WO2017188083A1 - Operation planning device and method for microgrid, and regional energy management device and energy management device used by operation planning device for microgrid - Google Patents
Operation planning device and method for microgrid, and regional energy management device and energy management device used by operation planning device for microgrid Download PDFInfo
- Publication number
- WO2017188083A1 WO2017188083A1 PCT/JP2017/015692 JP2017015692W WO2017188083A1 WO 2017188083 A1 WO2017188083 A1 WO 2017188083A1 JP 2017015692 W JP2017015692 W JP 2017015692W WO 2017188083 A1 WO2017188083 A1 WO 2017188083A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- site
- power
- heat
- energy management
- microgrid
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/466—Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/14—District level solutions, i.e. local energy networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an operation planning apparatus and method for a cogeneration type microgrid composed of a renewable energy device, a generator, a heat source device, an energy storage device (storage battery, heat storage tank) and a customer, and an operation planning device for a microgrid.
- a microgrid operation planning apparatus and method, and a microgrid operation plan capable of improving the energy utilization efficiency of a plurality of sites having energy supply facilities.
- the present invention relates to a regional energy management apparatus and an energy management apparatus used in the apparatus.
- microgrids that combine distributed energy such as renewable energy, cogeneration, and storage batteries for the purpose of reducing energy costs and CO 2 emissions.
- distributed energy such as renewable energy, cogeneration, and storage batteries
- the microgrid consists of an energy center with energy supply facilities and a site consisting of multiple customers.
- the site means a region where heat (cold water, hot water, steam) is supplied from the energy center through a heat pipe (conduit).
- the microgrid is composed of a plurality of sites, and power is mutually interchanged between the sites through a distribution system or a private line.
- Each site's energy center has a cogeneration system that combines a generator or heat source, and a heat source that uses the heat generated by the generator and the generator. Electricity and heat (cold water, hot water, steam) ), Thereby forming a combined heat and power microgrid.
- renewable energy solar power generation equipment, wind power generation equipment
- energy storage equipment storage battery, heat storage tank
- Patent Document 1 proposes a method for implementing an operation plan for a plurality of sites in a microgrid.
- the distribution line between the electric heat supply side facility capable of generating only electric power or generating electric power and heat and the electric heat load side facility supplied only with electric power or supplied with electric power and heat and Electric power supply and demand control system for a distributed power supply system that determines the electric power supply and demand output of each equipment by exchanging information between agents provided in each equipment in the electric power supply and demand control between equipment in a distributed power supply system connected by thermal piping.
- one of the agents obtains heat pipe information for connecting facilities capable of supplying and supplying thermal energy by exchanging information with other agents, and information on the operating status of these facilities, and heat between the facilities.
- Energy that can be used as an index to judge whether it is worth supplying and supplying electric heat between the equipment, including thermal energy loss in the supply and demand channel and changes in equipment operating conditions Seeking over value it is proposed to this energy value to electric supply based equipment and electric demand control system of distributed power supply system, characterized in that it comprises means for determining the output.
- Patent Document 1 an agent is provided for each generator, heat source machine, and customer in the microgrid, and the supply and demand output of power and heat for each facility is determined by information exchange between the agents.
- Patent Document 1 when the number of sites increases, the number of agents becomes enormous, and in this case as well, there is a problem that calculation time increases in order to perform overall optimization. In particular, when the optimization of the entire microgrid is performed by a centralized system in which one EMS (energy management device) is used, the number of target facilities increases, and the problem that calculation cannot be performed within a realistic time becomes obvious.
- EMS energy management device
- the present invention has been made in view of such problems, and an object of the present invention is to provide an operation planning apparatus capable of calculating at a high speed the overall optimization of the energy cost reduction of power and heat of a microgrid composed of a plurality of sites. It is an object to provide a method and a local energy management device and an energy management device used in an operation planning device of a microgrid.
- a plurality of sites are connected to a power system, and a generator and a heat source device are provided in the site to supply power and heat to consumers in the site.
- a microgrid operation planning device that manages power and heat in the site, and obtains power and heat information at each site from the energy management device to determine power distribution for the entire microgrid Equipped with AEMS (Area Energy Management System), the energy management device operates to use exhaust heat so as to use more demand for electric power and heat in the site and more exhaust heat in the site
- AEMS Absolute Energy Management System
- AEMS creates a power generation plan (generator / storage battery operation plan and power interchange plan) for the entire microgrid, and the energy management device determines the demand within the site based on the power supply / demand plan presented by AEMS. It is characterized by determining the power and heat supplied to the house.
- the present invention is a microgrid operation planning method in which a plurality of sites are connected to a power system, and a generator and a heat source device are provided in the site to supply power and heat to consumers in the site. Power demand and heat demand forecast at each site, and an operation plan for exhaust heat utilization operation so as to use more waste heat in the site. A storage battery operation plan and a power interchange plan) are created, and each site is operated according to a power supply and demand plan.
- the figure which shows an example of the equipment specification of the site equipment of FIG. The figure which showed the structure in the microgrid of FIG. 1 more concretely.
- FIG. 1 shows an example of a configuration of a microgrid composed of a plurality of sites according to an embodiment of the present invention.
- the microgrid 2 connected to the electric power system 1 includes a plurality of sites 3 (three sites 3A, 3B, and 3C in FIG. 1).
- the site is defined as a region where heat (cold water, hot water, steam) is supplied from the same energy center or heat source unit 5 through a heat pipe (conduit).
- the sites 3A, 3B, and 3C are externally linked to each other by a power line 50 such as a distribution system or a private line connected to the power system 1, and power can be interchanged between the sites 3A, 3B, and 3C. It is said that.
- Each site 3A, 3B, 3C is internally composed of a generator 4, a refrigerator, a heat source machine 5 such as a boiler or a heat storage tank, a renewable energy device such as solar power generation, a storage battery, and a customer 6. Has been.
- a cogeneration system including a generator 4A and a heat source machine (absorption refrigerator 5A) that uses exhaust heat 7A1 of the generator 4A is installed at the site 3A. Electric power 8AL and cold water 9A are supplied.
- the site 3A is provided with a boiler 19, and when exhaust heat supply from the generator 4A is insufficient, steam as exhaust heat 7A2 is supplied from the gas-fired boiler 19 to the absorption refrigerator 5A.
- the site 3B has a cogeneration system composed of a generator 4B and a heat source machine (absorption refrigeration machine 5B) that uses the exhaust heat 7B of the generator 4B to supply electric power 8BL and cold water 9B to the consumer 6B. ing.
- the site 3C is provided with a generator 4C and an electrically driven turbo chiller 5C, and supplies electric power 8C1 and cold water 9C to the consumer 6C.
- heat energy cold water, hot water, steam, exhaust heat
- thermal piping conduit
- each site renewable energy equipment is provided as appropriate, and power from renewable energy equipment as well as an external power source is used together as appropriate.
- Each site may include a storage battery as appropriate.
- the range in which heat exchange is possible is regarded as one site, and EMS (energy management devices) 10A, 10B, and 10C are arranged as systems for managing the energy in the site. Further, an AEMS (regional energy management device) 11 is arranged as a system for managing the entire energy in the microgrid 2. Signal transmission using the communication line 30 is performed between the plurality of EMSs 10A, 10B, 10C and the AEMS 11.
- FIG. 2 shows a configuration example of the AEMS 11 according to the embodiment of the present invention.
- the area energy management system AEMS 11 is generally configured by a computer system, and includes an input unit 13, an output unit 17, a display unit 15, a processing unit 12, an operation plan calculation unit 14, a data storage unit 16, and the like. Yes.
- the input unit 13 acquires information from each of the sites 3A, 3B, and 3C via the communication line 30.
- the operation plan calculation unit 14 performs an overall power generation plan (generator, storage battery, and power purchase operation plan) in the microgrid 2 using the input information and past performance information stored in the data storage unit 16.
- the display unit 15 displays the result, and the output unit 17 outputs the power generation plan result to each of the sites 3A, 3B, and 3C via the communication line 30.
- the processing unit 12 manages the processing of each function.
- FIG. 3 shows a configuration example of the EMS 10 according to the embodiment of the present invention.
- the energy management system EMS10 is generally configured by a computer system, and includes an input unit 13, an output unit 17, a display unit 15, a processing unit 12, an operation plan calculation unit 14, a data storage unit 16, and the like. .
- the input unit 13 acquires weather information
- the operation plan calculation unit 14 uses the past performance information stored in the weather information and the data storage unit 16 to predict the amount of photovoltaic power generation, power / heat in the site. Make demand forecasts.
- the display unit 15 displays the result
- the output unit 17 outputs the result to the AEMS via the communication line 30.
- the operation plan calculation unit 14 makes an operation plan for the heat source machine based on the power generation plan, displays the result on the display unit 15, and displays the result on the output unit 17 via the communication line 30. Output results to AEMS.
- the processing unit 12 manages the processing of each function.
- FIG. 3 shows an example of the processing flow of AEMS 11 and EMS 10.
- the power and heat prediction information required in each site is calculated in the EMS 10, and the power plan for the entire site is determined in the AEMS 11.
- An operation plan is being formulated. For this reason, in FIG. 4, the process flow in the form which described the process of AEMS11 and the process of EMS10 together is shown.
- FIG. 4 As a premise, it is assumed that the on-site equipment of FIG. 1 has the equipment specifications shown in FIG. Moreover, it demonstrates using FIG. 6 as what showed the structure in the micro grid of FIG. 1 more concretely.
- the microgrid is composed of three sites 3A, 3B, and 3C.
- Sites 3A and 3B are cogeneration systems comprising a gas engine generator 4 and an exhaust heat absorption refrigeration machine 5, supplying electric power 8 from the power system and gas engine, and cold water 9 from the exhaust heat absorption refrigeration machine 5 to consumers 6.
- the site 3A when exhaust heat supply from the generator 4 is insufficient, steam as exhaust heat 7A2 is supplied from the gas fired boiler 19.
- the site 3C is supplied with electric power 8 from the electric power system 1 and cold water 9C from the electrically driven turbo refrigerator 5C to the customer 6.
- 21 is the gas supplied to a gas engine or a boiler.
- cogeneration is simply referred to as cogeneration.
- the generator 4A at the site 3A is composed of 1000 kwes
- the exhaust heat utilization absorption chiller 5A is composed of 1000 kwts
- the boiler 19 is composed of 1000 kwts
- the generator 4B of the site 3B is composed of 1000 kwes, 3 units
- the exhaust heat utilization absorption chiller 5B is configured by 1000 kWt 3 units
- the turbo chiller 5C of the site 3C is configured by 1000 kWt 3 units.
- the power generation prediction of the renewable energy equipment and the power / heat demand prediction in each site are performed, and the net power demand prediction result obtained by subtracting the power generation amount of the renewable energy equipment from the power demand prediction is notified to the AEMS 11. .
- FIG. 7 is a diagram showing a demand prediction result of net electric power and heat obtained by the process SE1 in the EMS 10 at each site.
- the upper and lower left parts of FIG. 7 are the power and heat demand forecast results PA and QA obtained at the site 3A
- the upper and lower parts of FIG. 7 are the power and heat demand forecast results PB and QB obtained at the site 3B.
- the upper and lower sides show examples of power and heat demand prediction results PC and QC obtained at the site 3C.
- 24 hours tomorrow is shown as the demand forecast period on the horizontal axis
- the power demand forecasts PA, PB, PC in the site and the heat demand forecasts QA, QB, QC in the site are displayed on the vertical axis. Yes.
- power demand is generated from 10:00 to 17:00 at the site 3A and heat demand is generated from 7:00 to 21:00, and power demand is generated from 10:00 to 16:00 at the site 3B.
- the heat demand is generated until the hour, and the power demand is generated from 9:00 to 21:00 at the site 3C and the heat demand is generated from 17:00 to 21:00.
- the power demand prediction results PA, PB, and PC are notified to the AEMS 11.
- the power / heat supply at each site was performed as follows based on the results of FIG. First, the required power of the site 3A is covered by four generators 4A sharing 1000 kwe in each period from 10:00 to 17:00. The necessary power for Site 3B can be covered by the three generators 4B sharing 1000kwe each from 10:00 to 16:00 during the entire period from 7:00 to 16:00. During other periods, power is purchased. The total amount of power required for the site 3C is purchased for the entire period.
- cold water is supplied from the absorption chiller using exhaust heat during the time period in which the exhaust heat can be secured from the generators 4A and 4B, and from the absorption chiller using steam from the boiler during other time periods.
- Supply cold water In the case of the site 3A, the absorption chiller using the exhaust heat from the four generators 4 in the period from 10:00 to 18:00 when the necessary power can be secured and using the steam of the boiler in the other periods.
- Supply cold water from In the case of the site 3B the entire amount can be secured from the exhaust gas of the generator 4B. In the case of the site 3C, the entire amount can be supplied with cold water from the turbo refrigerator 5C.
- the site 3A has a longer time period in which heat demand is generated than the power demand. Therefore, the cogeneration operation is not allowed in the time period in which the power demand is present, and absorption refrigeration by steam of the boiler is performed in the other time periods. The machine is operating.
- site 3B contrary to the case of site 3A, the time period during which power demand is generated is longer than the heat demand. It is good.
- site 3C since there is no generator, the power demand is met by purchasing electricity, and the heat demand is covered by an electrically driven turbo chiller. From the above, if the time periods of power demand and heat demand do not match within the site, power is purchased for power demand and boiler steam is used for heat demand, resulting in higher operating costs. There is a tendency to.
- the power and heat sharing pattern is optimized for the entire microgrid, which will be described later.
- the total power demand in the microgrid is calculated based on the net power demand prediction results PA, PB, and PC obtained from each site. Although the total power demand is not shown in the figure, it is the sum of the power demand forecasts (net power demand forecast results) PA, PB, and PC shown in FIG.
- the power generation is not controlled.
- the cogeneration system is planned to operate to obtain the required exhaust heat at the required time to meet the heat demand in the site, and even if electricity is not required at that time, power is generated. .
- the cogeneration exhaust heat is preferentially used so as to cover the heat demand prediction results QA, QB, and QC in the site, and the generation plan is obtained. Yes.
- FIG. 8 is a diagram showing the relationship between the heat demand prediction results QA, QB, and QC and the power supply when the exhaust heat maximum utilization operation is performed.
- FIG. 8 is compared with FIG. 7 showing the initial power / heat supply pattern, there is no change in the relationship between the heat demand prediction result QB and the power demand prediction result PB at the site 3B.
- the heat supply period is within the power supply available period, and it is not necessary to newly increase the power supply period from the viewpoint of heat in order to achieve the maximum exhaust heat utilization operation. This is because, in the case of the site 3C, the turbo chiller 5C uses electric power and is not a target of the maximum exhaust heat utilization operation.
- the power demand prediction result PA operates the generator 4A in the period from 7:00 to 21:00, which is the supply period of the heat demand prediction result QA, and the power supply plan result in this case is PAA Will be expressed as follows.
- the fuel consumption characteristic F or the power generation unit price G for each generator in consideration of heat demand is obtained as follows.
- the fuel consumption characteristic F or the power generation unit price G varies depending on whether or not the cogeneration exhaust heat is used.
- A is the gas unit price [ ⁇ / kWh]
- Fg is the generator gas consumption [kW]
- Pg is the generator output [kW]
- x is the load factor [ ⁇ ] (output / rated output). It is.
- FIG. 9 shows the power generation amount Pg and fuel (gas) consumption characteristics Fg of the generator of the cogeneration system.
- gas consumption is expressed by the following equation.
- Cogeneration gas consumption Fc (x) Fm (x)-Fw (x) (2)
- Fm is the gas consumption [kW] during monogeneration
- Fw is the gas consumption [kW] of cogeneration exhaust heat.
- the gas consumption Fw of cogeneration waste heat is calculated
- W is the amount of exhaust heat [kW] of the generator
- ⁇ is the efficiency [ ⁇ ] of the boiler that substitutes the exhaust heat of the generator in the site. From this, assuming that the maximum load factor at which the exhaust heat is utilized and the cogeneration operation is possible is xa, the gas consumption of the generator is expressed by the following equation.
- examples of various unit prices are as shown in FIG. 10, examples of unit price of electricity and unit price of gas are shown as primary energy costs, and cases of mono-generation and co-generation are shown as unit prices of power generation.
- the rated output values are listed.
- the unit price of electric power is different for each time zone.
- the power unit price as the primary energy cost is different for each time zone, and from 11:00 to 19:00, 16.8 ⁇ / kWhe, From 7 o'clock to 11 o'clock and from 19 o'clock to 23 o'clock, it is 16.2 ⁇ / kWhe, and from 23 o'clock to 7 o'clock, it is 11.9 ⁇ / kWhe.
- the unit price of gas which is the primary energy cost, is 82.0 ⁇ / Nm 3 .
- the unit price of power generation at the time of cogeneration is 12.1 yen / kWhe
- the price of power generation at the time of monogeneration is 17.8 yen / kWhe.
- the AEMS 11 causes the power demand prediction results PA, PB, PC at each site, the power demand in the microgrid obtained as a sum, and each power generation at each site when the exhaust heat maximum utilization operation is performed.
- the fuel consumption characteristic Fg or the power generation unit price G for each machine time zone is obtained.
- the optimum operation plan between a plurality of sites it is aimed to reduce the operation cost by reducing the unbalance between the power demand and the heat demand in each site by performing power interchange.
- SE2 of the operation plan flow in FIG. 4 when a temporary operation plan based on the maximum exhaust heat use operation is implemented in each site in order to improve the energy use efficiency by maximizing the use of cogeneration exhaust heat
- the power generation unit price is shown in FIG. In the upper part of FIG. 11, the unit price of power generation of the four generators 4A1, 4A2, 4A3, 4a4 of the site 3A and the cost according to time zone when the power purchase CB is made are compared and displayed. In the lower part of FIG.
- the unit price of power generation of the three generators 4B1, 4B2, and 4B3 at the site 3B and the cost CB for each time zone when purchasing power are compared and displayed.
- AEMS 11 in order to cover the total power demand in the microgrid, the unit price of power generation in each time zone and the unit price of purchased power are compared, and the generators are started in ascending order of unit price.
- the unit price of power generation and the unit price of purchased power are compared in each time zone, and a plan for starting the generators in ascending order of the unit price has been formulated.
- the information on the fuel consumption characteristics shown in Fig. 1 is sent, and in AEMS, optimization calculations using mathematical programming methods such as mixed integer linear programming and optimization methods using metaheuristics such as genetic algorithms are used. It is possible to make a generator operation plan for the purpose of minimizing operation costs.
- FIG. 14 shows an example of fuel consumption characteristics in each generator and each time zone transmitted from each EMS to AEMS.
- 14 shows an example of the fuel consumption characteristics in each time zone for n generators belonging to the site 3A in FIG. 14 shows an example of fuel consumption characteristics in each time zone for the m generators belonging to the site 3C in FIG.
- These fuel consumption characteristics are basically the same as those described with reference to FIG. 9, and the relationship between the load factor and the gas consumption is summarized for each time period.
- the EMS at each site transmits the gas consumption Fg (x) for each generator and each time zone of the operation plan to the AEMS as information for each time zone in the notation format shown in FIG.
- the gas consumption of the generator is arranged by the load factor (generator output / rated power output), and in the cogeneration operation in which the exhaust heat of each generator is used, the exhaust heat is The range of the load factor at the time of unused monogeneration operation is shown.
- FIG. 15 shows a modified example of fuel consumption characteristics in each generator and each time zone transmitted from each EMS to AEMS.
- the notation example of FIG. 15 is basically the same as FIG. 14, and an example of fuel consumption characteristics in each time zone for n generators belonging to the site 3 ⁇ / b> A of FIG. 1 is shown in the upper part, and that of the site 3 ⁇ / b> C in the lower part.
- zone about m generators is shown.
- the characteristic of the gas consumption with respect to the load factor is the characteristic at the time of the operation mode in the mono-generation power generation. Further, in FIG. ).
- the EMS at each site includes the monogenous gas consumption Fm (x) and the cogeneration exhaust heat gas consumption Fw (x) for each generator shown in FIG.
- the amount of available exhaust heat for each hour in is sent to AEMS.
- the monogene gas consumption Fm (x) and the cogeneration exhaust heat gas consumption Fw (x) are organized by load factor.
- AEMS based on the fuel consumption characteristics of all the generators in the microgrid, it is possible to devise a power generation plan for the purpose of minimizing operating costs.
- the exhaust heat utilization range of each generator is designated in advance by EMS, whereas in the example of FIG. 15, the exhaust heat utilization range of each generator is calculated by AEMS. Compared with the case of FIG. 14, the optimality (operation cost minimization) is improved.
- FIG. 16 shows a modification of fuel consumption characteristics in each generator and each time zone transmitted from each EMS to AEMS.
- the notation example of FIG. 16 is basically the same as FIG. 14 and FIG. 15, and an example of fuel consumption characteristics in each time zone for the power generation output of the entire site 3A of FIG. The fuel consumption characteristic in each time zone about the power generation output is shown.
- Pa means the maximum power generation output capable of cogeneration operation.
- EMS of each site transmits the gas consumption amount for each site shown in FIG. 16 and for each time zone of the operation plan to AEMS.
- the gas consumption of the generators compiled at the entire site is organized by the power generation output at the entire site, and the exhaust heat is used in the cogeneration operation where the exhaust heat of all the generators at each site is used.
- the range of power generation output during monogeneration operation is shown.
- a high-efficiency generator with low gas consumption is set to the low output side in FIG. Thereby, it becomes an operation plan which starts a highly efficient generator preferentially.
- AEMS based on the fuel consumption characteristics of all sites in the microgrid, it is possible to make a power generation plan for the purpose of minimizing operation costs.
- FIG. 16 when the number of sites increases, the number of targeted generators becomes enormous, which is effective for reducing the calculation load.
- FIG. 17 shows a modified example of the fuel consumption characteristics at each site and each time zone transmitted from each EMS to AEMS.
- the notation example of FIG. 17 is basically the same as FIG. 14 to FIG. 16, and an example of fuel consumption characteristics in each time zone for the power generation output of the entire site 3A of FIG. The fuel consumption characteristic in each time zone about the power generation output is shown.
- the amount of exhaust heat available in the site (characteristics of the amount of exhaust heat with respect to time) is given.
- EMS of each site transmits the gas consumption amount for each site shown in FIG. 17 and for each time zone of the operation plan to AEMS.
- Monogeneration gas consumption and cogeneration exhaust gas consumption at each site are organized for the total power output.
- a high-efficiency generator with low gas consumption is set on the low output side. Thereby, it becomes an operation plan which starts a highly efficient generator preferentially.
- the number of target generators becomes enormous, which is effective in reducing the calculation load.
- the range of exhaust heat utilization at each site is designated in advance by EMS, whereas in the example of FIG. 17, the range of exhaust heat utilization at each site is calculated by AEMS.
- the optimality minimmization of operating costs
- equation (5) represents the power supply / demand constraint ⁇ D_i (t).
- t is the time zone of the operation plan (for example, one hour interval)
- D is the amount of power demand (kWh)
- G is the amount of power generated by the generator (kWh)
- B is the amount of discharge of the storage battery (kWh)
- K is the amount of power purchased from the outside (kWh)
- i is the site
- j is the number of the device in the site
- ⁇ is the sum of the site i and the device number j.
- Equation (6) represents the storage capacity constraint condition S_i (t).
- S_i (t) S_i (t-1)- ⁇ B_i_j (t) (6)
- S represents the remaining charge (kWh) of the storage battery.
- t-1 means one hour before the operation plan time zone.
- Equation 7 Fuel cost consumed by generator and heat source + Electricity purchased from outside (7)
- SA2 the process SA2 in the AEMS 11
- a power generation plan is drawn up so as to satisfy the total power demand in ascending order of the fuel consumption characteristics Fg or the power generation unit price G for all the generators in the microgrid, and distributed to each EMS10.
- the required power for Site 3B is 1000 kwe for each of the three generators 4B from 10 o'clock to 16 o'clock in the entire period from 7 o'clock to 17 o'clock.
- the unit price at the time of power purchase is 7:00, 18:00 ⁇ / kWhe for the 8 o'clock range, and 16.8 ⁇ / kWhe for the 16:00 range.
- the required power of the site 3C is purchased for the entire period as shown in FIG. 7, and the unit price is as shown in FIG.
- the cogeneration exhaust heat amount is evaluated based on the power generation plan prepared by the AEMS 11.
- the operation plan of a heat source machine is drawn up based on a cogeneration waste heat amount and a heat demand prediction result, and it transmits to AEAM as a heat source machine operation meter result.
- FIG. 18 shows an example of the result of the generator / storage battery operation plan in the process SA2 of FIG.
- the horizontal axis represents a time zone for 24 hours
- the vertical axis represents power
- the power is distinguished for each type (power storage and discharge, power generation, purchase).
- the microgrid is composed of two sites SA and SB, and two generators and two storage batteries are installed at each site SA and SB.
- the operation plan of the generator and storage battery is designed for the power demand of the entire microgrid (site SA and site SB). Make a plan.
- FIG. 19 represents the power generation plan for site SA
- the middle part represents the power generation plan for site SB
- the lower part represents the power generation plan for the total of the microgrids.
- the storage battery is charged with the purchased power at 1 to 3 o'clock and the generator is started at 5 to 19:00.
- the storage battery is discharged at around 10-12 o'clock.
- the storage battery is charged with purchased power at about 3-4 o'clock, and the generator is started at about 8-17 o'clock.
- the storage battery is discharged at around 13-15.
- the purchased power for the entire microgrid in the lower part of FIG. 19 is purchased at 7, 9, 16, and 18 o'clock, so here it is not transmitted to the EMS at each site. After the heat source unit operation plan at each site in SE4, distribution is made based on the power consumption required for each site.
- the operation plan of the heat source unit is made based on the operation plan of the generator and the storage battery transmitted from the AEMS to each site. However, as shown in FIG. Based on the results of the generator and storage battery operation plan, evaluate the power supply plan (corrected power demand) at each site, enter the power supply plan (corrected power demand) and heat demand at each site, and An operation plan for a storage battery and a heat source machine (including a heat storage tank) may be made.
- the upper part is the power generation plan of the site SA
- the middle part is the power generation plan of the site SB
- the corrected power demand is shown as an envelope.
- the cogeneration exhaust heat amount is evaluated based on the operation plan of the generator and the storage battery transmitted from the AEMS to each site, and the operation plan of the heat source device (including the heat storage tank) is satisfied so as to satisfy the heat demand.
- an operation plan may be made by priority operation starting from a heat source machine that is low in cost for generating cold water, hot water, or steam.
- heat source equipment heat storage
- heat storage for the purpose of minimizing operating costs through mathematical calculations such as mixed integer linear programming and optimization calculations using optimization methods using metaheuristics such as genetic algorithms. (Including tanks) may be planned.
- process SA3 in AEMS11 the energy cost in a microgrid is evaluated based on the result of the operation plan of a generator and a heat source machine.
- process SA4 in AEMS11 the operation plan of a generator and a heat source machine is decided, and it sends to EMS10 of each site.
- the EMS 10 at each site executes tomorrow's operation according to the finally confirmed power / heat plan of the entire microgrid.
- process SA4 in AEMS11 when the operation plan of a generator and a heat source machine cannot be decided, it is good to return to process SA2 again and to perform condition search repeatedly until it can be decided.
- the power from site 3A was used except for the 13 to 15 o'clock range.
- the power interchange between the sites reduces the unbalance between the power demand and the heat demand, and increases the time of cogeneration operation, thereby improving the energy efficiency.
- FIG. 13 shows the result of trial calculation of the energy saving effect when the present invention is implemented.
- FIG. 13 shows the energy saving effect of the method of the present invention over the conventional method.
- the power charges, the gas charges, and the total charges are compared with each site 3A, 3B, 3C and the total.
- the power supply from site 3A has increased, so the purchased power charge has been reduced compared to the prior art.
- an operation planning apparatus and method capable of calculating at a high speed the overall optimization of the energy cost reduction of the power and heat of the microgrid composed of a plurality of sites.
- the exhaust heat maximum utilization operation is not necessarily performed at the maximum point, but needless to say, the exhaust heat utilization operation is performed so as to use more exhaust heat in the site. Yes.
- the present invention can be applied to a microgrid composed of buildings, factories, universities, and the like.
- SYMBOLS 1 Electric power system, 2 ... Micro grid, 3 ... Site, 4 ... Generator, 5 ... Heat source machine, 6 ... Consumer, 7 ... Waste heat, 8 ... Electric power, 9 ... Cold water, 10 ... EMS, 11 ... AEMS, DESCRIPTION OF SYMBOLS 12 ... Processing part, 13 ... Input part, 14 ... Operation plan calculating part, 15 ... Display part, 16 ... Data storage part, 17 ... Output part, 19 ... Gas-fired boiler, 21 ... Gas
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
Provided are: an operation planning device and method that can speedily calculate complete optimization of energy cost reduction of power and heat of a microgrid composed of a plurality of sites; and a regional energy management device and an energy management device that are used by the operation planning device of the microgrid. The microgrid is configured so that a plurality of sites are connected to a power system, generators and heat source devices are provided within the sites, and power and heat are supplied to consumers within the sites. The operation planning device of the microgrid is provided with: an energy management device that manages power and heat within the sites; and a regional energy management device that obtains information regarding power and heat in each site from the energy management device, and determines the distribution of power and heat over the entire microgrid. The present invention is characterized in that: the energy management device creates supply and demand plans for power and heat within the sites, creates operation plans for when a waste heat utilization operation is performed in order to use more waste heat within the sites, and sends the supply and demand plans and the operation plans to the regional energy management device; the regional energy management device creates a power supply and demand plan in which the power of a site where the amount of power generation has increased due to a waste heat maximum utilization operation is lent to another site; and the energy management device verifies the power supply and demand plan and the heat supply and demand plan presented by the regional energy management device, and determines the power and heat to be supplied to consumers within the sites.
Description
本発明は、再エネ機器、発電機、熱源機、蓄エネ機器(蓄電池、蓄熱槽)および需要家で構成された熱電併給型のマイクログリッドの運転計画装置および方法、並びにマイクログリッドの運転計画装置で使用される地域エネルギー管理装置およびエネルギー管理装置に係り、特にエネルギー供給設備を有する複数サイト全体のエネルギー利用効率向上を実現することができるマイクログリッドの運転計画装置および方法、並びにマイクログリッドの運転計画装置で使用される地域エネルギー管理装置およびエネルギー管理装置に関する。
The present invention relates to an operation planning apparatus and method for a cogeneration type microgrid composed of a renewable energy device, a generator, a heat source device, an energy storage device (storage battery, heat storage tank) and a customer, and an operation planning device for a microgrid. In particular, a microgrid operation planning apparatus and method, and a microgrid operation plan capable of improving the energy utilization efficiency of a plurality of sites having energy supply facilities. The present invention relates to a regional energy management apparatus and an energy management apparatus used in the apparatus.
近年、エネルギーコスト低減およびCO2排出削減を目的として再生可能エネルギー、コージェネレーション、蓄電池等の分散型エネルギーを組み合わせたマイクログリッドのニーズが増大している。特に北米では、自然災害による停電に備えてレジリエンスを兼ね備えた自立運転が可能なマイクログリッドの導入が進んでいる。
In recent years, there has been an increasing need for microgrids that combine distributed energy such as renewable energy, cogeneration, and storage batteries for the purpose of reducing energy costs and CO 2 emissions. In particular, in North America, the introduction of microgrids capable of autonomous operation with resilience in preparation for power outages due to natural disasters is in progress.
マイクログリッドはエネルギー供給設備を有するエネルギーセンターと複数の需要家から成るサイトから構成されている。ここで、サイトとは、エネルギーセンターから熱配管(導管)によって熱(冷水、温水、蒸気)が供給される領域を意味する。さらにマイクログリッドの規模が大きくなる場合は、複数のサイトから構成され、各サイト間は配電系統または自営線で電力が相互融通される。各サイトのエネルギーセンターには、発電機または熱源機、さらに発電機と発電機の排熱を利用する熱源機を組み合わせたコージェネレーションシステムが設置され、需要家に電力および熱(冷水、温水、蒸気)を供給しており、これにより熱電併給型のマイクログリッドを構成している。また、マイクログリッドまたはサイト内には、再生可能エネルギー(太陽光発電設備、風力発電設備)や蓄エネ機器(蓄電池、蓄熱槽)が適宜設置されている。このように、複数のサイトから構成されたマイクログリッドにおいては、個別のサイト内は熱電併給とされるが、サイト間は電力連携された構成となっている。
The microgrid consists of an energy center with energy supply facilities and a site consisting of multiple customers. Here, the site means a region where heat (cold water, hot water, steam) is supplied from the energy center through a heat pipe (conduit). When the scale of the microgrid is further increased, the microgrid is composed of a plurality of sites, and power is mutually interchanged between the sites through a distribution system or a private line. Each site's energy center has a cogeneration system that combines a generator or heat source, and a heat source that uses the heat generated by the generator and the generator. Electricity and heat (cold water, hot water, steam) ), Thereby forming a combined heat and power microgrid. Further, in the microgrid or site, renewable energy (solar power generation equipment, wind power generation equipment) and energy storage equipment (storage battery, heat storage tank) are appropriately installed. Thus, in the microgrid comprised of a plurality of sites, the individual sites are combined with heat and power, but the sites are configured to cooperate with each other.
従来、複数サイトで構成されるマイクログリッドでは、各サイトでエネルギーコスト低減を目的とした最適運転計画を作成し、電力供給が足りないサイトがあった場合、他のサイトから電力融通を行っていた。しかし、複数のサイト全体でみた場合、必ずしもエネルギーコストを最小化するような全体最適化を実現できていないという課題があった。
Conventionally, in a microgrid composed of multiple sites, an optimal operation plan for reducing energy costs was created at each site, and if there was a site where power supply was insufficient, power was exchanged from other sites . However, when viewed from a plurality of sites as a whole, there has been a problem that total optimization that minimizes the energy cost has not been realized.
また、複数サイトから構成されるマイクログリッドにおいて、各機器を対象にした従来の最適運転計画方式を適用した場合、計算負荷が増大し、必要な時間内で運転計画が立案できないという可能性がある。
In addition, when a conventional optimum operation planning method for each device is applied to a microgrid composed of multiple sites, the calculation load increases, and there is a possibility that an operation plan cannot be formulated within the required time. .
このような要請に対し、特許文献1ではマイクログリッド内の複数サイトの運転計画を実施する方法を提案している。具体的には特許文献1では、「電力のみを発生または電力と熱を発生できる電熱供給側設備と、電力のみが供給または電力と熱が供給される電熱負荷側設備との間を配電線および/または熱配管で接続した分散電源系統における各設備間の電熱需給制御に、各設備に設けたエージェント間の情報交換によって各設備の電熱需給出力を決定する分散電源系統の電熱需給制御システムであって、前記エージェントのうちの1つのエージェントは、他のエージェントとの情報交換によって熱エネルギーを需給できる設備間を接続する熱配管情報およびこれら設備の運転状況の情報を取得し、各設備間の熱需給経路の熱エネルギー損失および設備の運転状況の変化を含めて、当該設備間で電熱需給する価値があるかどうかを判断する指標になるエネルギー価値を求め、このエネルギー価値を基に電熱需給する設備およびその出力を決定する手段を備えたことを特徴とする分散電源系統の電熱需給制御システム。」とすることを提案している。
In response to such a request, Patent Document 1 proposes a method for implementing an operation plan for a plurality of sites in a microgrid. Specifically, in Patent Document 1, “the distribution line between the electric heat supply side facility capable of generating only electric power or generating electric power and heat and the electric heat load side facility supplied only with electric power or supplied with electric power and heat and Electric power supply and demand control system for a distributed power supply system that determines the electric power supply and demand output of each equipment by exchanging information between agents provided in each equipment in the electric power supply and demand control between equipment in a distributed power supply system connected by thermal piping. Then, one of the agents obtains heat pipe information for connecting facilities capable of supplying and supplying thermal energy by exchanging information with other agents, and information on the operating status of these facilities, and heat between the facilities. Energy that can be used as an index to judge whether it is worth supplying and supplying electric heat between the equipment, including thermal energy loss in the supply and demand channel and changes in equipment operating conditions Seeking over value, it is proposed to this energy value to electric supply based equipment and electric demand control system of distributed power supply system, characterized in that it comprises means for determining the output. ".
特許文献1では、マイクログリッド内の発電機、熱源機、需要家毎にそれぞれエージェントを設け、各エージェント間の情報交換によって各設備の電力及び熱の需給出力を決定している。しかし、特許文献1では、サイト数が増大するとエージェント数は膨大となり、この場合も全体最適化を行うためには計算時間が増大するという課題がある。特に、マイクログリッド全体の最適化を一つのEMS(エネルギー管理装置)で行う中央集中方式で実施すると、対象とする設備数が増大し、現実的な時間内で計算できないという課題が顕在化する。
In Patent Document 1, an agent is provided for each generator, heat source machine, and customer in the microgrid, and the supply and demand output of power and heat for each facility is determined by information exchange between the agents. However, in Patent Document 1, when the number of sites increases, the number of agents becomes enormous, and in this case as well, there is a problem that calculation time increases in order to perform overall optimization. In particular, when the optimization of the entire microgrid is performed by a centralized system in which one EMS (energy management device) is used, the number of target facilities increases, and the problem that calculation cannot be performed within a realistic time becomes obvious.
本発明は、係る問題に鑑みてなされたものであって、その目的とするところは、複数サイトからなるマイクログリッドの電力および熱のエネルギーコスト低減の全体最適化を高速に計算できる運転計画装置および方法、並びにマイクログリッドの運転計画装置で使用される地域エネルギー管理装置およびエネルギー管理装置を提供することにある。
The present invention has been made in view of such problems, and an object of the present invention is to provide an operation planning apparatus capable of calculating at a high speed the overall optimization of the energy cost reduction of power and heat of a microgrid composed of a plurality of sites. It is an object to provide a method and a local energy management device and an energy management device used in an operation planning device of a microgrid.
上記の課題を解決するために、本発明においては、複数のサイトが電力系統に接続されるとともに、サイト内に発電機と熱源機器を備えて当該サイト内の需要家に電力と熱を供給するマイクログリッドの運転計画装置であって、サイト内の電力と熱を管理するエネルギー管理装置と、エネルギー管理装置から各サイトにおける電力と熱の情報を得てマイクログリッド全体としての電力の配分を決定するAEMS(地域エネルギー管理装置:Area Energy Management System)を備え、エネルギー管理装置は、当該サイト内における電力と熱の需要予測、並びに当該サイト内の排熱をより多く利用するように排熱利用運転するときの運転計画を作成して前記AEMSに発電機の燃料消費特性または発電単価の情報を送り、AEMSは、マイクログリッド全体の発電計画(発電機・蓄電池の運転計画および電力融通計画)を作成し、エネルギー管理装置は、AEMSから提示された電力の需給計画に基づき当該サイト内の需要家に供給する電力と熱を定めることを特徴とする。
In order to solve the above problems, in the present invention, a plurality of sites are connected to a power system, and a generator and a heat source device are provided in the site to supply power and heat to consumers in the site. A microgrid operation planning device that manages power and heat in the site, and obtains power and heat information at each site from the energy management device to determine power distribution for the entire microgrid Equipped with AEMS (Area Energy Management System), the energy management device operates to use exhaust heat so as to use more demand for electric power and heat in the site and more exhaust heat in the site When the operation plan is created, the information on the fuel consumption characteristics of the generator or the unit price of power generation is stored in the AEMS. AEMS creates a power generation plan (generator / storage battery operation plan and power interchange plan) for the entire microgrid, and the energy management device determines the demand within the site based on the power supply / demand plan presented by AEMS. It is characterized by determining the power and heat supplied to the house.
また本発明においては、複数のサイトが電力系統に接続されるとともに、サイト内に発電機と熱源機器を備えて当該サイト内の需要家に電力と熱を供給するマイクログリッドの運転計画方法であって、各サイト内における電力と熱の需要予測と、当該サイト内の排熱をより多く利用するように排熱利用運転するときの運転計画を作成し、マイクログリッド全体の発電計画(発電機・蓄電池の運転計画および電力融通計画)を作成し、電力の需給計画に応じて各サイトが運用されることを特徴とする。
Further, the present invention is a microgrid operation planning method in which a plurality of sites are connected to a power system, and a generator and a heat source device are provided in the site to supply power and heat to consumers in the site. Power demand and heat demand forecast at each site, and an operation plan for exhaust heat utilization operation so as to use more waste heat in the site. A storage battery operation plan and a power interchange plan) are created, and each site is operated according to a power supply and demand plan.
本発明によれば、マイクログリッド内のサイト数が増大しても、全体最適化を実現し、エネルギーコストを低減することが可能となる。
According to the present invention, even if the number of sites in the microgrid increases, overall optimization can be realized and energy costs can be reduced.
以下、本発明の実施形態について、図面を参照して説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の実施例に係る複数サイトから構成されるマイクログリッドの構成の一例を示している。電力系統1に接続されたマイクログリッド2は、複数のサイト3(図1では3A、3B、3Cの3サイト)から構成されている。ここで、サイトとは、同一のエネルギーセンタまたは熱源機5から熱(冷水、温水、蒸気)が熱配管(導管)によって供給される領域と定義する。
FIG. 1 shows an example of a configuration of a microgrid composed of a plurality of sites according to an embodiment of the present invention. The microgrid 2 connected to the electric power system 1 includes a plurality of sites 3 (three sites 3A, 3B, and 3C in FIG. 1). Here, the site is defined as a region where heat (cold water, hot water, steam) is supplied from the same energy center or heat source unit 5 through a heat pipe (conduit).
各サイト3A、3B、3Cは、外部的には電力系統1に接続された配電系または自営線などの電力線50により相互に連携されており、電力はサイト3A、3B、3C間で融通が可能とされている。また各サイト3A、3B、3Cは、内部的には発電機4、冷凍機、ボイラや蓄熱槽などの熱源機5、太陽光発電などの再生可能エネルギー機器、蓄電池のいずれかと需要家6で構成されている。
The sites 3A, 3B, and 3C are externally linked to each other by a power line 50 such as a distribution system or a private line connected to the power system 1, and power can be interchanged between the sites 3A, 3B, and 3C. It is said that. Each site 3A, 3B, 3C is internally composed of a generator 4, a refrigerator, a heat source machine 5 such as a boiler or a heat storage tank, a renewable energy device such as solar power generation, a storage battery, and a customer 6. Has been.
図1のマイクログリッドの例では、サイト3Aには、発電機4Aと発電機4Aの排熱7A1を利用する熱源機(吸収冷凍機5A)から成るコージェネレーションシステムが設置されており、需要家6Aに電力8ALと冷水9Aを供給している。またサイト3Aには、ボイラ19が備えられており、発電機4Aからの排熱供給が不足する場合、ガス焚きボイラ19から排熱7A2としての蒸気を吸収冷凍機5Aに供給する。
In the example of the microgrid shown in FIG. 1, a cogeneration system including a generator 4A and a heat source machine (absorption refrigerator 5A) that uses exhaust heat 7A1 of the generator 4A is installed at the site 3A. Electric power 8AL and cold water 9A are supplied. In addition, the site 3A is provided with a boiler 19, and when exhaust heat supply from the generator 4A is insufficient, steam as exhaust heat 7A2 is supplied from the gas-fired boiler 19 to the absorption refrigerator 5A.
サイト3Bには、発電機4Bと発電機4Bの排熱7Bを利用する熱源機(吸収冷凍機5B)から成るコージェネレーションシステムが設置されており、需要家6Bに電力8BLと冷水9Bを供給している。
The site 3B has a cogeneration system composed of a generator 4B and a heat source machine (absorption refrigeration machine 5B) that uses the exhaust heat 7B of the generator 4B to supply electric power 8BL and cold water 9B to the consumer 6B. ing.
サイト3Cには、発電機4Cと電気駆動ターボ冷凍機5Cが設置されており、需要家6Cに電力8C1と冷水9Cを供給している。
The site 3C is provided with a generator 4C and an electrically driven turbo chiller 5C, and supplies electric power 8C1 and cold water 9C to the consumer 6C.
このように、電力はサイト間で融通可能であるが、他方、熱エネルギー(冷水、温水、蒸気、排熱)は熱配管(導管)を通して供給されるため、一般にはサイト内の狭い範囲で融通されることになる。
In this way, power can be interchanged between sites, but on the other hand, heat energy (cold water, hot water, steam, exhaust heat) is supplied through thermal piping (conduit), so it is generally interchangeable within a narrow range within the site. Will be.
なお各サイト内には、適宜再生可能エネルギー機器が備えられており、外部電源のみならず再生可能エネルギー機器による電力を適宜併用する。また各サイト内には適宜蓄電池を含んでいてもよい。
In each site, renewable energy equipment is provided as appropriate, and power from renewable energy equipment as well as an external power source is used together as appropriate. Each site may include a storage battery as appropriate.
図1に示す構成例では、熱融通が可能な範囲を一つのサイトとみなし、サイト内のエネルギーを管理するシステムとしてEMS(エネルギー管理装置)10A、10B、10Cを配置している。また、マイクログリッド2内の全体のエネルギーを管理するシステムとしてAEMS(地域エネルギー管理装置)11を配置している。なお、複数のEMS10A、10B、10CとAEMS11の間は、通信線30を用いた信号伝送が行われる。
In the configuration example shown in FIG. 1, the range in which heat exchange is possible is regarded as one site, and EMS (energy management devices) 10A, 10B, and 10C are arranged as systems for managing the energy in the site. Further, an AEMS (regional energy management device) 11 is arranged as a system for managing the entire energy in the microgrid 2. Signal transmission using the communication line 30 is performed between the plurality of EMSs 10A, 10B, 10C and the AEMS 11.
図2に本発明の実施例に係るAEMS11の構成例を示す。エリアエネルギーマネジメントシステムAEMS11は、一般的には計算機システムにより構成されており、入力部13、出力部17、表示部15、処理部12、運転計画演算部14、データ記憶部16などで構成されている。
FIG. 2 shows a configuration example of the AEMS 11 according to the embodiment of the present invention. The area energy management system AEMS 11 is generally configured by a computer system, and includes an input unit 13, an output unit 17, a display unit 15, a processing unit 12, an operation plan calculation unit 14, a data storage unit 16, and the like. Yes.
このうち入力部13は、通信線30を介して各サイト3A、3B、3Cからの情報を取得する。運転計画演算部14は、入力情報およびデータ記憶部16に記憶された過去実績情報を用いてマイクログリッド2内の全体的な発電計画(発電機、蓄電池および買電の運転計画)を行う。運転計画を立案後、表示部15で結果を表示し、出力部17で通信線30を介して各サイト3A、3B、3Cへ発電計画結果を出力する。処理部12は各機能の処理を管理する。
Of these, the input unit 13 acquires information from each of the sites 3A, 3B, and 3C via the communication line 30. The operation plan calculation unit 14 performs an overall power generation plan (generator, storage battery, and power purchase operation plan) in the microgrid 2 using the input information and past performance information stored in the data storage unit 16. After planning the operation plan, the display unit 15 displays the result, and the output unit 17 outputs the power generation plan result to each of the sites 3A, 3B, and 3C via the communication line 30. The processing unit 12 manages the processing of each function.
図3に本発明の実施例に係るEMS10の構成例を示す。エネルギーマネジメントシステムEMS10は、一般的には計算機システムにより構成されており、入力部13、出力部17、表示部15、処理部12、運転計画演算部14、データ記憶部16などで構成されている。
FIG. 3 shows a configuration example of the EMS 10 according to the embodiment of the present invention. The energy management system EMS10 is generally configured by a computer system, and includes an input unit 13, an output unit 17, a display unit 15, a processing unit 12, an operation plan calculation unit 14, a data storage unit 16, and the like. .
このうち入力部13は、気象情報を取得し、運転計画演算部14は、気象情報およびデータ記憶部16に記憶された過去実績情報を用いて、サイト内の太陽光発電量予測、電力・熱需要予測を行う。その後、排熱を最大利用する場合の運転計画を立案後、表示部15で結果を表示し、出力部17で通信線30を介してAEMSへ結果を出力する。
Among these, the input unit 13 acquires weather information, and the operation plan calculation unit 14 uses the past performance information stored in the weather information and the data storage unit 16 to predict the amount of photovoltaic power generation, power / heat in the site. Make demand forecasts. After that, after making an operation plan for the maximum use of exhaust heat, the display unit 15 displays the result, and the output unit 17 outputs the result to the AEMS via the communication line 30.
AEMSから発電計画が送られてきた後、運転計画演算部14は、発電計画に基づき熱源機の運転計画を立案し、表示部15で結果を表示し、出力部17で通信線30を介してAEMSへ結果を出力する。処理部12は各機能の処理を管理する。
After the power generation plan is sent from the AEMS, the operation plan calculation unit 14 makes an operation plan for the heat source machine based on the power generation plan, displays the result on the display unit 15, and displays the result on the output unit 17 via the communication line 30. Output results to AEMS. The processing unit 12 manages the processing of each function.
図3にAEMS11とEMS10の処理フローの一実施例を示す。本発明においては各サイト内で必要とする電力と熱の予測情報をEMS10においてそれぞれ算出し、AEMS11ではサイト全体としての電力の計画を決定し、これを基に各サイト内のEMS10では、熱源機の運転計画を立案している。このため、図4においては、AEMS11の処理とEMS10の処理を併記した形での処理フローを示している。
FIG. 3 shows an example of the processing flow of AEMS 11 and EMS 10. In the present invention, the power and heat prediction information required in each site is calculated in the EMS 10, and the power plan for the entire site is determined in the AEMS 11. An operation plan is being formulated. For this reason, in FIG. 4, the process flow in the form which described the process of AEMS11 and the process of EMS10 together is shown.
以下図4を用いて本発明の実施例を詳細に説明するが、その前提として図1のサイト内設備は図5に示す機器仕様のものであるとする。また図1のマイクログリッド内構成をより具体的に示したものとして図6を用いて説明する。
Hereinafter, the embodiment of the present invention will be described in detail with reference to FIG. 4. As a premise, it is assumed that the on-site equipment of FIG. 1 has the equipment specifications shown in FIG. Moreover, it demonstrates using FIG. 6 as what showed the structure in the micro grid of FIG. 1 more concretely.
まず図6に示すように、マイクログリッドは3つのサイト3A、3B、3Cで構成されている。サイト3A、3Bはガスエンジン発電機4と排熱利用吸収冷凍機5から成るコージェネシステムであり、電力系統とガスエンジンから電力8、排熱利用吸収冷凍機5から冷水9を需要家6に供給する。また、サイト3Aでは、発電機4からの排熱供給が不足する場合、ガス焚きボイラ19から排熱7A2としての蒸気を供給する。サイト3Cには、電力系統1から電力8、電気駆動ターボ冷凍機5Cから冷水9Cを需要家6に供給する。なお、図6において21は、ガスエンジンやボイラに供給されるガスである。なお、以下においては、コージェネレーションのことを単にコージェネということにする。
First, as shown in FIG. 6, the microgrid is composed of three sites 3A, 3B, and 3C. Sites 3A and 3B are cogeneration systems comprising a gas engine generator 4 and an exhaust heat absorption refrigeration machine 5, supplying electric power 8 from the power system and gas engine, and cold water 9 from the exhaust heat absorption refrigeration machine 5 to consumers 6. To do. Further, at the site 3A, when exhaust heat supply from the generator 4 is insufficient, steam as exhaust heat 7A2 is supplied from the gas fired boiler 19. The site 3C is supplied with electric power 8 from the electric power system 1 and cold water 9C from the electrically driven turbo refrigerator 5C to the customer 6. In addition, in FIG. 6, 21 is the gas supplied to a gas engine or a boiler. In the following, cogeneration is simply referred to as cogeneration.
また図5の機器仕様によれば、サイト3Aの発電機4Aは1000kwe4台、排熱利用吸収冷凍機5Aは1000kwt4台、ボイラ19は1000kwt4台で構成され、サイト3Bの発電機4Bは1000kwe3台、排熱利用吸収冷凍機5Bは1000kwt3台で構成され、サイト3Cのターボ冷凍機5Cは1000kwt3台で構成されているものとする。
Further, according to the equipment specification of FIG. 5, the generator 4A at the site 3A is composed of 1000 kwes, the exhaust heat utilization absorption chiller 5A is composed of 1000 kwts, the boiler 19 is composed of 1000 kwts, and the generator 4B of the site 3B is composed of 1000 kwes, 3 units, It is assumed that the exhaust heat utilization absorption chiller 5B is configured by 1000 kWt 3 units, and the turbo chiller 5C of the site 3C is configured by 1000 kWt 3 units.
各サイトのEMS10における処理SE1について説明する。
The process SE1 in the EMS 10 at each site will be described.
ここでは、各サイト内の再生可能エネルギー機器の発電予測および電力・熱の需要予測を実施し、電力需要予測から再生可能エネルギー機器の発電量を差し引いた正味の電力需要予測結果をAEMS11へ通知する。
Here, the power generation prediction of the renewable energy equipment and the power / heat demand prediction in each site are performed, and the net power demand prediction result obtained by subtracting the power generation amount of the renewable energy equipment from the power demand prediction is notified to the AEMS 11. .
図7は、各サイトのEMS10における処理SE1により求められた正味の電力と熱の需要予測結果を示した図である。図7左の上下がサイト3Aで求められた電力・熱の需要予測結果PA、QA、図7中央の上下がサイト3Bで求められた電力・熱の需要予測結果PB、QB、図7右の上下がサイト3Cで求められた電力・熱の需要予測結果PC、QCの例を示している。ここでは、横軸の需要予測期間として例えば明日の24時間を示し、縦軸に当該サイト内の電力需要予測PA、PB、PCと当該サイト内の熱需要予測QA、QB、QCを表示している。
FIG. 7 is a diagram showing a demand prediction result of net electric power and heat obtained by the process SE1 in the EMS 10 at each site. The upper and lower left parts of FIG. 7 are the power and heat demand forecast results PA and QA obtained at the site 3A, and the upper and lower parts of FIG. 7 are the power and heat demand forecast results PB and QB obtained at the site 3B. The upper and lower sides show examples of power and heat demand prediction results PC and QC obtained at the site 3C. Here, for example, 24 hours tomorrow is shown as the demand forecast period on the horizontal axis, and the power demand forecasts PA, PB, PC in the site and the heat demand forecasts QA, QB, QC in the site are displayed on the vertical axis. Yes.
この例によれば、サイト3Aにおいては10時から17時まで電力需要が、7時から21時まで熱需要が発生し、サイト3Bにおいては7時から16時まで電力需要が、10時から15時まで熱需要が発生し、サイト3Cにおいては9時から21時まで電力需要が、17時から21時まで熱需要が発生することを表している。この電力の需要予測結果PA、PB、PCがAEMS11へ通知される。
According to this example, power demand is generated from 10:00 to 17:00 at the site 3A and heat demand is generated from 7:00 to 21:00, and power demand is generated from 10:00 to 16:00 at the site 3B. This shows that the heat demand is generated until the hour, and the power demand is generated from 9:00 to 21:00 at the site 3C and the heat demand is generated from 17:00 to 21:00. The power demand prediction results PA, PB, and PC are notified to the AEMS 11.
なお、本発明採用以前のシステム構成であれば、各サイトにおける電力・熱の供給は、図7の結果に基づき、例えば以下のように実施されていた。まず、サイト3Aの必要電力は10時から17時までの全期間において4台の発電機4Aがそれぞれ1000kweを分担することで賄われる。サイト3Bの必要電力は、7時から16時までの全期間のうち、10時から16時までは主に3台の発電機4Bがそれぞれ1000kweを分担することで賄うことが可能であるが、その他の期間は買電とされる。サイト3Cの必要電力は全期間において、全量が買電とされる。
In the system configuration prior to the present invention, the power / heat supply at each site was performed as follows based on the results of FIG. First, the required power of the site 3A is covered by four generators 4A sharing 1000 kwe in each period from 10:00 to 17:00. The necessary power for Site 3B can be covered by the three generators 4B sharing 1000kwe each from 10:00 to 16:00 during the entire period from 7:00 to 16:00. During other periods, power is purchased. The total amount of power required for the site 3C is purchased for the entire period.
また同様にしてサイト内の熱需要予測QA、QB、QCの例によれば、発電機4A、4Bがガスエンジン駆動である場合には、例えば以下の運用とされていた。この例では、発電機4A、4Bから排熱を確保できる時間帯には排熱を利用して吸収冷凍機から冷水を供給し、その他の時間帯はボイラの蒸気を利用して吸収冷凍機から冷水を供給する。サイト3Aの場合には、必要電力が確保できた10時から18時までの期間は4台の発電機4からの排熱を利用し、その他の期間ではボイラの蒸気を利用して吸収冷凍機から冷水を供給する。サイト3Bのケースでは全量が発電機4Bの排ガスから確保可能である。サイト3Cのケースでは、全量がターボ冷凍機5Cから冷水を供給可能である。
Similarly, according to the example of the heat demand prediction QA, QB, QC in the site, when the generators 4A, 4B are gas engine driven, for example, the following operation is performed. In this example, cold water is supplied from the absorption chiller using exhaust heat during the time period in which the exhaust heat can be secured from the generators 4A and 4B, and from the absorption chiller using steam from the boiler during other time periods. Supply cold water. In the case of the site 3A, the absorption chiller using the exhaust heat from the four generators 4 in the period from 10:00 to 18:00 when the necessary power can be secured and using the steam of the boiler in the other periods. Supply cold water from In the case of the site 3B, the entire amount can be secured from the exhaust gas of the generator 4B. In the case of the site 3C, the entire amount can be supplied with cold water from the turbo refrigerator 5C.
上記図7の事例において、サイト3Aでは、電力需要に比べて熱需要が発生する時間帯が長いため、電力需要がある時間帯はコージェネ運転でまかない、その他の時間帯はボイラの蒸気による吸収冷凍機の運転を行っている。サイト3Bでは、サイト3Aの場合と反対に熱需要に比べて電力需要が発生する時間帯が長いため、熱需要がある時間帯はコージェネ運転を行い、その他の時間帯は買電により電力需要をまかなっている。サイト3Cでは、発電機がないため、電力需要は買電によりまかない、熱需要は電動駆動のターボ冷凍機でまかなっている。以上より、サイト内で電力需要と熱需要の時間帯が一致しない場合、電力需要に対しては買電を行い、熱需要に対してはボイラの蒸気を使用するため、運転コストは割高になるという傾向がある。
In the case of FIG. 7, the site 3A has a longer time period in which heat demand is generated than the power demand. Therefore, the cogeneration operation is not allowed in the time period in which the power demand is present, and absorption refrigeration by steam of the boiler is performed in the other time periods. The machine is operating. At site 3B, contrary to the case of site 3A, the time period during which power demand is generated is longer than the heat demand. It is good. At site 3C, since there is no generator, the power demand is met by purchasing electricity, and the heat demand is covered by an electrically driven turbo chiller. From the above, if the time periods of power demand and heat demand do not match within the site, power is purchased for power demand and boiler steam is used for heat demand, resulting in higher operating costs. There is a tendency to.
本発明によれば、この電力、熱の分担パターンが、マイクログリッド全体として最適化されるが、このことについては後述する。
According to the present invention, the power and heat sharing pattern is optimized for the entire microgrid, which will be described later.
次にAEMS11における処理SA1について説明する。
Next, the process SA1 in the AEMS 11 will be described.
ここでは、各サイトから得られた正味の電力需要予測結果PA、PB、PCを基に、マイクログリッド内の合計の電力需要を算出する。合計の電力需要は図示しないが、要するに各サイトが報告した図7の電力の需要予測(正味の電力需要予測結果)PA、PB、PCを時間帯ごとに合計したものである。
Here, the total power demand in the microgrid is calculated based on the net power demand prediction results PA, PB, and PC obtained from each site. Although the total power demand is not shown in the figure, it is the sum of the power demand forecasts (net power demand forecast results) PA, PB, and PC shown in FIG.
各サイトのEMS10における処理SE2について説明する。
The process SE2 in the EMS 10 at each site will be described.
ここでは、コージェネ排熱を最大限利用することによりエネルギー利用効率を向上させるため、各サイト内の正味の電力需要予測結果および熱需要予測結果に基づき、排熱最大利用運転による暫定の運転計画を立案する。
Here, in order to improve the energy utilization efficiency by maximizing the use of cogeneration exhaust heat, a temporary operation plan based on the maximum exhaust heat utilization operation based on the net power demand prediction results and heat demand prediction results in each site Make a plan.
各サイトのEMS10における処理SE1で求めた正味の電力需要予測結果PA、PB、PCと熱の需要予測結果QA、QB、QCは、それぞれの観点から必要な量を求めたにすぎないのに対し、EMS10における処理SE2では、排熱最大利用運転を想定している。
While the net power demand forecast results PA, PB, PC and heat demand forecast results QA, QB, QC obtained in the process SE1 in the EMS 10 at each site are only required amounts from the respective viewpoints. In the process SE2 in the EMS 10, the exhaust heat maximum utilization operation is assumed.
排熱最大利用運転では、熱の利用を主に考えるので、発電については制御を行わない方式である。サイト内の熱需要を満たすように、必要な時間に必要な排熱を得るようにコージェネレーションシステムを運転させる計画とするものであり、その時間に電気が必要でなくても、発電がなされる。このように、EMS10における処理SE2では、サイト内における熱の需要予測結果QA、QB、QCをまかなうように、コージェネ排熱を優先的に利用して、発電計画がどのようになるかを求めている。
∙ In the exhaust heat maximum utilization operation, since the use of heat is mainly considered, the power generation is not controlled. The cogeneration system is planned to operate to obtain the required exhaust heat at the required time to meet the heat demand in the site, and even if electricity is not required at that time, power is generated. . As described above, in the process SE2 in the EMS 10, the cogeneration exhaust heat is preferentially used so as to cover the heat demand prediction results QA, QB, and QC in the site, and the generation plan is obtained. Yes.
図8は、排熱最大利用運転を行った時の、熱の需要予測結果QA、QB、QCと電力供給の関係を示した図である。図8を、初期の電力・熱供給パターンを示す図7と比較して示すと、サイト3Bにおいては、熱の需要予測結果QBと電力需要予測結果PBの関係に変更はない。このケースでは、電力の供給可能期間内に熱の供給期間が入っており、排熱最大利用運転とするために、熱の観点から新たに電力供給期間を増やさなくてもよいためである。サイト3Cの場合には、ターボ冷凍機5Cは電力利用であるため、排熱最大利用運転の対象とされないためである。
FIG. 8 is a diagram showing the relationship between the heat demand prediction results QA, QB, and QC and the power supply when the exhaust heat maximum utilization operation is performed. When FIG. 8 is compared with FIG. 7 showing the initial power / heat supply pattern, there is no change in the relationship between the heat demand prediction result QB and the power demand prediction result PB at the site 3B. In this case, the heat supply period is within the power supply available period, and it is not necessary to newly increase the power supply period from the viewpoint of heat in order to achieve the maximum exhaust heat utilization operation. This is because, in the case of the site 3C, the turbo chiller 5C uses electric power and is not a target of the maximum exhaust heat utilization operation.
これに対し、サイト3Aの場合には、ボイラ19を使用せず全熱量を発電機4A側から供給するという形式での排熱最大利用運転を想定する。このため、電力需要予測結果PAは、熱の需要予測結果QAの供給期間である7時から21時までの期間において発電機4Aを稼働することになり、この場合の電力供給計画結果は、PAAのように表記されることになる。
On the other hand, in the case of the site 3A, the exhaust heat maximum utilization operation in a form in which the total amount of heat is supplied from the generator 4A side without using the boiler 19 is assumed. For this reason, the power demand prediction result PA operates the generator 4A in the period from 7:00 to 21:00, which is the supply period of the heat demand prediction result QA, and the power supply plan result in this case is PAA Will be expressed as follows.
EMS10における処理SE2では、排熱最大利用運転を想定した場合の発電機の燃料消費特性または発電単価Gcを算出し、熱需要を考慮した各発電機の時間帯別の燃料消費特性または発電単価として、AEMS11へ通知する。
In process SE2 in EMS10, the fuel consumption characteristic or power generation unit cost Gc of the generator when the exhaust heat maximum utilization operation is assumed is calculated, and the fuel consumption characteristic or power generation unit price for each generator in consideration of heat demand is calculated. , AEMS11 is notified.
ここで、熱需要を考慮した各発電機の時間帯別の燃料消費特性Fまたは発電単価Gは、以下のようにして求められる。各サイトのコージェネシステムでは、コージェネ排熱の利用の有無により燃料消費特性Fまたは発電単価Gが変動する。
Here, the fuel consumption characteristic F or the power generation unit price G for each generator in consideration of heat demand is obtained as follows. In the cogeneration system at each site, the fuel consumption characteristic F or the power generation unit price G varies depending on whether or not the cogeneration exhaust heat is used.
発電機の発電単価Gは(1)式で評価する。
[数1]
発電単価(¥/kWh)G(x) = A・Fg(x)/Pg(x) (1)
なお(1)式において、Aはガス単価[¥/kWh]、Fgは発電機ガス消費量[kW]、Pgは発電機出力[kW]、xは負荷率[-](出力/定格出力)である。 The power generation unit price G of the generator is evaluated by equation (1).
[Equation 1]
Unit price of power generation (¥ / kWh) G (x) = A · Fg (x) / Pg (x) (1)
In equation (1), A is the gas unit price [¥ / kWh], Fg is the generator gas consumption [kW], Pg is the generator output [kW], and x is the load factor [−] (output / rated output). It is.
[数1]
発電単価(¥/kWh)G(x) = A・Fg(x)/Pg(x) (1)
なお(1)式において、Aはガス単価[¥/kWh]、Fgは発電機ガス消費量[kW]、Pgは発電機出力[kW]、xは負荷率[-](出力/定格出力)である。 The power generation unit price G of the generator is evaluated by equation (1).
[Equation 1]
Unit price of power generation (¥ / kWh) G (x) = A · Fg (x) / Pg (x) (1)
In equation (1), A is the gas unit price [¥ / kWh], Fg is the generator gas consumption [kW], Pg is the generator output [kW], and x is the load factor [−] (output / rated output). It is.
図9にコージェネシステムの発電機の発電量Pgおよび燃料(ガス)消費特性Fgを示す。排熱が有効利用されたコージェネの場合、ガス消費量は次式で表される。
[数2]
コージェネのガス消費量 Fc(x) = Fm(x) - Fw(x) (2)
なお(2)式において、Fmはモノジェネ時のガス消費量[kW]、Fwはコージェネ排熱のガス消費量[kW]である。また、コージェネ排熱のガス消費量Fwは、次式で求められる。
[数3]
コージェネ排熱のガス消費量 Fw = W(x)/η (3)
なお(3)式において、Wは発電機の排熱量[kW]、ηはサイト内で発電機の排熱を代替するボイラの効率[-]である。これより、排熱が利用され、コージェネ運転が可能な最大負荷率をxaとすると、発電機のガス消費量は次式で表される。
[数4]
発電機のガス消費量 Fg(x) = Fm(x) - Fw(x) (0≦x≦xa)
= Fm(x) - Fw(xa) (xa<x≦1) (4)
(1)~(4)式を実行するうえで、上記各値はサイトごとに予め得られているものとする。また、上記諸量のうち、各種の単価の一例は図10に示すようなものであり、一次エネルギーコストとして電力単価及びガス単価の例を示し、また発電単価としてモノジェネの場合とコージェネの場合の定格出力の値を列記している。なお電力単価は時間帯ごとに相違している。 FIG. 9 shows the power generation amount Pg and fuel (gas) consumption characteristics Fg of the generator of the cogeneration system. In the case of cogeneration in which exhaust heat is effectively used, gas consumption is expressed by the following equation.
[Equation 2]
Cogeneration gas consumption Fc (x) = Fm (x)-Fw (x) (2)
In equation (2), Fm is the gas consumption [kW] during monogeneration, and Fw is the gas consumption [kW] of cogeneration exhaust heat. Moreover, the gas consumption Fw of cogeneration waste heat is calculated | required by following Formula.
[Equation 3]
Cogeneration waste gas consumption Fw = W (x) / η (3)
In Equation (3), W is the amount of exhaust heat [kW] of the generator, and η is the efficiency [−] of the boiler that substitutes the exhaust heat of the generator in the site. From this, assuming that the maximum load factor at which the exhaust heat is utilized and the cogeneration operation is possible is xa, the gas consumption of the generator is expressed by the following equation.
[Equation 4]
Generator gas consumption Fg (x) = Fm (x)-Fw (x) (0≤x≤xa)
= Fm (x)-Fw (xa) (xa <x ≦ 1) (4)
In executing the equations (1) to (4), it is assumed that the above values are obtained in advance for each site. In addition, among the above quantities, examples of various unit prices are as shown in FIG. 10, examples of unit price of electricity and unit price of gas are shown as primary energy costs, and cases of mono-generation and co-generation are shown as unit prices of power generation. The rated output values are listed. The unit price of electric power is different for each time zone.
[数2]
コージェネのガス消費量 Fc(x) = Fm(x) - Fw(x) (2)
なお(2)式において、Fmはモノジェネ時のガス消費量[kW]、Fwはコージェネ排熱のガス消費量[kW]である。また、コージェネ排熱のガス消費量Fwは、次式で求められる。
[数3]
コージェネ排熱のガス消費量 Fw = W(x)/η (3)
なお(3)式において、Wは発電機の排熱量[kW]、ηはサイト内で発電機の排熱を代替するボイラの効率[-]である。これより、排熱が利用され、コージェネ運転が可能な最大負荷率をxaとすると、発電機のガス消費量は次式で表される。
[数4]
発電機のガス消費量 Fg(x) = Fm(x) - Fw(x) (0≦x≦xa)
= Fm(x) - Fw(xa) (xa<x≦1) (4)
(1)~(4)式を実行するうえで、上記各値はサイトごとに予め得られているものとする。また、上記諸量のうち、各種の単価の一例は図10に示すようなものであり、一次エネルギーコストとして電力単価及びガス単価の例を示し、また発電単価としてモノジェネの場合とコージェネの場合の定格出力の値を列記している。なお電力単価は時間帯ごとに相違している。 FIG. 9 shows the power generation amount Pg and fuel (gas) consumption characteristics Fg of the generator of the cogeneration system. In the case of cogeneration in which exhaust heat is effectively used, gas consumption is expressed by the following equation.
[Equation 2]
Cogeneration gas consumption Fc (x) = Fm (x)-Fw (x) (2)
In equation (2), Fm is the gas consumption [kW] during monogeneration, and Fw is the gas consumption [kW] of cogeneration exhaust heat. Moreover, the gas consumption Fw of cogeneration waste heat is calculated | required by following Formula.
[Equation 3]
Cogeneration waste gas consumption Fw = W (x) / η (3)
In Equation (3), W is the amount of exhaust heat [kW] of the generator, and η is the efficiency [−] of the boiler that substitutes the exhaust heat of the generator in the site. From this, assuming that the maximum load factor at which the exhaust heat is utilized and the cogeneration operation is possible is xa, the gas consumption of the generator is expressed by the following equation.
[Equation 4]
Generator gas consumption Fg (x) = Fm (x)-Fw (x) (0≤x≤xa)
= Fm (x)-Fw (xa) (xa <x ≦ 1) (4)
In executing the equations (1) to (4), it is assumed that the above values are obtained in advance for each site. In addition, among the above quantities, examples of various unit prices are as shown in FIG. 10, examples of unit price of electricity and unit price of gas are shown as primary energy costs, and cases of mono-generation and co-generation are shown as unit prices of power generation. The rated output values are listed. The unit price of electric power is different for each time zone.
図10に例示した電力料金およびガス料金の仕様の一例によれば、一次エネルギーコストである電力単価は時間帯ごとに相違しており、11時から19時帯には16.8¥/kWhe、7時から11時帯及び19時から23時帯には16.2¥/kWhe、23時から7時帯には11.9¥/kWheである。同じく一次エネルギーコストであるガス単価は82.0¥/Nm3である。また発電単価について、コージェネ時の発電単価は12.1¥/kWhe、モノジェネ時の発電単価は17.8¥/kWheである。
According to an example of the specification of the power charge and the gas charge illustrated in FIG. 10, the power unit price as the primary energy cost is different for each time zone, and from 11:00 to 19:00, 16.8 ¥ / kWhe, From 7 o'clock to 11 o'clock and from 19 o'clock to 23 o'clock, it is 16.2 ¥ / kWhe, and from 23 o'clock to 7 o'clock, it is 11.9 ¥ / kWhe. Similarly, the unit price of gas, which is the primary energy cost, is 82.0 ¥ / Nm 3 . Regarding the unit price of power generation, the unit price of power generation at the time of cogeneration is 12.1 yen / kWhe, and the price of power generation at the time of monogeneration is 17.8 yen / kWhe.
したがって、夜間(23-7時)は、電力系統からの買電(11.9¥/kWhe)、コージェネ(12.1¥/kWhe)、モノジェネ(17.8¥/kWhe)の順で発電単価が増加し、昼間(7-23時)は、コージェネ(12.1¥/kWhe)、買電(16.2-16.8¥/kWhe)、モノジェネ(17.8¥/kWh)の順で発電単価が増加することになる。
Therefore, at night (23-7 o'clock), the unit price of electricity purchased from the power grid (11.9 ¥ / kWhe), cogeneration (12.1 ¥ / kWhe), and monogeneration (17.8 ¥ / kWhe) In the daytime (7-23 o'clock), cogeneration (12.1 ¥ / kWhe), power purchase (16.2-16.8 ¥ / kWhe), monogeneration (17.8 ¥ / kWh) The unit price of power generation will increase.
次にAEMS11における処理SA2について説明する。
Next, the process SA2 in the AEMS 11 will be described.
ここまでの処理によりAEMS11には、各サイトにおける電力需要予測結果PA、PB、PCと、この合計として求めたマイクログリッド内の電力需要と、排熱最大利用運転としたときの各サイトにおける各発電機の時間帯別の燃料消費特性Fgまたは発電単価Gが得られている。
Through the processing up to this point, the AEMS 11 causes the power demand prediction results PA, PB, PC at each site, the power demand in the microgrid obtained as a sum, and each power generation at each site when the exhaust heat maximum utilization operation is performed. The fuel consumption characteristic Fg or the power generation unit price G for each machine time zone is obtained.
本発明に係る複数サイト間の最適運転計画の実施例では、電力融通を行うことにより各サイト内での電力需要と熱需要のアンバランスを減少させ、運転コストを低減することを狙っている。図4の運転計画フローのSE2に示すように、コージェネ排熱を最大限利用することによりエネルギー利用効率を向上させるため、各サイト内で排熱最大利用運転に基づく暫定の運転計画を実施した場合の発電単価を図11に示している。図11の上には、サイト3Aの4台の発電機4A1、4A2、4A3、4a4の発電単価、及び買電CBとしたときの時間帯別コストを比較表示している。図11の下には、サイト3Bの3台の発電機4B1、4B2、4B3の発電単価、及び買電としたときの時間帯別コストCBを比較表示している。AEMS11では、マイクログリッド内の全電力需要をまかなうように、各時間帯における発電単価と購入電力単価を比較し、単価の小さい順に発電機を起動する。
In the embodiment of the optimum operation plan between a plurality of sites according to the present invention, it is aimed to reduce the operation cost by reducing the unbalance between the power demand and the heat demand in each site by performing power interchange. As shown in SE2 of the operation plan flow in FIG. 4, when a temporary operation plan based on the maximum exhaust heat use operation is implemented in each site in order to improve the energy use efficiency by maximizing the use of cogeneration exhaust heat The power generation unit price is shown in FIG. In the upper part of FIG. 11, the unit price of power generation of the four generators 4A1, 4A2, 4A3, 4a4 of the site 3A and the cost according to time zone when the power purchase CB is made are compared and displayed. In the lower part of FIG. 11, the unit price of power generation of the three generators 4B1, 4B2, and 4B3 at the site 3B and the cost CB for each time zone when purchasing power are compared and displayed. In AEMS 11, in order to cover the total power demand in the microgrid, the unit price of power generation in each time zone and the unit price of purchased power are compared, and the generators are started in ascending order of unit price.
本実施例では、各時間帯における発電単価と購入電力単価を比較し、単価の小さい順に発電機を起動する計画を立案したが、EMSからAEMSに各発電機、各時間帯における式(4)に示した燃料消費特性の情報を送信し、AEMSでは、混合整数線形計画法のような数理計画法や、遺伝的アルゴリズムのようなメタヒューリスティクスを用いた最適化手法を用いた最適化計算により、運転コスト最小化を目的とした発電機の運転計画を立案することが可能である。
In this embodiment, the unit price of power generation and the unit price of purchased power are compared in each time zone, and a plan for starting the generators in ascending order of the unit price has been formulated. The information on the fuel consumption characteristics shown in Fig. 1 is sent, and in AEMS, optimization calculations using mathematical programming methods such as mixed integer linear programming and optimization methods using metaheuristics such as genetic algorithms are used. It is possible to make a generator operation plan for the purpose of minimizing operation costs.
ここで、図14に各EMSからAEMSに送信する各発電機、各時間帯における燃料消費特性の一例を示す。図14において上段は、図1のサイト3Aに属するn台の発電機についての各時間帯における燃料消費特性の一例を示している。また図14において下段は、図1のサイト3Cに属するm台の発電機についての各時間帯における燃料消費特性の一例を示している。これらの燃料消費特性は基本的に図9で説明したのと同じものであり、負荷率とガス消費量の関係を各時間帯ごとに特性を纏めたものである。
Here, FIG. 14 shows an example of fuel consumption characteristics in each generator and each time zone transmitted from each EMS to AEMS. 14 shows an example of the fuel consumption characteristics in each time zone for n generators belonging to the site 3A in FIG. 14 shows an example of fuel consumption characteristics in each time zone for the m generators belonging to the site 3C in FIG. These fuel consumption characteristics are basically the same as those described with reference to FIG. 9, and the relationship between the load factor and the gas consumption is summarized for each time period.
各サイトのEMSは、発電機毎、運転計画の時間帯毎のガス消費量Fg(x)を、図14に示す表記形式の時間帯別の情報としてAEMSに送信する。図14の表記によれば、発電機のガス消費量は、負荷率(発電機出力/定格発電出力)で整理され、各発電機の排熱が利用されるコジェネ運転のときと、排熱が利用されないモノジェネ運転のときの負荷率の範囲が示されている。これによりAEMSでは、マイクログリッド内の全ての発電機の燃料消費特性に基づき、運転コスト最小化を目的とした発電計画を立案することが可能となる。
The EMS at each site transmits the gas consumption Fg (x) for each generator and each time zone of the operation plan to the AEMS as information for each time zone in the notation format shown in FIG. According to the notation of FIG. 14, the gas consumption of the generator is arranged by the load factor (generator output / rated power output), and in the cogeneration operation in which the exhaust heat of each generator is used, the exhaust heat is The range of the load factor at the time of unused monogeneration operation is shown. Thereby, in AEMS, based on the fuel consumption characteristic of all the generators in a microgrid, it becomes possible to devise a power generation plan aiming at operation cost minimization.
次に、図15に各EMSからAEMSに送信する各発電機、各時間帯における燃料消費特性の変形例を示す。図15の表記例は基本的に図14と同じであり、上段に図1のサイト3Aに属するn台の発電機についての各時間帯における燃料消費特性の一例を示し、下段にサイト3Cに属するm台の発電機についての各時間帯における燃料消費特性を示している。但し、負荷率に対するガス消費量の特性は、モノジェネ発電における運転態様の時の特性とされ、さらに図15においては、これらの情報に追加してサイト内利用可能排熱量(時間に対する排熱量の特性)を付与している。
Next, FIG. 15 shows a modified example of fuel consumption characteristics in each generator and each time zone transmitted from each EMS to AEMS. The notation example of FIG. 15 is basically the same as FIG. 14, and an example of fuel consumption characteristics in each time zone for n generators belonging to the site 3 </ b> A of FIG. 1 is shown in the upper part, and that of the site 3 </ b> C in the lower part. The fuel consumption characteristic in each time slot | zone about m generators is shown. However, the characteristic of the gas consumption with respect to the load factor is the characteristic at the time of the operation mode in the mono-generation power generation. Further, in FIG. ).
このようにして各サイトのEMSは、図15に示す発電機毎、運転計画の時間帯毎のモノジェネのガス消費量Fm(x)とコジェネ排熱のガス消費量Fw(x)、および各サイトにおける時間毎の利用可能な排熱量をAEMSに送信する。モノジェネのガス消費量Fm(x)とコジェネ排熱のガス消費量Fw(x)は、負荷率で整理されている。AEMSでは、マイクログリッド内の全ての発電機の燃料消費特性に基づき、運転コスト最小化を目的とした発電計画を立案することが可能となる。
In this way, the EMS at each site includes the monogenous gas consumption Fm (x) and the cogeneration exhaust heat gas consumption Fw (x) for each generator shown in FIG. The amount of available exhaust heat for each hour in is sent to AEMS. The monogene gas consumption Fm (x) and the cogeneration exhaust heat gas consumption Fw (x) are organized by load factor. In AEMS, based on the fuel consumption characteristics of all the generators in the microgrid, it is possible to devise a power generation plan for the purpose of minimizing operating costs.
なお図14の例では、各発電機の排熱利用の範囲がEMSで予め指定されているのに対して、図15の例では、AEMSで各発電機の排熱利用の範囲を計算するため、図14の場合に比べて最適性(運転コスト最小化)が向上する。
In the example of FIG. 14, the exhaust heat utilization range of each generator is designated in advance by EMS, whereas in the example of FIG. 15, the exhaust heat utilization range of each generator is calculated by AEMS. Compared with the case of FIG. 14, the optimality (operation cost minimization) is improved.
また、図16に各EMSからAEMSに送信する各発電機、各時間帯における燃料消費特性の変形例を示す。図16の表記例は基本的に図14、図15と同じであり、上段に図1のサイト3A全体の発電出力についての各時間帯における燃料消費特性の一例を示し、下段にサイト3C全体の発電出力についての各時間帯における燃料消費特性を示している。この図でPaは、コジェネ運転が可能な最大発電出力を意味している。
FIG. 16 shows a modification of fuel consumption characteristics in each generator and each time zone transmitted from each EMS to AEMS. The notation example of FIG. 16 is basically the same as FIG. 14 and FIG. 15, and an example of fuel consumption characteristics in each time zone for the power generation output of the entire site 3A of FIG. The fuel consumption characteristic in each time zone about the power generation output is shown. In this figure, Pa means the maximum power generation output capable of cogeneration operation.
各サイトのEMSは、図16に示すサイト毎、運転計画の時間帯毎のガス消費量をAEMSに送信する。この場合に、サイト全体でまとめた発電機のガス消費量は、サイト全体での発電出力で整理され、各サイトの全発電機の排熱が利用されるコジェネ運転のときと、排熱が利用されないモノジェネ運転のときの発電出力の範囲が示されている。ここで、ガス消費量の少ない高効率の発電機が図16における低出力側に設定される。これにより、高効率の発電機を優先的に起動する運転計画となる。AEMSでは、マイクログリッド内の全てのサイトの燃料消費特性に基づき、運転コスト最小化を目的とした発電計画を立案することが可能となる。図16のケースでは、サイト数が増大した場合、対象とする発電機台数が膨大になるため、計算負荷を低減するために有効である。
EMS of each site transmits the gas consumption amount for each site shown in FIG. 16 and for each time zone of the operation plan to AEMS. In this case, the gas consumption of the generators compiled at the entire site is organized by the power generation output at the entire site, and the exhaust heat is used in the cogeneration operation where the exhaust heat of all the generators at each site is used. The range of power generation output during monogeneration operation is shown. Here, a high-efficiency generator with low gas consumption is set to the low output side in FIG. Thereby, it becomes an operation plan which starts a highly efficient generator preferentially. In AEMS, based on the fuel consumption characteristics of all sites in the microgrid, it is possible to make a power generation plan for the purpose of minimizing operation costs. In the case of FIG. 16, when the number of sites increases, the number of targeted generators becomes enormous, which is effective for reducing the calculation load.
さらに、図17に各EMSからAEMSに送信する各サイト、各時間帯における燃料消費特性の変形例を示す。図17の表記例は基本的に図14から図16と同じであり、上段に図1のサイト3A全体の発電出力についての各時間帯における燃料消費特性の一例を示し、下段にサイト3C全体の発電出力についての各時間帯における燃料消費特性を示している。但し、さらに図17においては、これらの情報に追加してサイト内利用可能排熱量(時間に対する排熱量の特性)を付与している。
Further, FIG. 17 shows a modified example of the fuel consumption characteristics at each site and each time zone transmitted from each EMS to AEMS. The notation example of FIG. 17 is basically the same as FIG. 14 to FIG. 16, and an example of fuel consumption characteristics in each time zone for the power generation output of the entire site 3A of FIG. The fuel consumption characteristic in each time zone about the power generation output is shown. However, in FIG. 17, in addition to these pieces of information, the amount of exhaust heat available in the site (characteristics of the amount of exhaust heat with respect to time) is given.
各サイトのEMSは、図17に示したサイト毎、運転計画の時間帯毎のガス消費量をAEMSに送信する。各サイトにおけるモノジェネのガス消費量とコジェネ排熱のガス消費量は、全発電出力に対して整理されている。図16と同様に、ガス消費量の少ない高効率の発電機が低出力側に設定される。これにより、高効率の発電機を優先的に起動する運転計画となる。また、図17のケースでも、サイト数が増大した場合、対象とする発電機台数が膨大になるため、計算負荷を低減するために有効である。
EMS of each site transmits the gas consumption amount for each site shown in FIG. 17 and for each time zone of the operation plan to AEMS. Monogeneration gas consumption and cogeneration exhaust gas consumption at each site are organized for the total power output. Similarly to FIG. 16, a high-efficiency generator with low gas consumption is set on the low output side. Thereby, it becomes an operation plan which starts a highly efficient generator preferentially. Also in the case of FIG. 17, when the number of sites increases, the number of target generators becomes enormous, which is effective in reducing the calculation load.
図16の例では、各サイトの排熱利用の範囲がEMSで予め指定されているのに対して、図17の例では、AEMSで各サイトの排熱利用の範囲を計算するため、図16に比べて最適性(運転コスト最小化)が向上する。
In the example of FIG. 16, the range of exhaust heat utilization at each site is designated in advance by EMS, whereas in the example of FIG. 17, the range of exhaust heat utilization at each site is calculated by AEMS. As a result, the optimality (minimization of operating costs) is improved.
また、本実施例では、AMSEにおいて発電機の運転計画を立案する例を示したが、AEMSでは、発電機および蓄電池を合わせた運転計画を立案することも出来る。ここで、マイクログリッド全体の発電機および蓄電池の最適運転計画を実施するための、代表的な制約条件を(5)(6)式に示す。このうち(5)式は、電力需給の制約条件Σ D_i(t)を示している。
[数5]
Σ D_i(t) = Σ G_i_j(t) + Σ B_i_j(t) + K(t) (5)
(5)式において、tは運転計画の時間帯(例えば、1時間間隔)、Dは電力需要量(kWh)、Gは発電機の発電量(kWh)、Bは蓄電池の放電量(kWh)、Kは外部からの購入電力量(kWh)、iはサイト、jはサイト内の機器の番号、Σはサイトi、機器番号のjでの総和を表和している。この式によれば、Bの値が正のとき放電量を表し、負の値は充電量を意味する。 Further, in this embodiment, an example in which an operation plan of a generator is made in AMSE is shown, but in AEMS, an operation plan that combines a generator and a storage battery can be made. Here, typical constraints for implementing the optimum operation plan for the generator and storage battery of the entire microgrid are shown in equations (5) and (6). Of these, equation (5) represents the power supply / demand constraint Σ D_i (t).
[Equation 5]
Σ D_i (t) = Σ G_i_j (t) + Σ B_i_j (t) + K (t) (5)
In equation (5), t is the time zone of the operation plan (for example, one hour interval), D is the amount of power demand (kWh), G is the amount of power generated by the generator (kWh), and B is the amount of discharge of the storage battery (kWh) , K is the amount of power purchased from the outside (kWh), i is the site, j is the number of the device in the site, Σ is the sum of the site i and the device number j. According to this equation, when the value of B is positive, it represents the amount of discharge, and a negative value means the amount of charge.
[数5]
Σ D_i(t) = Σ G_i_j(t) + Σ B_i_j(t) + K(t) (5)
(5)式において、tは運転計画の時間帯(例えば、1時間間隔)、Dは電力需要量(kWh)、Gは発電機の発電量(kWh)、Bは蓄電池の放電量(kWh)、Kは外部からの購入電力量(kWh)、iはサイト、jはサイト内の機器の番号、Σはサイトi、機器番号のjでの総和を表和している。この式によれば、Bの値が正のとき放電量を表し、負の値は充電量を意味する。 Further, in this embodiment, an example in which an operation plan of a generator is made in AMSE is shown, but in AEMS, an operation plan that combines a generator and a storage battery can be made. Here, typical constraints for implementing the optimum operation plan for the generator and storage battery of the entire microgrid are shown in equations (5) and (6). Of these, equation (5) represents the power supply / demand constraint Σ D_i (t).
[Equation 5]
Σ D_i (t) = Σ G_i_j (t) + Σ B_i_j (t) + K (t) (5)
In equation (5), t is the time zone of the operation plan (for example, one hour interval), D is the amount of power demand (kWh), G is the amount of power generated by the generator (kWh), and B is the amount of discharge of the storage battery (kWh) , K is the amount of power purchased from the outside (kWh), i is the site, j is the number of the device in the site, Σ is the sum of the site i and the device number j. According to this equation, when the value of B is positive, it represents the amount of discharge, and a negative value means the amount of charge.
(6)式は、蓄電容量の制約条件S_i(t)を示している。
[数6]
S_i(t) = S_i(t-1) - Σ B_i_j(t) (6)
ここで、Sは蓄電池の蓄電残量(kWh)を表す。t-1は、運転計画の時間帯における1時刻前を意味する。また、その他の蓄電池に関する制約条件としては、最小・最大蓄電残量、蓄電出力上限値、放電出力上限値、蓄電・放電変換効率等がある。 Equation (6) represents the storage capacity constraint condition S_i (t).
[Equation 6]
S_i (t) = S_i (t-1)-Σ B_i_j (t) (6)
Here, S represents the remaining charge (kWh) of the storage battery. t-1 means one hour before the operation plan time zone. In addition, as other constraints regarding the storage battery, there are minimum / maximum power storage remaining amount, power storage output upper limit value, discharge output upper limit value, power storage / discharge conversion efficiency, and the like.
[数6]
S_i(t) = S_i(t-1) - Σ B_i_j(t) (6)
ここで、Sは蓄電池の蓄電残量(kWh)を表す。t-1は、運転計画の時間帯における1時刻前を意味する。また、その他の蓄電池に関する制約条件としては、最小・最大蓄電残量、蓄電出力上限値、放電出力上限値、蓄電・放電変換効率等がある。 Equation (6) represents the storage capacity constraint condition S_i (t).
[Equation 6]
S_i (t) = S_i (t-1)-Σ B_i_j (t) (6)
Here, S represents the remaining charge (kWh) of the storage battery. t-1 means one hour before the operation plan time zone. In addition, as other constraints regarding the storage battery, there are minimum / maximum power storage remaining amount, power storage output upper limit value, discharge output upper limit value, power storage / discharge conversion efficiency, and the like.
運転コスト最小化を目的とした発電機の運転計画立案をする場合の目的関数Aは(7)式で表すことができる。この目的関数を最小にする運転計画を立案することにより、コスト最小を実現できる。
[数7]
目的関数:A = 発電機、熱源機の消費する燃料費 + 外部からの購入する電気代 (7)
AEMS11における処理SA2では、マイクログリッド内の全発電機の時間帯別の燃料消費特性Fgまたは発電単価Gの低い順から、全電力需要を満たすように発電計画を立案し、各EMS10に配信する。 The objective function A in the case of planning a generator operation plan for the purpose of minimizing the operation cost can be expressed by equation (7). By making an operation plan that minimizes this objective function, the cost can be minimized.
[Equation 7]
Objective function: A = Fuel cost consumed by generator and heat source + Electricity purchased from outside (7)
In the process SA2 in theAEMS 11, a power generation plan is drawn up so as to satisfy the total power demand in ascending order of the fuel consumption characteristics Fg or the power generation unit price G for all the generators in the microgrid, and distributed to each EMS10.
[数7]
目的関数:A = 発電機、熱源機の消費する燃料費 + 外部からの購入する電気代 (7)
AEMS11における処理SA2では、マイクログリッド内の全発電機の時間帯別の燃料消費特性Fgまたは発電単価Gの低い順から、全電力需要を満たすように発電計画を立案し、各EMS10に配信する。 The objective function A in the case of planning a generator operation plan for the purpose of minimizing the operation cost can be expressed by equation (7). By making an operation plan that minimizes this objective function, the cost can be minimized.
[Equation 7]
Objective function: A = Fuel cost consumed by generator and heat source + Electricity purchased from outside (7)
In the process SA2 in the
AEMS11における処理SA2の具体的な考え方について説明する。まず図7に示したように、サイト3Aの必要電力PAは10時から17時までの全期間において4台の発電機4Aがそれぞれ1000kweを分担することで賄われていたものを、図8では7時から21時までの期間について新たに(PAA-PA)の分の電力を発生することになる。この発電に要する費用は図10のコージェネ発電単価(12.1¥/kWhe)で定まる。
A specific concept of the process SA2 in the AEMS 11 will be described. First, as shown in FIG. 7, the required power PA of the site 3A was covered by the four generators 4A sharing 1000 kwe in the entire period from 10:00 to 17:00, in FIG. For the period from 7 o'clock to 21 o'clock, power corresponding to (PAA-PA) is newly generated. The cost required for this power generation is determined by the cogeneration power generation unit price (12.1 ¥ / kWhe) in FIG.
次にサイト3Bの必要電力は、図7に示したように、7時から17時までの全期間のうち、10時から16時までは3台の発電機4Bがそれぞれ1000kweを分担し、その他の期間は買電とされているが、買電とするときの単価は7時、8時台について16.2¥/kWhe、16時台について16.8¥/kWheである。
Next, as shown in FIG. 7, the required power for Site 3B is 1000 kwe for each of the three generators 4B from 10 o'clock to 16 o'clock in the entire period from 7 o'clock to 17 o'clock. However, the unit price at the time of power purchase is 7:00, 18:00 ¥ / kWhe for the 8 o'clock range, and 16.8 ¥ / kWhe for the 16:00 range.
同様にサイト3Cの必要電力は、図7に示したように、全期間買電とされており、その単価は図10に示したとおりである。
Similarly, the required power of the site 3C is purchased for the entire period as shown in FIG. 7, and the unit price is as shown in FIG.
以上のことから本発明においては、図12のように電力融通するものである。図12に示す電力・熱需要の供給関係を示すパターンによれば、サイトAでは排熱最大利用運転を想定した結果として、7時台に2000kwh、8時台に3000kwh、9時台に4000kwh、10時台に2000kwh、11時台に1000kwh、15時台に1000kwh、16時、17時台に2000kwh、18、19時台に4000kwh、20時台に3000kwh、21時台に2000kwhの電力を新たに発生することになり、この発電に要する費用は図10のコージェネ発電単価(12.1¥/kWhe)で定まる。
From the above, in the present invention, power is interchanged as shown in FIG. According to the pattern indicating the supply relationship of power and heat demand shown in FIG. 12, at site A, as a result of assuming the exhaust heat maximum utilization operation, 2000 kwh at 7 o'clock, 3000 kwh at 8 o'clock, 4000 kwh at 9 o'clock, 2000kwh at 10 o'clock, 1000 kwh at 11 o'clock, 1000 kwh at 15 o'clock, 16:00, 2000 kwh at 17 o'clock, 18, 19 o'clock, 4000 kwh, 20 o'clock, 3000 kwh The cost required for this power generation is determined by the cogeneration power generation unit price (12.1 ¥ / kWhe) in FIG.
サイトAでの余剰電力を生じることによる発電単価と、サイトB、Cにおける買電単価を比較すると前者のコストが低いことから、本発明ではサイトBに対して7時台に2000kwh、8時、9時台に3000kwh、10時台に1000kwh、15時、16時台に1000kwhを電力融通する。またサイトCに対して9時から12時台まで1000kwh、16時台に1000kwh、17時台に2000kwh、18、19時台に4000kwh、20時台に3000kwh、21時台に2000kwhを電力融通する。但し、サイトAでの余剰電力を生じない13時から15時台までは、サイトCに対する電力融通が不可能となるので、この部分では買電とされる。
Since the former cost is low when comparing the unit price of power generated by generating surplus power at site A and the unit price of power purchased at sites B and C, in the present invention, 2000 kwh at 8 o'clock for site B, 8 o'clock, 3000 kwh at 9 o'clock and 1000 kwh at 10 o'clock, 1000 kwh at 15 o'clock and 16 o'clock. In addition, power is supplied to Site C from 9 o'clock to 12 o'clock, 1000 kwh at 16 o'clock, 2000 kwh at 17 o'clock, 18,000 o'clock, 4000 kwh, 20 o'clock, 3000 kwh, and 21 o'clock, 2000 kwh. . However, from 13:00 to 15:00 when no surplus power is generated at the site A, power interchange with the site C becomes impossible, and thus this portion is purchased.
図12の電力融通を反映した電力予測が、AEMS11における処理SA2の結果(発電機運転計画結果)として図4のEMS10に伝送される。
12 is transmitted to the EMS 10 in FIG. 4 as the result of the processing SA2 in the AEMS 11 (the generator operation plan result).
各サイトのEMS10における処理SE3では、AEMS11で立案された発電計画に基づき、コージェネ排熱量を評価する。また各サイトのEMS10における処理SE4では、コージェネ排熱量、熱需要予測結果に基づき熱源機の運転計画を立案し、熱源機運転計結果としてAEAMに伝送する。
In the process SE3 in the EMS 10 at each site, the cogeneration exhaust heat amount is evaluated based on the power generation plan prepared by the AEMS 11. Moreover, in process SE4 in EMS10 of each site, the operation plan of a heat source machine is drawn up based on a cogeneration waste heat amount and a heat demand prediction result, and it transmits to AEAM as a heat source machine operation meter result.
図4の処理SA2での発電機・蓄電池運転計画における結果の一例を図18に示す。図14の表記では横軸に24時間分の時間帯、縦軸に電力を表しており、かつ電力の種別(蓄電及び放電、発電、購入)毎に区別して表記している。この前提として、マイクログリッドは2サイトSA,SBで構成され、各サイトSA,SBでは発電機が2台、蓄電池が2台設置されているものとする。
FIG. 18 shows an example of the result of the generator / storage battery operation plan in the process SA2 of FIG. In the notation of FIG. 14, the horizontal axis represents a time zone for 24 hours, the vertical axis represents power, and the power is distinguished for each type (power storage and discharge, power generation, purchase). As a premise, it is assumed that the microgrid is composed of two sites SA and SB, and two generators and two storage batteries are installed at each site SA and SB.
AEMSでは、各EMSから送信された電力需要、発電機の燃料消費特性、蓄電池の仕様に基づき、マイクログリッド全体(サイトSAとサイトSB)の電力需要に対して、発電機と蓄電池の運転計画を立案する。
In AEMS, based on the power demand transmitted from each EMS, the fuel consumption characteristics of the generator, and the specifications of the storage battery, the operation plan of the generator and storage battery is designed for the power demand of the entire microgrid (site SA and site SB). Make a plan.
その結果を示す図18の適用例では、早朝の1~4時台においてマイクログリッド外から電力を購入し、この購入電力でサイトSAおよびSBの蓄電池の充電を行い、その後、サイトSAの発電機を起動する。5時から6時台までは、サイトSAの1台または2台の発電機出力でマイクログリッド全体で必要とする電力を賄うことが可能であるが、7時台には一部不足するため一分電力購入を行う。8時台以降は、サイトSBの発電機を起動して、合計3台または4台による発電を実行する。さらに昼間には全台数を定格出力しても賄えたい時間帯となり、蓄電池からの放電を順次実行する。而して、10~15時台では、サイトSAおよびSBの蓄電池は放電している。また、7、9、16、18時台では外部から電力を購入している。
In the application example shown in FIG. 18 showing the result, electric power is purchased from outside the microgrid in the early 1 to 4 o'clock range, and the storage batteries of the sites SA and SB are charged with this purchased electric power. Start up. From 5 o'clock to 6 o'clock, it is possible to cover the power required by the entire microgrid with the output of one or two generators at Site SA, but it is partially lacking at 7 o'clock. Purchase electricity. After 8 o'clock, the generators at the site SB are activated and a total of 3 or 4 generators are executed. Furthermore, during the daytime, it becomes a time zone that should be covered even if all units are rated output, and the discharge from the storage battery is executed sequentially. Thus, at 10 to 15 o'clock, the storage batteries at sites SA and SB are discharged. In addition, power is purchased from outside at 7, 9, 16, and 18:00.
この発電計画は、AEMSからサイトSA、SBのEMSに図19に示すように情報が送信される。図19の上段はサイトSAの発電計画、中段はサイトSBの発電計画、下段はマイクログリッド合計の発電計画を表している。
In this power generation plan, information is transmitted from AEMS to EMS at sites SA and SB as shown in FIG. The upper part of FIG. 19 represents the power generation plan for site SA, the middle part represents the power generation plan for site SB, and the lower part represents the power generation plan for the total of the microgrids.
この場合、図19上段のサイトSAでは、1~3時台で購入電力で蓄電池の充電を行い、5~19時台で発電機を起動している。10~12時台で蓄電池は放電している。図19中段のサイトSBでは、3~4時台で購入電力で蓄電池の充電を行い、8~17時台
で発電機を起動している。13~15時台で蓄電池は放電している。一方、図19下段のマイクログリッド全体での購入電力は、7、9、16、18時台で外部電力を購入することになるため、ここでは、各サイトのEMSには送信されないが、図4におけるSE4で各サイトの熱源機運転計画の後に、各サイトに必要な電力消費量に基づき分配される。 In this case, at the site SA in the upper part of FIG. 19, the storage battery is charged with the purchased power at 1 to 3 o'clock and the generator is started at 5 to 19:00. The storage battery is discharged at around 10-12 o'clock. In the site SB in the middle of FIG. 19, the storage battery is charged with purchased power at about 3-4 o'clock, and the generator is started at about 8-17 o'clock. The storage battery is discharged at around 13-15. On the other hand, the purchased power for the entire microgrid in the lower part of FIG. 19 is purchased at 7, 9, 16, and 18 o'clock, so here it is not transmitted to the EMS at each site. After the heat source unit operation plan at each site in SE4, distribution is made based on the power consumption required for each site.
で発電機を起動している。13~15時台で蓄電池は放電している。一方、図19下段のマイクログリッド全体での購入電力は、7、9、16、18時台で外部電力を購入することになるため、ここでは、各サイトのEMSには送信されないが、図4におけるSE4で各サイトの熱源機運転計画の後に、各サイトに必要な電力消費量に基づき分配される。 In this case, at the site SA in the upper part of FIG. 19, the storage battery is charged with the purchased power at 1 to 3 o'clock and the generator is started at 5 to 19:00. The storage battery is discharged at around 10-12 o'clock. In the site SB in the middle of FIG. 19, the storage battery is charged with purchased power at about 3-4 o'clock, and the generator is started at about 8-17 o'clock. The storage battery is discharged at around 13-15. On the other hand, the purchased power for the entire microgrid in the lower part of FIG. 19 is purchased at 7, 9, 16, and 18 o'clock, so here it is not transmitted to the EMS at each site. After the heat source unit operation plan at each site in SE4, distribution is made based on the power consumption required for each site.
ここで、SE4の熱源機運転計画の際、ターボ冷凍機のような電力駆動の機器が稼働した場合、追加で必要な電力は、発電機を追加で稼働するか、外部から電力を購入するか、運転コストが小さい方から選択する。または、SE1の処理に戻り、電力需要を修正した後、一連の処理を繰返すこともできる。
Here, in the heat source unit operation plan of SE4, when a power-driven device such as a turbo chiller is operated, whether the additional required power is to operate the generator or purchase power from the outside Select the one with the lowest operating cost. Or after returning to the process of SE1 and correcting an electric power demand, a series of processes can also be repeated.
また、本実施例の処理SE4では、AEMSから各サイトに伝送された発電機および蓄電池の運転計画に基づき熱源機の運転計画を立案したが、図20に示すようにSA2で立案したマイクログリッド全体の発電機、蓄電池運転計画の結果に基づき、各サイトの電力供給計画(修正した電力需要)を評価し、各サイトの電力供給計画(修正した電力需要)と熱需要を入力して、発電機、蓄電池、熱源機(蓄熱槽を含む)の運転計画を立案してもよい。
Further, in the processing SE4 of the present embodiment, the operation plan of the heat source unit is made based on the operation plan of the generator and the storage battery transmitted from the AEMS to each site. However, as shown in FIG. Based on the results of the generator and storage battery operation plan, evaluate the power supply plan (corrected power demand) at each site, enter the power supply plan (corrected power demand) and heat demand at each site, and An operation plan for a storage battery and a heat source machine (including a heat storage tank) may be made.
図20において上段はサイトSAの発電計画、中段はサイトSBの発電計画であり、修正後の電力需要が包絡線として示されている。
In FIG. 20, the upper part is the power generation plan of the site SA, the middle part is the power generation plan of the site SB, and the corrected power demand is shown as an envelope.
本実施例の処理SE4では、AEMSから各サイトに伝送された発電機および蓄電池の運転計画に基づきコージェネ排熱量を評価し、熱需要を満たすように熱源機(蓄熱槽を含む)の運転計画を立案するが、冷水または温水または蒸気を生成するコストが低い熱源機から起動する優先順位運転で運転計画を立案してもよい。また、混合整数線形計画法のような数理計画法や、遺伝的アルゴリズムのようなメタヒューリスティクスを用いた最適化手法を用いた最適化計算により、運転コスト最小化を目的とした熱源機(蓄熱槽を含む)の運転計画を立案してもよい。
In the process SE4 of the present embodiment, the cogeneration exhaust heat amount is evaluated based on the operation plan of the generator and the storage battery transmitted from the AEMS to each site, and the operation plan of the heat source device (including the heat storage tank) is satisfied so as to satisfy the heat demand. Although it is planned, an operation plan may be made by priority operation starting from a heat source machine that is low in cost for generating cold water, hot water, or steam. In addition, heat source equipment (heat storage) for the purpose of minimizing operating costs through mathematical calculations such as mixed integer linear programming and optimization calculations using optimization methods using metaheuristics such as genetic algorithms. (Including tanks) may be planned.
AEMS11における処理SA3では、発電機、熱源機の運転計画の結果に基づき、マイクログリッド内のエネルギーコストを評価する。またAEMS11における処理SA4では、発電機、熱源機の運転計画を確定して、各サイトのEMS10に送る。各サイトのEMS10では、最終的に確認されたマイクログリッド全体としての電力・熱計画に則り、明日の運転を実行する。なお、AEMS11における処理SA4では、発電機、熱源機の運転計画を確定できない場合には、再度処理SA2に戻り、確定できるまで繰り返し条件探索を行うのがよい。
In process SA3 in AEMS11, the energy cost in a microgrid is evaluated based on the result of the operation plan of a generator and a heat source machine. Moreover, in process SA4 in AEMS11, the operation plan of a generator and a heat source machine is decided, and it sends to EMS10 of each site. The EMS 10 at each site executes tomorrow's operation according to the finally confirmed power / heat plan of the entire microgrid. In addition, in process SA4 in AEMS11, when the operation plan of a generator and a heat source machine cannot be decided, it is good to return to process SA2 again and to perform condition search repeatedly until it can be decided.
以上により、複数サイトから構成される熱電併給マイクログリッドの電力及び熱の全体最適化を行い、エネルギーコストを低減することが可能と成る。
As described above, it is possible to reduce the energy cost by optimizing the power and heat of the combined heat and power microgrid composed of multiple sites.
図10の発電単価の結果より、昼間において電力需要と熱需要がある場合はコージェネ運転(発電、コージェネ排熱利用による吸収冷凍機の運転)を行い、電力需要のみある場合は買電を行い、熱需要のみある場合はボイラの蒸気により吸収冷凍機の運転を行うのがよい。
From the result of the unit price of power generation in FIG. 10, when there is power demand and heat demand during the daytime, perform cogeneration operation (operation of the absorption chiller using power generation and cogeneration waste heat), and if there is only power demand, purchase power. When there is only heat demand, it is better to operate the absorption refrigerator with steam from the boiler.
本運転計画では、マイクログリッド全体で受電点の逆潮流が発生しないように需給調整を行う必要があるため、各サイト間では電力融通を実施する。サイト3Aでは、全熱需要に対応してコージェネ運転を行うため、エリア内の電力需要より多く発電し、他のエリアに電力融通している。それにより、従来手法ではボイラで吸収冷凍機に蒸気を供給していた部分は、コージェネ排熱を供給するため、エネルギー効率は向上する。サイト3Bでは、従来手法において買電を行っていた部分はサイト3Aからの発電単価の小さい電力でまかなわれている。サイト3Cでは、従来手法では全ての電力を買電でまかなっていたが、本運転計画では13~15時台を除いて、サイト3Aからの電力でまかなわれている。以上より、サイト間で電力融通することにより、電力需要と熱需要のアンバランスは低減され、コージェネ運転の時間が増大することにより、エネルギー効率は向上する。
本 In this operation plan, it is necessary to adjust the supply and demand so that the reverse flow of the receiving point does not occur in the entire microgrid, so power interchange will be implemented between each site. In the site 3A, in order to perform the cogeneration operation in response to the total heat demand, the site 3A generates more power than the power demand in the area and passes power to other areas. As a result, in the conventional method, since the steam is supplied to the absorption refrigerator by the boiler, the cogeneration exhaust heat is supplied, so that the energy efficiency is improved. In the site 3B, the portion where power was purchased in the conventional method is covered by the power with a small unit price of power generation from the site 3A. At site 3C, all power was purchased by the conventional method. However, in this operation plan, the power from site 3A was used except for the 13 to 15 o'clock range. As described above, the power interchange between the sites reduces the unbalance between the power demand and the heat demand, and increases the time of cogeneration operation, thereby improving the energy efficiency.
本発明を実施したときの省エネ効果の試算結果を図13に示している。図13は、従来方式に対する本発明方式の省エネ効果を示している。図13の各段では、電力料金、ガス料金、合計料金について、各サイト3A、3B、3C、並びに合計で比較している。
FIG. 13 shows the result of trial calculation of the energy saving effect when the present invention is implemented. FIG. 13 shows the energy saving effect of the method of the present invention over the conventional method. In each stage of FIG. 13, the power charges, the gas charges, and the total charges are compared with each site 3A, 3B, 3C and the total.
この試算結果によれば、サイト3Aでは、大きい熱需要をコージェネ排熱でまかない、余剰電力を他のサイトに融通したため、ガス料金が従来よりも増大した。サイト3Bと3Cでは、サイト3Aからの電力供給が増大したため、購入電力料金が従来よりも減少した。マイクログリッド全体では、熱需要をコージェネ排熱でまかなうためガス料金が増大したが、発電単価の小さいコージェネの発電が増加したため、割高の購入電力料金を低減することができ、電力とガス料金を含めた運転コストを2、103k¥/day、13.9%低減することができた。
According to the result of this trial calculation, the gas charge increased at site 3A because the large heat demand was not covered by cogeneration exhaust heat and surplus power was accommodated to other sites. At sites 3B and 3C, the power supply from site 3A has increased, so the purchased power charge has been reduced compared to the prior art. In the entire microgrid, gas charges increased to meet the heat demand with cogeneration exhaust heat, but since the generation of cogeneration with a small unit price of power generation increased, it was possible to reduce the cost of purchasing purchased electricity, including electricity and gas charges. The operating cost was reduced by 2,103 k ¥ / day, 13.9%.
以上により、本発明の手法によれば、複数サイトからなるマイクログリッドの電力および熱のエネルギーコスト低減の全体最適化を高速に計算できる運転計画装置および方法を提供することができる。
As described above, according to the method of the present invention, it is possible to provide an operation planning apparatus and method capable of calculating at a high speed the overall optimization of the energy cost reduction of the power and heat of the microgrid composed of a plurality of sites.
なお本発明において排熱最大利用運転とは、必ずしも最大点での運転を行うものではなく、サイト内の排熱をより多く利用するように排熱利用運転するという趣旨のものであることは言うまでもない。
In the present invention, the exhaust heat maximum utilization operation is not necessarily performed at the maximum point, but needless to say, the exhaust heat utilization operation is performed so as to use more exhaust heat in the site. Yes.
本発明は、ビル、工場、大学等で構成されるマイクログリッドに適用することができる。
The present invention can be applied to a microgrid composed of buildings, factories, universities, and the like.
1…電力系統、2…マイクログリッド、3…サイト、4…発電機、5…熱源機、6…需要家、7…排熱、8…電力、9…冷水、10…EMS、11…AEMS、12…処理部、13…入力部、14…運転計画演算部、15…表示部、16…データ記憶部、17…出力部、19…ガス焚きボイラ、21…ガス
DESCRIPTION OF SYMBOLS 1 ... Electric power system, 2 ... Micro grid, 3 ... Site, 4 ... Generator, 5 ... Heat source machine, 6 ... Consumer, 7 ... Waste heat, 8 ... Electric power, 9 ... Cold water, 10 ... EMS, 11 ... AEMS, DESCRIPTION OF SYMBOLS 12 ... Processing part, 13 ... Input part, 14 ... Operation plan calculating part, 15 ... Display part, 16 ... Data storage part, 17 ... Output part, 19 ... Gas-fired boiler, 21 ... Gas
Claims (20)
- 発電機と熱源機器を備えて需要家に電力と熱を供給するマイクログリッドの運転計画装置であって、
熱源機から熱配管を介して熱エネルギーが供給可能な範囲をひとつのサイトとみなし、各サイトのエネルギーを管理するエネルギー管理装置と、各サイトのエネルギー管理装置を連携する地域エネルギー管理装置の2階層構成とすることを特徴とする特徴とするマイクログリッドの運転計画装置。 An operation planning device for a microgrid equipped with a generator and a heat source device to supply power and heat to consumers,
Two levels of energy management devices that manage the energy at each site and the regional energy management devices that link the energy management devices at each site, assuming that the range where heat energy can be supplied from the heat source device via heat piping is one site An operation planning device for a microgrid characterized by comprising. - 請求項1に記載のマイクログリッドの運転計画装置であって、各サイトのエネルギー管理装置は、当該サイト内の排熱をより多く利用するように排熱利用運転するときの運転計画を作成して前記地域エネルギー管理装置に送り、前記地域エネルギー管理装置は、発電機と蓄電池の運転計画を作成してエネルギー管理装置に送り、前記エネルギー管理装置は、当該サイト内の熱需要を満たすように熱源機の運転計画を作成することを特徴とするマイクログリッドの運転計画装置。 The operation planning apparatus for a microgrid according to claim 1, wherein the energy management apparatus at each site creates an operation plan for performing exhaust heat utilization operation so as to use more exhaust heat in the site. The local energy management device generates an operation plan for a generator and a storage battery and sends the operation plan to the energy management device, and the energy management device is configured to satisfy the heat demand in the site. An operation planning device for a microgrid characterized by creating an operation plan for
- 請求項1に記載のマイクログリッドの運転計画装置であって、各サイトのエネルギー管理装置は、当該サイト内の排熱をより多く利用するように排熱利用運転するときの運転計画を作成して前記地域エネルギー管理装置に送り、前記地域エネルギー管理装置は、発電機と蓄電池の運転計画を作成し、各サイトの電力供給量(修正した電力需要)をエネルギー管理装置に送り、前記エネルギー管理装置は、当該サイト内の電力供給量(修正した電力需要)と熱需要を満たすように発電機、蓄電池、熱源機の運転計画を作成することを特徴とするマイクログリッドの運転計画装置。 The operation planning apparatus for a microgrid according to claim 1, wherein the energy management apparatus at each site creates an operation plan for performing exhaust heat utilization operation so as to use more exhaust heat in the site. The regional energy management device creates an operation plan for a generator and a storage battery, sends the power supply amount (modified power demand) of each site to the energy management device, and the energy management device An operation planning device for a microgrid that creates an operation plan for a generator, a storage battery, and a heat source so as to satisfy the power supply amount (modified power demand) and heat demand in the site.
- 請求項2または請求項3に記載のマイクログリッドの運転計画装置であって、各サイトのエネルギー管理装が地域エネルギー管理装置に送る情報は、サイト内の排熱をより多く利用するように排熱利用運転したときの、各発電機、各時間の発電単価であることを特徴とするマイクログリッドの運転計画装置。 4. The operation planning device for a microgrid according to claim 2 or 3, wherein the information sent from the energy management device at each site to the local energy management device is exhaust heat so as to use more waste heat within the site. An operation planning device for a microgrid characterized by the unit price of power generation for each generator and each hour when used.
- 請求項2または請求項3に記載のマイクログリッドの運転計画装置であって、各サイトのエネルギー管理装が地域エネルギー管理装置に送る情報は、サイト内の排熱をより多く利用するように排熱利用運転したときの、各発電機、各時間の排熱利用と排熱未利用の出力範囲および燃料消費特性であることを特徴とするマイクログリッドの運転計画装置。 4. The operation planning device for a microgrid according to claim 2 or 3, wherein the information sent from the energy management device at each site to the local energy management device is exhaust heat so as to use more waste heat within the site. An operation planning device for a microgrid characterized by the output range and fuel consumption characteristics of each generator, exhaust heat use and exhaust heat unused at each time of use operation.
- 発電機と熱源機器を備えて需要家に電力と熱を供給するマイクログリッドの運転計画方法であって、
熱源機から熱配管を介して熱エネルギーが供給可能な範囲をひとつのサイトとみなし、各サイトのエネルギーを管理するエネルギー管理処理と、各サイトのエネルギー管理処理結果を連携する地域エネルギー管理処理の2階層構成処理とすることを特徴とする特徴とするマイクログリッドの運転計画方法。 An operation planning method for a microgrid equipped with a generator and a heat source device to supply power and heat to consumers,
The energy management process that manages the energy of each site and the energy management process result of each site that links the energy management process results are considered as one site. An operation planning method for a microgrid characterized by a hierarchical configuration process. - 請求項6に記載のマイクログリッドの運転計画方法であって、
各サイトの前記エネルギー管理処理では、当該サイト内の排熱をより多く利用するように排熱利用運転するときの運転計画を作成し、前記地域エネルギー管理処理では、排熱をより多く利用するように排熱利用運転するときの前記運転計画を用いて発電機と蓄電池の運転計画を作成し、前記エネルギー管理処理では、発電機と蓄電池の前記運転計画を用いて当該サイト内の熱需要を満たすように熱源機の運転計画を作成することを特徴とするマイクログリッドの運転計画方法。 The microgrid operation planning method according to claim 6,
In the energy management process at each site, an operation plan for exhaust heat utilization operation is created so as to use more exhaust heat in the site, and in the local energy management process, more exhaust heat is used. The operation plan for the generator and the storage battery is created using the operation plan when the operation using exhaust heat is performed, and the energy management process satisfies the heat demand in the site using the operation plan for the generator and the storage battery. An operation plan method for a microgrid characterized by creating an operation plan for a heat source machine. - 請求項6に記載のマイクログリッドの運転計画方法であって、
各サイトのエネルギー管理処理では、当該サイト内の排熱をより多く利用するように排熱利用運転するときの運転計画を作成し、前記地域エネルギー管理装置では、排熱をより多く利用するように排熱利用運転するときの前記運転計画を用いて発電機と蓄電池の運転計画を作成して各サイトの電力供給量(修正した電力需要)を得、前記エネルギー管理処理では、当該サイト内の前記電力供給量(修正した電力需要)と熱需要を満たすように発電機、蓄電池、熱源機の運転計画を作成することを特徴とするマイクログリッドの運転計画方法。 The microgrid operation planning method according to claim 6,
In the energy management process at each site, create an operation plan for exhaust heat utilization operation so as to use more exhaust heat in the site, and the regional energy management device uses more exhaust heat. The operation plan for the generator and the storage battery is created using the operation plan when operating using exhaust heat to obtain the power supply amount (corrected power demand) of each site. In the energy management process, An operation planning method for a microgrid characterized in that an operation plan for a generator, a storage battery, and a heat source device is created so as to satisfy a power supply amount (corrected power demand) and a heat demand. - 請求項7または請求項8に記載のマイクログリッドの運転計画方法であって、
各サイトのエネルギー管理処理が前記地域エネルギー管理処理に与える情報は、サイト内の排熱をより多く利用するように排熱利用運転したときの、各発電機、各時間の発電単価であることを特徴とするマイクログリッドの運転計画方法。 A microgrid operation planning method according to claim 7 or claim 8,
The information that the energy management process at each site gives to the local energy management process is the unit price of power generation for each generator and each hour when the waste heat operation is performed so as to use more waste heat in the site. A characteristic microgrid operation planning method. - 請求項7または請求項8に記載のマイクログリッドの運転計画方法であって、各サイトのエネルギー管理処理が前記地域エネルギー管理処理に与える情報は、サイト内の排熱をより多く利用するように排熱利用運転したときの、各発電機、各時間の排熱利用と排熱未利用の出力範囲および燃料消費特性であることを特徴とするマイクログリッドの運転計画方法。 9. The operation planning method for a microgrid according to claim 7 or 8, wherein the information given to the local energy management process by the energy management process at each site is exhausted so as to use more exhaust heat in the site. An operation planning method for a microgrid, characterized by the output range and fuel consumption characteristics of each generator, exhaust heat use and exhaust heat unused at each time when operating using heat.
- 複数のサイトが電力系統に接続されるとともに、前記サイト内に発電機と熱源機器を備えて当該サイト内の需要家に電力と熱を供給するマイクログリッドの運転計画装置であって、
前記サイト内の電力と熱を管理するエネルギー管理装置と、該エネルギー管理装置から各サイトにおける電力と熱の情報を得てマイクログリッド全体としての電力の配分を決定する地域エネルギー管理装置を備え、
前記エネルギー管理装置は、当該サイト内における電力と熱の需給計画、並びに当該サイト内の排熱をより多く利用するように排熱利用運転するときの運転計画を作成して前記地域エネルギー管理装置に送り、
前記地域エネルギー管理装置は、前記排熱利用運転により発電量が増加したサイトの電力を他のサイトに融通する電力の需給計画を作成し、
前記エネルギー管理装置は、前記地域エネルギー管理装置から提示された前記電力の需給計画と熱の需給計画を検証して当該サイト内の需要家に供給する電力と熱を定めることを特徴とするマイクログリッドの運転計画装置。 A plurality of sites are connected to an electric power system, and are an operation planning device for a microgrid that includes a generator and a heat source device in the site and supplies electric power and heat to consumers in the site,
An energy management device for managing power and heat in the site, and a regional energy management device for determining power distribution as a whole microgrid by obtaining information on power and heat at each site from the energy management device;
The energy management device creates a supply and demand plan for electric power and heat in the site, and an operation plan for operation using exhaust heat so as to use more exhaust heat in the site. Send,
The regional energy management device creates a power supply and demand plan for accommodating the power of the site whose power generation amount has increased by the exhaust heat utilization operation to other sites,
The energy management device verifies the power supply and demand plan and the heat supply and demand plan presented by the regional energy management device, and determines the power and heat to be supplied to consumers in the site. Operation planning equipment. - 請求項11に記載のマイクログリッドの運転計画装置であって、
前記サイト内には、再生可能エネルギーシステムを有しており、前記地域エネルギー管理装置は、前記エネルギー管理装置から得る各サイトにおける電力の情報として、当該サイトの電力需要予測から前記再生可能エネルギーシステムによる電力需要予測を差し引いた正味の電力予測需要を得ることを特徴とするマイクログリッドの運転計画装置。 The operation planning device for a microgrid according to claim 11,
The site has a renewable energy system, and the local energy management device uses the renewable energy system based on the power demand prediction of the site as information on power at each site obtained from the energy management device. An operation planning device for a microgrid characterized in that it obtains a net predicted power demand minus a predicted power demand. - 請求項11または請求項12に記載のマイクログリッドの運転計画装置であって、
前記エネルギー管理装置は、一次エネルギーコストと発電単価の情報を有し、当該サイト内を前記排熱利用運転とするときの運転計画には前記発電単価の情報を含むことを特徴とするマイクログリッドの運転計画装置。 The operation planning device for a microgrid according to claim 11 or 12,
The energy management device has information on primary energy costs and unit price of power generation, and the operation plan when the site uses the exhaust heat utilization operation includes information on the unit price of power generation. Operation planning device. - 請求項13に記載のマイクログリッドの運転計画装置であって、
前記地域エネルギー管理装置は、前記排熱利用運転により発電量が増加したサイトの電力を他のサイトに融通する電力の需給計画を作成するときに、前記エネルギー管理装置による前記発電単価の情報を考慮して総費用を最小とする計画を立案することを特徴とするマイクログリッドの運転計画装置。 The operation planning device for a microgrid according to claim 13,
The regional energy management device takes into account the information on the unit price of power generation by the energy management device when creating a power supply and demand plan that allows the power of the site whose power generation amount has increased due to the operation using exhaust heat to be exchanged with other sites. A microgrid operation planning device characterized in that a plan that minimizes the total cost is made. - 請求項11から請求項14のいずれか1項に記載のマイクログリッドの運転計画装置であって、
前記地域エネルギー管理装置は、前記エネルギー管理装置が検証した前記電力の需給計画と熱の需給計画からエネルギーコストを評価し、最終的に発電機と熱源機器の運転計画として前記エネルギー管理装置に渡すことを特徴とするマイクログリッドの運転計画装置。 The operation planning device for a microgrid according to any one of claims 11 to 14,
The local energy management device evaluates energy costs from the power supply and demand plan and heat supply and demand plan verified by the energy management device, and finally passes them to the energy management device as an operation plan for a generator and a heat source device. A microgrid operation planning device characterized by - 複数のサイトが電力系統に接続されるとともに、前記サイト内に発電機と熱源機器を備えて当該サイト内の需要家に電力と熱を供給するマイクログリッドの運転計画方法であって、
各サイト内における電力と熱の需給計画と、当該サイト内の排熱をより多く利用するように排熱利用運転するときの運転計画を作成し、前記排熱利用運転により発電量が増加したサイトの電力を他のサイトに融通する電力の需給計画を作成し、融通する電力の需給計画に応じて各サイトが運用されることを特徴とするマイクログリッドの運転計画方法。 A plurality of sites are connected to a power system, and a microgrid operation planning method for supplying power and heat to consumers in the site by including a generator and a heat source device in the site,
Sites where power and heat supply and demand plans within each site and operation plans for operation using exhaust heat so as to use more exhaust heat within the site have been created, and the amount of power generation has increased due to the operation using exhaust heat A method for planning operation of a microgrid characterized in that a power supply and demand plan is prepared to accommodate the electricity of other sites to other sites, and each site is operated in accordance with the electricity supply and demand plan to be accommodated. - 請求項16に記載のマイクログリッドの運転計画方法であって、
前記サイト内には、再生可能エネルギーシステムを有しており、前記電力の需給計画は、当該サイトの電力需要予測から前記再生可能エネルギーシステムによる電力需要予測を差し引いた正味の電力需要予測とされることを特徴とするマイクログリッドの運転計画方法。 The microgrid operation planning method according to claim 16,
The site has a renewable energy system, and the power supply and demand plan is a net power demand forecast obtained by subtracting the power demand forecast by the renewable energy system from the power demand forecast of the site. A microgrid operation planning method characterized by the above. - 請求項16または請求項17に記載のマイクログリッドの運転計画方法であって、
前記融通する電力の需給計画算出に当たりサイト内を前記排熱利用運転とするときの発電単価の情報が考慮されることを特徴とするマイクログリッドの運転計画方法。 A microgrid operation planning method according to claim 16 or claim 17,
An operation planning method for a microgrid characterized in that information on a unit price of power generation when the exhaust heat utilization operation is performed in a site is taken into account in calculating the supply and demand plan of the power to be accommodated. - 複数のサイトが電力系統に接続されるとともに、前記サイト内に発電機と熱源機器を備えて当該サイト内の需要家に電力と熱を供給するマイクログリッドの運転計画装置で使用され、前記サイト内の電力と熱を管理するエネルギー管理装置から各サイトにおける電力と熱の情報を得てマイクログリッド全体としての電力の配分を決定する地域エネルギー管理装置であって、
地域エネルギー管理装置は、前記エネルギー管理装置から当該サイト内における電力と熱の需給計画、並びに当該サイト内の排熱をより多く利用するように排熱利用運転するときの運転計画を得て、前記排熱利用運転により発電量が増加したサイトの電力を他のサイトに融通する電力の需給計画を作成して、前記エネルギー管理装置に与えることを特徴とするマイクログリッドの運転計画装置で使用される地域エネルギー管理装置。 A plurality of sites are connected to a power system, and are used in an operation planning device for a microgrid that includes a generator and a heat source device in the site and supplies power and heat to consumers in the site. A regional energy management device that obtains power and heat information at each site from an energy management device that manages the power and heat of the site and determines the distribution of power as a whole microgrid,
The local energy management device obtains an electric power and heat supply and demand plan in the site from the energy management device, and an operation plan for exhaust heat utilization operation so as to use more exhaust heat in the site. Used in a microgrid operation planning device characterized in that a power supply and demand plan is prepared to allow the power of a site whose power generation amount has increased due to the operation using exhaust heat to be passed to another site, and is supplied to the energy management device. Regional energy management device. - 複数のサイトが電力系統に接続されるとともに、前記サイト内に発電機と熱源機器を備えて当該サイト内の需要家に電力と熱を供給するマイクログリッドの運転計画装置で使用され、前記サイト内の電力と熱を管理するエネルギー管理装置であって、
前記エネルギー管理装置は、当該サイト内における電力と熱の需給計画、並びに当該サイト内の排熱をより多く利用するように排熱利用運転するときの運転計画を作成して前記地域エネルギー管理装置に送り、
前記地域エネルギー管理装置が作成した、前記排熱利用運転により発電量が増加したサイトの電力を他のサイトに融通する電力の需給計画を得て、前記電力の需給計画と熱の需給計画を検証して当該サイト内の需要家に供給する電力と熱を定めることを特徴とするマイクログリッドの運転計画装置で使用されるエネルギー管理装置。 A plurality of sites are connected to a power system, and are used in an operation planning device for a microgrid that includes a generator and a heat source device in the site and supplies power and heat to consumers in the site. An energy management device for managing the power and heat of
The energy management device creates a supply and demand plan for electric power and heat in the site, and an operation plan for operation using exhaust heat so as to use more exhaust heat in the site. Send,
Obtain a power supply and demand plan created by the regional energy management device that allows the power of the site whose power generation amount has increased due to the operation using exhaust heat to other sites, and verify the power supply and demand plan and the heat supply and demand plan An energy management device used in an operation planning device for a microgrid characterized in that electric power and heat supplied to consumers in the site are determined.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-088955 | 2016-04-27 | ||
JP2016088955A JP2017200311A (en) | 2016-04-27 | 2016-04-27 | Operation planning device and method for micro grid, areal energy management system for use in operation planning device for micro grid, and energy management system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017188083A1 true WO2017188083A1 (en) | 2017-11-02 |
Family
ID=60160399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/015692 WO2017188083A1 (en) | 2016-04-27 | 2017-04-19 | Operation planning device and method for microgrid, and regional energy management device and energy management device used by operation planning device for microgrid |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP2017200311A (en) |
WO (1) | WO2017188083A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117540584A (en) * | 2024-01-09 | 2024-02-09 | 四川大学 | Toughness improving method for electrothermal communication system under endogenous uncertainty and nonlinear reconstruction |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017200311A (en) * | 2016-04-27 | 2017-11-02 | 株式会社日立製作所 | Operation planning device and method for micro grid, areal energy management system for use in operation planning device for micro grid, and energy management system |
JP2021065041A (en) * | 2019-10-15 | 2021-04-22 | 株式会社豊田中央研究所 | Energy system optimization device |
CN112928753B (en) * | 2021-02-03 | 2023-01-06 | 东北电力大学 | Active splitting control method for multi-energy cooperative power distribution network |
JPWO2023073863A1 (en) * | 2021-10-28 | 2023-05-04 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003319562A (en) * | 2002-04-23 | 2003-11-07 | Sanyo Electric Co Ltd | Management system for energy consumer |
JP2007143364A (en) * | 2005-11-22 | 2007-06-07 | Osaka Gas Co Ltd | Power grid system |
JP2014174769A (en) * | 2013-03-08 | 2014-09-22 | Toshiba Corp | Energy controller, control method and control program |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006158189A (en) | 2004-11-04 | 2006-06-15 | Tokyo Electric Power Co Inc:The | Cost minimization power control system using combination of electric power transaction and distributed power supply |
JP2015050826A (en) | 2013-08-30 | 2015-03-16 | 大阪瓦斯株式会社 | Demand response system |
JP2017200311A (en) | 2016-04-27 | 2017-11-02 | 株式会社日立製作所 | Operation planning device and method for micro grid, areal energy management system for use in operation planning device for micro grid, and energy management system |
-
2016
- 2016-04-27 JP JP2016088955A patent/JP2017200311A/en active Pending
-
2017
- 2017-04-19 WO PCT/JP2017/015692 patent/WO2017188083A1/en active Application Filing
-
2021
- 2021-07-12 JP JP2021114853A patent/JP7181350B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003319562A (en) * | 2002-04-23 | 2003-11-07 | Sanyo Electric Co Ltd | Management system for energy consumer |
JP2007143364A (en) * | 2005-11-22 | 2007-06-07 | Osaka Gas Co Ltd | Power grid system |
JP2014174769A (en) * | 2013-03-08 | 2014-09-22 | Toshiba Corp | Energy controller, control method and control program |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117540584A (en) * | 2024-01-09 | 2024-02-09 | 四川大学 | Toughness improving method for electrothermal communication system under endogenous uncertainty and nonlinear reconstruction |
CN117540584B (en) * | 2024-01-09 | 2024-03-29 | 四川大学 | Toughness improving method for electrothermal communication system under endogenous uncertainty and nonlinear reconstruction |
Also Published As
Publication number | Publication date |
---|---|
JP2021168595A (en) | 2021-10-21 |
JP2017200311A (en) | 2017-11-02 |
JP7181350B2 (en) | 2022-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sameti et al. | Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation | |
JP7181350B2 (en) | Microgrid operation planning device and method, and regional energy management device and energy management device used in microgrid operation planning device | |
Wu et al. | Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers | |
Huang et al. | Optimal configuration planning of multi-energy systems considering distributed renewable energy | |
Hu et al. | Enhanced evolutionary multi-objective optimization-based dispatch of coal mine integrated energy system with flexible load | |
Wu et al. | Multi-objective optimization of a distributed energy network integrated with heating interchange | |
Ameri et al. | Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex | |
Zheng et al. | Techno-economic performance analysis of synergistic energy sharing strategies for grid-connected prosumers with distributed battery storages | |
Yu et al. | A bi-level scheduling strategy for integrated energy systems considering integrated demand response and energy storage co-optimization | |
Vand et al. | Optimal management of energy sharing in a community of buildings using a model predictive control | |
Mohamed et al. | System modelling and online optimal management of microgrid using multiobjective optimization | |
CN107784410B (en) | Regional energy Internet integrated system and method for optimizing configuration and operation thereof | |
Daneshvar et al. | A novel transactive energy trading model for modernizing energy hubs in the coupled heat and electricity network | |
WO2014136341A1 (en) | Energy management system, energy management method, program, and server | |
JP2018036926A (en) | Micro grid operation scheduling system and method | |
CN107784382A (en) | User side energy internet planing method based on energy source router | |
Ren et al. | Optimal design and management of distributed energy network considering both efficiency and fairness | |
CN106055773A (en) | Establishment method of configuration model of multi-regional comprehensive energy system in combination with thermal network model | |
Seyyedi et al. | A non-linear resilient-oriented planning of the energy hub with integration of energy storage systems and flexible loads | |
Salehimaleh et al. | A shrinking-horizon optimization framework for energy hub scheduling in the presence of wind turbine and integrated demand response program | |
Tian et al. | Robust optimal energy management of data center equipped with multi-energy conversion technologies | |
Marguerite et al. | Multi-criteria analysis of storages integration and operation solutions into the district heating network of Aarhus–A simulation case study | |
Li et al. | Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage | |
Teng et al. | A novel economic analyzing method for CCHP systems based on energy cascade utilization | |
Peng et al. | An IGDT-based a low-carbon dispatch strategy of urban integrated energy system considering intermittent features of renewable energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17789368 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17789368 Country of ref document: EP Kind code of ref document: A1 |