WO2017183535A1 - Fiber treatment agent, method for producing processed fiber article, and processed fiber article - Google Patents
Fiber treatment agent, method for producing processed fiber article, and processed fiber article Download PDFInfo
- Publication number
- WO2017183535A1 WO2017183535A1 PCT/JP2017/014965 JP2017014965W WO2017183535A1 WO 2017183535 A1 WO2017183535 A1 WO 2017183535A1 JP 2017014965 W JP2017014965 W JP 2017014965W WO 2017183535 A1 WO2017183535 A1 WO 2017183535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- treatment agent
- fiber treatment
- meth
- unsaturated monomer
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/263—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
- D06M15/27—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of alkylpolyalkylene glycol esters of unsaturated carboxylic acids
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/356—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
Definitions
- the present invention relates to a fiber treatment agent capable of imparting flame retardancy and rust prevention to a fiber, a method for producing a fiber processed product using the fiber treatment agent, and a fiber obtained using the method for producing the fiber processed product Regarding processed products.
- a method of making a fiber flame retardant a method of adding a flame retardant to a fiber treatment agent is mainly mentioned.
- flame retardants include inorganic flame retardants such as red phosphorus, phosphates, antimony trioxide, aluminum hydroxide, and magnesium hydroxide; halogen flame retardants such as pentabromobiphenyl, octabromobiphenyl, and decabromobiphenyl.
- Non-halogen flame retardants such as guanidine phosphate, triphenyl phosphate and sulfamic acid are well known.
- the flame retardant component may cause separation, sedimentation and choking in the fiber processed product.
- such fiber treatment agents not only impart flame retardancy to fiber processed products, but also strength, texture, rust prevention, etc. It is required not to adversely affect other physical properties of the processed fiber product.
- inorganic flame retardants have poor flame retardancy and need to be added in large amounts to the fiber treatment agent, so sedimentation is likely to occur due to the difference in specific gravity with other additive components such as synthetic resins.
- the fiber processed product using the inorganic flame retardant is likely to have a problem that the texture becomes hard.
- halogen-based flame retardants have excellent flame retardancy, they can be added to the fiber treatment agent in a small amount. For this reason, there is little influence on the physical properties of the fiber processed product processed using the fiber processing agent containing these. However, since it contains halogen elements such as chlorine and bromine, incineration of textile processed products using these elements may generate harmful substances such as dioxins and hydrogen halides. Regulations and use are being reviewed in each country.
- non-halogen flame retardants are superior to halogen flame retardants, many flame retardants including phosphorus-based flame retardants have been studied.
- the flame retardant performance of phosphorus flame retardants is lower than that of halogen flame retardants and must be used in relatively large amounts. Therefore, the fiber treatment agent containing a phosphorus flame retardant reduces the physical properties of a fiber processed product processed using the fiber treatment agent.
- water-soluble phosphorus-based flame retardants have high deliquescence and apparently plasticize the resin, which causes a decrease in strength and texture of fiber processed products using them.
- Oil-soluble phosphorus-based flame retardants not only reduce strength and texture by plasticizing the resin and bleeding on the surface of the fiber treatment agent, but they also provide stickiness and choking with processed fiber products using the fiber treatment agent. It is a cause to cause.
- a method of imparting rust prevention to the fiber a method of adding a rust inhibitor to the fiber treatment agent is mainly mentioned.
- inorganic rust preventives such as nitrite, chromate, phosphate, silicate; alkyl sulfonic acid or barium salt of benzene sulfonic acid, barium soap, organic amine carboxylate, benzoate, etc.
- Organic rust inhibitors are well known.
- inorganic rust preventives are excellent in rust prevention compared to organic rust preventives, many studies have been made.
- inorganic rust inhibitors contain substances harmful to the human body, and there are concerns about the impact on the environment.
- nitrite is known to exhibit high rust prevention properties, but has been pointed out to be harmful to the human body, and nitrite-free rust preventive agents are required.
- Chromates are also known to exhibit high anti-rust properties, but contain heavy metals and, like nitrites, are harmful to the human body and have restrictions on drainage in the treatment process. Its use is avoided.
- Organic rust preventives are widely used to solve problems such as harmfulness to human bodies and environmental burdens as pointed out in the inorganic rust preventives.
- organic rust preventives exhibiting high rust preventive properties for example, barium salts of alkyl sulfonic acid or benzene sulfonic acid, barium soap, etc. are known, but in recent years, the harmfulness of barium salts to the human body has been pointed out. European and American regulations on use are in place.
- Various carboxylic acid esters such as alkyl succinic acid half esters and alkenyl succinic acid half esters exhibit a certain level of rust prevention, but are not sufficient.
- benzoates are known to exhibit rust prevention properties and are also used as additives for antifreeze coolants for automobile engines.
- benzoate generally has a slight influence on the human body and has an advantage that it has a lower environmental impact than inorganic rust preventives, such as being used as a food preservative.
- organic rust preventives are generally flammable, and fiber treatment agents using these are a cause of reducing the flame retardancy of processed textile products.
- a non-halogen obtained by copolymerizing an unsaturated monomer having a phosphate group or a phosphite group skeleton, an acrylic acid unsaturated monomer, and a vinyl acetate monomer disclosed in Patent Document 1
- a flame retardant resin composition has been proposed, processed products using the flame retardant resin composition do not satisfy strength and stiffness, and further improvements in physical properties have been desired.
- Patent Document 2 discloses a processed product using a flame retardant resin composition, but does not disclose rust prevention. There has been a demand for a fiber treatment agent that can provide a processed product having both flame retardancy and rust prevention.
- the present invention is to provide a fiber treatment agent from which a processed product excellent in both flame retardancy and rust prevention can be obtained.
- Another object of the present invention is to provide a method for producing a fiber processed article using the fiber treating agent and a fiber processed article obtained by using the method for producing the fiber processed article.
- the polymerizable unsaturated monomer (B) is a (meth) acrylic acid alkyl ester unsaturated monomer (b1), (meth) acrylic acid, and itaconic acid.
- a fiber treatment agent comprising: at least one unsaturated monomer (b2) selected.
- the monomer (a1) having a phosphoric acid group or a phosphorous acid group contains an acid phosphooxypolyoxyalkylene glycol mono (meth) acrylate.
- the rust inhibitor (C) comprises an amine carboxylate or benzoate.
- the flame retardant (D) contains phosphorus.
- a method for producing a processed fiber product comprising a step of treating a fiber substrate with the fiber treatment agent according to any one of [1] to [9] to obtain a processed fiber product.
- a processed fiber product, wherein the amount of the fiber treatment agent according to any one of [1] to [9] after drying is 50 to 100 parts by mass with respect to 100 parts by mass of the fiber substrate.
- the processed product has excellent flame retardancy and is excellent in rust prevention.
- the fiber processed product obtained by the method for manufacturing a fiber processed product using the fiber treating agent is excellent in both flame retardancy and rust resistance, and is therefore suitable as a fiber material for use in home appliances, electronic materials, and automotive interior materials. is there.
- the fiber treatment agent of the present invention comprises a copolymer (P) of a phosphorus-containing unsaturated monomer (A) and a polymerizable unsaturated monomer (B), a rust inhibitor (C) and a flame retardant ( D).
- the fiber treatment agent according to the present embodiment is excellent in both flame retardancy and rust prevention properties for the processed product, is useful as a flame retardant treatment for fibers, and can be suitably used for various fibers.
- “to” in this specification means a value not less than the value before the description of “to” and not more than the value after the description of “to”.
- (meth) acrylate and the like in this specification is synonymous with “acrylate and / or methacrylate” and the like.
- the copolymer (P) is a copolymer obtained by polymerizing the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B).
- the phosphorus-containing unsaturated monomer (A) used in the present invention is not particularly limited as long as it contains an ethylenically unsaturated bond and a phosphorus atom in the molecule.
- phosphorus-containing unsaturated monomer (A) examples include dimethyl vinyl phosphonate, diethyl vinyl phosphonate, diphenyl vinyl phosphonate, diphenyl vinyl phosphonate, dimethyl (1,2-diphenyl-ethenyl) phosphonate, dimethyl -P-vinylbenzylphosphonate, diethyl-p-vinylbenzylphosphonate, diphenyl-p-vinylbenzylphosphine oxide, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-10-p- Vinyl benzyl, acid phosphooxyethyl (meth) acrylate, 2-acryloyloxyethyl acid phosphate, diphenyl-2-methacryloyloxyethyl phosphate, (meth) acryloyl oxyethyl acid phosphate Ethanolamine salt, may be mentioned Acid phosphoxypolyoxyethylene glyco
- the monomer (a1) having a phosphoric acid group or a phosphorous acid group is preferable.
- the monomer (a1) having a phosphoric acid group or a phosphorous acid group include, for example, the general formula (1): (Wherein R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms; Y represents a hydroxyl group, an alkyl group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms) Z represents a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms or an alkyl ester group having 1 to 3 carbon atoms; n is an integer of 1 to 20),
- metal salts, ammonium salts, amine salts and the like of this compound can be mentioned. These compounds can be used alone or as a mixture of
- the monomer (a1) having a phosphoric acid group or a phosphorous acid group include acid phosphooxypolyoxyalkylene glycol mono (meth) acrylate. More specifically, acid phosphooxyethyl (meth) acrylate, 2-acryloyloxyethyl acid phosphate, 2-methacryloxyethyl acid phosphate, acid phosphooxypolyoxyethylene glycol mono (meth) acrylate and acid phospho An oxypolyoxypropylene glycol (meth) acrylate etc. can be mentioned. These compounds can be used alone or as a mixture of two or more. Of these, acid phosphooxyethyl (meth) acrylate is preferred because of its high phosphorus content per molecule.
- the phosphorus-containing unsaturated monomer (A) is based on the total monomers in the copolymer (P) of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B). It is preferably used in the range of 20% by mass to 60% by mass, more preferably in the range of 23-50% by mass, and further preferably in the range of 26% by mass to 40% by mass.
- the flame retardancy of the processed product treated with the present fiber treatment agent is sufficient if it is 20% by mass or more, and the polymerization is stable if it is 60% by mass or less, the strength of the processed product using the present fiber treatment agent and There is a tendency that heat yellowing does not decrease.
- the polymerization rate of the phosphorus-containing unsaturated monomer (A) is as follows in the phosphorus-containing unsaturated monomer (A), the polymerizable unsaturated monomer (B), and the copolymer (P):
- the phosphorus atom content calculated from the atomic weight of phosphorus and the molecular weight of the phosphorus-containing unsaturated monomer (A) is appropriately determined to be 3 to 13% by mass. Good.
- the polymerization is preferably performed so that the phosphorus content is 3 to 10% by mass.
- the flame retardancy of the copolymer (P) itself is sufficient, so that the flame retardancy as a fiber treatment agent is sufficient, and if it is less than 13% by mass, the copolymer (P) is polymerized. Stabilize.
- the polymerizable unsaturated monomer (B) used in the present invention has an ethylenically unsaturated bond in the molecule, expresses polymerizability, and is copolymerized with the phosphorus-containing unsaturated monomer (A). If it does, it will not be restrict
- Examples of the polymerizable unsaturated monomer (B) include acrylic acid, methacrylic acid, fumaric acid, maleic acid and esters thereof; (meth) acrylamide and derivatives thereof; styrene and derivatives thereof; vinyl esters; N Substituted maleimide compounds; itaconic acid, crotonic acid, phthalic acid and esters thereof, metal salts thereof, ammonium salts and the like.
- polymerizable unsaturated monomer (B) examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
- the polymerizable unsaturated monomers (B) in particular, (meth) acrylic acid alkyl ester unsaturated monomer from the viewpoint of the expression of flame retardancy in a fiber processed product obtained by treating with the present fiber treating agent.
- the body (b1) and at least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid are preferably used together.
- the (meth) acrylic acid alkyl ester unsaturated monomer (b1) is used, the bleeding resistance of the flame retardant (D) component in the processed fiber product treated with the fiber treatment agent of the present invention is improved. ,preferable.
- the rust prevention property of the fiber processed product treated with the fiber treating agent of the present invention is improved. It is preferable in terms of
- the alkyl group of the (meth) acrylic acid alkyl ester unsaturated monomer (b1) is preferably an alkyl having 1 to 5 carbon atoms. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and the like. Among them, methyl (meth) acrylate, ethyl ( (Meth) acrylate is preferred. These can be used alone or in combination of two or more.
- an (meth) acrylic acid alkyl ester unsaturated monomer (b1) may be used.
- Specific examples include 2-ethylhexyl (meth) acrylate, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylamino Ethyl (meth) acrylate etc. are mentioned, These can be used individually or in combination of 2 or more types.
- At least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid At least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid is used to improve the flame retardancy of the fiber treatment agent of the present invention.
- acrylic acid is preferable in that the stability of the polymerization is not impaired and the content in the copolymer (P) can be increased.
- a carboxyl selected from other than the group consisting of (meth) acrylic acid and itaconic acid may be used.
- Specific examples of the unsaturated monomer having a carboxyl group selected from those other than the group consisting of (meth) acrylic acid and itaconic acid include fumaric acid, maleic acid, crotonic acid, and the like. The above can be used in combination.
- the polymerizable unsaturated monomer (B) is contained in a copolymer (P) of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) contained in the fiber treatment agent.
- the total amount is preferably 40% by mass or more, more preferably 50% by mass to 80% by mass. When it is 40% by mass or more, polymerization of the fiber treatment agent of the present invention is stable, and when it is 80% by mass or less, the flame-treated product processed with the fiber treatment agent of the present invention has sufficient flame retardancy. There is a tendency.
- At least one unsaturated monomer selected from the group consisting of (meth) acrylic acid alkyl ester unsaturated monomer (b1) and (meth) acrylic acid and itaconic acid 90 mass% or more is preferable, as for the total amount of a body (b2), More preferably, it is 95 mass% or more, More preferably, it is 100 mass%.
- the polymerizable unsaturated monomer (B) at least one unsaturated monomer selected from the group consisting of (meth) acrylic acid alkyl ester unsaturated monomer (b1) and (meth) acrylic acid and itaconic acid
- the mass ratio (b1 / b2) to the body (b2) is preferably, for example, 96/4 to 4/96, more preferably 79/21 to 21/79, and 75/25 to 30 / More preferably, it is 70.
- the bleeding resistance of the flame retardant (D) component tends to be improved in the fiber processed product treated with the fiber treating agent of the present invention.
- the copolymer (P) of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) contained in the fiber treatment agent of the present invention is a suspension polymerization method, an emulsion polymerization method, It can manufacture using well-known copolymerization methods, such as a solution polymerization method and a block polymerization method. Further, it can be produced by either a continuous polymerization method or a batch polymerization method.
- the rust inhibitor (C) used in the present invention is not particularly limited as long as it does not significantly impair the flame retardancy of the processed product treated with the fiber treatment agent of the present invention.
- the rust inhibitor (C) include nitrites such as mono and diisopropylamine nitrite, mono and dicyclohexylamine nitrite, triethylamine nitrite, pyridine nitrite and aniline nitrite; alkyl succinic acid half ester, alkenyl Various carboxylic acid esters such as succinic acid half ester; dicyclohexylammonium salicylate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylaminecyclohexanecarboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate and their carbamates, naphthenates, octylates, etc.
- nitrites such as mono and diisopropylamine nitrite, mono and dicyclohexylamine nitrite, triethylamine nitrite,
- Amine carboxylates ethylmorpholine benzoate, di- and monocyclohexyla Benzoates such as benzoate, monoethanolamine benzoate, sodium benzoate, etc .; various chromates; phosphates; silicates; sulfonates, etc.
- Amine carboxylates or benzoates are preferred from the standpoint of regulation and efficient rust prevention. These compounds can be used alone or in combination of two or more.
- the content of the rust inhibitor (C) in the fiber treatment agent of the present invention is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, and 1 to 5% by mass. More preferably.
- the amount is less than 0.1% by mass, the rust preventive property of the processed product treated with the fiber treatment agent of the present invention is lowered.
- the amount is more than 15% by mass, the drying property of the fiber treatment agent is lowered, and the fiber treatment agent is reduced. There exists a tendency for the physical property of the fiber processed article obtained by processing this to inhibit the processing property of this fiber processed article to fall.
- the flame retardancy of the processed product is also reduced by the combined use with the following appropriate amount of flame retardant, without reducing the rust prevention property of the processed product treated with the fiber treatment agent of the present invention. There is nothing to do.
- the flame retardant (D) used in the present invention is not particularly limited as long as it can be mixed in the fiber treatment agent.
- flame retardant (D) examples include guanidine phosphate, triphenyl phosphate, cresyl diphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (t-butylated phenyl) phosphate, tris (i-propylated).
- Phenyl) phosphate 2-ethylhexyl diphenyl phosphate, red phosphorus, 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate) and their metal salts, etc.
- Phosphorus flame retardants Phosphorus flame retardants; inorganic flame retardants such as antimony trioxide, antimony tetroxide, antimony pentoxide, antimony soda, aluminum hydroxide, magnesium hydroxide; nitrogen flame retardants such as melamine cyanurate; penta Halogenated flame retardants such as bromobiphenyl, octabromobiphenyl, decabromobiphenyl, and the like.
- the flame retardant containing phosphorus from the point of low environmental impact and efficient flame-resistant expression.
- the content of the flame retardant (D) in the fiber treatment agent of the present invention is preferably 0.1 to 70% by mass, more preferably 0.5 to 50% by mass, and 1 to 30% by mass. Is more preferable.
- the amount is 0.1% by mass or more, the flame retardant of the processed product treated with the fiber treatment agent of the present invention becomes sufficient, and when it is 70% by mass or less, the fiber treatment agent of the present invention is used for treatment. There is a tendency that choking, stickiness, and the like are suppressed in the processed fiber product obtained in (1).
- the content of the flame retardant (D) in the fiber treatment agent of the present invention is preferably 40% by mass or less in total with the content of the rust inhibitor (C). When it is 40% by mass or less, bleeding tends to be suppressed, and choking and stickiness tend to be suppressed in a fiber processed product obtained by processing using the fiber treatment agent of the present invention.
- the total phosphorus atom content in the fiber treatment agent of the present invention is preferably 0.01 to 30% by mass, more preferably 0.05 to 25% by mass, and 0.1 to 20% by mass. Is more preferable.
- the processed product treated with the fiber treatment agent of the present invention has sufficient flame retardancy, and when it is 30% by mass or less, the fiber treatment agent of the present invention is used for treatment. There is a tendency that choking, stickiness and the like are suppressed in the processed fiber product.
- Specific examples thereof include sodium persulfate, potassium persulfate, ammonium persulfate, hydrogen peroxide, benzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate.
- the initiator is used in an amount of 0.01 to 20 with respect to 100 parts by mass in total of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) in the copolymer (P). Part by mass is preferable, and 0.1 to 10 parts by mass is more preferable.
- the copolymer (P) of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) contained in the fiber treatment agent of the present invention is produced by an emulsion polymerization method In the presence of a surfactant.
- a surfactant commercially available anionic surfactants, nonionic surfactants, cationic surfactants and copolymerizable surfactants can be used. Moreover, these surfactants can be used individually or in combination of 2 or more types.
- the amount of the surfactant used is preferably 0.01 to 30 parts by weight, preferably 0.1 to 20 parts by weight, based on the total of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B). Is more preferable.
- water-soluble polymers such as water-soluble (meth) acrylic acid resins, water-soluble (meth) acrylic acid ester resins, polyoxyethylene alkyl ethers and the like may be used as protective colloids. These protective colloids can be used regardless of the degree of saponification, the average degree of polymerization, and the presence or absence of modification.
- the average degree of polymerization should be 200 to 2,400 from the viewpoints of polymerization stability and product viscosity.
- the degree of saponification is preferably 80% to 100% from the viewpoint of polymerization stability.
- the amount of these protective colloids to be used is not particularly limited. From the viewpoint of polymerization stability, the total of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B). The amount is preferably 1 to 100 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass.
- fillers, preservatives, colorants, antifoaming agents, foaming agents, dispersants, emulsifiers, fluidity modifiers, plasticizers, and pH adjustments are within the range that does not impair the effects of the present invention. You may mix additives, such as an agent and various oil agents.
- the fiber treatment agent of the present invention may contain various resin compositions such as other resin emulsions, solution resins, epoxy resins, and urethane resins as binders as long as the effects of the present invention are not impaired.
- solvent used for the production of the fiber treatment agent of the present invention water or a commonly used organic solvent can be used. Specific examples thereof include alcohols such as methanol, ethanol, propanol, isopropanol and butanol; ethylene glycol monoalkyl ether acetates such as ethyl acetate, isopropyl acetate, cellosolve acetate and butyl cellosolve acetate, diethylene glycol monomethyl ether acetate and carbitol acetate.
- alcohols such as methanol, ethanol, propanol, isopropanol and butanol
- ethylene glycol monoalkyl ether acetates such as ethyl acetate, isopropyl acetate, cellosolve acetate and butyl cellosolve acetate, diethylene glycol monomethyl ether acetate and carbitol acetate.
- Acetate esters such as diethylene glycol monoalkyl ether acetates such as butyl carbitol acetate, propylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ether acetates; ethylene glycol dialkyl ethers, methyl carbitol, ethyl carbitol, Diethylene glycol dialkyl esters such as butyl carbitol Tells, triethylene glycol dialkyl ethers, propylene glycol dialkyl ethers, dipropylene glycol dialkyl ethers, ethers such as methyl ether, ethyl ether, 1,4-dioxane, tetrahydrofuran; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone Ketones such as benzene, toluene, xylene, hexane, octan
- the fiber includes non-woven fabrics, woven fabrics, knitted fabrics, and the like made of various fibers and their blends.
- the fiber include cotton, hemp, silk, wool, collagen fiber, acrylic fiber, cellulosic fiber, polyimide fiber, polyamideimide fiber, rayon fiber, nylon fiber, vinylon fiber, polyester fiber, polypropylene fiber, poly Non-woven fabric made of vinyl chloride fiber, polyethylene fiber, polymetaphenylene isophthalamide fiber, aramid fiber, polyarylate fiber, polytetrafluoroethylene fiber, polybenzimidazole fiber, polyether ether ketone fiber, polyphenylene sulfide fiber and blended products thereof, Examples include woven fabrics and knitted fabrics.
- Various known methods can be employed without particular limitation as a method for producing a processed fiber product by treating the fiber (base material) with the fiber treatment agent of the present invention.
- examples of the method for applying the fiber treatment agent of the present invention to the fiber and processing include a direct coating method, a spray coating method, a roll coater method, a slot coater method, a knife coat method, a printing method, a roll transfer method, and the like.
- a horizontal roller method, a metalling roller method, a screen conveyor method, a foam method, and the like can be given.
- the processing method in the case of processing a fiber such as a nonwoven fabric with the fiber treatment agent of the present invention includes a spray coating method, a printing method, a roll transfer method, a horizontal roller method, a metering roller method, a screen conveyor method, a foam method, etc.
- processing methods for treating fibers such as woven fabrics with the fiber treatment agent of the present invention include a direct coating method, a spray coating method, a roll coater method, a slot coater method, and a knife coating method.
- the fiber treatment may be performed on the fibers before being formed into a web.
- the fiber web forming method various known methods can be employed without particular limitation, and examples thereof include an air array method.
- the amount of the fiber treatment agent used for various fiber substrates depends on the flame retardancy of the substrate itself, but the resin adhesion amount (the adhesion amount after drying the adhered fiber treatment agent) is 10 to 200 parts by mass / 100.
- the amount to be parts by mass is preferable, the amount to be 30 to 150 parts by mass / 100 parts by mass is more preferable, and the amount to be 50 to 100 parts by mass / 100 parts by mass is still more preferable.
- the flame-retardant and rust prevention properties of the fiber processed product obtained using the fiber treatment agent of the present invention are sufficient, and when it is more than 200 parts by mass / 100 parts by mass, There exists a tendency for the fall of the intensity
- Drying may be air drying, vacuum drying, or pressure drying. Moreover, you may heat.
- the temperature range when heating at the time of drying is preferably 50 to 250 ° C, more preferably 80 to 190 ° C. If the heating temperature is too low, drying may take time or drying may be insufficient. If the heating temperature is too high, alteration may occur.
- the fiber processed product of the present invention is obtained using the method for producing a fiber processed product of the present invention.
- the amount that the resin adhesion amount (attachment amount of the fiber treatment agent after drying) is 10 to 200 parts by mass / 100 parts by mass, which is 50 to 100 parts by mass / 100 parts by mass with respect to the fiber (base material), is preferably 30 An amount of ⁇ 150 parts by mass / 100 parts by mass is more preferred, and an amount of 50 ⁇ 100 parts by mass / 100 parts by mass is still more preferred.
- the fiber processed product of the present invention When the amount is 10 parts by mass / 100 parts by mass or more, the fiber processed product of the present invention has sufficient flame retardancy and rust resistance, and when the amount is 200 parts by mass / 100 parts by mass or less, There is a tendency for the decrease in strength and texture to be suppressed.
- the processed fiber product of the present invention can be applied to various fields by taking advantage of excellent flame retardancy and rust prevention properties that are compatible with each other.
- the processed fiber product of the present invention is suitably used as a cushioning material for electronic materials, a cushioning material for home appliances, an automotive interior cushioning material, and the like.
- Example 1 150 g of ion-exchanged water was placed in a 1 L 5-neck separable flask and heated to 80 ° C. with stirring.
- Acid phosphooxypolyoxyethylene glycol monomethacrylate (manufactured by Kyoeisha Chemical Co., Ltd., light ester P-1M, phosphorus content 15 mass%) 60 g, methyl methacrylate 36 g, ethyl acrylate 36 g, acrylic acid 18 g, dodecylbenzenesulfonic acid soda 5 g, 7.5 g of polyoxyethylene alkyl ether and 150 g of ion exchange water were uniformly emulsified.
- the reaction was started by adding 0.2 g of potassium persulfate to the separable flask and starting dropping of the monomer emulsion.
- the monomer emulsion was added to the separable flask over 4 hours, and at the same time, 30 g of 3% aqueous potassium persulfate solution was added over 4 hours.
- the reaction was terminated by stirring at 80 ° C. for 2 hours.
- the inside of the separable flask was cooled, and 8 g of a 30% aqueous sodium hydroxide solution was added to neutralize the system.
- Example 2 to 12 The fiber treatment agents 2 to 12 were prepared in the same manner as in Example 1 except that the compositions shown in Tables 1 and 2 were used. In addition, the detail of each component in Table 1 and Table 2 is as follows. Diphenyl-2-methacryloyloxyethyl phosphate: Daihachi Chemical Industry Co., Ltd., MR-260, phosphorus content 8% 1- [N, N-bis (2-ethylhexyl) aminomethyl] benzotriazole: manufactured by Johoku Chemical Industry Co., Ltd., BT-LX Triphenyl phosphate: manufactured by Daihachi Chemical Industry Co., Ltd., TPP, phosphorus content 10% Polyvinyl alcohol: manufactured by Kuraray Co., Ltd., PVA205 (saponification degree: 86.5 to 89.0%, average polymerization degree: 500) Using the obtained fiber treating agents 2 to 12, fiber processed products were produced by the method described below. The physical property evaluation of the obtained fiber processed product was performed by
- the fiber base materials in Examples and Comparative Examples of the present invention were as follows. (1) Fiber Polyester-cellulose nonwoven fabric (2) Weight per unit area 35 g / m 2 (3) Thickness 200 ⁇ m
- ⁇ Method for evaluating solid content> Take a predetermined amount of sample in a clean aluminum pan (height: about 17mm, caliber: about 40mm), weigh accurately using a direct weighing scale with a sensitivity of 0.5mg or less, and then the internal temperature is 105 °C ⁇ 2 °C. Leave in a drier adjusted to 1 hour for 1 hour. The sample after drying is cooled to room temperature in a desiccator, then precisely weighed with the same direct balance, and the solid content is calculated by the following formula.
- Solid content (%) sample weight after drying (g) / original sample weight (g) ⁇ 100 ⁇ Method for evaluating phosphorus atom content> Any method such as a colorimetric determination method or ICP emission analysis may be used. For example, the phosphorus atom content can be determined by elemental analysis.
- V-0, V-1, V-2 The total burning time by the first and second flame contact of the five test pieces is within 50 seconds and the maximum burning time is within 10 seconds, and there is no dripping of material due to combustion.
- V-1 The total burning time by the first and second flame contact of the five test pieces is 250 seconds or less and the maximum burning time is 30 seconds or less, and there is no dripping of material due to combustion.
- V-2 The total combustion time by the first and second flame contact of five test pieces is within 250 seconds, and the maximum combustion time is within 30 seconds.
- the fiber processing agent which does not contain a rust preventive agent (C) (comparative example 4), it turns out that rust preventive property is inadequate on 60 degreeC and 95% RH conditions.
- a fiber treatment agent that does not contain an unsaturated monomer (b2) having at least one carboxyl group selected from the group consisting of (meth) acrylic acid and itaconic acid as a polymerizable unsaturated monomer (B) component is used.
- the fiber treatment agent of the present invention has excellent flame retardancy in processed fiber products and excellent rust prevention under high humidity conditions, and is particularly suitable for fiber treatment.
- the manufacturing method of the fiber processed goods using the fiber processing agent of this invention is suitable for manufacturing various fiber processed goods excellent in a flame retardance and rust prevention property, and uses the manufacturing method of this fiber processed goods.
- a fiber processed product excellent in flame retardancy and rust prevention can be produced.
- this fiber processed product it becomes possible to manufacture a shock-absorbing material for electronic materials, a shock-absorbing material for home appliances, a shock-absorbing material for automobile interiors, and the like, which are excellent in flame retardancy and rust prevention.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
The present invention provides a fiber treatment agent that has excellent flame resistance and also has excellent rust resistance. A processed fiber article obtained by a method for producing a processed fiber article using this fiber treatment agent has both excellent flame resistance and excellent rust resistance, and is therefore suitable as a fiber material for use in home appliances, electronic materials, and automotive interior materials. This fiber treatment agent comprises a copolymer (P) of a phosphorus-containing unsaturated monomer (A) and polymerizable unsaturated monomers (B), and a rust inhibitor (C) and flame retardant (D). The polymerizable unsaturated monomers (B) comprise a (meth)acrylic acid alkyl ester unsaturated monomer (b1) and at least one type of unsaturated monomer (b2) having a carboxyl group selected from the group consisting of (meth)acrylic acid and itaconic acid.
Description
本発明は、繊維に難燃性及び防錆性を付与することができる繊維処理剤、該繊維処理剤を用いた繊維加工品の製造方法及び該繊維加工品の製造方法を用いて得られる繊維加工品に関する。
本願は、2016年4月18日に、日本に出願された特願2016-082714号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a fiber treatment agent capable of imparting flame retardancy and rust prevention to a fiber, a method for producing a fiber processed product using the fiber treatment agent, and a fiber obtained using the method for producing the fiber processed product Regarding processed products.
This application claims priority based on Japanese Patent Application No. 2016-082714 filed in Japan on April 18, 2016, the contents of which are incorporated herein by reference.
本願は、2016年4月18日に、日本に出願された特願2016-082714号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a fiber treatment agent capable of imparting flame retardancy and rust prevention to a fiber, a method for producing a fiber processed product using the fiber treatment agent, and a fiber obtained using the method for producing the fiber processed product Regarding processed products.
This application claims priority based on Japanese Patent Application No. 2016-082714 filed in Japan on April 18, 2016, the contents of which are incorporated herein by reference.
近年、建築材料や、家電、電子材料、自動車等の車両内装材等の用途において使用される繊維加工品の難燃化が求められている。また、そのような繊維加工品には、物性向上剤および接着剤として、合成樹脂及び各種添加剤を含有する繊維処理剤が広く用いられている。前記のような難燃繊維加工品を得るために、繊維に難燃性や防錆性を付与する繊維処理剤が求められている。そのような繊維処理剤の開発が進められている。
In recent years, there has been a demand for flame-retarded fiber processed products used in building materials, home appliances, electronic materials, vehicle interior materials such as automobiles, and the like. Moreover, the fiber processing agent containing a synthetic resin and various additives is widely used for such a textile processed product as a physical property improvement agent and an adhesive agent. In order to obtain the flame-retardant fiber processed product as described above, a fiber treatment agent that imparts flame retardancy and rust resistance to the fiber is required. Development of such fiber treatment agents is underway.
一般的に、繊維を難燃化する方法としては、主に繊維処理剤に難燃剤を添加する方法が挙げられる。このような難燃剤として、例えば、赤リンやリン酸塩、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウムなどの無機系難燃剤;ペンタブロモビフェニル、オクタブロモビフェニル、デカブロモビフェニルなどのハロゲン系難燃剤;リン酸グアニジン、トリフェニルホスフェート、スルファミン酸などの非ハロゲン難燃剤などが良く知られている。
Generally, as a method of making a fiber flame retardant, a method of adding a flame retardant to a fiber treatment agent is mainly mentioned. Examples of such flame retardants include inorganic flame retardants such as red phosphorus, phosphates, antimony trioxide, aluminum hydroxide, and magnesium hydroxide; halogen flame retardants such as pentabromobiphenyl, octabromobiphenyl, and decabromobiphenyl. Flame retardants: Non-halogen flame retardants such as guanidine phosphate, triphenyl phosphate and sulfamic acid are well known.
しかし、これら難燃剤は、一般的に繊維処理剤中の合成樹脂との相溶性に問題があるため、繊維加工品において難燃剤成分が分離、沈降及びチョーキングを引き起こすことがある。
さらに、合成樹脂を含有する繊維処理剤においてこれらの難燃剤を用いた場合、このような繊維処理剤は、繊維加工品に難燃性を付与するだけでなく、強度や風合い、防錆性等の繊維加工品の他の諸物性に悪影響を与えないことが求められる。しかし、一般的に繊維加工品へ難燃性を付与するためには難燃剤を多量に添加する必要があるため、繊維加工品の物性を阻害する原因となっている。 However, since these flame retardants generally have a problem in compatibility with the synthetic resin in the fiber treatment agent, the flame retardant component may cause separation, sedimentation and choking in the fiber processed product.
Furthermore, when these flame retardants are used in a fiber treatment agent containing a synthetic resin, such fiber treatment agents not only impart flame retardancy to fiber processed products, but also strength, texture, rust prevention, etc. It is required not to adversely affect other physical properties of the processed fiber product. However, in general, it is necessary to add a large amount of a flame retardant in order to impart flame retardancy to a fiber processed product, which is a cause of hindering physical properties of the fiber processed product.
さらに、合成樹脂を含有する繊維処理剤においてこれらの難燃剤を用いた場合、このような繊維処理剤は、繊維加工品に難燃性を付与するだけでなく、強度や風合い、防錆性等の繊維加工品の他の諸物性に悪影響を与えないことが求められる。しかし、一般的に繊維加工品へ難燃性を付与するためには難燃剤を多量に添加する必要があるため、繊維加工品の物性を阻害する原因となっている。 However, since these flame retardants generally have a problem in compatibility with the synthetic resin in the fiber treatment agent, the flame retardant component may cause separation, sedimentation and choking in the fiber processed product.
Furthermore, when these flame retardants are used in a fiber treatment agent containing a synthetic resin, such fiber treatment agents not only impart flame retardancy to fiber processed products, but also strength, texture, rust prevention, etc. It is required not to adversely affect other physical properties of the processed fiber product. However, in general, it is necessary to add a large amount of a flame retardant in order to impart flame retardancy to a fiber processed product, which is a cause of hindering physical properties of the fiber processed product.
特に無機系難燃剤は難燃化性能が乏しく、繊維処理剤への多量の添加が必要であるため、合成樹脂等の他の添加剤成分との比重差から沈降が生じやすい。また、無機系難燃剤を用いた繊維加工品では風合いが硬くなるといった問題も生じやすい。
In particular, inorganic flame retardants have poor flame retardancy and need to be added in large amounts to the fiber treatment agent, so sedimentation is likely to occur due to the difference in specific gravity with other additive components such as synthetic resins. In addition, the fiber processed product using the inorganic flame retardant is likely to have a problem that the texture becomes hard.
一方、ハロゲン系難燃剤は難燃化性能が優れているため、繊維処理剤への添加が少量で済む。このことから、これらを含む繊維処理剤を用いて加工した繊維加工品の物性に与える影響は少ない。しかし、塩素や臭素といったハロゲン元素を含有しているため、これらを用いた繊維加工品を焼却する場合にダイオキシンやハロゲン化水素といった有害な物質を発生する恐れがあり、EU諸国を始めとした世界各国で規制や使用の見直しが行われている。
On the other hand, since halogen-based flame retardants have excellent flame retardancy, they can be added to the fiber treatment agent in a small amount. For this reason, there is little influence on the physical properties of the fiber processed product processed using the fiber processing agent containing these. However, since it contains halogen elements such as chlorine and bromine, incineration of textile processed products using these elements may generate harmful substances such as dioxins and hydrogen halides. Regulations and use are being reviewed in each country.
非ハロゲン系難燃剤は、ハロゲン系難燃剤と比較して、安全性に優れているため、リン系を始めとした難燃剤が多く検討されている。しかし、リン系難燃剤の難燃化性能はハロゲン系の難燃剤よりも低く、比較的多量に使用しなければならない。そのため、リン系難燃剤を含む繊維処理剤は、該繊維処理剤を用いて加工した繊維加工品の物性を低下させてしまう。例えば、水溶性のリン系難燃剤は潮解性が高く、見かけ上、樹脂を可塑化するため、これらを用いた繊維加工品の強度、風合いを低下させる原因となる。また、油溶性のリン系難燃剤も、樹脂の可塑化や繊維処理剤表面へのブリーディングにより、強度、風合いを低下させるだけでなく、該繊維処理剤を用いた繊維加工品でベタツキやチョーキングを生じさせる原因となっている。
Since non-halogen flame retardants are superior to halogen flame retardants, many flame retardants including phosphorus-based flame retardants have been studied. However, the flame retardant performance of phosphorus flame retardants is lower than that of halogen flame retardants and must be used in relatively large amounts. Therefore, the fiber treatment agent containing a phosphorus flame retardant reduces the physical properties of a fiber processed product processed using the fiber treatment agent. For example, water-soluble phosphorus-based flame retardants have high deliquescence and apparently plasticize the resin, which causes a decrease in strength and texture of fiber processed products using them. Oil-soluble phosphorus-based flame retardants not only reduce strength and texture by plasticizing the resin and bleeding on the surface of the fiber treatment agent, but they also provide stickiness and choking with processed fiber products using the fiber treatment agent. It is a cause to cause.
また、繊維に防錆性を付与する方法としては、主に繊維処理剤に防錆剤を添加する方法が挙げられる。例えば、亜硝酸塩、クロム酸塩、リン酸塩、ケイ酸塩などの無機系防錆剤;アルキルスルホン酸又はベンゼンスルホン酸のバリウム塩、バリウムせっけん、有機アミンのカルボン酸塩、安息香酸塩などの有機系防錆剤が良く知られている。
Also, as a method of imparting rust prevention to the fiber, a method of adding a rust inhibitor to the fiber treatment agent is mainly mentioned. For example, inorganic rust preventives such as nitrite, chromate, phosphate, silicate; alkyl sulfonic acid or barium salt of benzene sulfonic acid, barium soap, organic amine carboxylate, benzoate, etc. Organic rust inhibitors are well known.
無機系防錆剤は、有機系防錆剤と比較して、防錆性に優れているため多くの検討がなされている。しかし、一般的に、無機系防錆剤には人体に有害な物質が含有されており、環境への影響が懸念されている。例えば、亜硝酸塩は高い防錆性を示すことが知られているが、人体への有害性が指摘されており、亜硝酸フリーの防錆剤が求められている。クロム酸塩も同様に高い防錆性を示すことが知られているが、重金属を含有しており、亜硝酸塩同様に人体への有害性や、その処理過程における排水規制などがあり、現在ではその使用が避けられている。
Since inorganic rust preventives are excellent in rust prevention compared to organic rust preventives, many studies have been made. However, in general, inorganic rust inhibitors contain substances harmful to the human body, and there are concerns about the impact on the environment. For example, nitrite is known to exhibit high rust prevention properties, but has been pointed out to be harmful to the human body, and nitrite-free rust preventive agents are required. Chromates are also known to exhibit high anti-rust properties, but contain heavy metals and, like nitrites, are harmful to the human body and have restrictions on drainage in the treatment process. Its use is avoided.
有機系防錆剤は、前記無機系防錆剤で指摘されていたような人体への有害性や環境負荷といった課題を解決するものとして広く使用されている。高い防錆性を示す有機系防錆剤として、例えば、アルキルスルホン酸又はベンゼンスルホン酸のバリウム塩、バリウムせっけん等が知られているが、近年、バリウム塩の人体に対する有害性が指摘され、その使用に対する欧米等の規制が行われている。アルキルコハク酸ハーフエステル、アルケニルコハク酸ハーフエステル等の各種のカルボン酸エステルは一定の防錆性を示すが、十分なものではない。一方、安息香酸塩は防錆性を示すことが知られており、自動車エンジン用不凍冷却液の添加剤等にも用いられている。また、一般的に安息香酸塩は人体に与える影響が軽微であり、食品保存料等に用いられるなど、無機系防錆剤に比べて環境負荷が低いといった利点がある。しかしながら、一般的に有機系防錆剤は可燃性であり、これらを用いた繊維処理剤では、繊維加工品の難燃性を低下させる原因となっている。
Organic rust preventives are widely used to solve problems such as harmfulness to human bodies and environmental burdens as pointed out in the inorganic rust preventives. As organic rust preventives exhibiting high rust preventive properties, for example, barium salts of alkyl sulfonic acid or benzene sulfonic acid, barium soap, etc. are known, but in recent years, the harmfulness of barium salts to the human body has been pointed out. European and American regulations on use are in place. Various carboxylic acid esters such as alkyl succinic acid half esters and alkenyl succinic acid half esters exhibit a certain level of rust prevention, but are not sufficient. On the other hand, benzoates are known to exhibit rust prevention properties and are also used as additives for antifreeze coolants for automobile engines. In addition, benzoate generally has a slight influence on the human body and has an advantage that it has a lower environmental impact than inorganic rust preventives, such as being used as a food preservative. However, organic rust preventives are generally flammable, and fiber treatment agents using these are a cause of reducing the flame retardancy of processed textile products.
例えば、特許文献1に開示される、リン酸基や亜リン酸基骨格を有する不飽和単量体と、アクリル酸系不飽和単量体と、酢酸ビニル単量体とを共重合した非ハロゲン系の難燃性樹脂組成物が提案されているが、該難燃性樹脂組成物を用いた加工品は強度、剛軟性を満足するものではなく、さらなる物性向上が望まれていた。
For example, a non-halogen obtained by copolymerizing an unsaturated monomer having a phosphate group or a phosphite group skeleton, an acrylic acid unsaturated monomer, and a vinyl acetate monomer disclosed in Patent Document 1 Although a flame retardant resin composition has been proposed, processed products using the flame retardant resin composition do not satisfy strength and stiffness, and further improvements in physical properties have been desired.
また、例えば、特許文献2には、難燃性樹脂組成物を用いた加工品が開示されたが、防錆性に関する開示がない。難燃性と防錆性を両立する加工品が得られる繊維処理剤が望まれていた。
For example, Patent Document 2 discloses a processed product using a flame retardant resin composition, but does not disclose rust prevention. There has been a demand for a fiber treatment agent that can provide a processed product having both flame retardancy and rust prevention.
従って、本発明は、難燃性及び防錆性が共に優れた処理加工品が得られる、繊維処理剤を提供することにある。また、本発明の他の目的は、該繊維処理剤を用いた繊維加工品の製造方法及び該繊維加工品の製造方法を用いて得られる繊維加工品を提供することにある。
Therefore, the present invention is to provide a fiber treatment agent from which a processed product excellent in both flame retardancy and rust prevention can be obtained. Another object of the present invention is to provide a method for producing a fiber processed article using the fiber treating agent and a fiber processed article obtained by using the method for producing the fiber processed article.
すなわち、本発明は、以下の〔1〕~〔11〕に関する。
〔1〕リン含有不飽和単量体(A)と重合性不飽和単量体(B)との共重合体(P)と、防錆剤(C)と、難燃剤(D)と、を含む繊維処理剤であって、前記重合性不飽和単量体(B)が、(メタ)アクリル酸アルキルエステル不飽和単量体(b1)と、(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)と、を含むことを特徴とする繊維処理剤。
〔2〕前記リン含有不飽和単量体(A)が、リン酸基又は亜リン酸基を有する単量体(a1)を含む、上記〔1〕に記載の繊維処理剤。
〔3〕前記リン酸基又は亜リン酸基を有する単量体(a1)が、アシッド・ホスホオキシポリオキシアルキレングリコールモノ(メタ)アクリレートを含む、上記〔2〕に記載の繊維処理剤。
〔4〕前記防錆剤(C)が、アミンのカルボン酸塩、安息香酸塩を含む、上記〔1〕~〔3〕のいずれかに記載の繊維処理剤。
〔5〕前記難燃剤(D)が、リンを含有する、上記〔1〕~〔4〕のいずれかに記載の繊維処理剤。
〔6〕前記重合性不飽和単量体(B)を、共重合体(P)中の全単量体に対し40質量%以上含有する、上記〔1〕~〔5〕のいずれかに記載の繊維処理剤。
〔7〕前記防錆剤(C)を、全繊維処理剤に対し0.1~15質量%含有する、上記〔1〕~〔6〕のいずれかに記載の繊維処理剤。
〔8〕前記難燃剤(D)を、全繊維処理剤に対し0.1~70質量%含有する、上記〔1〕~〔7〕のいずれかに記載の繊維処理剤。
〔9〕繊維処理剤中のリン原子量が0.01~30質量%である、上記〔1〕~〔8〕のいずれかに記載の繊維処理剤。
〔10〕上記〔1〕~〔9〕のいずれかに記載の繊維処理剤を用いて繊維基材を処理し、繊維加工品を得る工程を有する、繊維加工品の製造方法。
〔11〕乾燥後の上記〔1〕~〔9〕のいずれかに記載の繊維処理剤の付着量が、繊維基材100質量部に対し50~100質量部である、繊維加工品。 That is, the present invention relates to the following [1] to [11].
[1] A copolymer (P) of a phosphorus-containing unsaturated monomer (A) and a polymerizable unsaturated monomer (B), a rust inhibitor (C), and a flame retardant (D). The polymerizable unsaturated monomer (B) is a (meth) acrylic acid alkyl ester unsaturated monomer (b1), (meth) acrylic acid, and itaconic acid. A fiber treatment agent comprising: at least one unsaturated monomer (b2) selected.
[2] The fiber treatment agent according to [1], wherein the phosphorus-containing unsaturated monomer (A) includes a monomer (a1) having a phosphoric acid group or a phosphorous acid group.
[3] The fiber treatment agent according to [2], wherein the monomer (a1) having a phosphoric acid group or a phosphorous acid group contains an acid phosphooxypolyoxyalkylene glycol mono (meth) acrylate.
[4] The fiber treatment agent according to any one of the above [1] to [3], wherein the rust inhibitor (C) comprises an amine carboxylate or benzoate.
[5] The fiber treatment agent according to any one of [1] to [4], wherein the flame retardant (D) contains phosphorus.
[6] The above-mentioned [1] to [5], wherein the polymerizable unsaturated monomer (B) is contained in an amount of 40% by mass or more based on the total monomers in the copolymer (P). Fiber treatment agent.
[7] The fiber treatment agent according to any one of [1] to [6], wherein the rust inhibitor (C) is contained in an amount of 0.1 to 15% by mass based on the total fiber treatment agent.
[8] The fiber treatment agent according to any one of [1] to [7], wherein the flame retardant (D) is contained in an amount of 0.1 to 70% by mass with respect to the total fiber treatment agent.
[9] The fiber treatment agent according to any one of the above [1] to [8], wherein the amount of phosphorus atom in the fiber treatment agent is 0.01 to 30% by mass.
[10] A method for producing a processed fiber product, comprising a step of treating a fiber substrate with the fiber treatment agent according to any one of [1] to [9] to obtain a processed fiber product.
[11] A processed fiber product, wherein the amount of the fiber treatment agent according to any one of [1] to [9] after drying is 50 to 100 parts by mass with respect to 100 parts by mass of the fiber substrate.
〔1〕リン含有不飽和単量体(A)と重合性不飽和単量体(B)との共重合体(P)と、防錆剤(C)と、難燃剤(D)と、を含む繊維処理剤であって、前記重合性不飽和単量体(B)が、(メタ)アクリル酸アルキルエステル不飽和単量体(b1)と、(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)と、を含むことを特徴とする繊維処理剤。
〔2〕前記リン含有不飽和単量体(A)が、リン酸基又は亜リン酸基を有する単量体(a1)を含む、上記〔1〕に記載の繊維処理剤。
〔3〕前記リン酸基又は亜リン酸基を有する単量体(a1)が、アシッド・ホスホオキシポリオキシアルキレングリコールモノ(メタ)アクリレートを含む、上記〔2〕に記載の繊維処理剤。
〔4〕前記防錆剤(C)が、アミンのカルボン酸塩、安息香酸塩を含む、上記〔1〕~〔3〕のいずれかに記載の繊維処理剤。
〔5〕前記難燃剤(D)が、リンを含有する、上記〔1〕~〔4〕のいずれかに記載の繊維処理剤。
〔6〕前記重合性不飽和単量体(B)を、共重合体(P)中の全単量体に対し40質量%以上含有する、上記〔1〕~〔5〕のいずれかに記載の繊維処理剤。
〔7〕前記防錆剤(C)を、全繊維処理剤に対し0.1~15質量%含有する、上記〔1〕~〔6〕のいずれかに記載の繊維処理剤。
〔8〕前記難燃剤(D)を、全繊維処理剤に対し0.1~70質量%含有する、上記〔1〕~〔7〕のいずれかに記載の繊維処理剤。
〔9〕繊維処理剤中のリン原子量が0.01~30質量%である、上記〔1〕~〔8〕のいずれかに記載の繊維処理剤。
〔10〕上記〔1〕~〔9〕のいずれかに記載の繊維処理剤を用いて繊維基材を処理し、繊維加工品を得る工程を有する、繊維加工品の製造方法。
〔11〕乾燥後の上記〔1〕~〔9〕のいずれかに記載の繊維処理剤の付着量が、繊維基材100質量部に対し50~100質量部である、繊維加工品。 That is, the present invention relates to the following [1] to [11].
[1] A copolymer (P) of a phosphorus-containing unsaturated monomer (A) and a polymerizable unsaturated monomer (B), a rust inhibitor (C), and a flame retardant (D). The polymerizable unsaturated monomer (B) is a (meth) acrylic acid alkyl ester unsaturated monomer (b1), (meth) acrylic acid, and itaconic acid. A fiber treatment agent comprising: at least one unsaturated monomer (b2) selected.
[2] The fiber treatment agent according to [1], wherein the phosphorus-containing unsaturated monomer (A) includes a monomer (a1) having a phosphoric acid group or a phosphorous acid group.
[3] The fiber treatment agent according to [2], wherein the monomer (a1) having a phosphoric acid group or a phosphorous acid group contains an acid phosphooxypolyoxyalkylene glycol mono (meth) acrylate.
[4] The fiber treatment agent according to any one of the above [1] to [3], wherein the rust inhibitor (C) comprises an amine carboxylate or benzoate.
[5] The fiber treatment agent according to any one of [1] to [4], wherein the flame retardant (D) contains phosphorus.
[6] The above-mentioned [1] to [5], wherein the polymerizable unsaturated monomer (B) is contained in an amount of 40% by mass or more based on the total monomers in the copolymer (P). Fiber treatment agent.
[7] The fiber treatment agent according to any one of [1] to [6], wherein the rust inhibitor (C) is contained in an amount of 0.1 to 15% by mass based on the total fiber treatment agent.
[8] The fiber treatment agent according to any one of [1] to [7], wherein the flame retardant (D) is contained in an amount of 0.1 to 70% by mass with respect to the total fiber treatment agent.
[9] The fiber treatment agent according to any one of the above [1] to [8], wherein the amount of phosphorus atom in the fiber treatment agent is 0.01 to 30% by mass.
[10] A method for producing a processed fiber product, comprising a step of treating a fiber substrate with the fiber treatment agent according to any one of [1] to [9] to obtain a processed fiber product.
[11] A processed fiber product, wherein the amount of the fiber treatment agent according to any one of [1] to [9] after drying is 50 to 100 parts by mass with respect to 100 parts by mass of the fiber substrate.
本発明の繊維処理剤は、処理された加工品が優れた難燃性を有し、かつ防錆性が共に優れている。該繊維処理剤を用いた繊維加工品の製造方法により得られる繊維加工品は、難燃性及び防錆性に共に優れることから、家電、電子材料、自動車内装材用途の繊維用素材として好適である。
In the fiber treatment agent of the present invention, the processed product has excellent flame retardancy and is excellent in rust prevention. The fiber processed product obtained by the method for manufacturing a fiber processed product using the fiber treating agent is excellent in both flame retardancy and rust resistance, and is therefore suitable as a fiber material for use in home appliances, electronic materials, and automotive interior materials. is there.
以下、本発明を詳細に説明する。
[繊維処理剤] Hereinafter, the present invention will be described in detail.
[Fiber treatment agent]
[繊維処理剤] Hereinafter, the present invention will be described in detail.
[Fiber treatment agent]
本発明の繊維処理剤は、リン含有不飽和単量体(A)と、重合性不飽和単量体(B)との共重合体(P)と、防錆剤(C)及び難燃剤(D)とを含む。
本実施の形態に係る繊維処理剤は、処理された加工品について難燃性と防錆性との両方が共に優れ、繊維用の難燃処理剤として有用であり、各種繊維に好適に使用できる。
ここで、本明細書における「~」は、「~」という記載の前の値以上、「~」という記載の後の値以下を意味する。 The fiber treatment agent of the present invention comprises a copolymer (P) of a phosphorus-containing unsaturated monomer (A) and a polymerizable unsaturated monomer (B), a rust inhibitor (C) and a flame retardant ( D).
The fiber treatment agent according to the present embodiment is excellent in both flame retardancy and rust prevention properties for the processed product, is useful as a flame retardant treatment for fibers, and can be suitably used for various fibers. .
Here, “to” in this specification means a value not less than the value before the description of “to” and not more than the value after the description of “to”.
本実施の形態に係る繊維処理剤は、処理された加工品について難燃性と防錆性との両方が共に優れ、繊維用の難燃処理剤として有用であり、各種繊維に好適に使用できる。
ここで、本明細書における「~」は、「~」という記載の前の値以上、「~」という記載の後の値以下を意味する。 The fiber treatment agent of the present invention comprises a copolymer (P) of a phosphorus-containing unsaturated monomer (A) and a polymerizable unsaturated monomer (B), a rust inhibitor (C) and a flame retardant ( D).
The fiber treatment agent according to the present embodiment is excellent in both flame retardancy and rust prevention properties for the processed product, is useful as a flame retardant treatment for fibers, and can be suitably used for various fibers. .
Here, “to” in this specification means a value not less than the value before the description of “to” and not more than the value after the description of “to”.
また、本明細書における「(メタ)アクリレート」等の記載は、「アクリレート及び/又はメタクリレート」等と同義である。
In addition, the description of “(meth) acrylate” and the like in this specification is synonymous with “acrylate and / or methacrylate” and the like.
(共重合体(P))
本発明にかかる共重合体(P)は、リン含有不飽和単量体(A)と重合性不飽和単量体(B)とを重合させて得られる共重合体である。 (Copolymer (P))
The copolymer (P) according to the present invention is a copolymer obtained by polymerizing the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B).
本発明にかかる共重合体(P)は、リン含有不飽和単量体(A)と重合性不飽和単量体(B)とを重合させて得られる共重合体である。 (Copolymer (P))
The copolymer (P) according to the present invention is a copolymer obtained by polymerizing the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B).
<リン含有不飽和単量体(A)>
本発明において用いるリン含有不飽和単量体(A)は、分子中にエチレン性不飽和結合と、リン原子と、を含有するものであれば特に制限されない。
前記リン含有不飽和単量体(A)の具体例としては、ジメチルビニルホスホナート、ジエチルビニルホスホナート、ジフェニルビニルホスホナート、ジフェニルビニルホスホナート、ジメチル(1,2-ジフェニル-エテニル)ホスホナート、ジメチル-p-ビニルベンジルホスホナート、ジエチル-p-ビニルベンジルホスホナート、ジフェニル-p-ビニルベンジルホスフィンオキシド、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド-10-p-ビニルベンジル、アシッド・ホスホオキシエチル(メタ)アクリレート、2-アクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、(メタ)アクロイル・オキシエチルアシッドホスフェート・モノエタノールアミン塩、アシッド・ホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート及びアシッド・ホスホオキシポリオキシプロピレングリコール(メタ)アクリレート、並びこれらの金属塩、アンモニウム塩及びアミン塩等を挙げることができる。これらの化合物は、単独で又は二種以上の混合物として使用することができる。 <Phosphorus-containing unsaturated monomer (A)>
The phosphorus-containing unsaturated monomer (A) used in the present invention is not particularly limited as long as it contains an ethylenically unsaturated bond and a phosphorus atom in the molecule.
Specific examples of the phosphorus-containing unsaturated monomer (A) include dimethyl vinyl phosphonate, diethyl vinyl phosphonate, diphenyl vinyl phosphonate, diphenyl vinyl phosphonate, dimethyl (1,2-diphenyl-ethenyl) phosphonate, dimethyl -P-vinylbenzylphosphonate, diethyl-p-vinylbenzylphosphonate, diphenyl-p-vinylbenzylphosphine oxide, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-10-p- Vinyl benzyl, acid phosphooxyethyl (meth) acrylate, 2-acryloyloxyethyl acid phosphate, diphenyl-2-methacryloyloxyethyl phosphate, (meth) acryloyl oxyethyl acid phosphate Ethanolamine salt, may be mentioned Acid phosphoxypolyoxyethylene glycol mono (meth) acrylate and acid-phosphoxy polyoxypropylene glycol (meth) acrylate, arrangement these metal salts, ammonium salts and amine salts. These compounds can be used alone or as a mixture of two or more.
本発明において用いるリン含有不飽和単量体(A)は、分子中にエチレン性不飽和結合と、リン原子と、を含有するものであれば特に制限されない。
前記リン含有不飽和単量体(A)の具体例としては、ジメチルビニルホスホナート、ジエチルビニルホスホナート、ジフェニルビニルホスホナート、ジフェニルビニルホスホナート、ジメチル(1,2-ジフェニル-エテニル)ホスホナート、ジメチル-p-ビニルベンジルホスホナート、ジエチル-p-ビニルベンジルホスホナート、ジフェニル-p-ビニルベンジルホスフィンオキシド、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド-10-p-ビニルベンジル、アシッド・ホスホオキシエチル(メタ)アクリレート、2-アクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、(メタ)アクロイル・オキシエチルアシッドホスフェート・モノエタノールアミン塩、アシッド・ホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート及びアシッド・ホスホオキシポリオキシプロピレングリコール(メタ)アクリレート、並びこれらの金属塩、アンモニウム塩及びアミン塩等を挙げることができる。これらの化合物は、単独で又は二種以上の混合物として使用することができる。 <Phosphorus-containing unsaturated monomer (A)>
The phosphorus-containing unsaturated monomer (A) used in the present invention is not particularly limited as long as it contains an ethylenically unsaturated bond and a phosphorus atom in the molecule.
Specific examples of the phosphorus-containing unsaturated monomer (A) include dimethyl vinyl phosphonate, diethyl vinyl phosphonate, diphenyl vinyl phosphonate, diphenyl vinyl phosphonate, dimethyl (1,2-diphenyl-ethenyl) phosphonate, dimethyl -P-vinylbenzylphosphonate, diethyl-p-vinylbenzylphosphonate, diphenyl-p-vinylbenzylphosphine oxide, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-10-p- Vinyl benzyl, acid phosphooxyethyl (meth) acrylate, 2-acryloyloxyethyl acid phosphate, diphenyl-2-methacryloyloxyethyl phosphate, (meth) acryloyl oxyethyl acid phosphate Ethanolamine salt, may be mentioned Acid phosphoxypolyoxyethylene glycol mono (meth) acrylate and acid-phosphoxy polyoxypropylene glycol (meth) acrylate, arrangement these metal salts, ammonium salts and amine salts. These compounds can be used alone or as a mixture of two or more.
〔リン酸基又は亜リン酸基を有する単量体(a1)〕
前記リン含有不飽和単量体(A)としては、リン酸基又は亜リン酸基を有する単量体(a1)が好ましい。前記リン酸基又は亜リン酸基を有する単量体(a1)としては、例えば、一般式(1):
(式中、R1及びR2は、それぞれ独立して水素又は炭素数1~3のアルキル基を表し;Yは、ヒドロキシル基、炭素数1~3のアルキル基又は炭素数1~3のアルキルエステル基を表し;Zは、水素原子、ヒドロキシル基、炭素数1~3のアルキル基又は炭素数1~3のアルキルエステル基を表し;nは1~20の整数である)で示される化合物、並びこの化合物の金属塩、アンモニウム塩及びアミン塩等が挙げられる。これらの化合物は、単独で又は二種以上の混合物として使用することができる。R1、R2、Y、Zはそれぞれ、水素又はメチル基が好ましい。また、nは1~3が好ましい。 [Monomer (a1) having phosphoric acid group or phosphorous acid group]
As said phosphorus containing unsaturated monomer (A), the monomer (a1) which has a phosphoric acid group or a phosphorous acid group is preferable. Examples of the monomer (a1) having a phosphoric acid group or a phosphorous acid group include, for example, the general formula (1):
(Wherein R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms; Y represents a hydroxyl group, an alkyl group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms) Z represents a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms or an alkyl ester group having 1 to 3 carbon atoms; n is an integer of 1 to 20), In addition, metal salts, ammonium salts, amine salts and the like of this compound can be mentioned. These compounds can be used alone or as a mixture of two or more. R 1 , R 2 , Y, and Z are each preferably hydrogen or a methyl group. N is preferably 1 to 3.
前記リン含有不飽和単量体(A)としては、リン酸基又は亜リン酸基を有する単量体(a1)が好ましい。前記リン酸基又は亜リン酸基を有する単量体(a1)としては、例えば、一般式(1):
(式中、R1及びR2は、それぞれ独立して水素又は炭素数1~3のアルキル基を表し;Yは、ヒドロキシル基、炭素数1~3のアルキル基又は炭素数1~3のアルキルエステル基を表し;Zは、水素原子、ヒドロキシル基、炭素数1~3のアルキル基又は炭素数1~3のアルキルエステル基を表し;nは1~20の整数である)で示される化合物、並びこの化合物の金属塩、アンモニウム塩及びアミン塩等が挙げられる。これらの化合物は、単独で又は二種以上の混合物として使用することができる。R1、R2、Y、Zはそれぞれ、水素又はメチル基が好ましい。また、nは1~3が好ましい。 [Monomer (a1) having phosphoric acid group or phosphorous acid group]
As said phosphorus containing unsaturated monomer (A), the monomer (a1) which has a phosphoric acid group or a phosphorous acid group is preferable. Examples of the monomer (a1) having a phosphoric acid group or a phosphorous acid group include, for example, the general formula (1):
(Wherein R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms; Y represents a hydroxyl group, an alkyl group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms) Z represents a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms or an alkyl ester group having 1 to 3 carbon atoms; n is an integer of 1 to 20), In addition, metal salts, ammonium salts, amine salts and the like of this compound can be mentioned. These compounds can be used alone or as a mixture of two or more. R 1 , R 2 , Y, and Z are each preferably hydrogen or a methyl group. N is preferably 1 to 3.
前記リン酸基又は亜リン酸基を有する単量体(a1)の具体例としては、アシッド・ホスホオキシポリオキシアルキレングリコールモノ(メタ)アクリレートが挙げられる。より具体的には、アシッド・ホスホオキシエチル(メタ)アクリレート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクロイロキシエチルアシッドホスフェート、アシッド・ホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート及びアシッド・ホスホオキシポリオキシプロピレングリコール(メタ)アクリレート等を挙げることができる。これらの化合物は、単独で又は二種以上の混合物として使用することができる。中でも、1分子あたりのリン含有量が高い点で、アシッド・ホスホオキシエチル(メタ)アクリレートが好ましい。
Specific examples of the monomer (a1) having a phosphoric acid group or a phosphorous acid group include acid phosphooxypolyoxyalkylene glycol mono (meth) acrylate. More specifically, acid phosphooxyethyl (meth) acrylate, 2-acryloyloxyethyl acid phosphate, 2-methacryloxyethyl acid phosphate, acid phosphooxypolyoxyethylene glycol mono (meth) acrylate and acid phospho An oxypolyoxypropylene glycol (meth) acrylate etc. can be mentioned. These compounds can be used alone or as a mixture of two or more. Of these, acid phosphooxyethyl (meth) acrylate is preferred because of its high phosphorus content per molecule.
前記リン含有不飽和単量体(A)は、リン含有不飽和単量体(A)と重合性不飽和単量体(B)との共重合体(P)中の全単量体に対し20質量%~60質量%の範囲で使用することが好ましく、23~50質量%の範囲で使用することがより好ましく、26質量%~40質量%の範囲で使用することがさらに好ましい。20質量%以上であると本繊維処理剤で処理された加工品の難燃性が十分であり、60質量%以下であれば重合が安定し、本繊維処理剤を用いた加工品の強度や耐熱黄変性が低下することがない傾向にある。
The phosphorus-containing unsaturated monomer (A) is based on the total monomers in the copolymer (P) of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B). It is preferably used in the range of 20% by mass to 60% by mass, more preferably in the range of 23-50% by mass, and further preferably in the range of 26% by mass to 40% by mass. The flame retardancy of the processed product treated with the present fiber treatment agent is sufficient if it is 20% by mass or more, and the polymerization is stable if it is 60% by mass or less, the strength of the processed product using the present fiber treatment agent and There is a tendency that heat yellowing does not decrease.
また、前記リン含有不飽和単量体(A)の重合割合は、リン含有不飽和単量体(A)と、重合性不飽和単量体(B)と共重合体(P)において、(A)成分と(B)成分中の、リンの原子量およびリン含有不飽和単量体(A)の分子量から計算されるリン原子の含有量が3~13質量%となるように適宜決定すればよい。難燃性付与と共重合体(P)の重合安定性、加工品における物性発現のバランスを考慮すると、リン含有量が3~10質量%となるように重合することが好ましい。3質量%より多ければ、共重合体(P)自身の難燃性が十分であるため繊維処理剤としての難燃性が十分であり、13質量%未満では共重合体(P)の重合が安定する。
In addition, the polymerization rate of the phosphorus-containing unsaturated monomer (A) is as follows in the phosphorus-containing unsaturated monomer (A), the polymerizable unsaturated monomer (B), and the copolymer (P): In the components A) and (B), the phosphorus atom content calculated from the atomic weight of phosphorus and the molecular weight of the phosphorus-containing unsaturated monomer (A) is appropriately determined to be 3 to 13% by mass. Good. In consideration of the balance between imparting flame retardancy, polymerization stability of the copolymer (P), and expression of physical properties in the processed product, the polymerization is preferably performed so that the phosphorus content is 3 to 10% by mass. If it is more than 3% by mass, the flame retardancy of the copolymer (P) itself is sufficient, so that the flame retardancy as a fiber treatment agent is sufficient, and if it is less than 13% by mass, the copolymer (P) is polymerized. Stabilize.
<重合性不飽和単量体(B)>
本発明において用いる重合性不飽和単量体(B)は、分子中にエチレン性不飽和結合を有しており、重合性を発現し、前記リン含有不飽和単量体(A)と共重合するものであれば特に制限されない。また、複数の種類の単量体であってもよい。 <Polymerizable unsaturated monomer (B)>
The polymerizable unsaturated monomer (B) used in the present invention has an ethylenically unsaturated bond in the molecule, expresses polymerizability, and is copolymerized with the phosphorus-containing unsaturated monomer (A). If it does, it will not be restrict | limited in particular. A plurality of types of monomers may also be used.
本発明において用いる重合性不飽和単量体(B)は、分子中にエチレン性不飽和結合を有しており、重合性を発現し、前記リン含有不飽和単量体(A)と共重合するものであれば特に制限されない。また、複数の種類の単量体であってもよい。 <Polymerizable unsaturated monomer (B)>
The polymerizable unsaturated monomer (B) used in the present invention has an ethylenically unsaturated bond in the molecule, expresses polymerizability, and is copolymerized with the phosphorus-containing unsaturated monomer (A). If it does, it will not be restrict | limited in particular. A plurality of types of monomers may also be used.
前記重合性不飽和単量体(B)としては、例えば、アクリル酸、メタクリル酸、フマル酸、マレイン酸及びそれらのエステル類;(メタ)アクリルアミド及びその誘導体;スチレン及びその誘導体;ビニルエステル;N置換マレイミド化合物;イタコン酸、クロトン酸、フタル酸及びそれらのエステル類及びそれらの金属塩、アンモニウム塩等が挙げられる。
Examples of the polymerizable unsaturated monomer (B) include acrylic acid, methacrylic acid, fumaric acid, maleic acid and esters thereof; (meth) acrylamide and derivatives thereof; styrene and derivatives thereof; vinyl esters; N Substituted maleimide compounds; itaconic acid, crotonic acid, phthalic acid and esters thereof, metal salts thereof, ammonium salts and the like.
また、前記重合性不飽和単量体(B)の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、エチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリテトラメチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールポリテトラメチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールポリテトラメチレングリコールモノ(メタ)アクリレート、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、エタンジオールジ(メタ)アクリレート、プロパンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、イソボロニル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ペンタエリトリットテトラ(メタ)アクリレート等の(メタ)アクリル酸エステル;ジメチルフマレート、ジエチルフマレート、ジブチルフマレート、ジ-(2-エチルヘキシル)フマレート等のフマル酸エステル;ジメチルマレート、ジエチルマレート、ジブチルマレート、ジ-(2-エチルヘキシル)マレート等のマレイン酸エステル;メタクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体;メトキシスチレン、エトキシスチレンビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、ジビニルベンゼン等のスチレン誘導体;酢酸ビニル;プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等のビニルエステル類;メチルマレイミド、エチルマレイミド、イソプロピルマレイミド、シクロヘキシルマレイミド、フェニルマレイミド、ベンジルマレイミド、ナフチルマレイミド等のN置換マレイミド化合物;モノメチルイタコネート、ジメチルイタコネート、モノエチルイタコネート、ジエチルイタコネート、モノブチルイタコネート、ジブチルイタコネート等のイタコン酸エステル;メチルクロトネート、エチルクロトネート、ブチルクロトネート等のクロトン酸エステル;ジメチルフタレート、ジエチルフタレート、ジプロピルフタレート、ジブチルフタレート、ジヘキシルフタレート等のフタル酸エステル;等が挙げられ、これらは単独又は二種以上を組み合わせて使用することができる。
Specific examples of the polymerizable unsaturated monomer (B) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. , Allyl (meth) acrylate, ethylene glycol di (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, hydroxyethyl (meth) acrylate , Hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, ethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol (Meth) acrylate, polytetramethylene glycol mono (meth) acrylate, polyethylene glycol polytetramethylene glycol mono (meth) acrylate, polypropylene glycol polytetramethylene glycol mono (meth) acrylate, glycidyl (meth) acrylate, methyl glycidyl (meta) ) Acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, ethanediol di (meth) acrylate, propanediol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, diethylene glycol di ( (Meth) acrylate, dipropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dimethylo (Meth) acrylic esters such as tricyclodecane di (meth) acrylate, isobornyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, pentaerythritol tetra (meth) acrylate; dimethyl fumarate, diethyl fumarate, dibutyl fuma Rate, di- (2-ethylhexyl) fumarate and other fumaric acid esters; dimethyl maleate, diethyl maleate, dibutyl maleate, maleic acid esters such as di- (2-ethylhexyl) maleate; methacrylamide; N-methyl (meta) ) (Meth) acrylamide derivatives such as acrylamide, N-ethyl (meth) acrylamide, N-butyl (meth) acrylamide, N-propyl (meth) acrylamide; methoxystyrene, ethoxystyrene vinyl Styrene derivatives such as perfume acid, vinyl benzoate methyl, vinyl benzyl acetate, hydroxystyrene, divinylbenzene; vinyl acetate; vinyl esters such as vinyl propionate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl stearate; N-substituted maleimide compounds such as methylmaleimide, ethylmaleimide, isopropylmaleimide, cyclohexylmaleimide, phenylmaleimide, benzylmaleimide, naphthylmaleimide; monomethyl itaconate, dimethyl itaconate, monoethyl itaconate, diethyl itaconate, monobutyl itaconate, dibutyl Itaconic acid esters such as itaconate; Crotonic acid esters such as methyl crotonate, ethyl crotonate and butyl crotonate; Dimethylphthalate , Diethyl phthalate, dipropyl phthalate, dibutyl phthalate, phthalic acid esters such as dihexyl phthalate; and the like. These may be used alone or in combination of two or more.
前記重合性不飽和単量体(B)の中でも、特に、本繊維処理剤で処理することにより得られる繊維加工品における難燃性発現の観点から、(メタ)アクリル酸アルキルエステル不飽和単量体(b1)及び(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)を共に用いるのが好ましい。(メタ)アクリル酸アルキルエステル不飽和単量体(b1)を用いると、本発明の繊維処理剤を用いて処理した繊維加工品における難燃剤(D)成分の耐ブリーディング性が向上するという面で、好ましい。(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)を用いると、本発明の繊維処理剤を用いて処理した繊維加工品の防錆性が向上するという面で、好ましい。
Among the polymerizable unsaturated monomers (B), in particular, (meth) acrylic acid alkyl ester unsaturated monomer from the viewpoint of the expression of flame retardancy in a fiber processed product obtained by treating with the present fiber treating agent. The body (b1) and at least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid are preferably used together. When the (meth) acrylic acid alkyl ester unsaturated monomer (b1) is used, the bleeding resistance of the flame retardant (D) component in the processed fiber product treated with the fiber treatment agent of the present invention is improved. ,preferable. When at least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid is used, the rust prevention property of the fiber processed product treated with the fiber treating agent of the present invention is improved. It is preferable in terms of
〔(メタ)アクリル酸アルキルエステル不飽和単量体(b1)〕
(メタ)アクリル酸アルキルエステル不飽和単量体(b1)のアルキル基は、炭素数1~5のアルキルであることが好ましい。具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレートなどが挙げられ、なかでも難燃性発現の点でメチル(メタ)アクリレート、エチル(メタ)アクリレートが好ましい。これらは単独又は二種以上を組み合わせて使用することができる。 [(Meth) acrylic acid alkyl ester unsaturated monomer (b1)]
The alkyl group of the (meth) acrylic acid alkyl ester unsaturated monomer (b1) is preferably an alkyl having 1 to 5 carbon atoms. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and the like. Among them, methyl (meth) acrylate, ethyl ( (Meth) acrylate is preferred. These can be used alone or in combination of two or more.
(メタ)アクリル酸アルキルエステル不飽和単量体(b1)のアルキル基は、炭素数1~5のアルキルであることが好ましい。具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレートなどが挙げられ、なかでも難燃性発現の点でメチル(メタ)アクリレート、エチル(メタ)アクリレートが好ましい。これらは単独又は二種以上を組み合わせて使用することができる。 [(Meth) acrylic acid alkyl ester unsaturated monomer (b1)]
The alkyl group of the (meth) acrylic acid alkyl ester unsaturated monomer (b1) is preferably an alkyl having 1 to 5 carbon atoms. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and the like. Among them, methyl (meth) acrylate, ethyl ( (Meth) acrylate is preferred. These can be used alone or in combination of two or more.
また、さらに、他の(メタ)アクリル酸アルキルエステル不飽和単量体(b1)を用いてもよい。具体例としては、2-エチルヘキシル(メタ)アクリレート、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等が挙げられ、これらは単独又は二種以上を組み合わせて使用することができる。
Further, another (meth) acrylic acid alkyl ester unsaturated monomer (b1) may be used. Specific examples include 2-ethylhexyl (meth) acrylate, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylamino Ethyl (meth) acrylate etc. are mentioned, These can be used individually or in combination of 2 or more types.
〔(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)〕
(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)は、本発明の繊維処理剤の難燃性を向上させるために使用する。中でも、重合の安定性を損なうことがなく、共重合体(P)中の含有量を高くすることができるという面で、アクリル酸が好ましい。
また、(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)と併用して、(メタ)アクリル酸及びイタコン酸からなる群以外から選択されるカルボキシル基を有する不飽和単量体を用いてもよい。(メタ)アクリル酸及びイタコン酸からなる群以外から選択されるカルボキシル基を有する不飽和単量体の具体例としては、フマル酸、マレイン酸、クロトン酸等が挙げられ、これらは単独又は二種以上を組み合わせて使用することができる。 [At least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid]
At least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid is used to improve the flame retardancy of the fiber treatment agent of the present invention. Among these, acrylic acid is preferable in that the stability of the polymerization is not impaired and the content in the copolymer (P) can be increased.
Further, in combination with at least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid, a carboxyl selected from other than the group consisting of (meth) acrylic acid and itaconic acid An unsaturated monomer having a group may be used. Specific examples of the unsaturated monomer having a carboxyl group selected from those other than the group consisting of (meth) acrylic acid and itaconic acid include fumaric acid, maleic acid, crotonic acid, and the like. The above can be used in combination.
(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)は、本発明の繊維処理剤の難燃性を向上させるために使用する。中でも、重合の安定性を損なうことがなく、共重合体(P)中の含有量を高くすることができるという面で、アクリル酸が好ましい。
また、(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)と併用して、(メタ)アクリル酸及びイタコン酸からなる群以外から選択されるカルボキシル基を有する不飽和単量体を用いてもよい。(メタ)アクリル酸及びイタコン酸からなる群以外から選択されるカルボキシル基を有する不飽和単量体の具体例としては、フマル酸、マレイン酸、クロトン酸等が挙げられ、これらは単独又は二種以上を組み合わせて使用することができる。 [At least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid]
At least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid is used to improve the flame retardancy of the fiber treatment agent of the present invention. Among these, acrylic acid is preferable in that the stability of the polymerization is not impaired and the content in the copolymer (P) can be increased.
Further, in combination with at least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid, a carboxyl selected from other than the group consisting of (meth) acrylic acid and itaconic acid An unsaturated monomer having a group may be used. Specific examples of the unsaturated monomer having a carboxyl group selected from those other than the group consisting of (meth) acrylic acid and itaconic acid include fumaric acid, maleic acid, crotonic acid, and the like. The above can be used in combination.
前記重合性不飽和単量体(B)は、繊維処理剤に含まれる、リン含有不飽和単量体(A)と重合性不飽和単量体(B)との共重合体(P)中の全単量体に対し、その合計で40質量%以上使用することが好ましく、50質量%~80質量%使用することがより好ましい。
40質量%以上であると、本発明の繊維処理剤の重合が安定し、80質量%以下であると、本発明の繊維処理剤を用いて処理した繊維加工品の難燃性が十分である傾向にある。
重合性不飽和単量体(B)において、(メタ)アクリル酸アルキルエステル不飽和単量体(b1)及び(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)の合計量は90質量%以上が好ましく、より好ましくは95質量%以上であり、さらに好ましくは100質量%である。
重合性不飽和単量体(B)において、(メタ)アクリル酸アルキルエステル不飽和単量体(b1)及び(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)との質量比(b1/b2)は、例えば、96/4~4/96であることが好ましく、79/21~21/79であることがより好ましく、75/25~30/70であることが更に好ましい。その範囲内の場合、本発明の繊維処理剤を用いて処理した繊維加工品における難燃剤(D)成分の耐ブリーディング性が向上する傾向にある。また、本発明の繊維処理剤を用いて処理した繊維加工品の難燃性又は防錆性が向上する傾向にある。 The polymerizable unsaturated monomer (B) is contained in a copolymer (P) of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) contained in the fiber treatment agent. The total amount is preferably 40% by mass or more, more preferably 50% by mass to 80% by mass.
When it is 40% by mass or more, polymerization of the fiber treatment agent of the present invention is stable, and when it is 80% by mass or less, the flame-treated product processed with the fiber treatment agent of the present invention has sufficient flame retardancy. There is a tendency.
In the polymerizable unsaturated monomer (B), at least one unsaturated monomer selected from the group consisting of (meth) acrylic acid alkyl ester unsaturated monomer (b1) and (meth) acrylic acid and itaconic acid 90 mass% or more is preferable, as for the total amount of a body (b2), More preferably, it is 95 mass% or more, More preferably, it is 100 mass%.
In the polymerizable unsaturated monomer (B), at least one unsaturated monomer selected from the group consisting of (meth) acrylic acid alkyl ester unsaturated monomer (b1) and (meth) acrylic acid and itaconic acid The mass ratio (b1 / b2) to the body (b2) is preferably, for example, 96/4 to 4/96, more preferably 79/21 to 21/79, and 75/25 to 30 / More preferably, it is 70. Within the range, the bleeding resistance of the flame retardant (D) component tends to be improved in the fiber processed product treated with the fiber treating agent of the present invention. Moreover, it exists in the tendency for the flame retardance or rust prevention property of the fiber processed goods processed using the fiber processing agent of this invention to improve.
40質量%以上であると、本発明の繊維処理剤の重合が安定し、80質量%以下であると、本発明の繊維処理剤を用いて処理した繊維加工品の難燃性が十分である傾向にある。
重合性不飽和単量体(B)において、(メタ)アクリル酸アルキルエステル不飽和単量体(b1)及び(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)の合計量は90質量%以上が好ましく、より好ましくは95質量%以上であり、さらに好ましくは100質量%である。
重合性不飽和単量体(B)において、(メタ)アクリル酸アルキルエステル不飽和単量体(b1)及び(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)との質量比(b1/b2)は、例えば、96/4~4/96であることが好ましく、79/21~21/79であることがより好ましく、75/25~30/70であることが更に好ましい。その範囲内の場合、本発明の繊維処理剤を用いて処理した繊維加工品における難燃剤(D)成分の耐ブリーディング性が向上する傾向にある。また、本発明の繊維処理剤を用いて処理した繊維加工品の難燃性又は防錆性が向上する傾向にある。 The polymerizable unsaturated monomer (B) is contained in a copolymer (P) of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) contained in the fiber treatment agent. The total amount is preferably 40% by mass or more, more preferably 50% by mass to 80% by mass.
When it is 40% by mass or more, polymerization of the fiber treatment agent of the present invention is stable, and when it is 80% by mass or less, the flame-treated product processed with the fiber treatment agent of the present invention has sufficient flame retardancy. There is a tendency.
In the polymerizable unsaturated monomer (B), at least one unsaturated monomer selected from the group consisting of (meth) acrylic acid alkyl ester unsaturated monomer (b1) and (meth) acrylic acid and itaconic acid 90 mass% or more is preferable, as for the total amount of a body (b2), More preferably, it is 95 mass% or more, More preferably, it is 100 mass%.
In the polymerizable unsaturated monomer (B), at least one unsaturated monomer selected from the group consisting of (meth) acrylic acid alkyl ester unsaturated monomer (b1) and (meth) acrylic acid and itaconic acid The mass ratio (b1 / b2) to the body (b2) is preferably, for example, 96/4 to 4/96, more preferably 79/21 to 21/79, and 75/25 to 30 / More preferably, it is 70. Within the range, the bleeding resistance of the flame retardant (D) component tends to be improved in the fiber processed product treated with the fiber treating agent of the present invention. Moreover, it exists in the tendency for the flame retardance or rust prevention property of the fiber processed goods processed using the fiber processing agent of this invention to improve.
(共重合体(P)の製造方法)
本発明の繊維処理剤に含まれる、リン含有不飽和単量体(A)と重合性不飽和単量体(B)との共重合体(P)は、懸濁重合法、乳化重合法、溶液重合法、塊状重合法などの公知の共重合方法を用いて製造することができる。また、連続式重合法でも回分式重合法でも製造することができる。 (Production method of copolymer (P))
The copolymer (P) of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) contained in the fiber treatment agent of the present invention is a suspension polymerization method, an emulsion polymerization method, It can manufacture using well-known copolymerization methods, such as a solution polymerization method and a block polymerization method. Further, it can be produced by either a continuous polymerization method or a batch polymerization method.
本発明の繊維処理剤に含まれる、リン含有不飽和単量体(A)と重合性不飽和単量体(B)との共重合体(P)は、懸濁重合法、乳化重合法、溶液重合法、塊状重合法などの公知の共重合方法を用いて製造することができる。また、連続式重合法でも回分式重合法でも製造することができる。 (Production method of copolymer (P))
The copolymer (P) of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) contained in the fiber treatment agent of the present invention is a suspension polymerization method, an emulsion polymerization method, It can manufacture using well-known copolymerization methods, such as a solution polymerization method and a block polymerization method. Further, it can be produced by either a continuous polymerization method or a batch polymerization method.
(防錆剤(C))
本発明において用いられる防錆剤(C)は、本発明の繊維処理剤で処理された加工品の難燃性を著しく損なわないでものであれば特に制限されない。 (Antirust agent (C))
The rust inhibitor (C) used in the present invention is not particularly limited as long as it does not significantly impair the flame retardancy of the processed product treated with the fiber treatment agent of the present invention.
本発明において用いられる防錆剤(C)は、本発明の繊維処理剤で処理された加工品の難燃性を著しく損なわないでものであれば特に制限されない。 (Antirust agent (C))
The rust inhibitor (C) used in the present invention is not particularly limited as long as it does not significantly impair the flame retardancy of the processed product treated with the fiber treatment agent of the present invention.
前記防錆剤(C)の具体例としては、モノ及びジイソプロピルアミンナイトライト、モノおよびジシクロヘキシルアミンナイトライト、トリエチルアミンナイトライト、ピリジンナイトライト、アニリンナイトライト等の亜硝酸塩;アルキルコハク酸ハーフエステル、アルケニルコハク酸ハーフエステル等の各種のカルボン酸エステル;ジシクロヘキシルアンモニウムサリシレート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート及びそれらのカルバミン酸塩、ナフテン酸塩、オクチル酸塩等のアミンのカルボン酸塩;エチルモルホリン安息香酸塩、ジ及びモノシクロヘキシルアミン安息香酸塩、モノエタノールアミン安息香酸塩、安息香酸ナトリウム等の安息香酸塩;各種のクロム酸塩;リン酸塩;ケイ酸塩;スルホン酸塩等が挙げられ、なかでも、環境負荷、使用規制や効率的な防錆性発現の点で、アミンのカルボン酸塩又は安息香酸塩が好ましい。これらの化合物は単独又は二種以上を組み合わせて使用することができる。
Specific examples of the rust inhibitor (C) include nitrites such as mono and diisopropylamine nitrite, mono and dicyclohexylamine nitrite, triethylamine nitrite, pyridine nitrite and aniline nitrite; alkyl succinic acid half ester, alkenyl Various carboxylic acid esters such as succinic acid half ester; dicyclohexylammonium salicylate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylaminecyclohexanecarboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate and their carbamates, naphthenates, octylates, etc. Amine carboxylates; ethylmorpholine benzoate, di- and monocyclohexyla Benzoates such as benzoate, monoethanolamine benzoate, sodium benzoate, etc .; various chromates; phosphates; silicates; sulfonates, etc. Amine carboxylates or benzoates are preferred from the standpoint of regulation and efficient rust prevention. These compounds can be used alone or in combination of two or more.
本発明の繊維処理剤における、防錆剤(C)の含有量は、0.1~15質量%が好ましく、0.5~10質量%であることがより好ましく、1~5質量%であることが更に好ましい。0.1質量%より少なくなると、本発明の繊維処理剤に処理された加工品の防錆性が低下し、15質量%より多くなると、繊維処理剤の乾燥性が低下し、該繊維処理剤を処理することで得られる繊維加工品の物性を阻害したり、該繊維加工品の処理性が低下する傾向にある。また、この範囲になると、本発明の繊維処理剤に用いて処理された加工品の防錆性が低下することなく、下記の適量な難燃剤との併用によって、加工品の難燃性も低下することがない。
The content of the rust inhibitor (C) in the fiber treatment agent of the present invention is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, and 1 to 5% by mass. More preferably. When the amount is less than 0.1% by mass, the rust preventive property of the processed product treated with the fiber treatment agent of the present invention is lowered. When the amount is more than 15% by mass, the drying property of the fiber treatment agent is lowered, and the fiber treatment agent is reduced. There exists a tendency for the physical property of the fiber processed article obtained by processing this to inhibit the processing property of this fiber processed article to fall. Moreover, when it is in this range, the flame retardancy of the processed product is also reduced by the combined use with the following appropriate amount of flame retardant, without reducing the rust prevention property of the processed product treated with the fiber treatment agent of the present invention. There is nothing to do.
(難燃剤(D))
本発明において用いられる難燃剤(D)は、繊維処理剤中に混合できるものであれば特に制限されない。 (Flame retardant (D))
The flame retardant (D) used in the present invention is not particularly limited as long as it can be mixed in the fiber treatment agent.
本発明において用いられる難燃剤(D)は、繊維処理剤中に混合できるものであれば特に制限されない。 (Flame retardant (D))
The flame retardant (D) used in the present invention is not particularly limited as long as it can be mixed in the fiber treatment agent.
前記難燃剤(D)の具体例としては、グアニジンホスフェート、トリフェニルホスフェート、クレジルジフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(t-ブチル化フェニル)ホスフェート、トリス(i-プロピル化フェニル)ホスフェート、2-エチルヘキシルジフェニルホスフェート、赤リン、1,3-フェニレンビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジキシレニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)及びそれらの金属塩等のリン系難燃剤;三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモンソーダ、水酸化アルミニウム、水酸化マグネシウム等の無機系難燃剤;メラミンシアヌレート等の窒素系難燃剤;ペンタブロモビフェニル、オクタブロモビフェニル、デカブロモビフェニル等のハロゲン系難燃剤等が挙げられる。なかでも、環境負荷の低さや効率的な難燃性発現の点で、リンを含有する難燃剤を用いることが好ましい。これらの化合物は単独又は二種以上を組み合わせて使用することができる。
Specific examples of the flame retardant (D) include guanidine phosphate, triphenyl phosphate, cresyl diphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (t-butylated phenyl) phosphate, tris (i-propylated). Phenyl) phosphate, 2-ethylhexyl diphenyl phosphate, red phosphorus, 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate) and their metal salts, etc. Phosphorus flame retardants; inorganic flame retardants such as antimony trioxide, antimony tetroxide, antimony pentoxide, antimony soda, aluminum hydroxide, magnesium hydroxide; nitrogen flame retardants such as melamine cyanurate; penta Halogenated flame retardants such as bromobiphenyl, octabromobiphenyl, decabromobiphenyl, and the like. Especially, it is preferable to use the flame retardant containing phosphorus from the point of low environmental impact and efficient flame-resistant expression. These compounds can be used alone or in combination of two or more.
本発明の繊維処理剤における、難燃剤(D)の含有量は、0.1~70質量%が好ましく、0.5~50質量%であることがより好ましく、1~30質量%であることが更に好ましい。0.1質量%以上であると、本発明の繊維処理剤で処理された加工品の難燃性が十分となり、70質量%以下であると、本発明の繊維処理剤を用いて処理することで得られる繊維加工品においてチョーキングやべたつき等が抑制される傾向にある。
本発明の繊維処理剤における、難燃剤(D)の含有量は、防錆剤(C)の含有量との合計が40質量%以下であることが好ましい。40質量%以下であると、ブリーディングが抑制される傾向にあり、また、本発明の繊維処理剤を用いて処理することで得られる繊維加工品においてチョーキングやべたつき等が抑制される傾向にある。 The content of the flame retardant (D) in the fiber treatment agent of the present invention is preferably 0.1 to 70% by mass, more preferably 0.5 to 50% by mass, and 1 to 30% by mass. Is more preferable. When the amount is 0.1% by mass or more, the flame retardant of the processed product treated with the fiber treatment agent of the present invention becomes sufficient, and when it is 70% by mass or less, the fiber treatment agent of the present invention is used for treatment. There is a tendency that choking, stickiness, and the like are suppressed in the processed fiber product obtained in (1).
The content of the flame retardant (D) in the fiber treatment agent of the present invention is preferably 40% by mass or less in total with the content of the rust inhibitor (C). When it is 40% by mass or less, bleeding tends to be suppressed, and choking and stickiness tend to be suppressed in a fiber processed product obtained by processing using the fiber treatment agent of the present invention.
本発明の繊維処理剤における、難燃剤(D)の含有量は、防錆剤(C)の含有量との合計が40質量%以下であることが好ましい。40質量%以下であると、ブリーディングが抑制される傾向にあり、また、本発明の繊維処理剤を用いて処理することで得られる繊維加工品においてチョーキングやべたつき等が抑制される傾向にある。 The content of the flame retardant (D) in the fiber treatment agent of the present invention is preferably 0.1 to 70% by mass, more preferably 0.5 to 50% by mass, and 1 to 30% by mass. Is more preferable. When the amount is 0.1% by mass or more, the flame retardant of the processed product treated with the fiber treatment agent of the present invention becomes sufficient, and when it is 70% by mass or less, the fiber treatment agent of the present invention is used for treatment. There is a tendency that choking, stickiness, and the like are suppressed in the processed fiber product obtained in (1).
The content of the flame retardant (D) in the fiber treatment agent of the present invention is preferably 40% by mass or less in total with the content of the rust inhibitor (C). When it is 40% by mass or less, bleeding tends to be suppressed, and choking and stickiness tend to be suppressed in a fiber processed product obtained by processing using the fiber treatment agent of the present invention.
本発明の繊維処理剤中の合計リン原子の含有量は、0.01~30質量%が好ましく、0.05~25質量%であることがより好ましく、0.1~20質量%であることが更に好ましい。0.01質量%以上であると、本発明の繊維処理剤で処理された加工品の難燃性が十分であり、30質量%以下であると、本発明の繊維処理剤を用いて処理することで得られる繊維加工品においてチョーキングやべたつき等が抑制される傾向にある。
The total phosphorus atom content in the fiber treatment agent of the present invention is preferably 0.01 to 30% by mass, more preferably 0.05 to 25% by mass, and 0.1 to 20% by mass. Is more preferable. When it is 0.01% by mass or more, the processed product treated with the fiber treatment agent of the present invention has sufficient flame retardancy, and when it is 30% by mass or less, the fiber treatment agent of the present invention is used for treatment. There is a tendency that choking, stickiness and the like are suppressed in the processed fiber product.
<その他成分>
〔開始剤〕
ラジカル重合によって、リン含有不飽和単量体(A)と、重合性不飽和単量体(B)との共重合体(P)を得る場合、重合は開始剤の存在下にて行われる。この重合反応で使用するラジカル重合開始剤はラジカル重合を開始できるものであれば特に限定されるものではなく、通常用いられている過酸化物やアゾ化合物を使用することができる。例えば、その具体例としては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過酸化水素、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジイソプロピルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシル-3,3-イソプロピルヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、ジクミルヒドロパーオキサイド、アセチルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチルパーオキサイド、3,3,5-トリメチルヘキサノイルパーオキサイド、ラウリルパーオキサイド、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、アゾビスイソブチロニトリル、アゾビスカルボンアミド等を挙げることができ、反応によっては適当な還元剤を使用してもよい。開始剤の使用量は、共重合体(P)中の、リン含有不飽和単量体(A)及び重合性不飽和単量体(B)の合計100質量部に対して0.01~20質量部が好ましく、0.1~10質量部が更に好ましい。 <Other ingredients>
[Initiator]
When obtaining a copolymer (P) of a phosphorus-containing unsaturated monomer (A) and a polymerizable unsaturated monomer (B) by radical polymerization, the polymerization is carried out in the presence of an initiator. The radical polymerization initiator used in this polymerization reaction is not particularly limited as long as radical polymerization can be initiated, and a generally used peroxide or azo compound can be used. Specific examples thereof include sodium persulfate, potassium persulfate, ammonium persulfate, hydrogen peroxide, benzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate. , T-hexylperoxybenzoate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, 1,1-bis (t-butylperoxy) -3,3 , 5-trimethylcyclohexane, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyl-3,3-isopropyl hydroperoxide, t-butyl hydroperoxide, dicumyl hydroperoxide, acetyl peroxide Oxide, bis (4-tert-butylcyclo Xyl) peroxydicarbonate, diisopropylperoxydicarbonate, isobutyl peroxide, 3,3,5-trimethylhexanoyl peroxide, lauryl peroxide, 1,1-bis (t-hexylperoxy) -3,3 Examples thereof include 5-trimethylcyclohexane, azobisisobutyronitrile, azobiscarbonamide, and a suitable reducing agent may be used depending on the reaction. The initiator is used in an amount of 0.01 to 20 with respect to 100 parts by mass in total of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) in the copolymer (P). Part by mass is preferable, and 0.1 to 10 parts by mass is more preferable.
〔開始剤〕
ラジカル重合によって、リン含有不飽和単量体(A)と、重合性不飽和単量体(B)との共重合体(P)を得る場合、重合は開始剤の存在下にて行われる。この重合反応で使用するラジカル重合開始剤はラジカル重合を開始できるものであれば特に限定されるものではなく、通常用いられている過酸化物やアゾ化合物を使用することができる。例えば、その具体例としては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過酸化水素、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジイソプロピルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシル-3,3-イソプロピルヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、ジクミルヒドロパーオキサイド、アセチルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチルパーオキサイド、3,3,5-トリメチルヘキサノイルパーオキサイド、ラウリルパーオキサイド、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、アゾビスイソブチロニトリル、アゾビスカルボンアミド等を挙げることができ、反応によっては適当な還元剤を使用してもよい。開始剤の使用量は、共重合体(P)中の、リン含有不飽和単量体(A)及び重合性不飽和単量体(B)の合計100質量部に対して0.01~20質量部が好ましく、0.1~10質量部が更に好ましい。 <Other ingredients>
[Initiator]
When obtaining a copolymer (P) of a phosphorus-containing unsaturated monomer (A) and a polymerizable unsaturated monomer (B) by radical polymerization, the polymerization is carried out in the presence of an initiator. The radical polymerization initiator used in this polymerization reaction is not particularly limited as long as radical polymerization can be initiated, and a generally used peroxide or azo compound can be used. Specific examples thereof include sodium persulfate, potassium persulfate, ammonium persulfate, hydrogen peroxide, benzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate. , T-hexylperoxybenzoate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, 1,1-bis (t-butylperoxy) -3,3 , 5-trimethylcyclohexane, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyl-3,3-isopropyl hydroperoxide, t-butyl hydroperoxide, dicumyl hydroperoxide, acetyl peroxide Oxide, bis (4-tert-butylcyclo Xyl) peroxydicarbonate, diisopropylperoxydicarbonate, isobutyl peroxide, 3,3,5-trimethylhexanoyl peroxide, lauryl peroxide, 1,1-bis (t-hexylperoxy) -3,3 Examples thereof include 5-trimethylcyclohexane, azobisisobutyronitrile, azobiscarbonamide, and a suitable reducing agent may be used depending on the reaction. The initiator is used in an amount of 0.01 to 20 with respect to 100 parts by mass in total of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) in the copolymer (P). Part by mass is preferable, and 0.1 to 10 parts by mass is more preferable.
〔界面活性剤〕
本発明の繊維処理剤に含まれる、リン含有不飽和単量体(A)と重合性不飽和単量体(B)との共重合体(P)を、乳化重合法により製造する際には、界面活性剤の存在下で行われる。界面活性剤としては、一般に市販されているアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤及び共重合性界面活性剤が使用できる。また、これらの界面活性剤は、単独または二種類以上を組み合わせて使用することができる。使用する界面活性剤量はリン含有不飽和単量体(A)及び重合性不飽和単量体(B)の合計に対して0.01~30質量部が好ましく、0.1~20質量部が更に好ましい。なお重合安定性の観点から、同様に水溶性(メタ)アクリル酸樹脂、水溶性(メタ)アクリル酸エステル樹脂、ポリオキシエチレンアルキルエーテル等の水溶性高分子を保護コロイドとして用いてもよい。また、これらの保護コロイドは、鹸化度、平均重合度、変性の有無に関係なく使用することができるが、平均重合度は、重合安定性、製品粘度の観点から200~2,400であることが好ましく、鹸化度は、重合安定性の観点から、80%~100%であることが好ましい。また、これらの保護コロイドの使用量は、特に制限されるものではないが、重合安定性の観点から、リン含有不飽和単量体(A)及び重合性不飽和単量体(B)の合計100質量部に対して、1~100質量部であることが好ましく、10~30質量部であることが更に好ましい。 [Surfactant]
When the copolymer (P) of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) contained in the fiber treatment agent of the present invention is produced by an emulsion polymerization method In the presence of a surfactant. As the surfactant, commercially available anionic surfactants, nonionic surfactants, cationic surfactants and copolymerizable surfactants can be used. Moreover, these surfactants can be used individually or in combination of 2 or more types. The amount of the surfactant used is preferably 0.01 to 30 parts by weight, preferably 0.1 to 20 parts by weight, based on the total of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B). Is more preferable. From the viewpoint of polymerization stability, water-soluble polymers such as water-soluble (meth) acrylic acid resins, water-soluble (meth) acrylic acid ester resins, polyoxyethylene alkyl ethers and the like may be used as protective colloids. These protective colloids can be used regardless of the degree of saponification, the average degree of polymerization, and the presence or absence of modification. The average degree of polymerization should be 200 to 2,400 from the viewpoints of polymerization stability and product viscosity. The degree of saponification is preferably 80% to 100% from the viewpoint of polymerization stability. The amount of these protective colloids to be used is not particularly limited. From the viewpoint of polymerization stability, the total of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B). The amount is preferably 1 to 100 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass.
本発明の繊維処理剤に含まれる、リン含有不飽和単量体(A)と重合性不飽和単量体(B)との共重合体(P)を、乳化重合法により製造する際には、界面活性剤の存在下で行われる。界面活性剤としては、一般に市販されているアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤及び共重合性界面活性剤が使用できる。また、これらの界面活性剤は、単独または二種類以上を組み合わせて使用することができる。使用する界面活性剤量はリン含有不飽和単量体(A)及び重合性不飽和単量体(B)の合計に対して0.01~30質量部が好ましく、0.1~20質量部が更に好ましい。なお重合安定性の観点から、同様に水溶性(メタ)アクリル酸樹脂、水溶性(メタ)アクリル酸エステル樹脂、ポリオキシエチレンアルキルエーテル等の水溶性高分子を保護コロイドとして用いてもよい。また、これらの保護コロイドは、鹸化度、平均重合度、変性の有無に関係なく使用することができるが、平均重合度は、重合安定性、製品粘度の観点から200~2,400であることが好ましく、鹸化度は、重合安定性の観点から、80%~100%であることが好ましい。また、これらの保護コロイドの使用量は、特に制限されるものではないが、重合安定性の観点から、リン含有不飽和単量体(A)及び重合性不飽和単量体(B)の合計100質量部に対して、1~100質量部であることが好ましく、10~30質量部であることが更に好ましい。 [Surfactant]
When the copolymer (P) of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B) contained in the fiber treatment agent of the present invention is produced by an emulsion polymerization method In the presence of a surfactant. As the surfactant, commercially available anionic surfactants, nonionic surfactants, cationic surfactants and copolymerizable surfactants can be used. Moreover, these surfactants can be used individually or in combination of 2 or more types. The amount of the surfactant used is preferably 0.01 to 30 parts by weight, preferably 0.1 to 20 parts by weight, based on the total of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B). Is more preferable. From the viewpoint of polymerization stability, water-soluble polymers such as water-soluble (meth) acrylic acid resins, water-soluble (meth) acrylic acid ester resins, polyoxyethylene alkyl ethers and the like may be used as protective colloids. These protective colloids can be used regardless of the degree of saponification, the average degree of polymerization, and the presence or absence of modification. The average degree of polymerization should be 200 to 2,400 from the viewpoints of polymerization stability and product viscosity. The degree of saponification is preferably 80% to 100% from the viewpoint of polymerization stability. The amount of these protective colloids to be used is not particularly limited. From the viewpoint of polymerization stability, the total of the phosphorus-containing unsaturated monomer (A) and the polymerizable unsaturated monomer (B). The amount is preferably 1 to 100 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass.
〔その他の添加剤〕
本発明の繊維処理剤には、本発明の効果を損なわない範囲で、充填剤、防腐剤、着色剤、消泡剤、発泡剤、分散剤、乳化剤、流動性調整剤、可塑剤、pH調整剤、各種油剤等の添加剤を配合してもよい。 [Other additives]
In the fiber treatment agent of the present invention, fillers, preservatives, colorants, antifoaming agents, foaming agents, dispersants, emulsifiers, fluidity modifiers, plasticizers, and pH adjustments are within the range that does not impair the effects of the present invention. You may mix additives, such as an agent and various oil agents.
本発明の繊維処理剤には、本発明の効果を損なわない範囲で、充填剤、防腐剤、着色剤、消泡剤、発泡剤、分散剤、乳化剤、流動性調整剤、可塑剤、pH調整剤、各種油剤等の添加剤を配合してもよい。 [Other additives]
In the fiber treatment agent of the present invention, fillers, preservatives, colorants, antifoaming agents, foaming agents, dispersants, emulsifiers, fluidity modifiers, plasticizers, and pH adjustments are within the range that does not impair the effects of the present invention. You may mix additives, such as an agent and various oil agents.
〔その他の添加樹脂〕
また、本発明の繊維処理剤には、本発明の効果を損なわない範囲で、他の樹脂エマルジョンや溶液樹脂、エポキシ樹脂、ウレタン樹脂等の各種樹脂組成物をバインダーとして含有していてもよい。 [Other additive resins]
In addition, the fiber treatment agent of the present invention may contain various resin compositions such as other resin emulsions, solution resins, epoxy resins, and urethane resins as binders as long as the effects of the present invention are not impaired.
また、本発明の繊維処理剤には、本発明の効果を損なわない範囲で、他の樹脂エマルジョンや溶液樹脂、エポキシ樹脂、ウレタン樹脂等の各種樹脂組成物をバインダーとして含有していてもよい。 [Other additive resins]
In addition, the fiber treatment agent of the present invention may contain various resin compositions such as other resin emulsions, solution resins, epoxy resins, and urethane resins as binders as long as the effects of the present invention are not impaired.
〔溶媒〕
本発明の繊維処理剤の製造に用いられる溶媒は水や通常用いられている有機溶剤を使用することができる。例えばその具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコール類;酢酸エチル、酢酸イソプロピル、セロソルブアセテート、ブチルセロソルブアセテート等のエチレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールモノメチルエーテルアセテート、カルビトールアセテート、ブチルカルビトールアセテート等のジエチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールモノアルキルエーテルアセテート類等の酢酸エステル類;エチレングリコールジアルキルエーテル類、メチルカルビトール、エチルカルビトール、ブチルカルビトール等のジエチレングリコールジアルキルエーテル類、トリエチレングリコールジアルキルエーテル類、プロピレングリコールジアルキルエーテル類、ジプロピレングリコールジアルキルエーテル類、メチルエーテル、エチルエーテル、1,4-ジオキサン、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、ヘキサン、オクタン、デカン等の炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤;乳酸メチル、乳酸エチル、乳酸ブチル等の乳酸エステル類;ジメチルホルムアミド;N-メチルピロリドン等が挙げられる。これらの水、有機溶剤は単独又は二種以上を組み合わせて使用することができる。 〔solvent〕
As the solvent used for the production of the fiber treatment agent of the present invention, water or a commonly used organic solvent can be used. Specific examples thereof include alcohols such as methanol, ethanol, propanol, isopropanol and butanol; ethylene glycol monoalkyl ether acetates such as ethyl acetate, isopropyl acetate, cellosolve acetate and butyl cellosolve acetate, diethylene glycol monomethyl ether acetate and carbitol acetate. , Acetate esters such as diethylene glycol monoalkyl ether acetates such as butyl carbitol acetate, propylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ether acetates; ethylene glycol dialkyl ethers, methyl carbitol, ethyl carbitol, Diethylene glycol dialkyl esters such as butyl carbitol Tells, triethylene glycol dialkyl ethers, propylene glycol dialkyl ethers, dipropylene glycol dialkyl ethers, ethers such as methyl ether, ethyl ether, 1,4-dioxane, tetrahydrofuran; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone Ketones such as benzene, toluene, xylene, hexane, octane, decane, etc .; petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, solvent naphtha; methyl lactate, ethyl lactate, butyl lactate, etc. Lactic acid esters; dimethylformamide; N-methylpyrrolidone and the like. These water and organic solvents can be used alone or in combination of two or more.
本発明の繊維処理剤の製造に用いられる溶媒は水や通常用いられている有機溶剤を使用することができる。例えばその具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコール類;酢酸エチル、酢酸イソプロピル、セロソルブアセテート、ブチルセロソルブアセテート等のエチレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールモノメチルエーテルアセテート、カルビトールアセテート、ブチルカルビトールアセテート等のジエチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールモノアルキルエーテルアセテート類等の酢酸エステル類;エチレングリコールジアルキルエーテル類、メチルカルビトール、エチルカルビトール、ブチルカルビトール等のジエチレングリコールジアルキルエーテル類、トリエチレングリコールジアルキルエーテル類、プロピレングリコールジアルキルエーテル類、ジプロピレングリコールジアルキルエーテル類、メチルエーテル、エチルエーテル、1,4-ジオキサン、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、ヘキサン、オクタン、デカン等の炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤;乳酸メチル、乳酸エチル、乳酸ブチル等の乳酸エステル類;ジメチルホルムアミド;N-メチルピロリドン等が挙げられる。これらの水、有機溶剤は単独又は二種以上を組み合わせて使用することができる。 〔solvent〕
As the solvent used for the production of the fiber treatment agent of the present invention, water or a commonly used organic solvent can be used. Specific examples thereof include alcohols such as methanol, ethanol, propanol, isopropanol and butanol; ethylene glycol monoalkyl ether acetates such as ethyl acetate, isopropyl acetate, cellosolve acetate and butyl cellosolve acetate, diethylene glycol monomethyl ether acetate and carbitol acetate. , Acetate esters such as diethylene glycol monoalkyl ether acetates such as butyl carbitol acetate, propylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ether acetates; ethylene glycol dialkyl ethers, methyl carbitol, ethyl carbitol, Diethylene glycol dialkyl esters such as butyl carbitol Tells, triethylene glycol dialkyl ethers, propylene glycol dialkyl ethers, dipropylene glycol dialkyl ethers, ethers such as methyl ether, ethyl ether, 1,4-dioxane, tetrahydrofuran; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone Ketones such as benzene, toluene, xylene, hexane, octane, decane, etc .; petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, solvent naphtha; methyl lactate, ethyl lactate, butyl lactate, etc. Lactic acid esters; dimethylformamide; N-methylpyrrolidone and the like. These water and organic solvents can be used alone or in combination of two or more.
[繊維]
本明細書において、繊維とは、各種繊維及びそれらの混紡品からなる不織布、織物、編物等を含む。また、該繊維としては、例えば、木綿、麻、絹、羊毛、コラーゲン繊維、アクリル繊維、セルロース系繊維、ポリイミド繊維、ポリアミドイミド繊維、レーヨン繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリプロピレン繊維、ポリ塩化ビニル繊維、ポリエチレン繊維、ポリメタフェニレンイソフタルアミド繊維、アラミド繊維、ポリアリレート繊維、ポリテトラフルオロエチレン繊維、ポリベンゾイミダゾール繊維、ポリエーテルエーテルケトン繊維、ポリフェニレンサルファイド繊維及びこれらの混紡品からなる不織布、織物、編物等が挙げられる。 [fiber]
In the present specification, the fiber includes non-woven fabrics, woven fabrics, knitted fabrics, and the like made of various fibers and their blends. Examples of the fiber include cotton, hemp, silk, wool, collagen fiber, acrylic fiber, cellulosic fiber, polyimide fiber, polyamideimide fiber, rayon fiber, nylon fiber, vinylon fiber, polyester fiber, polypropylene fiber, poly Non-woven fabric made of vinyl chloride fiber, polyethylene fiber, polymetaphenylene isophthalamide fiber, aramid fiber, polyarylate fiber, polytetrafluoroethylene fiber, polybenzimidazole fiber, polyether ether ketone fiber, polyphenylene sulfide fiber and blended products thereof, Examples include woven fabrics and knitted fabrics.
本明細書において、繊維とは、各種繊維及びそれらの混紡品からなる不織布、織物、編物等を含む。また、該繊維としては、例えば、木綿、麻、絹、羊毛、コラーゲン繊維、アクリル繊維、セルロース系繊維、ポリイミド繊維、ポリアミドイミド繊維、レーヨン繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリプロピレン繊維、ポリ塩化ビニル繊維、ポリエチレン繊維、ポリメタフェニレンイソフタルアミド繊維、アラミド繊維、ポリアリレート繊維、ポリテトラフルオロエチレン繊維、ポリベンゾイミダゾール繊維、ポリエーテルエーテルケトン繊維、ポリフェニレンサルファイド繊維及びこれらの混紡品からなる不織布、織物、編物等が挙げられる。 [fiber]
In the present specification, the fiber includes non-woven fabrics, woven fabrics, knitted fabrics, and the like made of various fibers and their blends. Examples of the fiber include cotton, hemp, silk, wool, collagen fiber, acrylic fiber, cellulosic fiber, polyimide fiber, polyamideimide fiber, rayon fiber, nylon fiber, vinylon fiber, polyester fiber, polypropylene fiber, poly Non-woven fabric made of vinyl chloride fiber, polyethylene fiber, polymetaphenylene isophthalamide fiber, aramid fiber, polyarylate fiber, polytetrafluoroethylene fiber, polybenzimidazole fiber, polyether ether ketone fiber, polyphenylene sulfide fiber and blended products thereof, Examples include woven fabrics and knitted fabrics.
[繊維加工品の製造方法]
本発明の繊維処理剤で繊維(基材)を処理し、繊維加工品を製造する方法としては、各種公知の方法を特に制限なく採用することができる。例えば、本発明の繊維処理剤を繊維に塗布し処理する方法としては、ダイレクトコート法、スプレーコート法、ロールコーター法、スロットコーター法、ナイフコート法、プリント法、ロール転写法、等が挙げられる。また、例えば、繊維を本発明の繊維処理剤に浸漬し処理する方法としては、水平ローラー法、メタリングローラー法、スクリーンコンベア法、フォーム法、等が挙げられる。
例えば、不織布といった繊維を本発明の繊維処理剤で処理する場合の加工方法は、スプレーコート法、プリント法、ロール転写法、水平ローラー法、メタリングローラー法、スクリーンコンベア法、フォーム法、等が挙げられる。また、例えば、織物といった繊維を本発明の繊維処理剤で処理する場合の加工方法は、ダイレクトコート法、スプレーコート法、ロールコーター法、スロットコーター法、ナイフコート法、等が挙げられる。また、繊維をシート状に形成させウェブを作成し、そのウェブをさらに接着あるいは絡み合わせて布形化する場合、前記繊維処理は、ウェブ化する前の繊維に対して行っても良いし、繊維を各種の方法でウェブ化した後に行ってもよい。前記繊維ウェブ化方法は、各種公知の方法を特に制限なく採用することができ、例えば、エアレイ法等が挙げられる。 [Manufacturing method of processed fiber products]
Various known methods can be employed without particular limitation as a method for producing a processed fiber product by treating the fiber (base material) with the fiber treatment agent of the present invention. For example, examples of the method for applying the fiber treatment agent of the present invention to the fiber and processing include a direct coating method, a spray coating method, a roll coater method, a slot coater method, a knife coat method, a printing method, a roll transfer method, and the like. . Moreover, for example, as a method for immersing and treating fibers in the fiber treatment agent of the present invention, a horizontal roller method, a metalling roller method, a screen conveyor method, a foam method, and the like can be given.
For example, the processing method in the case of processing a fiber such as a nonwoven fabric with the fiber treatment agent of the present invention includes a spray coating method, a printing method, a roll transfer method, a horizontal roller method, a metering roller method, a screen conveyor method, a foam method, etc. Can be mentioned. Examples of processing methods for treating fibers such as woven fabrics with the fiber treatment agent of the present invention include a direct coating method, a spray coating method, a roll coater method, a slot coater method, and a knife coating method. In addition, when a web is formed by forming fibers into a sheet and the web is further bonded or entangled to form a cloth, the fiber treatment may be performed on the fibers before being formed into a web, You may carry out after making web into various methods. As the fiber web forming method, various known methods can be employed without particular limitation, and examples thereof include an air array method.
本発明の繊維処理剤で繊維(基材)を処理し、繊維加工品を製造する方法としては、各種公知の方法を特に制限なく採用することができる。例えば、本発明の繊維処理剤を繊維に塗布し処理する方法としては、ダイレクトコート法、スプレーコート法、ロールコーター法、スロットコーター法、ナイフコート法、プリント法、ロール転写法、等が挙げられる。また、例えば、繊維を本発明の繊維処理剤に浸漬し処理する方法としては、水平ローラー法、メタリングローラー法、スクリーンコンベア法、フォーム法、等が挙げられる。
例えば、不織布といった繊維を本発明の繊維処理剤で処理する場合の加工方法は、スプレーコート法、プリント法、ロール転写法、水平ローラー法、メタリングローラー法、スクリーンコンベア法、フォーム法、等が挙げられる。また、例えば、織物といった繊維を本発明の繊維処理剤で処理する場合の加工方法は、ダイレクトコート法、スプレーコート法、ロールコーター法、スロットコーター法、ナイフコート法、等が挙げられる。また、繊維をシート状に形成させウェブを作成し、そのウェブをさらに接着あるいは絡み合わせて布形化する場合、前記繊維処理は、ウェブ化する前の繊維に対して行っても良いし、繊維を各種の方法でウェブ化した後に行ってもよい。前記繊維ウェブ化方法は、各種公知の方法を特に制限なく採用することができ、例えば、エアレイ法等が挙げられる。 [Manufacturing method of processed fiber products]
Various known methods can be employed without particular limitation as a method for producing a processed fiber product by treating the fiber (base material) with the fiber treatment agent of the present invention. For example, examples of the method for applying the fiber treatment agent of the present invention to the fiber and processing include a direct coating method, a spray coating method, a roll coater method, a slot coater method, a knife coat method, a printing method, a roll transfer method, and the like. . Moreover, for example, as a method for immersing and treating fibers in the fiber treatment agent of the present invention, a horizontal roller method, a metalling roller method, a screen conveyor method, a foam method, and the like can be given.
For example, the processing method in the case of processing a fiber such as a nonwoven fabric with the fiber treatment agent of the present invention includes a spray coating method, a printing method, a roll transfer method, a horizontal roller method, a metering roller method, a screen conveyor method, a foam method, etc. Can be mentioned. Examples of processing methods for treating fibers such as woven fabrics with the fiber treatment agent of the present invention include a direct coating method, a spray coating method, a roll coater method, a slot coater method, and a knife coating method. In addition, when a web is formed by forming fibers into a sheet and the web is further bonded or entangled to form a cloth, the fiber treatment may be performed on the fibers before being formed into a web, You may carry out after making web into various methods. As the fiber web forming method, various known methods can be employed without particular limitation, and examples thereof include an air array method.
各種繊維基材に対する繊維処理剤の使用量は、基材自身の難燃性にもよるが、樹脂付着量(付着した繊維処理剤を乾燥した後の付着量)が10~200質量部/100質量部となる量が好ましく、30~150質量部/100質量部となる量がより好ましく、50~100質量部/100質量部となる量が更に好ましい。10質量部/100質量部以上であると、本発明の繊維処理剤を用いて得られる繊維加工品の難燃性及び防錆性が十分であり、200質量部/100質量部より多くなると、本発明の繊維処理剤を用いて得られる繊維加工品の強度、風合いの低下が抑制される傾向にある。乾燥は送風乾燥でもよいし、減圧乾燥でもよいし、加圧乾燥でもよい。また、加熱してもよい。乾燥の際に加熱する場合、温度は乾燥の際に加熱する場合の温度の範囲は、50~250℃が好ましく、80~190℃がより好ましい。加熱温度が低すぎると乾燥に時間がかかったり、乾燥が不充分になる可能性がある。加熱温度が高すぎると、変質を起こす可能性がある。
The amount of the fiber treatment agent used for various fiber substrates depends on the flame retardancy of the substrate itself, but the resin adhesion amount (the adhesion amount after drying the adhered fiber treatment agent) is 10 to 200 parts by mass / 100. The amount to be parts by mass is preferable, the amount to be 30 to 150 parts by mass / 100 parts by mass is more preferable, and the amount to be 50 to 100 parts by mass / 100 parts by mass is still more preferable. When it is 10 parts by mass / 100 parts by mass or more, the flame-retardant and rust prevention properties of the fiber processed product obtained using the fiber treatment agent of the present invention are sufficient, and when it is more than 200 parts by mass / 100 parts by mass, There exists a tendency for the fall of the intensity | strength of a fiber processed product obtained using the fiber processing agent of this invention, and a texture to be suppressed. Drying may be air drying, vacuum drying, or pressure drying. Moreover, you may heat. When heating at the time of drying, the temperature range when heating at the time of drying is preferably 50 to 250 ° C, more preferably 80 to 190 ° C. If the heating temperature is too low, drying may take time or drying may be insufficient. If the heating temperature is too high, alteration may occur.
[繊維加工品]
本発明の繊維加工品は、本発明の繊維加工品の製造方法を用いて得られる。樹脂付着量(乾燥後の繊維処理剤の付着量)が、繊維(基材)に対し50~100質量部/100質量部である10~200質量部/100質量部となる量が好ましく、30~150質量部/100質量部となる量がより好ましく、50~100質量部/100質量部となる量が更に好ましい。10質量部/100質量部以上であると、本発明の繊維加工品の難燃性及び防錆性が十分であり、200質量部/100質量部以下であると、本発明の繊維加工品の強度、風合いの低下が抑制される傾向にある。
本発明の繊維加工品は、両立する優れた難燃性と防錆性を有すること等を活かして種々の分野に適用できる。例えば、本発明の繊維加工品は、電子材料用緩衝材、家電用緩衝材、自動車内装緩衝材等として好適に用いられる。 [Fiber processed products]
The fiber processed product of the present invention is obtained using the method for producing a fiber processed product of the present invention. The amount that the resin adhesion amount (attachment amount of the fiber treatment agent after drying) is 10 to 200 parts by mass / 100 parts by mass, which is 50 to 100 parts by mass / 100 parts by mass with respect to the fiber (base material), is preferably 30 An amount of ˜150 parts by mass / 100 parts by mass is more preferred, and an amount of 50˜100 parts by mass / 100 parts by mass is still more preferred. When the amount is 10 parts by mass / 100 parts by mass or more, the fiber processed product of the present invention has sufficient flame retardancy and rust resistance, and when the amount is 200 parts by mass / 100 parts by mass or less, There is a tendency for the decrease in strength and texture to be suppressed.
The processed fiber product of the present invention can be applied to various fields by taking advantage of excellent flame retardancy and rust prevention properties that are compatible with each other. For example, the processed fiber product of the present invention is suitably used as a cushioning material for electronic materials, a cushioning material for home appliances, an automotive interior cushioning material, and the like.
本発明の繊維加工品は、本発明の繊維加工品の製造方法を用いて得られる。樹脂付着量(乾燥後の繊維処理剤の付着量)が、繊維(基材)に対し50~100質量部/100質量部である10~200質量部/100質量部となる量が好ましく、30~150質量部/100質量部となる量がより好ましく、50~100質量部/100質量部となる量が更に好ましい。10質量部/100質量部以上であると、本発明の繊維加工品の難燃性及び防錆性が十分であり、200質量部/100質量部以下であると、本発明の繊維加工品の強度、風合いの低下が抑制される傾向にある。
本発明の繊維加工品は、両立する優れた難燃性と防錆性を有すること等を活かして種々の分野に適用できる。例えば、本発明の繊維加工品は、電子材料用緩衝材、家電用緩衝材、自動車内装緩衝材等として好適に用いられる。 [Fiber processed products]
The fiber processed product of the present invention is obtained using the method for producing a fiber processed product of the present invention. The amount that the resin adhesion amount (attachment amount of the fiber treatment agent after drying) is 10 to 200 parts by mass / 100 parts by mass, which is 50 to 100 parts by mass / 100 parts by mass with respect to the fiber (base material), is preferably 30 An amount of ˜150 parts by mass / 100 parts by mass is more preferred, and an amount of 50˜100 parts by mass / 100 parts by mass is still more preferred. When the amount is 10 parts by mass / 100 parts by mass or more, the fiber processed product of the present invention has sufficient flame retardancy and rust resistance, and when the amount is 200 parts by mass / 100 parts by mass or less, There is a tendency for the decrease in strength and texture to be suppressed.
The processed fiber product of the present invention can be applied to various fields by taking advantage of excellent flame retardancy and rust prevention properties that are compatible with each other. For example, the processed fiber product of the present invention is suitably used as a cushioning material for electronic materials, a cushioning material for home appliances, an automotive interior cushioning material, and the like.
以下、実施例及び比較例を用いて本発明を更に説明するが、本発明は実施例及び比較例に限定されるものではない。
Hereinafter, the present invention will be further described using examples and comparative examples, but the present invention is not limited to the examples and comparative examples.
(実施例1)
イオン交換水150gを1Lの五つ口セパラブルフラスコに入れ、撹拌しながら80℃まで加熱した。アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート(共栄社化学株式会社製、ライトエステルP-1M、リン含有量15質量%)60g、メチルメタクリレート36g、エチルアクリレート36g、アクリル酸18g、ドデシルベンゼンスルホン酸ソーダ1.5g、ポリオキシエチレンアルキルエーテル7.5g、イオン交換水150gを均一に乳化した。セパラブルフラスコに過硫酸カリウム0.2gを添加し、単量体乳化物の滴下を開始することで反応を開始した。単量体乳化物は4時間掛けてセパラブルフラスコ内に添加、同時に3%過流酸カリウム水溶液30gも4時間掛けて添加した。単量体乳化物の添加終了後、80℃で2時間撹拌し、反応を終了した。セパラブルフラスコ内を冷却し、30%水酸化ナトリウム水溶液を8g添加し、系内を中和した。 Example 1
150 g of ion-exchanged water was placed in a 1 L 5-neck separable flask and heated to 80 ° C. with stirring. Acid phosphooxypolyoxyethylene glycol monomethacrylate (manufactured by Kyoeisha Chemical Co., Ltd., light ester P-1M, phosphorus content 15 mass%) 60 g, methyl methacrylate 36 g, ethyl acrylate 36 g, acrylic acid 18 g, dodecylbenzenesulfonic acid soda 5 g, 7.5 g of polyoxyethylene alkyl ether and 150 g of ion exchange water were uniformly emulsified. The reaction was started by adding 0.2 g of potassium persulfate to the separable flask and starting dropping of the monomer emulsion. The monomer emulsion was added to the separable flask over 4 hours, and at the same time, 30 g of 3% aqueous potassium persulfate solution was added over 4 hours. After the addition of the monomer emulsion was completed, the reaction was terminated by stirring at 80 ° C. for 2 hours. The inside of the separable flask was cooled, and 8 g of a 30% aqueous sodium hydroxide solution was added to neutralize the system.
イオン交換水150gを1Lの五つ口セパラブルフラスコに入れ、撹拌しながら80℃まで加熱した。アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート(共栄社化学株式会社製、ライトエステルP-1M、リン含有量15質量%)60g、メチルメタクリレート36g、エチルアクリレート36g、アクリル酸18g、ドデシルベンゼンスルホン酸ソーダ1.5g、ポリオキシエチレンアルキルエーテル7.5g、イオン交換水150gを均一に乳化した。セパラブルフラスコに過硫酸カリウム0.2gを添加し、単量体乳化物の滴下を開始することで反応を開始した。単量体乳化物は4時間掛けてセパラブルフラスコ内に添加、同時に3%過流酸カリウム水溶液30gも4時間掛けて添加した。単量体乳化物の添加終了後、80℃で2時間撹拌し、反応を終了した。セパラブルフラスコ内を冷却し、30%水酸化ナトリウム水溶液を8g添加し、系内を中和した。 Example 1
150 g of ion-exchanged water was placed in a 1 L 5-neck separable flask and heated to 80 ° C. with stirring. Acid phosphooxypolyoxyethylene glycol monomethacrylate (manufactured by Kyoeisha Chemical Co., Ltd., light ester P-1M, phosphorus content 15 mass%) 60 g, methyl methacrylate 36 g, ethyl acrylate 36 g, acrylic acid 18 g, dodecylbenzenesulfonic acid soda 5 g, 7.5 g of polyoxyethylene alkyl ether and 150 g of ion exchange water were uniformly emulsified. The reaction was started by adding 0.2 g of potassium persulfate to the separable flask and starting dropping of the monomer emulsion. The monomer emulsion was added to the separable flask over 4 hours, and at the same time, 30 g of 3% aqueous potassium persulfate solution was added over 4 hours. After the addition of the monomer emulsion was completed, the reaction was terminated by stirring at 80 ° C. for 2 hours. The inside of the separable flask was cooled, and 8 g of a 30% aqueous sodium hydroxide solution was added to neutralize the system.
その後、撹拌しながら、イオン交換水20gで希釈した難燃剤ポリリン酸アンモニウム(株式会社鈴裕製、FCP-770、リン含有量24%)20g、イオン交換水10gで希釈した防錆剤カルボキシベンゾトリアゾール(城北化学工業株式会社製、CBT-1)10gを添加し、イオン交換水10gを加えた。難燃剤と防錆剤の添加終了後、1時間撹拌し、繊維処理剤1を調製した。その組成を表1に示す。
得られた繊維処理剤1を用いて、後述の方法で繊維加工品を作製した。得られた繊維加工品の物性評価を後述の評価方法で行った。その評価結果を表4に示す。 Then, with stirring, flame retardant ammonium polyphosphate diluted with 20 g of ion-exchanged water (manufactured by Suzuhiro Co., Ltd., FCP-770, phosphorus content 24%), rust inhibitor carboxybenzotriazole diluted with 10 g of ion-exchanged water. 10 g (CBT-1 manufactured by Johoku Chemical Co., Ltd.) was added, and 10 g of ion-exchanged water was added. After the addition of the flame retardant and the rust inhibitor, the fiber treatment agent 1 was prepared by stirring for 1 hour. The composition is shown in Table 1.
Using the obtained fiber treating agent 1, a fiber processed product was produced by the method described later. The physical property evaluation of the obtained fiber processed product was performed by the evaluation method described later. The evaluation results are shown in Table 4.
得られた繊維処理剤1を用いて、後述の方法で繊維加工品を作製した。得られた繊維加工品の物性評価を後述の評価方法で行った。その評価結果を表4に示す。 Then, with stirring, flame retardant ammonium polyphosphate diluted with 20 g of ion-exchanged water (manufactured by Suzuhiro Co., Ltd., FCP-770, phosphorus content 24%), rust inhibitor carboxybenzotriazole diluted with 10 g of ion-exchanged water. 10 g (CBT-1 manufactured by Johoku Chemical Co., Ltd.) was added, and 10 g of ion-exchanged water was added. After the addition of the flame retardant and the rust inhibitor, the fiber treatment agent 1 was prepared by stirring for 1 hour. The composition is shown in Table 1.
Using the obtained fiber treating agent 1, a fiber processed product was produced by the method described later. The physical property evaluation of the obtained fiber processed product was performed by the evaluation method described later. The evaluation results are shown in Table 4.
(実施例2~12)
表1と表2に示す組成としたこと以外は実施例1と同様の方法で調製を行い、繊維処理剤2~12を調製した。
なお、表1と表2中における各成分の詳細は、次の通りである。
・ジフェニル-2-メタクリロイルオキシエチルホスフェート:大八化学工業株式会社製、MR-260、リン含有量8%
・1-[N,N-ビス(2-エチルヘキシル)アミノメチル]ベンゾトリアゾール:城北化学工業株式会社製、BT-LX
・トリフェニルホスフェート:大八化学工業株式会社製、TPP、リン含有量10%
・ポリビニルアルコール:株式会社クラレ製、PVA205(鹸化度86.5~89.0%、平均重合度500)
得られた繊維処理剤2~12を用いて、後述の方法で繊維加工品を作製した。得られた繊維加工品の物性評価を後述の評価方法で行った。その評価結果を表4に示す。 (Examples 2 to 12)
The fiber treatment agents 2 to 12 were prepared in the same manner as in Example 1 except that the compositions shown in Tables 1 and 2 were used.
In addition, the detail of each component in Table 1 and Table 2 is as follows.
Diphenyl-2-methacryloyloxyethyl phosphate: Daihachi Chemical Industry Co., Ltd., MR-260, phosphorus content 8%
1- [N, N-bis (2-ethylhexyl) aminomethyl] benzotriazole: manufactured by Johoku Chemical Industry Co., Ltd., BT-LX
Triphenyl phosphate: manufactured by Daihachi Chemical Industry Co., Ltd., TPP, phosphorus content 10%
Polyvinyl alcohol: manufactured by Kuraray Co., Ltd., PVA205 (saponification degree: 86.5 to 89.0%, average polymerization degree: 500)
Using the obtained fiber treating agents 2 to 12, fiber processed products were produced by the method described below. The physical property evaluation of the obtained fiber processed product was performed by the evaluation method described later. The evaluation results are shown in Table 4.
表1と表2に示す組成としたこと以外は実施例1と同様の方法で調製を行い、繊維処理剤2~12を調製した。
なお、表1と表2中における各成分の詳細は、次の通りである。
・ジフェニル-2-メタクリロイルオキシエチルホスフェート:大八化学工業株式会社製、MR-260、リン含有量8%
・1-[N,N-ビス(2-エチルヘキシル)アミノメチル]ベンゾトリアゾール:城北化学工業株式会社製、BT-LX
・トリフェニルホスフェート:大八化学工業株式会社製、TPP、リン含有量10%
・ポリビニルアルコール:株式会社クラレ製、PVA205(鹸化度86.5~89.0%、平均重合度500)
得られた繊維処理剤2~12を用いて、後述の方法で繊維加工品を作製した。得られた繊維加工品の物性評価を後述の評価方法で行った。その評価結果を表4に示す。 (Examples 2 to 12)
The fiber treatment agents 2 to 12 were prepared in the same manner as in Example 1 except that the compositions shown in Tables 1 and 2 were used.
In addition, the detail of each component in Table 1 and Table 2 is as follows.
Diphenyl-2-methacryloyloxyethyl phosphate: Daihachi Chemical Industry Co., Ltd., MR-260, phosphorus content 8%
1- [N, N-bis (2-ethylhexyl) aminomethyl] benzotriazole: manufactured by Johoku Chemical Industry Co., Ltd., BT-LX
Triphenyl phosphate: manufactured by Daihachi Chemical Industry Co., Ltd., TPP, phosphorus content 10%
Polyvinyl alcohol: manufactured by Kuraray Co., Ltd., PVA205 (saponification degree: 86.5 to 89.0%, average polymerization degree: 500)
Using the obtained fiber treating agents 2 to 12, fiber processed products were produced by the method described below. The physical property evaluation of the obtained fiber processed product was performed by the evaluation method described later. The evaluation results are shown in Table 4.
(比較例1~6)
表3に示す組成としたこと以外は実施例1と同様の方法で調製を行い、繊維処理剤13~18を調製した。
得られた繊維処理剤13~18を用いて、後述の方法で繊維加工品を作製した。得られた繊維加工品の物性評価を後述の評価方法で行った。その評価結果を表5に示す。 (Comparative Examples 1 to 6)
Preparations were made in the same manner as in Example 1 except that the compositions shown in Table 3 were used, and fiber treatment agents 13 to 18 were prepared.
Using the obtained fiber treating agents 13 to 18, fiber processed products were produced by the method described later. The physical property evaluation of the obtained fiber processed product was performed by the evaluation method described later. The evaluation results are shown in Table 5.
表3に示す組成としたこと以外は実施例1と同様の方法で調製を行い、繊維処理剤13~18を調製した。
得られた繊維処理剤13~18を用いて、後述の方法で繊維加工品を作製した。得られた繊維加工品の物性評価を後述の評価方法で行った。その評価結果を表5に示す。 (Comparative Examples 1 to 6)
Preparations were made in the same manner as in Example 1 except that the compositions shown in Table 3 were used, and fiber treatment agents 13 to 18 were prepared.
Using the obtained fiber treating agents 13 to 18, fiber processed products were produced by the method described later. The physical property evaluation of the obtained fiber processed product was performed by the evaluation method described later. The evaluation results are shown in Table 5.
(繊維加工品の作製及び評価方法)
実施例1~12及び比較例1~6で得られた繊維処理剤を用いて、繊維加工品を作製した。得られた繊維加工品の物性評価を行った。繊維加工品の作製及び評価は下記の方法に従って行った。 (Production and evaluation method of processed fiber products)
Using the fiber treatment agents obtained in Examples 1 to 12 and Comparative Examples 1 to 6, fiber processed products were produced. The physical property evaluation of the obtained fiber processed product was performed. Fabrication and evaluation of processed fiber products were performed according to the following methods.
実施例1~12及び比較例1~6で得られた繊維処理剤を用いて、繊維加工品を作製した。得られた繊維加工品の物性評価を行った。繊維加工品の作製及び評価は下記の方法に従って行った。 (Production and evaluation method of processed fiber products)
Using the fiber treatment agents obtained in Examples 1 to 12 and Comparative Examples 1 to 6, fiber processed products were produced. The physical property evaluation of the obtained fiber processed product was performed. Fabrication and evaluation of processed fiber products were performed according to the following methods.
<基材>
本発明の実施例、比較例における繊維基材は次の通りとした。
(1)繊維
ポリエステル-セルロース不織布
(2)目付 35g/m2
(3)厚さ 200μm <Base material>
The fiber base materials in Examples and Comparative Examples of the present invention were as follows.
(1) Fiber Polyester-cellulose nonwoven fabric (2) Weight per unit area 35 g / m 2
(3) Thickness 200μm
本発明の実施例、比較例における繊維基材は次の通りとした。
(1)繊維
ポリエステル-セルロース不織布
(2)目付 35g/m2
(3)厚さ 200μm <Base material>
The fiber base materials in Examples and Comparative Examples of the present invention were as follows.
(1) Fiber Polyester-cellulose nonwoven fabric (2) Weight per unit area 35 g / m 2
(3) Thickness 200μm
<加工品の作製>
実施例1~12及び比較例1~6で得られた繊維処理剤を、それぞれ、イオン交換水を用いて、固形分が15質量%となるように希釈した後、基材繊維を繊維処理剤に含浸させた。その後、繊維処理剤を含浸させた基材繊維を2本マングルで絞り、熱風式乾燥機にて130℃で10分間乾燥させた。繊維処理剤の付着量は、繊維重量に対して40~50質量%であった。
<固形分の評価方法>
所定量の試料を予め精秤してある清浄なアルミ皿(高さ約17mm、口径約40mm)にとり、感度0.5mg以下の直示天秤を用いて精秤後、内温105℃±2℃に調整した乾燥機内に1時間放置する。乾燥後の試料はデシケーター内で室温まで冷却したのち、同一直示天秤にて精秤し、次式にて固形分を算出する。
固形分(%)=乾燥後の試料重量(g)/原試料重量(g)×100
<リン原子の含有量の評価方法>
比色定量法、ICP発光分析等、どのような方法を用いてもよいが、例えば、元素分析によりリン原子の含有量を求めることができる。 <Production of processed products>
The fiber treatment agents obtained in Examples 1 to 12 and Comparative Examples 1 to 6 were each diluted with ion-exchanged water so that the solid content was 15% by mass, and then the base fiber was treated with the fiber treatment agent. Was impregnated. Thereafter, the base fiber impregnated with the fiber treating agent was squeezed with two mangles and dried at 130 ° C. for 10 minutes with a hot air dryer. The adhesion amount of the fiber treatment agent was 40 to 50% by mass with respect to the fiber weight.
<Method for evaluating solid content>
Take a predetermined amount of sample in a clean aluminum pan (height: about 17mm, caliber: about 40mm), weigh accurately using a direct weighing scale with a sensitivity of 0.5mg or less, and then the internal temperature is 105 ℃ ± 2 ℃. Leave in a drier adjusted to 1 hour for 1 hour. The sample after drying is cooled to room temperature in a desiccator, then precisely weighed with the same direct balance, and the solid content is calculated by the following formula.
Solid content (%) = sample weight after drying (g) / original sample weight (g) × 100
<Method for evaluating phosphorus atom content>
Any method such as a colorimetric determination method or ICP emission analysis may be used. For example, the phosphorus atom content can be determined by elemental analysis.
実施例1~12及び比較例1~6で得られた繊維処理剤を、それぞれ、イオン交換水を用いて、固形分が15質量%となるように希釈した後、基材繊維を繊維処理剤に含浸させた。その後、繊維処理剤を含浸させた基材繊維を2本マングルで絞り、熱風式乾燥機にて130℃で10分間乾燥させた。繊維処理剤の付着量は、繊維重量に対して40~50質量%であった。
<固形分の評価方法>
所定量の試料を予め精秤してある清浄なアルミ皿(高さ約17mm、口径約40mm)にとり、感度0.5mg以下の直示天秤を用いて精秤後、内温105℃±2℃に調整した乾燥機内に1時間放置する。乾燥後の試料はデシケーター内で室温まで冷却したのち、同一直示天秤にて精秤し、次式にて固形分を算出する。
固形分(%)=乾燥後の試料重量(g)/原試料重量(g)×100
<リン原子の含有量の評価方法>
比色定量法、ICP発光分析等、どのような方法を用いてもよいが、例えば、元素分析によりリン原子の含有量を求めることができる。 <Production of processed products>
The fiber treatment agents obtained in Examples 1 to 12 and Comparative Examples 1 to 6 were each diluted with ion-exchanged water so that the solid content was 15% by mass, and then the base fiber was treated with the fiber treatment agent. Was impregnated. Thereafter, the base fiber impregnated with the fiber treating agent was squeezed with two mangles and dried at 130 ° C. for 10 minutes with a hot air dryer. The adhesion amount of the fiber treatment agent was 40 to 50% by mass with respect to the fiber weight.
<Method for evaluating solid content>
Take a predetermined amount of sample in a clean aluminum pan (height: about 17mm, caliber: about 40mm), weigh accurately using a direct weighing scale with a sensitivity of 0.5mg or less, and then the internal temperature is 105 ℃ ± 2 ℃. Leave in a drier adjusted to 1 hour for 1 hour. The sample after drying is cooled to room temperature in a desiccator, then precisely weighed with the same direct balance, and the solid content is calculated by the following formula.
Solid content (%) = sample weight after drying (g) / original sample weight (g) × 100
<Method for evaluating phosphorus atom content>
Any method such as a colorimetric determination method or ICP emission analysis may be used. For example, the phosphorus atom content can be determined by elemental analysis.
<繊維加工品の評価>
繊維加工品の燃焼性、防錆性、ブリーディングについて評価した。 <Evaluation of processed textile products>
The fiber processed products were evaluated for flammability, rust prevention, and bleeding.
繊維加工品の燃焼性、防錆性、ブリーディングについて評価した。 <Evaluation of processed textile products>
The fiber processed products were evaluated for flammability, rust prevention, and bleeding.
(1)難燃性
繊維加工品作製後、23℃、50%RHの条件下に12時間以上静置した試験体で、UL-94垂直燃焼試験(V-0、V-1、V-2規格)に基づき、燃焼試験を行った。試験片のサイズは、長さ127mm、幅12.7mmとした。試験片5本について、接炎を各2回、合計10回行い、消炎時間の平均秒数及び最大秒数を測定し、判定を行った。
UL-94 垂直燃焼性試験(V)
V-0:5本の試験片の1回目と、2回目の接炎による合計燃焼時間が50秒以内であり、かつ最大燃焼時間が10秒以内であり、燃焼による材料の滴下がない。
V-1:5本の試験片の1回目と、2回目の接炎による合計燃焼時間が250秒以内であり、かつ最大燃焼時間が30秒以内であり、燃焼による材料の滴下がない。
V-2:5本の試験片の1回目と、2回目の接炎による合計燃焼時間が250秒以内であり、かつ最大燃焼時間が30秒以内であること。 (1) Flame retardance After preparing a processed fiber product, the specimen was allowed to stand for 12 hours or longer at 23 ° C. and 50% RH. The UL-94 vertical combustion test (V-0, V-1, V-2) Based on the standard, a combustion test was conducted. The size of the test piece was 127 mm in length and 12.7 mm in width. About five test pieces, the flame contact was performed twice, 10 times in total, and the average number of seconds and the maximum number of seconds of the flame extinguishing time were measured and judged.
UL-94 Vertical Flammability Test (V)
V-0: The total burning time by the first and second flame contact of the five test pieces is within 50 seconds and the maximum burning time is within 10 seconds, and there is no dripping of material due to combustion.
V-1: The total burning time by the first and second flame contact of the five test pieces is 250 seconds or less and the maximum burning time is 30 seconds or less, and there is no dripping of material due to combustion.
V-2: The total combustion time by the first and second flame contact of five test pieces is within 250 seconds, and the maximum combustion time is within 30 seconds.
繊維加工品作製後、23℃、50%RHの条件下に12時間以上静置した試験体で、UL-94垂直燃焼試験(V-0、V-1、V-2規格)に基づき、燃焼試験を行った。試験片のサイズは、長さ127mm、幅12.7mmとした。試験片5本について、接炎を各2回、合計10回行い、消炎時間の平均秒数及び最大秒数を測定し、判定を行った。
UL-94 垂直燃焼性試験(V)
V-0:5本の試験片の1回目と、2回目の接炎による合計燃焼時間が50秒以内であり、かつ最大燃焼時間が10秒以内であり、燃焼による材料の滴下がない。
V-1:5本の試験片の1回目と、2回目の接炎による合計燃焼時間が250秒以内であり、かつ最大燃焼時間が30秒以内であり、燃焼による材料の滴下がない。
V-2:5本の試験片の1回目と、2回目の接炎による合計燃焼時間が250秒以内であり、かつ最大燃焼時間が30秒以内であること。 (1) Flame retardance After preparing a processed fiber product, the specimen was allowed to stand for 12 hours or longer at 23 ° C. and 50% RH. The UL-94 vertical combustion test (V-0, V-1, V-2) Based on the standard, a combustion test was conducted. The size of the test piece was 127 mm in length and 12.7 mm in width. About five test pieces, the flame contact was performed twice, 10 times in total, and the average number of seconds and the maximum number of seconds of the flame extinguishing time were measured and judged.
UL-94 Vertical Flammability Test (V)
V-0: The total burning time by the first and second flame contact of the five test pieces is within 50 seconds and the maximum burning time is within 10 seconds, and there is no dripping of material due to combustion.
V-1: The total burning time by the first and second flame contact of the five test pieces is 250 seconds or less and the maximum burning time is 30 seconds or less, and there is no dripping of material due to combustion.
V-2: The total combustion time by the first and second flame contact of five test pieces is within 250 seconds, and the maximum combustion time is within 30 seconds.
(2)防錆性
加工品作製後、23℃、50%RHの条件下に12時間以上静置した試験体をタテ:50mm、ヨコ:70mmに裁断し、真鍮(タテ:120mm、ヨコ:30mm、厚み:0.1mm)の主面に密着させ、60℃、95%RHの条件下に14日間静置して真鍮表面の錆の有無を確認した。表4と5において、評価結果を以下のように示す。
錆発生有:×
錆発生無:○ (2) Rust prevention After the processed product was prepared, the specimen that had been allowed to stand for 12 hours or longer at 23 ° C. and 50% RH was cut into a length of 50 mm and a width of 70 mm, and brass (vertical: 120 mm, width: 30 mm). , Thickness: 0.1 mm), and was allowed to stand for 14 days under conditions of 60 ° C. and 95% RH to confirm the presence or absence of rust on the brass surface. In Tables 4 and 5, the evaluation results are shown as follows.
Rust occurrence: ×
No rust generation: ○
加工品作製後、23℃、50%RHの条件下に12時間以上静置した試験体をタテ:50mm、ヨコ:70mmに裁断し、真鍮(タテ:120mm、ヨコ:30mm、厚み:0.1mm)の主面に密着させ、60℃、95%RHの条件下に14日間静置して真鍮表面の錆の有無を確認した。表4と5において、評価結果を以下のように示す。
錆発生有:×
錆発生無:○ (2) Rust prevention After the processed product was prepared, the specimen that had been allowed to stand for 12 hours or longer at 23 ° C. and 50% RH was cut into a length of 50 mm and a width of 70 mm, and brass (vertical: 120 mm, width: 30 mm). , Thickness: 0.1 mm), and was allowed to stand for 14 days under conditions of 60 ° C. and 95% RH to confirm the presence or absence of rust on the brass surface. In Tables 4 and 5, the evaluation results are shown as follows.
Rust occurrence: ×
No rust generation: ○
(3)ブリーディング
加工品作製後、23℃、50%RHの条件下に12時間以上静置した試験体をタテ:50mm、ヨコ:70mmに裁断し、濾紙(タテ:100mm、ヨコ:60mm、No.2、東洋濾紙株式会社製)で挟み込み、60℃、95%RHの条件下に5日間静置し、加工品表面のブリーディングの有無を確認した。
表4と5において、評価結果を以下のように示す。
ブリーディング有:×
ブリーディング無:○ (3) Bleeding After preparing the processed product, the test specimen that was allowed to stand for 12 hours or more at 23 ° C. and 50% RH was cut into a length of 50 mm and a width of 70 mm, and filtered (filter: 100 mm, width: 60 mm, No. .2, manufactured by Toyo Roshi Kaisha, Ltd.) and left for 5 days under conditions of 60 ° C. and 95% RH, and the presence or absence of bleeding on the surface of the processed product was confirmed.
In Tables 4 and 5, the evaluation results are shown as follows.
With bleeding: ×
No bleeding: ○
加工品作製後、23℃、50%RHの条件下に12時間以上静置した試験体をタテ:50mm、ヨコ:70mmに裁断し、濾紙(タテ:100mm、ヨコ:60mm、No.2、東洋濾紙株式会社製)で挟み込み、60℃、95%RHの条件下に5日間静置し、加工品表面のブリーディングの有無を確認した。
表4と5において、評価結果を以下のように示す。
ブリーディング有:×
ブリーディング無:○ (3) Bleeding After preparing the processed product, the test specimen that was allowed to stand for 12 hours or more at 23 ° C. and 50% RH was cut into a length of 50 mm and a width of 70 mm, and filtered (filter: 100 mm, width: 60 mm, No. .2, manufactured by Toyo Roshi Kaisha, Ltd.) and left for 5 days under conditions of 60 ° C. and 95% RH, and the presence or absence of bleeding on the surface of the processed product was confirmed.
In Tables 4 and 5, the evaluation results are shown as follows.
With bleeding: ×
No bleeding: ○
表4の結果から、本発明の繊維処理剤(実施例1~12)で処理された繊維加工品については、難燃性、防錆性のいずれにおいても共によく優れていることがわかる。また、ブリーディングについても十分に抑制されていることがわかる。
これに対して、表5に示すとおり、難燃剤(D)を含まない繊維処理剤を用いる場合(比較例1)は、難燃性が不十分であることがわかる。リン含有不飽和単量体(A)を含まず、且つ難燃剤(D)を繊維処理剤中のリン量が2.6%になるよう添加した繊維処理剤を用いる場合(比較例2)は、60℃、95%RHの条件下で顕著なブリーディングを引き起こすことがわかる。リン含有不飽和単量体(A)を含まず、且つ難燃剤(D)を繊維処理剤中のリン量が1.4%になるよう添加した繊維処理剤を用いる場合(比較例3)は、難燃性が不十分であることがわかる。防錆剤(C)を含まない繊維処理剤を用いる場合(比較例4)は、60℃、95%RHの条件下で防錆性が不十分であることがわかる。(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種のカルボキシル基を有する不飽和単量体(b2)を重合性不飽和単量体(B)成分として含まない繊維処理剤を用いる場合(比較例5)は、顕著なブリーディングを引き起こすことがわかる。
(メタ)アクリル酸アルキルエステル不飽和単量体(b1)を重合性不飽和単量体(B)成分として含まない繊維処理剤を用いる場合(比較例6)は、防錆性が不十分であることがわかる。 From the results in Table 4, it can be seen that the fiber processed products treated with the fiber treating agent of the present invention (Examples 1 to 12) are both excellent in both flame retardancy and rust resistance. It can also be seen that bleeding is sufficiently suppressed.
On the other hand, as shown in Table 5, when using the fiber processing agent which does not contain a flame retardant (D) (comparative example 1), it turns out that a flame retardance is inadequate. When using a fiber treatment agent that does not contain the phosphorus-containing unsaturated monomer (A) and is added with a flame retardant (D) so that the amount of phosphorus in the fiber treatment agent is 2.6% (Comparative Example 2) It can be seen that significant bleeding occurs under the conditions of 60 ° C. and 95% RH. When using a fiber treatment agent that does not contain the phosphorus-containing unsaturated monomer (A) and is added with a flame retardant (D) so that the amount of phosphorus in the fiber treatment agent is 1.4% (Comparative Example 3) It can be seen that the flame retardancy is insufficient. When using the fiber processing agent which does not contain a rust preventive agent (C) (comparative example 4), it turns out that rust preventive property is inadequate on 60 degreeC and 95% RH conditions. A fiber treatment agent that does not contain an unsaturated monomer (b2) having at least one carboxyl group selected from the group consisting of (meth) acrylic acid and itaconic acid as a polymerizable unsaturated monomer (B) component is used. In the case (Comparative Example 5), it can be seen that significant bleeding is caused.
When a fiber treatment agent that does not contain the (meth) acrylic acid alkyl ester unsaturated monomer (b1) as the polymerizable unsaturated monomer (B) component is used (Comparative Example 6), the rust prevention property is insufficient. I know that there is.
これに対して、表5に示すとおり、難燃剤(D)を含まない繊維処理剤を用いる場合(比較例1)は、難燃性が不十分であることがわかる。リン含有不飽和単量体(A)を含まず、且つ難燃剤(D)を繊維処理剤中のリン量が2.6%になるよう添加した繊維処理剤を用いる場合(比較例2)は、60℃、95%RHの条件下で顕著なブリーディングを引き起こすことがわかる。リン含有不飽和単量体(A)を含まず、且つ難燃剤(D)を繊維処理剤中のリン量が1.4%になるよう添加した繊維処理剤を用いる場合(比較例3)は、難燃性が不十分であることがわかる。防錆剤(C)を含まない繊維処理剤を用いる場合(比較例4)は、60℃、95%RHの条件下で防錆性が不十分であることがわかる。(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種のカルボキシル基を有する不飽和単量体(b2)を重合性不飽和単量体(B)成分として含まない繊維処理剤を用いる場合(比較例5)は、顕著なブリーディングを引き起こすことがわかる。
(メタ)アクリル酸アルキルエステル不飽和単量体(b1)を重合性不飽和単量体(B)成分として含まない繊維処理剤を用いる場合(比較例6)は、防錆性が不十分であることがわかる。 From the results in Table 4, it can be seen that the fiber processed products treated with the fiber treating agent of the present invention (Examples 1 to 12) are both excellent in both flame retardancy and rust resistance. It can also be seen that bleeding is sufficiently suppressed.
On the other hand, as shown in Table 5, when using the fiber processing agent which does not contain a flame retardant (D) (comparative example 1), it turns out that a flame retardance is inadequate. When using a fiber treatment agent that does not contain the phosphorus-containing unsaturated monomer (A) and is added with a flame retardant (D) so that the amount of phosphorus in the fiber treatment agent is 2.6% (Comparative Example 2) It can be seen that significant bleeding occurs under the conditions of 60 ° C. and 95% RH. When using a fiber treatment agent that does not contain the phosphorus-containing unsaturated monomer (A) and is added with a flame retardant (D) so that the amount of phosphorus in the fiber treatment agent is 1.4% (Comparative Example 3) It can be seen that the flame retardancy is insufficient. When using the fiber processing agent which does not contain a rust preventive agent (C) (comparative example 4), it turns out that rust preventive property is inadequate on 60 degreeC and 95% RH conditions. A fiber treatment agent that does not contain an unsaturated monomer (b2) having at least one carboxyl group selected from the group consisting of (meth) acrylic acid and itaconic acid as a polymerizable unsaturated monomer (B) component is used. In the case (Comparative Example 5), it can be seen that significant bleeding is caused.
When a fiber treatment agent that does not contain the (meth) acrylic acid alkyl ester unsaturated monomer (b1) as the polymerizable unsaturated monomer (B) component is used (Comparative Example 6), the rust prevention property is insufficient. I know that there is.
本発明の繊維処理剤は、処理された繊維加工品が優れた難燃性や、高湿度条件下での優れた防錆性を有し、特に繊維処理用に好適である。また、本発明の繊維処理剤を用いた繊維加工品の製造方法は、難燃性、防錆性に優れる各種繊維加工品を製造するのに好適であり、この繊維加工品の製造方法を用いることによって、難燃性、防錆性に優れた繊維加工品を製造することができる。そして、この繊維加工品を使用することにより、難燃性、防錆性に優れる電子材料用緩衝材、家電用緩衝材、自動車内装緩衝材等の製造が可能となる。
The fiber treatment agent of the present invention has excellent flame retardancy in processed fiber products and excellent rust prevention under high humidity conditions, and is particularly suitable for fiber treatment. Moreover, the manufacturing method of the fiber processed goods using the fiber processing agent of this invention is suitable for manufacturing various fiber processed goods excellent in a flame retardance and rust prevention property, and uses the manufacturing method of this fiber processed goods. As a result, a fiber processed product excellent in flame retardancy and rust prevention can be produced. And by using this fiber processed product, it becomes possible to manufacture a shock-absorbing material for electronic materials, a shock-absorbing material for home appliances, a shock-absorbing material for automobile interiors, and the like, which are excellent in flame retardancy and rust prevention.
Claims (11)
- リン含有不飽和単量体(A)と重合性不飽和単量体(B)との共重合体(P)と、
防錆剤(C)と、
難燃剤(D)と、
を含む繊維処理剤であって、
前記重合性不飽和単量体(B)が、
(メタ)アクリル酸アルキルエステル不飽和単量体(b1)と、
(メタ)アクリル酸及びイタコン酸からなる群から選択される少なくとも一種の不飽和単量体(b2)と、
を含むことを特徴とする繊維処理剤。 A copolymer (P) of a phosphorus-containing unsaturated monomer (A) and a polymerizable unsaturated monomer (B);
A rust inhibitor (C),
Flame retardant (D),
A fiber treatment agent comprising:
The polymerizable unsaturated monomer (B) is
(Meth) acrylic acid alkyl ester unsaturated monomer (b1);
At least one unsaturated monomer (b2) selected from the group consisting of (meth) acrylic acid and itaconic acid;
A fiber treatment agent comprising: - 前記リン含有不飽和単量体(A)が、リン酸基又は亜リン酸基を有する単量体(a1)を含む、請求項1に記載の繊維処理剤。 The fiber treatment agent according to claim 1, wherein the phosphorus-containing unsaturated monomer (A) includes a monomer (a1) having a phosphoric acid group or a phosphorous acid group.
- 前記リン酸基又は亜リン酸基を有する単量体(a1)が、アシッド・ホスホオキシポリオキシアルキレングリコールモノ(メタ)アクリレートを含む、請求項2に記載の繊維処理剤。 The fiber treatment agent according to claim 2, wherein the monomer (a1) having a phosphoric acid group or a phosphorous acid group contains acid phosphooxypolyoxyalkylene glycol mono (meth) acrylate.
- 前記防錆剤(C)が、アミンのカルボン酸塩、安息香酸塩を含む、請求項1~3のいずれかに記載の繊維処理剤。 The fiber treatment agent according to any one of claims 1 to 3, wherein the rust inhibitor (C) comprises an amine carboxylate or benzoate.
- 前記難燃剤(D)が、リンを含有する、請求項1~4のいずれかに記載の繊維処理剤。 The fiber treatment agent according to any one of claims 1 to 4, wherein the flame retardant (D) contains phosphorus.
- 前記重合性不飽和単量体(B)を、共重合体(P)中の全単量体に対し40質量%以上含有する、請求項1~5のいずれかに記載の繊維処理剤。 The fiber treatment agent according to any one of claims 1 to 5, wherein the polymerizable unsaturated monomer (B) is contained in an amount of 40% by mass or more based on the total amount of monomers in the copolymer (P).
- 前記防錆剤(C)を、全繊維処理剤に対し0.1~15質量%含有する、請求項1~6のいずれかに記載の繊維処理剤。 The fiber treatment agent according to any one of claims 1 to 6, wherein the rust inhibitor (C) is contained in an amount of 0.1 to 15% by mass based on the total fiber treatment agent.
- 前記難燃剤(D)を、全繊維処理剤に対し0.1~70質量%含有する、請求項1~7のいずれかに記載の繊維処理剤。 The fiber treatment agent according to any one of claims 1 to 7, wherein the flame retardant (D) is contained in an amount of 0.1 to 70 mass% with respect to the total fiber treatment agent.
- 繊維処理剤中のリン原子量が0.01~30質量%である、請求項1~8のいずれかに記載の繊維処理剤。 The fiber treatment agent according to any one of claims 1 to 8, wherein the amount of phosphorus atom in the fiber treatment agent is 0.01 to 30% by mass.
- 請求項1~9のいずれかに記載の繊維処理剤を用いて繊維基材を処理し、繊維加工品を得る工程を有する、繊維加工品の製造方法。 A method for producing a processed fiber product, comprising a step of processing a fiber base material using the fiber treatment agent according to any one of claims 1 to 9 to obtain a processed fiber product.
- 乾燥後の請求項1~9のいずれかに記載の繊維処理剤の付着量が、繊維基材100重量部に対し50~100質量部である繊維加工品。 A processed fiber product, wherein the amount of the fiber treatment agent according to any one of claims 1 to 9 after drying is 50 to 100 parts by mass with respect to 100 parts by weight of the fiber substrate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780010003.5A CN108603332A (en) | 2016-04-18 | 2017-04-12 | Fibre finish, the manufacturing method of fiber process product and fiber process product |
JP2018513129A JP7012007B2 (en) | 2016-04-18 | 2017-04-12 | Fiber treatment agents, manufacturing methods for processed fiber products, and processed fiber products |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016082714 | 2016-04-18 | ||
JP2016-082714 | 2016-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017183535A1 true WO2017183535A1 (en) | 2017-10-26 |
Family
ID=60116864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/014965 WO2017183535A1 (en) | 2016-04-18 | 2017-04-12 | Fiber treatment agent, method for producing processed fiber article, and processed fiber article |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7012007B2 (en) |
CN (1) | CN108603332A (en) |
TW (1) | TWI724154B (en) |
WO (1) | WO2017183535A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115726186A (en) * | 2021-08-31 | 2023-03-03 | 山东双圆生物科技有限公司 | Waste cloth decolorizing agent containing biological enzyme, preparation method, treating agent and application |
CN114874393B (en) * | 2022-06-13 | 2024-04-16 | 中铁上海工程局集团市政环保工程有限公司 | Flame-retardant phosphorus-containing acrylic acid salt core-shell emulsion and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050118375A1 (en) * | 2003-10-21 | 2005-06-02 | Frank Damiano | Corrosion inhibiting protective sleeves |
WO2010113796A1 (en) * | 2009-03-31 | 2010-10-07 | 昭和高分子株式会社 | Resin composition and processed paper or fiber product treated therewith |
JP2012089375A (en) * | 2010-10-20 | 2012-05-10 | Teijin Techno Products Ltd | Synthetic fiber for small-diameter electric wire cord |
WO2013047652A1 (en) * | 2011-09-28 | 2013-04-04 | 豊田合成株式会社 | Coating material for airbag base fabric, and airbag base fabric |
CN103911860A (en) * | 2013-12-27 | 2014-07-09 | 苏州华策纺织科技有限公司 | Artificial fiber fireproof fire retardant |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03243344A (en) * | 1990-02-21 | 1991-10-30 | Kanzaki Paper Mfg Co Ltd | Rustproofing sheet |
US20070135551A1 (en) * | 2005-12-12 | 2007-06-14 | Nissin Chemical Industry Co., Ltd. | Coating composition and vehicle interior material |
KR101226164B1 (en) * | 2012-06-14 | 2013-01-24 | 주식회사 우주염색 | Method for producing the electrically nylon conductive fiber |
JP6210327B2 (en) * | 2013-09-27 | 2017-10-11 | 豊田合成株式会社 | Airbag base fabric paint, airbag base fabric and manufacturing method thereof |
-
2017
- 2017-04-12 WO PCT/JP2017/014965 patent/WO2017183535A1/en active Application Filing
- 2017-04-12 JP JP2018513129A patent/JP7012007B2/en active Active
- 2017-04-12 CN CN201780010003.5A patent/CN108603332A/en active Pending
- 2017-04-13 TW TW106112401A patent/TWI724154B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050118375A1 (en) * | 2003-10-21 | 2005-06-02 | Frank Damiano | Corrosion inhibiting protective sleeves |
WO2010113796A1 (en) * | 2009-03-31 | 2010-10-07 | 昭和高分子株式会社 | Resin composition and processed paper or fiber product treated therewith |
JP2012089375A (en) * | 2010-10-20 | 2012-05-10 | Teijin Techno Products Ltd | Synthetic fiber for small-diameter electric wire cord |
WO2013047652A1 (en) * | 2011-09-28 | 2013-04-04 | 豊田合成株式会社 | Coating material for airbag base fabric, and airbag base fabric |
CN103911860A (en) * | 2013-12-27 | 2014-07-09 | 苏州华策纺织科技有限公司 | Artificial fiber fireproof fire retardant |
Also Published As
Publication number | Publication date |
---|---|
CN108603332A (en) | 2018-09-28 |
TW201809402A (en) | 2018-03-16 |
TWI724154B (en) | 2021-04-11 |
JPWO2017183535A1 (en) | 2019-02-21 |
JP7012007B2 (en) | 2022-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102064933B1 (en) | Non-halogen flame retardant polymers | |
EP2033992B1 (en) | Reduced corrosion curable composition | |
US20070145338A1 (en) | Flame retardant polymer emulsion | |
US10174140B2 (en) | Non-halogen flame retardant polymers | |
JP5669363B2 (en) | Resin composition and paper or fiber processed product treated with the same | |
US9783687B2 (en) | Non-halogen flame retardant as coatings for fibrous filter media | |
CN110869401B (en) | Copolymer, resin composition, treating agent, and processed product | |
JP7012007B2 (en) | Fiber treatment agents, manufacturing methods for processed fiber products, and processed fiber products | |
JP4354999B2 (en) | Aqueous emulsion composition and processed paper or fiber processed with the same | |
JP6128290B1 (en) | Resin composition for fiber processing and fabric using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018513129 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17785874 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17785874 Country of ref document: EP Kind code of ref document: A1 |