[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017179091A1 - Particle beam therapy system - Google Patents

Particle beam therapy system Download PDF

Info

Publication number
WO2017179091A1
WO2017179091A1 PCT/JP2016/061678 JP2016061678W WO2017179091A1 WO 2017179091 A1 WO2017179091 A1 WO 2017179091A1 JP 2016061678 W JP2016061678 W JP 2016061678W WO 2017179091 A1 WO2017179091 A1 WO 2017179091A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
period
ray imaging
body surface
frame rate
Prior art date
Application number
PCT/JP2016/061678
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 坂本
奈津子 大塚
卓紀 角尾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/061678 priority Critical patent/WO2017179091A1/en
Priority to JP2018511549A priority patent/JP6582128B2/en
Priority to TW105129755A priority patent/TWI635884B/en
Publication of WO2017179091A1 publication Critical patent/WO2017179091A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a particle beam therapy system using image guidance based on an X-ray image.
  • IGRT Image Guided Radiation
  • X-ray image is used to accurately irradiate the affected area with radiation for treatment while confirming the position of the affected area with an image such as an X-ray image. Therapy
  • Patent Document 1 image-guided radiation therapy
  • the patient will be exposed to X-rays for image acquisition in addition to therapeutic radiation. It is desirable that this exposure be as low as possible.
  • the frequency of imaging with imaging X-rays particularly in the case of an irradiation target in a range that moves due to patient respiration, such as the lungs and liver It is possible to grasp the organ position in real time the higher, the trade-off is that the exposure dose also increases.
  • particle beam therapy for irradiating the affected organs with a beam of carbon ions or protons, that is, a particle beam
  • particle accelerators are used to generate particle beams that are bundles of high energy charged particles. Many of these accelerators have a configuration in which the irradiated particle beam cannot be continuously generated.
  • an IGRT using an X-ray image includes a region including a moving part due to patient respiration, it is desired to grasp an organ position in real time while reducing the X-ray exposure as much as possible.
  • An object of the present invention is to reduce the exposure dose by X-ray imaging without impairing the accuracy of organ position determination by X-ray imaging in the particle beam therapy system.
  • the particle beam therapy system of the present invention includes a particle beam generator that generates a particle beam that irradiates an affected area of a patient who is an irradiation object, an irradiation nozzle that irradiates the irradiation object with a particle beam generated by the particle beam generator, Analyzing an X-ray image captured by an X-ray imaging device, an apparatus control device that controls a particle beam generation device and an irradiation nozzle, an X-ray imaging device that irradiates an irradiation target with X-rays to capture an X-ray image And an X-ray image analysis organ position estimation device for estimating the position of an organ having an affected part of a patient, and the device control apparatus has preset the position of the organ estimated by the X-ray image analysis organ position estimation device
  • the particle beam therapy system that controls a particle beam generator and an irradiation nozzle to irradiate a target with a particle beam when in a range position, the particle
  • FIG. 1 is a block diagram conceptually showing the structure of an example of a particle beam therapy system according to Embodiment 1 of the present invention.
  • a particle beam 2 emitted as a high-energy charged particle beam from an accelerator 1 that accelerates charged particles passes through a vacuum duct 3 that is a particle beam transport path and is transported to an irradiation nozzle 4 provided downstream of the vacuum duct 3. Is done.
  • a bending electromagnet for changing the traveling direction of the particle beam 2 is provided at a portion where the vacuum duct 3 is bent, but is omitted in FIG.
  • the particle beam 2 is scanned in a two-dimensional direction perpendicular to the traveling direction of the particle beam 2 by a scanning electromagnet provided in the irradiation nozzle 4.
  • the scanned particle beam 2a is irradiated to the affected part 60 of the patient 6 as an irradiation target placed on the treatment table.
  • Various irradiation parameters at the time of irradiation are set by the treatment planning device 10, and parameters of each device of the accelerator 1 and the irradiation nozzle 4 for irradiation with the irradiation parameters are transmitted to the device control device 21.
  • a command is output to each device such as the irradiation nozzle 4.
  • X-rays constituted by X-ray tubes 51a and 51b and flat panel detectors (FPD) 52a and 52b.
  • An imaging device 50 is installed. X-rays emitted from the X-ray tube 51a are detected by the FPD 52a, and X-rays emitted from the X-ray tube 51b are detected by the FPD 52b.
  • the X-ray tubes 51a and 51b and the FPDs 52a and 52b are controlled by the X-ray imaging control / image information acquisition device 22 to acquire X-ray image information.
  • the irradiation dose to be irradiated to the affected part 60 is determined.
  • the irradiation dose is determined as a three-dimensional distribution matched to the shape of the affected part 60, that is, an irradiation dose distribution.
  • the treatment planning apparatus 10 can determine irradiation parameters that are a set of various parameters of the accelerator 1 and the irradiation nozzle 4 for giving the irradiation dose distribution to the affected part 60.
  • the set of irradiation parameters cannot be uniquely determined by the intensity of the particle beam or the beam diameter. For this reason, an irradiation parameter that a user such as a doctor considers appropriate is determined.
  • the particle beam irradiation to the affected area 60 is performed once a day and in several tens of times.
  • a preset patient isocenter in the image of the affected part 60 of the patient 6 acquired by the X-ray imaging control / image information acquisition device 22 is the isocenter of the device determined by the irradiation nozzle 4.
  • the position of the patient on the treatment table is positioned by controlling the position of the treatment table.
  • each device is controlled via the device control device 21 according to predetermined parameters of the accelerator 1 and the irradiation nozzle 4, and the affected part 60 is irradiated with the particle beam.
  • the image analysis / organ position estimation device 23 analyzes the X-ray image acquired by the X-ray imaging control / image information acquisition device 22 in real time, and the position of the affected part 60 falls within a predetermined range.
  • the device controller 21 is instructed to irradiate the particle beam only at certain times.
  • the specific range generally refers to the position of the organ having the affected part 60 in the respiratory phase at which, for example, the moving speed of the affected part 60 becomes small at the time of planning a treatment (doctor, radiologist or medical physicist ).
  • the accelerator 1 is a synchrotron
  • the particle beam accumulated in the ring of the synchrotron is decelerated and discarded, a new particle beam is generated again by the ion source, and accelerated to the next energy, and the synchrotron
  • the particle beam accumulated in the ring of the ring is to the next energy, but in the former case, the latter accelerates and decelerates until the next acceleration is completed. Until the adjustment is completed, the particle beam cannot be emitted to the affected part 60 of the patient 6 to be irradiated.
  • the accelerator 1 When the accelerator 1 is a cyclotron, energy is not changed by the accelerator 1, and an energy absorber called a degrader is inserted in the particle beam transport path or in the irradiation nozzle, and the energy is adjusted by adjusting the thickness of the degrader. do. Also in this case, the particle beam cannot be emitted to the affected part 60 of the patient 6 to be irradiated while the degrader is operating. Thus, in the particle beam therapy system including the accelerator, the particle beam transport path, and the irradiation nozzle, the particle beam cannot be emitted for a period during which the particle beam can be emitted to the affected part 60 of the patient 6 to be irradiated for some reason. There is often a period.
  • the time when the particle beam therapy system is in a period in which the particle beam can be emitted from the irradiation target is referred to as being in a state where the treatment beam can be emitted.
  • a period during which the particle beam can be emitted from the irradiation target is referred to as a treatment beam extraction enabled period
  • a period during which the particle beam cannot be output is referred to as a treatment beam extraction disabled period.
  • FIG. 2 shows an example of a time chart of treatment beam irradiation in IGRT irradiation by the particle beam treatment system of the present invention.
  • the particle beam therapy system has a period during which the particle beam can be emitted (treatment beam extraction is possible on, treatment beam emission is possible period) and a period during which the particle beam is not available (treatment beam emission is off, treatment beam emission is not possible period). Exists.
  • the X-ray imaging period is synchronized with the treatment beam extraction period, and X-ray imaging is performed only during the treatment beam extraction period.
  • one X-ray imaging is instantaneous, and the imaging is repeated at a preset frame rate (imaging frequency), for example, 7.5 to 30 fps (frame per second).
  • a preset frame rate for example, 7.5 to 30 fps (frame per second).
  • a period in which X-ray imaging is performed at a preset frame rate is expressed as an X-ray imaging on period (X-ray imaging period).
  • the X-ray imaging control / image information acquisition device 22 acquires an X-ray image at a preset frame rate during X-ray imaging on, analyzes the acquired image by the image analysis / organ position estimation device 23, and The current position of the organ having the affected part 60 is estimated.
  • a treatment beam irradiation signal is sent to the device control apparatus 21.
  • the device controller 21 controls devices such as the accelerator 1 and the irradiation nozzle 4 so that the affected part 60 is irradiated with the particle beam only when the irradiation signal is received.
  • X-ray imaging is performed only when the treatment beam extraction is enabled, and the frame rate is set to 0 so that X-ray imaging is not performed during other periods.
  • the image analysis / organ position estimation device 23 may lose sight of the organ position.
  • the frame rate is lowered and the imaging frequency is lowered than the frame rate (also referred to as the first frame rate) of the X-ray imaging period.
  • X-ray imaging is preferably performed.
  • the imaging frame rate of X-ray imaging is reduced in the period during which treatment beam extraction is not possible (including the case where the frame rate is 0, that is, when imaging is not performed) than the period during which treatment beam extraction is possible.
  • the patient exposure dose by X-rays can be reduced, and the organ position is always confirmed by X-ray imaging during a period when the treatment beam can be emitted. Therefore, it is possible to irradiate the treatment beam with high positional accuracy.
  • FIG. FIG. 4 is an example of a time chart of treatment beam irradiation of the particle beam therapy system according to the second embodiment.
  • the X-ray image analysis / organ position estimation apparatus 23 estimates the organ position and determines whether or not the treatment beam can be irradiated until it is actually started or stopped. There is a delay.
  • the start time and end time of the X-ray imaging period are set earlier than the start time and end time of the treatment beam extraction possible period.
  • the treatment beam can be irradiated from the beginning of the treatment beam extraction period. It becomes possible. Moreover, useless X-ray irradiation can be reduced by setting the end time of the X-ray imaging period earlier.
  • FIG. FIG. 5 is a block diagram showing the configuration of the particle beam therapy system according to the third embodiment of the present invention.
  • a body surface position detector 53 that detects the body surface position of the patient 6 without using X-rays is provided.
  • the body surface position detector 53 can acquire position information on the body surface of the abdomen of the patient 6 in real time by means such as an infrared sensor.
  • FIG. 6 shows a time chart of treatment beam irradiation in the third embodiment.
  • the position of the body surface is within a specific range determined in advance, it is expressed as body surface position on, and this period is set as an X-ray imaging period, and X-ray imaging is performed only during this period. Is done.
  • X-ray imaging may be performed at a predetermined first frame rate during the X-ray imaging period, and X-ray imaging may be performed at a frame rate lower than the first frame rate during a period other than the X-ray imaging period.
  • the image analysis / organ position estimation device 23 analyzes the captured X-ray image and estimates the current position of the organ having the affected part 60.
  • a treatment beam irradiation signal is sent to the device control apparatus 21.
  • the particle beam generating apparatus 30 can emit the treatment beam only when the treatment beam emission is enabled, as a result, both the organ position on which X-ray imaging was performed and the treatment beam emission enabled on are simultaneously satisfied. Only when will the treatment beam be irradiated.
  • the above-mentioned specific range for determining the body surface position on corresponds to the range for determining whether or not treatment beam irradiation is possible based on the organ position of the X-ray image, and is determined by the practitioner.
  • the practitioner uses the body surface position detector 53, the X-ray imaging control / image information acquisition device 22, and the image analysis / organ position estimation device 23 equivalent to those used for treatment at the time of patient diagnosis. It is desirable to know in advance the correlation between the body surface position acquired by the detector 53 and the organ position having the affected part 60 in the body estimated by X-ray imaging.
  • an appropriate margin is set when determining the range for determining the body surface position on, and X It is desirable to set a wider range than the range for determining whether or not treatment beam irradiation is possible based on the organ position of the line image.
  • the correlation between the body surface position and the organ position in the body is not completely reproducible, but in many cases it is expected to have a certain degree of reproducibility. Since the X-ray imaging is not performed when the organ position having the position is not within a specific range, it can be expected that the exposure dose of the patient due to the X-ray is reduced.
  • the operation shown in FIG. 7 by performing X-ray imaging only when the treatment beam can be emitted and the body surface position is within a predetermined range determined in advance, the operation shown in FIG. It can be expected to reduce the patient's exposure dose by X-rays.
  • the time set as the start time and end time of the treatment beam extraction allowance may be set earlier than the start time and end time of the actual treatment beam extraction enable period. Good.
  • the frame rate is lower than the X-ray imaging period in the X-ray imaging off period in FIG. 7, that is, in a period other than the X-ray imaging period.
  • X-ray imaging may be performed.
  • the X-ray imaging may be performed at a lower frame rate than the X-ray imaging period in the X-ray imaging off period in FIG.
  • the particle beam therapy system is capable of emitting a treatment beam that can emit a particle beam to the affected area of the patient, and the patient.
  • a treatment beam extraction impossible period during which the particle beam cannot be emitted from the affected area, and the X-ray imaging period is a period including at least a part of the treatment beam emission possible period.
  • FIG. 9 is an example of a time chart of treatment beam irradiation of the particle beam therapy system according to the fourth embodiment.
  • the fourth embodiment is an embodiment of a particle beam therapy system in which the particle beam generator 30 including the accelerator 1 can continuously generate a particle beam that can be irradiated to a patient.
  • the configuration of the particle beam therapy system is the same as the configuration shown in FIG.
  • the particle beam therapy system according to the fourth embodiment irradiates the entire affected area 60 of the patient 6 without changing the energy of the particle beam generated from the particle beam generator 30 using, for example, a bolus, so-called broad irradiation. Applicable to law.
  • the position of the body surface is within a predetermined range, it is expressed as body surface position on, and X-ray imaging is performed at a preset frame rate (also referred to as a first frame rate) during this period. .
  • the imaging frame rate for X-ray imaging is reduced below the first frame rate.
  • the imaging frame rate in this case is 0, that is, includes the case where X-ray imaging is not performed.
  • the image analysis / organ position estimation device 23 analyzes the captured X-ray image and estimates the current position of the organ having the affected part 60. When the current position of the organ is within a predetermined irradiation range, a treatment beam irradiation signal is sent to the device control apparatus 21.
  • the specific range for the determination of the body surface position on corresponds to the range for determining whether the treatment beam can be irradiated based on the organ position of the X-ray image, Determined by the practitioner.
  • the practitioner uses the body surface position detector 53, the X-ray imaging control / image information acquisition device 22, and the image analysis / organ position estimation device 23 equivalent to those used for treatment at the time of patient diagnosis. It is desirable to know in advance the correlation between the body surface position of the patient 6 acquired by the detector 53 and the organ position having the affected part 60 estimated by X-ray imaging in the patient 6 body.
  • an appropriate margin is set when determining the range for determining the body surface position on, and X It is desirable to set a wider range than the range for determining whether or not treatment beam irradiation is possible based on the organ position of the line image.
  • the correlation between the body surface position and the organ position in the body is not completely reproducible, but in many cases it is expected to have some reproducibility. For this reason, in the fourth embodiment, when the position of the internal organ having the affected part 60 is clearly not within a specific range, the frequency of X-ray imaging is reduced or X-ray imaging is not performed. Therefore, even in a particle beam therapy system that can continuously generate a particle beam that can be irradiated to a patient, it can be expected to reduce the patient's exposure dose due to X-rays.
  • the treatment planning device 10, the device control device 21, the X-ray imaging control / image information acquisition device 22, and the image analysis / organ position estimation device 23 are each a processor 11 as shown in FIG. It is realized by a general computer including a memory 12, an input interface 13 such as a keyboard and a touch panel, a display 14 as an output interface, and the like.
  • the treatment planning device 10, the device control device 21, the X-ray imaging control / image information acquisition device 22, and the image analysis / organ position estimation device 23 may all be configured by a single computer.
  • the treatment planning device 10 and the device control device 21 are configured by a single computer, and the X-ray imaging control / image information acquisition device 22 and the image analysis / organ position estimation device 23 are configured by a single computer. Any computer configuration may be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

A particle beam therapy system which includes: a particle beam generation device (30) that generates a particle beam with which an affected part of a patient to be irradiated is irradiated; and an x-ray imaging device (50) that emits an X-ray to the subject being irradiated and captures an X-ray image. This particle beam therapy system has a therapy beam emittable period during which the particle beam can be emitted to the subject being irradiated, and a therapy beam non-emittable period during which the particle beam cannot be emitted to the subject being irradiated. The x-ray imaging device (50) uses a first frame rate for the imaging frame rate of the X-ray image of the subject being irradiated in an X-ray imaging period which is a period that includes at least a part of the therapy beam emittable period, and uses, in periods other than the X-ray imaging period, an imaging frame rate that is lower than the first frame rate.

Description

粒子線治療システムParticle beam therapy system
 本発明は、X線画像による画像誘導を用いた粒子線治療システムに関するものである。 The present invention relates to a particle beam therapy system using image guidance based on an X-ray image.
 放射線治療において、治療用の放射線を患部に精度良く照射するために、患部の位置をX線画像などの画像で確認しながら治療用の放射線を照射する、画像誘導放射線治療(IGRT:Image Guided Radiation Therapy)が提案されている(例えば特許文献1)。IGRTにおいてX線画像を用いる場合、患者は治療用放射線以外に画像取得用のX線を被ばくすることになる。この被ばくはできるだけ少ないことが望ましい。 In radiation therapy, image-guided radiation therapy (IGRT: Image Guided Radiation) is used to accurately irradiate the affected area with radiation for treatment while confirming the position of the affected area with an image such as an X-ray image. Therapy) has been proposed (for example, Patent Document 1). When using X-ray images in IGRT, the patient will be exposed to X-rays for image acquisition in addition to therapeutic radiation. It is desirable that this exposure be as low as possible.
 X線撮像装置を用いて臓器位置を確認しながら治療放射線の照射を行う画像誘導放射線治療において、特に肺や肝臓等、患者呼吸により動く範囲にある照射対象の場合、撮像X線による撮像の頻度が高いほどよりリアルタイムに臓器位置を把握することが可能であるが、被曝線量も増えるというトレードオフがある。 In image-guided radiation therapy in which therapeutic radiation is irradiated while confirming an organ position using an X-ray imaging apparatus, the frequency of imaging with imaging X-rays, particularly in the case of an irradiation target in a range that moves due to patient respiration, such as the lungs and liver It is possible to grasp the organ position in real time the higher, the trade-off is that the exposure dose also increases.
 放射線治療の中で、炭素イオンあるいは陽子などのビーム、すなわち粒子線を患部の臓器に照射して治療する粒子線治療が最近注目されている。粒子線治療においては、高エネルギーの荷電粒子の束である粒子線を発生させるために粒子の加速器が用いられる。この加速器は、照射する粒子線を連続して発生できない形態のものも多い。 Among the radiation treatments, particle beam therapy for irradiating the affected organs with a beam of carbon ions or protons, that is, a particle beam, has recently attracted attention. In particle beam therapy, particle accelerators are used to generate particle beams that are bundles of high energy charged particles. Many of these accelerators have a configuration in which the irradiated particle beam cannot be continuously generated.
特開2013-252420号公報JP 2013-252420 A
 上記のように、X線画像を用いたIGRTにおいて患者呼吸により動く部位を含む範囲を照射対象とする場合、なるべくX線被曝線量を少なくしながらリアルタイムに臓器位置を把握することが望まれている。 As described above, when an IGRT using an X-ray image includes a region including a moving part due to patient respiration, it is desired to grasp an organ position in real time while reducing the X-ray exposure as much as possible. .
 この発明は、粒子線治療システムにおいて、X線撮像による臓器位置把握の精度を損なわずに、かつX線撮像による被曝線量を減少させることを目的とする。 An object of the present invention is to reduce the exposure dose by X-ray imaging without impairing the accuracy of organ position determination by X-ray imaging in the particle beam therapy system.
 本発明の粒子線治療システムは、照射対象である患者の患部に照射する粒子線を発生する粒子線発生装置と、粒子線発生装置により発生された粒子線を照射対象に照射する照射ノズルと、粒子線発生装置および照射ノズルを制御する機器制御装置と、照射対象にX線を照射してX線画像を撮像するX線撮像装置と、X線撮像装置により撮像されたX線画像を解析して患者の患部を有する臓器の位置を推定するX線画像解析臓器位置推定装置とを備え、機器制御装置は、X線画像解析臓器位置推定装置により推定された臓器の位置が、予め設定された範囲の位置にあるときに、粒子線発生装置および照射ノズルを制御して粒子線を照射対象に照射する粒子線治療システムにおいて、この粒子線治療システムは、照射対象に対して粒子線を出射できる治療ビーム出射可期間と、照射対象に対して粒子線を出射できない治療ビーム出射不可期間とを有し、X線撮像装置は、治療ビーム出射可期間の少なくとも一部を含む期間であるX線撮像期間に照射対象のX線画像の撮像フレームレートを第一のフレームレートとし、X線撮像期間以外の期間には、撮像フレームレートを前記第一のフレームレートよりも低下させるものである。 The particle beam therapy system of the present invention includes a particle beam generator that generates a particle beam that irradiates an affected area of a patient who is an irradiation object, an irradiation nozzle that irradiates the irradiation object with a particle beam generated by the particle beam generator, Analyzing an X-ray image captured by an X-ray imaging device, an apparatus control device that controls a particle beam generation device and an irradiation nozzle, an X-ray imaging device that irradiates an irradiation target with X-rays to capture an X-ray image And an X-ray image analysis organ position estimation device for estimating the position of an organ having an affected part of a patient, and the device control apparatus has preset the position of the organ estimated by the X-ray image analysis organ position estimation device In a particle beam therapy system that controls a particle beam generator and an irradiation nozzle to irradiate a target with a particle beam when in a range position, the particle beam therapy system emits a particle beam to the target The X-ray imaging apparatus has a period including at least a part of the therapeutic beam extraction possible period. The imaging frame rate of the X-ray image to be irradiated is set as the first frame rate during the imaging period, and the imaging frame rate is reduced below the first frame rate during the period other than the X-ray imaging period.
 この発明によれば、X線撮像による臓器位置把握の精度を損なわずに、かつX線撮像による被曝線量を減少させることのできる粒子線治療システムを提供できる。 According to the present invention, it is possible to provide a particle beam therapy system that can reduce the exposure dose by X-ray imaging without impairing the accuracy of organ position grasping by X-ray imaging.
本発明の実施の形態1による粒子線治療システムの構成を示すブロック図である。It is a block diagram which shows the structure of the particle beam therapy system by Embodiment 1 of this invention. 本発明の実施の形態1による粒子線治療システムの動作の一例を示すタイムチャートである。It is a time chart which shows an example of operation | movement of the particle beam therapy system by Embodiment 1 of this invention. 本発明の実施の形態1による粒子線治療システムの動作の他の例を示すタイムチャートである。It is a time chart which shows the other example of operation | movement of the particle beam therapy system by Embodiment 1 of this invention. 本発明の実施の形態2による粒子線治療システムの動作の一例を示すタイムチャートである。It is a time chart which shows an example of operation | movement of the particle beam therapy system by Embodiment 2 of this invention. 本発明の実施の形態3による粒子線治療システムの構成を示すブロック図である。It is a block diagram which shows the structure of the particle beam therapy system by Embodiment 3 of this invention. 本発明の実施の形態3による粒子線治療システムの動作の一例を示すタイムチャートである。It is a time chart which shows an example of operation | movement of the particle beam therapy system by Embodiment 3 of this invention. 本発明の実施の形態3による粒子線治療システムの動作の他の例を示すタイムチャートである。It is a time chart which shows the other example of operation | movement of the particle beam therapy system by Embodiment 3 of this invention. 本発明の実施の形態3による粒子線治療システムの動作のさらに他の例を示すタイムチャートである。It is a time chart which shows the further another example of operation | movement of the particle beam therapy system by Embodiment 3 of this invention. 本発明の実施の形態4による粒子線治療システムの動作の一例を示すタイムチャートである。It is a time chart which shows an example of operation | movement of the particle beam therapy system by Embodiment 4 of this invention. 本発明の各実施の形態による粒子線治療システムの計算機構成の一例を示すブロック図である。It is a block diagram which shows an example of the computer structure of the particle beam therapy system by each embodiment of this invention.
実施の形態1.
 図1は本発明の実施の形態1による粒子線治療システムの一例の構成を概念的に示すブロック図である。荷電粒子を加速する加速器1から高エネルギー荷電粒子ビームとして出射された粒子線2は、粒子線輸送路である真空ダクト3内を通って、真空ダクト3の下流に設けられた照射ノズル4に輸送される。ここで、真空ダクト3が曲がっている部分には、粒子線2の進行方向を変化させるための偏向電磁石が設けられるが、図1では省略して図示している。粒子線2は、照射ノズル4に備えられた走査電磁石によって、粒子線2の進行方向に垂直な2次元方向に走査される。走査された粒子線2aは治療台に載せられた照射対象である患者6の患部60に照射される。照射する際の、種々の照射パラメータは治療計画装置10で設定され、その照射パラメータで照射するための加速器1および照射ノズル4の各機器のパラメータが、機器制御装置21へ送信され、加速器1、照射ノズル4などの各機器に対して指令が出力される。
Embodiment 1 FIG.
FIG. 1 is a block diagram conceptually showing the structure of an example of a particle beam therapy system according to Embodiment 1 of the present invention. A particle beam 2 emitted as a high-energy charged particle beam from an accelerator 1 that accelerates charged particles passes through a vacuum duct 3 that is a particle beam transport path and is transported to an irradiation nozzle 4 provided downstream of the vacuum duct 3. Is done. Here, a bending electromagnet for changing the traveling direction of the particle beam 2 is provided at a portion where the vacuum duct 3 is bent, but is omitted in FIG. The particle beam 2 is scanned in a two-dimensional direction perpendicular to the traveling direction of the particle beam 2 by a scanning electromagnet provided in the irradiation nozzle 4. The scanned particle beam 2a is irradiated to the affected part 60 of the patient 6 as an irradiation target placed on the treatment table. Various irradiation parameters at the time of irradiation are set by the treatment planning device 10, and parameters of each device of the accelerator 1 and the irradiation nozzle 4 for irradiation with the irradiation parameters are transmitted to the device control device 21. A command is output to each device such as the irradiation nozzle 4.
 一方、X線画像を取得して照射対象である患者6の患部60の動きなどを確認するために、X線管51a、51b、フラットパネル検出器(FPD)52a、52bによって構成されるX線撮像装置50が設置されている。X線管51aから照射されたX線はFPD52aで検出され、X線管51bから照射されたX線はFPD52bで検出される。X線管51a、51b、FPD52a、52bはX線撮像制御・画像情報取得装置22により制御され、X線画像情報を取得する。 On the other hand, in order to acquire an X-ray image and confirm the movement of the affected part 60 of the patient 6 to be irradiated, X-rays constituted by X-ray tubes 51a and 51b and flat panel detectors (FPD) 52a and 52b. An imaging device 50 is installed. X-rays emitted from the X-ray tube 51a are detected by the FPD 52a, and X-rays emitted from the X-ray tube 51b are detected by the FPD 52b. The X-ray tubes 51a and 51b and the FPDs 52a and 52b are controlled by the X-ray imaging control / image information acquisition device 22 to acquire X-ray image information.
 以上の粒子線治療システムにより患者6の患部60に治療用の放射線である粒子線を照射して腫瘍などの患部を治療する方法を簡単に説明する。まず、治療計画装置10において、患部60に照射する照射線量を決定する。照射線量は、患部60の形状に合わせた3次元の分布、すなわち照射線量分布として決定される。照射線量分布が決定されると、治療計画装置10において、患部60に照射線量分布を与えるための加速器1や照射ノズル4の種々のパラメータのセットである照射パラメータを決定することができる。ただし、粒子線の強度やビームの径などによって照射パラメータのセットは一意には決定できない。このため、医師などのユーザーが適切と考える照射パラメータを決定する。 A method for treating an affected area such as a tumor by irradiating the affected area 60 of the patient 6 with a particle beam as a therapeutic radiation by the above particle beam therapy system will be briefly described. First, in the treatment planning device 10, the irradiation dose to be irradiated to the affected part 60 is determined. The irradiation dose is determined as a three-dimensional distribution matched to the shape of the affected part 60, that is, an irradiation dose distribution. When the irradiation dose distribution is determined, the treatment planning apparatus 10 can determine irradiation parameters that are a set of various parameters of the accelerator 1 and the irradiation nozzle 4 for giving the irradiation dose distribution to the affected part 60. However, the set of irradiation parameters cannot be uniquely determined by the intensity of the particle beam or the beam diameter. For this reason, an irradiation parameter that a user such as a doctor considers appropriate is determined.
 粒子線治療の場合、患部60への粒子線の照射は1日1回、数十回に分けて行われる。照射当日は、例えば、X線撮像制御・画像情報取得装置22により取得された患者6の患部60の画像中の、予め設定された患者アイソセンタが、照射ノズル4により決定されている機器のアイソセンタに合うように、治療台の位置を制御して、治療台に載っている患者の位置が位置決めされる。位置決めが終わると、加速器1や照射ノズル4の予め決定されたパラメータにより、機器制御装置21を介して各機器が制御され、患部60に粒子線が照射される。このとき、画像解析・臓器位置推定装置23がX線撮像制御・画像情報取得装置22により取得されたX線画像をリアルタイムに解析して、患部60の位置があらかじめ決定された特定の範囲内にあるときのみ粒子線を照射するように、機器制御装置21に指令する。ここで、特定の範囲とは、一般的に治療計画立案時において例えば患部60の動き速度が小さくなるような呼吸位相における患部60を有する臓器の位置を施術者(医師または放射線技師または医学物理士)が指定するものとする。その日予定されている照射線量が患部60に照射されるとその日の照射は終了する。 In the case of particle beam therapy, the particle beam irradiation to the affected area 60 is performed once a day and in several tens of times. On the day of irradiation, for example, a preset patient isocenter in the image of the affected part 60 of the patient 6 acquired by the X-ray imaging control / image information acquisition device 22 is the isocenter of the device determined by the irradiation nozzle 4. The position of the patient on the treatment table is positioned by controlling the position of the treatment table. When positioning is completed, each device is controlled via the device control device 21 according to predetermined parameters of the accelerator 1 and the irradiation nozzle 4, and the affected part 60 is irradiated with the particle beam. At this time, the image analysis / organ position estimation device 23 analyzes the X-ray image acquired by the X-ray imaging control / image information acquisition device 22 in real time, and the position of the affected part 60 falls within a predetermined range. The device controller 21 is instructed to irradiate the particle beam only at certain times. Here, the specific range generally refers to the position of the organ having the affected part 60 in the respiratory phase at which, for example, the moving speed of the affected part 60 becomes small at the time of planning a treatment (doctor, radiologist or medical physicist ). When the irradiation dose scheduled for the day is irradiated to the affected part 60, the irradiation of the day is completed.
 粒子線を照射する照射方法のうち、スキャニング照射法においては患者1回の照射のなかで粒子のエネルギーを複数回変更する必要がある。加速器1がシンクロトロンである場合は、シンクロトロンのリング中に蓄積された粒子線を減速して廃棄し、再度イオン源にて新しい粒子線を発生させ次のエネルギーまで加速する方法と、シンクロトロンのリング中に蓄積された粒子線をそのまま加減速して次のエネルギーに調整する方法があるが、前者の場合は減速を始めてから次の加速が完了するまで、後者では加減速をしてエネルギーの調整が終わるまでの間、照射対象である患者6の患部60に対して粒子線を出射することができない。 Among the irradiation methods that irradiate the particle beam, in the scanning irradiation method, it is necessary to change the energy of the particles multiple times during one irradiation of the patient. When the accelerator 1 is a synchrotron, the particle beam accumulated in the ring of the synchrotron is decelerated and discarded, a new particle beam is generated again by the ion source, and accelerated to the next energy, and the synchrotron There is a method to adjust the particle beam accumulated in the ring of the ring as it is to the next energy, but in the former case, the latter accelerates and decelerates until the next acceleration is completed. Until the adjustment is completed, the particle beam cannot be emitted to the affected part 60 of the patient 6 to be irradiated.
 加速器1がサイクロトロンである場合など、加速器1でエネルギー変更を行わず、デグレーダと呼ばれるエネルギー吸収体を粒子線輸送経路の途中、あるいは照射ノズルに挿入し、デグレーダの厚みを調整することでエネルギーの調整をする。この場合もデグレーダが動作している間は照射対象である患者6の患部60に対して粒子線を出射することができない。このように、加速器および粒子線輸送路、照射ノズルを含めた粒子線治療システムには何らかの要因で照射対象である患者6の患部60に対して粒子線を出射できる期間と、粒子線を出射できない期間とが存在することが多い。本文では便宜上、粒子線治療システムが照射対象に対して粒子線を出射できる期間にあるときのことを、治療ビーム出射可状態であると呼ぶことにする。また、照射対象に対して粒子線を出射できる期間を治療ビーム出射可期間、粒子線を出射できない期間を治療ビーム出射不可期間と称する。 When the accelerator 1 is a cyclotron, energy is not changed by the accelerator 1, and an energy absorber called a degrader is inserted in the particle beam transport path or in the irradiation nozzle, and the energy is adjusted by adjusting the thickness of the degrader. do. Also in this case, the particle beam cannot be emitted to the affected part 60 of the patient 6 to be irradiated while the degrader is operating. Thus, in the particle beam therapy system including the accelerator, the particle beam transport path, and the irradiation nozzle, the particle beam cannot be emitted for a period during which the particle beam can be emitted to the affected part 60 of the patient 6 to be irradiated for some reason. There is often a period. In this text, for the sake of convenience, the time when the particle beam therapy system is in a period in which the particle beam can be emitted from the irradiation target is referred to as being in a state where the treatment beam can be emitted. In addition, a period during which the particle beam can be emitted from the irradiation target is referred to as a treatment beam extraction enabled period, and a period during which the particle beam cannot be output is referred to as a treatment beam extraction disabled period.
 図2に本発明の粒子線治療システムによるIGRT照射における治療ビーム照射のタイムチャートの例を示す。前記のとおり、粒子線治療システムには粒子線が出射可の期間(治療ビーム出射可on、治療ビーム出射可期間)と出射不可の期間(治療ビーム出射可off、治療ビーム出射不可期間)とが存在する。このときX線撮像期間を治療ビーム出射可期間と同期させて、治療ビーム出射可期間のみX線撮像を実施するようにする。なお、厳密には1回のX線撮像は瞬間的であり、予め設定されたフレームレート(撮影頻度)、例えば7.5~30fps(frame per second)で撮像を繰り返すことになるのでタイムチャートはパルス的に書かれるべきであるが、図2では、予め設定されたフレームレートでX線撮像を実施する期間をX線撮像onの期間(X線撮像期間)として表現している。 FIG. 2 shows an example of a time chart of treatment beam irradiation in IGRT irradiation by the particle beam treatment system of the present invention. As described above, the particle beam therapy system has a period during which the particle beam can be emitted (treatment beam extraction is possible on, treatment beam emission is possible period) and a period during which the particle beam is not available (treatment beam emission is off, treatment beam emission is not possible period). Exists. At this time, the X-ray imaging period is synchronized with the treatment beam extraction period, and X-ray imaging is performed only during the treatment beam extraction period. Strictly speaking, one X-ray imaging is instantaneous, and the imaging is repeated at a preset frame rate (imaging frequency), for example, 7.5 to 30 fps (frame per second). Although it should be written in pulses, in FIG. 2, a period in which X-ray imaging is performed at a preset frame rate is expressed as an X-ray imaging on period (X-ray imaging period).
 X線撮像制御・画像情報取得装置22は、X線撮像onの間、予め設定されたフレームレートでX線画像を取得し、取得した画像を画像解析・臓器位置推定装置23により解析して、患部60を有する臓器の現在位置を推定する。臓器の現在位置があらかじめ決定された照射範囲内にあるとき(臓器位置信号on)、治療ビーム照射信号を機器制御装置21に送る。機器制御装置21は、照射信号を受け取ったときのみ粒子線を患部60に対して照射するように、加速器1、照射ノズル4などの機器を制御する。 The X-ray imaging control / image information acquisition device 22 acquires an X-ray image at a preset frame rate during X-ray imaging on, analyzes the acquired image by the image analysis / organ position estimation device 23, and The current position of the organ having the affected part 60 is estimated. When the current position of the organ is within a predetermined irradiation range (organ position signal on), a treatment beam irradiation signal is sent to the device control apparatus 21. The device controller 21 controls devices such as the accelerator 1 and the irradiation nozzle 4 so that the affected part 60 is irradiated with the particle beam only when the irradiation signal is received.
 上記では、治療ビーム出射可がonのときのみX線撮像を実施し、それ以外の期間ではX線撮像を実施しないように、すなわちフレームレートを0とした。しかし、一定期間X線撮像を行わない場合、臓器によっては、画像解析・臓器位置推定装置23が臓器位置を見失ってしまう可能性がある。このような場合、図3に示すように、X線撮像offの期間に、X線撮像期間のフレームレート(第一のフレームレートとも称する)よりも、フレームレートを低下させ、撮像頻度を落としてX線撮像を実施するのが好ましい。 In the above, X-ray imaging is performed only when the treatment beam extraction is enabled, and the frame rate is set to 0 so that X-ray imaging is not performed during other periods. However, if X-ray imaging is not performed for a certain period of time, depending on the organ, the image analysis / organ position estimation device 23 may lose sight of the organ position. In such a case, as shown in FIG. 3, during the X-ray imaging off period, the frame rate is lowered and the imaging frequency is lowered than the frame rate (also referred to as the first frame rate) of the X-ray imaging period. X-ray imaging is preferably performed.
 以上のように、治療ビーム出射不可期間には治療ビーム出射可期間よりもX線撮像の撮像フレームレートを低下させる(フレームレートが0、すなわち撮像しない場合も含む)ように構成したため、常時一定のフレームレートでX線撮像を行う場合に比較して、X線による患者の被曝線量を低減することができ、かつ、治療ビームが出射可である期間には常にX線撮像により臓器位置を確認するため高い位置精度で治療ビームの照射をすることが可能になる。 As described above, since the imaging frame rate of X-ray imaging is reduced in the period during which treatment beam extraction is not possible (including the case where the frame rate is 0, that is, when imaging is not performed) than the period during which treatment beam extraction is possible, Compared with the case of X-ray imaging at a frame rate, the patient exposure dose by X-rays can be reduced, and the organ position is always confirmed by X-ray imaging during a period when the treatment beam can be emitted. Therefore, it is possible to irradiate the treatment beam with high positional accuracy.
実施の形態2.
 図4は実施の形態2による粒子線治療システムの治療ビーム照射のタイムチャートの一例である。現実には、X線画像解析・臓器位置推定装置23が臓器位置を推定し、治療ビームの照射可否を判定してから実際に治療ビームの照射が開始あるいは停止されるまでの間には必ず時間遅れが存在する。本実施の形態2ではこの時間遅れを考慮して、X線撮像期間の開始時間、終了時間を治療ビーム出射可期間の開始時間、終了時間よりも早めにする。
Embodiment 2. FIG.
FIG. 4 is an example of a time chart of treatment beam irradiation of the particle beam therapy system according to the second embodiment. In reality, the X-ray image analysis / organ position estimation apparatus 23 estimates the organ position and determines whether or not the treatment beam can be irradiated until it is actually started or stopped. There is a delay. In the second embodiment, in consideration of this time delay, the start time and end time of the X-ray imaging period are set earlier than the start time and end time of the treatment beam extraction possible period.
 X線撮像期間の開始時間を早めに設定することで、治療ビーム出射可期間開始時に既に臓器が照射範囲内にいるようなケースにおいて、治療ビーム出射可期間の最初から治療ビームを照射することが可能になる。また、X線撮像期間の終了時間を早めに設定することで、無駄なX線照射を低減することができる。 By setting the start time of the X-ray imaging period earlier, in the case where the organ is already within the irradiation range at the start of the treatment beam extraction period, the treatment beam can be irradiated from the beginning of the treatment beam extraction period. It becomes possible. Moreover, useless X-ray irradiation can be reduced by setting the end time of the X-ray imaging period earlier.
実施の形態3.
 図5は、本発明の実施の形態3による粒子線治療システムの構成を示すブロック図である。本実施の形態3では実施の形態1における粒子線治療システムの構成に加え、X線を用いずに患者6の体表位置を検知する体表位置検知器53を備えている。体表位置検知器53は、例えば赤外線センサー等の手段により患者6の腹部の体表面の位置情報をリアルタイムに取得することが可能である。
Embodiment 3 FIG.
FIG. 5 is a block diagram showing the configuration of the particle beam therapy system according to the third embodiment of the present invention. In the third embodiment, in addition to the configuration of the particle beam therapy system in the first embodiment, a body surface position detector 53 that detects the body surface position of the patient 6 without using X-rays is provided. The body surface position detector 53 can acquire position information on the body surface of the abdomen of the patient 6 in real time by means such as an infrared sensor.
 図6に、実施の形態3における治療ビーム照射のタイムチャートを示す。本実施の形態3では、体表面の位置があらかじめ決定された特定の範囲内にあるときを体表位置onと表現し、この期間をX線撮像期間として、この期間においてのみX線撮像が実施される。あるいは、X線撮像期間に所定の第一のフレームレートでX線撮像を実施し、X線撮像期間以外の期間には第一のフレームレートよりも低いフレームレートでX線撮像するようにしてもよい。実施の形態1と同様に、画像解析・臓器位置推定装置23は、撮像されたX線画像を解析し、患部60を有する臓器の現在位置を推定する。臓器の現在位置があらかじめ決定された照射範囲内にあるとき、治療ビーム照射信号を機器制御装置21に送る。ただし前述の通り粒子線発生装置30は治療ビーム出射可がonのときしか治療ビームを出射できないので、結果的にはX線撮像された臓器位置onと、治療ビーム出射可onの双方を同時に満たすときのみ治療ビームが照射されることになる。 FIG. 6 shows a time chart of treatment beam irradiation in the third embodiment. In the third embodiment, when the position of the body surface is within a specific range determined in advance, it is expressed as body surface position on, and this period is set as an X-ray imaging period, and X-ray imaging is performed only during this period. Is done. Alternatively, X-ray imaging may be performed at a predetermined first frame rate during the X-ray imaging period, and X-ray imaging may be performed at a frame rate lower than the first frame rate during a period other than the X-ray imaging period. Good. As in the first embodiment, the image analysis / organ position estimation device 23 analyzes the captured X-ray image and estimates the current position of the organ having the affected part 60. When the current position of the organ is within a predetermined irradiation range, a treatment beam irradiation signal is sent to the device control apparatus 21. However, as described above, since the particle beam generating apparatus 30 can emit the treatment beam only when the treatment beam emission is enabled, as a result, both the organ position on which X-ray imaging was performed and the treatment beam emission enabled on are simultaneously satisfied. Only when will the treatment beam be irradiated.
 前述の体表位置onの判断のための特定の範囲とは、X線画像の臓器位置により治療ビームの照射可否を判定するときの範囲と対応するものであり、施術者により決定される。施術者は患者診断時において、治療に使用するものと同等の体表位置検知器53とX線撮像制御・画像情報取得装置22、画像解析・臓器位置推定装置23とを用いて、体表位置検知器53により取得される体表位置と、X線撮像により推測される体内の患部60を有する臓器位置との相関関係をあらかじめ知っておくことが望ましい。また、体表位置と臓器位置との相関関係が常に完全に再現するわけではないことを考慮し、体表位置onの判断のための範囲を決定する際には適切なマージンを設定し、X線画像の臓器位置により治療ビームの照射可否を判定するときの範囲よりも広い範囲で設定することが望ましい。 The above-mentioned specific range for determining the body surface position on corresponds to the range for determining whether or not treatment beam irradiation is possible based on the organ position of the X-ray image, and is determined by the practitioner. The practitioner uses the body surface position detector 53, the X-ray imaging control / image information acquisition device 22, and the image analysis / organ position estimation device 23 equivalent to those used for treatment at the time of patient diagnosis. It is desirable to know in advance the correlation between the body surface position acquired by the detector 53 and the organ position having the affected part 60 in the body estimated by X-ray imaging. Considering that the correlation between the body surface position and the organ position is not always completely reproduced, an appropriate margin is set when determining the range for determining the body surface position on, and X It is desirable to set a wider range than the range for determining whether or not treatment beam irradiation is possible based on the organ position of the line image.
 体表位置と体内の臓器位置の相関には完全な再現性は無いが、多くの場合ある程度の再現性があることが期待されるので、前記のような構成にすることにより、明らかに患部60を有する臓器位置が特定の範囲内にない時にX線撮像を実施しないためX線による患者の被曝線量を低減することが期待できる。 The correlation between the body surface position and the organ position in the body is not completely reproducible, but in many cases it is expected to have a certain degree of reproducibility. Since the X-ray imaging is not performed when the organ position having the position is not within a specific range, it can be expected that the exposure dose of the patient due to the X-ray is reduced.
 また、図7に示すように、治療ビームが出射可で、かつ体表位置があらかじめ決定された特定の範囲内にあるときのみX線撮像を行うことで、図6に示した動作よりもさらにX線による患者の被曝線量を低減することが期待できる。ここで、実施の形態2で説明したように、治療ビーム出射可の開始時間、終了時間として設定する時間を、実際の治療ビーム出射可期間の開始時間、終了時間よりも早めに設定してもよい。 Further, as shown in FIG. 7, by performing X-ray imaging only when the treatment beam can be emitted and the body surface position is within a predetermined range determined in advance, the operation shown in FIG. It can be expected to reduce the patient's exposure dose by X-rays. Here, as described in the second embodiment, the time set as the start time and end time of the treatment beam extraction allowance may be set earlier than the start time and end time of the actual treatment beam extraction enable period. Good.
 さらに、図3で説明したのと同様、図8に示すように、図7におけるX線撮像offの期間に、すなわちX線撮像期間以外の期間に、X線撮像期間よりもフレームレートを低下させてX線撮像を実施してもよい。あるいは、図6におけるX線撮像offの期間に、X線撮像期間よりも、フレームレートを低下させてX線撮像を実施してもよいのは言うまでもない。 Further, as described in FIG. 3, as shown in FIG. 8, the frame rate is lower than the X-ray imaging period in the X-ray imaging off period in FIG. 7, that is, in a period other than the X-ray imaging period. X-ray imaging may be performed. Alternatively, it goes without saying that the X-ray imaging may be performed at a lower frame rate than the X-ray imaging period in the X-ray imaging off period in FIG.
 なお、図2、図3、図4、図6、図7および図8に示す動作においては、粒子線治療システムが、患者の患部に対して粒子線を出射できる治療ビーム出射可期間と、患者の患部に対して粒子線を出射できない治療ビーム出射不可期間とを有しており、X線撮像期間は、治療ビーム出射可期間の少なくとも一部を含む期間となっている。 2, 3, 4, 6, 7, and 8, the particle beam therapy system is capable of emitting a treatment beam that can emit a particle beam to the affected area of the patient, and the patient. A treatment beam extraction impossible period during which the particle beam cannot be emitted from the affected area, and the X-ray imaging period is a period including at least a part of the treatment beam emission possible period.
実施の形態4.
 図9は実施の形態4による粒子線治療システムの治療ビーム照射のタイムチャートの一例である。本実施の形態4は、加速器1を含む粒子線発生装置30が、患者に照射可能な粒子線を連続して発生できる粒子線治療システムの実施の形態である。粒子線治療システムの構成は、図5に示す構成と同様である。本実施の形態4による粒子線治療システムは、例えば、ボーラスを用いて、粒子線発生装置30から発生される粒子線のエネルギーを変化させずに患者6の患部60全体を照射する、いわゆるブロード照射法などに適用可能である。
Embodiment 4 FIG.
FIG. 9 is an example of a time chart of treatment beam irradiation of the particle beam therapy system according to the fourth embodiment. The fourth embodiment is an embodiment of a particle beam therapy system in which the particle beam generator 30 including the accelerator 1 can continuously generate a particle beam that can be irradiated to a patient. The configuration of the particle beam therapy system is the same as the configuration shown in FIG. The particle beam therapy system according to the fourth embodiment irradiates the entire affected area 60 of the patient 6 without changing the energy of the particle beam generated from the particle beam generator 30 using, for example, a bolus, so-called broad irradiation. Applicable to law.
 体表面の位置があらかじめ決定された特定の範囲内にあるときを体表位置onと表現し、この期間において予め設定したフレームレート(第一のフレームレートとも称する)でX線撮像が実施される。体表位置on以外の期間には、X線撮像の撮像フレームレートを第一のフレームレートよりも低下させる。この場合の撮像フレームレートは0、すなわちX線撮像を行わない場合も含む。画像解析・臓器位置推定装置23は、撮像されたX線画像を解析し、患部60を有する臓器の現在位置を推定する。臓器の現在位置があらかじめ決定された照射範囲内にあるとき、治療ビーム照射信号を機器制御装置21に送る。 When the position of the body surface is within a predetermined range, it is expressed as body surface position on, and X-ray imaging is performed at a preset frame rate (also referred to as a first frame rate) during this period. . In a period other than the body surface position on, the imaging frame rate for X-ray imaging is reduced below the first frame rate. The imaging frame rate in this case is 0, that is, includes the case where X-ray imaging is not performed. The image analysis / organ position estimation device 23 analyzes the captured X-ray image and estimates the current position of the organ having the affected part 60. When the current position of the organ is within a predetermined irradiation range, a treatment beam irradiation signal is sent to the device control apparatus 21.
 実施の形態3で説明したように、体表位置onの判断のための特定の範囲とは、X線画像の臓器位置により治療ビームの照射可否を判定するときの範囲と対応するものであり、施術者により決定される。施術者は患者診断時において、治療に使用するものと同等の体表位置検知器53とX線撮像制御・画像情報取得装置22、画像解析・臓器位置推定装置23とを用いて、体表位置検知器53により取得される患者6の体表位置と、患者6体内のX線撮像により推測される患部60を有する臓器位置との相関関係をあらかじめ知っておくことが望ましい。また、体表位置と臓器位置との相関関係が常に完全に再現するわけではないことを考慮し、体表位置onの判断のための範囲を決定する際には適切なマージンを設定し、X線画像の臓器位置により治療ビームの照射可否を判定するときの範囲よりも広い範囲で設定することが望ましい。 As described in the third embodiment, the specific range for the determination of the body surface position on corresponds to the range for determining whether the treatment beam can be irradiated based on the organ position of the X-ray image, Determined by the practitioner. The practitioner uses the body surface position detector 53, the X-ray imaging control / image information acquisition device 22, and the image analysis / organ position estimation device 23 equivalent to those used for treatment at the time of patient diagnosis. It is desirable to know in advance the correlation between the body surface position of the patient 6 acquired by the detector 53 and the organ position having the affected part 60 estimated by X-ray imaging in the patient 6 body. Considering that the correlation between the body surface position and the organ position is not always completely reproduced, an appropriate margin is set when determining the range for determining the body surface position on, and X It is desirable to set a wider range than the range for determining whether or not treatment beam irradiation is possible based on the organ position of the line image.
 体表位置と体内の臓器位置の相関には完全な再現性は無いが、多くの場合ある程度の再現性があることが期待される。このため、本実施の形態4では、明らかに患部60を有する体内臓器位置が特定の範囲内にない時にX線撮像の頻度を低下、あるいはX線撮像を行わない構成とした。よって、患者に照射可能な粒子線を連続して発生できる粒子線治療システムにおいても、X線による患者の被曝線量を低減することが期待できる。 The correlation between the body surface position and the organ position in the body is not completely reproducible, but in many cases it is expected to have some reproducibility. For this reason, in the fourth embodiment, when the position of the internal organ having the affected part 60 is clearly not within a specific range, the frequency of X-ray imaging is reduced or X-ray imaging is not performed. Therefore, even in a particle beam therapy system that can continuously generate a particle beam that can be irradiated to a patient, it can be expected to reduce the patient's exposure dose due to X-rays.
 以上の各実施の形態における、治療計画装置10、機器制御装置21、X線撮像制御・画像情報取得装置22、画像解析・臓器位置推定装置23は、それぞれ、図10に示すような、プロセッサー11、メモリ12、キーボードやタッチパネルなどの入力インターフェース13、出力インターフェースとしてのディスプレイ14などを備えた一般的な計算機により実現される。また、治療計画装置10、機器制御装置21、X線撮像制御・画像情報取得装置22、画像解析・臓器位置推定装置23は、全てが一台の計算機により構成されてもよい。あるいは、例えば、治療計画装置10と機器制御装置21とが一台の計算機により、X線撮像制御・画像情報取得装置22と画像解析・臓器位置推定装置23とが一台の計算機により構成されても良く、どのような計算機構成であっても構わない。 In each of the above-described embodiments, the treatment planning device 10, the device control device 21, the X-ray imaging control / image information acquisition device 22, and the image analysis / organ position estimation device 23 are each a processor 11 as shown in FIG. It is realized by a general computer including a memory 12, an input interface 13 such as a keyboard and a touch panel, a display 14 as an output interface, and the like. In addition, the treatment planning device 10, the device control device 21, the X-ray imaging control / image information acquisition device 22, and the image analysis / organ position estimation device 23 may all be configured by a single computer. Alternatively, for example, the treatment planning device 10 and the device control device 21 are configured by a single computer, and the X-ray imaging control / image information acquisition device 22 and the image analysis / organ position estimation device 23 are configured by a single computer. Any computer configuration may be used.
 なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 It should be noted that the present invention can be combined with each other within the scope of the present invention, and each embodiment can be appropriately modified or omitted.
1 加速器、2 粒子線、3 真空ダクト、4 照射ノズル、5 照射対象、10 治療計画装置、21 機器制御装置、21 X線撮像制御・画像情報取得装置、22 画像解析・臓器位置推定装置、30 粒子線発生装置、50 X線撮像装置、51a、51b X線管、52a、52b FPD、53 体表位置検知器 1 accelerator, 2 particle beam, 3 vacuum duct, 4 irradiation nozzle, 5 irradiation target, 10 treatment planning device, 21 device control device, 21 X-ray imaging control / image information acquisition device, 22 image analysis / organ position estimation device, 30 Particle beam generator, 50 X-ray imaging device, 51a, 51b X-ray tube, 52a, 52b FPD, 53 Body surface position detector

Claims (7)

  1.  照射対象である患者の患部に照射する粒子線を発生する粒子線発生装置と、
    前記粒子線発生装置により発生された粒子線を前記照射対象に照射する照射ノズルと、
    前記粒子線発生装置および前記照射ノズルを制御する機器制御装置と、
    前記照射対象にX線を照射してX線画像を撮像するX線撮像装置と、
    前記X線撮像装置により撮像されたX線画像を解析して前記患者の患部を有する臓器の位置を推定するX線画像解析臓器位置推定装置とを備え、
    前記機器制御装置は、前記X線画像解析臓器位置推定装置により推定された前記臓器の位置が、予め設定された範囲の位置にあるときに、前記粒子線発生装置および前記照射ノズルを制御して前記粒子線を前記照射対象に照射する粒子線治療システムにおいて、
    当該粒子線治療システムは、前記照射対象に対して粒子線を出射できる治療ビーム出射可期間と、前記照射対象に対して粒子線を出射できない治療ビーム出射不可期間とを有し、
    前記X線撮像装置は、前記治療ビーム出射可期間の少なくとも一部を含む期間であるX線撮像期間に前記照射対象のX線画像の撮像フレームレートを第一のフレームレートとし、前記X線撮像期間以外の期間には、前記撮像フレームレートを前記第一のフレームレートよりも低下させることを特徴とする粒子線治療システム。
    A particle beam generator for generating a particle beam for irradiating an affected area of a patient to be irradiated; and
    An irradiation nozzle for irradiating the irradiation object with the particle beam generated by the particle beam generator;
    An apparatus control device for controlling the particle beam generator and the irradiation nozzle;
    An X-ray imaging device that irradiates the irradiation target with X-rays to capture an X-ray image;
    An X-ray image analysis organ position estimation device that analyzes an X-ray image captured by the X-ray imaging device and estimates a position of an organ having an affected part of the patient;
    The device control device controls the particle beam generation device and the irradiation nozzle when the position of the organ estimated by the X-ray image analysis organ position estimation device is within a preset range. In the particle beam therapy system for irradiating the irradiation target with the particle beam,
    The particle beam therapy system has a treatment beam emission enabled period during which a particle beam can be emitted to the irradiation target, and a treatment beam emission disabled period during which the particle beam cannot be emitted to the irradiation target,
    The X-ray imaging apparatus sets the imaging frame rate of the X-ray image to be irradiated as a first frame rate during an X-ray imaging period that includes at least a part of the therapeutic beam extraction possible period, and performs the X-ray imaging. In a period other than the period, the particle beam therapy system is characterized in that the imaging frame rate is lower than the first frame rate.
  2.  前記X線撮像装置は、前記X線撮像期間以外の期間には、前記撮像フレームレートを0とすることを特徴とする請求項1に記載の粒子線治療システム。 The particle beam therapy system according to claim 1, wherein the X-ray imaging apparatus sets the imaging frame rate to 0 during a period other than the X-ray imaging period.
  3.  前記治療ビーム出射可期間の少なくとも一部を含む期間が、前記治療ビーム出射可期間であることを特徴とする請求項1または2に記載の粒子線治療システム。 The particle beam therapy system according to claim 1 or 2, wherein a period including at least a part of the therapeutic beam extraction period is the therapeutic beam extraction period.
  4.  前記治療ビーム出射可期間の少なくとも一部を含む期間の開始は、当該治療ビーム出射可期間の少なくとも一部を含む期間における前記治療ビーム出射可期間の開始前であり、当該治療ビーム出射可期間の少なくとも一部を含む期間の終了は、該治療ビーム出射可期間の少なくとも一部を含む期間における前記治療ビーム出射可期間の終了前であることを特徴とする請求項1または2に記載の粒子線治療システム。 The start of the period including at least a part of the treatment beam extraction period is before the start of the treatment beam extraction period in the period including at least a part of the treatment beam extraction period. 3. The particle beam according to claim 1, wherein the end of the period including at least a part is before the end of the therapeutic beam extraction possible period in a period including at least a part of the therapeutic beam extraction possible period. Treatment system.
  5.  前記患者の体表位置を検知する体表位置検知器を備え、
    前記X線撮像期間は、前記治療ビーム出射可期間の少なくとも一部を含む期間であって、かつ前記体表位置検知器により検知された体表位置が予め設定された範囲の位置にある期間であることを特徴とする請求項1から4のいずれか1項に記載の粒子線治療システム。
    A body surface position detector for detecting the body surface position of the patient;
    The X-ray imaging period is a period including at least a part of the treatment beam extraction possible period, and the body surface position detected by the body surface position detector is in a position in a preset range. The particle beam therapy system according to any one of claims 1 to 4, wherein the particle beam therapy system is provided.
  6.  照射対象である患者の患部に照射する粒子線を発生する粒子線発生装置と、
    前記粒子線発生装置により発生された粒子線を前記照射対象に照射する照射ノズルと、
    前記粒子線発生装置および前記照射ノズルを制御する機器制御装置と、
    前記照射対象にX線を照射してX線画像を撮像するX線撮像装置と、
    前記X線撮像装置により撮像されたX線画像を解析して前記患者の患部を含む臓器の位置を推定するX線画像解析臓器位置推定装置とを備え、
    前記機器制御装置は、前記X線画像解析臓器位置推定装置により推定された前記臓器の位置が、予め設定された範囲の位置にあるときに、前記粒子線発生装置および前記照射ノズルを制御して前記粒子線を前記照射対象に照射して前記患者の患部を治療する粒子線治療システムにおいて、
    前記患者の体表位置を検知する体表位置検知器を備え、
    前記X線撮像装置は、前記体表位置検知器により検知された体表位置が予め設定された範囲の位置にあるときに、前記照射対象のX線画像の撮像フレームレートを第一のフレームレートとし、前記体表位置検知器により検知された体表位置が予め設定された範囲外の位置にあるときには、前記撮像フレームレートを前記第一のフレームレートよりも低下させることを特徴とする粒子線治療システム。
    A particle beam generator for generating a particle beam for irradiating an affected area of a patient to be irradiated; and
    An irradiation nozzle for irradiating the irradiation object with the particle beam generated by the particle beam generator;
    An apparatus control device for controlling the particle beam generator and the irradiation nozzle;
    An X-ray imaging device that irradiates the irradiation target with X-rays to capture an X-ray image;
    An X-ray image analysis organ position estimation device that analyzes an X-ray image captured by the X-ray imaging device and estimates a position of an organ including the affected part of the patient;
    The device control device controls the particle beam generation device and the irradiation nozzle when the position of the organ estimated by the X-ray image analysis organ position estimation device is within a preset range. In the particle beam therapy system for irradiating the irradiation target with the particle beam to treat the affected area of the patient,
    A body surface position detector for detecting the body surface position of the patient;
    When the body surface position detected by the body surface position detector is within a preset range, the X-ray imaging apparatus sets the imaging frame rate of the X-ray image to be irradiated as a first frame rate. And when the body surface position detected by the body surface position detector is outside a preset range, the imaging frame rate is reduced below the first frame rate. Treatment system.
  7.  前記X線撮像装置は、前記体表位置検知器により検知された体表位置が予め設定された範囲外の位置にあるときには、前記撮像フレームレートを0とすることを特徴とする請求項6に記載の粒子線治療システム。 The X-ray imaging apparatus sets the imaging frame rate to 0 when the body surface position detected by the body surface position detector is outside a preset range. The described particle beam therapy system.
PCT/JP2016/061678 2016-04-11 2016-04-11 Particle beam therapy system WO2017179091A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/061678 WO2017179091A1 (en) 2016-04-11 2016-04-11 Particle beam therapy system
JP2018511549A JP6582128B2 (en) 2016-04-11 2016-04-11 Particle beam therapy system
TW105129755A TWI635884B (en) 2016-04-11 2016-09-13 Particle beam therapy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061678 WO2017179091A1 (en) 2016-04-11 2016-04-11 Particle beam therapy system

Publications (1)

Publication Number Publication Date
WO2017179091A1 true WO2017179091A1 (en) 2017-10-19

Family

ID=60042012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061678 WO2017179091A1 (en) 2016-04-11 2016-04-11 Particle beam therapy system

Country Status (3)

Country Link
JP (1) JP6582128B2 (en)
TW (1) TWI635884B (en)
WO (1) WO2017179091A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108014427A (en) * 2017-12-11 2018-05-11 苏州雷泰医疗科技有限公司 One kind becomes can device and change energy accelerator therapy device and its control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328318A (en) * 1997-05-29 1998-12-15 Hitachi Medical Corp Radiotherapy system
JP2010154874A (en) * 2008-12-26 2010-07-15 Hitachi Ltd Radiotherapy system
JP2012501792A (en) * 2008-09-12 2012-01-26 アキュレイ インコーポレイテッド Control of X-ray imaging based on target movement
JP2013111406A (en) * 2011-11-30 2013-06-10 Hitachi Ltd System and mtehod for charged particle irradiation
WO2014010073A1 (en) * 2012-07-13 2014-01-16 三菱電機株式会社 X-ray positioning apparatus, x-ray positioning method, and image-of-interest imaging method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328318A (en) * 1997-05-29 1998-12-15 Hitachi Medical Corp Radiotherapy system
JP2012501792A (en) * 2008-09-12 2012-01-26 アキュレイ インコーポレイテッド Control of X-ray imaging based on target movement
JP2010154874A (en) * 2008-12-26 2010-07-15 Hitachi Ltd Radiotherapy system
JP2013111406A (en) * 2011-11-30 2013-06-10 Hitachi Ltd System and mtehod for charged particle irradiation
WO2014010073A1 (en) * 2012-07-13 2014-01-16 三菱電機株式会社 X-ray positioning apparatus, x-ray positioning method, and image-of-interest imaging method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108014427A (en) * 2017-12-11 2018-05-11 苏州雷泰医疗科技有限公司 One kind becomes can device and change energy accelerator therapy device and its control method

Also Published As

Publication number Publication date
JP6582128B2 (en) 2019-09-25
TW201735966A (en) 2017-10-16
TWI635884B (en) 2018-09-21
JPWO2017179091A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US8772742B2 (en) Radiation therapy system and method for adapting an irradiation field
JP5094707B2 (en) A system that captures X-ray images by Beams Eye View (BEV) with a wide field of view at the same time as proton therapy
JP6392125B2 (en) Method and apparatus for irradiating a target volume
US20080267349A1 (en) Particle Therapy
US7978817B2 (en) Carrying out and monitoring irradiation of a moving object
JP5735101B2 (en) Particle beam generator and method for controlling the same
US11446520B2 (en) Radiation therapy apparatus configured to track a tracking object moving in an irradiation object
US20100108903A1 (en) Determination of control parameters for irradiation of a moving target volume in a body
JP5916859B2 (en) X-ray positioning apparatus and X-ray positioning method
JP2016144573A (en) Image processing apparatus and particle beam therapeutic apparatus
JP2012532711A (en) Irradiation apparatus control apparatus and control method
WO2017187877A1 (en) Moving body-tracking device and radiation-emitting system
JP6465283B2 (en) Radiation therapy system
WO2018116354A1 (en) Radiation exposure planning device, clinical assessment assistance device, and program
JP6582128B2 (en) Particle beam therapy system
US20110058750A1 (en) Method for registering a first imaging data set with a second imaging data set
WO2017188079A1 (en) Tracking object recognition simulator or marker recognition simulator, moving body tracking device, and irradiation system
US20110057124A1 (en) Radiation therapy apparatus and method for monitoring an irradiation
WO2017085780A1 (en) Treatment planning apparatus
JP7394487B1 (en) Charged particle beam irradiation system
US10293185B2 (en) Irradiation of moving target using particle therapy system
WO2017203997A1 (en) Moving-body tracking apparatus and radiation irradiation system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898552

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898552

Country of ref document: EP

Kind code of ref document: A1