[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017187735A1 - 電子デバイス - Google Patents

電子デバイス Download PDF

Info

Publication number
WO2017187735A1
WO2017187735A1 PCT/JP2017/006538 JP2017006538W WO2017187735A1 WO 2017187735 A1 WO2017187735 A1 WO 2017187735A1 JP 2017006538 W JP2017006538 W JP 2017006538W WO 2017187735 A1 WO2017187735 A1 WO 2017187735A1
Authority
WO
WIPO (PCT)
Prior art keywords
external terminal
electronic device
pad
decoupling capacitor
package substrate
Prior art date
Application number
PCT/JP2017/006538
Other languages
English (en)
French (fr)
Inventor
平治 生駒
慎一郎 米山
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Publication of WO2017187735A1 publication Critical patent/WO2017187735A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Definitions

  • the present disclosure relates to an electronic device including a printed wiring board and a package substrate on which a semiconductor integrated circuit is mounted.
  • the decoupling capacitor is used for reducing the power supply noise.
  • Patent Document 1 discloses that a decoupling capacitor is provided below a power supply terminal (power supply pin in Patent Document 1) of a package for a semiconductor integrated circuit mounted on a multilayer printed wiring board. It is disclosed to shorten the connection distance of the wiring that reaches.
  • a decoupling capacitor is provided below the power supply terminal as in Patent Document 1. It may be difficult to wire. In order to solve this, it is conceivable to secure a sufficient wiring area for passing the power supply wiring or to increase the number of layers of the multilayer printed wiring board, but this leads to an increase in cost.
  • the power supply terminal of the package substrate is not necessarily near the power supply pad of the semiconductor integrated circuit.
  • priority can be given to arranging the power supply terminals in the vicinity of the power supply pads.
  • it may be difficult to provide a decoupling capacitor below the power supply pins as in the case described above.
  • the present disclosure is to effectively reduce noise of a semiconductor integrated circuit while avoiding an increase in cost of an electronic device.
  • an electronic device includes a printed wiring board, a first external terminal to which a predetermined potential is applied from the printed wiring board, and a second external terminal to which a potential from the printed wiring board is not applied.
  • a capacitor, and the second external terminal is closer to the first pad than the first external terminal in plan view.
  • the first decoupling capacitor is connected to the second external terminal located closer to the first pad of the semiconductor integrated circuit than the first external terminal. Accordingly, it is possible to shorten the connection distance of the wiring from the first pad to the first decoupling capacitor as compared with the case where the decoupling capacitor is connected to the first external terminal. This makes it possible to reduce the resistance and inductance from the first pad to which a predetermined potential is applied to the decoupling capacitor, and to effectively reduce the noise associated with the first pad. .
  • the decoupling capacitor can be disposed at a position close to the first pad of the semiconductor integrated circuit, the noise of the semiconductor integrated circuit can be effectively reduced, and thus the electronic device including the same can be reduced. Noise can be reduced.
  • Schematic cross-sectional view schematically showing the structure of an electronic device A plan view schematically showing a package substrate on which a semiconductor integrated circuit is mounted Another example of schematic cross-sectional view schematically showing the structure of an electronic device Another example of schematic cross-sectional view schematically showing the structure of an electronic device Another example of schematic cross-sectional view schematically showing the structure of an electronic device Another example of schematic cross-sectional view schematically showing the structure of an electronic device.
  • FIG. 1 is a schematic cross-sectional view schematically showing an example of the structure of an electronic device.
  • the electronic device 1 includes a printed wiring board 10 and a package substrate 20 mounted on the printed wiring board 10.
  • the printed wiring board 10 is a wiring board having a multilayer structure in which resin insulating layers and wiring layers on which wiring patterns are formed are alternately stacked.
  • a plurality of connection pads 11, 11,... For connection with the ball terminals 21 of the package substrate 20 are formed in an array.
  • a power supply wiring 12 On the lower surface of the printed wiring board 10, a power supply wiring 12, a first connection wiring 13, and a ground wiring 14 to which a ground potential is applied are formed.
  • the printed wiring board 10 has through holes 15, 15,... For connecting the power supply wiring 12, the first connection wiring 13, the ground wiring 14, and the connection pads 11a, 11b, 11c corresponding to the respective wirings.
  • Has been. 1 shows a part of the connection pads 11, 11,...
  • the power supply wiring 12 is connected to a power supply connection pad 11a among the connection pads 11 on the upper surface of the printed wiring board 10 through a through hole 15, and is supplied from a power supply (not shown) mounted on the printed wiring board 10. Power supply potential is applied.
  • the first connection wiring 13 is connected to the first connection pad 11 b of the connection pads 11 on the upper surface of the printed wiring board 10 through the through hole 15.
  • the first connection wiring 13 is a wiring to which a potential from the printed wiring board 10 is not applied. More specifically, for example, the first connection wiring 13 has a power supply before the package substrate 20 is mounted on the printed wiring board 10 and before a first decoupling capacitor 41 described later is connected. Not connected to ground and bias circuit.
  • the ground wiring 14 is connected to a ground connection pad 11 c among the connection pads 11 on the upper surface of the printed wiring board 10 through a through hole 15.
  • FIG. 1 and FIG. 2 show an example of a wire bond BGA (Ball Grid Array) package as the package substrate 20.
  • a semiconductor integrated circuit 31 configured on a silicon substrate 30 is mounted at the center of the upper surface of the package substrate 20. Further, ball terminals 21, 21,... Arranged in an array are provided on the lower surface of the package substrate 20. .. Are provided around the silicon substrate 30 on the upper surface of the package substrate 20.
  • pads 32, 32,... Of the semiconductor integrated circuit 31 are formed at a predetermined pitch along the outer side.
  • Each pad 32 of the semiconductor integrated circuit 31 is connected to each finger 22 by a bonding wire 33.
  • each finger 22 and each ball terminal 21 as a connection destination are respectively connected via vias 23, 23,... And wiring patterns 24, 24,. Connected.
  • the power pad 32a of the semiconductor integrated circuit 31 as the first pad is connected to the power finger 22a.
  • the power finger 22a is connected to a first external terminal 21a, which is a ball terminal 21 at a position where it can be connected to a power source (not shown) mounted on the printed wiring board 10 via a power wiring pattern 24a.
  • the first external terminal 21a is located at the intermediate position in the Y direction (vertical direction in the drawing) of the package substrate 20 and arranged at the outer end (left end in FIG. 1) in the X direction (horizontal direction in the drawing).
  • the power pad 32a is connected to the second external terminal 21b which is the ball terminal 21 located near the power finger 22a via the power finger 22a.
  • the second external terminal 21b is connected to the power supply pad 32a of the semiconductor integrated circuit 31 at a position closer to the first external terminal 21a in plan view. That is, the wiring length between the power pad 32a and the second external terminal 21b is shorter than the wiring length between the power pad 32a and the first external terminal 21a. As a result, the wiring impedance (resistance and inductance) between the power pad 32a and the second external terminal 21b is smaller than the wiring impedance (resistance and inductance) between the power pad 32a and the first external terminal 21a.
  • FIG. 2 shows an example of the form of the wiring pattern 24.
  • the power supply finger 22a and the first external terminal 21a are connected by a power supply wiring pattern 24a.
  • a branch point (the position of the via 23 in FIG. 2) is provided in the middle of the power supply wiring pattern 24a, and the branch point and the second external terminal 21b are connected by the wiring pattern 24c.
  • connection between the power finger 22a and the first external terminal 21a and the connection between the power finger 22a and the second external terminal 21b are different wiring patterns 24. It may be realized with. More specifically, for example, the power supply finger 22a and the first external terminal 21a are connected by the power supply wiring pattern 24a as in FIG. On the other hand, between the power finger 22a and the second external terminal 21b, one end is connected to the power finger 22a, the other end is connected to the second external terminal 21b, and the power wiring pattern 24a is connected. They are connected by a wiring pattern 24 that does not pass through. Thereby, the choice of the ball terminal 21 used as the 2nd external terminal 21b can be increased.
  • the ground pad 32b of the semiconductor integrated circuit 31 is connected to the ground finger 22b.
  • the ground finger 22b is connected via a ground wiring pattern 24b to a third external terminal 21c, which is a ball terminal 21 at a position where it can be connected to the ground connection pad 11c of the printed wiring board 10.
  • the power connection pad 11a and the first external terminal 21a are connected to each other. Configured to be connected. Similarly, the first connection pad 11b and the second external terminal 21b are connected, and the ground connection pad 11c and the third external terminal 21c are connected.
  • a method of connecting the ball terminals 21, 21,... And the connection pads 11, 11,... For example, a method of soldering them together by heating is known.
  • a first decoupling capacitor 41 connected between the first connection wiring 13 and the ground wiring 14 is mounted on the lower surface of the printed wiring board 10. That is, the second external terminal 21 b is connected to the first decoupling capacitor 41 via the first connection wiring 13. On the other hand, the second external terminal 21 b is not connected on the printed wiring board 10 other than the first decoupling capacitor 41.
  • “not connected on the printed wiring board 10 other than the first decoupling capacitor 41” means an element (circuit, element, etc.) for applying a potential such as a power supply, ground, and bias circuit on the printed wiring board 10. Indicates that it is not connected to.
  • connection with elements that are not related to applying a potential such as dummy elements and wiring patterns and vias connecting them.
  • electronic components and the like are mounted on the printed wiring board 10 in addition to the package substrate 20 and the first decoupling capacitor 41. Furthermore, the wiring layer of the package substrate 20 is formed with a wiring pattern for connecting the electronic components and the connection pads.
  • the first decoupling capacitor 41 is a second external terminal that is closer in plan view than the first external terminal 21 a to which the power supply potential from the printed wiring board 10 is applied. 21b.
  • the decoupling capacitor can be disposed at a position close to the power supply pad of the semiconductor integrated circuit by separating the external terminal for receiving the supply of the power supply potential and the external terminal for connecting the decoupling capacitor. I am doing so.
  • the external terminal for supplying the ground potential and the external terminal for connecting the decoupling capacitor may be separated as in the above description.
  • a decoupling capacitor may be connected between the second external terminal 21b and the external terminal for connecting the decoupling capacitor, and the same effect as described above can be obtained.
  • FIG. 3 shows another example of the structure of the electronic device in the embodiment.
  • the configuration of FIG. 3 is basically the same as that of FIG.
  • the package substrate 20 is a flip chip BGA package, and the connection between the package substrate 20 and the semiconductor integrated circuit 31 is made by bumps 51, 51,. More specifically, in FIG. 3, the power supply pad 32a of the semiconductor integrated circuit 31 and the power supply wiring pattern 24a connected to the first and second external terminals 21a and 21b are connected by a power supply bump 51a. Yes.
  • the ground pad 32b of the semiconductor integrated circuit 31 and the ground wiring pattern 24b connected to the third external terminal 21c are connected by a ground bump 51b.
  • the package substrate 20 as the flip chip BGA package, the power supply inductance can be further reduced, and the power supply impedance in the high frequency region can be more effectively reduced.
  • the package substrate 20 is a wire bond BGA package.
  • the package substrate 20 can be replaced with a flip-chip BGA package as in the above description. Yes, the same effect as described above can be obtained.
  • the package substrate 20 may be replaced with a package other than the BGA package.
  • a PGA (PinPGGrid Array) package or an LGA (Land Grid Array) package may be used.
  • FIG. 4 shows another example of the structure of the electronic device 1 in the embodiment.
  • the configuration of FIG. 4 is basically the same as that of FIG.
  • the second decoupling capacitor 42 is connected between the power supply wiring 12 and the ground wiring 14.
  • the second decoupling capacitor 42 has one end connected to the first external terminal 21a and the other end connected to the third external terminal 21c.
  • a part of the ground wiring 14 is indicated by a virtual line, but actually the ground wiring 14 is a second decoupling capacitor by a wiring pattern (not shown) formed on the printed wiring board 10. 42 is connected to the other end.
  • the capacitance value of the second decoupling capacitor 42 may be set larger than the capacitance value of the first decoupling capacitor 41. Since the first decoupling capacitor 41 is provided near the power supply pad 32a of the semiconductor integrated circuit 31, the power supply impedance in a higher frequency region can be lowered. That is, power supply noise in the high frequency region can be reduced. On the other hand, since the second decoupling capacitor 42 is far from the power supply pad 32a of the semiconductor integrated circuit 31, the power supply impedance in the low frequency region can be lowered. That is, power supply noise in the low frequency region can be reduced.
  • the first decoupling capacitor 41 is reduced in power noise in the high frequency region, and the second decoupling capacitor 42 is reduced in power noise in the low frequency region, thereby reducing the first decoupling capacitor. This makes it easy to secure an arrangement area in the printed wiring board 10.
  • the magnitude relationship between the capacitance values of the first and second decoupling capacitors 41 and 42 is not limited to the above description, and may be set as appropriate according to the purpose and application. By changing the setting of the magnitude relationship of the capacitance values, for example, it is possible to lower the power source impedance in different frequency regions with the first and second decoupling capacitors 41 and 42, and specialize in a specific frequency region. The power supply impedance can be lowered.
  • FIG. 5 shows another example of the structure of the electronic device 1 in the embodiment.
  • the configuration of FIG. 5 is basically the same as that of FIG. However, the difference is that a damping resistor 43 is connected between the first decoupling capacitor 41 and the ground wiring 14. That is, in the configuration of FIG. 5, the first decoupling capacitor 41 and the damping resistor 43 are connected in series between the second external terminal 21b and the third external terminal 21c. By connecting the damping resistor 43 in this way, the peak of the power source impedance can be suppressed low, and the power source impedance in the high frequency region can be reduced.
  • reference numeral 16 denotes a connection wiring between the first decoupling capacitor 41 and the damping resistor 43.
  • FIG. 6 shows another example of the structure of the electronic device 1 in the embodiment.
  • the configuration of FIG. 6 is basically the same as that of FIG.
  • the third decoupling capacitor 44 is different on the package substrate 20 between the power supply finger 22a and the ground wiring pattern 24b.
  • the third decoupling capacitor 44 can be disposed closer to the power supply pad 32a than the first decoupling capacitor 41, which is effective in reducing the power supply impedance in a higher frequency region.
  • the power supply wiring 12, the first connection wiring 13, and the ground wiring 14 are formed on the lower surface of the printed wiring board 10.
  • these wirings 12, 13, and 14 may be realized by wiring patterns of other wiring layers (not shown).
  • the first external terminal 21 a and the second external terminal 21 b are connected to the power supply wiring 12, and the third external terminal 21 c is connected to the ground wiring 14. 14 may be reversed. Also, a predetermined potential other than the power supply and the ground may be applied to either the power supply wiring 12 or the ground wiring 14. In addition, different predetermined potentials may be applied to the power supply wiring 12 and the ground wiring 14.
  • the decoupling capacitor can be disposed at a position closer to the power supply pad of the semiconductor integrated circuit, it is useful for reducing noise of an electronic device on which the semiconductor integrated circuit is mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

半導体集積回路(31)が搭載されたパッケージ基板(20)がプリント配線板(10)上に搭載された電子デバイス(1)に関する。パッケージ基板(20)の第1外部端子(21a)には、プリント配線板(10)から所定の電位が与えられる。パッケージ基板(20)の第2外部端子(21b)には、第1デカップリングコンデンサ(41)が接続されている。そして、第2外部端子(21b)は、平面視において、第1外部端子より第1パッド(32a)に近い位置にある。

Description

電子デバイス
 本開示は、プリント配線板と、半導体集積回路が搭載されたパッケージ基板とを備えた電子デバイスに関する。
 半導体集積回路の動作周波数の向上、微細化等によりその電源に対するノイズによって回路の誤動作が発生しやすくなっており、電源ノイズの低減が必要となっている。デカップリングコンデンサは、上記電源ノイズの低減に使用される。
 例えば、特許文献1には、多層プリント配線板に搭載された半導体集積回路用パッケージの電源端子(特許文献1では電源ピン)の下部にデカップリングコンデンサを設けることによって、電源端子からデカップリングコンデンサに至る配線の接続距離を短くすることが開示されている。
特開2007-250928号公報
 ところで、パッケージ基板の電源端子およびグランド端子と、プリント配線板の電源配線およびグランド配線とがそれぞれ接続されている電子デバイスにおいて、特許文献1のように電源端子の下部にデカップリングコンデンサを設けることが配線上困難な場合がある。これを解決するには、電源配線を通すための配線領域を十分に確保したり、多層プリント配線板の層数を増やしたりすることが考えられるが、これらはコストアップにつながる。
 また、パッケージ基板の電源端子は必ずしも半導体集積回路の電源パッドの近傍にあるとは限らない。設計時において、電源パッド近傍に電源端子を配置することを優先することも可能である。しかしながら、その結果として、前述の場合と同様に電源ピンの下部にデカップリングコンデンサを設けることが、配線上困難になる場合がある。
 本開示は、電子デバイスのコストアップを避けながら、効果的に半導体集積回路のノイズを低減することにある。
 本開示の一態様では、電子デバイスであって、プリント配線板と、前記プリント配線板から所定の電位が与えられる第1外部端子及び前記プリント配線板からの電位が与えられない第2外部端子を有するパッケージ基板と、前記パッケージ基板に搭載され、前記第1及び第2外部端子に接続された第1パッドを有する半導体集積回路と、一端が、前記第2外部端子に接続された第1デカップリングコンデンサとを備え、前記第2外部端子は、平面視において、前記第1外部端子より前記第1パッドに近い位置にある。
 この態様によると、半導体集積回路の第1パッドに対して、第1外部端子よりも近い位置にある第2外部端子に第1デカップリングコンデンサが接続されている。これにより、第1外部端子にデカップリングコンデンサを接続する場合と比較して、第1パッドから第1デカップリングコンデンサに至る配線の接続距離を短くすることが可能になる。これにより、所定の電位が与えられる上記第1パッドからデカップリングコンデンサに至る抵抗及びインダクタンスを低減することが可能になり、効果的に上記第1パッドに係るノイズを低減することができるようになる。
 本開示によると、電子デバイスにおいて、半導体集積回路の第1パッドに近い位置にデカップリングコンデンサを配置することができるため、効果的に半導体集積回路のノイズが低減でき、ひいてはそれを備える電子デバイスのノイズを低減することができる。
電子デバイスの構造を模式的に示す概略断面図 半導体集積回路が搭載されたパッケージ基板を模式的に示す平面図 電子デバイスの構造を模式的に示す概略断面図の他の例 電子デバイスの構造を模式的に示す概略断面図の他の例 電子デバイスの構造を模式的に示す概略断面図の他の例 電子デバイスの構造を模式的に示す概略断面図の他の例
 図1は電子デバイスの構造例を模式的に示す概略断面図である。図1に示すように、電子デバイス1は、プリント配線板10と、プリント配線板10上に実装されたパッケージ基板20とを備えている。
 プリント配線板10は、図示しないが、樹脂絶縁層と配線パターンが形成されている配線層とが交互に積層された多層構造の配線板である。プリント配線板10の上面には、パッケージ基板20のボール端子21と接続するための複数の接続パッド11,11,…がアレイ状に形成されている。プリント配線板10の下面には、電源配線12と、第1接続配線13と、グランド電位が与えられるグランド配線14とが形成されている。また、プリント配線板10には、電源配線12、第1接続配線13及びグランド配線14と、それぞれの配線に対応する接続パッド11a,11b,11cとを接続するスルーホール15,15,…が形成されている。なお、図1では接続パッド11,11,…のうちの一部を図示している。
 電源配線12は、プリント配線板10上面の接続パッド11のうちの電源用接続パッド11aにスルーホール15を介して接続されており、プリント配線板10に搭載された電源(図示省略)から供給された電源電位が与えられる。第1接続配線13は、プリント配線板10上面の接続パッド11のうちの第1接続パッド11bにスルーホール15を介して接続されている。第1接続配線13は、プリント配線板10からの電位が与えられない配線である。より具体的には、例えば、第1接続配線13は、パッケージ基板20がプリント配線板10に実装される前で、かつ、後述する第1デカップリングコンデンサ41が接続される前の状態において、電源、グランド及びバイアス回路等に接続されていない。グランド配線14は、プリント配線板10上面の接続パッド11のうちのグランド用接続パッド11cにスルーホール15を介して接続されている。
 図1及び図2では、パッケージ基板20として、ワイヤボンドBGA(Ball Grid Array)パッケージの例を示している。図2に示すように、パッケージ基板20の上面における中央には、シリコン基板30上に構成された半導体集積回路31が搭載されている。また、パッケージ基板20の下面には、アレイ状に配置されたボール端子21,21,…が設けられている。パッケージ基板20の上面におけるシリコン基板30の周囲には、ボンディング用のフィンガー22,22,…が設けられている。シリコン基板30上には、外辺に沿うように半導体集積回路31のパッド32,32,…が所定のピッチで形成されている。半導体集積回路31の各パッド32は、上記各フィンガー22とボンディングワイヤ33によって接続される。また、パッケージ基板20において、各フィンガー22と接続先となる各ボール端子21との間は、それぞれ、パッケージ基板20に形成されたビア23,23,…及び配線パターン24,24,…を介して接続される。
 第1パッドとしての半導体集積回路31の電源パッド32aは、電源用フィンガー22aに接続されている。電源用フィンガー22aは、プリント配線板10に搭載された電源(図示省略)との接続が可能な位置にあるボール端子21である第1外部端子21aに電源用配線パターン24aを介して接続されている。図2の例では、第1外部端子21aが、パッケージ基板20のY方向(図面縦方向)の中間位置であり、X方向(図面横方向)の外側端部(図1では左端部)に配置されている例を示している。さらに、電源パッド32aは、電源用フィンガー22aを介して、この電源用フィンガー22aと近い位置にあるボール端子21である第2外部端子21bに接続されている。
 換言すると、図2に示すように、第2外部端子21bは、平面視において、第1外部端子21aよりも近い位置において、半導体集積回路31の電源パッド32aと接続されている。すなわち、上記電源パッド32aと第2外部端子21bとの間の配線長は、この電源パッド32aと第1外部端子21aとの間の配線長より短い。結果として、上記電源パッド32aと第2外部端子21bとの間の配線インピーダンス(抵抗及びインダクタンス)は、この電源パッド32aと第1外部端子21aとの間の配線インピーダンス(抵抗及びインダクタンス)より小さい。
 なお、電源用フィンガー22aと第2外部端子21bとを接続する配線パターン24をどのような形態にするかは、特に限定されない。
 図2では、上記配線パターン24の形態の一例を示している。この例では、電源用フィンガー22aと第1外部端子21aとの間は、電源用配線パターン24aで接続されている。そして、この電源用配線パターン24aの途中に分岐点(図2では、ビア23の位置)を設け、この分岐点と第2外部端子21bとの間が配線パターン24cで接続されている。これにより、電源用フィンガー22aと第2外部端子21bとの間の接続において、追加する配線パターン24を最小限にすることができる。
 また、図示しないが、他の例として、電源用フィンガー22aと第1外部端子21aとの間の接続と、電源用フィンガー22aと第2外部端子21bとの間の接続とを別の配線パターン24で実現してもよい。より具体的には、例えば、電源用フィンガー22aと第1外部端子21aとの間は、図2と同様に電源用配線パターン24aで接続される。一方で、電源用フィンガー22aと第2外部端子21bとの間は、一端が電源用フィンガー22aに接続され、他端が第2外部端子21bに接続されており、かつ、電源用配線パターン24aを経由しない配線パターン24により接続される。これにより、第2外部端子21bとして使用するボール端子21の選択肢を増やすことができる。
 半導体集積回路31のグランドパッド32bは、グランド用フィンガー22bに接続されている。グランド用フィンガー22bは、プリント配線板10のグランド用接続パッド11cとの接続が可能な位置にあるボール端子21である第3外部端子21cにグランド用配線パターン24bを介して接続されている。
 電子デバイス1は、プリント配線板10とパッケージ基板20との位置合わせがされて、各ボール端子21と各接続パッド11とが接続されると、電源用接続パッド11aと第1外部端子21aとが接続されるように構成されている。同様に、第1接続パッド11bと第2外部端子21bとが接続され、グランド用接続パッド11cと第3外部端子21cとが接続されるように構成されている。なお、ボール端子21,21,…と接続パッド11,11,…との接続方法は、例えば、加熱により両者間をはんだ接合する方法が知られている。
 さらに、プリント配線板10の下面には、第1接続配線13とグランド配線14との間に接続された第1デカップリングコンデンサ41が実装されている。すなわち、第2外部端子21bは、第1接続配線13を介して第1デカップリングコンデンサ41に接続される。一方で、第2外部端子21bは、第1デカップリングコンデンサ41以外にはプリント配線板10上では接続されていない。なお、「第1デカップリングコンデンサ41以外にはプリント配線板10上では接続されていない」とは、プリント配線板10上の電源、グランド及びバイアス回路等の電位を与える要素(回路や素子等)に接続されていないことを指す。すなわち、ダミー素子及びそれらを接続する配線パターンやビア等のように、電位を与えることと関係のない要素との接続を排除する意図ではない。なお、図示しないが、プリント配線板10には、パッケージ基板20及び第1デカップリングコンデンサ41以外にも、電子部品等が実装されている。さらに、パッケージ基板20の配線層には、上記電子部品や各接続パッド間を接続する配線パターンが形成されている。
 図1及び図2の電子デバイス1の構成によると、第1デカップリングコンデンサ41は、プリント配線板10からの電源電位が与えられる第1外部端子21aより、平面視における距離が近い第2外部端子21bに接続されている。すなわち、本態様では、電源電位の供給を受けるための外部端子と、デカップリングコンデンサを接続するための外部端子とを分けることで、デカップリングコンデンサを半導体集積回路の電源パッドと近い位置に配置できるようにしている。これにより、プリント配線板10の電源配線12とグランド配線14との間に第1デカップリングコンデンサ41を接続する場合と比較して、半導体集積回路31の電源パッド32aから第1デカップリングコンデンサ41までの配線長を短くする、すなわち、配線インピーダンスを低下させることが可能となる。したがって、効果的に半導体集積回路31の電源パッド32aに生じたノイズを低減することができる。また、プリント配線板10で電源配線12と第1接続配線13との間の配線を行う必要がないため、プリント配線板10における配線領域の確保や層数増加の必要がなく、設計容易性が高まるとともに、コストアップを避けることができる。
 ここで、図1及び図2の構成において、仮に、プリント配線板下面のグランド配線が図2に示すようなX方向の外側端部(図1では右端部)付近の第4外部端子21dに接続されている場合に、上の説明と同様に、グランド電位供給用の外部端子と、デカップリングコンデンサを接続するための外部端子とを分けてもよい。この場合、第2外部端子21bと上記デカップリングコンデンサ接続用の外部端子との間に、デカップリングコンデンサを接続するとよく、上の説明と同様の効果が得られる。
 図3は実施形態における電子デバイスの構造の他の例を示している。図3の構成は基本的には図1と同じである。ただし、パッケージ基板20がフリップチップBGAパッケージであり、パッケージ基板20と半導体集積回路31との接続がバンプ51,51,…により行われている。より具体的には、図3において、半導体集積回路31の電源パッド32aと、第1及び第2外部端子21a,21bに接続された電源用配線パターン24aとは、電源用バンプ51aによって接続されている。また、半導体集積回路31のグランドパッド32bと、第3外部端子21cに接続されたグランド用配線パターン24bとは、グランド用バンプ51bによって接続されている。このように、パッケージ基板20をフリップチップBGAパッケージにすることによって、電源インダクタンスをさらに低減することができ、より効果的に高い周波数領域における電源インピーダンスを低減することができる。なお、以下の図4~図6の説明において、パッケージ基板20はワイヤボンドBGAパッケージであるものとして説明するが、上の説明と同様に、パッケージ基板20をフリップチップBGAパッケージに置き換えることが可能であり、上の説明と同様の効果が得られる。また、パッケージ基板20を、BGAパッケージ以外のパッケージに置きかえてもよい。例えば、PGA(Pin Grid Array)パッケージや、LGA(Land Grid Array)パッケージに置きかえてもよい。
 図4は実施形態における電子デバイス1の構造の他の例を示している。図4の構成は基本的には図1と同様である。ただし、電源配線12とグランド配線14との間に第2デカップリングコンデンサ42が接続されている。換言すると、第2デカップリングコンデンサ42は、一端が第1外部端子21aに接続され、他端が第3外部端子21cに接続されている。なお、図4では、グランド配線14の一部を仮想線で示しているが、実際には、グランド配線14は、プリント配線板10に形成された配線パターン(図示省略)により第2デカップリングコンデンサ42の他端に接続されている。
 ここで、第2デカップリングコンデンサ42の容量値は、第1デカップリングコンデンサ41の容量値より大きく設定されていてもよい。第1デカップリングコンデンサ41は、半導体集積回路31の電源パッド32aの近くに設けられているため、より高い周波数領域の電源インピーダンスを下げることができる。すなわち、高周波領域の電源ノイズを低減することができる。一方で、第2デカップリングコンデンサ42は、半導体集積回路31の電源パッド32aからの距離が遠いため、低周波領域の電源インピーダンスを下げることができる。すなわち、低周波領域の電源ノイズを低減することができる。
 このように、第1デカップリングコンデンサ41を高周波領域の電源ノイズ低減に、第2デカップリングコンデンサ42を低周波領域の電源ノイズ低減に役割分担することで、第1のデカップリングコンデンサを小さくすることができ、プリント配線板10における配置領域の確保が容易になる。
 なお、第1及び第2デカップリングコンデンサ41,42の容量値の大小関係は、上の説明に限定されず、目的や用途に応じて適宜設定すればよい。上記容量値の大小関係の設定の変更により、例えば、第1及び第2デカップリングコンデンサ41,42で異なる周波数領域の電源インピーダンスを下げるようにすることができるし、特定の周波数領域に特化して電源インピーダンスを下げるようにすることもできる。
 図5は実施形態における電子デバイス1の構造の他の例を示している。図5の構成は基本的には図1と同様である。ただし、第1デカップリングコンデンサ41とグランド配線14との間にダンピング抵抗43が接続されている点で異なる。すなわち、図5の構成では、第2外部端子21bと第3外部端子21cとの間に第1デカップリングコンデンサ41とダンピング抵抗43が直列に接続されている。このようにダンピング抵抗43を接続することにより、電源インピーダンスのピークが低く抑えられ、高周波領域の電源インピーダンスの低減に効果がある。なお、図5において、16は、第1デカップリングコンデンサ41とダンピング抵抗43との間の接続配線である。
 図6は実施形態における電子デバイス1の構造の他の例を示している。図6の構成は基本的には図1と同様である。ただし、パッケージ基板20上において、電源用フィンガー22aとグランド用配線パターン24bとの間に第3デカップリングコンデンサ44が接続されている点で異なる。これにより、第1デカップリングコンデンサ41よりも電源パッド32aのさらに近くに第3デカップリングコンデンサ44を配置することができるので、より高い周波数領域での電源インピーダンスの低減に効果がある。
 なお、上の説明では、電源配線12、第1接続配線13及びグランド配線14は、プリント配線板10の下面に形成されているものとしたが、これに限定されない。例えば、これらの配線12,13,14が、他の配線層(図示省略)の配線パターンで実現されていてもよい。
 また、上の説明では、第1外部端子21a及び第2外部端子21bが電源配線12に接続され、第3外部端子21cがグランド配線14に接続されるものとしたが、電源配線12とグランド配線14との関係が逆であってもよい。また、電源配線12またはグランド配線14のいずれか一方に電源及びグランド以外の所定の電位が与えられていてもよい。また、電源配線12及びグランド配線14に、互いに異なる所定の電位が与えられていてもよい。
 本開示では、半導体集積回路の電源パッドにより近い位置にデカップリングコンデンサを配置できるようにしたため、半導体集積回路が搭載された電子デバイスのノイズ低減に有用である。
10 プリント配線板
20 パッケージ基板
21a 第1外部端子
21b 第2外部端子
21c 第3外部端子
22 フィンガー(第2パッド)
31 半導体集積回路
32a 電源パッド(第1パッド)
41 第1デカップリングコンデンサ
42 第2デカップリングコンデンサ
43 ダンピング抵抗
44 第3デカップリングコンデンサ
51 バンプ

Claims (12)

  1.  プリント配線板と、
     前記プリント配線板から所定の電位が与えられる第1外部端子及び前記プリント配線板からの電位が与えられない第2外部端子を有するパッケージ基板と、
     前記パッケージ基板に搭載され、前記第1及び第2外部端子に接続された第1パッドを有する半導体集積回路と、
     一端が、前記第2外部端子に接続された第1デカップリングコンデンサとを備え、
     前記第2外部端子は、平面視において、前記第1外部端子より前記第1パッドに近い位置にある
    ことを特徴とする電子デバイス。
  2.  請求項1記載の電子デバイスにおいて、
     前記第2外部端子には、前記第1デカップリングコンデンサ以外は接続されていない
    ことを特徴とする電子デバイス。
  3.  請求項1記載の電子デバイスにおいて、
     前記パッケージ基板は、前記プリント配線板から前記第1外部端子と異なる電位が与えられる第3外部端子を有し、
     前記第1デカップリングコンデンサの他端は、前記第3外部端子に接続されている
    ことを特徴とする電子デバイス。
  4.  請求項3記載の電子デバイスにおいて、
     前記第1外部端子には、前記所定の電位として、電源電位が与えられ、
     前記第3外部端子には、前記異なる電位として、グランド電位が与えられる
    ことを特徴とする電子デバイス。
  5.  請求項1記載の電子デバイスにおいて、
     前記第1パッドと前記第2外部端子との間の配線長は、前記第1パッドと前記第1外部端子との間の配線長より短い
    ことを特徴とする電子デバイス。
  6.  請求項1記載の電子デバイスにおいて、
     前記第1パッドと前記第2外部端子との間の配線インピーダンスは、前記第1パッドと前記第1外部端子との間の配線インピーダンスより低い
    ことを特徴とする電子デバイス。
  7.  請求項1記載の電子デバイスにおいて、
     一端が、前記第1外部端子に接続された第2デカップリングコンデンサを備えている
    ことを特徴とする電子デバイス。
  8.  請求項7記載の電子デバイスにおいて、
     前記第2デカップリングコンデンサの容量値は、前記第1デカップリングコンデンサの容量値より大きい
    ことを特徴とする電子デバイス。
  9.  請求項3記載の電子デバイスにおいて、
     前記第2外部端子と前記第3外部端子との間に、前記第1デカップリングコンデンサと
    直列接続されたダンピング抵抗が設けられている
    ことを特徴とする電子デバイス。
  10.  請求項1記載の電子デバイスにおいて、
     前記パッケージ基板に搭載され、一端が前記第2外部端子と接続された第3デカップリングコンデンサを備えている
    ことを特徴とする電子デバイス。
  11.  請求項1記載の電子デバイスにおいて、
     前記パッケージ基板は、前記第1及び第2外部端子に接続された第2パッドを有し、
     前記半導体集積回路の第1パッドと前記パッケージ基板の第2パッドとの間は、ワイヤ接続により接続されている
    ことを特徴とする電子デバイス。
  12.  請求項1記載の電子デバイスにおいて、
     前記パッケージ基板は、前記第1及び第2外部端子に接続された第2パッドを有し、
     前記半導体集積回路の第1パッドと前記パッケージ基板の第2パッドとの間は、バンプにより接続されている
    ことを特徴とする電子デバイス。
PCT/JP2017/006538 2016-04-28 2017-02-22 電子デバイス WO2017187735A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016090409 2016-04-28
JP2016-090409 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017187735A1 true WO2017187735A1 (ja) 2017-11-02

Family

ID=60160243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006538 WO2017187735A1 (ja) 2016-04-28 2017-02-22 電子デバイス

Country Status (1)

Country Link
WO (1) WO2017187735A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340534A (ja) * 2004-05-27 2005-12-08 Kyocera Corp 積層型配線基板および半導体装置
JP2008258312A (ja) * 2007-04-03 2008-10-23 Hitachi Ltd 半導体装置及びその配線部品
JP2011066344A (ja) * 2009-09-18 2011-03-31 Renesas Electronics Corp 半導体装置および電子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340534A (ja) * 2004-05-27 2005-12-08 Kyocera Corp 積層型配線基板および半導体装置
JP2008258312A (ja) * 2007-04-03 2008-10-23 Hitachi Ltd 半導体装置及びその配線部品
JP2011066344A (ja) * 2009-09-18 2011-03-31 Renesas Electronics Corp 半導体装置および電子装置

Similar Documents

Publication Publication Date Title
JP5514560B2 (ja) 半導体装置
US7968991B2 (en) Stacked package module and board having exposed ends
CN109755192B (zh) 半导体器件及其形成方法
KR102591624B1 (ko) 반도체 패키지
US20140021591A1 (en) Emi shielding semiconductor element and semiconductor stack structure
JP2010251662A5 (ja)
JP5522077B2 (ja) 半導体装置
JP6128756B2 (ja) 半導体パッケージ、積層型半導体パッケージ及びプリント回路板
JP2013236039A (ja) 半導体装置
US20110147951A1 (en) Wiring substrate and semiconductor device
JP2011066344A (ja) 半導体装置および電子装置
KR101321170B1 (ko) 패키지 및 이의 제조 방법
JP5767695B2 (ja) 半導体装置
TWI642163B (zh) 半導體封裝結構
US9220164B2 (en) High frequency module
JP5973470B2 (ja) 半導体装置
TWI493668B (zh) 接墊結構、線路載板及積體電路晶片
WO2017187735A1 (ja) 電子デバイス
US10008441B2 (en) Semiconductor package
TWI601255B (zh) 薄膜覆晶封裝結構
JP4243621B2 (ja) 半導体パッケージ
US9357646B2 (en) Package substrate
JP5855913B2 (ja) 半導体装置
TW201901716A (zh) 薄膜電容器構造及具備該薄膜電容器構造之半導體裝置
JP6105773B2 (ja) 半導体装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789024

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP