[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017188363A1 - 素子 - Google Patents

素子 Download PDF

Info

Publication number
WO2017188363A1
WO2017188363A1 PCT/JP2017/016687 JP2017016687W WO2017188363A1 WO 2017188363 A1 WO2017188363 A1 WO 2017188363A1 JP 2017016687 W JP2017016687 W JP 2017016687W WO 2017188363 A1 WO2017188363 A1 WO 2017188363A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative resistance
conductor
resistance element
antenna
resonance
Prior art date
Application number
PCT/JP2017/016687
Other languages
English (en)
French (fr)
Inventor
泰史 小山
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017078410A external-priority patent/JP6904760B2/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201780025949.9A priority Critical patent/CN109075744B/zh
Priority to EP17789645.3A priority patent/EP3451528B1/en
Publication of WO2017188363A1 publication Critical patent/WO2017188363A1/ja
Priority to US16/169,790 priority patent/US10833389B2/en
Priority to US17/061,325 priority patent/US11258156B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/082Microstripline resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B7/00Generation of oscillations using active element having a negative resistance between two of its electrodes
    • H03B7/02Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance
    • H03B7/06Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device
    • H03B7/08Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device being a tunnel diode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B7/00Generation of oscillations using active element having a negative resistance between two of its electrodes
    • H03B7/12Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising distributed inductance and capacitance
    • H03B7/14Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising distributed inductance and capacitance active element being semiconductor device

Definitions

  • the present invention relates to an element used for oscillation or detection of terahertz waves.
  • terahertz waves As a current injection type light source that generates electromagnetic waves (hereinafter referred to as “terahertz waves”) in the frequency range from the millimeter wave band to the terahertz band (30 GHz to 30 THz), there is an oscillator in which an antenna is integrated in a negative resistance element. . Specifically, there is an element capable of oscillating a terahertz wave in which a double barrier type resonant tunneling diode (RTD: Resonant Tunneling Diode) which is a negative resistance element and a microstrip antenna are integrated on the same substrate.
  • RTD Resonant Tunneling Diode
  • Patent Document 1 describes that in an oscillator in which an antenna is integrated in a plurality of negative resistance elements, the oscillation output of a terahertz wave is improved by synchronizing the plurality of negative resistance elements in the positive phase or the reverse phase. ing.
  • An element using a negative resistance element may cause parasitic oscillation due to a bias circuit including a power source and wiring for adjusting the bias voltage of the negative resistance element.
  • Parasitic oscillation refers to parasitic oscillation in a frequency band on the low frequency side different from the desired frequency, and lowers the oscillation output at the desired frequency.
  • the frequency f LC is defined as L for the inductance of the strip conductor of the wiring structure and C for the capacitance of the microstrip antenna. According to the configuration described in Patent Document 2, by the inductance L is increased to lower the resonance frequency f LC, reduces parasitic oscillation caused by the feed structure to increase the resistance losses in the frequency f LC.
  • Patent Document 1 does not describe a method for suppressing parasitic oscillation caused by a power feeding structure or the like.
  • an object of the present invention is to provide an element that can reduce parasitic oscillation in a high-frequency band as compared with the prior art.
  • An element according to one aspect of the present invention is an element used for oscillation or detection of terahertz waves, and is provided between a first conductor, a second conductor, and the first conductor and the second conductor.
  • a resonance having a dielectric disposed, and a first negative resistance element and a second negative resistance element connected in parallel with each other between the first conductor and the second conductor
  • a bias circuit that supplies a bias voltage to each of the first negative resistance element and the second negative resistance element, and a line that connects the bias circuit and the resonance section,
  • the positive phase mutual injection locking between the first negative resistance element and the second negative resistance element is unstable, and the opposite phase between the first negative resistance element and the second negative resistance element It is characterized in that the mutual injection locking of the is stable.
  • the parasitic oscillation in the high frequency band can be reduced as compared with the related art.
  • 3A and 3B illustrate a structure of an element of an embodiment.
  • 3A and 3B illustrate a structure of an element of an embodiment.
  • the figure explaining the admittance characteristic of the element of a 1st Example The figure explaining the characteristic of the element of a 1st Example.
  • the figure explaining the characteristic of the element of a 1st Example The figure explaining the structure of the element of 2nd Example.
  • the element 100 is an oscillation element (oscillator) that oscillates an electromagnetic wave having an oscillation frequency f THz .
  • FIG. 1A is a perspective view showing an appearance of the element 100 according to the present embodiment
  • FIG. 1B is a schematic diagram of a cross-sectional view taken along the line AA.
  • the element 100 is hereinafter referred to as an “oscillator 100”.
  • the oscillator 100 includes a resonance unit (antenna) 108, a line 103, and a bias circuit 120.
  • the antenna 108 includes an upper conductor (first conductor) 102, a second conductor 105, a dielectric 104 arranged between the upper conductor 102 and the second conductor 105, and the upper conductor 102 and the second conductor.
  • the two negative resistance elements 101a and 101b are electrically connected to 105.
  • the second conductor 105 and the dielectric 104 are also disposed in a region around the antenna 108.
  • One of the two negative resistance elements 101a and 101b is called a first negative resistance element 101a, and the other is called a second negative resistance element 101b.
  • a configuration in which the dielectric 104 is sandwiched between two conductors of the upper conductor 102 and the second conductor 105 in the antenna 108 is a microstrip resonator using a microstrip line having a finite length.
  • a patch antenna which is a kind of microstrip resonator is used as a terahertz wave resonator.
  • the antenna 108 is an active antenna in which two negative resistance elements 101a and 101b having terahertz wave electromagnetic wave gain and a terahertz wave resonator are integrated.
  • Each of the first negative resistance element 101a and the second negative resistance element 101b has a current-voltage characteristic in which a current decreases as the voltage increases, that is, a region having a negative resistance (differential negative resistance This is an element in which a region appears.
  • the first negative resistance element 101 a and the second negative resistance element 101 b are electrically in parallel with each other, and are electrically connected between the upper conductor 102 and the second conductor 105.
  • the gain of the first negative resistance element 101a and the gain of the second negative resistance element 101b are equal.
  • the gains are equal is sufficient if the gain of the first negative resistance element 101a is in the range of 0.5 to 1.5 times the gain of the second negative resistance element 101b.
  • a range of ⁇ 10% which is a standard for the processing accuracy of semiconductor processing technology, is sufficiently acceptable.
  • the first negative resistance element 101a and the second negative resistance element 101b it is preferable to use high-frequency elements such as an RTD, an Esaki diode, a Gunn diode, or a transistor with one terminal terminated. .
  • a tannet diode an impatt diode, a heterojunction bipolar transistor (HBT), a compound semiconductor FET, a high electron mobility transistor (HEMT), or the like may be used.
  • HBT heterojunction bipolar transistor
  • HEMT high electron mobility transistor
  • a differential negative resistance of a Josephson element using a superconductor may be used.
  • RTD Resonant Tunneling Diode
  • RTD Resonant Tunneling Diode
  • the frequency band of the electromagnetic wave oscillated by the first negative resistance element 101a is preferably at least partially overlapped with the frequency band of the electromagnetic wave oscillated by the second negative resistance element 101b, more preferably one. I'm doing it.
  • the antenna 108 is a resonating part in which generated electromagnetic waves resonate, and has a role of a resonator and a radiator. Therefore, when the effective wavelength of the electromagnetic wave in the dielectric is ⁇ , the antenna 108 is configured such that the width of the upper conductor 102 that is the patch conductor of the antenna 108 in the AA direction (resonance direction) is a ⁇ / 2 resonator. Is set.
  • the “dielectric” in this specification is a material having a dielectric property superior to conductivity, and is a material that behaves as an insulator or a high resistance material that does not conduct electricity with respect to a DC voltage.
  • a material having a resistivity of 1 k ⁇ ⁇ m or more is suitable. Specific examples include resin, plastic, ceramic, silicon oxide, and silicon nitride.
  • the bias circuit 120 supplies a bias voltage to each of the two negative resistance elements 101a and 101b.
  • the bias circuit 120 includes a resistor 110 connected in parallel with each of the two negative resistance elements 101a and 101b, a capacitor 109 connected in parallel with the resistor 110, a power supply 112, and a wiring 111. Since the wiring 111 always includes a parasitic inductance component, it is displayed as an inductance in FIG.
  • the power source 112 supplies a current necessary for driving the negative resistance elements 101a and 101b and adjusts the bias voltage.
  • the bias voltage is typically selected from the differential negative resistance regions of the two negative resistance elements 101a and 101b.
  • the bias circuit 120 is connected to the antenna 108 via the line 103 and supplies power to the negative resistance elements 101a and 101b.
  • the line 103 in this embodiment is a microstrip line. That is, the line 103 has two conductors and a dielectric 104 disposed between the two conductors.
  • the resistor 110 and the capacitor 109 of the bias circuit 120 are parasitic oscillations of a relatively low frequency resonance frequency f sp (f sp ⁇ f LC ⁇ f THz , typically DC to 10 GHz frequency band) caused by the bias circuit 120. Is suppressed.
  • the frequency f LC is a frequency of LC resonance caused by the inductance L of the line 103 and the capacitance C of the antenna 108 including the two negative resistance elements 101a and 101b. Details of this will be described later.
  • the value of the resistor 110 is preferably selected to be equal to or slightly smaller than the absolute value of the sum of the differential negative resistances in the differential negative resistance regions of the negative resistance elements 101a and 101b.
  • Resistor 110, negative resistance element 101a is arranged at a position distance d 2 apart from each 101b.
  • the bias circuit outside the resistor 110 has a low impedance as viewed from the negative resistance elements 101a and 101b in the wavelength band of 4 ⁇ d 2 or more, that is, based on the absolute value of the differential negative resistance of the negative resistance elements 101a and 101b.
  • the impedance is low.
  • the resistor 110 is preferably set to have a low impedance when viewed from the negative resistance elements 101a and 101b in a frequency band equal to or less than f SP (f SP ⁇ f LC ⁇ f THz ).
  • the capacitor 109 is preferably selected such that the impedance of the capacitor 109 is equal to or slightly smaller than the absolute value of the sum of the differential negative resistances of the two negative resistance elements 101a and 101b. In general, it is preferable that the capacitance 109 has a large capacitance, and in this embodiment, it is about several tens of pF.
  • the capacitor 109 is a decoupling capacitor directly connected to the microstrip line as the line 103, and uses, for example, an MIM (Metal-insulator-Metal) structure in which an antenna 108 and a substrate (not shown) are combined. Also good.
  • MIM Metal-insulator-Metal
  • the antenna 108 Due to the structure of the antenna 108, it is not easy to directly connect the bias circuit 120 including the resistor 110 and the capacitor 109 to the antenna 108 without interfering with the resonant electric field having the oscillation frequency f THz . For this reason, in order to supply a bias voltage to each of the negative resistance elements 101a and 101b, it is necessary to connect the bias circuit 120 and the antenna 108 via the line 103 which is a power supply line. Accordingly, the line 103 is disposed at a position closer to the negative resistance elements 101a and 101b than the bias circuit 120 is.
  • the frequency f LC (f LC ⁇ 1 / ⁇ 2 ⁇ (LC)), f SP ⁇ f LC ⁇ f THz ) due to the inductance L of the line, the negative resistance element, and the capacitance C of the antenna.
  • parasitic oscillation due to LC resonance occurs.
  • a microstrip antenna such as a patch antenna has a structure in which a dielectric is sandwiched between two conductors, and a structural capacitance C is generated. Therefore, reduction of such parasitic resonance is a problem.
  • the parasitic oscillation frequency f LC mainly includes the capacitances of the negative resistance elements 101 a and 101 b, the length and width of the line 103, the area of the antenna 108 (for example, the area of the upper conductor 102), and the dielectric 104. It depends on the thickness, the arrangement and structure of the line 103 and the resistor 110, and the like.
  • the frequency f LC is in the range of several GHz to 500 GHz.
  • the frequency band near the frequency f LC is 4 ⁇ d 1 or more 4 in terms of wavelength. ⁇ d 2 or less wavelength band.
  • the width of the line 103 is preferably a dimension that does not interfere with the resonant electric field in the antenna 108, and is preferably ⁇ THz / 10 or less, for example.
  • lambda THz the wavelength of the terahertz wave of the oscillation frequency f THz.
  • line 103 is positioned at the node of the electric field of the terahertz wave of the oscillation frequency f THz for standing the antenna 108 (node), it is preferably connected to the antenna 108 at the position of the nodal.
  • the line 103 has a higher impedance than the absolute value of the differential negative resistance of each of the negative resistance elements 101a and 101b in a frequency band near the oscillation frequency f THz . Therefore, the influence of the line 103 on the electric field having the oscillation frequency f THz in the antenna 108 is reduced.
  • electric field section of the terahertz wave of the oscillation frequency f THz for standing the antenna 108 is a region which is a substantial section of the electric field of the terahertz wave of the oscillation frequency f THz for standing in the antenna 108 It is.
  • the electric field intensity of the terahertz wave of the oscillation frequency f THz for standing the antenna 108 is that of one order of magnitude lower region than the maximum electric field intensity of the terahertz wave of the oscillation frequency f THz for standing the antenna 108 .
  • the electric field intensity of the terahertz wave of the oscillation frequency f THz for standing the antenna 108 1 / e 2 (e of maximum electric field intensity of the terahertz wave of the oscillation frequency f THz for standing the antenna 108 of the natural logarithm Bottom)
  • 1 / e 2 e of maximum electric field intensity of the terahertz wave of the oscillation frequency f THz for standing the antenna 108 of the natural logarithm Bottom
  • the oscillation frequency of an active antenna in which an antenna and a differential negative resistance element are integrated is determined as the resonance frequency of an all-parallel resonant circuit that combines the reactance of the antenna and the differential negative resistance element.
  • the oscillation frequency f THz is determined for a resonant circuit that combines RTD and antenna admittance.
  • the frequency satisfying the two conditions of the amplitude condition (2) and the phase condition (3) is determined as the oscillation frequency f THz .
  • Y 11 is the admittance of the entire configuration including the antenna 108 as viewed from the first negative resistance element 101a, and Y RTD is the first negative resistance element 101a or the second negative resistance, which is a differential negative resistance element. This is the admittance of the element 101b.
  • the entire configuration refers to all members constituting the oscillator 100 such as the antenna 108, the line 103, and the bias circuit 120. That, Re (Y 11) are the antenna 108 the real part of the admittance of the total structure including an antenna 108 as viewed from the first negative resistance element 101a, Im (Y 11) is viewed from the first negative resistance element 101a This is the imaginary part of the admittance of all structures including.
  • Re (Y RTD ) is the real part of the admittance of the first negative resistance element 101a or the second negative resistance element 101b
  • Im (Y RTD ) is the first negative resistance element 101a or the second negative resistance element 101a. This is the imaginary part of the admittance of the resistive element 101b.
  • Re [Y RTD ] has a negative value.
  • the antenna 108 of the present embodiment is an integrated antenna including at least two negative resistance elements of the first negative resistance element 101a and the second negative resistance element 101b.
  • the antenna 108 includes a first antenna unit 108a in which the first negative resistance element 101a is integrated and a second antenna in which the second negative resistance element 101b is integrated.
  • the second antenna unit 108 b is coupled by the coupling unit 107.
  • the first antenna unit 108a, the second antenna unit 108b, and the coupling unit 107 are arranged side by side along the resonance direction of the terahertz wave in the antenna 108.
  • the oscillation condition of the oscillator 100 can be considered by regarding the antenna 108 as an integrated antenna in which the first antenna unit 108 a and the second antenna unit 108 b are coupled by the coupling unit 107.
  • the oscillation frequency f THz is determined by considering mutual injection locking (mutual injection locking) in a configuration in which two individual RTD oscillators disclosed in Non-Patent Document 2 are combined.
  • the mutual injection locking means that all of the plurality of self-excited oscillators are oscillated in synchronization with each other by interaction.
  • Y 12 is the mutual admittance between the negative resistance element 101a and a negative resistance element 101b.
  • the antenna 108 is regarded as a configuration in which the first antenna unit 108 a and the second antenna unit 108 b are coupled by the coupling unit 107 with DC coupling that is strong coupling. Can do.
  • the first antenna unit 108a and the second antenna unit 108b have a patch antenna structure.
  • strong coupling in this specification can be defined by a real part Re (k) of a coupling coefficient k between the first antenna part and the second antenna part. That is, “strong coupling” in this specification means that the absolute value of Re (k) is larger than 1/3.
  • the first antenna unit 108a and the second antenna unit 108b are coupled so that the absolute value of Re (k) is greater than 1/3.
  • the first antenna portion 108a is connected to the first conductor layer 102a, the second conductor 105, the dielectric 104, and the first conductor layer 102a and the second conductor 105.
  • the first negative resistance element 101a is included.
  • the first antenna unit 108 a is a patch antenna in which the dielectric 104 is disposed between the first conductor layer 102 a and the second conductor 105.
  • the second antenna portion 108b includes a second conductor layer 102b, a second conductor 105, a dielectric 104, and a second conductor layer 102b connected between the second conductor layer 102b and the second conductor 105. It has a negative resistance element 101b.
  • the second antenna unit 108 b is a patch antenna in which the dielectric 104 is disposed between the second conductor layer 102 b and the second conductor 105.
  • the coupling portion 107 includes a third conductor layer 102c, a second conductor 105, and a dielectric 104 disposed between the third conductor layer 102c and the second conductor 105.
  • the first conductor layer 102a and the second conductor layer 102b are connected by the third conductor layer 102c. That is, the third conductor layer 102c is a connection portion that connects the first conductor layer 102a and the second conductor layer 102b.
  • the first conductor layer 102a and the second conductor layer 102b are arranged side by side on the dielectric 104 without overlapping.
  • the second conductor 105 is a ground conductor, and in this embodiment, a common conductor layer is used for the first antenna portion 108a, the second antenna portion 108b, and the coupling portion 107.
  • the present invention is not limited to this, and for example, the second conductor 105 may be configured using different conductor layers in the first antenna unit 108a, the second antenna unit 108b, and the coupling unit 107.
  • the dielectric 104 is used as a common dielectric layer in the first antenna unit 108a, the second antenna unit 108b, and the coupling unit 107.
  • the present invention is not limited to this, and for example, the first antenna unit 108a, the second antenna unit 108b, and the coupling unit 107 may be configured using different dielectrics.
  • the upper conductor 102 is configured to connect the first conductor layer 102a and the second conductor layer 102b with the third conductor layer 102c that is a connection portion.
  • the second antenna portion 108b preferably has a mirror-symmetric structure with respect to a plane that passes through the coupling portion 107 and is perpendicular to the stacking direction of the upper conductor 102 and the second conductor 105. That is, it is preferable that the second antenna unit has a mirror-symmetric structure that is inverted about the axis 123 when the first antenna unit 108a is a resonator and one of the radiation ends is the axis 123.
  • the radiation ends are both ends of the antenna in the resonance direction of the electromagnetic field at the resonance frequency of the patch antenna.
  • the electromagnetic field current at the resonance frequency of the patch antenna is minimized, the voltage is maximized, and radio waves are radiated.
  • first antenna portion 108a and the second antenna portion 108b do not have to be completely mirror-symmetrical, and may be in a range that can be regarded as mirror-image symmetry.
  • the actually created one is also mirror-symmetrical as long as it is within the range showing the characteristics expected at the design stage. You can consider it to be.
  • the first antenna unit 108 a and the second antenna unit 108 b are electrically coupled by the coupling unit 107 disposed on the shaft 123 to configure the antenna 108.
  • the first negative resistance element 101a and the second negative resistance element 101b are configured to be connected in parallel to each other.
  • the first antenna unit 108a and the second antenna unit 108b is DC-coupled by a coupling unit 107.
  • the first conductor layer 102a of the first antenna portion 108a, the second conductor layer 102b of the second antenna portion 108b, and the third conductor layer (connection portion) 102c of the coupling portion 107 are: It is integrally molded as one conductor layer.
  • the configuration of the oscillator 100 of the present embodiment disclosed in FIG. 1 is DC coupled and is orthogonal to the AA direction of each of the first antenna unit 108a, the second antenna unit 108b, and the coupling unit 107.
  • the width in the horizontal direction is the same. That is, the antenna in which the antenna portions 108a and 108b are electrically coupled by the coupling portion 107 is an integration of the patch antenna in which the dielectric 104 is sandwiched between the upper conductor 102 and the second conductor 105 and the negative resistance elements 101a and 101b. This is essentially the same as the antenna 108.
  • the upper conductor 102 includes a first conductor layer 102a, a second conductor layer 102b, and a third conductor layer 102c.
  • FIG. 2A shows a conceptual diagram of a positive phase mutual injection locking oscillation mode (hereinafter referred to as “positive phase mode”), and FIG. This is a conceptual diagram of the “opposite phase mode”.
  • FIG. 3 shows the admittance characteristics of the oscillator 100.
  • the electromagnetic wave standing in the element at the frequency f even is injected into each of the negative resistance elements 101a and 101b with a phase difference of 0 or 2 ⁇ .
  • the phase difference between the phase of the first negative resistance element 101a and the phase of the second negative resistance element 101b is 0 or 2 ⁇ , and the magnitude and polarity of the electromagnetic field at the resonance frequency are substantially the same.
  • the oscillation condition based on the synchronization of the positive phase is satisfied by the LC resonance of the frequency f LC caused by the capacitance C of the antenna 108 and the inductance L of the line 103.
  • Parasitic oscillation of f even f LC occurs.
  • a node of LC resonance occurs near the connection portion between the line 103 and the bias circuit 120.
  • the electromagnetic wave standing in the element at the frequency f odd is injected into each of the negative resistance elements 101a and 101b with a phase difference of ⁇ .
  • the Therefore, the polarity of the electromagnetic field of the first negative resistance element 101a and the polarity of the electromagnetic field of the second negative resistance element 101b at the resonance frequency are reversed.
  • This electromagnetic field distribution substantially coincides with the electromagnetic field distribution at the resonance frequency of the patch antenna excluding the negative resistance elements 101a and 101b from the antenna 108.
  • the first negative resistance element 101a and the second negative resistance element 101b are in opposite phases
  • the first negative resistance element 101a and the second negative resistance element 101b are Is in the range of ⁇ ⁇ / 8 or less from the phase difference ⁇ that is completely opposite in phase. That is, in the present specification, “the first negative resistance element 101a and the second negative resistance element 101b are in opposite phases” specifically refers to the first negative resistance element 101a and the second negative resistance element 101a.
  • the phase difference with respect to the resistive element 101b is defined as 7 ⁇ / 8 or more and 9 ⁇ / 8 or less.
  • f odd f THz Oscillation of terahertz waves occurs.
  • the node of the electromagnetic field having the desired frequency f THz defined by the resonance frequency of ⁇ / 2 is near the center line passing through the center of gravity of the first conductor 102 of the antenna 108 in the first conductor 102. It becomes.
  • center line in this specification means that the first conductor 102 passes through the center of gravity of the first conductor 102, and the electromagnetic wave resonance direction and the lamination of the first conductor 102 and the second conductor 105.
  • the second antenna unit 108b is a mirror image obtained by inverting the first antenna unit 108a in the node of the electromagnetic field distribution when the electromagnetic wave having the resonance frequency of ⁇ / 2 of the antenna 108 is present in the antenna 108. It can be said that it is a symmetrical structure.
  • the first antenna unit 108a and the second antenna unit 108b are electrically coupled by the coupling unit 107, and the antenna 108 is configured.
  • the coupling unit 107 is disposed at a node of the electromagnetic field distribution of the electromagnetic wave having a resonance frequency of ⁇ / 2 of the antenna 108 that is fixed to the antenna 108.
  • an oscillation element having an antenna in which a plurality of negative resistance elements are electrically connected it is caused by line inductance, which is a particular problem when negative resistance elements are integrated in a microstrip antenna.
  • the purpose is to reduce parasitic oscillation.
  • each of the plurality of negative resistance elements is connected to each negative resistance element. It arrange
  • the conventional oscillator having such a configuration when the antenna 108 is considered as an array antenna in which two antenna portions are combined as described above, two oscillation modes of a normal phase and an antiphase may occur. In general, the lower frequency is more stable and easier to oscillate. If the positive phase on the lower frequency side is stabilized and synchronized, low frequency oscillation or multi-oscillation due to LC resonance may occur and the oscillation output may decrease. It was.
  • the anti-phase oscillation mode is stable in a system having a large number of resonance points, in which the oscillation due to modes other than the mode oscillation at the anti-phase resonance frequency is reduced, and the mode oscillation at the anti-phase resonance frequency Is obtained almost in a single unit.
  • the electric field strength of an electromagnetic wave oscillated in a mode other than the antiphase oscillation mode is smaller than the maximum electric field strength of the terahertz wave mode-oscillated at the antiphase resonance frequency by about an order of magnitude or less.
  • the electric field strength of the electromagnetic wave in the oscillation mode other than the antiphase oscillation mode is 1 / e 2 or less (e is the base of natural logarithm) of the maximum electric field strength of the terahertz wave having the antiphase oscillation frequency.
  • the oscillator 100 of this embodiment reduces the oscillation of low-frequency electromagnetic waves due to parasitic oscillation by destabilizing the normal phase mode and stabilizing the antiphase mode. .
  • Non-Patent Document 2 the condition for destabilizing the positive phase in the mutual injection locking in the antenna array in which a plurality of RTD oscillators are combined is to satisfy the equation (8) at the frequency f even of the positive phase.
  • Re (k) ⁇ Re (Y 12 ) ⁇ [G-Re (Y 11 )] ⁇ 1 ⁇ 1/3 (8)
  • k is a coupling coefficient between the first antenna unit 108a and the second antenna unit 108b.
  • G is negative resistance element 101a, while the gain of 101b, the absolute value of Re (Y RTD) (
  • the oscillator 100 When this is converted, the oscillator 100 preferably satisfies the expression (1).
  • the normal phase mode can be destabilized and the reverse phase mode can be stabilized.
  • FIG. 4 shows the result of analyzing the coupling coefficient k for the oscillator 100.
  • This is an example of analysis of the frequency characteristics. The analysis is performed by changing the diameter (mesa diameter) of the RTD mesa that is the negative resistance elements 101a and 101b, and the result when the d2 mesa diameter is 2 ⁇ m, the d3 is the mesa diameter is 3 ⁇ m, and the d4 is the mesa diameter is 4 ⁇ m. It is.
  • the mesa diameter is a design parameter for controlling the injection power and the diode capacitance, and the gain G and oscillation It contributes to the frequency f.
  • controlling the gain G with the mesa diameter of the RTD is one effective means.
  • the first antenna portion 108a and the second antenna portion 108b pass through the coupling portion 107 and have a plane parallel to the stacking direction.
  • a mirror image symmetrical structure as a reference is preferable.
  • first antenna portion 108a and the second antenna portion 108b may be coupled by AC coupling. Even in such a case, in the coupling coefficient Y 12 is large relatively strong coupling, as shown in FIG. 6, and the structure of the mirror symmetry of the multi mode is suppressed are preferred.
  • a structure in which the load of the antenna 108 (that is, Re (Y 11 )) is increased is also preferable.
  • FIG. 5 shows an analysis of the coupling coefficient Re (k) when the load of the antenna 108 is adjusted by changing the input impedance at the respective feeding positions of the first negative resistance element 101a and the second negative resistance element 101b. Results are shown.
  • off represents the feeding position of the negative resistance elements 101a and 101b
  • x represents the distance in the AA direction (resonance direction) from the center of gravity of the first conductor 102 of the antenna 108 to the radiation end
  • FIG. 5 shows the result of analysis of the coupling coefficient Re (k) when the RTD mesa diameter is 3 ⁇ m in the oscillator 100 of Example 1 described later.
  • the positions of the negative resistance elements 101a and 101b approach the center of the patch antenna as off30 and off20, and satisfy the condition of Re (k) ⁇ 1/3.
  • the stabilization can be selected by adjusting Re (Y 11 ) with a structure outside the antenna 108.
  • the closer the low impedance structure of the line 103 is to the negative resistance elements 101a and 101b and the antenna 108 the more effective the destabilization of the positive phase mode.
  • the negative resistance elements 101a and 101b are arranged at a distance of ⁇ THz or less.
  • ⁇ THz is the wavelength of the terahertz wave having the oscillation frequency f THz .
  • the antenna 108 may be of any structure as long as it can generate oscillation of the frequency f LC due to capacitive C such as a microstrip antenna and inductive L due to a feed line directly connected to the antenna 108.
  • the antenna 108 can be a flat antenna such as a general diball antenna, a slot antenna, a patch antenna, a casele antenna, or a parabolic antenna, or a three-dimensional antenna.
  • this embodiment can be applied when oscillation due to capacitive C generated by the structure of the integrated antenna and inductive L generated by the feeding structure becomes a problem. it can.
  • the oscillator 100 of this embodiment makes it difficult for parasitic oscillation due to the wiring structure, which is a problem in a microstrip resonator including a patch antenna or the like, to occur.
  • an oscillator having an antenna 108 having two or more negative resistance elements is configured to selectively destabilize the positive phase and stabilize the mutual injection locking in the anti-phase mode. With such a configuration, the LC resonance caused by the capacitance of the antenna 108 and the inductance of the bias feed line is reduced.
  • the oscillator 100 of the present embodiment it is possible to reduce or suppress the relatively high frequency parasitic oscillation in the frequency region of DC or more and less than f THz .
  • the terahertz wave having the desired oscillation frequency f THz of the oscillator 100 can be acquired more stably.
  • the terahertz wave having the desired oscillation frequency f THz in the microstrip resonator can be obtained with higher output.
  • the oscillation output can be increased by one digit or more at a desired oscillation frequency f THz .
  • Example 1 the configuration of the oscillator 100 according to the embodiment will be described.
  • resonant tunneling diodes are used as the negative resistance elements 101a and 101b.
  • the first negative resistance element 101a may be referred to as a first RTD 101a
  • the second negative resistance element 101b may be referred to as a second RTD 101b.
  • the first RTD 101a and the second RTD 101b used in this example are configured with an InGaAs / InAlAs, InGaAs / AlAs multiple quantum well structure and an n-InGaAs electrical contact layer on an InP substrate (not shown). Is done.
  • a triple barrier structure is used. More specifically, the semiconductor multi-layer structure of AlAs (1.3 nm) / InGaAs (7.6 nm) / InAlAs (2.6 nm) / InGaAs (5.6 nm) / AlAs (1.3 nm) is used. Of these, InGaAs is a well layer, and lattice matched InAlAs and non-matched AlAs are barrier layers. These layers are undoped layers that are not intentionally carrier-doped.
  • Such a multiple quantum well structure is sandwiched between n-InGaAs electrical contact layers having an electron concentration of 2 ⁇ 10 18 cm ⁇ 3 .
  • current voltage I (V) characteristic of the structure of such electrical contacts interlayer the peak current density is 280 kA / cm 2, from about 0.7V to about 0.9V is the negative differential resistance region.
  • V current voltage
  • the first RTD 101a has a mesa structure of about 2 ⁇ m ⁇ , a peak current of 10 mA and a differential negative resistance of ⁇ 20 ⁇ are obtained.
  • the antenna 108 includes a patch antenna having an upper conductor (patch conductor) 102, a second conductor 105 that is a ground conductor, and a dielectric 104, a first RTD 101a, and a second RTD 101b.
  • the antenna 108 includes a square patch antenna whose one side of the upper conductor 102 is 200 ⁇ m.
  • the first RTD 101a and the second RTD 101b having a diameter of 2 ⁇ m are connected.
  • the first RTD 101a is disposed in the upper conductor 102 at a position shifted from the center of gravity of the upper conductor 102 by 80 ⁇ m in the resonance direction.
  • the second RTD 101b is arranged at a position shifted from the center of gravity of the upper conductor 102 by ⁇ 80 ⁇ m in the resonance direction. That is, the first RTD 101a and the second RTD 101b are arranged at positions that are line-symmetric with respect to a straight line (center line) passing through the center of gravity of the upper conductor 102 and perpendicular to the resonance direction and the stacking direction. In other words, the second RTD 101b is arranged in a position symmetrical to the position where the first RTD 101a is arranged in the upper conductor 102 with the center line as an axis.
  • first RTD 101a and the second RTD 101b do not have to be arranged at completely line-symmetrical positions, and may be in a range that can be regarded as line-symmetrical.
  • the design is performed on the assumption that the first RTD 101a and the second RTD 101b are arranged in a line-symmetrical position, it is line-symmetric if it is within the range showing the characteristics expected in the design stage. You can consider it.
  • the single resonant frequency of the patch antenna is about 0.48 THz.
  • the oscillator 100 of this embodiment has the admittance characteristics shown in FIG. 2, and there are two synchronization modes: a normal phase mode and an antiphase mode. Considering the reactances of the first and second RTDs 101a and 101b, which are negative resistance elements, the oscillation frequency (resonance frequency) f THz of the oscillator 100 in the case of mutual injection locking in opposite phases is about 0.42 THz .
  • the normal phase becomes unstable and the mutual injection is synchronized in the opposite phase.
  • the upper conductor 102 is connected to a microstrip line that is a line 103.
  • the antenna 108 is connected to the capacitor 109 via the line 103.
  • the line 103 connects the bias circuit 120 and the antenna 108.
  • the width of the line 103 (length in the resonance direction) was about 6 ⁇ m, and the length in the direction perpendicular to the resonance direction and the stacking direction was about 100 ⁇ m.
  • the capacitor 109 is an MIM capacitor, and the size of the capacitor is 100 pF in this embodiment.
  • the resistor 110 is a shunt resistor, and a bismuth structure of 5 ⁇ is integrated so as to have a value smaller than the absolute value of the combined negative resistance of the first and second RTDs 101a and 101b.
  • a wiring 111 including wire bonding is connected to the capacitor 109, and the bias voltage of the first and second RTDs 101 a and 101 b is adjusted by the power source 112.
  • the resonance frequency when oscillating in the positive phase mode is an LC resonance frequency f LC formed by the inductance L of the microstrip line that is the line 103 and the capacitance C of the integrated antenna 108, and is about 0. 05 THz.
  • the oscillator 100 is manufactured as follows. First, the following layers are epitaxially grown on the InP substrate by molecular beam epitaxy (MBE) method, metal organic vapor phase epitaxy (MOVPE) method, or the like. That is, resonant tunneling diodes (RTD) 101a and 101b made of n-InP / n-InGaAs and InGaAs / InAlAs are epitaxially grown in this order on the InP substrate. When an n-type conductive substrate is selected as the InP substrate, it may be epitaxially grown from n-InGaAs.
  • MBE molecular beam epitaxy
  • MOVPE metal organic vapor phase epitaxy
  • the first RTD 101a and the second RTD 101b are etched into an arc-shaped mesa shape having a diameter of 2 ⁇ m.
  • Etching uses EB (electron beam) lithography and ICP (inductively coupled plasma) dry etching. Photolithography may be used.
  • a second conductor 105 as a ground conductor is formed on the etched surface by a lift-off method.
  • a 0.1 ⁇ m silicon nitride film is formed on the entire surface as a sidewall protective film of the RTDs 101a and 101b.
  • BCB is buried as dielectric 104 using spin coating and dry etching, and Ti / Pd / Au upper conductor 102, upper conductor layer of line 103, and upper electrode layer of MIM capacitor 109 are lifted off.
  • a Bi pattern is formed in the portion that becomes the resistor 110 by the lift-off method, the upper electrodes of the second conductor 105 and the capacitor 109 are connected, and the wiring 111 and the power supply 112 are connected by wire bonding or the like.
  • An oscillator 100 can be formed. Supply of power to the oscillator 100 is performed from the bias circuit 120. When a bias voltage that is a differential negative resistance region is applied and a bias current is supplied, the oscillator 100 operates as an oscillator.
  • the oscillator 100 of this embodiment makes it difficult for parasitic oscillation due to the wiring structure, which is a problem in a microstrip resonator including a patch antenna or the like, to occur.
  • an oscillator having an antenna 108 having two or more negative resistance elements is configured to selectively destabilize the positive phase and stabilize the mutual injection locking in the anti-phase mode. With such a configuration, the LC resonance caused by the capacitance of the antenna 108 and the inductance of the bias feed line is reduced.
  • the oscillator 100 of the present embodiment it is possible to reduce or suppress the relatively high frequency parasitic oscillation in the frequency region of DC or more and less than f THz .
  • the terahertz wave having the desired oscillation frequency f THz of the oscillator 100 can be acquired more stably.
  • terahertz wave of the oscillation frequency f THz can be obtained stably, it can terahertz wave of a desired oscillation frequency f THz in microstrip resonator obtain a higher output. Specifically, since low frequency oscillation and multi-oscillation can be suppressed, the oscillation output can be increased by one digit or more at a desired oscillation frequency f THz .
  • Example 2 The oscillator 200 of the present embodiment will be described with reference to FIG. 6A is a perspective view illustrating the configuration of the oscillator 200, and FIG. 6B is a cross-sectional view taken along the line BB.
  • the oscillator 200 is a terahertz wave oscillation element including an antenna (resonance unit) 208 having a configuration in which a first antenna unit 108 a and a second antenna unit 108 b are AC coupled by a coupling unit 207.
  • the first antenna portion 108a is a patch antenna and has a structure in which the dielectric 104 and the first RTD 101a are sandwiched between the first conductor layer 102a and the second conductor 105 which is a ground conductor.
  • the second antenna portion 108b is a patch antenna, and has a structure in which the dielectric 104 and the second RTD 101b are sandwiched between the second conductor layer 102b and the second conductor 105 that is a ground conductor.
  • the first antenna portion 108a is a rectangular patch antenna having a first conductor layer 102a of 200 ⁇ m ⁇ 98 ⁇ m, and is located at a position 20 ⁇ m in the resonance direction from the end of the long side of the first conductor layer 102a (ie, the radiation end). 1 RTD 101a is embedded.
  • the second antenna portion 108b is a rectangular patch antenna having a second conductor layer 102b of 200 ⁇ m ⁇ 98 ⁇ m, and is second from the end of the long side of the second conductor 102b (that is, the radiation end) at a position 20 ⁇ m in the resonance direction.
  • RTD 101b is embedded.
  • the second antenna portion 108b has a mirror image symmetric structure that is inverted about the coupling portion 207 as an axis.
  • the coupling portion 207 is disposed at a position including the center line, and is disposed such that the center position of the coupling portion 207 matches the center line.
  • the second antenna unit 108b has a mirror image symmetric structure in which the first antenna unit 108a is inverted with respect to a center line passing through the center of gravity of the antenna 208. Therefore, the first RTD 101a is disposed at a position shifted by 80 ⁇ m from the center of gravity of the antenna 208 in the resonance direction.
  • the second RTD 101b is arranged at a position shifted from the center of gravity of the antenna 208 by ⁇ 80 ⁇ m in the resonance direction.
  • the first antenna unit 108 a and the second antenna unit 108 b are AC coupled by a coupling unit 207.
  • the first conductor (upper conductor) 102 of the antenna 208 connects the first conductor layer 102a, the second conductor layer 102b, and the first conductor layer 102a and the second conductor layer 102b.
  • the connecting portion is the coupling portion 207.
  • the dielectric layer 217 and the upper electrode 218 are disposed on the first conductor layer 102a and the second conductor layer 102b.
  • the coupling portion 207 has a capacitor structure in which the dielectric layer 217 is sandwiched between the upper electrode 218, the first conductor layer 102a, and the second conductor layer 102b, and the first antenna portion 108a and the second antenna portion 108b. Are coupled by strong AC coupling to constitute an antenna 208.
  • the oscillator 200 of this embodiment is configured to satisfy the expression (1).
  • the oscillator 200 has two synchronization modes of a positive phase and an antiphase. Considering the reactance of the first RTD 101a and the reactance of the second RTD 101b, the oscillation frequency (resonance frequency) f THz of the oscillator 200 when mutually injected and locked in the opposite phase is about 0.42 THz .
  • the configuration satisfying the expression (1) makes the positive phase unstable due to the RTD mesa diameter and arrangement, and oscillates in the anti-phase mode, that is, in the anti-phase mode.
  • Mutual injection can be synchronized.
  • the first conductor layer 102a is connected to the microstrip line that is the first line 203a
  • the second conductor 102b is connected to the microstrip line that is the second line 203b.
  • the first antenna unit 108a and the second antenna unit 108b are connected to the bias circuit 220.
  • the first line 203a and the second line 203b have a width of about 6 ⁇ m and a length of about 100 ⁇ m, and the distance between the first line 203a and the second line 203b is 4 ⁇ m.
  • the configuration of the bias circuit 220 is the same as that of the first embodiment.
  • the negative resistance elements are relatively synchronized with each other by stabilizing the synchronization in the opposite phase.
  • High-frequency parasitic oscillation can be reduced.
  • the terahertz wave having the desired oscillation frequency f THz of the oscillator 200 can be acquired more stably.
  • terahertz wave of the oscillation frequency f THz can be obtained stably, can enhance the oscillation output of the terahertz wave of a desired oscillation frequency f THz in microstrip resonator.
  • Example 3 The oscillator 300 of the present embodiment will be described with reference to FIGS.
  • FIG. 7A is a perspective view illustrating the configuration of the oscillator 300
  • FIG. 7B is a CC cross-sectional view thereof.
  • FIG. 8 is a diagram for explaining the characteristics of the oscillator 300.
  • the oscillator 300 proposes a more specific configuration necessary for realizing a terahertz wave light source using the oscillator 100 described in the embodiment and the first example. Detailed description of the same configurations and structures as those of the above-described embodiments and examples will be omitted.
  • RTD resonant tunneling diode
  • the two negative resistance elements will be described as a first RTD 301a and a second RTD 301b.
  • the first RTD 301a and the second RTD 301b used in this embodiment are configured by RTDs having a double barrier structure made of InGaAs / AlAs or the like formed on an InP substrate.
  • the configuration of the semiconductor heterostructure of the first RTD 301a and the second RTDRTD 301b is almost the same as that of the double barrier RTD disclosed in Non-Patent Document 3.
  • the current-voltage characteristics of the first RTD 301a and the second RTD 301b are measured values, the peak current density is 9 mA / um 2 , and the differential negative conductance per unit area is 26 mS / um 2 .
  • the diameter of the mesa structure of the first RTD 301a and the second RTD 301b in this embodiment is 1 ⁇ m, and the magnitude of the differential negative resistance is about ⁇ 50 ⁇ per diode.
  • the antenna 308 is disposed between the patch conductor 302 disposed on the upper side (surface side) of the InP substrate 317, the ground conductor 305 disposed on the substrate side and grounded, and the patch conductor 302 and the ground conductor 305. It has a dielectric, a first RTD 301a, and a second RTD 301b. As the patch conductor 302 and the ground conductor 305, an Au thin film (300 nm thickness) having a low resistivity was used.
  • a patch conductor 302 is connected to the anode side of the first RTD 301a and the second RTD 301b.
  • the cathode sides of the first RTD 301a and the second RTD 301b are connected to the ground conductor 305 via posts 315a and 315b made of n-doped InP (indium phosphide), respectively.
  • the first RTD 301a and the second RTD 301b are arranged at positions shifted from the center of the patch conductor 302 by distances x and -x in the resonance direction.
  • An input impedance when a high frequency is fed from the RTD to the patch antenna is determined.
  • the first RTD 301a and the second RTD 301b are arranged at positions that are symmetric with respect to a straight line (center line) passing through the center of the patch conductor 302 and perpendicular to the resonance direction and the stacking direction.
  • the patch conductor 302 is connected to the MIM capacitor structure 309 (MIM: Metal Insulator Metal) via the microstrip line 303.
  • the microstrip line 303 has a structure in which a dielectric including the silicon nitride layer 316 is sandwiched between a conductor 303 connected to the patch conductor 302 and a ground conductor 305.
  • the microstrip line 303 had a width (length in the resonance direction) of about 6 ⁇ m and a length in the direction perpendicular to the resonance direction and the stacking direction of about 85 ⁇ m.
  • the MIM capacitor structure 309 is a structure in which a dielectric including the silicon nitride layer 316 is sandwiched between the conductor 318 and the ground conductor 305, and is configured to ensure a capacitance of 20 pF or more.
  • a low resistivity Au thin film (thickness 1000 nm) was used for the conductor 318 of the microstrip line 303 and the MIM capacitor structure 309.
  • the MIM capacitor structure 309 is connected to the cathode electrode 319 via a shunt resistor 310 composed of a bismuth thin film.
  • a shunt resistor 310 composed of a bismuth thin film.
  • the resistance structure of the bismuth thin film is about 15 ⁇ (200 ⁇ m ⁇ 100 ⁇ m ⁇ 0.5 ⁇ m thick) Was integrated on the substrate 317.
  • the cathode electrode 319 is connected to the ground conductor 305 and has the same potential as the ground conductor.
  • the substrate 317 is die bonded to the power supply substrate 320.
  • An Au thin film (thickness 1000 nm) having a low resistivity was used as the conductor of the cathode electrode 319.
  • the cathode electrode 319 is connected to the ground of the power supply 312 through a wiring 311b including wire bonding.
  • the MIM capacitor structure 309 also serves as an anode electrode, and the conductor 318 and the power supply 312 are connected via the wiring 311a including wire bonding.
  • the bias voltage and bias current of the first RTD 301a and the second RTD 301b are adjusted by the power supply 312 so that desired oscillation characteristics are obtained.
  • FIG. 8 shows an analysis result of the offset dependency of the oscillation frequency and the oscillation power of the oscillator 300 whose mesa diameter is 1 ⁇ m in the first RTD 301a and the second RTD 301b.
  • the resonance frequency of the patch antenna alone in the present embodiment is about 0.5 THz, but as described above, the oscillation frequency in the antiphase synchronous mode is about 0.4 due to the reactance of the first RTD 301a and the second RTD 301b. ⁇ 0.5 THz.
  • the oscillation frequency of the positive phase synchronous mode (resonance due to the inductance of the microstrip line 303 and the capacitance of the antenna 308) is estimated to be about 0.1 THz with almost no offset dependency (not shown).
  • Non-Patent Document 4 the analysis method disclosed in Non-Patent Document 4 is used for the analysis of the oscillation output, and the antenna and the RTD under the anti-phase (odd mode) oscillation conditions shown in equations (6) and (7) are used. Frequency and power were calculated from admittance.
  • the oscillation power can be arbitrarily adjusted between 0 mW and 0.2 mW.
  • the oscillator of the present embodiment a terahertz wave having an oscillation frequency f THz can be obtained more stably than in the past. Thereby, a terahertz wave having a desired oscillation frequency f THz in the microstrip resonator can be obtained with higher output. Specifically, since low frequency oscillation and multi-oscillation can be reduced, the oscillation output can be increased by one digit or more at a desired oscillation frequency f THz .
  • the resonant tunnel diodes including n-InP / n-InGaAs and InGaAs / InAlAs grown on the InP substrate have been described as the first RTD 101a and the second RTD 101b.
  • the present invention is not limited to these structures and material systems, and the oscillation element of the present invention can be provided even with a combination of other structures and materials.
  • a resonant tunnel diode having a double barrier quantum well structure may be used, or a resonant tunnel diode having three or more multiple barrier quantum wells may be used.
  • the carrier is an electron
  • the present invention is not limited to this, and a hole may be used. .
  • the substrate and dielectric materials may be selected according to the application, such as semiconductors such as silicon, gallium arsenide, indium arsenide, and gallium phosphide, and resins such as glass, ceramic, Teflon (registered trademark), and reethylene terephthalate. Can be used.
  • semiconductors such as silicon, gallium arsenide, indium arsenide, and gallium phosphide
  • resins such as glass, ceramic, Teflon (registered trademark), and reethylene terephthalate. Can be used.
  • a square patch is used as a terahertz wave resonator.
  • the shape of the resonator is not limited to this, for example, a polygon such as a rectangle and a triangle, or a circle Alternatively, a resonator having a structure using an elliptical patch conductor or the like may be used.
  • the number of differential negative resistance elements integrated in the oscillator is not limited to one, and a resonator having a plurality of differential negative resistance elements may be used.
  • the number of lines is not limited to one, and a plurality of lines may be provided.
  • the oscillation elements described in the above embodiments and examples can be used as detection elements for detecting terahertz waves.
  • the element 100 can also be operated as a terahertz wave detector using a region where current nonlinearity occurs in the current-voltage characteristics of the RTDs 101a and 101b as the voltage changes.
  • terahertz waves can be oscillated and detected using the oscillation elements described in the above embodiments and examples.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

寄生発振を低減できる素子を提供する。テラヘルツ波の発振又は共振に用いる素子であって、第1の導体102と、第2の導体105と、第1の導体と第2の導体との間に配置されている誘電体104と、第1の導体と第2の導体との間に互いに並列に接続されている第1の負性抵抗素子101a及び第2の負性抵抗素子101bと、を有する共振部108と、第1の負性抵抗素子及び第2の負性抵抗素子のそれぞれにバイアス電圧を供給するバイアス回路120と、バイアス回路と共振部とを接続する線路103と、を有し、第1の負性抵抗素子と第2の負性抵抗素子との正位相の相互注入同期が不安定で、第1の負性抵抗素子と第2の負性抵抗素子との逆位相の相互注入同期が安定になるように構成されている。

Description

素子
 本発明は、テラヘルツ波の発振又は検出に用いる素子に関する。
 ミリ波帯からテラヘルツ帯まで(30GHz以上30THz以下)の周波数領域の電磁波(以下、「テラヘルツ波」とよぶ)を発生する電流注入型の光源として、負性抵抗素子にアンテナを集積した発振器がある。具体的には、負性抵抗素子である2重障壁型の共鳴トンネルダイオード(RTD:Resonant Tunneling Diode)とマイクロストリップアンテナとを同一基板上に集積したテラヘルツ波を発振可能な素子がある。
 特許文献1には、複数の負性抵抗素子にアンテナを集積した発振器において、複数の負性抵抗素子を正位相又は逆位相で同期させることにより、テラヘルツ波の発振出力を向上することが記載されている。
 負性抵抗素子を用いた素子は、負性抵抗素子のバイアス電圧を調整するための電源と配線とを含むバイアス回路に起因した寄生発振を生じることがある。寄生発振は、所望の周波数と異なる低周波側の周波数帯における寄生的な発振のことを指し、所望の周波数における発振出力を低下させる。
 特許文献2には、負性抵抗素子から低インピーダンス回路を構成するシャント抵抗までの距離を、周波数fLC=1/2π√LCの等価波長の1/4より大きくする構成が記載されている。
 なお、周波数fLCは、配線構造のストリップ導体のインダクタンスをL、マイクロストリップアンテナの容量をCとする。特許文献2に記載の構成によれば、インダクタンスLを大きくして共振周波数fLCを下げることで、周波数fLCにおける抵抗性損失を増大させて給電構造に起因した寄生発振を低減する。
特開2013-168928号公報 特開2014-14072号公報
Jpn.J.Appl.Phys.,Vol.47,No.6,4375(2008) J.Appl.Phys.,Vol.103,124514(2008) J. Infrared Milli Terahz Waves,(2014),35,p.425~431 IEEE J. Sel. Top. Quantum Electron. 19 (2013) 8500108.
 特許文献2の構成によれば、パッチアンテナ等のマイクロストリップアンテナを用いた発振器における寄生発振を低減できる。しかしながら、ストリップ線の外側に低インピーダンス回路を配置する構成であるため、配線構造に起因した比較的高周波帯(3GHzより大きい)の寄生発振が発生する恐れがある。
 また、特許文献1には、給電構造などに起因した寄生発振を抑制する方法については記載されていない。
 本発明は上記課題に鑑み、従来よりも高周波帯の寄生発振を低減できる素子を提供することを目的とする。
 本発明の一側面としての素子は、テラヘルツ波の発振又は検出に用いる素子であって、第1の導体と、第2の導体と、前記第1の導体と前記第2の導体との間に配置されている誘電体と、前記第1の導体と前記第2の導体との間に互いに並列に接続されている第1の負性抵抗素子及び第2の負性抵抗素子と、を有する共振部と、前記第1の負性抵抗素子及び第2の負性抵抗素子のそれぞれにバイアス電圧を供給するバイアス回路と、前記バイアス回路と前記共振部とを接続する線路と、を有し、前記第1の負性抵抗素子と前記第2の負性抵抗素子との正位相の相互注入同期が不安定で、前記第1の負性抵抗素子と前記第2の負性抵抗素子との逆位相の相互注入同期が安定になるように構成されていることを特徴とする。
 本発明の一側面としての素子によれば、従来よりも高周波帯の寄生発振を低減できる。
実施形態の素子の構成を説明する図。 実施形態の素子の構成を説明する図。 第1の実施例の素子のアドミタンス特性を説明する図。 第1の実施例の素子の特性を説明する図。 第1の実施例の素子の特性を説明する図。 第2の実施例の素子の構成を説明する図 第3の実施例の素子の構成を説明する図。 第3の実施例の素子の特性を説明する図。
 (実施形態)
 本実施形態に係る素子100について、図1を用いて説明する。
 素子100は、発振周波数fTHzの電磁波を発振する発振素子(発振器)である。図1(a)は、本実施形態に係る素子100の外観を示す斜視図であり、図1(b)はそのA-A断面図の模式図である。
 なお、素子100は、以降「発振器100」と呼ぶ。
 まず、発振器100の構成について説明する。発振器100は、共振部(アンテナ)108と、線路103と、バイアス回路120と、を有する。アンテナ108は、上導体(第1の導体)102、第2の導体105、上導体102と第2の導体105との間に配置されている誘電体104、及び上導体102及び第2の導体105との間に電気的に接続された2つの負性抵抗素子101a、101bを有する。第2の導体105及び誘電体104は、アンテナ108の周囲の領域にも配置されている。2つの負性抵抗素子101a、101bの一方を第1の負性抵抗素子101aとよび、他方を第2の負性抵抗素子101bと呼ぶ。
 アンテナ108における上導体102と第2の導体105との二導体で誘電体104を挟む構成は、有限な長さのマイクロストリップラインなどを用いたマイクロストリップ共振器である。本実施形態では、テラヘルツ波の共振器としてマイクロストリップ共振器の一種であるパッチアンテナを用いている。
 アンテナ108は、テラヘルツ波の電磁波利得を有する2つの負性抵抗素子101a、101bとテラヘルツ波帯の共振器とが集積されたアクティブアンテナである。第1の負性抵抗素子101a及び第2の負性抵抗素子101bのそれぞれは、電流電圧特性において、電圧の増加に伴って電流が減少する領域、すなわち負の抵抗をもつ領域(微分負性抵抗領域)が現れる素子である。第1の負性抵抗素子101aと第2の負性抵抗素子101bとは、互いに電気的に並列であり、上導体102と第2の導体105との間に電気的に接続されている。
 また、第1の負性抵抗素子101aの利得と、第2の負性抵抗素子101bの利得とは、等しいことが望ましい。
 ここで、「利得が等しい」とは、第1の負性抵抗素子101aの利得が、第2の負性抵抗素子101bの利得の0.5倍以上1.5倍以下の範囲にあればよく、例えば、半導体加工技術の加工精度で基準とされる±10%の範囲であれば十分許容される。
 第1の負性抵抗素子101a及び第2の負性抵抗素子101bとしては、具体的には、RTDやエサキダイオード、ガンダイオード、一端子を終端したトランジスタなどの高周波素子を用いるのが好適である。
 また、タンネットダイオード、インパットダイオード、ヘテロ接合バイポーラトランジスタ(HBT)、化合物半導体系電FET、高電子移動度トランジスタ(HEMT)などを用いてもよい。
 また、超伝導体を用いたジョセフソン素子の微分負性抵抗を用いてもよい。
 本実施形態では、テラヘルツ波帯で動作する代表的な微分負性抵抗素子である共鳴トンネルダイオード(RTD:Resonant Tunneling Diode)を2つの負性抵抗素子101a、101bに用いた場合を例にして説明する。
 なお、第1の負性抵抗素子101aが発振する電磁波の周波数帯域は、第2の負性抵抗素子101bが発振する電磁波の周波数帯域と少なくとも一部が重なっていることが好ましく、より好ましくは一致している。
 アンテナ108は、発生した電磁波が共振する共振部であり、共振器と放射器の役割を有する。そのため、誘電体中の電磁波の実効波長をλとすると、アンテナ108は、アンテナ108のパッチ導体である上導体102のA-A方向(共振方向)の幅がλ/2共振器となるように設定される。
 ここで、本明細書における「誘電体」は、導電性よりも誘電性が優位な物質で、直流電圧に対しては電気を通さない絶縁体或いは高抵抗体としてふるまう材料である。典型的には抵抗率が1kΩ・m以上の材料が好適である。具体例としては、樹脂、プラスティック、セラミック、酸化シリコン、窒化シリコンなどがある。
 バイアス回路120は、2つの負性抵抗素子101a、101bのそれぞれにバイアス電圧を供給する。バイアス回路120は、2つの負性抵抗素子101a、101bのそれぞれと並列に接続されている抵抗110、抵抗110と並列に接続されている容量109、電源112、及び配線111を含む。配線111は、寄生的なインダクタンス成分を必ず伴うため、図1ではインダクタンスとして表示する。
 電源112は、負性抵抗素子101aと101bの駆動に必要な電流を供給し、バイアス電圧を調整する。バイアス電圧は、典型的には、2つの負性抵抗素子101a、101bのそれぞれの微分負性抵抗領域から選択される。
 バイアス回路120は、線路103を介してアンテナ108に接続され、負性抵抗素子101aと101bに電力を供給する。本実施形態における線路103は、マイクロストリップラインである。すなわち、線路103は、2つの導体と、該2つの導体の間に配置されている誘電体104とを有する構成である。
 バイアス回路120の抵抗110及び容量109は、バイアス回路120に起因した比較的低周波な共振周波数fsp(fsp<fLC<fTHz、典型的にはDCから10GHzの周波数帯)の寄生発振を抑制している。
 ここで、周波数fLCは、線路103のインダクタンスLと、2つの負性抵抗素子101a、101bを含むアンテナ108のキャパシタンスCと、によるLC共振の周波数である。これについての詳細は後述する。
 抵抗110の値は、負性抵抗素子101a、101bのそれぞれの微分負性抵抗領域における微分負性抵抗の合計の絶対値と等しいか少し小さい値が選択されることが好ましい。抵抗110は、負性抵抗素子101a、101bのそれぞれから距離d離れた位置に配置されている。抵抗110より外側のバイアス回路は、4×d以上の波長帯において負性抵抗素子101a、101bからみて低インピーダンス、すなわち、負性抵抗素子101a、101bの微分負性抵抗の絶対値を基準として低インピーダンスとなることが好ましい。これを換言すると、抵抗110は、fSP(fSP<fLC<fTHz)以下の周波数帯において、負性抵抗素子101aと101bからみて低インピーダンスとなるように設定されることが好ましい。
 容量109は、容量109のインピーダンスが、2つの負性抵抗素子101a、101bのそれぞれの微分負性抵抗の合計の絶対値と等しいか、少し小さい値が選択されることが好ましい。一般的には、容量109は容量が大きいほうが好ましく、本実施形態では数十pF程度としている。容量109は、線路103であるマイクロストリップラインと直結されたデカップリング容量となっており、例えば、アンテナ108と基板(不図示)とを共にしたMIM(Metal-insulator-Metal)構造を利用してもよい。
 アンテナ108の構造上、抵抗110及び容量109を含むバイアス回路120を、発振周波数fTHzの共振電界と干渉せずアンテナ108に直接接続することは容易ではない。このため、負性抵抗素子101a、101bのそれぞれへバイアス電圧を給電するためには、バイアス回路120とアンテナ108とを、給電線である線路103を介して接続する必要がある。よって、線路103は、バイアス回路120よりも負性抵抗素子101aと101bに近い位置に配置される。
 そのため、従来の素子では、線路のインダクタンスLと負性抵抗素子及びアンテナのキャパシタンスCに起因した周波数fLC(fLC≒1/{2π√(LC))、fSP<fLC<fTHz)のLC共振による寄生発振が生じることがあった。特に、パッチアンテナなどのマイクロストリップアンテナは、2枚の導体で誘電体を挟んだ構造となり、構造上の容量Cが生じるため、このような寄生的な共振の低減が課題となる。
 寄生発振の周波数fLCは、発振器100では、主に負性抵抗素子101a、101bそれぞれの容量、線路103の長さと幅、アンテナ108の面積(例えば、上導体102の面積)、誘電体104の厚さ、線路103及び抵抗110の配置や構造等で決まる。典型的には、周波数fLCは数GHz以上500GHz以下の範囲となる。例えば、線路103の長さをd、負性抵抗素子101aおよび101bと抵抗110までの距離をdとしたとき、周波数fLC付近の周波数帯は、波長に換算すると4×d以上4×d以下の波長帯である。
 線路103の幅は、アンテナ108内の共振電界に干渉しない程度の寸法が好ましく、例えばλTHz/10以下が好適である。
 ここで、λTHzは、発振周波数fTHzのテラヘルツ波の波長である。
 また、線路103は、アンテナ108に定在する発振周波数fTHzのテラヘルツ波の電界の節(node)に配置し、該節の位置でアンテナ108と接続することが好ましい。このように配置すると、線路103は、発振周波数fTHz付近の周波数帯において、負性抵抗素子101a、101bのそれぞれの微分負性抵抗の絶対値よりインピーダンスが高い構成となる。そのため、線路103が、アンテナ108内の発振周波数fTHzの電界へ影響することが低減される。
 ここで、「アンテナ108に定在する発振周波数fTHzのテラヘルツ波の電界の節」は、アンテナ108内に定在する発振周波数fTHzのテラヘルツ波の電界の実質的な節となる領域のことである。具体的には、アンテナ108に定在する発振周波数fTHzのテラヘルツ波の電界強度が、アンテナ108に定在する発振周波数fTHzのテラヘルツ波の最大電界強度より1桁程度低い領域のことである。より望ましくは、アンテナ108に定在する発振周波数fTHzのテラヘルツ波の電界強度が、アンテナ108に定在する発振周波数fTHzのテラヘルツ波の最大電界強度の1/e(eは自然対数の底)以下となる位置が好適である。
 ここで、本実施形態の発振器100の発振条件についてより詳細に説明する。一般的に、アンテナと微分負性抵抗素子が集積されたアクティブアンテナの発振周波数は、アンテナと微分負性抵抗素子のリアクタンスとを組み合わせた全並列共振回路の共振周波数として決定される。具体的には、非特許文献1に記載のRTD発振器の等価回路から、RTDとアンテナのアドミタンスを組み合わせた共振回路について、発振周波数fTHzが決定される。具体的には、RTDとアンテナのアドミタンスを組み合わせた共振回路について、(2)式の振幅条件と(3)式の位相条件との二つの条件を満たす周波数が発振周波数fTHzとして決定される。
 なお、Y11は第1の負性抵抗素子101aから見たアンテナ108を含む全構成のアドミタンス、YRTDは微分負性抵抗素子である第1の負性抵抗素子101a又は第2の負性抵抗素子101bのアドミタンスである。
 ここで、全構成とは、アンテナ108、線路103、バイアス回路120など発振器100を構成する全部材のことである。すなわち、Re(Y11)は第1の負性抵抗素子101aから見たアンテナ108を含む全構造のアドミタンスの実部、Im(Y11)は第1の負性抵抗素子101aから見たアンテナ108を含む全構造のアドミタンスの虚部である。
 また、Re(YRTD)は第1の負性抵抗素子101a又は第2の負性抵抗素子101bのアドミタンスの実部、Im(YRTD)は第1の負性抵抗素子101a又は第2の負性抵抗素子101bのアドミタンスの虚部である。Re[YRTD]は負の値を有す。
 Re(YRTD)+Re(Y11)≦0 (2)
 Im(YRTD)+Im(Y11)=0 (3)
 本実施形態のアンテナ108は、第1の負性抵抗素子101aと第2の負性抵抗素子101bとの少なくとも二つ以上の負性抵抗素子を含む集積アンテナである。このような場合、図2に示したように、アンテナ108を、第1の負性抵抗素子101aが集積された第1のアンテナ部108aと、第2の負性抵抗素子101bが集積された第2のアンテナ部108bとが、結合部107で結合されているとみなすことができる。この場合、第1のアンテナ部108aと第2のアンテナ部108bと結合部107とは、アンテナ108におけるテラヘルツ波の共振方向に沿って並んで配置されている。
 すなわち、アンテナ108を、第1のアンテナ部108aと第2のアンテナ部108bとが結合部107で結合されている集積アンテナとして捉えて、発振器100の発振条件を考えることができる。具体的には、非特許文献2に開示された2つの個別のRTD発振器を結合した構成における相互の注入同期(相互注入同期)を考えることで発振周波数fTHzを決定する。
 ここで、相互注入同期とは、複数の自励発振器の全てが、相互作用により引き込み同期して発振することである。
 ここで、近似のため、第1の負性抵抗素子101aのアドミタンスと第2の負性抵抗素子101bのアドミタンスとは、等しいと仮定した。この時、正位相の相互注入同期と逆位相の相互注入同期との二つの発振モードが生じる。正位相の相互注入同期の発振モード(evenモード)の発振条件は(4)式及び(5)式で表され、逆位相の相互注入同期の発振モード(oddモード)の発振条件は(6)式及び(7)式で表される。
 正位相(evenモード):周波数f=feven
even=Y11+Y12+YRTDRe(Yeven)≦0 (4)
Im(Yeven)=0 (5)
逆位相(oddモード):f=fodd
odd=Y11-Y12+YRTDRe(Yodd)≦0 (6)
Im(Yodd)=0 (7)
 ここで、Y12は負性抵抗素子101aと負性抵抗素子101bとの間の相互アドミタンスである。
 例えば、図1(b)示したように、アンテナ108は、第1のアンテナ部108aと第2のアンテナ部108bとが、結合部107により強結合であるDC結合で結合された構成とみなすことができる。第1のアンテナ部108a及び第2のアンテナ部108bは、パッチアンテナの構造を有する。
 なお、本明細書における「強結合」とは、第1のアンテナ部と第2のアンテナ部との結合係数kの実部Re(k)で定義することができる。すなわち、本明細書における「強結合」とは、Re(k)の絶対値が1/3より大きくなることである。本実施形態では、Re(k)の絶対値が1/3より大きくなるように、第1のアンテナ部108aと第2のアンテナ部108bとが結合している。
 具体的には、第1のアンテナ部108aは、第1の導体層102a、第2の導体105、誘電体104、及び第1の導体層102aと第2の導体105との間に接続される第1の負性抵抗素子101aを有する。第1のアンテナ部108aは、誘電体104が第1の導体層102aと第2の導体105との間に配置されているパッチアンテナである。
 また、第2のアンテナ部108bは、第2の導体層102b、第2の導体105、誘電体104、及び第2の導体層102bと第2の導体105との間に接続される第2の負性抵抗素子101bを有する。第2のアンテナ部108bは、誘電体104が第2の導体層102bと第2の導体105との間に配置されているパッチアンテナである。
 結合部107は、第3の導体層102c、第2の導体105、及び第3の導体層102cと第2の導体105との間に配置された誘電体104、を有する。
 上導体102は、第1の導体層102aと第2の導体層102bとが、第3の導体層102cで接続されている。すなわち、第3の導体層102cは、第1の導体層102aと第2の導体層102bとを接続する接続部である。第1の導体層102aと第2の導体層102bとは、重なることなく、誘電体104上に並んで配置される。
 ここで、第2の導体105は接地導体で、本実施形態では、第1のアンテナ部108aと第2のアンテナ部108bと結合部107とで、共通の導体層を使用した。しかし、これに限らず、例えば、第2の導体105を、第1のアンテナ部108aと第2のアンテナ部108bと結合部107とで異なる導体層を用いて構成してもよい。
 また、本実施形態では、第1のアンテナ部108aと第2のアンテナ部108bと結合部107で共通の誘電体層として誘電体104を使用した。しかし、これに限らず、例えば、第1のアンテナ部108aと第2のアンテナ部108bと結合部107とで異なる誘電体を用いて構成してもよい。本実施形態の構成では、上導体102は、第1の導体層102aと第2の導体層102bとを、接続部である第3の導体層102cとで接続する構成となっている。
 第2のアンテナ部108bは、結合部107を通り上導体102と第2の導体105の積層方向と垂直な面を基準として、鏡像対称の構造を有することが好ましい。すなわち、第2のアンテナ部は、第1のアンテナ部108aを共振器とした場合、放射端の一方を軸123としたとき、軸123で反転した鏡像対称の構造を有することが好ましい。
 ここで、放射端とは、パッチアンテナの共振周波数の電磁界の共振方向におけるアンテナの両端である。放射端では、パッチアンテナの共振周波数における電磁界の電流が最小化し、電圧が最大化し、電波が放射される部分である。
 なお、第1のアンテナ部108aと第2のアンテナ部108bとは、完全に鏡像対称である必要はなく、鏡像対称とみなせる範囲であればよい。例えば、第1のアンテナ部108aと第2のアンテナ部108bとが鏡像対称であるとして設計を行った場合、設計段階で予想した特性を示す範囲内であれば実際に作成したものも鏡像対称になっているとみなしてよい。
 第1のアンテナ部108aと第2のアンテナ部108bとが、軸123に配置された結合部107により、電気的に結合されてアンテナ108が構成される。この時、第1の負性抵抗素子101aと第2の負性抵抗素子101bとは、互いに並列接続された構成となっている。
 なお、第1のアンテナ部108aと第2のアンテナ部108bとを電気的に結合する方法として、DC結合又はAC結合があり、本実施形態では、第1のアンテナ部108aと第2のアンテナ部108bとを結合部107でDC結合している。この場合、第1のアンテナ部108aの第1の導体層102aと第2のアンテナ部108bの第2の導体層102bと、結合部107の第3の導体層(接続部)102cと、は、1枚の導体層として一体成型されている。
 なお、第1のアンテナ部108aと第2のアンテナ部108bとを結合部107でAC結合した場合については、後述する。
 図1に開示した本実施形態の発振器100の構成は、DC結合で、かつ、第1のアンテナ部108aと第2のアンテナ部108bと結合部107とのそれぞれの、A-A方向と直交する水平方向における幅が同じである。すなわち、アンテナ部108a、108bを結合部107で電気的に結合したアンテナは、上導体102と第2の導体105とで誘電体104を挟んだパッチアンテナと負性抵抗素子101a、101bとを集積したアンテナ108と本質的に同じである。上導体102は、第1の導体層102a、第2の導体層102b及び第3の導体層102cを含む。
 上述の2つのRTD発振器を結合した構成において相互注入同期する条件を考えると、正位相と逆位相の二つの発振モードが生じる。図2(a)に正位相の相互注入同期の発振モード(以下、「正位相のモード」と呼ぶ)の概念図を示し、図2(b)に逆位相の相互注入同期の発振モード(以下、「逆位相のモード」と呼ぶ)の概念図を示した。
 また、図3に発振器100のアドミタンス特性を示した。
 図2(a)に示したように、正位相のモードの場合、周波数fevenで素子内に定在する電磁波は、位相差が0又は2πで負性抵抗素子101a、101bのそれぞれに注入される。従って、第1の負性抵抗素子101aの位相と第2の負性抵抗素子101bの位相との位相差は0又は2πとなり、共振周波数における電磁界の大きさ及び極性はほぼ同じとなる。図3の解析結果からも分かるように、アンテナ108の容量Cと線路103のインダクタンスLに起因する周波数fLCのLC共振で正位相の同期による発振条件が満たされるため、正位相のモードでは周波数feven=fLCの寄生発振が生じる。この場合、LC共振の節(node)は、線路103とバイアス回路120の接続部分付近に生じる。
 一方、図2(b)に示したように、逆位相のモードの場合、周波数foddで素子内に定在する電磁波は、位相差がπで負性抵抗素子101a、101bのそれぞれに注入される。従って、共振周波数における第1の負性抵抗素子101aの電磁界の極性と第2の負性抵抗素子101bの電磁界の極性とは、反転する。この電磁界分布は、アンテナ108から負性抵抗素子101a、101bを除いたパッチアンテナの共振周波数における電磁界分布とほぼ一致する。
 なお、本明細書における「第1の負性抵抗素子101aと第2の負性抵抗素子101bとが逆位相」とは、第1の負性抵抗素子101aと第2の負性抵抗素子101bとの位相差が、完全に逆位相となる位相差πから±π/8以下の範囲である。すなわち、本明細書における「第1の負性抵抗素子101aと第2の負性抵抗素子101bとが逆位相」とは、具体的には、第1の負性抵抗素子101aと第2の負性抵抗素子101bとの位相差が、7π/8以上9π/8以下であると定義する。
 図3のアドミタンス特性でも明らかなように、逆位相のモードの場合は、パッチアンテナのλ/2の共振周波数で規定される所望の周波数fTHzで発振条件が満たされるため、fodd=fTHzのテラヘルツ波の発振が生じる。定性的には、逆位相の場合は、負性抵抗素子101a、101bのそれぞれにおける電磁界の極性が反転するため、パッチアンテナの容量Cがキャンセルされ、LC共振点が生じないと考えることもできる。
 この場合、λ/2の共振周波数で規定される所望の周波数fTHzの電磁界の節(node)は、第1の導体102において、アンテナ108の第1の導体102の重心を通る中心線付近となる。
 なお、本明細書における「中心線」とは、第1の導体102において、第1の導体102の重心を通り、且つ電磁波の共振方向及び第1の導体102と第2の導体105との積層方向と垂直な直線である。
 本実施形態で説明した強結合のDC結合の例であれば、結合部107を極限まで小さくした場合、軸123と周波数fTHzの電磁界の節(node)とが一致する。従って、第2のアンテナ部108bは、アンテナ108のλ/2の共振周波数の電磁波がアンテナ108に定在する場合の電磁界分布の節(node)において、第1のアンテナ部108aを反転した鏡像対称の構造であるともいえる。
 また、第1のアンテナ部108aと第2のアンテナ部108bとは、結合部107により電気的に結合されて、アンテナ108が構成される。結合部107は、アンテナ108に定在するアンテナ108のλ/2の共振周波数の電磁波の電磁界分布の節(node)に配置される。
 本実施形態は、複数の負性抵抗素子が電気的に接続されているアンテナを有する発振素子において、マイクロストリップアンテナに負性抵抗素子を集積した際の特有の課題である、線路のインダクタンスに起因する寄生発振の低減を目的とするものである。
 従来技術では、アンテナと、アンテナと電気的に直列に且つ互いに並列に接続された複数の負性抵抗素子とを有する発振器において、複数の負性抵抗素子のそれぞれを、各負性抵抗素子からの電磁波の位相が互いに正位相又は逆位相となる位置に配置している。しかし、このような構成の従来の発振器において、上述のようにアンテナ108を2つのアンテナ部を結合したアレイアンテナとして考えた場合、正位相と逆位相の二つの発振モードが生じる恐れがある。一般的には、低い周波数の方が安定化して発振しやすく、低周波側の正位相が安定化して同期すると、LC共振による低周波発振やマルチ発振が生じて発振出力が低下するおそれがあった。
 ここで、逆位相の発振モードが安定であるとは、多数の共振点が存在する系において、逆位相の共振周波数におけるモード発振以外のモードによる発振が低減され、逆位相の共振周波数におけるモード発振がほぼ単一で得られることを意味する。具体的には、逆位相の発振モード以外のモードによって発振する電磁波の電界強度が、逆位相の共振周波数においてモード発振したテラヘルツ波の最大電界強度より1桁程度以下小さくなることである。望ましくは、逆位相の発振モード以外の発振モードによる電磁波の電界強度が、逆位相の発振周波数のテラヘルツ波の最大電界強度の1/e以下(eは自然対数の底)となる。
 それに対し、本実施形態の発振器100は、正位相のモードを不安定化して、逆位相のモードを安定化するように構成することにより、寄生発振による低周波数の電磁波の発振を低減している。
 非特許文献2によれば、複数のRTD発振器を結合したアンテナアレイにおける相互注入同期において、正位相を不安定化する条件は、正位相の周波数fevenにおいて(8)式を満たすことである。
 Re(k)=-Re(Y12)×[G-Re(Y11)]-1<-1/3  (8)
 ここで、kは、第1のアンテナ部108aと第2のアンテナ部108bとの結合係数である。Gは負性抵抗素子101a、101bの一方の利得で、Re(YRTD)の絶対値(|Re(YRTD)|)と一致する。
 これを変換すると、発振器100は、(1)式を満たすことが好ましい。(1)式を満たすことにより、正位相のモードを不安定化し、逆位相のモードを安定化することができる。
Figure JPOXMLDOC01-appb-M000003

 図4に、発振器100について、結合係数kを解析した結果を示す。
 なお、発振器100の詳細な構成は、実施例1にて説明する。
 図4は、正位相のモードの場合(f=feven=fLCで発振する場合)と逆位相のモードの場合(f=fodd=fTHzで発振する場合)の結合係数Re(k)の周波数特性を解析例である。負性抵抗素子101a、101bであるRTDのメサの直径(メサ径)を変更して解析しており、d2メサ径が2μm、d3はメサ径が3μm、d4はメサ径が4μmの場合の結果である。
 ここで、RTDのメサの面積(ダイオードの面積、又はヘテロ接合面の面積等)はメサ径に依存するため、メサ径は、注入電力とダイオード容量を制御する設計パラメータであり、利得Gと発振周波数fに寄与する。
 図4から、メサ径を増やすとGが大きくなるため、Re(k)<-1/3を満たさなくなり、(1)式を満たさないため正位相が安定化する。そのため、f=feven=fLCの電磁波が発振する。一方、メサ径を3μmより小さくすると、Re(k)<-1/3を満たし、(1)式を満たすため正位相が不安定化する。そのため、逆位相の周波数の高いf=fodd=fTHzでの発振が得られる。
 このように、複数の負性抵抗素子101a、101bを備えたアンテナ108において、負性抵抗素子101a、101bのメサ径を調整することにより、選択的に正位相(feven=fLC)を不安定化し、逆位相(fodd=fTHz)を安定化できる。
 本実施形態で説明したように、RTDのメサ径で利得Gを制御するのは一つの有効な手段となる。
 アンテナ108において、f=feven=fLCにおける正位相の同期を選択的に不安定化する(すなわち(1)式を満たす)構成としては、以下が好適である。
 まず、第1のアンテナ部108aと第2のアンテナ部108bとの二つのアンテナ部同士の結合係数Y12を大きくする。そのためには、本実施形態のように、強結合のDC結合で結合することが好適である。である。ただし強結合の場合は、マルチモードが生じるリスクが高いため、その抑制のために、第1のアンテナ部108aと第2のアンテナ部108bとが、結合部107を通り積層方向と平行な面を基準とした鏡像対称の構造であることが好ましい。
 なお、第1のアンテナ部108aと第2のアンテナ部108bとをAC結合で結合してもよい。そのような場合でも、図6に示したように結合係数Y12が大きい比較的強結合で、かつ、マルチモードが抑制される鏡像対称の構造が好ましい。
 正位相を不安定化する方法として、アンテナ108の負荷(すなわちRe(Y11))を増やす構造も好適である。
 なお、この場合、逆位相で安定化するf=fodd=fTHzが発振条件を満たす様な構造であることも必要な条件である。
 図5に、第1の負性抵抗素子101aと第2の負性抵抗素子101bとのそれぞれの給電位置で入力インピーダンスを変えてアンテナ108の負荷の調整する場合の結合係数Re(k)の解析結果を示す。
 ここで、offは負性抵抗素子101a、101bの給電位置を表し、xはアンテナ108の第1の導体102の重心から放射端までのA-A方向(共振方向)における距離、Lはアンテナ108の共振器長とし、off=x/Lである。
 なお、図5は、後述の実施例1の発振器100においてRTDのメサ径が3μmの場合の結合係数Re(k)について解析した結果である。
 実施例1の発振器100は、L=200μmなので、off40の場合はx=80μmの位置に負性抵抗素子101a、101bが配置される。この場合、Re(k)>-1/3となるため正位相が安定化し、feven=fLCにおける正位相の同期によりLC発振が生じる。一方、off30、off20となるに従い、負性抵抗素子101a、101bの位置はパッチアンテナの中心に近づき、Re(k)<-1/3の条件を満たすため、正位相は不安定化し、逆位相の同期が生じてfodd=fTHzの発振が得られる。
 このように、負性抵抗素子101a、101bの入力インピーダンスを変えてアンテナ108の負荷を調整することで、Re(k)のRe(Y11)を調整して安定化の選択をおこなうことができる。
 また、アンテナ108より外の構造でRe(Y11)を調整して安定化の選択を行うこともできる。例えば、負性抵抗素子101a、101bからみた線路103のインピーダンスが低くなるように設計してfeven=fLCにおけるRe(Y11)を調整することで、(1)式を満たし、正位相のモードの不安定化を選択的に行うこともできる。この場合、線路103の低インピーダンス構造が、負性抵抗素子101a、101b及びアンテナ108に近いほど正位相のモードの不安定化に効果がある。具体的には、負性抵抗素子101a、101bからλTHz以下の距離に配置されることが好ましい。
 なお、λTHzは、発振周波数fTHzのテラヘルツ波の波長である。
 アンテナ108としては、マイクロストリップアンテナのような容量性のCと、アンテナ108と直接接続された給電線に起因した誘導性のLに起因する周波数fLCの発振が発生し得る構造であれば本実施形態を適用することができる。例えば、アンテナ108としては、一般的なダイボールアンテナ、スロットアンテナ、パッチアンテナ、カゼクレインアンテナ、パラボラアンテナのような平面アンテナや立体型のアンテナを用いることができる。上述の各種アンテナであっても、集積化したアンテナの構造上生じる容量性のCと、給電構造により生じる誘導性のLに起因する発振が課題となる場合は、本実施形態を適用することができる。
 本実施形態の発振器100は、パッチアンテナなどを含むマイクロストリップ型共振器における課題であった、配線構造に起因した寄生発振を起こりにくくする。具体的には、負性抵抗素子を2つ以上備えたアンテナ108を有する発振器において、選択的に正位相を不安定化し、逆位相のモードの相互注入同期を安定化するように構成する。このような構成にすることにより、アンテナ108の容量とバイアス給電線のインダクタンスに起因するLC共振を低減する。
 これにより、本実施形態の発振器100によれば、DC以上fTHz未満の周波数領域の比較的高周波の寄生発振を低減又は抑制することができる。その結果、発振器100の所望の発振周波数fTHzのテラヘルツ波をより安定して取得できる。
 発振周波数fTHzのテラヘルツ波が安定して得られることにより、マイクロストリップ型共振器における所望の発振周波数fTHzのテラヘルツ波がより高出力で得ることができる。具体的には、低周波発振やマルチ発振を抑制出来るので、所望の発振周波数fTHzにおいて発振出力が一桁以上増加することが可能となる。
 (実施例1)
本実施例では、実施形態の発振器100の構成について説明する。本実施例の発振器100は、発振周波数fTHz=0.42THzを発振させる発振素子である。
 本実施例では、負性抵抗素子101aと101bとして共鳴トンネルダイオード(RTD)を用いている。以下、第1の負性抵抗素子101aを第1のRTD101a、第2の負性抵抗素子101bを第2のRTD101bと呼ぶことがある。本実施例で用いた第1のRTD101a及び第2のRTD101bは、InP基板(不図示)上のInGaAs/InAlAs、InGaAs/AlAsによる多重量子井戸構造とn-InGaAsによる電気的接点層を伴って構成される。
 多重量子井戸構造としては、例えば三重障壁構造を用いる。より具体的には、AlAs(1.3nm)/InGaAs(7.6nm)/InAlAs(2.6nm)/InGaAs(5.6nm)/AlAs(1.3nm)の半導体多層膜構造で構成する。このうち、InGaAsは井戸層で、格子整合するInAlAsや非整合のAlAsは障壁層である。これらの層は意図的にキャリアドープを行わないアンドープ層としておく。
 この様な多重量子井戸構造は、電子濃度が2×1018cm-3のn-InGaAsによる電気的接点層に挟まれる。こうした電気的接点層間の構造の電流電圧I(V)特性において、ピーク電流密度は280kA/cmであり、約0.7Vから約0.9Vまでが微分負性抵抗領域となる。例えば、第1のRTD101aが約2μmφのメサ構造の場合、ピーク電流10mA、微分負性抵抗-20Ωが得られる。
 アンテナ108は、上導体(パッチ導体)102、接地導体である第2の導体105及び誘電体104を有するパッチアンテナと、第1のRTD101aと、第2のRTD101bとを有する。アンテナ108は、上導体102の一辺が200μmの正方形のパッチアンテナを含む。上導体102と第2の導体105との間には、誘電体104として3μm厚のBCB(ベンゾシクロブテン、ダウケミカル社製、ε=2.4)及び0.1μm厚の窒化シリコンが配置されている。
 上導体102と第2の導体105との間には、直径2μmの第1のRTD101aと第2のRTD101bとが接続される。第1のRTD101aは、上導体102において、上導体102の重心から共振方向に80μmシフトした位置に配置されている。
 また、第2のRTD101bは、上導体102の重心から共振方向に-80μmシフトした位置に配置されている。すなわち、第1のRTD101aと第2のRTD101bとは、上導体102の重心を通り且つ共振方向及び積層方向と垂直な直線(中心線)を軸として線対称となる位置に配置される。これを換言すると、第2のRTD101bは、上導体102において、中心線を軸に第1のRTD101aが配置されている位置と線対称の位置に配置されている。
 なお、第1のRTD101aと第2のRTD101bとは、完全に線対称の位置に配置されていなくてもよく、線対称とみなせる範囲であればよい。例えば、第1のRTD101aと第2のRTD101bとが線対称の位置に配置されているものとして設計を行った場合、設計段階で予想した特性を示す範囲内であれば線対称になっているとみなしてよい。
 パッチアンテナの単独の共振周波数は、約0.48THzである。本実施例の発振器100は、図2示したアドミタンス特性を有し、正位相のモードと逆位相のモードの二つの同期モードが存在する。負性抵抗素子である第1及び第2のRTD101a、101bのリアクタンスを考慮すると、逆位相で相互注入同期した場合の発振器100の発振周波数(共振周波数)fTHzは約0.42THzとなる。
 なお、本実施例の構造の場合、図4にも示した通り、RTD101a、101bのメサ径が2.5μm以下であれば、正位相が不安定化し、逆位相で相互注入同期する。
 また、本実施例の構造の場合、図5にも示した通り、RTDメサの直径が3μmの場合、off=30%以下(すなわち、x=60μm以下)であれば、(1)式を満たし、正位相のモードが不安定化し、逆位相のモードが安定化して逆位相で相互注入同期する。
 上導体102は、線路103であるマイクロストリップラインと接続されている。これにより、アンテナ108は、線路103を介して容量109と接続される。このような構成にすることにより、線路103は、バイアス回路120とアンテナ108とを接続する。線路103の幅(共振方向における長さ)は約6μm、共振方向及び積層方向と垂直方向における長さは約100μmとした。
 容量109はMIM容量であり、その容量の大きさは、本実施例では100pFとした。抵抗110は、シャント抵抗であり、第1及び第2のRTD101a、101bの合成負性抵抗の絶対値より小さい値とするために、5Ωとなるようなビスマスの構造を集積した。容量109には、ワイヤーボンディングを含む配線111が接続され、電源112により第1及び第2のRTD101a、101bのバイアス電圧が調整される。本構造において、正位相のモードで発振する際の共振周波数は、線路103であるマイクロストリップラインのインダクタンスLと集積アンテナ108の容量Cとで形成されるLC共振の周波数fLCで、約0.05THzとなる。
 上導体102は、発振周波数fTHz(=0.42THz)でアンテナ108に定在する高周波電界の節で線路103と接続されており、線路103と発振周波数fTHzのテラヘルツ波の共振電界との干渉を抑制している。
 本実施例による発振器100は、以下のように作製される。まず、InP基板上に、分子ビームエピタキシー(MBE)法や有機金属気相エピタキシー(MOVPE)法などによって、次の層をエピタキシャル成長する。すなわち、InP基板上に、順に、n-InP/n-InGaAs、InGaAs/InAlAsによる共鳴トンネルダイオード(RTD)101a、101bをエピタキシャル成長する。InP基板としてn型の導電性基板を選択する場合は、n-InGaAsからエピタキシャル成長すればよい。
 次に、第1のRTD101aと第2のRTD101bとを、その直径が2umとなるような円弧形状のメサ状にエッチングを行う。エッチングにはEB(電子線)リソグラフィとICP(誘導性結合プラズマ)によるドライエッチングを用いる。フォトリソグラフィを用いてもよい。続いて、エッチングされた面に、リフトオフ法により接地導体としての第2の導体105を形成する。RTD101aと101bの側壁保護膜として0.1μmの窒化シリコン膜を全面に成膜する。
 さらに、スピンコート法とドライエッチングを用いて誘電体104であるBCBによる埋め込みを行い、リフトオフ法によりTi/Pd/Auの上導体102、線路103の上部導体層、及びMIM容量109の上部電極層を形成する。最後に、リフトオフ法により、抵抗110となる部分にBiパターンを形成し、第2の導体105と容量109との上部の電極を接続し、ワイヤーボンディングなどで配線111及び電源112と接続することで発振器100が形成できる。発振器100への電力の供給はバイアス回路120から行われ、微分負性抵抗領域となるバイアス電圧を印加してバイアス電流を供給すると、発振器として動作する。
 本実施形態の発振器100は、パッチアンテナなどを含むマイクロストリップ型共振器における課題であった、配線構造に起因した寄生発振を起こりにくくする。具体的には、負性抵抗素子を2つ以上備えたアンテナ108を有する発振器において、選択的に正位相を不安定化し、逆位相のモードの相互注入同期を安定化するように構成する。このような構成にすることにより、アンテナ108の容量とバイアス給電線のインダクタンスに起因するLC共振を低減する。
 これにより、本実施形態の発振器100によれば、DC以上fTHz未満の周波数領域の比較的高周波の寄生発振を低減又は抑制することができる。その結果、発振器100の所望の発振周波数fTHzのテラヘルツ波をより安定して取得できる。
 発振周波数fTHzのテラヘルツ波が安定して得られることにより、マイクロストリップ型共振器における所望の発振周波数fTHzのテラヘルツ波がより高出力で得ることができる。具体的には、低周波発振やマルチ発振を抑制出来るので、所望の発振周波数fTHzにおいて発振出力が一桁以上増加することが可能となる。
 (実施例2)
本実施例の発振器200について、図6を参照して説明する。図6(a)は、発振器200の構成を説明する斜視図であり、図6(b)はそのB-B断面図である。
 なお、実施形態及び実施例1と同じ構成については、図6において同じ符番を付し、詳細な説明は省略する。
 発振器200は、発振周波数fTHz=0.42THzを発振させる発振素子である。本実施例においても、負性抵抗素子101a、101bは、実施例1と同じで共鳴トンネルダイオード(RTD)を用いており、以下、第1のRTD101aと第2のRTD101bとして説明する。発振器200は、第1のアンテナ部108aと第2のアンテナ部108bとを結合部207でAC結合した構成のアンテナ(共振部)208を備えたテラヘルツ波の発振素子である。
 第1のアンテナ部108aは、パッチアンテナであり、第1の導体層102aと接地導体である第2の導体105とで誘電体104と第1のRTD101aとを挟んだ構造を有する。第2のアンテナ部108bは、パッチアンテナであり、第2の導体層102bと接地導体である第2の導体105とで誘電体104と第2のRTD101bとを挟んだ構造を有する。
 第1のアンテナ部108aは、第1の導体層102aが200μm×98μmの長方形パッチアンテナであり、第1の導体層102aの長辺の端(すなわち放射端)から共振方向に20μmの位置に第1のRTD101aが埋め込まれている。第2のアンテナ部108bは、第2の導体層102bが200μm×98μmの長方形パッチアンテナであり、第2の導体102bの長辺の端(すなわち放射端)から共振方向に20μmの位置に第2のRTD101bが埋め込まれている。
 第2のアンテナ部108bは、結合部207を軸として反転した鏡像対称の構造を有している。結合部207は、中心線を含む位置に配置されており、結合部207の中心位置と中心線とが一致するように配置されている。すなわち、第2のアンテナ部108bは、アンテナ208の重心を通る中心線に対して、第1のアンテナ部108aを反転した鏡像対称の構造を有している。従って、第1のRTD101aは、アンテナ208の重心から共振方向に80μmシフトした位置に配置されている。
 また、第2のRTD101bは、アンテナ208の重心から共振方向に-80μmシフトした位置に配置されている。
 第1のアンテナ部108aの第1の導体層102aと第2のアンテナ部108bの第2の導体層102bとの間には、4μmの間隔があり、電気的にDCでは直接接続されていない。誘電体104は、実施例1と同様に、3μm厚のBCB(ベンゾシクロブテン、ダウケミカル社製、ε=2.4)を配置した。
 第1のアンテナ部108aと第2のアンテナ部108bとは、結合部207でAC結合されている。具体的には、アンテナ208の第1の導体(上導体)102は、第1の導体層102a、第2の導体層102bと、第1の導体層102aと第2の導体層102bとを接続する接続部とを有する。本実施例では、接続部は結合部207である。
 結合部207は、Ti/Au=5/100nmを含む上電極218と100nmの窒化シリコン膜を含む誘電体層217とを有する。誘電体層217及び上電極218は、第1の導体層102a及び第2の導体層102bの上に配置されている。結合部207は、上電極218と第1の導体層102a及び第2の導体層102bとで、誘電体層217を挟んだ容量構造であり、第1のアンテナ部108aと第2のアンテナ部108bとを強結合のAC結合で結合し、アンテナ208を構成している。
 また、本実施例の発振器200は、(1)式を満たすように構成されている。発振器200も同様に、正位相と逆位相の二つの同期モードが存在する。第1のRTD101aのリアクタンスと第2のRTD101bのリアクタンスとを考慮すると、逆位相で相互注入同期した場合の発振器200の発振周波数(共振周波数)fTHzは約0.42THzとなる。
 なお、本実施例の構造の場合においても、(1)式を満たす構成とすることにより、RTDのメサ径や配置により正位相が不安定化し、逆位相のモードで発振する、すなわち逆位相で相互注入同期することができる。
 第1の導体層102aは、第1の線路203aであるマイクロストリップラインと接続され、第2の導体102bは、第2の線路203bであるマイクロストリップラインと接続される。これにより、第1のアンテナ部108aと第2のアンテナ部108bとは、バイアス回路220と接続される。第1の線路203a、第2の線路203bは、幅は約6μm、長さは約100μmであり、第1の線路203aと第2の線路203bとの間の間隔は4μmである。その他、バイアス回路220の構成は実施例1と同じである。
 本実施例の発振器200によれば、複数の負性抵抗素子を配置されているアンテナを有する発振素子において、負性抵抗素子を逆位相における同期を安定化することで、給電構造により生じる比較的高周波の寄生発振を低減することができる。その結果、発振器200の所望の発振周波数fTHzのテラヘルツ波をより安定して取得できる。発振周波数fTHzのテラヘルツ波が安定して得られることにより、マイクロストリップ型共振器における所望の発振周波数fTHzのテラヘルツ波の発振出力を高めることができる。
 (実施例3)
本実施例の発振器300について、図7および図8を参照して説明する。
 図7(a)は、発振器300の構成を説明する斜視図であり、図7(b)はそのC-C断面図である。図8は、発振器300の特性を説明する図である。発振器300は、実施形態及び実施例1で説明した発振器100を用いたテラヘルツ波光源を実現するために必要なより具体的な構成を提案するものである。上述の各実施形態及び各実施例と同じ構成、構造については、詳細な説明を省略する。
 発振器300は、発振周波数fTHz=0.5THzを発振する半導体発振素子が集積化された半導体デバイスである。本実施例においても、負性抵抗素子には実施例1と同じく共鳴トンネルダイオード(RTD)を用いている。以下、二つの負性抵抗素子を第1のRTD301aと第2のRTD301bとして説明する。
 本実施例で用いた第1のRTD301a及び第2のRTD301bは、InP基板上に成膜されたInGaAs/AlAsなどからなる二重障壁構造のRTDで構成される。第1のRTD301a及び第2のRTDRTD301bの半導体ヘテロ構造の構成は、非特許文献3に開示された二重障壁RTDとほぼ同じ構成を用いている。第1のRTD301a及び第2のRTD301bの電流電圧特性は、測定値でピーク電流密度は9mA/um、単位面積当たりの微分負性コンダクタンスは26mS/umである。本実施例における第1のRTD301a及び第2のRTD301bのメサ構造の直径は1μmであり、微分負性抵抗の大きさはダイオード1個当たり約-50Ωである。
 アンテナ308は、InP基板317の上側(表面側)に配置されたパッチ導体302と、基板側に配置され且つ接地されている接地導体305と、パッチ導体302と接地導体305の間に配置された誘電体と、第1のRTD301aと、第2のRTD301bとを有する。パッチ導体302及び接地導体305は、抵抗率の低いAu薄膜(300nm厚)を用いた。アンテナ308は、パッチ導体302の一辺が170umの正方形のパッチアンテナであり、アンテナの共振器長(L)はL=170umとなる。
 パッチ導体302と接地導体305との間には、誘電体として、5.5μm厚のBCB(ベンゾシクロブテン、ダウケミカル社製、ε=2.4)からなる誘電体304と0.5μm厚の窒化シリコン層316(ε=7)とが配置されている。第1のRTD301aと第2のRTD301bのアノード側には、パッチ導体302が接続される。
また、第1のRTD301aと第2のRTD301bのカソード側は、それぞれn型にドーピングされたInP(リン化インジウム)からなるポスト315a、315bを介して接地導体305に接続されている。
 第1のRTD301a及び第2のRTD301bは、パッチ導体302の中心から共振方向に距離x及び-xだけシフトした位置に配置されている。第1のRTD301a、第2のRTD301bのそれぞれの位置はoffset=100*X/Lで表わされる。RTDからパッチアンテナに高周波を給電する際の入力インピーダンスを決定する。第1のRTD301aと第2のRTD301bとは、パッチ導体302の中心を通り且つ共振方向及び積層方向と垂直な直線(中心線)を軸として線対称となる位置に配置される。
 パッチ導体302は、マイクロストリップライン303を介してMIM容量構造309(MIM:Metal Insulator Metal)と接続される。マイクロストリップライン303は、パッチ導体302に接続された導体303と接地導体305とで、窒化シリコン層316を含む誘電体を挟んだ構造である。マイクロストリップライン303は、その幅(共振方向における長さ)を約6um、共振方向及び積層方向に垂直な垂直方向における長さを約85μmとした。
 また、MIM容量構造309は、導体318と接地導体305とで窒化シリコン層316を含む誘電体を挟んだ構造であり、20pF以上の容量が確保される構成となっている。マイクロストリップライン303及びMIM容量構造309の導体318には抵抗率の低いAu薄膜(1000nm厚)を用いた。
 MIM容量構造309は、ビスマス薄膜から構成されるシャント抵抗310を介してカソード電極319と接続されている。シャント抵抗は、第1のRTD301a及び第2のRTD301bの合成負性抵抗の絶対値より小さい値とするために、約15Ωとなるようなビスマス薄膜の抵抗構造(200um×100um×0.5um厚)を基板317に集積した。カソード電極319は、接地導体305と接続され、接地導体と同電位となっている。
 基板317は、電源基板320にダイボンディングされている。カソード電極319の導体には抵抗率の低いAu薄膜(1000nm厚)を用いた。カソード電極319は、ワイヤーボンディングを含む配線311bで電源312の接地に接続される。
 また、MIM容量構造309はアノード電極を兼ねており、ワイヤーボンディングを含む配線311aを介しての導体318と電源312とが接続される。電源312により、所望の発振特性となるように第1のRTD301a及び第2のRTD301bのバイアス電圧とバイアス電流が調整される。
 図8は、第1のRTD301a及び第2のRTD301bのメサ直径が1umの発振器300の発振周波数及び発振パワーのoffset依存性の解析結果である。本実施例におけるパッチアンテナ単独の共振周波数は、約0.5THzであるが、前述した通り、第1のRTD301a及び第2のRTD301bのリアクタンスによって、逆位相の同期モードおける発振周波数は約0.4~0.5THzとなる。
 また、正位相の同期モード(マイクロストリップ線路303のインダクタンスとアンテナ308のキャパシタンスによる共振)の発振周波数は、offset依存性はほとんど無く約0.1THzと見積られる(不図示)。
 ここで、発振出力の解析には、非特許文献4に開示された解析方法を用いており、式(6)及び(7)に示した逆位相(oddモード)の発振条件におけるアンテナとRTDのアドミタンスから周波数とパワーを計算した。
 図8から、本実施例の構造の場合、offsetを12%以上40%以下の間で調整することで、逆位相でモード同期した発振が得られており、発振周波数0.4THz以上0.5THz以下、発振パワー0mW以上0.2mW以下の間で任意に調整可能である。
 なお、本実施例の構成であれば、第1のRTD301a及び第2のRTD301bのメサ径が1.5μm以下であれば、offset=12%以上の構造で正位相が不安定化するため、図8に示したような特性が得られる。
 一方、第1のRTD301a及び第2のRTD302bのそれぞれのメサの直径が2μm以上にした場合は、正位相のモードが安定化するため、低周波発振(0.1THz)と多モード発振及び放射効率減によるパワー低下(<0.01mW)が生じる。このように、本実施例の発振器によれば、発振周波数fTHzのテラヘルツ波が従来よりも安定して得られる。これにより、マイクロストリップ型共振器における所望の発振周波数fTHzのテラヘルツ波がより高出力で得ることができる。具体的には、低周波発振やマルチ発振を低減することができるので、所望の発振周波数fTHzにおいて発振出力が一桁以上増加することが可能となる。
 以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
 例えば、上述の各実施例では、第1のRTD101a及び第2のRTD101bとして、InP基板上に成長したn-InP/n-InGaAs、InGaAs/InAlAsを含む共鳴トンネルダイオードについて説明した。しかし、これらの構造や材料系に限られることなく、他の構造や材料の組み合わせであっても本発明の発振素子を提供することができる。例えば、2重障壁量子井戸構造を有する共鳴トンネルダイオードを用いてもよいし、3重以上の多重障壁量子井戸を有する共鳴トンネルダイオードを用いてもよい。
 また、その材料としては、以下の組み合わせのそれぞれを用いてもよい。
 ・GaAs基板上に形成したGaAs/AlGaAs/及びGaAs/AlAs、InGaAs/GaAs/AlAs
 ・InP基板上に形成したInGaAs/AlGaAsSb
 ・InAs基板上に形成したInAs/AlAsSb及びInAs/AlSb
 ・Si基板上に形成したSiGe/SiGe
 上述の構造と材料は、所望の周波数などに応じて適宜選定すればよい。
 また、上述の実施形態及び実施例では、キャリアが電子である場合を想定して説明しているが、これに限定されるものではなく、正孔(ホール)を用いたものであってもよい。
 また、基板や誘電体の材料は用途に応じて選定すればよく、シリコン、ガリウムヒ素、インジウムヒ素、ガリウムリンなどの半導体や、ガラス、セラミック、テフロン(登録商標)、リエチレンテレフタラートなどの樹脂を用いることができる。
 さらに、上述の実施形態及び実施例では、テラヘルツ波の共振器として正方形パッチを用いているが、共振器の形状はこれに限られたものではなく、例えば、矩形及び三角形等の多角形、円形、楕円形等のパッチ導体を用いた構造の共振器等を用いてもよい。
 また、発振器に集積する微分負性抵抗素子の数は、1つに限るものではなく、微分負性抵抗素子を複数有する共振器としてもよい。線路の数も1つに限定されず、複数の線路を設ける構成でもよい。
 上述の実施形態及び実施例で記載した発振素子は、テラヘルツ波を検出する検出素子として使用することも可能である。例えば、素子100は、RTD101a、101bの電流電圧特性において電圧変化に伴い電流の非線形性が生じる領域を用いてテラヘルツ波の検出器として動作させることも出来る。
 また、上述の実施形態及び実施例で記載した発振素子を用いて、テラヘルツ波の発振及び検出を行うこともできる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2016年4月28日提出の日本国特許出願特願2016-091581及び2017年4月11日提出の日本国特許出願特願2017-078410を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (16)

  1.  テラヘルツ波の発振又は検出に用いる素子であって、
     第1の導体と、第2の導体と、前記第1の導体と前記第2の導体との間に配置されている誘電体と、前記第1の導体と前記第2の導体との間に互いに並列に接続されている第1の負性抵抗素子及び第2の負性抵抗素子と、を有する共振部と、
     前記第1の負性抵抗素子及び前記第2の負性抵抗素子のそれぞれにバイアス電圧を供給するバイアス回路と、
     前記バイアス回路と前記共振部とを接続する線路と、を有し、
     前記第1の負性抵抗素子と前記第2の負性抵抗素子との正位相の相互注入同期が不安定で、前記第1の負性抵抗素子と前記第2の負性抵抗素子との逆位相の相互注入同期が安定になるように構成されている
     ことを特徴とする素子。
  2.  テラヘルツ波の発振又は検出に用いる素子であって、
     第1の導体と、第2の導体と、前記第1の導体と前記第2の導体との間に配置されている誘電体と、前記第1の導体と前記第2の導体との間に互いに並列に接続されている第1の負性抵抗素子及び第2の負性抵抗素子と、を有する共振部と、
     前記第1の負性抵抗素子及び前記第2の負性抵抗素子のそれぞれにバイアス電圧を供給するバイアス回路と、
     前記バイアス回路と前記共振部とを接続する線路と、を有し、
     下記(1)式を満たすことを特徴とする素子。
    Figure JPOXMLDOC01-appb-M000001


     Re(Y12)は、前記第1の負性抵抗素子と前記第2の負性抵抗素子との間の相互アドミタンスの実部。
     Gは、前記第1の負性抵抗素子又は前記第2の負性抵抗素子の利得。
     Re(Y11)は、前記第1の負性抵抗素子からみた前記アンテナを含む全構成のアドミタンスの実部。
  3.  前記第2の負性抵抗素子は、前記第1の導体において、前記第1の導体の重心を通り且つ前記アンテナにおける電磁波の共振方向及び前記第1の導体層と前記第2の導体層との積層方向と垂直な直線を軸として前記第1の負性抵抗素子が配置されている位置と線対称の位置に配置されている
     ことを特徴とする請求項1又は2に記載の素子。
  4.  第1の負性抵抗素子を含む第1のアンテナ部、第2の負性抵抗素子を含む第2のアンテナ部、及び前記第1のアンテナ部と前記第2のアンテナ部とを強結合する結合部、を有し、テラへルツ波が共振する共振部と、
     前記第1の負性抵抗素子及び前記第2の負性抵抗素子にバイアス電圧を供給するバイアス回路と、
     前記バイアス回路と前記共振部とを接続する線路と、を有し、
     前記共振部は、前記線路のインダクタンスと前記共振部の容量とによる共振の周波数における前記第1の負性抵抗素子と前記第2の負性抵抗素子との正位相の相互注入同期が不安定で、前記テラヘルツ波の周波数における逆位相の相互注入同期が安定になるように構成されている
     ことを特徴とする素子。
  5.  第1の負性抵抗素子を含む第1のアンテナ部、第2の負性抵抗素子を含む第2のアンテナ部、及び前記第1のアンテナ部と前記第2のアンテナ部とを強結合する結合部、を有し、テラへルツ波が共振する共振部と、
     前記第1の負性抵抗素子及び前記第2の負性抵抗素子にバイアス電圧を供給するバイアス回路と、
     前記バイアス回路と前記アンテナとを接続する線路と、を有し、
     下記(1)式を満たす
     ことを特徴とする素子。
    Figure JPOXMLDOC01-appb-M000002


     Re(Y12)は、前記第1の負性抵抗素子と前記第2の負性抵抗素子との間の相互アドミタンスの実部。
     Gは、前記第1の負性抵抗素子又は前記第2の負性抵抗素子の利得。
     Re(Y11)は、前記第1の負性抵抗素子からみた前記アンテナを含む全構成のアドミタンスの実部。
  6.  前記第1のアンテナ部は、第1の導体層、導体、前記第1の導体層と前記導体との間に配置されている誘電体、及び前記第1の導体層と前記導体との間に電気的に接続されている前記第1の負性抵抗素子、を有し、
     前記第2のアンテナ部は、第2の導体層、前記導体、前記第2の導体層と前記導体との間に配置されている誘電体、及び前記第2の導体層と前記導体との間に電気的に接続されている前記第2の負性抵抗素子、を有する
     ことを特徴とする請求項4又は5に記載の素子。
  7.  前記結合部は、前記第1の導体層と前記第2の導体層とを接続する接続部、前記導体、及び前記接続部と前記導体との間に配置されている前記誘電体、を有する
     ことを特徴とする請求項6に記載の素子。
  8.  前記第1の導体層と前記第2の導体層と前記接続部とは、1つの導体で形成されていることを特徴とする請求項6又は7に記載の素子。
  9.  前記導体は、前記第1のアンテナ部に含まれる導体と、前記第2のアンテナ部に含まれる導体と、前記結合部に含まれる導体と、を有する
     ことを特徴とする請求項6乃至8のいずれか一項に記載の素子。
  10.  前記接続部は、前記共振器に定在する前記テラヘルツ波の電界の節となる位置に配置されている
     ことを特徴とする請求項4乃至9のいずれか一項に記載の素子。
  11.  前記結合部は、前記第1のアンテナ部と前記第2のアンテナ部とをDC結合する
     ことを特徴とする請求項4乃至10のいずれか一項に記載の素子。
  12.  前記第1のアンテナ部と前記第2のアンテナ部とは、前記結合部を軸に鏡像対称である
     ことを特徴とする請求項4乃至11のいずれか一項に記載の素子。
  13.  前記第1の負性抵抗素子の利得と前記第2の負性抵抗素子の利得とが、等しい
     ことを特徴とする請求項1乃至12のいずれか一項に記載の素子。
  14.  前記線路は、前記アンテナの前記共振部に定在する前記テラヘルツ波の電界の節となる位置で前記共振部と接続している
     ことを特徴とする請求項1乃至13のいずれか一項に記載の素子。
  15.  前記アンテナは、パッチアンテナである
     ことを特徴とする請求項1乃至14のいずれか一項に記載の素子。
  16.  前記第1の負性抵抗素子が発振する電磁波の周波数帯域は、前記第2の負性抵抗素子が発振する電磁波の周波数帯域と重なっている
     ことを特徴とする請求項1乃至15のいずれか一項に記載の素子。
PCT/JP2017/016687 2016-04-28 2017-04-27 素子 WO2017188363A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780025949.9A CN109075744B (zh) 2016-04-28 2017-04-27 元件
EP17789645.3A EP3451528B1 (en) 2016-04-28 2017-04-27 Element
US16/169,790 US10833389B2 (en) 2016-04-28 2018-10-24 Element used for an oscillation or detection of a terahertz wave
US17/061,325 US11258156B2 (en) 2016-04-28 2020-10-01 Element used for an oscillation or detection of a terahertz wave

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-091581 2016-04-28
JP2016091581 2016-04-28
JP2017-078410 2017-04-11
JP2017078410A JP6904760B2 (ja) 2016-04-28 2017-04-11 素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/169,790 Continuation US10833389B2 (en) 2016-04-28 2018-10-24 Element used for an oscillation or detection of a terahertz wave

Publications (1)

Publication Number Publication Date
WO2017188363A1 true WO2017188363A1 (ja) 2017-11-02

Family

ID=60159959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016687 WO2017188363A1 (ja) 2016-04-28 2017-04-27 素子

Country Status (3)

Country Link
US (1) US11258156B2 (ja)
CN (1) CN109075744B (ja)
WO (1) WO2017188363A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4191212A4 (en) * 2020-07-27 2024-09-04 Canon Kk SEMICONDUCTOR ELEMENT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540807B (zh) * 2021-06-24 2024-04-12 深圳市时代速信科技有限公司 一种共振隧穿二极管太赫兹振荡器及其电路结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168928A (ja) * 2012-01-19 2013-08-29 Canon Inc 発振素子、発振器及びこれを用いた撮像装置
JP2014014072A (ja) * 2012-06-06 2014-01-23 Canon Inc 発振器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355258B (zh) * 2011-08-03 2013-10-16 复旦大学 一种基于注入锁定倍频器的低相噪正交压控振荡器
TW201316676A (zh) * 2011-10-14 2013-04-16 Ind Tech Res Inst 注入式除頻器
JP5843592B2 (ja) * 2011-12-12 2016-01-13 三菱電機株式会社 自己注入同期発振器
US9031167B2 (en) * 2012-01-31 2015-05-12 Innophase Inc. Receiver architecture and methods for demodulating quadrature phase shift keying signals
CN103684424B (zh) * 2012-09-20 2017-03-01 复旦大学 一种基于源极退化电容的宽锁定范围电流模锁存分频器
JP6373010B2 (ja) * 2013-03-12 2018-08-15 キヤノン株式会社 発振素子
JP6282041B2 (ja) 2013-03-29 2018-02-21 キヤノン株式会社 発振器
CN103501175B (zh) * 2013-10-24 2016-02-10 清华大学 一种毫米波锁相环
JP6562645B2 (ja) * 2014-02-28 2019-08-21 キヤノン株式会社 発振素子、及びこれを用いた発振器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168928A (ja) * 2012-01-19 2013-08-29 Canon Inc 発振素子、発振器及びこれを用いた撮像装置
JP2014014072A (ja) * 2012-06-06 2014-01-23 Canon Inc 発振器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4191212A4 (en) * 2020-07-27 2024-09-04 Canon Kk SEMICONDUCTOR ELEMENT

Also Published As

Publication number Publication date
CN109075744B (zh) 2022-04-29
CN109075744A (zh) 2018-12-21
US11258156B2 (en) 2022-02-22
US20210021013A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
JP7208306B2 (ja) 素子
JP6282041B2 (ja) 発振器
US11011663B2 (en) Semiconductor element for oscillating or detecting terahertz wave and manufacturing method of semiconductor element
JP6415036B2 (ja) 発振器
US10594260B2 (en) Element that oscillates or detects terahertz waves
US11831063B2 (en) Element having antenna array structure
US11626839B2 (en) Device emitting or detecting terahertz waves, and manufacturing method for device
US11258156B2 (en) Element used for an oscillation or detection of a terahertz wave
JP6870135B2 (ja) 素子
WO2022024788A1 (ja) 半導体素子

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017789645

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017789645

Country of ref document: EP

Effective date: 20181128

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789645

Country of ref document: EP

Kind code of ref document: A1