WO2017181456A1 - 纳米压印模板的制作方法及纳米压印模板 - Google Patents
纳米压印模板的制作方法及纳米压印模板 Download PDFInfo
- Publication number
- WO2017181456A1 WO2017181456A1 PCT/CN2016/081970 CN2016081970W WO2017181456A1 WO 2017181456 A1 WO2017181456 A1 WO 2017181456A1 CN 2016081970 W CN2016081970 W CN 2016081970W WO 2017181456 A1 WO2017181456 A1 WO 2017181456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- melting point
- nanowire
- gate structure
- low melting
- solder alloy
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0017—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor for the production of embossing, cutting or similar devices; for the production of casting means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0005—Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
- G03F7/0007—Filters, e.g. additive colour filters; Components for display devices
Definitions
- the present invention relates to the field of display technologies, and in particular, to a method for fabricating a nanoimprint template and a nanoimprint template.
- Nano-imprint Lithography (NIL) technology breaks through the problem of traditional lithography in the process of feature size reduction, featuring high resolution, low cost and high yield. Since its introduction in 1995, nanoimprint has evolved a variety of imprinting technologies, widely used in semiconductor manufacturing, Microelectromechanical Systems (MEMS), biochips, biomedical and other fields.
- MEMS Microelectromechanical Systems
- the basic idea of NIL technology is to transfer the pattern to the corresponding substrate through a template.
- the transferred medium is usually a thin layer of polymer film, which is hardened by hot pressing or irradiation to preserve the transfer.
- Graphics The entire process includes two processes: embossing and graphics transfer.
- NIL can be mainly divided into three kinds of lithography technologies: hot embossing, ultraviolet (UV) curing and micro contact printing (uCP).
- polarizers For various types of devices that require the use of polarizers, such as LCDs, OLEDs, etc., conventional polarizers are iodine-based polarizers of organic materials, and dye-based polarizers.
- nanoimprint technology it has been possible to try to prepare a small-sized metal grating structure to achieve polarization of light in the visible wavelength range. Since the metal grating structure itself absorbs light very little, one of the natural light is reflected. By polarizing and letting another polarization pass, the reflected light can be recycled again by polarization rotation, and thus has great potential in liquid crystal display.
- the object of the present invention is to provide a method for fabricating a nanoimprint template, which uses a low melting point solder alloy to form a hard structural hardened layer on a soft nanowire grid structure, thereby overcoming the problem of insufficient hardness of the microstructure material itself.
- the roll-to-roll microstructure imprinting, especially the nanowire grid imprinting becomes a feasible part of the actual process, thereby improving the fabrication efficiency of the wire grid polarizer.
- the gate polarizer improves the fabrication efficiency of the wire grid polarizer.
- the present invention first provides a method for fabricating a nanoimprint template, comprising the following steps:
- Step 1 providing a cylindrical hard roller
- Step 2 providing a membrane having a nanowire grid structure, coating the membrane on an outer circumferential surface of the hard roller to form a nanowire gate structure film layer, to obtain an intermediate cylinder;
- Step 3 providing a low melting point solder alloy, heating the low melting point solder alloy to a liquid state, dipping the intermediate cylinder obtained in the step 2 into the low melting point solder alloy liquid, or coating a layer on the heated intermediate cylinder a low melting point solder alloy liquid, after cooling, forming a structural hardening layer along the nanowire gate structure of the nanowire gate structure film layer on the outer circumferential surface of the intermediate cylinder, thereby obtaining a nanoimprint having a nanowire grid structure template.
- the low melting point solder alloy provided in the step 3 is an alloy material having a melting point temperature of less than 300 °C.
- the membrane provided in the step 2 is an organic material having a melting point temperature higher than a melting point temperature of the low melting point solder alloy.
- the obtained nanoimprint template has a plurality of periodically arranged grating grooves, and the width of the grating grooves and the distance between adjacent grating grooves are both less than 150 nm.
- the material of the membrane provided in the step 2 is PMMA, POM, PBT, PET, PC, PE, PEEK, PP, PS, or PVDC.
- the present invention also provides a nanoimprint template, comprising a cylindrical hard roller, a nanowire gate structure film layer disposed on an outer circumferential surface of the hard roller, and a coating layer covering the nanowire gate structure film.
- a nanoimprint template comprising a cylindrical hard roller, a nanowire gate structure film layer disposed on an outer circumferential surface of the hard roller, and a coating layer covering the nanowire gate structure film.
- the nanowire gate structure film layer is a film having a nanowire gate structure
- the material of the structural hardening layer is a low melting point solder alloy formed along a nanowire grid structure of the nanowire gate structure film layer.
- the low melting point solder alloy used as the structural hardened layer is an alloy material having a melting point temperature of less than 300 °C.
- the film used as the film layer of the nanowire gate structure is an organic material having a melting point temperature higher than a melting point temperature of a low melting point solder alloy used as the structural hardened layer.
- the nanoimprint template has a plurality of periodically arranged grating grooves, and the width of the grating grooves and the distance between adjacent grating grooves are less than 150 nm.
- the material used as the film of the nanowire gate structure film layer is PMMA, POM, PBT, PET, PC, PE, PEEK, PP, PS, or PVDC.
- the invention also provides a method for fabricating a nanoimprint template, comprising the following steps:
- Step 1 providing a cylindrical hard roller
- Step 2 providing a membrane having a nanowire grid structure, coating the membrane on an outer circumferential surface of the hard roller to form a nanowire gate structure film layer, to obtain an intermediate cylinder;
- Step 3 providing a low melting point solder alloy, heating the low melting point solder alloy to a liquid state, dipping the intermediate cylinder obtained in the step 2 into the low melting point solder alloy liquid, or coating a layer on the heated intermediate cylinder a low melting point solder alloy liquid, after cooling, forming a structural hardening layer along the nanowire gate structure of the nanowire gate structure film layer on the outer circumferential surface of the intermediate cylinder, thereby obtaining a nanoimprint having a nanowire grid structure template;
- the low melting point solder alloy provided in the step 3 is an alloy material having a melting point temperature lower than 300 ° C;
- the membrane provided in the step 2 is an organic material, and the melting point temperature thereof is higher than the melting point temperature of the low melting point solder alloy.
- the nanoimprint template of the invention is prepared by coating a soft film with a nanowire grid structure on the outer circumferential surface of the cylindrical hard roller to form a nanowire grid.
- the nanoimprint template of the structure; the soft nanowire grid structure is hardened by forming a hard structural hardening layer on the soft nanowire grid structure, thereby overcoming the microstructure material during the imprint process.
- the problem of insufficient hardness itself makes the roll-to-roll microstructure embossing, especially the nanowire grid embossing, become a feasible part of the actual process, thereby improving the fabrication efficiency of the wire grid polarizer.
- the nanoimprint template of the invention has a cylindrical shape as a whole, and the soft nanowire grid structure has a hard layer of a hard alloy material, which can be used for roll-to-roll method to fabricate a wire grid polarizer, thereby Improve the production efficiency of the wire grid polarizer.
- FIG. 1 is a schematic flow chart of a method for fabricating a nanoimprint template according to the present invention
- FIG. 2 is a schematic view showing the first step of the method for fabricating a nanoimprint template according to the present invention
- step 2 is a schematic view of step 2 of a method for fabricating a nanoimprint template according to the present invention
- FIG. 4 is a schematic view showing a nanowire grid structure on a diaphragm provided in step 2 of the method for fabricating a nanoimprint template according to the present invention
- FIG. 5 is a schematic view of step 3 of the method for fabricating a nanoimprint template according to the present invention. Schematic diagram of the three-dimensional structure of the imprint template;
- FIG. 6 is a schematic view of a nanowire grid structure on a nanoimprint template of the present invention.
- the present invention provides a method for fabricating a nanoimprint template, which includes the following steps:
- Step 1 As shown in Fig. 2, a cylindrical hard drum 1 is provided.
- Step 2 as shown in FIG. 3, a diaphragm having a nanowire grid structure is provided, and the soft membrane is coated on the outer circumferential surface of the hard cylinder 1 to form a nanowire gate structure film layer 2, Intermediate cylinder.
- the film provided in the step 2 is an organic material, as shown in FIG. 4, and has a plurality of periodic arrangement initial grating grooves 211 for forming an initial microstructure of the nanoimprint template to be formed, in particular
- the diaphragm is characterized in that the grating period and the grating height of the nanowire grid structure are slightly larger than the required value, so that a margin is left for subsequently coating the alloy material thereon, and the temperature resistance property thereof ensures that it can at least Withstands high temperatures in excess of 100 °C.
- Step 3 as shown in FIG. 5, providing a low melting point solder alloy, heating the low melting point solder alloy to a liquid state, dipping the intermediate cylinder obtained in the step 2 into the low melting point solder alloy liquid, or heating the intermediate cylinder Coating a layer of the low melting point solder alloy liquid thereon, and after cooling, forming a layer of structural hardening layer 3 along the nanowire gate structure of the nanowire gate structure film layer 2 on the outer circumferential surface of the intermediate cylinder, thereby obtaining Nanoimprint template of nanowire grid structure.
- the low melting point solder alloy provided in the step 3 may be 8.3Sn44.7Bi22.6Pb5.3Cd19.1In, that is, the raw material component and the weight percentage thereof are as follows: tin (Sn) 8.3%, bismuth (Bi) 44.7 %, lead (Pb) 22.6%, chromium (Cd) 5.3%, indium (In) 19.1%, or other low melting point solder alloys containing indium or tin having a melting point below 300 ° C, such as 100In, 66.3In33.
- the nanoimprint template obtained in step 3 has a plurality of periodically arranged grating grooves 311, and the width of the grating grooves 311 and the distance between adjacent grating grooves are less than 150 nm.
- the material of the membrane provided in the step 2 may be selected from the group consisting of PMMA (polymethyl methacrylate), POM (polyoxymethylene), PBT (polybutylene terephthalate), PET (poly Ethylene terephthalate), PC (polycarbonate), PE (polyethylene), PEEK (polyether ether ketone), Organic materials such as PP (polypropylene), PS (polystyrene), and PVDC (polyvinylidene chloride), but the selected diaphragm must meet its temperature resistance to withstand the low melting point solder selected in step 3.
- the nanoimprint template of the present invention is formed by using a low melting point solder alloy to form a hard structural hardened layer on a soft nanowire grid structure, for a soft nanowire grid.
- the structure is hardened to overcome the problem of insufficient hardness of the microstructure material itself during the imprinting process, so that the roll-to-roll microstructure imprinting, especially the nanowire grid imprinting, becomes a feasible part of the actual process, and further Improve the production efficiency of the wire grid polarizer.
- the specific process of manufacturing the wire grid polarizer by Roll to Roll using the nanoimprint template prepared by the invention is that the substrate is transported by a roller, and then the photocurable photoresist material or thermosetting property is coated on the substrate.
- the material forms a photoresist layer, and the roller-shaped nanoimprint template of the present invention is used.
- the nanoimprint template has a structural hardened layer, the hardness of the microstructure thereon is greater than the hardness of the photoresist layer, and the nanoimprint template is Rotating and pressing it on the photoresist layer of the photocurable photoresist material or the thermosetting material, and performing UV irradiation or heating to harden the photoresist layer to complete the transfer process of the nanotopography on the nanoimprint template, thereby
- the planar imprint process is converted into a three-dimensional rolling process with UV illumination or heating to increase the production efficiency of the wire grid polarizer.
- roller-shaped nanoimprint template can be used in other mechanical nanoimprinting processes, since the hardness of the nanoimprint template is higher than that of the imprinted photopolymer. It can be stamped by mechanical stress and the transfer process of nanotopography is completed.
- the present invention further provides a nanoimprint template, comprising a cylindrical hard roller 1, a nanowire gate structure film layer 2 disposed on the outer circumferential surface of the hard roller 1, and a coating station.
- the nanowire gate structure film layer 2 is a film having a nanowire gate structure
- the material of the structural hardened layer 3 is a low melting point solder alloy formed along the nanowire grid structure of the nanowire gate structure film layer 2, thereby forming a relatively nanowire grid structure with respect to the nanowire gate structure film layer 2 Hard nanowire grid structure of the nanoimprint template.
- the low melting point solder alloy used as the structural hardened layer 3 may be 8.3Sn44.7Bi22.6Pb5.3Cd19.1In, that is, it includes raw material components and weight percentages as follows: tin 8.3%, ⁇ 44.7%, lead 22.6 %, chromium 5.3%, indium 19.1%, of course, other low melting point solder alloys containing indium or tin having a melting point below 300 ° C, such as 100In, 66.3In33.7Bi, 51Tn32.5Bi6.5Sn, 57Bi26In17Sn, 54.02Bi29.68In16 .3Sn, 67Bi33In, 50In50Sn, 52Sn48In, 58Bi42Sn, 97In3Ag, 58Bi42Sn, 99.3In0.7Ga, 95In5Bi, 99.4In0.6Ga, 99.6In0.4Ga, 99.5In0.5Ga, 60Sn40Bi, 100Sn,
- the nanoimprint template has a plurality of periodically arranged grating grooves 311, and the width of the grating grooves and the distance between adjacent grating grooves are both less than 150 nm.
- the film used as the nanowire gate structure film layer 2 is an organic material having a melting point temperature higher than a melting point temperature of the low melting point solder alloy used as the structural hard layer 3, and the material thereof may specifically be selected from PMMA.
- Organic materials such as POM, PBT, PET, PC, PE, PEEK, PP, PS, and PVDC.
- the nanoimprint template of the present invention is firstly coated with a soft nanowire grid structure on the outer circumferential surface of the cylindrical hard roller to form a nanowire grid structure.
- a film layer, an intermediate cylinder is obtained, and then a structural hardening layer is formed along the nanowire gate structure of the nanowire gate structure film layer on the outer circumferential surface of the intermediate cylinder by using a low melting point solder alloy to obtain a nanowire grid structure Nanoimprint template; hardening the soft nanowire grid structure by forming a hard structural hardened layer on the soft nanowire grid structure to overcome the microstructure material itself during the imprint process
- the problem of insufficient hardness makes the roll-to-roll microstructure embossing, especially the nanowire grid embossing, become a feasible part of the actual process, thereby improving the fabrication efficiency of the wire grid polarizer.
- the nanoimprint template of the invention has a cylindrical shape as a whole, and the soft nanowire grid structure has a hard layer of a hard alloy material, which can be used for roll-to-roll method to fabricate a wire grid polarizer, thereby Improve the production efficiency of the wire grid polarizer.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
一种纳米压印模板的制作方法及纳米压印模板。纳米压印模板的制作方法,先在圆柱状的硬质滚筒(1)的外圆周面上包覆一层软性的具有纳米线栅结构的膜片,形成纳米线栅结构膜层(2),得到中间筒体,然后利用低熔点焊料合金在所述中间筒体的外圆周面上沿所述纳米线栅结构膜层(2)的纳米线栅结构形成一层结构硬化层(3),得到具有纳米线栅结构的纳米压印模板;通过在软质的纳米线线栅结构上形成一层硬质的结构硬化层(3),对软质的纳米线栅结构进行硬化,从而克服在压印过程中微结构材质本身硬度不够的问题,使得卷对卷微结构压印,特别是纳米线栅压印成为实际工艺中可行的一部分,进而提高线栅偏光片的制作效率。
Description
本发明涉及显示技术领域,尤其涉及一种纳米压印模板的制作方法及纳米压印模板。
纳米压印(Nano-imprint Lithography,NIL)技术突破了传统光刻在特征尺寸减小过程中的难题,具有分辨率高、低成本、高产率的特点。自1995年提出以来,纳米压印已经演变出了多种压印技术,广泛应用于半导体制造、微机电系统(Microelectromechanical Systems,MEMS)、生物芯片、生物医学等领域。NIL技术的基本思想是通过模版,将图形转移到相应的衬底上,转移的媒介通常是一层很薄的聚合物膜,通过热压或者辐照等方法使其结构硬化从而保留下转移的图形。整个过程包括压印和图形转移两个过程。根据压印方法的不同,NIL主要可分为热塑(Hot embossing)、紫外(UV)固化和微接触(Micro contact printing,uCP)三种光刻技术。
对于需要使用偏光片的各类器件,例如LCD、OLED等,传统的偏光片为有机材料的碘系偏光片、及染料系偏光片。随着纳米压印技术的发展,人们已经可以尝试制备小尺寸的金属光栅结构,来达到对可见光波长范围的光的偏振作用,由于金属光栅结构本身对光的吸收很小,通过反射自然光的一个偏振而让另外一个偏振通过,可以使被反射的光通过偏振旋转再次被回收利用,因此在液晶显示中具有很大的潜力。
目前通过NIL技术来制备金属光栅偏光片结构的工艺和方法,还存在很多不足,例如对于大规模制造,图形转移的过程往往占用大量时间,同时制作过程中的各种不良对最终光栅成型存在较严重的影响。
发明内容
本发明的目的在于提供一种纳米压印模板的制作方法,利用低熔点焊料合金在软质的纳米线线栅结构上形成一层硬质的结构硬化层,克服微结构材质本身硬度不够的问题,使得卷对卷微结构压印,特别是纳米线栅压印成为实际工艺中可行的一部分,从而提高线栅偏光片的制作效率。
本发明的目的还在于提供一种纳米压印模板,整体呈圆筒状,软质的纳米线线栅结构上具有一层硬质的结构硬化层,能够用于卷对卷法制作线
栅偏光片,从而提高线栅偏光片的制作效率。
为实现上述目的,本发明首先提供一种纳米压印模板的制作方法,包括如下步骤:
步骤1、提供一圆柱状的硬质滚筒;
步骤2、提供具有纳米线栅结构的膜片,将该膜片包覆在所述硬质滚筒的外圆周面上形成纳米线栅结构膜层,得到中间筒体;
步骤3、提供低熔点焊料合金,将该低熔点焊料合金加热至液态,将步骤2得到的中间筒体浸入该低熔点焊料合金液体中、或者在加热后的中间筒体上涂布一层该低熔点焊料合金液体,冷却后,在所述中间筒体外圆周面上沿所述纳米线栅结构膜层的纳米线栅结构形成一层结构硬化层,从而得到具有纳米线栅结构的纳米压印模板。
所述步骤3中提供的低熔点焊料合金为熔点温度低于300℃的合金材料。
所述步骤2中提供的膜片为有机材料,其熔点温度高于所述低熔点焊料合金的熔点温度。
所得到纳米压印模板具有数条周期性排列的光栅凹槽,所述光栅凹槽的宽度及相邻两光栅凹槽之间的距离均小于150nm。
所述步骤2提供的膜片的材料为PMMA、POM、PBT、PET、PC、PE、PEEK、PP、PS、或PVDC。
本发明还提供一种纳米压印模板,包括圆柱状的硬质滚筒、设于所述硬质滚筒外圆周面上的纳米线栅结构膜层、及包覆所述纳米线栅结构膜层的结构硬化层;
所述纳米线栅结构膜层为具有具有纳米线栅结构的膜片;
所述结构硬化层的材料为低熔点焊料合金,所述结构硬化层沿所述纳米线栅结构膜层的纳米线栅结构形成。
用作所述结构硬化层的低熔点焊料合金为熔点温度低于300℃的合金材料。
用作所述纳米线栅结构膜层的膜片为有机材料,其熔点温度高于用作所述结构硬化层的低熔点焊料合金的熔点温度。
所述纳米压印模板具有数条周期性排列的光栅凹槽,所述光栅凹槽的宽度及相邻两光栅凹槽之间的距离均小于150nm。
用作所述纳米线栅结构膜层的膜片的材料为PMMA、POM、PBT、PET、PC、PE、PEEK、PP、PS、或PVDC。
本发明还提供一种纳米压印模板的制作方法,包括如下步骤:
步骤1、提供一圆柱状的硬质滚筒;
步骤2、提供具有纳米线栅结构的膜片,将该膜片包覆在所述硬质滚筒的外圆周面上形成纳米线栅结构膜层,得到中间筒体;
步骤3、提供低熔点焊料合金,将该低熔点焊料合金加热至液态,将步骤2得到的中间筒体浸入该低熔点焊料合金液体中、或者在加热后的中间筒体上涂布一层该低熔点焊料合金液体,冷却后,在所述中间筒体外圆周面上沿所述纳米线栅结构膜层的纳米线栅结构形成一层结构硬化层,从而得到具有纳米线栅结构的纳米压印模板;
其中,所述步骤3中提供的低熔点焊料合金为熔点温度低于300℃的合金材料;
其中,所述步骤2中提供的膜片为有机材料,其熔点温度高于所述低熔点焊料合金的熔点温度。
本发明的有益效果:本发明的纳米压印模板的制作方法,先在圆柱状的硬质滚筒的外圆周面上包覆一层软性的具有纳米线栅结构的膜片,形成纳米线栅结构膜层,得到中间筒体,然后利用低熔点焊料合金在所述中间筒体外圆周面上沿所述纳米线栅结构膜层的纳米线栅结构形成一层结构硬化层,得到具有纳米线栅结构的纳米压印模板;通过在软质的纳米线线栅结构上形成一层硬质的结构硬化层,对软质的纳米线线栅结构进行硬化,从而克服在压印过程中微结构材质本身硬度不够的问题,使得卷对卷微结构压印,特别是纳米线栅压印成为实际工艺中可行的一部分,进而提高线栅偏光片的制作效率。本发明的纳米压印模板,整体呈圆筒状,软质的纳米线线栅结构上具有一层硬质的合金材料的结构硬化层,能够用于卷对卷法制作线栅偏光片,从而提高线栅偏光片的制作效率。
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为本发明纳米压印模板的制作方法的示意流程图;
图2为本发明纳米压印模板的制作方法的步骤1的示意图;
图3为本发明纳米压印模板的制作方法的步骤2的示意图;
图4为本发明纳米压印模板的制作方法的步骤2中提供的膜片上纳米线栅结构的示意图;
图5为本发明纳米压印模板的制作方法的步骤3的示意图暨本发明纳
米压印模板的立体结构示意图;
图6为本发明纳米压印模板上纳米线栅结构的示意图。
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种纳米压印模板的制作方法,包括如下步骤:
步骤1、如图2所示,提供一圆柱状的硬质滚筒1。
步骤2、如图3所示,提供具有纳米线栅结构的膜片,将该软质的膜片包覆在所述硬质滚筒1的外圆周面上形成纳米线栅结构膜层2,得到中间筒体。
具体地,所述步骤2提供的膜片为有机材料,如图4所示,其上具有数条周期排列初始光栅凹槽211,用于构成所要形成的纳米压印模板的初始微结构,特别的,该膜片的特征在于其纳米线栅结构的光栅周期和光栅高度都略大于需求值,从而为后续在其上包覆合金材料而留有余量,且其耐温特性保证其至少可以承受超过100℃的高温。
步骤3、如图5所示,提供低熔点焊料合金,将该低熔点焊料合金加热至液态,将步骤2得到的中间筒体浸入该低熔点焊料合金液体中、或者在加热后的中间筒体上涂布一层该低熔点焊料合金液体,冷却后,在所述中间筒体外圆周面上沿所述纳米线栅结构膜层2的纳米线栅结构形成一层结构硬化层3,从而得到具有纳米线栅结构的纳米压印模板。
具体地,所述步骤3中提供的低熔点焊料合金可以为8.3Sn44.7Bi22.6Pb5.3Cd19.1In,即其包括原料组分及重量百分比如下:锡(Sn)8.3%,铋(Bi)44.7%,铅(Pb)22.6%,铬(Cd)5.3%,铟(In)19.1%,或者也可以为其他含有铟或锡的熔点低于300℃的低熔点焊料合金,如100In、66.3In33.7Bi、51Tn32.5Bi6.5Sn、57Bi26In17Sn、54.02Bi29.68In16.3Sn、67Bi33In、50In50Sn、52Sn48In、58Bi42Sn、97In3Ag、58Bi42Sn、99.3In0.7Ga、95In5Bi、99.4In0.6Ga、99.6In0.4Ga、99.5In0.5Ga、60Sn40Bi、100Sn、95Sn5Sb等。
具体地,步骤3所得到纳米压印模板具有数条周期性排列的光栅凹槽311,所述光栅凹槽311的宽度及相邻两光栅凹槽之间的距离均小于150nm。
特别地,所述步骤2中所提供的膜片的材料可以选自PMMA(聚甲基丙烯酸甲酯)、POM(聚甲醛)、PBT(聚对苯二甲酸丁二醇酯)、PET(聚对苯二甲酸乙二酯)、PC(聚碳酸酯)、PE(聚乙烯)、PEEK(聚醚醚酮)、
PP(聚丙烯)、PS(聚苯乙烯)、和PVDC(聚偏二氯乙烯)等有机材料,但是所选择的膜片必须满足其耐温特性能够承受住步骤3中所选择的低熔点焊料合金在液态时的温度,即该膜片在步骤3中保证不变形,因此,所述步骤2提供的膜片的熔点温度必须高于所述低熔点焊料合金的熔点温度。
如图6所示,本发明的纳米压印模板的制作方法,利用低熔点焊料合金在软质的纳米线线栅结构上形成一层硬质的结构硬化层,对软质的纳米线线栅结构进行硬化,从而克服在压印过程中微结构材质本身硬度不够的问题,使得卷对卷(Roll to Roll)微结构压印,特别是纳米线栅压印成为实际工艺中可行的一部分,进而提高线栅偏光片的制作效率。
具体的,使用本发明制作得到的纳米压印模板通过Roll to Roll制作线栅偏光片的具体过程为,利用辊输送基材,再在基材上涂覆光固化性光阻材料或热固化性材料形成光阻层,使用本发明的滚筒状的纳米压印模板,由于纳米压印模板上具有结构硬化层,其上的微结构的硬度大于光阻层的硬度,一边使该纳米压印模板旋转而将其按压于光固化性光阻材料或热固化性材料的光阻层上,一边进行UV光照或加热使光阻层硬化,完成纳米压印模板上纳米形貌的转移过程,从而将平面的压印过程转换为三维的滚动过程,伴随着UV光照或加热,提高线栅偏光片的生产效率。同样地,除了UV压印和热压,该滚筒状的纳米压印模板一样可以用于其他机械纳米压印成型的过程中,由于纳米压印模板的硬度高于被压印的光胶,则可通过机械应力压印成型,并完成纳米形貌的转移过程。
请参阅图5,本发明还提供一种纳米压印模板,包括圆柱状的硬质滚筒1、设于所述硬质滚筒1外圆周面上的纳米线栅结构膜层2、及包覆所述纳米线栅结构膜层2的结构硬化层3;
所述纳米线栅结构膜层2为具有具有纳米线栅结构的膜片;
所述结构硬化层3的材料为低熔点焊料合金,沿所述纳米线栅结构膜层2的纳米线栅结构形成,从而相对所述纳米线栅结构膜层2的纳米线栅结构,形成较硬的所述纳米压印模板的纳米线栅结构。
具体地,用作所述结构硬化层3的低熔点焊料合金可以为8.3Sn44.7Bi22.6Pb5.3Cd19.1In,即其包括原料组分及重量百分比如下:锡8.3%,铋44.7%,铅22.6%,铬5.3%,铟19.1%,当然可以为其他含有铟或锡的熔点低于300℃的低熔点焊料合金,如100In、66.3In33.7Bi、51Tn32.5Bi6.5Sn、57Bi26In17Sn、54.02Bi29.68In16.3Sn、67Bi33In、50In50Sn、52Sn48In、58Bi42Sn、97In3Ag、58Bi42Sn、99.3In0.7Ga、95In5Bi、99.4In0.6Ga、99.6In0.4Ga、99.5In0.5Ga、60Sn40Bi、100Sn、95Sn5Sb等。
具体地,所述纳米压印模板具有数条周期性排列的光栅凹槽311,所述光栅凹槽的宽度及相邻两光栅凹槽之间的距离均小于150nm。
具体地,用作所述纳米线栅结构膜层2的膜片为有机材料,其熔点温度高于用作所述结构硬化层3的低熔点焊料合金的熔点温度,其材料具体可以选自PMMA、POM、PBT、PET、PC、PE、PEEK、PP、PS、和PVDC等有机材料。
综上所述,本发明的纳米压印模板的制作方法,先在圆柱状的硬质滚筒的外圆周面上包覆一层软性的具有纳米线栅结构的膜片,形成纳米线栅结构膜层,得到中间筒体,然后利用低熔点焊料合金在所述中间筒体外圆周面上沿所述纳米线栅结构膜层的纳米线栅结构形成一层结构硬化层,得到具有纳米线栅结构的纳米压印模板;通过在软质的纳米线线栅结构上形成一层硬质的结构硬化层,对软质的纳米线线栅结构进行硬化,从而克服在压印过程中微结构材质本身硬度不够的问题,使得卷对卷微结构压印,特别是纳米线栅压印成为实际工艺中可行的一部分,进而提高线栅偏光片的制作效率。本发明的纳米压印模板,整体呈圆筒状,软质的纳米线线栅结构上具有一层硬质的合金材料的结构硬化层,能够用于卷对卷法制作线栅偏光片,从而提高线栅偏光片的制作效率。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。
Claims (13)
- 一种纳米压印模板的制作方法,包括如下步骤:步骤1、提供一圆柱状的硬质滚筒;步骤2、提供具有纳米线栅结构的膜片,将该膜片包覆在所述硬质滚筒的外圆周面上形成纳米线栅结构膜层,得到中间筒体;步骤3、提供低熔点焊料合金,将该低熔点焊料合金加热至液态,将步骤2得到的中间筒体浸入该低熔点焊料合金液体中、或者在加热后的中间筒体上涂布一层该低熔点焊料合金液体,冷却后,在所述中间筒体外圆周面上沿所述纳米线栅结构膜层的纳米线栅结构形成一层结构硬化层,从而得到具有纳米线栅结构的纳米压印模板。
- 如权利要求1所述的纳米压印模板的制作方法,其中,所述步骤3中提供的低熔点焊料合金为熔点温度低于300℃的合金材料。
- 如权利要求1所述的纳米压印模板的制作方法,其中,所述步骤2中提供的膜片为有机材料,其熔点温度高于所述低熔点焊料合金的熔点温度。
- 如权利要求1所述的纳米压印模板的制作方法,其中,所得到纳米压印模板具有数条周期性排列的光栅凹槽,所述光栅凹槽的宽度及相邻两光栅凹槽之间的距离均小于150nm。
- 如权利要求3所述的纳米压印模板的制作方法,其中,所述步骤2提供的膜片的材料为PMMA、POM、PBT、PET、PC、PE、PEEK、PP、PS、或PVDC。
- 一种纳米压印模板,包括圆柱状的硬质滚筒、设于所述硬质滚筒外圆周面上的纳米线栅结构膜层、及包覆所述纳米线栅结构膜层的结构硬化层;所述纳米线栅结构膜层为具有纳米线栅结构的膜片;所述结构硬化层的材料为低熔点焊料合金,所述结构硬化层沿所述纳米线栅结构膜层的纳米线栅结构形成。
- 如权利要求6所述的纳米压印模板,其中,用作所述结构硬化层的低熔点焊料合金为熔点温度低于300℃的合金材料。
- 如权利要求6所述的纳米压印模板,其中,用作所述纳米线栅结构膜层的膜片为有机材料,其熔点温度高于用作所述结构硬化层的低熔点焊料合金的熔点温度。
- 如权利要求6所述的纳米压印模板,其中,所述纳米压印模板具有数条周期性排列的光栅凹槽,所述光栅凹槽的宽度及相邻两光栅凹槽之间的距离均小于150nm。
- 如权利要求8所述的纳米压印模板,其中,用作所述纳米线栅结构膜层的膜片的材料为PMMA、POM、PBT、PET、PC、PE、PEEK、PP、PS、或PVDC。
- 一种纳米压印模板的制作方法,包括如下步骤:步骤1、提供一圆柱状的硬质滚筒;步骤2、提供具有纳米线栅结构的膜片,将该膜片包覆在所述硬质滚筒的外圆周面上形成纳米线栅结构膜层,得到中间筒体;步骤3、提供低熔点焊料合金,将该低熔点焊料合金加热至液态,将步骤2得到的中间筒体浸入该低熔点焊料合金液体中、或者在加热后的中间筒体上涂布一层该低熔点焊料合金液体,冷却后,在所述中间筒体外圆周面上沿所述纳米线栅结构膜层的纳米线栅结构形成一层结构硬化层,从而得到具有纳米线栅结构的纳米压印模板;其中,所述步骤3中提供的低熔点焊料合金为熔点温度低于300℃的合金材料;其中,所述步骤2中提供的膜片为有机材料,其熔点温度高于所述低熔点焊料合金的熔点温度。
- 如权利要求11所述的纳米压印模板的制作方法,其中,所得到纳米压印模板具有数条周期性排列的光栅凹槽,所述光栅凹槽的宽度及相邻两光栅凹槽之间的距离均小于150nm。
- 如权利要求11所述的纳米压印模板的制作方法,其中,所述步骤2提供的膜片的材料为PMMA、POM、PBT、PET、PC、PE、PEEK、PP、PS、或PVDC。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/106,313 US20180101093A1 (en) | 2016-04-21 | 2016-05-13 | Manufacture method of nano-imprint lithography template and nano-imprint lithography template |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610255462.7 | 2016-04-21 | ||
CN201610255462.7A CN105700292B (zh) | 2016-04-21 | 2016-04-21 | 纳米压印模板的制作方法及纳米压印模板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017181456A1 true WO2017181456A1 (zh) | 2017-10-26 |
Family
ID=56217264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/081970 WO2017181456A1 (zh) | 2016-04-21 | 2016-05-13 | 纳米压印模板的制作方法及纳米压印模板 |
Country Status (3)
Country | Link |
---|---|
US (2) | US20180101093A1 (zh) |
CN (1) | CN105700292B (zh) |
WO (1) | WO2017181456A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114334478A (zh) * | 2022-01-18 | 2022-04-12 | 西安交通大学 | 超级电容3d集流体的卷对卷纳米压印制造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105974667B (zh) * | 2016-07-13 | 2019-01-15 | 深圳市华星光电技术有限公司 | 液晶显示器 |
KR102448904B1 (ko) * | 2017-07-31 | 2022-09-29 | 삼성디스플레이 주식회사 | 임프린트 장치 및 임프린트 방법 |
CN109856904A (zh) * | 2019-03-29 | 2019-06-07 | 刘刚 | 超大型视角可控等离子菲涅尔复合屏幕 |
CN109759776B (zh) * | 2019-03-29 | 2020-12-04 | 上海摩软通讯技术有限公司 | 一种移动终端的网孔部件的制作方法及移动终端 |
CN110756822B (zh) * | 2019-10-16 | 2022-05-20 | 西安工业大学 | 一种针形银纳米线及其制备方法 |
CN113146153A (zh) * | 2021-04-08 | 2021-07-23 | 新沂崚峻光电科技有限公司 | 一种压印模板的制作方法及压印模板 |
CN113618090B (zh) * | 2021-08-11 | 2022-06-07 | 吉林大学 | 一种微纳结构辊筒模具加工与压印成形机床及其控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1727993A (zh) * | 2004-07-26 | 2006-02-01 | 鸿富锦精密工业(深圳)有限公司 | 用于纳米压印的压模及其制备方法 |
CN101144977A (zh) * | 2006-09-13 | 2008-03-19 | 三星电子株式会社 | 用于纳米压印的模子及其制造方法 |
US20100213069A1 (en) * | 2009-02-26 | 2010-08-26 | Kabushiki Kaisha Toshiba | Master plate and method of manufacturing the same |
CN102046357A (zh) * | 2008-06-05 | 2011-05-04 | 旭硝子株式会社 | 纳米压印用模具、其制造方法及表面具有微细凹凸结构的树脂成形体以及线栅型偏振器的制造方法 |
CN102470565A (zh) * | 2009-08-07 | 2012-05-23 | 综研化学株式会社 | 压印用树脂制模具及其制造方法 |
CN105143976A (zh) * | 2013-03-15 | 2015-12-09 | 佳能纳米技术公司 | 使用具有金属或氧化物涂层的可再次利用的聚合物模板的纳米压印 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050106435A1 (en) * | 2003-11-13 | 2005-05-19 | Jang Bor Z. | Twin-wire arc deposited electrode, solid electrolyte membrane, membrane electrode assembly and fuel cell |
US20080230773A1 (en) * | 2007-03-20 | 2008-09-25 | Nano Terra Inc. | Polymer Composition for Preparing Electronic Devices by Microcontact Printing Processes and Products Prepared by the Processes |
CN100566120C (zh) * | 2007-04-26 | 2009-12-02 | 上海交通大学 | 聚合物基面外运动电热微驱动器 |
-
2016
- 2016-04-21 CN CN201610255462.7A patent/CN105700292B/zh active Active
- 2016-05-13 WO PCT/CN2016/081970 patent/WO2017181456A1/zh active Application Filing
- 2016-05-13 US US15/106,313 patent/US20180101093A1/en not_active Abandoned
-
2019
- 2019-10-02 US US16/590,382 patent/US20200033722A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1727993A (zh) * | 2004-07-26 | 2006-02-01 | 鸿富锦精密工业(深圳)有限公司 | 用于纳米压印的压模及其制备方法 |
CN101144977A (zh) * | 2006-09-13 | 2008-03-19 | 三星电子株式会社 | 用于纳米压印的模子及其制造方法 |
CN102046357A (zh) * | 2008-06-05 | 2011-05-04 | 旭硝子株式会社 | 纳米压印用模具、其制造方法及表面具有微细凹凸结构的树脂成形体以及线栅型偏振器的制造方法 |
US20100213069A1 (en) * | 2009-02-26 | 2010-08-26 | Kabushiki Kaisha Toshiba | Master plate and method of manufacturing the same |
CN102470565A (zh) * | 2009-08-07 | 2012-05-23 | 综研化学株式会社 | 压印用树脂制模具及其制造方法 |
CN105143976A (zh) * | 2013-03-15 | 2015-12-09 | 佳能纳米技术公司 | 使用具有金属或氧化物涂层的可再次利用的聚合物模板的纳米压印 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114334478A (zh) * | 2022-01-18 | 2022-04-12 | 西安交通大学 | 超级电容3d集流体的卷对卷纳米压印制造方法 |
CN114334478B (zh) * | 2022-01-18 | 2022-11-11 | 西安交通大学 | 超级电容3d集流体的卷对卷纳米压印制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105700292B (zh) | 2019-10-11 |
CN105700292A (zh) | 2016-06-22 |
US20200033722A1 (en) | 2020-01-30 |
US20180101093A1 (en) | 2018-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017181456A1 (zh) | 纳米压印模板的制作方法及纳米压印模板 | |
JP6173354B2 (ja) | 光透過型インプリント用モールド、大面積モールドの製造方法 | |
TWI322927B (en) | Roller module for microstructure thin film imprint | |
CN101051184B (zh) | 大面积微纳结构软压印方法 | |
JP5308287B2 (ja) | ナノインプリントを用いたパターン成形方法とパターン成形のためのモールド製作方法 | |
US8840795B2 (en) | Method for manufacturing a master mold which is used to form a micropatterned film applied to an exterior of a household appliance and manufacturing apparatus and method of the film using the master mold | |
CN102109623A (zh) | 凹凸形状形成片及其制造方法、防反射体、相位差板、工序片原版以及光学元件的制造方法 | |
CN104991416B (zh) | 一种基于光盘的二维周期性微纳结构的热压印方法 | |
JP2008296579A (ja) | マスクモールド及びその製作方法と、製作されたマスクモールドを用いた大面積・微細パターン成形方法 | |
JP2010074163A (ja) | ナノインプリント用モールド製作方法及びナノインプリント用モールドを用いたパターン成形方法 | |
CN106647165B (zh) | 一种基于柔性的可在任意曲面制造微纳结构的方法 | |
KR100951915B1 (ko) | 플라즈마 에칭을 이용한 마이크로-나노 패턴의 제작 방법 | |
TW200932504A (en) | An improved roller embossing apparatus | |
CN103399460A (zh) | 一种大尺寸和无接缝纳米尺度滚轮模具制造方法 | |
CN103400534A (zh) | 一种用于滚型纳米压印的滚轮模具 | |
Hwang et al. | Fabrication of roll imprint stamp for continuous UV roll imprinting process | |
US8867254B2 (en) | Flexible memory and its fabrication process | |
CN110891895B (zh) | 通过选择性模板移除来进行微米和纳米制造的方法 | |
JP2013000961A (ja) | ロール金型の製造方法と光学フィルムの製造方法、並びに、ロール金型と光学フィルム | |
CN203133302U (zh) | Uv转印微透镜阵列 | |
TWI822997B (zh) | 無縫全像圖圖案轉移方法 | |
Schift et al. | Nanoimprint lithography | |
KR101769749B1 (ko) | 수평방향으로 굴절률이 제어된 양면 패턴의 제조 방법 및 그에 의해 제조된 양면 패턴 | |
CN108319106A (zh) | 纳米压印的方法 | |
CN103576447A (zh) | 一种含氟聚合物紫外纳米压印模板及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15106313 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16899043 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16899043 Country of ref document: EP Kind code of ref document: A1 |