[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017188041A1 - Drop-release device - Google Patents

Drop-release device Download PDF

Info

Publication number
WO2017188041A1
WO2017188041A1 PCT/JP2017/015434 JP2017015434W WO2017188041A1 WO 2017188041 A1 WO2017188041 A1 WO 2017188041A1 JP 2017015434 W JP2017015434 W JP 2017015434W WO 2017188041 A1 WO2017188041 A1 WO 2017188041A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport container
fixed
bottom plate
dropping device
shaft
Prior art date
Application number
PCT/JP2017/015434
Other languages
French (fr)
Japanese (ja)
Inventor
紀代一 菅木
Original Assignee
株式会社プロドローン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロドローン filed Critical 株式会社プロドローン
Publication of WO2017188041A1 publication Critical patent/WO2017188041A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/02Dropping, ejecting, or releasing articles
    • B64D1/08Dropping, ejecting, or releasing articles the articles being load-carrying devices
    • B64D1/12Releasing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/45UAVs specially adapted for particular uses or applications for releasing liquids or powders in-flight, e.g. crop-dusting
    • B64U2101/47UAVs specially adapted for particular uses or applications for releasing liquids or powders in-flight, e.g. crop-dusting for fire fighting

Definitions

  • the present invention relates to a vertical dropping device, and more particularly, to a technique for dropping a dropped object vertically downward from a small unmanned airplane having a plurality of rotor blades.
  • Multicopter is a type of helicopter equipped with multiple rotors, and it flies while balancing the aircraft by adjusting the rotational speed of each rotor. Since the multicopter has a simple structure unlike the helicopter, it has excellent maintainability, and the aircraft can be configured at a relatively low cost.
  • Patent Document 1 discloses an apparatus for dropping a fire extinguisher made of water or chemicals from a helicopter on which a pilot is boarded to a fire spot.
  • the extinguishing agent dropping device of Patent Document 1 includes an infrared camera attached to a helicopter so as to face downward and a laser distance measuring device attached so as to face directly below, and the output of the laser ranging device and the helicopter The extinguishing agent is automatically dropped when the arrival point of the extinguishing agent calculated from the flight speed coincides with the infrared radiation point of the fire captured by the infrared camera.
  • the fire extinguishing agent dropping device of Patent Document 1 is arranged such that an infrared camera for photographing a fire point faces the lower front of the helicopter (Claim 1). This means that the extinguishing agent dropping device of Patent Document 1 is based on the idea of dropping the extinguishing agent in a parabolic shape while flying the helicopter. Moreover, since the extinguishing agent dropped by the extinguishing agent dropping device of Patent Document 1 is water or chemicals (Claim 1), it is estimated that the dropped extinguishing agent diffuses widely.
  • the problem to be solved by the present invention is to provide a vertical dropping device capable of dropping a dropped object vertically downward from a small unmanned airplane to a target point.
  • a vertical dropping device of the present invention includes a small unmanned airplane including a plurality of rotor blades, a transport container that can store and drop a dropped object, and an actuator that operates the transport container.
  • the transport container is fixed to the lower part of the small unmanned aerial vehicle so that it cannot move relative to each other, and the bottom part of the transport container is composed of two bottom plate parts arranged side by side in the width direction.
  • each bottom plate portion is inclined downward at the same inclination angle from the rear end toward the front end.
  • the two bottom plate portions can be developed simultaneously and in a symmetrical locus.
  • Two bottom plate parts constituting the bottom of the transport container in a state where the transport container that can be deployed at the bottom is fixed to a small unmanned airplane having a plurality of rotor blades and the small unmanned airplane is hovered directly above the target point are deployed in a simultaneous and symmetrical locus, the dropped object accommodated in the transport container can be dropped vertically downward.
  • the dropped object in the transport container can be stably placed around the boundary line of these bottom plate portions, and the bottom portion is developed. It is possible to prevent the dropped article from rolling down from one of the half cylinders.
  • the swing of the transport container during hovering can be minimized.
  • the transport container has a main body having a cylindrical outer shape when the bottom is closed, and two lids that close the openings at both ends of the main body, and the main body is either Two half cylinders divided into left and right when viewed from the opening, the lower half of the two half cylinders constitutes the bottom, and the upper end of each half cylinder is the
  • the fixed shaft which is a common shaft body arranged in parallel with the upper end portion, is supported so as to be rotatable along the circumferential direction of the fixed shaft, and the two half cylinders are symmetrical at the same time. It is preferable that development is possible with a locus.
  • the main body has a rectangular tube-shaped outer shape when the bottom is closed, and each of the half cylinders has an L-shaped cross section viewed from one of the openings, and the two bottom plates It is preferable that convex teeth that are alternately provided along the longitudinal direction are formed at the tip of the portion, and the teeth of the two bottom plate portions are meshed when the bottom is closed.
  • the main body portion is constituted by two half cylinders having a L-shaped cross section, and the tooth portions provided at the tips of the bottom plate portions mesh with each other, so that the bending rigidity of the main body portion in each plane direction is enhanced. .
  • the transport container further includes a synchronization mechanism that synchronizes opening and closing operations of the two half cylinders, and the synchronization mechanism includes a fixed link piece and two movable link pieces that are link pieces in which elongated holes are formed. And a movable shaft that is a common shaft inserted through the long holes of all the link pieces, the fixed link piece is on the fixed shaft, and the two movable link pieces are on the half cylinders.
  • Each of the fixed link pieces is disposed at an angle in which the elongated hole extends in the vertical direction, and each movable link piece includes the movable shaft of the elongated hole. It is preferable that they are disposed at a symmetrical angle with respect to the fixed link piece so that only the inserted portion overlaps the elongated hole of the fixed link piece.
  • the opening and closing angles of the two half-cylinders are determined in a unified manner by the position of the movable shaft in the long hole of the fixed link.
  • the other half cylinder is also opened and closed in synchronization with the operation, and the opening and closing timing, opening and closing speed, and opening and closing angle of these two half cylinders are synchronized. Structurally secured.
  • each movable link piece is arranged between the two fixed link pieces in the axial direction. It is preferable that
  • the actuator is connected to only one of the two half cylinders.
  • Only one of the half cylinders is opened and closed by the actuator, and the other half cylinder is configured to follow the operation of the one half cylinder by the synchronization mechanism.
  • the bottom plate part can be opened and closed simultaneously and in a symmetrical locus.
  • At least one of the two lid bodies is a rotary lid supported on the fixed shaft so as to be rotatable in the circumferential direction around the fixed shaft, and the rotary lid is formed by an elastic member.
  • the rotating lid is always urged toward the main body, the rotation of the rotating lid is restricted at a position where the opening is closed, and the rotating lid is separated from the transport container against the urging force of the elastic member. It is preferable that the rotation is possible.
  • the dropped object When storing the dropped object in the transport container, if it is necessary to open the semi-cylinder of the transport container and store the dropped object, either work by turning the small unmanned airplane upside down or remove the transport container from the small unmanned airplane. Have to work.
  • the transport container is provided with the rotating lid, the dropped object can be accommodated in the transport container from the opening in which the rotating lid is opened, and the dropped object can be stored efficiently.
  • a camera that faces vertically downward when the bottom is closed is disposed on the bottom.
  • the dropped object accommodated in the transport container is dropped vertically below the bottom as the bottom develops.
  • a camera that shoots vertically below the bottom of the transport container allows the operator to adjust the airborne position of the small unmanned airplane while confirming the drop position of the dropped object from the image taken by the camera. It becomes. Thereby, the hit accuracy of the dropped object can be remarkably improved.
  • the vertical dropping device As described above, according to the vertical dropping device according to the present invention, it is possible to drop a dropped object vertically from a small unmanned airplane to a target point.
  • the vertical drop device of the present embodiment is a device that moves to a fire point by remote control by wireless communication and drops a fire bomb vertically downward from the sky to the fire point.
  • FIG. 1 is a perspective view showing an appearance of a vertical dropping device 90 according to the present embodiment.
  • the vertical dropping device 90 is mainly composed of a multicopter 91 which is a small unmanned airplane including a plurality of rotor blades 911 and a transport container 92 fixed to the lower part thereof so as not to be relatively movable.
  • the multicopter 91 moves to a position directly above the fire point according to the operator's instruction, and expands the transport container 92 in the air while hovering, so that a spherical fire extinguisher 93 (dropped object) accommodated in the transport container 92 is obtained. To the fire point.
  • “relatively impossible” means that the multicopter 91 and the transport container 92 are integrally connected by a non-deformable member, and there is no room for each to move independently. Thereby, the swinging of the transport container 92 during the hovering of the multicopter 91 is minimized.
  • the multicopter 91 in this embodiment is provided with the six rotary blades 911, the number of the rotary blades 911 may be four.
  • FIG. 2 is a block diagram showing a functional configuration of the vertical dropping device 90.
  • the multicopter 91 is mainly composed of a flight controller 83 that controls the attitude and flight operation of the multicopter 91 in the air, a plurality of rotor blades 911 that generate lift by rotating the multicopter 91, and a pilot (transceiver 81).
  • a transmitter / receiver 82 that performs wireless communication with the battery
  • a battery 84 that supplies electric power thereto.
  • the flight controller 83 includes a control device 831 that is a microcontroller.
  • the control device 831 includes a CPU that is a central processing unit, a RAM / ROM that is a storage device, and a PWM controller that controls the DC motor 86.
  • the DC motor 86 is a plurality of outer rotor type DC brushless motors, and a rotary blade 911 is attached to the output shaft of each DC motor 86.
  • An ESC (Electric Speed Controller) 85 is disposed for each DC motor 86 and controls the rotational speed of each DC motor 86 based on an instruction from the PWM controller.
  • the flight controller 83 includes a sensor group 832 and a GPS receiver 833, which are connected to the control device 831.
  • the sensor group 832 of the multicopter 91 includes an acceleration sensor, a gyro sensor (angular velocity sensor), an atmospheric pressure sensor, a geomagnetic sensor (electronic compass), and the like.
  • the RAM / ROM of the control device 831 stores a flight control program in which a flight control algorithm during the flight of the multicopter 91 is implemented.
  • the control device 831 uses the information acquired from the sensor group 832 to control the attitude of the multicopter 91 with a flight control program.
  • the flight operation of the multicopter 91 may be performed manually by the operator, or an autonomous flight program in which a flight plan such as GPS coordinates, altitude, flight route, etc. is parameterized is separately implemented and allowed to fly autonomously. Also good.
  • Servo 70 (actuator) that is a drive source for opening and closing the transport container 92 is disposed in the transport container 92.
  • the servo 70 is connected to the PWM controller of the control device 831.
  • the drop control program registered in the RAM / ROM of the control device 831 operates the servo 70 according to an instruction from the operator (transmitter / receiver 81) to open and close the transport container 92.
  • the unfolding operation of the transport container 92 by the servo 70 may be automatically performed on condition that, for example, the multicopter 91 has arrived at a preset coordinate position.
  • FIGS. 3 is a perspective view of the transport container 92
  • FIG. 4 is a front view of the transport container 92
  • the transport container 92 mainly includes a main body 20 having a rectangular tube-shaped outer shape, a lid 30 that is two rectangular plate-like members that block openings at both ends of the main body 20, and a drive that opens and closes the main body 20.
  • the main body 20 has a right half cylinder 21 and a left half cylinder 22 which are two half cylinders divided into left and right when viewed from any opening of the main body 20, and these half cylinders 21. , 22 each have a L-shaped cross section viewed from the opening (see FIG. 6).
  • the right bottom plate portion 21a and the left bottom plate portion 22a which are lower halves of the right half cylinder body 21 and the left half cylinder body 22, constitute the bottom portion 20a of the transport container 92.
  • the upper surfaces of the bottom plate portions 21a and 22a are the rear ends. It is inclined downward at the same inclination angle from the tip to the tip.
  • convex tooth portions 21d and 22d provided alternately along the longitudinal direction are formed at the tips of the bottom plate portions 21a and 22a, and these tooth portions 21d and 22d are closed on the bottom portion 20a. Sometimes they are engaged with each other.
  • the inclination angle of the bottom plate portions 21a and 22a is 45 degrees.
  • the inclination angle is determined on the condition that the two bottom plate portions have the same inclination angle. You may change suitably according to a magnitude
  • each semi-cylinder body 21 and 22 in this embodiment is formed in an L-shaped cross section, and a tooth part in the front-end
  • Each semi-cylindrical body may have a semicircular or polygonal cross section depending on the shape and size of the dropped object, provided that the semi-cylindrical body has a cylindrical shape when the bottom is closed.
  • the upper surfaces of the bottom plate portions 21a and 22a do not have to be flat surfaces, and there are curved surfaces or a plurality of flat surfaces whose inclination angles are gradually reduced from the rear end toward the front end (approaching the horizontal angle stepwise). It may be a continuous surface.
  • the fixed shaft 40 which is a common shaft body arranged in parallel with these upper end portions is provided at the upper end portions of the half cylinders 21 and 22.
  • connecting pieces 21c, 22c made of three plate-like members are located at both ends in the longitudinal direction of each half cylinder 21, 22 and the center thereof. Each is arranged.
  • the upper end portions of the half cylinders 21 and 22 are rotatably supported on the fixed shaft 40 by the connecting pieces 21c and 22c. Since the two half cylinders 21 and 22 are rotatably supported by one fixed shaft 40, the structure of the main body portion 20 is simplified and the unfolding operation of the half cylinders 21 and 22 is reduced. It is easy to control in places.
  • a plate-like member that extends to the lower end surrounding the corners of the half cylinders 21 and 22 at the same position as the connecting pieces 21c and 22c in the longitudinal direction thereof.
  • the reinforcing ribs 21b and 22b are provided, and the rigidity of the half cylinders 21 and 22 is reinforced by the reinforcing ribs 21b and 22b.
  • the fixing unit 50 of the present embodiment includes an arm portion 52, a rod-like body 51, a horizontal plate 53, and a servo fixing plate 54 described below.
  • the arm portion 52 is two plate-like members fixed to both end portions in the axial direction of the fixed shaft 40, and has two pieces extending obliquely upward and leftward to the left and right with the fixed shaft 40 as a base end. It has an arm part.
  • the rod-shaped body 51 is two round pipes arranged in parallel with the axial direction of the fixed shaft 40, and both ends thereof are supported by the front ends of the arm portions 52 of the front and rear arms 52, respectively.
  • the horizontal plate 53 is two plate-like members that are arranged behind the rod-like bodies 51 and connect the rod-like bodies 51 in a direction orthogonal to the axial direction.
  • the servo fixing plate 54 is a plate-like member that is disposed in the middle of the horizontal plate 53 in the longitudinal direction so that the end surface faces the longitudinal direction.
  • the position of the servo 70 is fixed by being attached to the servo fixing plate 54.
  • the fixing unit 50 may be any unit as long as it can fix the transport container 92 to the lower portion of the multicopter 91 so as not to be relatively movable, and can be appropriately changed according to the outer shape of the multicopter 91.
  • the servo 70 is a drive source that opens and closes the transport container 92 as described above.
  • An arm portion 71 that extends radially outward is attached to the output shaft of the servo 70.
  • the arm portion 71 (and the output shaft) rotates in the vertical direction within a predetermined angle range in response to an instruction from the multicopter 91.
  • the distal end of the arm part 71 is connected to the right half cylinder 21 via the connecting shaft 72, whereby the right half cylinder 21 rotates in the opening direction and the closing direction in conjunction with the vertical movement of the arm part 71.
  • the left half cylinder 22 is rotated in the opening direction and the closing direction in conjunction with the operation of the right half cylinder 21 by a synchronization mechanism 60 described later.
  • Both ends of the connecting shaft 72 are connected to the tip of the arm portion 71 and the connecting piece 21c on the rear side of the right half cylinder 21 by ball joints. Furthermore, the shaft body of the connecting shaft 72 is formed by connecting two halves divided at the center in the axial direction so as to be rotatable in the circumferential direction, whereby the ball joints at both ends can be relatively rotated in the circumferential direction. It is said that. Due to the connecting shaft 72, the driving force of the servo 70 is converted from the vertical movement of the arm portion 71 about the output shaft of the servo 70 to the vertical movement of the right half cylinder 21 about the fixed shaft 40. To be transmitted.
  • the synchronization mechanism 60 includes a fixed link piece 61 and a movable link piece 62 which are flat link pieces in which long holes are formed along the longitudinal direction, and a common shaft body inserted through the long holes of all the link pieces.
  • the fixed link piece 61 is fixed to the fixed shaft 40, and the movable link piece 62 is fixed to the vicinity of the upper end of the outer peripheral surfaces of the half cylinders 21 and 22, respectively.
  • the fixed link piece 61 includes a front fixed link piece 611 and a rear fixed link piece 612 that are arranged at a predetermined interval along the axial direction of the fixed shaft 40.
  • the fixed link pieces 611 and 612 have their lengths.
  • the holes 611a and 612a (612a is not shown) are arranged at an angle extending in the vertical direction.
  • the right movable link piece 621 which is the movable link piece 62 of the right half cylinder 21, and the left movable link piece 622, which is the movable link piece 62 of the left half cylinder 22, are connected pieces 21c of the half cylinders 21, 22. , 22c is formed integrally with the half cylinders 21, 22 arranged at the center in the longitudinal direction. Thereby, the right movable link piece 621 and the left movable link piece 622 rotate in the circumferential direction of the fixed shaft 40 around the fixed shaft 40 when the half cylinders 21 and 22 are opened and closed.
  • the right movable link piece 621 and the left movable link piece 622 are disposed between the two fixed link pieces 611 and 612 in the axial direction of the fixed shaft 40.
  • Each of the movable link pieces 621 and 622 has a main body portion such that only the portion of the elongated holes 621a and 622a through which the movable shaft 63 is inserted overlaps the elongated holes 611a and 612a of the two fixed link pieces 611 and 612. They are arranged at symmetrical angles in 20 circumferential directions.
  • the lid body 30 is composed of two plate-like members having substantially the same shape as the opening of the main body portion 20, and these lid bodies 30 are rotatably supported at both ends of the fixed shaft 40.
  • the lid 30 includes a front rotary lid 31 disposed at the front end of the fixed shaft 40 and a rear rotary lid 32 disposed at the rear end.
  • the rotary lids 31 and 32 are elastic members.
  • the coil springs 311 and 321 are always biased toward the main body 20 side.
  • the front rotary lid 31 will be mainly described. However, the structure of the front rotary lid 31 described below is the same for the rear rotary lid 32.
  • a connecting piece 31 a having a hole through which the fixed shaft 40 is inserted is formed at the upper end of the front rotary lid 31.
  • the front rotary lid 31 is supported so as to be rotatable about the fixed shaft 40 in the circumferential direction by inserting the fixed shaft 40 through the connecting piece 31a.
  • a positioning protrusion 313 that is a protrusion protruding toward the connection piece 31 a is formed on the end face of the base end portion of the arm portion 52 on the connection piece 31 a side (the front rotation lid 31 side).
  • a positioning hole 312 in which the positioning protrusion 313 is fitted is formed at a portion of the connecting piece 31 a corresponding to the position where the positioning protrusion 313 is formed. Is formed.
  • the multicopter 91 is turned over together with the fuselage or the multicopter 91 is operated. It is necessary to remove the transfer container 92 from 91 and work. Since the transport container 92 includes the rotary lids 31 and 32, the fire extinguishing bullets 93 can be accommodated in the transport container 92 from the opening in which the rotary lids 31 and 32 are opened. Has been. In the present embodiment, both of the two lid bodies 30 are rotatable lids that can be opened and closed, but only one of these may be used as the rotary lid.
  • the multicopter 91 In the state where the multicopter 91 has landed, either one of the rotary lids 31 and 32 of the transport container 92 is opened, the fire bomb 93 is accommodated in the transport container 92, and the multicopter 91 is caused to fly to the fire point.
  • the flight to the fire point may be performed manually by the operator using the transceiver 81, or may be performed automatically by an autonomous flight program.
  • the multicopter 91 When the multicopter 91 arrives directly above the position where the fire bomb 93 is dropped at the fire point, the multi copter 91 is hovered at that position until the position of the fire bomb 93 within the transport container 92 is settled. Since the multicopter 91 is an unmanned airplane, there is no restriction for the purpose of ensuring the safety of the pilot regarding the approach to the fire point. Therefore, the multicopter 91 can be brought close to the fire point to the limit as long as the airframe does not deform or burn out.
  • the fire extinguishing bullet 93 Since the upper surfaces of the bottom plate portions 21a and 22a in the present embodiment are inclined surfaces that are entirely flat, and these inclined surfaces are inclined at the same inclination angle, the fire extinguishing bullet 93 has two bottom plate portions 21a and 22a. It is stably placed on the boundary line.
  • the drop control program read into the RAM of the control device 831 is sent to the servo 70 via the PWM controller in accordance with an instruction from the operator (transmitter / receiver 81). Send.
  • the servo 70 pulls the right half cylinder 21 upward through the arm portion 71 and the connecting shaft 72.
  • the right movable link piece 621 of the right half cylinder 21 tilts toward the left half cylinder 22 so that the angle of the elongated hole 621a approaches the horizontal position, thereby
  • the movable shaft 63 is pushed downward in the long holes 611a and 612a of the fixed link piece 61.
  • the left movable link piece 622 of the left half cylinder 22 is also interlocked with it so that the angle of the long hole 622a approaches the horizontal position. Tilt to the right half cylinder 21 side.
  • the two half cylinders 21 and 22 are developed simultaneously and symmetrically.
  • the opening / closing angles of the two half-cylinders 21 and 22 are determined in a unified manner by the position of the movable shaft 63 in the long holes 612 a and 622 a of the fixed link 61. Become. Thereby, when one of the two half cylinders 21 and 22 is opened and closed, the other half cylinder is also opened and closed in conjunction with the operation, and the opening and closing timing of these two half cylinders 21 and 22; The synchronization of the opening / closing speed and the opening / closing angle is structurally ensured.
  • the fire bomb 93 is prevented from rolling off from any of the bottom plate portions 21a and 22a when the bottom portion 20a is deployed.
  • the fire extinguishing bullet 93 accommodated in the transport container 92 can be dropped vertically downward.
  • the servo 70 is connected only to the right half cylinder 21, and the left half cylinder 22 is synchronized with the right half cylinder by the synchronization mechanism 60.
  • each of the half cylinders 21 and 22 may be provided with a servo 70, and the synchronization mechanism 60 may be omitted and a rotary encoder, for example, may be used. It is also possible to electronically control the synchronization of the two half cylinders 21 and 22 separately by feedback control or the like.
  • FIG. 8 is a perspective view showing an appearance of a vertical dropping device 90b according to another embodiment of the present invention
  • FIG. 9 is a block diagram showing a functional configuration of the vertical dropping device 90b.
  • components having the same or the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
  • the vertical drop device 90b is provided with a camera unit 88 that is directed vertically downward when the bottom portion 20a is closed on the right bottom plate portion 21a of the right half cylinder 21. Yes.
  • the operator can adjust the dropping position while visually confirming the position where the fire bullet 93 is expected to drop at the fire point with the video taken by the camera unit 88. Thereby, it is possible to remarkably improve the accuracy of hitting the fire bomb 93 during manual operation.
  • the vertical dropping devices 90 and 90b in the embodiment are used for dropping fire extinguishing bombs 93 to a fire point, but the dropped object of the vertical dropping device of the present invention is not limited to the fire extinguishing bomb 93, and its use is also fire. It is not limited to fire extinguishing.
  • the vertical dropping device of the present invention can be widely applied to a predetermined position on land or water in applications where it is necessary to drop solid matter from the sky with a certain degree of accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Toys (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

Provided is a drop-release device capable of drop-releasing a payload on a target location from a small unmanned aircraft. This drop-release device comprises a small unmanned aircraft equipped with a plurality of rotor blades, a carrier container which is capable of housing and dropping a payload, and an actuator for operating the carrier container, and this drop-release device is characterized in that: the carrier container is fixed to the bottom of the small unmanned aircraft so as to be immovable relative thereto; the bottom of the carrier container is composed of two bottom plates arranged side by side in the width direction thereof; the top faces of the bottom plates are inclined downwardly at the same inclination angle from the respective rear end thereof to the leading end, the leading end of each bottom plate being the end thereof toward the other bottom plate and the rear end being the end on the opposite side therefrom; and the two bottom plates can be opened simultaneously along a symmetric path.

Description

鉛直投下装置Vertical drop device
 本発明は鉛直投下装置に関し、さらに詳しくは、複数の回転翼を備える小型無人飛行機から投下物を鉛直下方に落下させる技術に関する。 The present invention relates to a vertical dropping device, and more particularly, to a technique for dropping a dropped object vertically downward from a small unmanned airplane having a plurality of rotor blades.
 従来、産業用無人ヘリコプターに代表される小型の無人航空機は、機体が高価で入手困難なうえ、安定して飛行させるためには操作に熟練が必要とされるものであった。しかし近年、無人航空機の姿勢制御や自律飛行に用いられるセンサ類およびソフトウェアの改良が大きく進み、これにより無人航空機の操作性が著しく向上するとともに、高性能な機体を安価に入手できるようになった。こうした背景から現在、特に小型のマルチコプターについては、趣味目的だけでなく、広範な分野における種々のミッションへの応用が試行されている。 Conventionally, small unmanned aerial vehicles represented by industrial unmanned helicopters have been expensive and difficult to obtain and require skill to operate in order to fly stably. However, in recent years, improvements in sensors and software used for unmanned aerial vehicle attitude control and autonomous flight have made significant progress, and this has significantly improved the operability of unmanned aircraft and made it possible to obtain high-performance aircraft at low cost. . From such a background, the application of a small multi-copter to various missions in a wide range of fields is now being tried, not only for hobby purposes.
 マルチコプターは複数のロータが搭載されたヘリコプターの一種であり、これら各ロータの回転速度を調節することにより機体のバランスをとりながら飛行する。マルチコプターはヘリコプターと異なり簡易な構造であることから、整備性に優れており、また、比較的低いコストで機体を構成することが可能である。 Multicopter is a type of helicopter equipped with multiple rotors, and it flies while balancing the aircraft by adjusting the rotational speed of each rotor. Since the multicopter has a simple structure unlike the helicopter, it has excellent maintainability, and the aircraft can be configured at a relatively low cost.
特開平08-324499号公報Japanese Patent Laid-Open No. 08-324499
 上記特許文献1には、パイロットが搭乗するヘリコプターから火災地点に対して水または薬品からなる消火剤を投下する装置が開示されている。特許文献1の消火剤投下装置は、ヘリコプターに下方前方を向くように取り付けられた赤外線カメラと、直下方向を向くように取り付けられたレーザ測距装置とを備え、レーザ測距装置の出力とヘリコプターの飛行速度とから算出した消火剤の落下到達点が、赤外線カメラでとらえた火災による赤外線放射地点と一致したときに、消火剤を自動的に投下する。 Patent Document 1 discloses an apparatus for dropping a fire extinguisher made of water or chemicals from a helicopter on which a pilot is boarded to a fire spot. The extinguishing agent dropping device of Patent Document 1 includes an infrared camera attached to a helicopter so as to face downward and a laser distance measuring device attached so as to face directly below, and the output of the laser ranging device and the helicopter The extinguishing agent is automatically dropped when the arrival point of the extinguishing agent calculated from the flight speed coincides with the infrared radiation point of the fire captured by the infrared camera.
 特許文献1の消火剤投下装置は、火災地点を撮影する赤外線カメラがヘリコプターの下方前方を向くように配置されている(請求項1)。これはつまり、特許文献1の消火剤投下装置は、ヘリコプターを飛行させながら放物線状に消火剤を落下させるという思想に基づいていることを意味している。また、特許文献1の消火剤投下装置が投下する消火剤は水または薬品であることから(請求項1)、投下された消火剤は広範囲に拡散するものと推測される。 The fire extinguishing agent dropping device of Patent Document 1 is arranged such that an infrared camera for photographing a fire point faces the lower front of the helicopter (Claim 1). This means that the extinguishing agent dropping device of Patent Document 1 is based on the idea of dropping the extinguishing agent in a parabolic shape while flying the helicopter. Moreover, since the extinguishing agent dropped by the extinguishing agent dropping device of Patent Document 1 is water or chemicals (Claim 1), it is estimated that the dropped extinguishing agent diffuses widely.
 上空から放物線状に消火剤を落下させる場合、その理論上の落下軌跡と実際の落下軌跡との間には誤差が生じることが見込まれる。特許文献1の消火剤投下装置のように、広範な火災地点に対して消火剤を拡散させるように投下する場合、このような落下軌跡の誤差による影響は比較的小さなものとなる。しかし、例えば固形の消火弾を小規模な火災地点に対して投下するような場合、かかる誤差が消火効率に大きく影響することとなる。また、有人ヘリコプターは一般的にガソリン系やケロシン系の燃料により飛行しており、例え災害対策用のヘリコプターであっても、パイロットの安全は尊重されるべきである。そのため、特許文献1のヘリコプターが火災地点に接近可能な距離や滞空可能な時間は、パイロットの安全が確保可能な範囲に制限される。 場合 When a fire extinguisher is dropped parabolically from above, it is expected that an error will occur between the theoretical fall trajectory and the actual fall trajectory. When the fire extinguishing agent is dropped to spread over a wide range of fire points as in the extinguishing agent dropping device of Patent Document 1, the influence of such an error of the dropping trajectory is relatively small. However, for example, when a solid fire bomb is dropped on a small fire point, such an error greatly affects the fire extinguishing efficiency. In addition, manned helicopters generally fly with gasoline and kerosene fuels, and even pilot helicopters for disaster countermeasures should respect pilot safety. Therefore, the distance at which the helicopter of Patent Document 1 can approach the fire point and the time during which the helicopter can stay are limited to a range in which the safety of the pilot can be ensured.
 上記問題に鑑み、本発明が解決しようとする課題は、小型無人飛行機から目標地点に対して投下物を鉛直下方に投下可能な鉛直投下装置を提供することにある。 In view of the above problems, the problem to be solved by the present invention is to provide a vertical dropping device capable of dropping a dropped object vertically downward from a small unmanned airplane to a target point.
 上記課題を解決するため、本発明の鉛直投下装置は、複数の回転翼を備える小型無人飛行機と、投下物を収容および投下可能な搬送容器と、前記搬送容器を操作するアクチュエータと、を備え、前記搬送容器は前記小型無人飛行機の下部に相対移動不能に固定されており、前記搬送容器の底部はその幅方向に並べて配置された二枚の底板部により構成され、前記各底板部において、それぞれ他方となる前記底板部側の端部を先端、その反対側の端部を後端としたときに、前記各底板部は、前記後端から前記先端に向かって同じ傾斜角度で下方へ傾斜しており、前記二枚の底板部は、同時に、かつ対称的な軌跡で展開可能であることを特徴とする。 In order to solve the above problems, a vertical dropping device of the present invention includes a small unmanned airplane including a plurality of rotor blades, a transport container that can store and drop a dropped object, and an actuator that operates the transport container. The transport container is fixed to the lower part of the small unmanned aerial vehicle so that it cannot move relative to each other, and the bottom part of the transport container is composed of two bottom plate parts arranged side by side in the width direction. When the other end on the bottom plate portion side is the front end and the opposite end is the rear end, each bottom plate portion is inclined downward at the same inclination angle from the rear end toward the front end. The two bottom plate portions can be developed simultaneously and in a symmetrical locus.
 複数の回転翼を備える小型無人飛行機に底部が展開可能な搬送容器を固定し、かかる小型無人飛行機を目標地点の真上でホバリングさせた状態で、搬送容器の底部を構成する二枚の底板部を、同時かつ対称的な軌跡で展開させることにより、搬送容器に収容された投下物を鉛直下方に投下することができる。また、各底板部をその後端から先端にかけて同じ傾斜角度で下方へ傾斜させることにより、搬送容器内の投下物をこれら底板部の境界線を中心として安定して配置することができ、底部の展開時にいずれかの半筒体から投下物が転がり落ちることを防止することができる。さらに、搬送容器を小型無人飛行機の下部に相対移動不能に固定することにより、ホバリング中の搬送容器の揺動を最小限に抑えることができる。 Two bottom plate parts constituting the bottom of the transport container in a state where the transport container that can be deployed at the bottom is fixed to a small unmanned airplane having a plurality of rotor blades and the small unmanned airplane is hovered directly above the target point Are deployed in a simultaneous and symmetrical locus, the dropped object accommodated in the transport container can be dropped vertically downward. In addition, by tilting each bottom plate portion downward from the rear end to the tip at the same inclination angle, the dropped object in the transport container can be stably placed around the boundary line of these bottom plate portions, and the bottom portion is developed. It is possible to prevent the dropped article from rolling down from one of the half cylinders. Further, by fixing the transport container to the lower part of the small unmanned aerial vehicle so as not to be relatively movable, the swing of the transport container during hovering can be minimized.
 また、前記搬送容器は、前記底部の閉時において筒形状の外形を有する本体部と、該本体部の両端の開口を塞ぐ二枚の蓋体と、を有し、前記本体部は、いずれかの前記開口から見て左右に分割された二つの半筒体を有し、前記二つの半筒体の下側の半体は前記底部を構成し、前記各半筒体の上端部は、該上端部と平行に配置された共通の軸体である固定軸に、該固定軸の周方向に沿って回動可能に支持されており、前記二つの半筒体は、同時に、かつ対称的な軌跡で展開可能であることが好ましい。 The transport container has a main body having a cylindrical outer shape when the bottom is closed, and two lids that close the openings at both ends of the main body, and the main body is either Two half cylinders divided into left and right when viewed from the opening, the lower half of the two half cylinders constitutes the bottom, and the upper end of each half cylinder is the The fixed shaft, which is a common shaft body arranged in parallel with the upper end portion, is supported so as to be rotatable along the circumferential direction of the fixed shaft, and the two half cylinders are symmetrical at the same time. It is preferable that development is possible with a locus.
 二つの半筒体(および底板部)を一つの固定軸で回動可能に支持することにより、各半筒体がそれぞれ異なる軸体に支持されている場合に比べ、構造が簡略化されるとともに、これら半筒体の展開動作を一箇所で制御することが容易となる。 By supporting the two half cylinders (and the bottom plate part) so as to be rotatable by one fixed shaft, the structure is simplified as compared with the case where each half cylinder is supported by a different shaft. It becomes easy to control the unfolding operation of these half cylinders at one place.
 また、前記本体部は前記底部の閉時において角筒形状の外形を有し、前記各半筒体は、いずれかの前記開口から見た断面がL字形に形成されており、前記二つの底板部の先端には、その長手方向に沿って互い違いに設けられた凸状の歯部が形成されており、前記底部の閉時には前記二つの底板部の歯部が噛合されることが好ましい。 The main body has a rectangular tube-shaped outer shape when the bottom is closed, and each of the half cylinders has an L-shaped cross section viewed from one of the openings, and the two bottom plates It is preferable that convex teeth that are alternately provided along the longitudinal direction are formed at the tip of the portion, and the teeth of the two bottom plate portions are meshed when the bottom is closed.
 断面がL字形に形成された二つの半筒体により本体部が構成され、各底板部の先端に設けられた歯部が互いに噛合することにより、本体部の各平面方向に対する曲げ剛性が高められる。 The main body portion is constituted by two half cylinders having a L-shaped cross section, and the tooth portions provided at the tips of the bottom plate portions mesh with each other, so that the bending rigidity of the main body portion in each plane direction is enhanced. .
 また、前記搬送容器はさらに、前記二つの半筒体の開閉動作を同期させる同期機構を有し、前記同期機構は、長穴が形成されたリンク片である固定リンク片および二つの可動リンク片と、これらすべてのリンク片の長穴に挿通された共通の軸体である可動軸とを有し、前記固定リンク片は前記固定軸に、前記二つの可動リンク片は前記各半筒体の外周面における上端近傍部にそれぞれ固定されており、前記固定リンク片はその長穴が上下方向に延びる角度で配置されており、前記各可動リンク片は、それらの長穴のうち前記可動軸が挿通された部分のみが前記固定リンク片の長穴と重なるように、該固定リンク片に対して対称的な角度で配置されていることが好ましい。 The transport container further includes a synchronization mechanism that synchronizes opening and closing operations of the two half cylinders, and the synchronization mechanism includes a fixed link piece and two movable link pieces that are link pieces in which elongated holes are formed. And a movable shaft that is a common shaft inserted through the long holes of all the link pieces, the fixed link piece is on the fixed shaft, and the two movable link pieces are on the half cylinders. Each of the fixed link pieces is disposed at an angle in which the elongated hole extends in the vertical direction, and each movable link piece includes the movable shaft of the elongated hole. It is preferable that they are disposed at a symmetrical angle with respect to the fixed link piece so that only the inserted portion overlaps the elongated hole of the fixed link piece.
 搬送容器が上記同期機構を有することにより、二つの半筒体の開閉角度は固定リンクの長穴における可動軸の位置で一元的に決められることとなる。これにより、いずれか一方の半筒体が開閉されたときには、その動作に連動して他方の半筒体も開閉され、これら二つの半筒体の開閉タイミング、開閉速度、および開閉角度の同期が構造的に担保される。 Since the transport container has the above-described synchronization mechanism, the opening and closing angles of the two half-cylinders are determined in a unified manner by the position of the movable shaft in the long hole of the fixed link. Thus, when one of the half cylinders is opened and closed, the other half cylinder is also opened and closed in synchronization with the operation, and the opening and closing timing, opening and closing speed, and opening and closing angle of these two half cylinders are synchronized. Structurally secured.
 また、前記固定リンク片は前記固定軸の軸方向に沿って所定の間隔を空けて二つ配置されており、前記各可動リンク片は、前記軸方向において前記二つの固定リンク片の間に配置されていることが好ましい。 Further, two fixed link pieces are arranged at predetermined intervals along the axial direction of the fixed shaft, and each movable link piece is arranged between the two fixed link pieces in the axial direction. It is preferable that
 二つの固定リンク片で各可動リンク片を挟む構成とすることにより、可動軸の傾きを防止することができ、同期機構の動作の安定性を高めることができる。 By adopting a configuration in which each movable link piece is sandwiched between two fixed link pieces, the inclination of the movable shaft can be prevented and the stability of the operation of the synchronization mechanism can be improved.
 また、前記アクチュエータは、前記二つの半筒体のうちいずれか一方にのみ連結されていることが好ましい。 In addition, it is preferable that the actuator is connected to only one of the two half cylinders.
 アクチュエータでいずれか一方の半筒体のみを開閉させ、他方の半筒体は同期機構によりその一方の半筒体の動作に追従させる構成とすることにより、駆動源を複数備えることなく、二つの底板部を同時にかつ対称的な軌跡で開閉させることができる。 Only one of the half cylinders is opened and closed by the actuator, and the other half cylinder is configured to follow the operation of the one half cylinder by the synchronization mechanism. The bottom plate part can be opened and closed simultaneously and in a symmetrical locus.
 また、前記二枚の蓋体のうち少なくともいずれか一方は、前記固定軸に、該固定軸を中心としてその周方向に回転可能に支持された回転蓋であり、前記回転蓋は、弾性部材により前記本体部側へ常時付勢されており、前記回転蓋は、前記開口を塞ぐ位置ではその回転が規制され、前記回転蓋は、前記弾性部材の付勢力に抗して前記搬送容器から引き離されることにより回転可能となることが好ましい。 In addition, at least one of the two lid bodies is a rotary lid supported on the fixed shaft so as to be rotatable in the circumferential direction around the fixed shaft, and the rotary lid is formed by an elastic member. The rotating lid is always urged toward the main body, the rotation of the rotating lid is restricted at a position where the opening is closed, and the rotating lid is separated from the transport container against the urging force of the elastic member. It is preferable that the rotation is possible.
 投下物を搬送容器に収容する際に、搬送容器の半筒体を開いて投下物を収容しなければならない場合、小型無人飛行機を機体ごと裏返して作業するか、小型無人飛行機から搬送容器を取り外して作業しなければならない。搬送容器が回転蓋を備えることにより、回転蓋を開いた開口から搬送容器内に投下物を収容することができ、投下物の収容作業を効率化することができる。 When storing the dropped object in the transport container, if it is necessary to open the semi-cylinder of the transport container and store the dropped object, either work by turning the small unmanned airplane upside down or remove the transport container from the small unmanned airplane. Have to work. When the transport container is provided with the rotating lid, the dropped object can be accommodated in the transport container from the opening in which the rotating lid is opened, and the dropped object can be stored efficiently.
 また、前記底部には、前記底部の閉時において鉛直下方を向くカメラが配置されていることが好ましい。 Further, it is preferable that a camera that faces vertically downward when the bottom is closed is disposed on the bottom.
 搬送容器に収容された投下物は、底部が展開することにより底部の鉛直下方へ投下される。搬送容器の底部に鉛直下方を撮影するカメラが配置されていることにより、操縦者はカメラで撮影された映像から投下物の落下位置を確認しながら小型無人飛行機の滞空位置を調節することが可能となる。これにより投下物の命中精度を著しく向上させることができる。 The dropped object accommodated in the transport container is dropped vertically below the bottom as the bottom develops. A camera that shoots vertically below the bottom of the transport container allows the operator to adjust the airborne position of the small unmanned airplane while confirming the drop position of the dropped object from the image taken by the camera. It becomes. Thereby, the hit accuracy of the dropped object can be remarkably improved.
 以上のように、本発明にかかる鉛直投下装置によれば、小型無人飛行機から目標地点に対して投下物を鉛直下方に投下可能することが可能となる。 As described above, according to the vertical dropping device according to the present invention, it is possible to drop a dropped object vertically from a small unmanned airplane to a target point.
実施形態にかかる鉛直投下装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the vertical dropping apparatus concerning embodiment. 鉛直投下装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of a vertical dropping apparatus. 搬送容器の斜視図である。It is a perspective view of a conveyance container. 搬送容器の正面図である。It is a front view of a conveyance container. 搬送容器の側面図である。It is a side view of a conveyance container. 搬送容器の展開動作を示す正面図である。It is a front view which shows the expansion | deployment operation | movement of a conveyance container. 蓋体の構造および開閉動作を示す説明図である。It is explanatory drawing which shows the structure and opening / closing operation | movement of a cover body. 他の実施形態にかかる鉛直投下装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the vertical dropping apparatus concerning other embodiment. 他の実施形態にかかる鉛直投下装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the vertical dropping apparatus concerning other embodiment.
 以下、本発明にかかる鉛直投下装置の実施形態について図面を用いて詳細に説明する。本実施形態の鉛直投下装置は、無線通信による遠隔操縦で火災地点へと移動し、火災地点に対して上空から消火弾を鉛直下方に投下する装置である。 Hereinafter, embodiments of a vertical dropping apparatus according to the present invention will be described in detail with reference to the drawings. The vertical drop device of the present embodiment is a device that moves to a fire point by remote control by wireless communication and drops a fire bomb vertically downward from the sky to the fire point.
(鉛直投下装置の構成概要)
 図1は本実施形態にかかる鉛直投下装置90の外観を示す斜視図である。鉛直投下装置90は、主に、複数の回転翼911を備える小型無人飛行機であるマルチコプター91と、その下部に相対移動不能に固定された搬送容器92とにより構成されている。マルチコプター91は、操縦者の指示により火災地点の真上へと移動し、ホバリングしながら空中で搬送容器92を展開することにより、搬送容器92に収容された球状の消火弾93(投下物)を火災地点へと投下する。ここで「相対移動不能」とは、マルチコプター91と搬送容器92とが変形不能な部材により一体的に連結され、それぞれが独立して移動できる余地がないことをいう。これにより、マルチコプター91のホバリング中における搬送容器92の揺動が最小限に抑えられている。尚、本実施形態におけるマルチコプター91は6つの回転翼911を備えているが、回転翼911の数は4つでもよい。
(Outline of vertical drop device configuration)
FIG. 1 is a perspective view showing an appearance of a vertical dropping device 90 according to the present embodiment. The vertical dropping device 90 is mainly composed of a multicopter 91 which is a small unmanned airplane including a plurality of rotor blades 911 and a transport container 92 fixed to the lower part thereof so as not to be relatively movable. The multicopter 91 moves to a position directly above the fire point according to the operator's instruction, and expands the transport container 92 in the air while hovering, so that a spherical fire extinguisher 93 (dropped object) accommodated in the transport container 92 is obtained. To the fire point. Here, “relatively impossible” means that the multicopter 91 and the transport container 92 are integrally connected by a non-deformable member, and there is no room for each to move independently. Thereby, the swinging of the transport container 92 during the hovering of the multicopter 91 is minimized. In addition, although the multicopter 91 in this embodiment is provided with the six rotary blades 911, the number of the rotary blades 911 may be four.
 図2は鉛直投下装置90の機能構成を示すブロック図である。マルチコプター91は、主に、空中におけるマルチコプター91の姿勢や飛行動作を制御するフライトコントローラ83、回転することによりマルチコプター91に揚力を発生させる複数の回転翼911、操縦者(送受信器81)との無線通信を行う送受信器82、およびこれらに電力を供給するバッテリー84により構成される。 FIG. 2 is a block diagram showing a functional configuration of the vertical dropping device 90. The multicopter 91 is mainly composed of a flight controller 83 that controls the attitude and flight operation of the multicopter 91 in the air, a plurality of rotor blades 911 that generate lift by rotating the multicopter 91, and a pilot (transceiver 81). Are configured by a transmitter / receiver 82 that performs wireless communication with the battery, and a battery 84 that supplies electric power thereto.
 フライトコントローラ83は、マイクロコントローラである制御装置831を備えている。制御装置831は、中央処理装置であるCPU、記憶装置であるRAM/ROM、および、DCモータ86を制御するPWMコントローラを備えている。DCモータ86は複数のアウターロータ型DCブラシレスモータであり、各DCモータ86の出力軸には回転翼911が取り付けられている。ESC(Electric Speed Controller)85はDCモータ86ごとに配置され、PWMコントローラからの指示に基づき各DCモータ86の回転速度を制御する。 The flight controller 83 includes a control device 831 that is a microcontroller. The control device 831 includes a CPU that is a central processing unit, a RAM / ROM that is a storage device, and a PWM controller that controls the DC motor 86. The DC motor 86 is a plurality of outer rotor type DC brushless motors, and a rotary blade 911 is attached to the output shaft of each DC motor 86. An ESC (Electric Speed Controller) 85 is disposed for each DC motor 86 and controls the rotational speed of each DC motor 86 based on an instruction from the PWM controller.
 また、フライトコントローラ83はセンサ群832およびGPS受信器833を備えており、これらは制御装置831に接続されている。マルチコプター91のセンサ群832には、加速度センサ、ジャイロセンサ(角速度センサ)、気圧センサ、地磁気センサ(電子コンパス)などが含まれている。 The flight controller 83 includes a sensor group 832 and a GPS receiver 833, which are connected to the control device 831. The sensor group 832 of the multicopter 91 includes an acceleration sensor, a gyro sensor (angular velocity sensor), an atmospheric pressure sensor, a geomagnetic sensor (electronic compass), and the like.
 制御装置831のRAM/ROMには、マルチコプター91の飛行時における飛行制御アルゴリズムが実装された飛行制御プログラムが記憶されている。制御装置831はセンサ群832から取得した情報を用いて飛行制御プログラムによりマルチコプター91の姿勢を一定に制御する。マルチコプター91の飛行操作は、操縦者が手動で行ってもよく、または、GPS座標や高度、飛行ルートなどの飛行計画がパラメータ化された自律飛行プログラムを別途実装し、自律的に飛行させてもよい。 The RAM / ROM of the control device 831 stores a flight control program in which a flight control algorithm during the flight of the multicopter 91 is implemented. The control device 831 uses the information acquired from the sensor group 832 to control the attitude of the multicopter 91 with a flight control program. The flight operation of the multicopter 91 may be performed manually by the operator, or an autonomous flight program in which a flight plan such as GPS coordinates, altitude, flight route, etc. is parameterized is separately implemented and allowed to fly autonomously. Also good.
 搬送容器92には、搬送容器92を開閉する駆動源であるサーボ70(アクチュエータ)が配置されている。サーボ70は制御装置831のPWMコントローラに接続されている。制御装置831のRAM/ROMに登録された投下制御プログラムは、操縦者(送受信器81)からの指示によりサーボ70を操作し、搬送容器92を開閉する。尚、サーボ70による搬送容器92の展開操作は、例えばマルチコプター91が予め設定された座標位置に到着したことなどを条件に自動的に行ってもよい。 Servo 70 (actuator) that is a drive source for opening and closing the transport container 92 is disposed in the transport container 92. The servo 70 is connected to the PWM controller of the control device 831. The drop control program registered in the RAM / ROM of the control device 831 operates the servo 70 according to an instruction from the operator (transmitter / receiver 81) to open and close the transport container 92. The unfolding operation of the transport container 92 by the servo 70 may be automatically performed on condition that, for example, the multicopter 91 has arrived at a preset coordinate position.
(搬送容器の構成概要)
 以下に図3乃至5を用いて搬送容器92の構成について説明する。図3は搬送容器92の斜視図、図4は搬送容器92の正面図、図5は搬送容器92の側面図である。尚、本発明の搬送容器について「前」および「後」とは、各図の座標軸表示で示されるZ軸方向における相対的な位置関係を意味しており、図5に表された搬送容器92では、「前」とはその左側を、「後」とはその右側を指している。同様に、「左」および「右」とはX軸方向における相対的な位置関係であり、図4で表される搬送容器92の左右を意味している。「上」および「下」とはY軸方向における相対的な位置関係であり、図4および図5で表される搬送容器92の上下を意味している。
(Configuration outline of transport container)
The configuration of the transport container 92 will be described below with reference to FIGS. 3 is a perspective view of the transport container 92, FIG. 4 is a front view of the transport container 92, and FIG. Note that “front” and “rear” in the transport container of the present invention mean a relative positional relationship in the Z-axis direction indicated by the coordinate axis display in each figure, and the transport container 92 shown in FIG. Then, “front” refers to the left side, and “rear” refers to the right side. Similarly, “left” and “right” are relative positional relationships in the X-axis direction and mean the left and right sides of the transport container 92 shown in FIG. “Upper” and “lower” are relative positional relationships in the Y-axis direction, and mean the upper and lower sides of the transport container 92 shown in FIGS. 4 and 5.
 搬送容器92は、主に、角筒形状の外形を有する本体部20、本体部20の両端の開口を塞ぐ二枚の矩形状の板状部材である蓋体30、本体部20を開閉させる駆動源であるサーボ70、後述する右半筒体21および左半筒体22の開閉動作を同期させる同期機構60、および、搬送容器92とマルチコプター91とを相対移動不能に連結する固定ユニット50により構成されている。 The transport container 92 mainly includes a main body 20 having a rectangular tube-shaped outer shape, a lid 30 that is two rectangular plate-like members that block openings at both ends of the main body 20, and a drive that opens and closes the main body 20. A servo 70 as a source, a synchronization mechanism 60 that synchronizes the opening and closing operations of the right half cylinder 21 and the left half cylinder 22 described later, and a fixed unit 50 that connects the transport container 92 and the multicopter 91 so as not to move relative to each other. It is configured.
(本体部の構造)
 本体部20は、本体部20のいずれかの開口から見て左右に分割された二つの半筒体である右半筒体21および左半筒体22を有しており、これら半筒体21,22はそれぞれ、同開口から見た断面がL字形に形成されている(図6参照)。
(Body structure)
The main body 20 has a right half cylinder 21 and a left half cylinder 22 which are two half cylinders divided into left and right when viewed from any opening of the main body 20, and these half cylinders 21. , 22 each have a L-shaped cross section viewed from the opening (see FIG. 6).
 右半筒体21および左半筒体22の下側の半体である右底板部21aおよび左底板部22aは搬送容器92の底部20aを構成している。各底板部21a,22aにおいて、それぞれ他方となる底板部21a,22a側の端部を先端、その反対側の端部を後端としたときに、各底板部21a,22aの上面は、その後端から先端に向かって同じ傾斜角度で下方へ傾斜している。また、各底板部21a,22aの先端には、その長手方向に沿って互い違いに設けられた凸状の歯部21d,22dが形成されており、これら歯部21d,22dは、底部20aの閉時において互いに噛合されている。 The right bottom plate portion 21a and the left bottom plate portion 22a, which are lower halves of the right half cylinder body 21 and the left half cylinder body 22, constitute the bottom portion 20a of the transport container 92. In each of the bottom plate portions 21a and 22a, when the end on the other side of the bottom plate portions 21a and 22a is the front end and the opposite end is the rear end, the upper surfaces of the bottom plate portions 21a and 22a are the rear ends. It is inclined downward at the same inclination angle from the tip to the tip. Further, convex tooth portions 21d and 22d provided alternately along the longitudinal direction are formed at the tips of the bottom plate portions 21a and 22a, and these tooth portions 21d and 22d are closed on the bottom portion 20a. Sometimes they are engaged with each other.
 尚、本実施形態においては各底板部21a,22aの傾斜角度は45度とされているが、その傾斜角度は、二つの底板部が同じ傾斜角度を有することを条件として、投下物の形状や大きさに応じて適宜変更してよい。また、本実施形態における各半筒体21,22は、本体部20aの各平面方向に対する曲げ剛性を高めるため、断面がL字形に形成され、かつ、各底板部21a,22aの先端において歯部21d,22dが噛合される構成とされているが、かかる形状や構造は必須ではない。各半筒体は底部の閉時において筒形状となることを条件に、投下物の形状や大きさに応じて、断面が半円形状のものや多角形状のものを用いることもできる。同様に、底板部21a,22aの上面も平面である必要はなく、曲面や、後端から先端に向かって傾斜角度が段階的に小さくされた(段階的に水平角度に近づく)複数の平面が連続した面であってもよい。 In the present embodiment, the inclination angle of the bottom plate portions 21a and 22a is 45 degrees. However, the inclination angle is determined on the condition that the two bottom plate portions have the same inclination angle. You may change suitably according to a magnitude | size. Moreover, in order to improve the bending rigidity with respect to each plane direction of the main-body part 20a, each semi-cylinder body 21 and 22 in this embodiment is formed in an L-shaped cross section, and a tooth part in the front-end | tip of each baseplate part 21a, 22a Although 21d and 22d are configured to mesh, such a shape and structure are not essential. Each semi-cylindrical body may have a semicircular or polygonal cross section depending on the shape and size of the dropped object, provided that the semi-cylindrical body has a cylindrical shape when the bottom is closed. Similarly, the upper surfaces of the bottom plate portions 21a and 22a do not have to be flat surfaces, and there are curved surfaces or a plurality of flat surfaces whose inclination angles are gradually reduced from the rear end toward the front end (approaching the horizontal angle stepwise). It may be a continuous surface.
 各半筒体21,22の上端部には、これら上端部と平行に配置された共通の軸体である固定軸40が設けられている。各半筒体21,22の外周面における上端近傍部には、各半筒体21,22の長手方向における両端およびその中央となる位置に、三つの板状部材からなる連結片21c,22cがそれぞれ配置されている。各半筒体21,22の上端部は、これら連結片21c,22cにより固定軸40に回動可能に支持されている。二つの半筒体21,22が一つの固定軸40で回動可能に支持されていることにより、本体部20の構造が簡略化されるとともに、これら半筒体21,22の展開動作を一箇所で制御することが容易にされている。 The fixed shaft 40 which is a common shaft body arranged in parallel with these upper end portions is provided at the upper end portions of the half cylinders 21 and 22. In the vicinity of the upper end of the outer peripheral surface of each half cylinder 21, 21, connecting pieces 21c, 22c made of three plate-like members are located at both ends in the longitudinal direction of each half cylinder 21, 22 and the center thereof. Each is arranged. The upper end portions of the half cylinders 21 and 22 are rotatably supported on the fixed shaft 40 by the connecting pieces 21c and 22c. Since the two half cylinders 21 and 22 are rotatably supported by one fixed shaft 40, the structure of the main body portion 20 is simplified and the unfolding operation of the half cylinders 21 and 22 is reduced. It is easy to control in places.
 また、各半筒体21,22の外周面にはさらに、それらの長手方向における連結片21c,22cと同じ位置に、各半筒体21,22の角部を囲んで下端まで延びる板状部材である補強リブ21b,22bが設けられており、かかる補強リブ21b,22bによりこれら半筒体21,22の剛性が補強されている。 Further, on the outer peripheral surfaces of the half cylinders 21 and 22, a plate-like member that extends to the lower end surrounding the corners of the half cylinders 21 and 22 at the same position as the connecting pieces 21c and 22c in the longitudinal direction thereof. The reinforcing ribs 21b and 22b are provided, and the rigidity of the half cylinders 21 and 22 is reinforced by the reinforcing ribs 21b and 22b.
(固定ユニットの構成)
 本実施形態の固定ユニット50は、以下に説明するアーム部52、棒状体51、横板53、およびサーボ固定板54からなる。アーム部52は、固定軸40の軸方向における両端部に固定された二枚の板状部材であり、固定軸40を基端として左右へ斜め上方に対称的な角度で延出した二本の腕部を有している。棒状体51は、固定軸40の軸方向と平行に配置された二本の丸パイプであり、それらの両端は前後のアーム部52の腕部先端にそれぞれ支持されている。横板53は、これら棒状体51の後方に配置され、これら棒状体51をその軸方向に直交する方向につなぐ二枚の板状部材である。サーボ固定板54は、これら横板53における長手方向の中途に、その長手方向に対して端面が対向するように配置された板状部材である。サーボ70はサーボ固定板54に取り付けられることによりその位置が固定されている。尚、固定ユニット50は、マルチコプター91の下部に搬送容器92を相対移動不能に固定できるものであればよく、マルチコプター91の外形に応じて適宜変更可能である。
(Configuration of fixed unit)
The fixing unit 50 of the present embodiment includes an arm portion 52, a rod-like body 51, a horizontal plate 53, and a servo fixing plate 54 described below. The arm portion 52 is two plate-like members fixed to both end portions in the axial direction of the fixed shaft 40, and has two pieces extending obliquely upward and leftward to the left and right with the fixed shaft 40 as a base end. It has an arm part. The rod-shaped body 51 is two round pipes arranged in parallel with the axial direction of the fixed shaft 40, and both ends thereof are supported by the front ends of the arm portions 52 of the front and rear arms 52, respectively. The horizontal plate 53 is two plate-like members that are arranged behind the rod-like bodies 51 and connect the rod-like bodies 51 in a direction orthogonal to the axial direction. The servo fixing plate 54 is a plate-like member that is disposed in the middle of the horizontal plate 53 in the longitudinal direction so that the end surface faces the longitudinal direction. The position of the servo 70 is fixed by being attached to the servo fixing plate 54. The fixing unit 50 may be any unit as long as it can fix the transport container 92 to the lower portion of the multicopter 91 so as not to be relatively movable, and can be appropriately changed according to the outer shape of the multicopter 91.
(サーボの構成)
 サーボ70は、上でも述べたように、搬送容器92を開閉する駆動源である。サーボ70の出力軸には、その径方向外側へ延びるアーム部71が取り付けられている。アーム部71(および出力軸)はマルチコプター91からの指示により、所定の角度範囲内において上下方向へ回動する。アーム部71の先端は連結軸72を介して右半筒体21に接続されており、これにより右半筒体21は、アーム部71の上下動に連動して開方向および閉方向へ回動する。尚、左半筒体22は、後述する同期機構60により右半筒体21の動作に連動して開方向および閉方向へ回動する。
(Servo configuration)
The servo 70 is a drive source that opens and closes the transport container 92 as described above. An arm portion 71 that extends radially outward is attached to the output shaft of the servo 70. The arm portion 71 (and the output shaft) rotates in the vertical direction within a predetermined angle range in response to an instruction from the multicopter 91. The distal end of the arm part 71 is connected to the right half cylinder 21 via the connecting shaft 72, whereby the right half cylinder 21 rotates in the opening direction and the closing direction in conjunction with the vertical movement of the arm part 71. To do. The left half cylinder 22 is rotated in the opening direction and the closing direction in conjunction with the operation of the right half cylinder 21 by a synchronization mechanism 60 described later.
 連結軸72は、その両端がボールジョイントによりアーム部71の先端と右半筒体21の後側の連結片21cとに接続されている。さらに、連結軸72の軸体は、その軸方向における中心で分割される二つの半体が周方向に回転可能に連結されてなり、これにより、両端のボールジョイントは周方向へも相対回転可能とされている。かかる連結軸72により、サーボ70の駆動力は、サーボ70の出力軸を回転中心としたアーム部71の上下運動から、固定軸40を回転中心とした右半筒体21の上下運動へと変換されて伝達される。 Both ends of the connecting shaft 72 are connected to the tip of the arm portion 71 and the connecting piece 21c on the rear side of the right half cylinder 21 by ball joints. Furthermore, the shaft body of the connecting shaft 72 is formed by connecting two halves divided at the center in the axial direction so as to be rotatable in the circumferential direction, whereby the ball joints at both ends can be relatively rotated in the circumferential direction. It is said that. Due to the connecting shaft 72, the driving force of the servo 70 is converted from the vertical movement of the arm portion 71 about the output shaft of the servo 70 to the vertical movement of the right half cylinder 21 about the fixed shaft 40. To be transmitted.
(同期機構の構成)
 同期機構60は、長手方向に沿って長穴が形成された平板状のリンク片である固定リンク片61および可動リンク片62と、これらすべてのリンク片の長穴に挿通された共通の軸体である可動軸63とを有しており、固定リンク片61は固定軸40に、可動リンク片62は各半筒体21,22の外周面における上端近傍部にそれぞれ固定されている。
(Configuration of synchronization mechanism)
The synchronization mechanism 60 includes a fixed link piece 61 and a movable link piece 62 which are flat link pieces in which long holes are formed along the longitudinal direction, and a common shaft body inserted through the long holes of all the link pieces. The fixed link piece 61 is fixed to the fixed shaft 40, and the movable link piece 62 is fixed to the vicinity of the upper end of the outer peripheral surfaces of the half cylinders 21 and 22, respectively.
 固定リンク片61は、固定軸40の軸方向に沿って所定の間隔を空けて配置された前固定リンク片611と後固定リンク片612とからなり、これら固定リンク片611,612は、その長穴611a,612a(612aは不図示)が上下方向に延びる角度で配置されている。 The fixed link piece 61 includes a front fixed link piece 611 and a rear fixed link piece 612 that are arranged at a predetermined interval along the axial direction of the fixed shaft 40. The fixed link pieces 611 and 612 have their lengths. The holes 611a and 612a (612a is not shown) are arranged at an angle extending in the vertical direction.
 右半筒体21の可動リンク片62である右可動リンク片621、および、左半筒体22の可動リンク片62である左可動リンク片622は、各半筒体21,22の連結片21c,22cのうち、各半筒体21,22の長手方向において中央に配置されたものと一体的に形成されている。これにより、右可動リンク片621および左可動リンク片622は、各半筒体21,22が開閉されたときに、固定軸40を中心として、固定軸40の周方向へ回動する。 The right movable link piece 621, which is the movable link piece 62 of the right half cylinder 21, and the left movable link piece 622, which is the movable link piece 62 of the left half cylinder 22, are connected pieces 21c of the half cylinders 21, 22. , 22c is formed integrally with the half cylinders 21, 22 arranged at the center in the longitudinal direction. Thereby, the right movable link piece 621 and the left movable link piece 622 rotate in the circumferential direction of the fixed shaft 40 around the fixed shaft 40 when the half cylinders 21 and 22 are opened and closed.
 右可動リンク片621および左可動リンク片622は、固定軸40の軸方向において、二枚の固定リンク片611,612の間に配置されている。各可動リンク片621,622は、それらの長穴621a,622aのうち、可動軸63が挿通された部分のみが二つの固定リンク片611,612の長穴611a,612aと重なるように、本体部20の周方向において対称的な角度で配置されている。これら可動リンク片621,622が二枚の固定リンク片611,612の間に配置されていることにより、可動軸63の傾きが防止され、同期機構60の動作の安定性が高められている。 The right movable link piece 621 and the left movable link piece 622 are disposed between the two fixed link pieces 611 and 612 in the axial direction of the fixed shaft 40. Each of the movable link pieces 621 and 622 has a main body portion such that only the portion of the elongated holes 621a and 622a through which the movable shaft 63 is inserted overlaps the elongated holes 611a and 612a of the two fixed link pieces 611 and 612. They are arranged at symmetrical angles in 20 circumferential directions. By disposing these movable link pieces 621 and 622 between the two fixed link pieces 611 and 612, the inclination of the movable shaft 63 is prevented, and the stability of the operation of the synchronization mechanism 60 is enhanced.
(蓋体の構成)
 以下に図5および図7を用いて本体部20の両端の開口を塞ぐ蓋体30の構造について説明する。蓋体30は本体部20の開口と略同形の二枚の板状部材からなり、これら蓋体30は固定軸40の両端にそれぞれ回転可能に支持されている。蓋体30は、固定軸40の前側の端部に配置された前回転蓋31と、後側の端部に配置された後回転蓋32とからなり、これら回転蓋31,32は、弾性部材であるコイルばね311,321により本体部20側へ常時付勢されている。
(Structure of the lid)
The structure of the lid 30 that closes the openings at both ends of the main body 20 will be described below with reference to FIGS. 5 and 7. The lid body 30 is composed of two plate-like members having substantially the same shape as the opening of the main body portion 20, and these lid bodies 30 are rotatably supported at both ends of the fixed shaft 40. The lid 30 includes a front rotary lid 31 disposed at the front end of the fixed shaft 40 and a rear rotary lid 32 disposed at the rear end. The rotary lids 31 and 32 are elastic members. The coil springs 311 and 321 are always biased toward the main body 20 side.
 以下、主に前回転蓋31について説明するが、以下に説明する前回転蓋31の構造は後回転蓋32についても同様である。前回転蓋31の上端には固定軸40が挿通される穴部が設けられた連結片31aが形成されている。前回転蓋31はかかる連結片31aに固定軸40が挿通されることにより、固定軸40を中心としてその周方向へ回転可能に支持されている。 Hereinafter, the front rotary lid 31 will be mainly described. However, the structure of the front rotary lid 31 described below is the same for the rear rotary lid 32. A connecting piece 31 a having a hole through which the fixed shaft 40 is inserted is formed at the upper end of the front rotary lid 31. The front rotary lid 31 is supported so as to be rotatable about the fixed shaft 40 in the circumferential direction by inserting the fixed shaft 40 through the connecting piece 31a.
 図7に示すように、アーム部52の基端部における連結片31a側(前回転蓋31側)の端面には、連結片31a側に突出した突起部である位置決め突起313が形成されている。前回転蓋31が本体部20の開口を塞ぐ角度に配置されている場合において、位置決め突起313の形成位置に対応する連結片31aの部位には、位置決め突起313が嵌合される位置決め穴312が形成されている。これにより前回転蓋31は、本体部20の開口を塞いでいるときはその回転が規制され、コイルばね311の付勢力に抗して搬送容器92から引き離されることにより回転可能となる。 As shown in FIG. 7, a positioning protrusion 313 that is a protrusion protruding toward the connection piece 31 a is formed on the end face of the base end portion of the arm portion 52 on the connection piece 31 a side (the front rotation lid 31 side). . When the front rotary lid 31 is arranged at an angle that closes the opening of the main body 20, a positioning hole 312 in which the positioning protrusion 313 is fitted is formed at a portion of the connecting piece 31 a corresponding to the position where the positioning protrusion 313 is formed. Is formed. Thereby, when the opening of the main body portion 20 is closed, the rotation of the front rotary lid 31 is restricted, and the front rotary lid 31 can be rotated by being separated from the transfer container 92 against the urging force of the coil spring 311.
 消火弾93を搬送容器92に収容する際に、搬送容器92の本体部20を展開して消火弾93を収容しなければならない場合、マルチコプター91を機体ごと裏返して作業するか、またはマルチコプター91から搬送容器92を取り外して作業しなければならない。搬送容器92が回転蓋31,32を備えることにより、回転蓋31,32を開いた開口から搬送容器92内に消火弾93を収容することが可能とされ、消火弾93の収容作業が効率化されている。尚、本実施形態においては二つの蓋体30の両方が開閉可能な回転蓋とされているが、回転蓋はこれらのうちいずれか一方のみでもよい。 When the fire extinguishing bullet 93 is accommodated in the transport container 92, when the main body portion 20 of the transport container 92 must be expanded and the fire extinguishing bullet 93 must be accommodated, the multicopter 91 is turned over together with the fuselage or the multicopter 91 is operated. It is necessary to remove the transfer container 92 from 91 and work. Since the transport container 92 includes the rotary lids 31 and 32, the fire extinguishing bullets 93 can be accommodated in the transport container 92 from the opening in which the rotary lids 31 and 32 are opened. Has been. In the present embodiment, both of the two lid bodies 30 are rotatable lids that can be opened and closed, but only one of these may be used as the rotary lid.
(搬送容器の展開動作)
 以下に図6を用いて搬送容器92の展開動作について説明する。図6の搬送容器92は、説明の便宜上、前方の蓋体30である前回転蓋31、および固定ユニット50の表示を省略している。
(Unfolding operation of transport container)
The unfolding operation of the transport container 92 will be described below with reference to FIG. In the transport container 92 in FIG. 6, the front rotary lid 31 that is the front lid body 30 and the display of the fixed unit 50 are omitted for convenience of explanation.
 マルチコプター91が着陸している状態で、搬送容器92の回転蓋31,32のうちいずれか一方を開いて消火弾93を搬送容器92に収容し、マルチコプター91を火災地点へと飛行させる。上でも述べたように、火災地点への飛行は操縦者が送受信器81を使って手動で行ってもよく、自律飛行プログラムにより自動的に飛行させてもよい。 In the state where the multicopter 91 has landed, either one of the rotary lids 31 and 32 of the transport container 92 is opened, the fire bomb 93 is accommodated in the transport container 92, and the multicopter 91 is caused to fly to the fire point. As described above, the flight to the fire point may be performed manually by the operator using the transceiver 81, or may be performed automatically by an autonomous flight program.
 マルチコプター91が火災地点における消火弾93の投下位置の真上に到着したら、搬送容器92内における消火弾93の位置が落ち着くまでの間、マルチコプター91をその位置でホバリングさせる。マルチコプター91は無人飛行機であるため、火災地点への接近に関してパイロットの安全性確保を目的とした制約がない。そのため、機体の変形や焼損が生じない範囲であればマルチコプター91を限界まで火災地点に近づけることができる。 When the multicopter 91 arrives directly above the position where the fire bomb 93 is dropped at the fire point, the multi copter 91 is hovered at that position until the position of the fire bomb 93 within the transport container 92 is settled. Since the multicopter 91 is an unmanned airplane, there is no restriction for the purpose of ensuring the safety of the pilot regarding the approach to the fire point. Therefore, the multicopter 91 can be brought close to the fire point to the limit as long as the airframe does not deform or burn out.
 本実施形態における各底板部21a,22aの上面はその全面が平面からなる傾斜面であり、これら傾斜面は同じ傾斜角度で傾斜しているため、消火弾93は二つの底板部21a,22aの境界線上に安定して配置される。搬送容器92内における消火弾93の位置が落ち着いたら、制御装置831のRAMに読み込まれた投下制御プログラムは、操縦者(送受信器81)からの指示により、PWMコントローラを介してサーボ70へ展開信号を送信する。 Since the upper surfaces of the bottom plate portions 21a and 22a in the present embodiment are inclined surfaces that are entirely flat, and these inclined surfaces are inclined at the same inclination angle, the fire extinguishing bullet 93 has two bottom plate portions 21a and 22a. It is stably placed on the boundary line. When the position of the fire bomb 93 in the transport container 92 has settled, the drop control program read into the RAM of the control device 831 is sent to the servo 70 via the PWM controller in accordance with an instruction from the operator (transmitter / receiver 81). Send.
 サーボ70が展開信号を受信すると、サーボ70はアーム部71と連結軸72とを介して右半筒体21を上方へ引き上げる。右半筒体21が上方へ引き上げられると、右半筒体21の右可動リンク片621は、その長穴621aの角度が水平位置に近づくように左半筒体22側へ傾倒し、それにより可動軸63が固定リンク片61の長穴611a,612aにおける下方へと押下される。可動軸63が固定リンク片61の長穴611a,612aを下方へ移動すると、左半筒体22の左可動リンク片622もそれに連動して、その長穴622aの角度が水平位置に近づくように右半筒体21側へと傾倒する。これにより二つの半筒体21,22(二つの底板部21a、22a)は同時に、かつ対称的な軌跡で展開する。 When the servo 70 receives the deployment signal, the servo 70 pulls the right half cylinder 21 upward through the arm portion 71 and the connecting shaft 72. When the right half cylinder 21 is pulled upward, the right movable link piece 621 of the right half cylinder 21 tilts toward the left half cylinder 22 so that the angle of the elongated hole 621a approaches the horizontal position, thereby The movable shaft 63 is pushed downward in the long holes 611a and 612a of the fixed link piece 61. When the movable shaft 63 moves downward through the long holes 611a and 612a of the fixed link piece 61, the left movable link piece 622 of the left half cylinder 22 is also interlocked with it so that the angle of the long hole 622a approaches the horizontal position. Tilt to the right half cylinder 21 side. As a result, the two half cylinders 21 and 22 (two bottom plate portions 21a and 22a) are developed simultaneously and symmetrically.
 搬送容器92は同期機構60を有していることにより、二つの半筒体21,22の開閉角度は固定リンク61の長穴612a,622aにおける可動軸63の位置で一元的に決められることとなる。これにより、二つの半筒体21,22のうちいずれか一方が開閉されたときには、その動作に連動して他方の半筒体も開閉され、これら二つの半筒体21,22の開閉タイミング、開閉速度、および開閉角度の同期が構造的に担保されている。 Since the transport container 92 has the synchronization mechanism 60, the opening / closing angles of the two half- cylinders 21 and 22 are determined in a unified manner by the position of the movable shaft 63 in the long holes 612 a and 622 a of the fixed link 61. Become. Thereby, when one of the two half cylinders 21 and 22 is opened and closed, the other half cylinder is also opened and closed in conjunction with the operation, and the opening and closing timing of these two half cylinders 21 and 22; The synchronization of the opening / closing speed and the opening / closing angle is structurally ensured.
 このように、複数の回転翼911を備えるマルチコプター91に、底部20aが展開可能な搬送容器92を固定し、マルチコプター91をホバリングさせた状態から、搬送容器92の底部20aを構成する同じ傾斜角度で傾斜した二枚の底板部21a,22aを、同時かつ対称的な軌跡で展開させることにより、底部20aの展開時にいずれかの底板部21a,22aから消火弾93が転がり落ちることが防止され、搬送容器92に収容された消火弾93を鉛直下方に投下することが可能とされている。 Thus, the same inclination which comprises bottom 20a of conveyance container 92 from the state where transfer container 92 which can develop bottom 20a is fixed to multicopter 91 provided with a plurality of rotary blades 911, and multicopter 91 is hovered. By deploying the two bottom plate portions 21a and 22a inclined at an angle in a simultaneous and symmetrical locus, the fire bomb 93 is prevented from rolling off from any of the bottom plate portions 21a and 22a when the bottom portion 20a is deployed. The fire extinguishing bullet 93 accommodated in the transport container 92 can be dropped vertically downward.
 尚、本実施形態の搬送容器92においては、複数の駆動源を備えることを避けるため、右半筒体21にのみサーボ70が連結され、左半筒体22は同期機構60により右半筒体21の開閉動作に追従する構成とされているが、当然、各半筒体21,22それぞれにサーボ70を備えた構成としてもよく、また、同期機構60を省略して例えばロータリーエンコーダを用いたフィードバック制御などにより別途二つの半筒体21,22の同期を電子的に制御することも可能である。 In the transport container 92 of this embodiment, in order to avoid providing a plurality of drive sources, the servo 70 is connected only to the right half cylinder 21, and the left half cylinder 22 is synchronized with the right half cylinder by the synchronization mechanism 60. However, naturally, each of the half cylinders 21 and 22 may be provided with a servo 70, and the synchronization mechanism 60 may be omitted and a rotary encoder, for example, may be used. It is also possible to electronically control the synchronization of the two half cylinders 21 and 22 separately by feedback control or the like.
(他の実施形態)
 以下に、本発明の鉛直投下装置にかかる他の実施形態について説明する。図8は本発明の他の実施形態にかかる鉛直投下装置90bの外観を示す斜視図であり、図9は鉛直投下装置90bの機能構成を示すブロック図である。なお、以下の説明では、先の実施形態と同様または同一の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。
(Other embodiments)
Below, other embodiment concerning the vertical dropping apparatus of this invention is described. FIG. 8 is a perspective view showing an appearance of a vertical dropping device 90b according to another embodiment of the present invention, and FIG. 9 is a block diagram showing a functional configuration of the vertical dropping device 90b. In the following description, components having the same or the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
 鉛直投下装置90bは先の実施形態にかかる鉛直投下装置90の構成に加え、右半筒体21の右底板部21aに、底部20aの閉時において鉛直下方を向くカメラユニット88が配設されている。これにより操縦者は、火災地点において消火弾93の落下が見込まれる位置をカメラユニット88が撮影した映像により目視で確認しながら投下位置を調節することが可能となる。これにより手動操縦時における消火弾93の命中精度を著しく向上させることが可能とされている。 In addition to the configuration of the vertical drop device 90 according to the previous embodiment, the vertical drop device 90b is provided with a camera unit 88 that is directed vertically downward when the bottom portion 20a is closed on the right bottom plate portion 21a of the right half cylinder 21. Yes. As a result, the operator can adjust the dropping position while visually confirming the position where the fire bullet 93 is expected to drop at the fire point with the video taken by the camera unit 88. Thereby, it is possible to remarkably improve the accuracy of hitting the fire bomb 93 during manual operation.
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。例えば、実施形態における鉛直投下装置90,90bは火災地点へ消火弾93を投下する用途に用いられているが、本発明の鉛直投下装置の投下物は消火弾93に限られず、その用途も火災の消火には限られない。本発明の鉛直投下装置は、陸上または水上の所定の位置に対して、ある程度の正確性をもって上空から固形物を落下させる必要がある用途において広く適用することができる。

 
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, the vertical dropping devices 90 and 90b in the embodiment are used for dropping fire extinguishing bombs 93 to a fire point, but the dropped object of the vertical dropping device of the present invention is not limited to the fire extinguishing bomb 93, and its use is also fire. It is not limited to fire extinguishing. The vertical dropping device of the present invention can be widely applied to a predetermined position on land or water in applications where it is necessary to drop solid matter from the sky with a certain degree of accuracy.

Claims (8)

  1.  複数の回転翼を備える小型無人飛行機と、
     投下物を収容および投下可能な搬送容器と、
     前記搬送容器を操作するアクチュエータと、を備える鉛直投下装置であって、
     前記搬送容器は前記小型無人飛行機の下部に相対移動不能に固定されており、
     前記搬送容器の底部はその幅方向に並べて配置された二枚の底板部により構成され、
     前記各底板部において、それぞれ他方となる前記底板部側の端部を先端、その反対側の端部を後端としたときに、
     前記各底板部の上面は、前記後端から前記先端に向かって同じ傾斜角度で下方へ傾斜しており、
     前記二枚の底板部は、同時に、かつ対称的な軌跡で展開可能であることを特徴とする鉛直投下装置。
    A small unmanned aerial vehicle with a plurality of rotor blades;
    A transport container capable of containing and dropping a dropped article;
    An actuator for operating the transport container, and a vertical dropping device comprising:
    The transport container is fixed to the lower part of the small unmanned aerial vehicle so as not to move relative to it.
    The bottom part of the transport container is composed of two bottom plate parts arranged side by side in the width direction,
    In each of the bottom plate portions, when the end portion on the bottom plate portion side which is the other is the front end and the opposite end portion is the rear end,
    The upper surface of each bottom plate portion is inclined downward at the same inclination angle from the rear end toward the tip,
    The vertical dropping device characterized in that the two bottom plate portions can be developed simultaneously and in a symmetrical locus.
  2.  前記搬送容器は、前記底部の閉時において筒形状の外形を有する本体部と、該本体部の両端の開口を塞ぐ二枚の蓋体と、を有し、
     前記本体部は、いずれかの前記開口から見て左右に分割された二つの半筒体を有し、
     前記二つの半筒体の下側の半体は前記底部を構成し、
     前記各半筒体の上端部は、該上端部と平行に配置された共通の軸体である固定軸に、該固定軸の周方向に沿って回動可能に支持されており、
     前記二つの半筒体は、同時に、かつ対称的な軌跡で展開可能であることを特徴とする請求項1に記載の鉛直投下装置。
    The transport container has a main body having a cylindrical outer shape when the bottom is closed, and two lids that close the openings at both ends of the main body,
    The main body has two half-cylinders divided into left and right as viewed from any of the openings,
    The lower half of the two half cylinders constitutes the bottom,
    The upper end of each half cylinder is supported by a fixed shaft, which is a common shaft disposed in parallel with the upper end, so as to be rotatable along the circumferential direction of the fixed shaft,
    The vertical dropping device according to claim 1, wherein the two half cylinders can be deployed simultaneously and in a symmetrical locus.
  3.  前記本体部は前記底部の閉時において角筒形状の外形を有し、
     前記各半筒体は、いずれかの前記開口から見た断面がL字形に形成されており、
     前記二つの底板部の先端には、その長手方向に沿って互い違いに設けられた凸状の歯部が形成されており、
     前記底部の閉時には前記二つの底板部の歯部が噛合されることを特徴とする請求項2に記載の鉛直投下装置。
    The main body has a rectangular tube-shaped outer shape when the bottom is closed,
    Each of the half cylinders has an L-shaped cross section viewed from any of the openings,
    At the tips of the two bottom plate portions, convex tooth portions provided alternately along the longitudinal direction are formed,
    The vertical dropping device according to claim 2, wherein when the bottom portion is closed, teeth of the two bottom plate portions are engaged with each other.
  4.  前記搬送容器はさらに、前記二つの半筒体の開閉動作を同期させる同期機構を有し、
     前記同期機構は、長穴が形成されたリンク片である固定リンク片および二つの可動リンク片と、これらすべてのリンク片の長穴に挿通された共通の軸体である可動軸とを有し、
     前記固定リンク片は前記固定軸に、前記二つの可動リンク片は前記各半筒体の外周面における上端近傍部にそれぞれ固定されており、
     前記固定リンク片はその長穴が上下方向に延びる角度で配置されており、
     前記各可動リンク片は、それらの長穴のうち前記可動軸が挿通された部分のみが前記固定リンク片の長穴と重なるように、該固定リンク片に対して対称的な角度で配置されていることを特徴とする請求項2に記載の鉛直投下装置。
    The transport container further includes a synchronization mechanism that synchronizes opening and closing operations of the two half cylinders,
    The synchronization mechanism has a fixed link piece and two movable link pieces which are link pieces in which long holes are formed, and a movable shaft which is a common shaft body inserted through the long holes of all the link pieces. ,
    The fixed link piece is fixed to the fixed shaft, and the two movable link pieces are fixed to the vicinity of the upper end of the outer peripheral surface of each half cylinder,
    The fixed link piece is arranged at an angle that the elongated hole extends in the vertical direction,
    Each movable link piece is arranged at a symmetrical angle with respect to the fixed link piece so that only the portion of the elongated hole through which the movable shaft is inserted overlaps the elongated hole of the fixed link piece. The vertical dropping device according to claim 2, wherein the vertical dropping device is provided.
  5.  前記固定リンク片は前記固定軸の軸方向に沿って所定の間隔を空けて二つ配置されており、
     前記各可動リンク片は、前記軸方向において前記二つの固定リンク片の間に配置されていることを特徴とする請求項4に記載の鉛直投下装置。
    Two of the fixed link pieces are arranged at a predetermined interval along the axial direction of the fixed shaft,
    The vertical dropping device according to claim 4, wherein each movable link piece is disposed between the two fixed link pieces in the axial direction.
  6.  前記アクチュエータは、前記二つの半筒体のうちいずれか一方にのみ連結されていることを特徴とする請求項4に記載の鉛直投下装置。 The vertical dropping device according to claim 4, wherein the actuator is connected to only one of the two half cylinders.
  7.  前記二枚の蓋体のうち少なくともいずれか一方は、前記固定軸に、該固定軸を中心としてその周方向に回転可能に支持された回転蓋であり、
     前記回転蓋は、弾性部材により前記本体部側へ常時付勢されており、
     前記回転蓋は、前記開口を塞ぐ位置ではその回転が規制され、
     前記回転蓋は、前記弾性部材の付勢力に抗して前記搬送容器から引き離されることにより回転可能となることを特徴とする請求項2に記載の鉛直投下装置。
    At least one of the two lids is a rotary lid supported on the fixed shaft so as to be rotatable in the circumferential direction around the fixed shaft,
    The rotating lid is constantly urged toward the main body by an elastic member,
    The rotation of the rotating lid is restricted at a position where the opening is blocked,
    The vertical dropping device according to claim 2, wherein the rotary lid is rotatable by being pulled away from the transfer container against an urging force of the elastic member.
  8.  前記底部には、前記底部の閉時において鉛直下方を向くカメラが配置されていることを特徴とする請求項1に記載の鉛直投下装置。
     
    The vertical dropping device according to claim 1, wherein a camera that faces vertically downward when the bottom is closed is disposed on the bottom.
PCT/JP2017/015434 2016-04-26 2017-04-17 Drop-release device WO2017188041A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016087685A JP6536996B2 (en) 2016-04-26 2016-04-26 Vertical dropping device
JP2016-087685 2016-04-26

Publications (1)

Publication Number Publication Date
WO2017188041A1 true WO2017188041A1 (en) 2017-11-02

Family

ID=60161700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015434 WO2017188041A1 (en) 2016-04-26 2017-04-17 Drop-release device

Country Status (2)

Country Link
JP (1) JP6536996B2 (en)
WO (1) WO2017188041A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110697043A (en) * 2019-09-19 2020-01-17 浙江氢航科技有限公司 Airborne ball throwing device
CN112193416A (en) * 2020-09-29 2021-01-08 北京二郎神科技有限公司 Unmanned aerial vehicle and logistics distribution system
CN115779299A (en) * 2022-11-15 2023-03-14 亿航智能设备(广州)有限公司 Automatic fire extinguishing system and method for unmanned aerial vehicle
EP4197907A4 (en) * 2020-08-11 2024-05-15 Aeronext Inc. Moving body

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6763578B2 (en) * 2018-08-25 2020-09-30 株式会社DroneWorkSystem Transport drop unit for drones
CN109335008A (en) * 2018-10-12 2019-02-15 南通理工学院 Unmanned aerial vehicle obstacle avoidance system and obstacle avoidance method
JP7205823B2 (en) 2018-12-05 2023-01-17 株式会社ニックス Gripping mechanism and conveying device
WO2020136804A1 (en) 2018-12-27 2020-07-02 楽天株式会社 Unmanned aerial vehicle
JP6596617B1 (en) 2018-12-27 2019-10-23 楽天株式会社 Unmanned aerial vehicle
CN110271669B (en) * 2019-06-18 2024-02-09 深圳高度创新技术有限公司 Fire control disaster relief unmanned aerial vehicle
CN110316378B (en) * 2019-07-23 2024-04-05 河南农业大学 Trichogramma ball throwing device based on unmanned aerial vehicle
JP2020183326A (en) * 2020-06-18 2020-11-12 D−Plan株式会社 Hook for unloading

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030192992A1 (en) * 2002-04-15 2003-10-16 The Boeing Company Radial sonobuoy launcher
US20110084162A1 (en) * 2009-10-09 2011-04-14 Honeywell International Inc. Autonomous Payload Parsing Management System and Structure for an Unmanned Aerial Vehicle
CN204527648U (en) * 2015-04-21 2015-08-05 刘亚敏 For the grabbing device of multi-rotor aerocraft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030192992A1 (en) * 2002-04-15 2003-10-16 The Boeing Company Radial sonobuoy launcher
US20110084162A1 (en) * 2009-10-09 2011-04-14 Honeywell International Inc. Autonomous Payload Parsing Management System and Structure for an Unmanned Aerial Vehicle
CN204527648U (en) * 2015-04-21 2015-08-05 刘亚敏 For the grabbing device of multi-rotor aerocraft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110697043A (en) * 2019-09-19 2020-01-17 浙江氢航科技有限公司 Airborne ball throwing device
EP4197907A4 (en) * 2020-08-11 2024-05-15 Aeronext Inc. Moving body
CN112193416A (en) * 2020-09-29 2021-01-08 北京二郎神科技有限公司 Unmanned aerial vehicle and logistics distribution system
CN115779299A (en) * 2022-11-15 2023-03-14 亿航智能设备(广州)有限公司 Automatic fire extinguishing system and method for unmanned aerial vehicle
CN115779299B (en) * 2022-11-15 2024-05-03 亿航智能设备(广州)有限公司 Unmanned aerial vehicle automatic fire extinguishing system and method

Also Published As

Publication number Publication date
JP2017196949A (en) 2017-11-02
JP6536996B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2017188041A1 (en) Drop-release device
US10427790B2 (en) Adaptive aerial vehicle
AU2018220147B2 (en) Aerial vehicle imaging and targeting system
US10689108B2 (en) Unmanned aerial vehicle with omnidirectional thrust vectoring
JP6086519B1 (en) Delivery rotorcraft
EP3638585B1 (en) System and method for launching an unmanned aerial vehicle
EP3447435A1 (en) Virtual reality system for aerial vehicle
EP3447436A1 (en) Aerial vehicle interception system
US20170313418A1 (en) Unmanned vehicle
US20090212157A1 (en) Micro-rotorcraft surveillance system
JP6367232B2 (en) Transformable aircraft
EP1193168B1 (en) Unmanned mobile device
KR101564380B1 (en) Unmanned vehicle
US20180134387A1 (en) Aerial Device Capable of Additive Manufacturing and Associated Method
Shu et al. A quadrotor with an origami-inspired protective mechanism
US20140034775A1 (en) Vehicle capable of stabilizing a payload when in motion
JP6818337B2 (en) Articulated robot arm and UAV
JP6536043B2 (en) Flying body
WO2016163482A1 (en) Mobile unit
JP2010168034A (en) Alternative method of ducted fan uav control system
KR20160051163A (en) Unmanned flying vehicle
US9975624B1 (en) Multicopter propeller guard system
JP7038421B2 (en) Flying object
CA3006445A1 (en) Rocket propelled drone
KR102270282B1 (en) A drone

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789326

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789326

Country of ref document: EP

Kind code of ref document: A1