operations such as solvent extraction, desalphating, solvent dewaxing, hydrotreatment, hydrocracking, hydroisomerization and hydrofinishing and having the pour point and viscosity characteristics described above. Mixtures of synthetic and mineral oils can also be used.
- the base oil (s) of the lubricating composition according to the invention are chosen from Group V oils.
- the base oil (s) of the lubricating composition according to the invention are chosen from biosourced oils.
- the base oils of the lubricating compositions used according to the invention may also be chosen from biosourced oils as derived from the hydrogenation of a plant biomass.
- the plant biomass may be a vegetable oil, an ester or a triglyceride derived from this vegetable oil.
- the base oil according to the invention is chosen from iso-paraffinic oils preferably containing more than 90% by weight of iso-paraffin, preferably more than 95% and more particularly more than 98% and presenting an aromatic content of less than 300 ppm, preferably less than 100 ppm, preferentially less than 50 ppm, and even more preferably less than 20 ppm.
- the aromatic content is measured by UV.
- this base oil contains less than 3% by weight of naphthene, preferably less than 1%, and even more preferably less than 100 ppm.
- this base oil is characterized by an isoparaffin / n-paraffin mass ratio greater than or equal to 12: 1, preferably greater than or equal to 15: 1, and advantageously greater than or equal to 20: 1.
- this base oil comprises from 6 to 30 carbon atoms, preferably from 8 to 24, and even more advantageously from 9 to 20.
- this base oil contains less than 5 ppm, preferably less than 3 ppm, and advantageously less than 0.5 ppm sulfur.
- this base oil is characterized by a boiling point of between 100 and 400 ° C., preferably between 150 and 400 ° C., more preferably between 200 and 400 ° C., and even more preferably between 220 and 340 ° C. C and advantageously between 250 and 340 ° C.
- the base oils of the lubricating compositions according to the invention can also be chosen from polyalphaolefins (PAO) such as PAO 2, gas to liquid oils (GTL), such as GTL2, biosourced oils such as farnesane and isoparaffins. obtained by hydrocracking and hydrodearomatization process such as those of the ISANE® range marketed by TOTAL FLUIDS, or de-aromatized aliphatic oils such as Hydroseal® oils marketed by TOTAL FLUIDS.
- PAO polyalphaolefins
- GTL gas to liquid oils
- biosourced oils such as farnesane and isoparaffins.
- the lubricating composition according to the invention comprises from 50 to 85% by weight of base oil relative to the total mass of the composition, preferably from 55 to 80%, more preferably from 60 to 75%.
- the lubricating composition according to the invention may optionally comprise a minor base oil in a small proportion.
- the secondary base oil of the composition according to the invention is chosen from the base oils of groups I or II according to the classes defined in the API classification (or their equivalents according to the ATIEL classification) (Table A), alone or in mixed.
- the content of secondary base oil of the lubricating composition according to the invention is less than or equal to 10%, preferably less than or equal to 5% by weight relative to the total mass of the lubricating composition.
- the lubricating composition according to the invention may also comprise at least one thickener.
- the term thickener is understood to mean a compound, preferably a polymeric compound used to increase the viscosity. kinematic of the base oil. It should be understood that in the present invention, the thickener and viscosity index improver included in the lubricating composition are two different compounds, including two compounds of different chemical nature.
- thickening factor means compounds, in particular polymeric compounds, characterized by a thickening factor of less than 1.
- the thickening factor is the ratio of specific viscosity at 98 ° C (210 ° F) to specific viscosity at 37 ° C (100 ° F).
- the thickening factor is in particular defined in the publication "Influence of base oil refining on the performance of viscosity index improvers" H. Singh et al. (Wear, 18, 33-56, 1987), on page 47.
- the thickener of the lubricant composition according to the invention may be chosen from polymeric thickeners.
- the thickener of the lubricating composition according to the invention is chosen from copolymers of ethylene and alphaolefin, polyalphaolefins (PAO) and polyalphaolefins obtained by metallocene catalysis (mPAO) of high viscosity, this viscosity being a kinematic viscosity. being at least 100 mm 2 / s at 100 ° C.
- the kinematic viscosity at 100 ° C. is measured according to the ISO 3104 standard of July 15, 1997.
- the lubricant composition according to the invention comprises between 5 and 25% by weight of active ingredient of thickener, more particularly between 10 and 25% by weight. thickener active material, based on the total weight of the lubricating composition, preferably 5 to 20% or 12 to 20%.
- the molar masses of the thickeners according to the invention are at most 10,000 g. mol "1 , and are more particularly in the range of from 3,000 to 10,000 gmol -1 or 4000 to 10,000 g. mol "1 .
- the kinematic viscosity of the thickener according to the invention is at least equal to 400 mm 2 / s at 100 ° C, preferably at least equal to 450 mm 2 / s at 100 ° C.
- the kinematic viscosity at 100 ° C. is measured according to the ISO 3104 standard of July 15, 1997.
- the thickener is a copolymer of ethylene and alphaolefin.
- the copolymer of ethylene and alphaolefin according to the invention is a copolymer of ethylene and an alphaolefin comprising from 3 to 30 carbon atoms. carbon, preferably from 3 to 24, preferably from 3 to 20, still more preferably from 3 to 10, even more preferably from 3 to 6.
- alphaolefins examples include propylene, butene, pentene, hexene, heptene, octene, nonene, decene, in particular 1-butene, 1-pentene and 1 -hexene. , 1-octene.
- the copolymer of ethylene and alphaolefin has the general formula (I)
- R is an alkyl group having 1 to 8 carbon atoms, preferably 1 to 3, x and y are such that the ratio x / y is between 0.5 and 2 and the sum x + y is included between 50 and 150.
- R represents a methyl group
- x and y are such that the ratio x / y is between 0.5 and 1.5 and the sum x + y is between 70 and 130.
- R is a methyl group
- x is 40 and y is 40.
- the ethylene / alphaolefin copolymer according to the invention is an ethylene / propylene copolymer.
- an ethylene / alphaolefin copolymer according to the invention mention may be made of the Lucant HC600® marketed by the company MITSUI CHEMICALS.
- Ester copolymers may also be mentioned as another example of a thickener according to the invention, in particular Ketjenlube® marketed by Italmatch.
- Polyisobutene in particular that marketed under the trademark Ineos® by Indopol, may also be cited as an example of a thickener according to the invention.
- the lubricant composition according to the invention may also comprise at least one viscosity index improver chosen from (poly) methacrylates (PMA) and hydrogenated polyisoprene-styrene (PISH).
- the lubricant composition according to the invention comprises between 5 and 15% by weight of active ingredient of viscosity enhancer relative to the total mass of the composition.
- the PMA or PISH contained in the composition according to the invention are polymers that can be in any configuration, linear, grafted, comb or star.
- LDCs can be characterized by a molar mass of between 55000 and
- the viscosity improver is chosen from among the PMAs.
- Viscoplex 7-200® As an example of PMA according to the invention, mention may be made of Viscoplex 7-200® from the company Evonik.
- the aforementioned viscosity improvers have a thickening factor greater than 1.
- the thickening factor is the ratio of specific viscosity at 98 ° C (210 ° F) to specific viscosity at 37 ° C (100 ° F).
- the thickening factor is in particular defined in the publication "Influence of base oil refining on the performance of viscosity index improvers" H. Singh et al. (Wear, 18, 33-56, 1987), on page 47.
- the molecular weights of the viscosity improvers according to the invention are for example between 55,000 and 100,000 g. mol "1 .
- the lubricating composition according to the invention may also comprise at least one or more additives.
- the preferred additives for the lubricant composition used according to the invention are chosen from antiwear additives, extreme pressure additives, friction modifying additives, antioxidants, detergent additives, dispersants, defoamers, demulsifiers and their mixtures.
- Anti-wear additives and extreme pressure additives protect friction surfaces by forming a protective film adsorbed on these surfaces.
- anti-wear additives may be chosen from phospho-sulfur additives such as metal alkylthiophosphates, in particular zinc alkylthiophosphates, and more specifically zinc dialkyldithiophosphates or ZnDTPs.
- the preferred compounds have the formula Zn ((SP (S) (OR a ) (OR b )) 2 , in which R a and R b , which may be identical or different, independently represent an alkyl group, preferably an alkyl group having from 1 to 18 carbon atoms.
- the anti-wear additives can also be chosen from zinc-free compounds such as amine phosphates, phosphites, for example phosphite mono-, di- or triesters and dithiocarbamates. for example, amine dithiocarbamates.
- the lubricant composition used according to the invention may comprise from 0.01 to 6% by weight, preferably from 0.05 to 4% by weight, more preferably from 0.1 to 2% by weight relative to total mass of lubricating composition, antiwear additives and extreme pressure additives.
- the lubricant composition according to the invention may comprise at least one friction-modifying additive.
- the friction modifying additive may be chosen from a compound providing metal elements and an ash-free compound.
- the compounds providing metal elements mention may be made of transition metal complexes such as Mo, Sb, Sn, Fe, Cu and Zn, the ligands of which may be hydrocarbon compounds comprising oxygen, nitrogen, sulfur or phosphorus.
- the ashless friction modifier additives are generally of organic origin and may be selected from monoesters of fatty acids and polyols, alkoxylated amines, alkoxylated fatty amines, fatty epoxides, borate fatty epoxides; fatty amines or fatty acid glycerol esters.
- the fatty compounds comprise at least one hydrocarbon group comprising from 10 to 24 carbon atoms.
- the lubricant composition used according to the invention may comprise from 0.01 to 2% by weight or from 0.01 to 5% by weight, preferably from 0.1 to 1.5% by weight or from 0, 1 to 2% by weight relative to the total mass of the lubricant composition, friction modifier additive.
- the lubricant composition according to the invention may comprise at least one antioxidant additive.
- the antioxidant additive generally serves to retard the degradation of the lubricating composition in service. This degradation can notably result in the formation of deposits, the presence of sludge or an increase in the viscosity of the lubricant composition.
- Antioxidant additives act in particular as radical inhibitors or destroyers of hydroperoxides.
- antioxidant additives commonly used, mention may be made of antioxidant additives of phenolic type, antioxidant additives of amine type, antioxidant phosphosulfur additives.
- Some of these antioxidant additives, for example additives phosphosulfur antioxidants can be ash generators. Phenolic antioxidant additives may be ash-free or may be in the form of neutral or basic metal salts.
- the antioxidant additives may especially be chosen from sterically hindered phenols, sterically hindered phenol esters and sterically hindered phenols comprising a thioether bridge, diphenylamines, diphenylamines substituted with at least one C 1 -C 12 alkyl group, ⁇ , ⁇ '-dialkyl-aryl diamines and mixtures thereof.
- the sterically hindered phenols are chosen from compounds comprising a phenol group in which at least one vicinal carbon of the carbon bearing the alcohol function is substituted with at least one alkyl group containing 10 carbon atoms, preferably an alkyl group containing CrC 6 , preferably a C 4 alkyl group, preferably by the ter-butyl group.
- Amino compounds are another class of antioxidant additives that can be used, optionally in combination with phenolic antioxidant additives.
- amine compounds are aromatic amines, for example aromatic amines of formula NR c R d R e in which R c represents an optionally substituted aliphatic or aromatic group, R d represents an aromatic group, optionally substituted, R e represents a hydrogen atom, an alkyl group, an aryl group or a group of formula R f S (O) z R 9 in which R f represents an alkylene group or an alkenylene group, R 9 represents an alkyl group, an alkenyl group or an aryl group and z represents 0, 1 or 2.
- Sulfurized alkyl phenols or their alkali and alkaline earth metal salts may also be used as antioxidant additives.
- antioxidant additives is copper compounds, for example copper thio- or dithio-phosphates, copper and carboxylic acid salts, dithiocarbamates, sulphonates, phenates, copper acetylacetonates. Copper salts I and II, succinic acid or anhydride salts can also be used.
- the lubricant composition used according to the invention may contain all types of antioxidant additives known to those skilled in the art.
- the lubricating composition comprises at least one ash-free antioxidant additive.
- the lubricant composition used according to the invention comprises from 0.5 to 2% by weight, relative to the total weight of the composition, of at least one antioxidant additive.
- the lubricant composition according to the invention may also comprise at least one detergent additive.
- Detergent additives generally reduce the formation of deposits on the surface of metal parts by dissolving secondary products oxidation and combustion.
- the detergent additives that can be used in the lubricant composition used according to the invention are generally known to those skilled in the art.
- the detergent additives may be anionic compounds comprising a long lipophilic hydrocarbon chain and a hydrophilic head.
- the associated cation may be a metal cation of an alkali metal or alkaline earth metal.
- the detergent additives are preferably chosen from the alkali metal or alkaline earth metal salts of carboxylic acids, the sulphonates, the salicylates, the naphthenates and the phenate salts.
- the alkali and alkaline earth metals are preferably calcium, magnesium, sodium or barium. These metal salts generally comprise the metal in stoichiometric amount or in excess, therefore in an amount greater than the stoichiometric amount. It is then overbased detergent additives; the excess metal bringing the overbased character to the detergent additive is then generally in the form of an oil insoluble metal salt, for example a carbonate, a hydroxide, an oxalate, an acetate, a glutamate, preferably a carbonate .
- the lubricant composition used according to the invention may comprise from 2 to 4% by weight of detergent additive relative to the total mass of the lubricant composition.
- the lubricant composition according to the invention may also comprise at least one dispersing agent.
- the dispersing agent may be chosen from Mannich bases, succinimides and their derivatives.
- the lubricant composition used according to the invention may comprise from 0.2 to 10% by weight of dispersing agent relative to the total weight of the lubricating composition.
- the lubricating composition may also comprise an anti-foam additive chosen from silicones and their derivatives, such as polysiloxanes and their derivatives.
- an anti-foaming additive may be Bluesil 47V12500® marketed by Bluestar Silicones.
- the antifoam additive of the lubricant composition according to the invention may also be chosen from acrylics, such as PC1244® marketed by Mosanto.
- the lubricant composition can also comprise a demulsifier chosen from polyethers and their derivatives such as the compounds Embreak 2W6975® sold by the company General Electric and Prochinor GR77® marketed by Arkema.
- the lubricating composition according to the invention comprises at least one additive chosen from antioxidants, antiwear, antifoams and demulsifiers.
- the lubricant composition according to the invention has a viscosity index greater than or equal to 200, preferably greater than or equal to 250, preferably greater than or equal to 300 and a pour point of between -50 and -66 °. C, preferably between -55 and -63 ° C.
- the viscosity index is measured according to ISO 2909 of December 15, 2002.
- the lubricating composition according to the invention is characterized by good resistance to shear, i.e. a variation of KV100, measured according to DIN standard 51350-6 dated August 1, 1996, less than or equal to 26 %.
- the lubricating composition according to the invention is also characterized by its compatibility with seals, particularly seals nitriles which is measured according to standard NF E 46-610 dated February 1, 2012. Two characteristics are measured to ensure the criterion compatibility with nitrile seals, volume variation which must be between 0 and 12% and hardness variation which must be between 0 and -7%.
- the lubricant composition according to the invention is particularly advantageous for its use as a hydraulic fluid, especially for industrial machines at temperatures below -40 ° C.
- the invention also relates to the use of a lubricant composition according to the invention as a lubricating composition for a rotary compressor, in particular in a polar climate.
- the particular, advantageous or preferred characteristics of the lubricant composition according to the invention make it possible to define uses according to the invention which are also particular, advantageous or preferred.
- Example 1 Preparation of a Lubricating Composition According to the Invention CL1
- the various components of the lubricating compositions according to the invention are mixed according to the nature and the quantities of products presented in Table 1.
- the characteristics of the lubricant composition CL1 (kinematic viscosity, viscosity number and pour point) are presented in Table 2.
- the kinematic viscosities at 40 and 100 ° C are measured according to the ISO 3104 standard of July 15, 1997.
- the lubricant composition according to the invention has good viscosity properties, especially at 40 and 100 ° C.
- the viscosity index was calculated according to ISO 2909 of December 15, 2002.
- the pour point was measured according to ISO 3016 of 1 August 1994.
- the lubricant composition according to the invention is characterized by a pour point of -57 ° C. and a viscosity number of 316. These characteristics show that the composition lubricant according to the invention can be used as hydraulic fluid in polar climates.
- Example 3 Evaluation of the tribological characteristics and in terms of compatibility with the materials
- the shear strength was measured according to DIN standard 51350-6 dated August 1, 1996.
- the variation of the KV100 for the lubricating composition according to the invention shows a good shear stability of the lubricant composition according to the invention.
- the values of the volume and hardness variations of the nitrile seals show a good compatibility of the lubricant composition according to the invention with the seals, in particular with the nitrile seals.
- the lubricant composition according to the invention has good shear stability and good compatibility with nitrile seals.
- Lubricating composition according to the invention CL2 (% by mass)
- Thickener copolymer of ethylene and
- the characteristics of the lubricant composition CL2 (kinematic viscosity, viscosity index, pour point and loss of viscosity) are presented in Table 5.
- the kinematic viscosities at 40 and 100 ° C are measured according to the ISO 3104 standard of July 15, 1997.
- the lubricant composition according to the invention has good viscosifying properties, especially at 40 and 100 ° C.
- the viscosity index was calculated according to ISO 2909 of December 15, 2002.
- the pour point was measured according to ISO 3016 of 1 August 1994.
- the loss of viscosity at 100 ° C after shear KRL 20H is measured according to DIN 51350-6.
- the lubricant composition according to the invention is characterized by a pour point of -60 ° C. and a viscosity number of 326. These characteristics show that the lubricant composition according to the invention can be used as hydraulic fluid in climates. polar. The loss of viscosity 100 ° C. after shear KRL 20H shows that the lubricant composition according to the invention has a good shear stability.
- Example 6 Preparation of a lubricant composition according to the invention CL3
- Table 7 The kinematic viscosities at 40 and 100 ° C are measured according to the ISO 3104 standard of July 15, 1997.
- the lubricant composition according to the invention has good viscosity properties, especially at 40 and 100 ° C.
- the viscosity index was calculated according to ISO 2909 of December 15, 2002.
- the pour point was measured according to ISO 3016 of 1 August 1994.
- the lubricant composition according to the invention is characterized by a pour point of -78 ° C. and a viscosity number of 295. These characteristics show that the lubricant composition according to the invention can be used as hydraulic fluid in climates. polar.
- the characteristics of the lubricating composition CL4 (kinematic viscosity, viscosity number, pour point and loss of viscosity) are presented in Table 9.
- the kinematic viscosities at 40 and 100 ° C are measured according to the ISO 3104 standard of July 15, 1997.
- the viscosity index was calculated according to ISO 2909 of December 15, 2002.
- the pour point was measured according to ISO 3016 of 1 August 1994.
- the lubricating composition of the prior art CL4 exhibits a loss of viscosity at 100 ° C. after 20% KRL shear greater than 30%, mainly because of the absence of thickener in the composition, unlike the lubricating compositions according to the present invention in which this loss never exceeds 30%.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
L'invention concerne le domaine des lubrifiants et fournit une composition lubrifiante comprenant au moins une huile de base dont la viscosité cinématique mesurée à 40°C inférieure ou égale à 10 mm²/s et dont le point d'écoulement est inférieur ou égal à -50°C; au moins un épaississant et au moins un améliorateur de l'indice de viscosité, ladite composition lubrifiante ayant un point d'écoulement inférieur ou égal à - 55°C.
Description
COMPOSITION HYDRAULIQUE GRAND FROID
L'invention concerne le domaine des lubrifiants et notamment le domaine des compositions lubrifiantes utilisées en tant que fluide hydraulique, plus particulièrement mises en œuvre à de très faibles températures.
Le développement des activités en climat polaire (en Russie, Sibérie par exemple) nécessite l'adaptation de certains engins de travaux publics, tels que des engins de chantier, des pelles, des engins de convoyage, afin de permettre leur fonctionnement à des températures inférieures à -40°C. De tels engins ne peuvent fonctionner avec les compositions hydrauliques usuelles dans de telles conditions de température. Pour fonctionner à de telles températures, il est nécessaire que la composition lubrifiante possède un point d'écoulement très bas, généralement inférieur à -55°C et un indice de viscosité généralement supérieur à 300 afin de permettre de stabiliser la viscosité de la composition lubrifiante quelle que soit la température.
Ainsi les compositions lubrifiantes destinées à être utilisées à des températures inférieures à -40°C peuvent comprendre des huiles de base présentant un indice de viscosité élevé, telles que les silicones, mais ce type d'huile est cher et peu adapté à une utilisation industrielle. Il est connu d'additiver une huile de base minérale très fluide avec un polymère permettant d'améliorer son indice de viscosité. C'est le cas notamment des fluides hydrauliques qui combinent une huile de base naphténique ou paraffinique très fluide avec un polymère permettant d'améliorer l'indice de viscosité, tel que le polyméthacrylate de méthyle (PMMA).
Un problème rencontré lors de l'utilisation à des températures inférieures à -40°C de tels fluides hydrauliques est la mauvaise stabilité au cisaillement de ces fluides, qui peut se traduire par une perte importante de viscosité cinématique du fluide. Cette mauvaise stabilité au cisaillement est due à l'ajout, généralement important (de 30 à 50% en masse de matière active), de polymère dans la composition lubrifiante.
Outre la mauvaise résistance au cisaillement, une telle composition lubrifiante peut ne pas être compatible avec les joints de l'installation, notamment les joints nitriles, du fait du
choix de l'huile de base. Il est notamment possible d'observer un gonflement des joints nitriles au contact de la composition lubrifiante.
Il existe donc un besoin de disposer de compositions lubrifiantes permettant le fonctionnement d'engins à de basses températures, par exemple à des températures inférieures à -40°C, notamment en milieu polaire, ces compositions ayant de préférence une bonne stabilité au cisaillement et une compatibilité avec les joints acceptable.
Il a maintenant été trouvé que la combinaison d'une huile de base associant un très bas point d'écoulement et une faible viscosité cinématique à 40°C avec un épaississant et un améliorateur de l'indice de viscosité permet de fournir une composition lubrifiante ayant elle-même un point d'écoulement très bas, permettant le fonctionnement d'engins à très basse température et assurant de préférence une bonne stabilité au cisaillement et une bonne compatibilité avec les joints.
Ainsi l'invention fournit une composition hydraulique qui permet d'apporter une solution à tout ou partie des problèmes des compositions lubrifiantes destinées à être utilisées à très basse température. La présente invention fournit une composition lubrifiante comprenant :
- au moins une huile de base dont la viscosité cinématique mesurée à 40°C est inférieure ou égale à 10 mm2/s et dont le point d'écoulement est inférieur ou égal à -50°C ;
- au moins un épaississant ; et
- au moins un améliorateur de l'indice de viscosité ;
ladite composition lubrifiante ayant un point d'écoulement inférieur ou égal à - 55°C.
Avantageusement, la composition lubrifiante selon l'invention a un point d'écoulement inférieur ou égal à -60°C. Des points d'écoulement de -55, -56, -57, -58, -59, 60, -61 , -62, -63, -64, -65°C peuvent être cités à titre d'exemple.
Le point d'écoulement de la composition lubrifiante est mesuré selon la norme ASTM D97.
De façon avantageuse, la composition lubrifiante selon l'invention possède un haut indice de viscosité supérieur ou égal à 300 et un très bas point d'écoulement inférieur ou égal à - 55°C. Ainsi et de façon avantageuse, la composition lubrifiante selon l'invention peut être utilisée à des températures extrêmes et notamment à des températures inférieures à -
40°C. Par ailleurs, de façon avantageuse, la composition de l'invention présente une bonne stabilité au cisaillement.
Avantageusement, l'huile de base de la composition lubrifiante selon l'invention est caractérisée par une viscosité cinématique mesurée à 40°C inférieure ou égale à 10mm2/s, de préférence la viscosité cinématique à 40°C est comprise entre 1 et 10 mm2/s, de préférence entre 2 et 10 mm2/s, encore plus préférentiellement entre 2 et 8 mm2/s et avantageusement la viscosité cinématique à 40°C de l'huile de base est comprise entre 2 et 4 mm2/s.
La viscosité de l'huile de base de la composition selon l'invention à 40°C est mesurée selon la norme ISO 3104 du 15 juillet 1997.
De manière avantageuse, l'huile de base de la composition lubrifiante selon l'invention est caractérisée par un point d'écoulement inférieur ou égal à -50°C.
Le point d'écoulement est mesuré selon la norme ISO 3016 du 1 er août 1994.
La ou les huiles de base utilisées dans les compositions lubrifiantes selon l'invention doivent présenter les caractéristiques physiques ci-dessus et peuvent être choisies dans une large gamme. L'huile de base de la composition lubrifiante utilisée selon l'invention peut notamment être choisie parmi des huiles minérales, bio-sourcées, animales, végétales ou les huiles synthétique. La ou les huiles de base selon l'invention peuvent être des huiles biosourcées, des huiles d'origine végétale, minérale ou synthétique, choisies parmi les huiles des groupes III à V selon les classes définies dans la classification API (ou leurs équivalents selon la classification ATIEL) (tableau A), seules ou en mélanges.
Teneur en Teneur en Indice de saturés soufre viscosité (VI)
Groupement I
< 90 % > 0,03 % 80 < VI < 120 Huiles minérales
Groupement II
> 90 % < 0,03 % 80 < VI < 120 Huiles hydrocraquées
Groupement III
Huiles hydrocraquées > 90 < 0,03 % > 120 ou hydro-isomérisées
Groupement IV polyalphaoléfines (PAO) esters et autres bases non incluses dans les groupes 1
Groupement V
à IV
Tableau A
Les huiles de base minérales utiles selon l'invention incluent tous types de bases obtenues par distillation atmosphérique et sous vide du pétrole brut, suivies d'opérations de raffinage telles qu'extraction au solvant, désalphatage, déparaffinage au solvant, hydrotraitement, hydrocraquage, hydroisomérisation et hydrofinition et présentant les caractéristiques de point d'écoulement et de viscosité décrites ci-dessus. Des mélanges d'huiles synthétiques et minérales peuvent également être employés.
De préférence, la ou les huiles de base de la composition lubrifiante selon l'invention sont choisies parmi les huiles du groupe V.
De préférence, la ou les huiles de base de la composition lubrifiante selon l'invention sont choisies parmi les huiles biosourcées. Les huiles de base des compositions lubrifiantes utilisées selon l'invention peuvent également être choisies parmi les huiles biosourcées telles qu'issues de l'hydrogénation d'une biomasse végétale.
La biomasse végétale peut être une huile végétale, un ester ou un triglycéride issu de cette huile végétale.
De préférence, l'huile de base selon l'invention est choisie parmi les huiles iso- paraffiniques de préférence contenant plus de 90% en masse d'iso-paraffine, de préférence plus de 95% et plus particulièrement plus de 98% et présentant une teneur en aromatiques inférieure à 300ppm, préférentiellement inférieure à 100ppm, préférentiellement inférieure à 50ppm, encore plus préférentiellement inférieure à 20ppm. De manière générale, la teneur en aromatique est mesurée par UV.
De manière préférée, cette huile de base contient moins de 3% en masse de naphtène, préférentiellement moins de 1 %, et encore plus préférentiellement moins de 100ppm. De manière préférée, cette huile de base est caractérisée par un ratio massique iso- paraffine/n-paraffine supérieur ou égal à 12 :1 , de préférence supérieur ou égal à 15:1 , et avantageusement supérieur ou égal à 20 :1 .
De manière préférée, cette huile de base comprend de 6 à 30 atomes de carbone, de préférence de 8 à 24, et de manière encore plus avantageuse de 9 à 20.
De manière préférée, cette huile de base contient moins de 5ppm, de préférence moins de 3ppm, et de manière avantageuse moins de 0,5ppm de soufre.
De manière préférée, cette huile de base est caractérisée par un point d'ébullition compris entre 100 et 400°C, de préférence entre 150 et 400°C, plus préférentiellement entre 200 et 400°C, encore plus préférentiellement entre 220 et 340°C et avantageusement entre 250 et 340°C. Les huiles de base des compositions lubrifiantes selon l'invention peuvent également être choisies parmi les polyalphaoléfines (PAO) telle que la PA02, les huiles « gas to liquid » (GTL), comme le GTL2, des huiles biosourcées comme le farnesane, des isoparaffines obtenues par procédé d'hydrocraquage et d'hydrodéaromatisation comme celles de la gamme ISANE® commercialisées par TOTAL FLUIDES, ou des huiles aliphatiques déaromatisées comme les huiles Hydroseal® commercialisées par TOTAL FLUIDES.
Les fluides apolaires tels que ceux de la gamme Berylane® commercialisées par TOTAL FLUIDES peuvent également être utilisés comme huiles de base de même que plus globalement les fluides renouvelables. De manière avantageuse, la composition lubrifiante selon l'invention comprenant de 50 à 85 % en masse d'huile de base par rapport à la masse totale de la composition, préférentiellement de 55 à 80%, plus préférentiellement de 60 à 75%.
Outre l'huile de base choisie parmi les huiles des groupes III à V définies ci-dessus, la composition lubrifiante selon l'invention peut éventuellement comprendre une huile de base secondaire dans une faible proportion.
L'huile de base secondaire de la composition selon l'invention est choisie parmi les huiles de base des groupes I ou II selon les classes définies dans la classification API (ou leurs équivalents selon la classification ATIEL) (tableau A), seule ou en mélange.
De préférence, la teneur en huile de base secondaire de la composition lubrifiante selon l'invention est inférieure ou égale à 10%, de préférence inférieure ou égale à 5% en masse par rapport à la masse totale de la composition lubrifiante
La composition lubrifiante selon l'invention peut également comprendre au moins un épaississant. Dans le cadre de la présente demande, on entend par épaississant un composé, de préférence un composé polymérique utilisé afin d'augmenter la viscosité
cinématique de l'huile de base. Il doit être compris que dans la présente invention, l'épaississant et l'améliorateur de l'indice de viscosité compris dans la composition lubrifiante sont deux composés différents, notamment deux composés de nature chimique différente.
Dans le cadre de la présente invention, on entend par épaississant les composés, en particulier les composés polymériques, caractérisés par un facteur d'épaississement inférieur à 1 . Le facteur d'épaississement correspond au ratio entre la viscosité spécifique à 98°C (210°F) et la viscosité spécifique à 37°C (100°F). Le facteur d'épaississement est notamment défini dans la publication « Influence of base oil refining on the performance of viscosity index improvers » H. Singh et al. (Wear, 1 18, 33-56, 1987), en page 47.
L'épaississant de la composition lubrifiante selon l'invention peut être choisi parmi les épaississants polymériques. En particulier, l'épaississant de la composition lubrifiante selon l'invention est choisi parmi les copolymères d'éthylène et alphaoléfine, les polyalphaoléfines (PAO) et les polyalphaoléfines obtenues par catalyse métallocène (mPAO) de haute viscosité, cette viscosité étant une viscosité cinématique étant au minimum égale à 100 mm2/s à 100°C. La viscosité cinématique à 100°C est mesurée selon la norme ISO 3104 du 15 juillet 1997. La composition lubrifiante selon l'invention comprend entre 5 et 25% en masse de matière active d'épaississant, plus particulièrement entre 10 et 25% en masse de matière active d'épaississant, par rapport à la masse totale de la composition lubrifiante, de préférence de 5 à 20% ou de 12 à 20%.
En particulier, les masses molaires des épaississants selon l'invention sont au maximum de 10000 g. mol"1 , et sont plus particulièrement comprises entre 3000 et 10000 g. mol"1 ou 4000 et 10000 g. mol"1.
En particulier, la viscosité cinématique de l'épaississant selon l'invention est au minimum égale à 400 mm2/s à 100°C, de préférence au minimum égale à 450 mm2/s à 100°C. La viscosité cinématique à 100°C est mesurée selon la norme ISO 3104 du 15 juillet 1997.
De manière préférée selon l'invention, l'épaississant est un copolymère d'éthylène et alphaoléfine.
De manière avantageuse, le copolymère d'éthylène et d'alphaoléfine selon l'invention est un copolymère d'éthylène et d'une alphaoléfine comprenant de 3 à 30 atomes de
carbone, de préférence de 3 à 24, préférentiellement de 3 à 20, encore plus préférentiellement de 3 à 10, encore plus préférentiellement de 3 à 6.
Des exemples d'alphaoléfines utilisables sont le propylène, le butène, le pentène, l'hexène, l'heptène, l'octène, le nonène, le décène, en particulier le 1 -butène, le 1 - pentène, le 1 -hexène, le 1 -octène.
De préférence, le copolymère d'éthylène et d'alphaoléfine a pour formule générale (I)
dans laquelle R est un groupe alkyle ayant de 1 à 8 atomes de carbone, de préférence de 1 à 3, x et y sont tels que le rapport x/y est compris entre 0,5 et 2 et la somme x+y est comprise entre 50 et 150.
Préférentiellement, R représente un groupe méthyle, x et y sont tels que le rapport x/y est compris entre 0,5 et 1 ,5 et la somme x+y est comprise entre 70 et 130.
Préférentiellement, R est un groupe méthyle, x est égal à 40 et y est égal à 40.
En particulier, le copolymère éthylène/alphaoléfine selon l'invention est un copolymère éthylène/propylène. Comme exemple de copolymère éthylène/alphaoléfine selon l'invention, on peut citer le Lucant HC600® commercialisé par la société MITSUI CHEMICALS.
Les copolymères d'ester peuvent aussi être cités comme autre exemple d'épaississant selon l'invention, en particulier le Ketjenlube® commercialisé par la société Italmatch.
Le polyisobutène, en particulier celui commercialisé sous la marque Ineos® par la société Indopol peut être également cité à titre d'exemple d'épaississant selon l'invention.
La composition lubrifiante selon l'invention peut également comprendre au moins un améliorateur de l'indice de viscosité choisi parmi les (poly)méthacrylates (PMA) et les polyisoprène-styrène hydrogénés (PISH).
La composition lubrifiante selon l'invention comprend entre 5 et 15% en masse de matière active d'améliorateur de viscosité par rapport à la masse totale de la composition.
Les PMA ou les PISH contenus dans la composition selon l'invention sont des polymères pouvant se trouver sous n'importe quelle configuration, linéaire, greffé, peigne ou en étoile.
Les PMA peuvent être caractérisés par une masse molaire comprise entre 55000 et
80000 g/mol, la masse molaire étant mesurée par GPC-3D.
En particulier, l'améliorateur de viscosité est choisi parmi les PMA.
Comme exemple de PMA selon l'invention, on peut citer le Viscoplex 7-200® de la société Evonik.
En particulier, les améliorateurs de viscosité susmentionnés ont un facteur épaississant supérieur à 1 . Le facteur d'épaississement correspond au ratio entre la viscosité spécifique à 98°C (210°F) et la viscosité spécifique à 37°C (100°F). Le facteur d'épaississement est notamment défini dans la publication « Influence of base oil refining on the performance of viscosity index improvers » H. Singh et al. (Wear, 1 18, 33-56, 1987), en page 47.
Les poids moléculaires des améliorateurs de viscosité selon l'invention sont par exemple compris entre 55 000 et 100000 g. mol"1.
La composition lubrifiante selon l'invention peut également comprendre au moins un ou plusieurs additifs.
Les additifs préférés pour la composition lubrifiante utilisée selon l'invention sont choisis parmi les additifs anti-usure, les additifs extrême pression, les additifs modificateurs de frottement, les antioxydants, les additifs détergents, les dispersants, les agents antimousse, les désémulsifiants et leurs mélanges. Les additifs anti-usure et les additifs extrême pression protègent les surfaces en frottement par formation d'un film protecteur adsorbé sur ces surfaces. Il existe une grande variété d'additifs anti-usure. Les additifs anti-usure peuvent être choisis parmi des additifs phospho-soufrés comme les alkylthiophosphates métalliques, en particulier les alkylthiophosphates de zinc, et plus spécifiquement les dialkyldithiophosphates de zinc ou ZnDTP. Les composés préférés sont de formule Zn((SP(S)(ORa)(ORb))2, dans laquelle Ra et Rb, identiques ou différents, représentent indépendamment un groupement alkyle,
préférentiellement un groupement alkyle comportant de 1 à 18 atomes de carbone. De manière avantageuse pour la composition lubrifiante selon l'invention, les additifs antiusure peuvent également être choisis parmi les composés exempts de zinc tels que les phosphates d'amines, les phosphites par exemples les mono-, di- ou triesters de phosphite et les dithiocarbamates par exemples les dithiocarbamates d'amine. De manière avantageuse, la composition lubrifiante utilisée selon l'invention peut comprendre de 0,01 à 6 % en masse, préférentiellement de 0,05 à 4 % en masse, plus préférentiellement de 0,1 à 2 % en masse par rapport à la masse totale de composition lubrifiante, d'additifs anti-usure et d'additifs extrême-pression.
De manière avantageuse, la composition lubrifiante selon l'invention peut comprendre au moins un additif modificateur de frottement. L'additif modificateur de frottement peut être choisi parmi un composé apportant des éléments métalliques et un composé exempt de cendres. Parmi les composés apportant des éléments métalliques, on peut citer les complexes de métaux de transition tels que Mo, Sb, Sn, Fe, Cu, Zn dont les ligands peuvent être des composés hydrocarbonés comprenant des atomes d'oxygène, d'azote, de soufre ou de phosphore. Les additifs modificateurs de frottement exempt de cendres sont généralement d'origine organique et peuvent être choisis parmi les monoesters d'acides gras et de polyols, les aminés alcoxylées, les aminés grasses alcoxylées, les époxydes gras, les époxydes gras de borate ; les aminés grasses ou les esters de glycérol d'acide gras. Selon l'invention, les composés gras comprennent au moins un groupement hydrocarboné comprenant de 10 à 24 atomes de carbone. De manière avantageuse, la composition lubrifiante utilisée selon l'invention peut comprendre de 0,01 à 2 % en masse ou de 0,01 à 5 % en masse, préférentiellement de 0,1 à 1 ,5 % en masse ou de 0,1 à 2 % en masse par rapport à la masse totale de la composition lubrifiante, d'additif modificateur de frottement.
De manière avantageuse, la composition lubrifiante selon l'invention peut comprendre au moins un additif antioxydant. L'additif antioxydant permet généralement de retarder la dégradation de la composition lubrifiante en service. Cette dégradation peut notamment se traduire par la formation de dépôts, par la présence de boues ou par une augmentation de la viscosité de la composition lubrifiante. Les additifs antioxydants agissent notamment comme inhibiteurs radicalaires ou destructeurs d'hydropéroxydes. Parmi les additifs antioxydants couramment employés, on peut citer les additifs antioxydants de type phénolique, les additifs antioxydants de type aminé, les additifs antioxydants phosphosoufrés. Certains de ces additifs antioxydants, par exemple les additifs
antioxydants phosphosoufrés, peuvent être générateurs de cendres. Les additifs antioxydants phénoliques peuvent être exempt de cendres ou bien être sous forme de sels métalliques neutres ou basiques. Les additifs antioxydants peuvent notamment être choisis parmi les phénols stériquement encombrés, les esters de phénol stériquement encombrés et les phénols stériquement encombrés comprenant un pont thioéther, les diphénylamines, les diphénylamines substituées par au moins un groupement alkyle en C1-C12, les Ν,Ν'-dialkyle-aryle-diamines et leurs mélanges. De préférence selon l'invention, les phénols stériquement encombrés sont choisis parmi les composés comprenant un groupement phénol dont au moins un carbone vicinal du carbone portant la fonction alcool est substitué par au moins un groupement alkyle en C C10, de préférence un groupement alkyle en CrC6, de préférence un groupement alkyle en C4, de préférence par le groupement ter-butyle. Les composés aminés sont une autre classe d'additifs antioxydants pouvant être utilisés, éventuellement en combinaison avec les additifs antioxydants phénoliques. Des exemples de composés aminés sont les aminés aromatiques, par exemple les aminés aromatiques de formule NRcRdRe dans laquelle Rc représente un groupement aliphatique ou un groupement aromatique, éventuellement substitué, Rd représente un groupement aromatique, éventuellement substitué, Re représente un atome d'hydrogène, un groupement alkyle, un groupement aryle ou un groupement de formule RfS(0)zR9 dans laquelle Rf représente un groupement alkylène ou un groupement alkenylène, R9 représente un groupement alkyle, un groupement alcényle ou un groupement aryle et z représente 0, 1 ou 2. Des alkyl phénols sulfurisés ou leurs sels de métaux alcalins et alcalino-terreux peuvent également être utilisés comme additifs antioxydants. Une autre classe d'additifs antioxydants est celle des composés cuivrés, par exemples les thio- ou dithio-phosphates de cuivre, les sels de cuivre et d'acides carboxyliques, les dithiocarbamates, les sulfonates, les phénates, les acétylacétonates de cuivre. Les sels de cuivre I et II, les sels d'acide ou d'anhydride succiniques peuvent également être utilisés. La composition lubrifiante utilisée selon l'invention peut contenir tous types d'additifs antioxydants connus de l'homme du métier. De manière avantageuse, la composition lubrifiante comprend au moins un additif antioxydant exempt de cendres. De manière également avantageuse, la composition lubrifiante utilisée selon l'invention comprend de 0,5 à 2 % en masse par rapport à la masse totale de la composition, d'au moins un additif antioxydant.
La composition lubrifiante selon l'invention peut également comprendre au moins un additif détergent. Les additifs détergents permettent généralement de réduire la formation de dépôts à la surface des pièces métalliques par dissolution des produits secondaires
d'oxydation et de combustion. Les additifs détergents utilisables dans la composition lubrifiante utilisée selon l'invention sont généralement connus de l'homme de métier. Les additifs détergents peuvent être des composés anioniques comprenant une longue chaîne hydrocarbonée lipophile et une tête hydrophile. Le cation associé peut être un cation métallique d'un métal alcalin ou alcalino-terreux. Les additifs détergents sont préférentiellement choisis parmi les sels de métaux alcalins ou de métaux alcalino-terreux d'acides carboxyliques, les sulfonates, les salicylates, les naphténates, ainsi que les sels de phénates. Les métaux alcalins et alcalino-terreux sont préférentiellement le calcium, le magnésium, le sodium ou le baryum. Ces sels métalliques comprennent généralement le métal en quantité stœchiométrique ou bien en excès, donc en quantité supérieure à la quantité stœchiométrique. Il s'agit alors d'additifs détergents surbasés ; le métal en excès apportant le caractère surbasé à l'additif détergent est alors généralement sous la forme d'un sel métallique insoluble dans l'huile, par exemple un carbonate, un hydroxyde, un oxalate, un acétate, un glutamate, préférentiellement un carbonate. De manière avantageuse, la composition lubrifiante utilisée selon l'invention peut comprendre de 2 à 4 % en masse d'additif détergent par rapport à la masse totale de la composition lubrifiante.
De manière avantageuse, la composition lubrifiante selon l'invention peut également comprendre au moins un agent dispersant. L'agent dispersant peut être choisis parmi les bases de Mannich, les succinimides et leurs dérivés. De manière également avantageuse, la composition lubrifiante utilisée selon l'invention peut comprendre de 0,2 à 10 % en masse d'agent dispersant par rapport à la masse totale de la composition lubrifiante.
La composition lubrifiante peut comprendre également un additif anti-mousse choisi parmi les silicones et leurs dérivés, tels que les polysiloxanes et leurs dérivés. Un tel additif antimousse peut être le Bluesil 47V12500® commercialisé par la société Bluestar Silicones. L'additif anti-mousse de la composition lubrifiante selon l'invention peut également être choisi parmi les acryliques, tel que le PC1244® commercialisé par la société Mosanto.
De manière avantageuse, la composition lubrifiante peut également comprendre un désémulsifiant choisi parmi les polyéthers et leurs dérivés tels que les composés Embreak 2W6975® commercialisé par la société Général Electric et Prochinor GR77® commercialisé par la société Arkema.
De préférence, la composition lubrifiante selon l'invention comprend au moins un additif choisi parmi les antioxydants, les anti-usure, les anti-mousse et les désémulsifiants.
De manière avantageuse, la composition lubrifiante selon l'invention possède un indice de viscosité supérieur ou égal à 200, de préférence supérieur ou égal à 250, préférentiellement supérieur ou égal à 300 et un point d'écoulement compris entre -50 et - 66°C, de préférence compris entre -55 et -63°C.
L'indice de viscosité est mesuré selon la norme ISO 2909 du 15 Décembre 2002.
Ces caractéristiques rendent la composition lubrifiante selon l'invention particulièrement favorable à une utilisation à des températures inférieures à -40°C.
De manière avantageuse, la composition lubrifiante selon l'invention est caractérisée par une bonne résistance au cisaillement, c'est à dire une variation du KV100, mesurée selon la norme DIN 51350-6 datée du 1 er août 1996, inférieure ou égale à 26%.
La composition lubrifiante selon l'invention est également caractérisée par sa compatibilité avec les joints, en particulier avec les joints nitriles qui est mesurée selon la norme NF E 46-610 datée du 1 er février 2012. Deux caractéristiques sont mesurées pour assurer le critère de compatibilité avec les joints nitriles, la variation volume qui doit être comprise entre 0 et 12% et la variation dureté qui doit être comprise entre 0 et -7%.
La composition lubrifiante selon l'invention est particulièrement avantageuse pour son utilisation en tant que fluide hydraulique notamment pour des engins industriels à des températures inférieures à -40°C. L'invention concerne également l'utilisation d'une composition lubrifiante selon l'invention en tant que composition lubrifiante pour compresseur rotatif, en particulier sous un climat polaire.
Selon l'invention, les caractéristiques particulières, avantageuses ou préférées de la composition lubrifiante selon l'invention, permettent de définir des utilisations selon l'invention qui sont également particulières, avantageuses ou préférées.
Les différents aspects de l'invention peuvent être illustrés par les exemples qui suivent.
Exemple 1 : Préparation d'une composition lubrifiante selon l'invention CL1
On mélange les différentes composantes des compositions lubrifiantes selon l'invention en fonction de la nature et des quantités de produits présentées dans le tableau 1 .
Tableau 1
Exemple 2 : Mesure des caractéristiques de la composition lubrifiante CL1
Les caractéristiques de la composition lubrifiante CL1 (viscosité cinématique, indice de viscosité et point d'écoulement) sont présentées dans le tableau 2.
Tableau 2
Les viscosités cinématiques à 40 et 100°C sont mesurées selon la norme ISO 3104 du 15 juillet 1997.
La composition lubrifiante selon l'invention possède de bonnes propriétés viscosantes, notamment à 40 et 100°C.
L'indice de viscosité a été calculé selon la norme ISO 2909 du 15 décembre 2002.
Le point d'écoulement a été mesuré selon la norme ISO 3016 du 1 er août 1994.
La composition lubrifiante selon l'invention est caractérisée par un point d'écoulement de - 57°C et un indice de viscosité de 316. Ces caractéristiques montrent que la composition
lubrifiante selon l'invention peut être utilisée en tant que fluide hydraulique dans des climats polaires.
Exemple 3 : Evaluation des caractéristiques triboloqiques et en termes de compatibilité avec les matériaux
L'évaluation des caractéristiques tribologiques de la composition lubrifiante selon l'invention, ainsi que les résultats des tests de compatibilité avec les joints nitriles NBR1 sont présentés dans le tableau 3.
Tableau 3
La résistance au cisaillement a été mesurée selon la norme DIN 51350-6 datée du 1 er août 1996.
La compatibilité avec les joints nitriles a été mesurée selon la norme NF E 46-610 datée du 1 er février 2012.
La variation du KV100 pour la composition lubrifiante selon l'invention montre une bonne stabilité au cisaillement de la composition lubrifiante selon l'invention.
Les valeurs des variations volume et dureté des joints nitriles montrent une bonne compatibilité de la composition lubrifiante selon l'invention avec les joints, en particulier avec les joints nitriles.
Ces résultats montrent qu'en plus d'être utilisable en climat polaire, la composition lubrifiante selon l'invention possède une bonne stabilité au cisaillement et une bonne compatibilité avec les joints nitriles.
Exemple 4 : Préparation d'une composition lubrifiante selon l'invention CL2
On mélange les différentes composantes des compositions lubrifiantes selon l'invention en fonction de la nature et des quantités de produits présentées dans le tableau 4.
Composition lubrifiante selon l'invention CL2 (%massique)
Huile de base : groupe V - KV40=2.49 mm2/s et
35.61
point d'écoulement = -81 °C
Huile de base : groupe V - KV40=2.73 mm2/s et
35.61
point d'écoulement = -70°C
Epaississant : copolymère d'éthylène et de
9.5
propylène, KV100=600 mm2/s
Améliorant de VI : polyméthacrylate. KV100 = 1200
19
mm2/s
Additifs 0.98
Tableau 4
Exemple 5 : Mesure des caractéristiques de la composition lubrifiante CL2
Les caractéristiques de la composition lubrifiante CL2 (viscosité cinématique, indice de viscosité, point d'écoulement et perte de viscosité) sont présentées dans le tableau 5.
Tableau 5
Les viscosités cinématiques à 40 et 100°C sont mesurées selon la norme ISO 3104 du 15 juillet 1997.
La composition lubrifiante selon l'invention possède de bonnes propriétés viscosifiantes, notamment à 40 et 100°C.
L'indice de viscosité a été calculé selon la norme ISO 2909 du 15 décembre 2002.
Le point d'écoulement a été mesuré selon la norme ISO 3016 du 1 er août 1994.
La perte de viscosité à 100°C après cisaillement KRL 20H est mesurée selon la norme DIN 51350-6.
La composition lubrifiante selon l'invention est caractérisée par un point d'écoulement de - 60°C et un indice de viscosité de 326. Ces caractéristiques montrent que la composition lubrifiante selon l'invention peut être utilisée en tant que fluide hydraulique dans des climats polaires. La perte de viscosité 100°C après cisaillement KRL 20H montre que la composition lubrifiante selon l'invention à une bonne stabilité au cisaillement. Exemple 6 : Préparation d'une composition lubrifiante selon l'invention CL3
On mélange les différentes composantes des compositions lubrifiantes selon l'invention en fonction de la nature et des quantités de produits présentées dans le tableau 6.
Tableau 6
Exemple 7 : Mesure des caractéristiques de la composition lubrifiante CL3
Les caractéristiques de la composition lubrifiante CL3 (viscosité cinématique, indice de viscosité et point d'écoulement) sont présentées dans le tableau 7.
Tableau 7
Les viscosités cinématiques à 40 et 100°C sont mesurées selon la norme ISO 3104 du 15 juillet 1997.
La composition lubrifiante selon l'invention possède de bonnes propriétés de viscosité, notamment à 40 et 100°C.
L'indice de viscosité a été calculé selon la norme ISO 2909 du 15 décembre 2002.
Le point d'écoulement a été mesuré selon la norme ISO 3016 du 1 er août 1994.
La composition lubrifiante selon l'invention est caractérisée par un point d'écoulement de - 78°C et un indice de viscosité de 295. Ces caractéristiques montrent que la composition lubrifiante selon l'invention peut être utilisée en tant que fluide hydraulique dans des climats polaires.
Exemple 8 : Préparation d'une composition lubrifiante de l'art antérieur CL4:
On mélange les différentes composantes d'une composition lubrifiante selon l'art antérieur en fonction de la nature et des quantités de produits présentées dans le tableau 8.
Tableau 8
Exemple 9 : Mesure des caractéristiques de la composition lubrifiante CL4
Les caractéristiques de la composition lubrifiante CL4 (viscosité cinématique, indice de viscosité, point d'écoulement et perte de viscosité) sont présentées dans le tableau 9.
CL4
Viscosité cinématique à 40°C 35.28
Viscosité cinématique à 100°C 1 1 .18
Indice de viscosité calculé 329
Point d'écoulement (°C) -63
Perte de viscosité à 100°C après cisaillement KRL 20H 39.6
Tableau 9
Les viscosités cinématiques à 40 et 100°C sont mesurées selon la norme ISO 3104 du 15 juillet 1997.
L'indice de viscosité a été calculé selon la norme ISO 2909 du 15 décembre 2002.
Le point d'écoulement a été mesuré selon la norme ISO 3016 du 1 er août 1994.
La perte de viscosité à 100°C après cisaillement KRL 20H est mesurée selon la norme DIN 51350-6.
La composition lubrifiante de l'art antérieur CL4 présente une perte de viscosité à 100°C après cisaillement KRL 20H supérieur à 30% principalement du fait de l'absence d'épaississant dans la composition, contrairement aux compositions lubrifiantes selon la présente invention dans lesquelles cette perte n'excède jamais les 30%.
Ceci démontre en particulier la supériorité des compositions selon l'invention.
Claims
1 . Composition lubrifiante comprenant :
- au moins une huile de base dont la viscosité cinématique mesurée à 40°C est inférieure ou égale à 10 mm2/s et dont le point d'écoulement est inférieur ou égal à -50°C ;
- au moins un épaississant ; et
- au moins un améliorateur de l'indice de viscosité ;
ladite composition lubrifiante ayant un point d'écoulement inférieur ou égal à - 55°C.
2. Composition selon la revendication 1 dans laquelle l'huile de base est choisie parmi les huiles du groupe III, IV ou V, de préférence parmi les huiles de groupe V.
3. Composition selon l'une quelconque des revendications précédentes dans laquelle l'huile de base comprend plus de 90% en masse d'iso-paraffine, de préférence plus de 95%, et encore plus préférentiellement plus de 98%, et moins de 300ppm, préférentiellement moins de 100ppm, préférentiellement moins de 50ppm, encore plus préférentiellement moins de 20ppm d'aromatiques.
4. Composition selon la revendication 3 dans laquelle le ratio massique iso- paraffine/n-paraffine caractérisant l'huile de base est supérieur ou égal à 12:1 , de préférence supérieur ou égal à 15:1 , et avantageusement supérieur ou égal à 20:1 .
5. Composition selon l'une quelconque des revendications précédentes dans laquelle l'huile de base présente une viscosité cinématique mesurée à 40°C comprise entre 1 et 10 mm2/s, de préférence comprise entre 2 et 10 mm2/s, encore plus préférentiellement comprise entre 2 et 8 mm2/s et encore plus préférentiellement entre 2 et 4 mm2/s.
6. Composition selon l'une quelconque des revendications précédentes comprenant de 50 à 85 % en masse d'huile de base par rapport à la masse totale de la composition, préférentiellement de 55 à 80%, plus préférentiellement de 60 à 75%.
7. Composition selon l'une quelconque des revendications précédentes dans laquelle l'épaississant est choisi parmi les copolymères d'éthylène et alphaoléfine.
8. Composition lubrifiante selon la revendication 7 dans laquelle le copolymère d'éthylène et d'alphaoléfine a pour formule générale (I) :
(I)
dans laquelle R est un groupe alkyle ayant de 1 à 8 atomes de carbone, de préférence de 1 à 3, x et y sont tels que le rapport x/y est compris entre 0,5 et 2 et la somme x+y est comprise entre 50 et 150.
9. Composition selon l'une quelconque des revendications précédentes dans laquelle la teneur en matière active d'épaississant est comprise entre 5 et 25% ou 10 et 25% en masse, par rapport à la masse totale de la composition lubrifiante, de préférence de 5 et 20% ou 12 à 20%.
10. Composition selon l'une quelconque des revendications précédentes dans laquelle l'améliorateur de viscosité est choisi parmi les (poly)méthacrylates.
1 1 . Composition selon l'une quelconque des revendications précédentes comprenant de 10 à 20% en masse de matière active d'améliorateur de viscosité par rapport à la masse totale de la composition, de préférence de 5 à 15%.
12. Utilisation d'une composition lubrifiante selon l'une quelconque des revendications précédentes en tant que composition lubrifiante industrielle ou fluide hydraulique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1654062A FR3050996A1 (fr) | 2016-05-04 | 2016-05-04 | Composition hydraulique grand froid |
FR1654062 | 2016-05-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017191215A1 true WO2017191215A1 (fr) | 2017-11-09 |
Family
ID=56148552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2017/060575 WO2017191215A1 (fr) | 2016-05-04 | 2017-05-03 | Composition hydraulique grand froid |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3050996A1 (fr) |
WO (1) | WO2017191215A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115975707A (zh) * | 2022-11-25 | 2023-04-18 | 山东京博新能源控股发展有限公司 | 一种超低温高原高寒发动机专用油 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040154957A1 (en) * | 2002-12-11 | 2004-08-12 | Keeney Angela J. | High viscosity index wide-temperature functional fluid compositions and methods for their making and use |
WO2007042560A1 (fr) * | 2005-10-13 | 2007-04-19 | Shell Internationale Research Maatschappij B.V. | Composition d’huile lubrifiante |
US20080092436A1 (en) * | 2006-06-30 | 2008-04-24 | University Of North Dakota | Method for cold stable biojet fuel |
US20090005274A1 (en) * | 2007-06-28 | 2009-01-01 | Chevron U.S.A. Inc. | Process for making shock absorber fluid |
US20090137435A1 (en) * | 2005-06-23 | 2009-05-28 | Andree Hilker | Electrical Oil Formulation |
US20090312211A1 (en) * | 2006-08-03 | 2009-12-17 | Idemitsu Kosan Co., Ltd. | Lubricant composition |
EP2186872A1 (fr) * | 2009-12-16 | 2010-05-19 | Shell Internationale Research Maatschappij B.V. | Composition de lubrification |
WO2016016362A1 (fr) * | 2014-07-31 | 2016-02-04 | Total Marketing Services | Compositions lubrifiantes pour véhicule a moteur |
-
2016
- 2016-05-04 FR FR1654062A patent/FR3050996A1/fr active Pending
-
2017
- 2017-05-03 WO PCT/EP2017/060575 patent/WO2017191215A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040154957A1 (en) * | 2002-12-11 | 2004-08-12 | Keeney Angela J. | High viscosity index wide-temperature functional fluid compositions and methods for their making and use |
US20090137435A1 (en) * | 2005-06-23 | 2009-05-28 | Andree Hilker | Electrical Oil Formulation |
WO2007042560A1 (fr) * | 2005-10-13 | 2007-04-19 | Shell Internationale Research Maatschappij B.V. | Composition d’huile lubrifiante |
US20080092436A1 (en) * | 2006-06-30 | 2008-04-24 | University Of North Dakota | Method for cold stable biojet fuel |
US20090312211A1 (en) * | 2006-08-03 | 2009-12-17 | Idemitsu Kosan Co., Ltd. | Lubricant composition |
US20090005274A1 (en) * | 2007-06-28 | 2009-01-01 | Chevron U.S.A. Inc. | Process for making shock absorber fluid |
EP2186872A1 (fr) * | 2009-12-16 | 2010-05-19 | Shell Internationale Research Maatschappij B.V. | Composition de lubrification |
WO2016016362A1 (fr) * | 2014-07-31 | 2016-02-04 | Total Marketing Services | Compositions lubrifiantes pour véhicule a moteur |
Non-Patent Citations (1)
Title |
---|
H. SINGH ET AL.: "Influence of base oil refining on the performance of viscosity index improvers", WEAR, vol. 118, 1987, pages 33 - 56 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115975707A (zh) * | 2022-11-25 | 2023-04-18 | 山东京博新能源控股发展有限公司 | 一种超低温高原高寒发动机专用油 |
Also Published As
Publication number | Publication date |
---|---|
FR3050996A1 (fr) | 2017-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3289054B1 (fr) | Composition lubrifiante ultra-fluide | |
EP2791294B1 (fr) | Compositions lubrifiantes pour transmissions | |
EP3430109A1 (fr) | Composition lubrifiante a base de polyalkylene glycols | |
WO2015014986A1 (fr) | Compositions lubrifiantes pour transmissions | |
EP2814918A1 (fr) | Compositions lubrifiantes pour transmissions | |
FR3072969B1 (fr) | Composition lubrifiante grand froid | |
WO2017157892A1 (fr) | Composition lubrifiante a base de polyalkylene glycols | |
WO2017191215A1 (fr) | Composition hydraulique grand froid | |
JP6043245B2 (ja) | ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物 | |
KR102163650B1 (ko) | 씰 융화성이 향상된 윤활제 | |
FR3030570A1 (fr) | Composition lubrifiante a materiau a changement de phase | |
JP6077955B2 (ja) | ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物 | |
JP6088924B2 (ja) | ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物 | |
JP6077956B2 (ja) | ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物 | |
JP6018982B2 (ja) | ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物 | |
EP3684893B1 (fr) | Utilisation d'ester dans une composition lubrifiante pour améliorer la propreté moteur | |
WO2024227928A1 (fr) | Composition lubrifiante ayant une empreinte carbone réduite | |
JP6113004B2 (ja) | ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物 | |
US20230159850A1 (en) | Lubricating Oil Composition for Agricultural Machines | |
EP3237589A1 (fr) | Composition lubrifiante a matériau a changement de phase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17720165 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17720165 Country of ref document: EP Kind code of ref document: A1 |