WO2017175957A1 - Eeg 측정용 다채널 미세전극 - Google Patents
Eeg 측정용 다채널 미세전극 Download PDFInfo
- Publication number
- WO2017175957A1 WO2017175957A1 PCT/KR2017/000641 KR2017000641W WO2017175957A1 WO 2017175957 A1 WO2017175957 A1 WO 2017175957A1 KR 2017000641 W KR2017000641 W KR 2017000641W WO 2017175957 A1 WO2017175957 A1 WO 2017175957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microelectrode
- connector
- communication module
- wireless communication
- substrate
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 94
- 238000004891 communication Methods 0.000 claims abstract description 55
- 239000010409 thin film Substances 0.000 claims abstract description 34
- 239000004020 conductor Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 22
- 230000001681 protective effect Effects 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 11
- 239000004642 Polyimide Substances 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 6
- -1 polydimethylsiloxane Polymers 0.000 claims description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 4
- 239000004713 Cyclic olefin copolymer Substances 0.000 claims description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 2
- 238000000537 electroencephalography Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 9
- 229910000679 solder Inorganic materials 0.000 description 8
- 239000010408 film Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 210000004761 scalp Anatomy 0.000 description 3
- 210000003625 skull Anatomy 0.000 description 3
- 229910017750 AgSn Inorganic materials 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 229910005887 NiSn Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 230000007177 brain activity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229910003771 Gold(I) chloride Inorganic materials 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/291—Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
- A61B5/0006—ECG or EEG signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/30—Input circuits therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/16—Details of sensor housings or probes; Details of structural supports for sensors
- A61B2562/166—Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted on a specially adapted printed circuit board
Definitions
- the present invention relates to a multichannel microelectrode for measuring electroencephalography (EEG). More specifically, the present invention relates to a multi-channel microelectrode for measuring EEG connected to a connector using a PCB substrate.
- EEG electroencephalography
- Electroencephalography is a representative biosignal that captures brain activity spatio-temporal and has been widely used in clinical and brain function research. Electroencephalogram measurement involves attaching electrodes to the user's scalp to measure the current generated by brain activity.
- Patent Document 1 uses a polyimide-based microelectrode to induce free movement of an experimental animal from as many sites as possible. At the same time, it shows how to record EEG.
- the microelectrode according to Patent Document 1 is considerably thin at the micrometer level, so that it is not easy to attach the electrode to the connector for connecting to a separate signal acquisition device, and the conductive paste, anisotropic conductive film, solder material (eg, solder paste, Solder preform, solder flux, etc.) or eutectic metal (eg, AuSn, NiSn, AgSn, AuIn, AgIn, etc.), even if the connector is connected to the electrode, there is a problem that the connector is easily detached due to low adhesion to the polyimide substrate.
- solder material eg, solder paste, Solder preform, solder flux, etc.
- eutectic metal eg, AuSn, NiSn, AgSn, AuIn, AgIn, etc.
- the EEG can be stably measured without fear of detachment of the thin electrode and the connector when the object is moved or the connector is separated by improving the adhesion between the thin electrode and the connector applied to the animal. It is required to design the structure of the microelectrode so that it is possible. In addition, a method of introducing a wireless communication module capable of removing a wired signal line that obstructs a subject's movement is required.
- One aspect of the present invention provides a multi-channel microelectrode for measuring EEG in the form of a thin film that can stably measure the EEG without fear of detachment of the thin film-type microelectrode and the connector when the subject moves or separates the coupled connector. I would like to present.
- the present invention also proposes a microelectrode incorporating a wireless communication module that can remove a wired signal line that obstructs the movement of a subject.
- a thin film flexible substrate A conductive material, a ground electrode, a recording electrode, and an interconnection pad formed on the thin film flexible substrate; A first connector or a first wireless communication module; And a first PCB substrate, wherein the ground electrode and the recording electrode are connected to the interconnection pad through the conductive material, and the interconnection pad is fixed to one surface of the first PCB substrate such that the first connector or Provided is a multi-channel microelectrode for measuring EEG, which is connected to a first wireless communication module.
- Another aspect of the present invention provides a multi-channel microelectrode set for EEG measurement, in which a plurality of units of the microelectrode are connected to each microelectrode unit.
- a micro electrode made of a thin flexible flexible substrate having a micrometer-level thickness can be connected to a connector without fear of detachment, so that the EEG can be stably measured without being concerned with the movement of the subject, and the measurement is not performed. It is easy to separate the microelectrode from the subject to provide ease of use.
- FIG. 1 is a configuration diagram in which a microelectrode and a connector are connected on a lower substrate according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating an operation of raising a microelectrode on a lower substrate and attaching a connector thereon according to an embodiment of the present invention.
- FIG. 3 is a configuration diagram in which a microelectrode is inserted between two PCB substrates and a connector is connected to an upper portion according to an embodiment of the present invention.
- FIG. 4 is a working view of placing a microelectrode between two PCB substrates and attaching a connector thereon according to an embodiment of the present invention.
- FIG. 5 is a conceptual diagram illustrating coupling of a lead frame with a connector on a microelectrode according to an embodiment of the present invention.
- FIG. 6 is a configuration diagram in which a microelectrode and a connector are connected on one PCB substrate according to an embodiment of the present invention.
- FIG. 7 is a working view of placing a microelectrode on one PCB substrate and attaching a connector to the upper portion according to an embodiment of the present invention.
- FIG. 8 is a diagram in which a microelectrode is formed as a set of protective substrates on both surfaces of a flexible substrate on which a ground electrode and a recording electrode are positioned in the microelectrode according to an embodiment of the present invention.
- FIG. 9 is a diagram illustrating a flexible substrate on which a ground electrode and a recording electrode are positioned in a microelectrode according to an embodiment of the present invention, adhered to a protective substrate, and the microelectrodes are configured as a set.
- FIG. 10 is a product photograph of the microelectrode (a, b, c, d, e) with a connector manufactured according to an embodiment of the present invention, (c) is provided with a protective substrate on both sides of the electrode portion (D) is packaged in a form in which an electrode portion is adhered to one surface of the protective substrate.
- FIG. 11 is a photograph of a microelectrode prepared according to an embodiment of the present invention on a skull of a mouse and measuring EEG.
- FIG. 11 is a photograph of a microelectrode prepared according to an embodiment of the present invention on a skull of a mouse and measuring EEG.
- first and second used herein may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
- first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
- the present invention solves the problem of weak adhesion between the electrode and the thin film flexible substrate having the electrode, which performs the function of connecting the electrode to the signal acquisition device in measuring the EEG of the subject through the electrode formed on the thin film flexible substrate.
- a new type of microelectrode structure for transmitting a biosignal using a wireless communication module is proposed.
- the multi-channel microelectrode for measuring EEG proposed in the present invention includes a thin film flexible substrate; A conductive material, a ground electrode, a recording electrode, and an interconnection pad formed on the thin film flexible substrate; A first connector or a first wireless communication module; And a first PCB substrate, wherein the ground electrode and the recording electrode are connected to the interconnection pad through the conductive material, and the interconnection pad is fixed to one surface of the first PCB substrate such that the first connector or It may have a structure connected to the first wireless communication module.
- the microelectrode of the present invention is for measuring brain waves of animals including humans, and electrodes are formed on a thin film flexible substrate.
- the flexible substrate is preferably a biocompatible material, and typically, polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), polystyrene (PS), polycarbonate (PC), cyclic olefin copolymer (COC), polyimide (PI), and polyethylene terephthalate (PET). ), but may be made of one or two or more materials selected from the group consisting of polyethylene-naphthalate (PEN), but is not limited thereto.
- the flexible substrate is more elastic than rigid silicon and reduces tissue damage by reducing the incompatibility in the mechanical properties between the electrode and the tissue.
- the thickness of the flexible substrate may be 1 ⁇ 1000 ⁇ m, but is not limited thereto.
- the conductive material 112, the ground electrode 113, the recording electrode 114, and the interconnection pad 115 are formed on the flexible substrate 111.
- the conductive material may be used as a material for forming a connection line for transmitting an EEG signal from an electrode, a contact point of the electrode, and an interconnection pad.
- the conductive material may include Pt, Ag, AgCl, Au, AuCl, Ir and the like. These conductive materials are used to form connecting lines, contact points, and interconnect pads on the flexible substrate by deposition methods such as sputtering, e-beam evaporation, and thermal evaporation.
- the conductive material is patterned on the flexible substrate, and then the biocompatible material material is coated and adhered onto the patterned conductive material. Then, after forming the pattern through the photolithography process, the contact point and the interconnect pad of the electrode are exposed through the selective reactive ion etching (RIE) and the chemical etching process. The above steps are repeated in order to increase the contact point and interconnect pad area of the exposed electrode or to increase the number of contact points and interconnect pads of the electrode.
- RIE reactive ion etching
- the thickness of the thin film flexible substrate 111 including the conductive material 112, the ground electrode 113, the recording electrode 114, and the interconnection pad 115 may be 1 to 1000 ⁇ m. However, the present invention is not limited thereto.
- the ground electrode 113 and the recording electrode 114 are connected to the interconnection pad 115 through the conductive material 112.
- One ground electrode may be formed on each side of the center line as a reference electrode, but is not limited thereto.
- the working electrode may include a contact point and a connection line, and the area of the contact point may be 0.1 to 100 mm 2, but is not limited thereto.
- the recording electrodes may be plural in number, and may be arranged in a line along the plurality of flexible substrates, which may extend from the center line to both sides, respectively.
- the electrodes for human EEG can be positioned according to the 10-20 or 10-10 system usually recommended by the American EEG Society. For example, at standard measurement positions such as Fp1, Fp2, F3, Fz, F4, F7, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2 on the scalp EEG information can be measured, but is not limited thereto.
- the microelectrode (hereinafter, simply referred to as “thin-film microelectrode”) made of a thin film flexible substrate including the conductive material, the ground electrode, the recording electrode, and the interconnection pad separates the EEG signal received from the electrode.
- a wired communication module or a wireless communication module is required.
- a representative example of the wired communication module is a connector.
- examples of the wireless communication module may include an internet module, a short range communication module, and other communication means.
- the internet module refers to a module for internet access, and may be connected to the thin film type microelectrode, embedded in the signal acquisition device, or external.
- Internet technologies may include Wireless LAN (Wi-Fi), Wireless Broadband (Wibro), World Interoperability for Microwave Access (Wimax), High Speed Downlink Packet Access (HSDPA), and the like.
- the short range communication module refers to a module for short range communication.
- Bluetooth Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, etc. may be used.
- RFID Radio Frequency Identification
- IrDA Infrared Data Association
- UWB Ultra Wideband
- ZigBee ZigBee
- the wired communication module (for example, a connector) or the wireless communication module may be integrally formed including a power supply unit.
- the above-described wired communication module (for example, a connector) may be commonly applied to the first connector and the second connector, which will be described later.
- the above-described wireless communication module may be described in detail as follows. It may be applied in common with respect to the second wireless communication module.
- the first method of electrically connecting the ground electrode and the recording electrode to the signal acquisition device through the connector is to fix the thin film type microelectrode on the lower substrate serving as a support and to connect the interconnect pad and the connector of the thin film type microelectrode.
- a conductive paste or an anisotropic conductive film (ACF) e.g., a solder material (eg, solder paste, solder preform, solder flux, etc.) or a eutectic metal (eg, AuSn, NiSn, AgSn, AuIn, AgIn Etc.).
- FIG. 1 a photograph of the microelectrode combined with the connector manufactured as described above is shown in FIG. 10A, which is shown in FIG. 2.
- a circuit board (or PCB board) patterned with an electrical connection line is used instead of a general board to solve the above problem.
- An interconnection pad of the thin film microelectrode 120 may be positioned between two PCB substrates 410 and 420, and a connector 220 or a wireless communication module may be connected to an upper portion thereof.
- the schematic diagram of the manufactured microelectrode is shown in FIG. 3, and a photograph thereof can be confirmed through FIG. 10 (b).
- the microelectrode interconnection pad is positioned between the upper and lower PCB substrates, and the connector or the wireless communication module is attached to the upper PCB substrate.
- the connector or the wireless communication module may be attached to one of the upper PCB board and the lower PCB board or attached to both the upper PCB board and the lower PCB board.
- the interconnection pad is fixed to one surface of the first PCB substrate 410 and connected with the first connector 220 (or the first wireless communication module).
- the first connector 220 (or the first wireless communication module) is fixed to one surface of the second PCB substrate 420, and the other surface of the second PCB substrate 420 is the first PCB substrate 410 and the Contact the interconnect pads.
- the first PCB 410 substrate and the second PCB substrate 420 may be printed on both surfaces of the circuit board.
- a first connector 220 (or a first wireless communication module) is attached to one of the first PCB substrate 410 and the second PCB substrate 420, or the first connector is attached to the first PCB substrate 410.
- 220 (or a first wireless communication module) may be attached, and a second connector (or second wireless communication module) may be attached to the second PCB substrate 420. (Not shown in the second connector (or second wireless communication module))
- a thinner and simpler microelectrode can be obtained.
- weight and volume can be reduced by using one PCB board.
- An interconnection pad of the thin film microelectrode is placed on the PCB substrate, and the interconnection pad and the connector (or wireless communication module) of the thin film microelectrode are connected to each other.
- a connector or a wireless communication module
- a connector allows the interconnection pad and the circuit board of the PCB board to be simultaneously connected.
- a connector or wireless communication module
- This may be fabricated by raising the interconnect pad of the thin film microelectrode 130 on the PCB substrate 430 and attaching a connector 230 (or wireless communication module) thereon. Alternatively, an additional connector may be attached to the lower portion of the PCB board 430.
- the interconnection pad is fixed to one surface of the first PCB substrate 430 and connected with the first connector 230 (or the first wireless communication module).
- the first connector 230 (or the first wireless communication module) is in contact with the first PCB substrate 430 and the interconnection pad so as to be positioned on top of the first PCB substrate 430 and the interconnection pad.
- a second connector (or second wireless communication module) may be attached or fixed to the other surface of the first PCB board 430. (Not shown in the second connector (or second wireless communication module))
- the thin film type microelectrode may be strongly attached to the connector, and the thin and simple structure may reduce the burden on the subject during EEG measurement.
- microelectrode manufactured by the above three methods may be used by combining the connector part with a lead frame 700 as shown in FIG. 5.
- the thin film type microelectrode introduced in the above three methods includes an interconnection pad portion to which a connector (or a wireless communication module) is attached, and an electrode portion that is not attached to the connector (or a wireless communication module), that is, a ground electrode and a recording electrode. It can be divided into the flexible base material area which is located.
- the exposed electrode portion of the flexible substrate 111 constituting the thin film type microelectrode is provided with a protective substrate on one or both surfaces of the flexible substrate. It may be removable.
- the protective substrate may be a sheet or a substrate made of a material of plastics, metals, glass, or paper with pulp added thereto, but is not limited thereto.
- protective substrates 510 and 520 are provided on the upper and lower surfaces of the exposed electrode, respectively. This prevents the electrode part having a thickness of micrometer level from being damaged and provides stability when storing and carrying the microelectrode.
- the protective substrate may be a transparent, translucent, or opaque material. When using a microelectrode, the protective substrate can be removed and the electrode can be used for EEG measurement.
- a cutting line 611 is provided between the interconnect pad portion and the electrode portion to facilitate removal of the protective substrate.
- the thin film type microelectrode provided with the protective substrate on the upper and lower surfaces of the electrode portion exposed through FIG. 10 (c) can be confirmed with a photograph.
- the present invention also provides a multi-channel microelectrode set for measuring EEG, in which a plurality of microelectrode units are connected to each microelectrode unit to be separated.
- the thin film type microelectrode provided with the connector and the protective substrate may be manufactured in a packaged form in which a plurality of thin film electrodes are connected to each other.
- each microelectrode may be provided with an additional cutting line 612 for each microelectrode unit so that the microelectrode may be detached from the set every time it is used.
- the protective substrate 530 is provided only on one surface of the exposed electrode part.
- the electrode part is stuck on the protective base material 530, and when using it, the protective base material 530 can be easily detached and separated.
- the protective substrate is provided only on one surface of the exposed electrode, and the microelectrodes are packaged into a set.
- the microelectrode according to the present invention includes a wireless communication module such as Bluetooth, the microelectrode can acquire a signal even in a wireless electronic device including a portable terminal without the need to receive an EEG signal by wire.
- a wireless communication module such as Bluetooth
- the multi-channel microelectrode for measuring EEG of the present invention includes a plurality of recording electrodes, and an impedance difference due to a difference in distance between these recording electrodes may occur, thereby causing an error in measurement.
- a method of computer programming an error according to the distance difference between the recording electrodes and canceling it from the actual measured EEG signal information may be adopted.
- the photograph of measuring the EEG of the mouse using the prepared microelectrode can be seen through FIG. After vertical dissection of the scalp of the mouse, EEG can be measured by directly placing the microelectrode of the present invention on the skull.
- the microelectrode of the present invention is capable of measuring EEG continuously without fear of detachment of the connector even when the subject moves during EEG measurement. When the microelectrode is not measured, the microelectrode can be immediately removed, and it is easy to carry and store.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
박막형 유연 기재; 상기 박막형 유연 기재 상에 형성된 전도성 물질, 접지전극, 기록전극 및 상호접속패드; 제1 커넥터 또는 제1 무선 통신 모듈; 및 제1 PCB 기판을 포함하며, 상기 접지전극과 상기 기록전극은 상기 전도성 물질을 통해 상기 상호접속패드에 연결되고, 상기 상호접속패드는 상기 제1 PCB 기판의 일면에 고정되어 상기 제1 커넥터 또는 제1 무선 통신 모듈과 연결되는, EEG 측정용 다채널 미세전극이 제공된다. 본 발명에 따르면, 마이크로미터 수준 두께의 박막형 유연 기재로 만들어진 미세 전극을 탈착의 염려없이 커넥터에 연결할 수 있어, 피검체의 움직임에 구애받지 않고 안정적으로 EEG를 측정할 수 있다.
Description
본 발명은 뇌파전위기록(Electroencephalography; EEG) 측정용 다채널 미세전극에 관한 것이다. 보다 상세하게는, PCB 기판을 활용하여 커넥터를 연결한 EEG 측정용 다채널 미세전극에 관한 것이다.
뇌파(Electroencephalography; EEG)란 두뇌의 활동을 시공간적(spatio-temporal)으로 파악하는 대표적인 생체 신호로서, 임상 및 뇌 기능 연구에 폭넓게 이용되어 왔다. 뇌파 측정에는 사용자의 두피에 전극을 붙여 뇌의 활동에 따라 발생되는 전류를 측정하는 방식이 사용된다.
보통 EEG 전극으로 뇌파를 측정하기 위해서는 두개골에 구멍을 뚫어 전극을 이식하는 작업이 수반되었으나, 특허문헌 1에서는 폴리이미드 기반 미세전극을 이용하여 침습적이지 않은 방법으로 자유롭게 움직이는 실험용 동물에서 가능한한 많은 부위로부터 동시에 EEG를 기록하는 방법을 제시하고 있다.
그러나, 특허문헌 1에 따른 미세전극은 마이크로미터 수준으로 상당히 얇아서 전극을 별도의 신호획득장치에 연결하기 위한 커넥터에 부착하기가 쉽지 않고, 전도성 풀, 이방성 전도성 필름, 솔더 물질(가령, Solder paste, Solder preform, Solder flux 등) 또는 공융 금속(가령, AuSn, NiSn, AgSn, AuIn, AgIn 등)으로 커넥터를 전극과 연결하더라도 폴리이미드 기재와의 부착력이 낮아 커넥터가 쉽게 탈착되는 문제가 있었다.
따라서, 동물에 적용되는 박막형태의 미세전극과 커넥터와의 부착력을 개선하여 피검체가 움직이는 경우 또는 결합된 커넥터를 분리하는 경우 박막형태의 미세전극과 커넥터가 탈착되는 염려 없이 안정적으로 EEG를 측정할 수 있도록 미세전극의 구조를 설계하는 것이 요청된다. 또한 피검체의 움직임을 방해하는 유선의 시그널 라인을 제거할 수 있는 무선 통신 모듈을 도입하는 방안이 요청된다.
본 발명의 일 측면은 피검체가 움직이는 경우 또는 결합된 커넥터를 분리하는 경우 박막형태의 미세전극과 커넥터가 탈착되는 염려 없이 안정적으로 EEG를 측정할 수 있는 박막형태의 EEG 측정용 다채널 미세전극을 제시하고자 한다. 또한 피검체의 움직임을 방해하는 유선의 시그널 라인을 제거할 수 있는 무선 통신 모듈을 도입한 미세전극을 제시하고자 한다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 측면은, 박막형 유연 기재; 상기 박막형 유연 기재 상에 형성된 전도성 물질, 접지전극, 기록전극 및 상호접속패드; 제1 커넥터 또는 제1 무선 통신 모듈; 및 제1 PCB 기판을 포함하며, 상기 접지전극과 상기 기록전극은 상기 전도성 물질을 통해 상기 상호접속패드에 연결되고, 상기 상호접속패드는 상기 제1 PCB 기판의 일면에 고정되어 상기 제1 커넥터 또는 제1 무선 통신 모듈과 연결되는, EEG 측정용 다채널 미세전극을 제공한다.
본 발명의 다른 측면은, 상기 미세전극의 단위체가 복수 개 연결되어 각각의 미세전극 단위체가 분리 가능하도록 구성된, EEG 측정용 다채널 미세전극 세트를 제공한다.
본 발명에 의하면, 마이크로미터 수준 두께의 박막형 유연 기재로 만들어진 미세 전극이 탈착의 염려 없이 커넥터에 연결될 수 있어, 피검체의 움직임에 구애되지 않고 안정적으로 EEG를 측정할 수 있고, 측정을 하지 않은 경우에는 피검체로부터 미세전극을 쉽게 분리 가능하여 사용에 편이성을 제공한다.
도 1은 본 발명의 일 실시예에 따른, 하부기판 상에 미세전극과 커넥터가 연결된 구성도이다.
도 2는 본 발명의 일 실시예에 따른, 하부기판 상에 미세전극을 올리고 그 위에 커넥터를 부착하는 작업도이다.
도 3은 본 발명의 일 실시예에 따른, 두 개의 PCB 기판 사이에 미세전극을 삽입하고, 상부에 커넥터가 연결된 구성도이다.
도 4는 본 발명의 일 실시예에 따른, 두 개의 PCB 기판 사이에 미세전극을 위치시키고, 상부에 커넥터를 부착하는 작업도이다.
도 5는 본 발명의 일 실시예에 따른, 미세전극 상의 커넥터와 리드프레임(Lead Fram)을 결합시키는 개념도이다.
도 6는 본 발명의 일 실시예에 따른, 하나의 PCB 기판 상에 미세전극과 커넥터가 연결된 구성도이다.
도 7은 본 발명의 일 실시예에 따른, 하나의 PCB 기판 상에 미세전극을 위치시키고, 상부에 커넥터를 부착하는 작업도이다.
도 8은 본 발명의 일 실시예에 따른, 미세전극에서 접지전극과 기록전극이 위치하는 유연 기재의 양면에 보호 기재를 구비하고 미세전극을 세트로 구성한 그림이다.
도 9은 본 발명의 일 실시예에 따른, 미세전극에서 접지전극과 기록전극이 위치하는 유연 기재를 보호 기재에 점착하고 미세전극을 세트로 구성한 그림이다.
도 10은 본 발명의 일 실시예에 따라 제조된 커넥터가 부착된 미세전극들(a, b, c, d, e)의 제품 사진이며, (c)는 전극 부위의 양면에 보호 기재를 구비한 것이고, (d)는 보호 기재의 일면에 전극 부위가 점착된 형태로 패키지화된 것이다.
도 11은 본 발명이 일 실시예에 따라 제조된 미세전극을 마우스의 두개골 위에 올려놓고 EEG를 측정하는 사진이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 본 명세서에서 사용되는 제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성 요소로 명명될 수 있고, 유사하게 제 2 구성 요소도 제 1 구성 요소로 명명될 수 있다.
본 발명은 박막형 유연 기재 상에 형성된 전극을 통하여 피검체의 EEG를 측정함에 있어서, 전극을 신호획득장치에 연결하는 기능을 수행하는 커넥터와 전극이 형성된 박막형 유연 기재와의 약한 부착력에 따른 문제점을 해소하고, 무선 통신 모듈을 이용하여 생체신호를 전달하는 새로운 형태의 미세전극 구조를 제안하고자 한다.
본 발명에서 제안하는 EEG 측정용 다채널 미세전극은, 박막형 유연 기재; 상기 박막형 유연 기재 상에 형성된 전도성 물질, 접지전극, 기록전극 및 상호접속패드; 제1 커넥터 또는 제1 무선 통신 모듈; 및 제1 PCB 기판을 포함하며, 상기 접지전극과 상기 기록전극은 상기 전도성 물질을 통해 상기 상호접속패드에 연결되고, 상기 상호접속패드는 상기 제1 PCB 기판의 일면에 고정되어 상기 제1 커넥터 또는 제1 무선 통신 모듈과 연결되는 구조일 수 있다.
본 발명의 미세전극은 사람을 비롯한 동물의 뇌파를 측정하기 위한 것으로서, 박막형 유연 기재에 전극이 형성되어 있다. 상기 유연 기재는 생물적합성 소재가 바람직하며, 대표적으로 PMMA(Polymethylmethacrylate), PDMS(polydimethylsiloxane),PS(polystyrene), PC(polycarbonate), COC(cyclic olefin copolymer), PI(polyimide), 및 PET(polyethylene terephthalate), PEN(polyethylene-naphthalate)으로 이루어지는 군에서 선택되는 1종 또는 2종 이상의 재료로 이루어질 수 있으나, 이에 제한되는 것은 아니다. 유연 기재는 단단한 실리콘에 비하여 탄성이 있고, 전극과 조직 간의 역학적 특성에 있어서의 부적합을 줄여주어 조직 손상을 줄여준다. 또한, 상기 유연 기재의 두께는 1~1000㎛일 수 있으나, 이에 제한되는 것은 아니다.
상기 유연 기재(111) 상에는 전도성 물질(112), 접지전극(113), 기록전극(114) 및 상호접속패드(115)가 형성된다. 상기 전도성 물질은 전극으로부터 뇌파 신호를 전달하는 연결선, 전극의 접촉점, 상호접속패드를 구성하는 재료로 사용될 수 있다. 상기 전도성 물질로는 Pt, Ag, AgCl, Au, AuCl, Ir 등을 들 수 있다. 이들 전도성 물질을 이용하여 상기 유연 기재 상에 스퍼터링, 전자빔 증발법(e-beam evaporation), 열증착법(Thermal evaporation) 과 같은 증착 방법에 의하여 연결선, 전극의 접촉점, 및 상호접속패드를 형성한다.
가령, 유연 기재 상에 전도성 물질을 패턴화하고 나서, 생물접합성 소재 물질을 패턴화된 전도성 물질 위에 코팅, 접착한다. 그리고 나서, 광리소그라피 공정을 통하여 패턴을 형성한 후 선택적인 반응성 이온 에칭(Reactive Ion Etching, RIE), 케미컬 에칭 공정을 통하여 상기 전극의 접촉점 및 상호접속패드가 노출되도록 한다. 노출 전극의 접촉점, 상호접속패드 면적을 키우거나 전극의 접촉점 수, 상호접속패드의 수를 늘리기 위해 상기의 공정을 반복해서 진행한다.
이와 같이 제작한 것으로, 상기 전도성 물질(112), 접지전극(113), 기록전극(114) 및 상호접속패드(115)를 포함하는 박막형 유연 기재(111)의 두께는 1~1000㎛일 수 있으나, 이에 제한되는 것은 아니다. 상기 접지전극(113)과 상기 기록전극(114)은 상기 전도성 물질(112)을 통해 상기 상호접속패드(115)에 연결된다.
상기 접지전극은 기준전극(reference electrode)으로서 중심선의 양쪽에 각각 1개씩 형성될 수 있으나, 이에 제한되는 것은 아니다.
상기 기록전극(working electrode)은 접촉점과 연결선을 포함할 수 있으며, 상기 접촉점의 면적은 0.1~100㎟일 수 있으나, 이에 제한되는 것은 아니다. 상기 기록전극은 복수 개이며, 중심선으로부터 양쪽으로 각각 나란하게 뻗은 복수 개의 상기 유연 기재를 따라 일렬로 배열될 수 있다.
상기 기록전극들의 위치를 결정함에 있어서, 인간 EEG를 위한 전극의 경우 보통 어메리칸 EEG 소사이어티 (American EEG Society) 에 의하여 권장되는 10-20 또는 10-10 시스템에 따라 위치할 수 있다. 예를 들어, 두피 상의 Fp1, Fp2, F3, Fz, F4, F7, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2와 같은 표준 측정 위치에서의 뇌파 정보를 측정할 수 있으나 이에 한정되는 것은 아니다.
상술한 바와 같이, 상기 전도성 물질, 접지전극, 기록전극 및 상호접속패드를 포함하는 박막형 유연 기재로 이루어지는 미세전극(이하, 간략히 “박막형 미세전극”라 함)은 전극에서 수신된 뇌파 신호를 별도의 신호획득장치로 연결하기 위해서 유선 통신 모듈 또는 무선 통신 모듈이 필요하다.
상기 유선 통신 모듈의 대표적인 예로 커넥터를 들 수 있다.
또한, 상기 무선 통신 모듈의 예로는 인터넷 모듈, 근거리 통신 모듈, 기타 통신 수단 등을 포함할 수 있다.
인터넷 모듈은 인터넷 접속을 위한 모듈을 말하는 것으로, 상기 박막형 미세전극에 연결되거나, 상기 신호획득장치에 내장되거나 외장될 수 있다. 인터넷 기술로는 WLAN(Wireless LAN)(Wi-Fi), Wibro(Wireless broadband), Wimax(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access) 등이 이용될 수 있다.
근거리 통신 모듈은 근거리 통신을 위한 모듈을 말한다. 근거리 통신(short range communication) 기술로 블루투스(Bluetooth), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee 등이 이용될 수 있다.
상기 유선 통신 모듈(예를 들어, 커넥터) 또는 상기 무선 통신 모듈은 전원부를 포함하여 일체형으로 구성될 수 있다.
상술한 유선 통신 모듈(예를 들어, 커넥터)에 관한 내용은 후술하는 제1 커넥터 및 제2 커넥터에 관하여 공통적으로 적용될 수 있으며, 상술한 무선 통신 모듈에 관한 내용은 후술하는 제1 무선 통신 모듈 및 제2 무선 통신 모듈에 관하여 공통적으로 적용될 수 있다.
커넥터를 통하여 접지전극과 기록전극을 신호획득장치에 전기적으로 연결시키는 첫 번째 방법으로는 지지체가 되는 하부기판 위에 박막형 미세전극을 고정시키고 상기 박막형 미세전극의 상호접속패드와 커넥터가 연결되도록 접착시킨다. 이때, 전도성 풀(silver paste) 또는 이방성 전도성 필름(anisotropic conductive film, ACF), 솔더 물질(가령, Solder paste, Solder preform, Solder flux 등) 또는 공융 금속(가령, AuSn, NiSn, AgSn, AuIn, AgIn 등)을 사용한다. 이와 같이 제작된 커넥터가 결합된 미세전극의 구성도는 도 1을 통해, 그 사진은 도 10(a)를 확인할 수 있다, 이는 도 2에 도시한 바와 같이, 하부기판(310) 상에 박막형 미세전극(110)의 상호접속패드(115)가 위치하도록 올리고 그 위에 커넥터(210)를 부착하여 제작한다. 이 경우에는 필름 형태의 유연 기재의 특성상 커넥터와의 부착력이 약하다는 문제점이 있다. 정적인 상태에서도 부착력이 약하지만, EEG 측정 도중에 피검체가 움직이는 상황이 발생하거나 피검체로부터 커넥터를 떼어낼 경우 커넥터가 박막형 미세전극으로부터 분리되는 문제가 발생할 수도 있다.
두 번째 방법으로는, 위의 문제점을 보완하기 위하여 일반적인 기판 대신에 전기적 연결선이 패터닝된 회로기판(또는 PCB 기판)을 이용한다. 두 개의 PCB 기판(410, 420) 사이에 박막형 미세전극(120)의 상호접속패드를 위치시키고, 상부에 커넥터(220) 또는 무선 통신 모듈을 연결할 수 있다. 이와 같이 제작된 미세전극의 구성도는 도 3을 통해, 그 사진은 도 10(b)를 통해 확인할 수 있다. 작업과정은 도 4에 도시한 바와 같이, 상부와 하부의 PCB 기판 사이에 미세전극의 상호접속패드가 위치하도록 하고 상부의 PCB 기판 상에 커넥터 또는 무선 통신 모듈을 부착하여 제작한다. 이 경우, 커넥터 또는 무선 통신 모듈은 상부 PCB 기판과 하부 PCB 기판 중 일방에 부착하거나 상부 PCB 기판 및 하부 PCB 기판 쌍방에 부착할 수도 있다.
즉, 상호접속패드는 제1 PCB 기판(410)의 일면에 고정되어 제1 커넥터(220)(또는 제1 무선 통신 모듈)와 연결된다. 상기 제1 커넥터(220)(또는 제1 무선 통신 모듈)는 제2 PCB 기판(420)의 일면에 고정되고, 상기 제2 PCB 기판(420)의 타면이 상기 제1 PCB 기판(410) 및 상기 상호접속패드에 접촉하도록 할 수 있다. 상기 제1 PCB(410) 기판과 상기 제2 PCB 기판(420)은 양면에 회로가 인쇄된 형태일 수 있다. 또한, 제1 PCB 기판(410)과 상기 제2 PCB 기판(420) 중 일방에 제1 커넥터(220)(또는 제1 무선 통신 모듈)가 부착되거나, 제1 PCB 기판(410)에 제1 커넥터(220)(또는 제1 무선 통신 모듈)가 부착되고 제2 PCB 기판(420)에 제2 커넥터(또는 제2 무선 통신 모듈)가 부착될 수 있다. (제2 커넥터(또는 제2 무선 통신 모듈) 미도시함)
이 경우에는 PCB 기판이 두 개가 소요되므로 무게 및 부피감이 다소 클 수 있다.
세 번째 방법으로는, 좀더 경박, 단소하게 미세전극을 구할 수 있다. 두 번째 방법에서는 PCB 기판을 두 개 사용하였다면, PCB 기판을 하나 사용함으로써 무게 및 부피감을 줄일 수 있다. PCB 기판 상에 박막형 미세전극의 상호접속패드를 위치시키고 상기 박막형 미세전극의 상호접속패드와 커넥터(또는 무선 통신 모듈)가 연결되도록 접합시킨다. 이때, 커넥터(또는 무선 통신 모듈)는 상기 상호접속패드와 상기 PCB 기판의 회로에 동시에 연결되도록 한다. 가령, 커넥터(또는 무선 통신 모듈)는 상기 상호접속패드와 상기 PCB 기판의 회로에 동시에 접촉하도록 구성할 수 있다. 이와 같이 제작된 미세전극의 구성도는 도 6을 통해, 그 사진은 도 10(d)를 통해 확인할 수 있다. 이는, 도 7에 도시한 바와 같이, PCB 기판(430) 상에 박막형 미세전극(130)의 상호접속패드가 위치하도록 올리고 그 위에 커넥터(230)(또는 무선 통신 모듈)를 부착하여 제작할 수 있다. 또는 PCB 기판(430)의 하부에 추가적인 커넥터를 부착할 수도 있다.
즉, 상호접속패드는 제1 PCB 기판(430)의 일면에 고정되어 제1 커넥터(230)(또는 제1 무선 통신 모듈)와 연결된다. 상기 제1 커넥터(230)(또는 제1 무선 통신 모듈)는 상기 제1 PCB 기판(430) 및 상기 상호접속패드와 접촉하여 상기 제1 PCB 기판(430) 및 상기 상호접속패드의 상부에 위치하게 된다. 또는 상기 제1 PCB 기판(430)의 타면에 제2 커넥터(또는 제2 무선 통신 모듈)가 부착 또는 고정될 수도 있다. (제2 커넥터(또는 제2 무선 통신 모듈) 미도시함)
이 경우 박막형 미세전극이 강하게 커넥터와 부착될 수 있으며, 경박, 단소한 구조로 EEG 측정시 피검체에 가해지는 부담을 줄일 수 있다.
상술한 세 가지 방법에 의해 제작된 미세전극은 도 5에 도시한 바와 같이 커넥터 부분을 리드프레임(Lead Frame)(700)과 결합하여 사용할 수도 있다.
상술한 세 가지 방법에서 소개한 박막형 미세전극은 커넥터(또는 무선 통신 모듈)가 부착된 상호접속패드 부분과, 커넥터(또는 무선 통신 모듈)가 부착되지 않고 노출된 전극부, 즉 접지전극 및 기록전극이 위치하는 유연 기재 영역으로 나뉠 수 있다.
박막형 미세전극을 이루는 유연 기재(111) 중에서 노출된 전극부, 즉 접지전극(113) 및 기록전극(114)이 위치하는 영역은 유연 기재의 일면 또는 양면에 보호 기재가 구비되며, 상기 보호 기재는 분리 제거 가능한 것일 수 있다. 상기 보호 기재로는 플라스틱류, 금속류, 유리류, 또는 펄프가 가미된 종이류의 재료로 이루어진 시트 또는 기판일 수 있으나, 이에 제한되는 것은 아니다.
도 8을 참조하면, 노출된 전극부의 상면 및 하면에 각각 보호 기재(510, 520)를 구비하고 있다. 이는 마이크로미터 수준의 두께를 가지는 전극부가 손상되는 것을 방지하고, 미세전극의 보관 및 휴대시 안정성을 제공한다. 상기 보호 기재는 투명, 반투명, 또는 불투명한 소재를 사용할 수 있다. 미세전극을 사용시에는 보호 기재를 떼어내고 EEG 측정을 위하여 전극부를 사용 가능하다. 상호접속패드부와 전극부 사이에 절단선(611)을 두어 보호 기재를 떼어내기 용이하도록 한다. 도 10(c)를 통해 노출된 전극부의 상면 및 하면에 각각 보호 기재가 구비된 박막형 미세전극을 사진으로 확인할 수 있다.
본 발명에서는 미세전극의 단위체가 복수 개 연결되어 각각의 미세전극 단위체가 분리 가능하도록 구성된, EEG 측정용 다채널 미세전극 세트(set)를 제공하기도 한다.
커넥터와 보호 기재가 구비된 박막형 미세전극은 여러 개가 연결되어 세트로 패키지화된 형태로 제작될 수도 있다. 이때, 각각의 미세전극은 일회적으로 사용시마다 셋트에서 떼어내어 사용 가능하도록 각각의 미세전극 단위별로 추가적인 절단선(612)을 구비할 수 있다.
보호 기재를 구비하는 다른 방법으로 도 9을 참조하면, 노출된 전극부의 일면에만 보호 기재(530)를 구비하고 있다. 이 경우, 전극부가 보호 기재(530) 상에 점착되어 있어, 사용시에는 간편하게 보호 기재(530)를 떼어내어 분리 가능하다.
역시 보호 기재 제거를 용이하게 할 수 있도록 상호접속패드부와 전극부 사이에 절단선(621)을 두고 있다. 또한, 패키지화된 박막형 미세전극으로부터 단위 미세전극을 떼어내어 사용할 수 있도록 추가적인 절단선(622)을 두고 있다.
도 10(e)의 사진을 통해 노출된 전극부의 일면에만 보호 기재를 구비하고, 미세전극들을 세트로 패키지화한 형태를 확인할 수 있다.
본 발명에 따른 미세전극은 블루투스와 같은 무선 통신 모듈을 구비함으로써, 유선으로 뇌파 신호를 전달받을 필요 없이 간단히 휴대용 단말기를 비롯한 무선 전자기기에서도 신호를 획득할 수 있다.
또한, 본 발명의 EEG 측정용 다채널 미세전극은 다수의 기록 전극을 구비하고 있고 이들 기록 전극들 사이의 거리 상의 차이로 인한 임피던스 차이가 발생하여, 측정에 있어서 오차가 발생할 수도 있다. 이러한 문제를 해결하고 균일한 임피던스를 적용하기 위하여 각각의 기록 전극들 사이의 거리 차에 따른 오차를 컴퓨터 프로그램화하여 실제 측정된 뇌파 신호정보에서 상쇄시키는 방법을 채택할 수도 있다.
이와 같이 제작된 미세전극을 사용하여 마우스의 EEG를 측정하는 사진을 도 11을 통해 확인할 수 있다. 마우스의 두피를 수직 절개한 후 두개골 위에 본 발명의 미세전극을 직접 올려서 EEG를 측정할 수 있다.
본 발명의 미세전극은 EEG 측정 도중 피검체가 움직여도 커넥터의 탈착 염려 없이 연속적으로 EEG의 측정이 가능하며, 측정하지 않는 경우에는 바로 전극을 제거가능하며, 휴대 및 보관이 간편하다는 특징이 있다.
Claims (13)
- 박막형 유연 기재; 상기 박막형 유연 기재 상에 형성된 전도성 물질, 접지전극, 기록전극 및 상호접속패드; 제1 커넥터 또는 제1 무선 통신 모듈; 및 제1 PCB 기판을 포함하며,상기 접지전극과 상기 기록전극은 상기 전도성 물질을 통해 상기 상호접속패드에 연결되고,상기 상호접속패드는 상기 제1 PCB 기판의 일면에 고정되어 상기 제1 커넥터 또는 제1 무선 통신 모듈과 연결되는, EEG 측정용 다채널 미세전극.
- 제 1항에 있어서,상기 제1 커넥터 또는 제1 무선 통신 모듈은 상기 제1 PCB 기판 및 상기 상호접속패드와 접촉하여 상기 제1 PCB 기판 및 상기 상호접속패드의 상부에 위치하는 것인, EEG 측정용 다채널 미세전극.
- 제 1항에 있어서,상기 제1 커넥터 또는 제1 무선 통신 모듈은 양면에 회로가 인쇄된 제2 PCB 기판의 일면에 고정되고, 상기 제2 PCB 기판의 타면이 상기 제1 PCB 기판 및 상기 상호접속패드에 접촉하는 것인, EEG 측정용 다채널 미세전극.
- 제 1항에 있어서,상기 제1 PCB 기판은 양면에 회로가 인쇄된 형태이며, 상기 제1 PCB 기판의 타면에 제2 커넥터 또는 제2 무선 통신 모듈이 고정되어 이루어진, EEG 측정용 다채널 미세전극.
- 제 4항에 있어서,상기 제1 무선 통신 모듈 및 상기 제2 무선 통신 모듈은 인터넷 모듈 또는 근거리 통신 모듈인 것인, EEG 측정용 다채널 미세전극.
- 제 4항에 있어서,상기 제1 커넥터, 상기 제1 무선 통신 모듈, 상기 제2 커넥터, 또는 상기 제2 무선 통신 모듈은 전원부를 포함하는 것인, EEG 측정용 다채널 미세전극.
- 제 4항에 있어서,상기 제1 커넥터, 상기 제1 무선 통신 모듈, 상기 제2 커넥터, 또는 상기 제2 무선 통신 모듈은 상기 접지전극 및 상기 기록전극을 신호획득장치에 연결하는 기능을 수행하는 것인, EEG 측정용 다채널 미세전극.
- 제 1항에 있어서,상기 박막형 유연 기재 중에서 상기 접지전극 및 상기 기록전극이 위치하는 영역에 있어서, 상기 유연 기재의 일면 또는 양면에 보호 기재가 구비되며, 상기 보호 기재는 분리 제거 가능한 것인, EEG 측정용 다채널 미세전극.
- 제 1항에 있어서,상기 박막형 유연 기재는 PMMA(Polymethylmethacrylate), PDMS(polydimethylsiloxane),PS(polystyrene), PC(polycarbonate), COC(cyclic olefin copolymer), PI(polyimide), 및 PET(polyethylene terephthalate), PEN (polyethylene-naphthalate)으로 이루어지는 군에서 선택되는 1종 또는 2종 이상의 재료로 이루어지는 것인, EEG 측정용 다채널 미세전극.
- 제 1항에 있어서,상기 전도성 물질, 접지전극, 기록전극 및 상호접속패드를 포함하는 상기 박막형 유연 기재의 두께는 1~1000㎛인 것인, EEG 측정용 다채널 미세전극.
- 제 1항에 있어서,상기 기록전극은 접촉점 및 연결선을 포함하고, 상기 접촉점의 면적은 0.1~100㎟인 것인, EEG 측정용 다채널 미세전극.
- 제 1항에 있어서,상기 기록전극은 복수 개이며, 중심선으로부터 양쪽으로 각각 나란하게 뻗은 복수 개의 상기 유연 기재를 따라 일렬로 배열되는 것인, EEG 측정용 다채널 미세전극.
- 제 8항에 따른 미세전극의 단위체가 복수 개 연결되어 각각의 미세전극 단위체가 분리 가능하도록 구성된, EEG 측정용 다채널 미세전극 세트.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160041683A KR101749511B1 (ko) | 2016-04-05 | 2016-04-05 | Eeg 측정용 다채널 미세전극 |
KR10-2016-0041683 | 2016-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017175957A1 true WO2017175957A1 (ko) | 2017-10-12 |
Family
ID=59282802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/000641 WO2017175957A1 (ko) | 2016-04-05 | 2017-01-19 | Eeg 측정용 다채널 미세전극 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101749511B1 (ko) |
WO (1) | WO2017175957A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110074778A (zh) * | 2019-05-29 | 2019-08-02 | 北京脑陆科技有限公司 | 一种基于eeg设备的大规模脑电睡眠监测系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200416389Y1 (ko) * | 2006-03-04 | 2006-05-15 | (주)피지오랩 | 피부전위 검출용 전극 패드 |
KR20100039617A (ko) * | 2008-10-08 | 2010-04-16 | 한국과학기술연구원 | 실험용 동물 eeg 측정용 박막형 다채널 미세전극 및 미세전극을 이용한 실험용 동물 eeg 측정 방법 |
KR20120016474A (ko) * | 2010-08-16 | 2012-02-24 | 삼성전자주식회사 | 생체용 전극 및 이를 포함하는 생체신호 측정장치 |
US20130060098A1 (en) * | 2009-12-23 | 2013-03-07 | Delta, Dansk Elektronik, Lys Og Akustik | Monitoring device |
WO2015054312A1 (en) * | 2013-06-03 | 2015-04-16 | Mc10, Inc. | Conformal sensor systems for sensing and analysis |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101033907B1 (ko) | 2010-02-23 | 2011-05-11 | 한국과학기술연구원 | 미세전극 어레이 제조방법 및 이를 이용한 커넥터 연결방법 |
-
2016
- 2016-04-05 KR KR1020160041683A patent/KR101749511B1/ko active IP Right Grant
-
2017
- 2017-01-19 WO PCT/KR2017/000641 patent/WO2017175957A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200416389Y1 (ko) * | 2006-03-04 | 2006-05-15 | (주)피지오랩 | 피부전위 검출용 전극 패드 |
KR20100039617A (ko) * | 2008-10-08 | 2010-04-16 | 한국과학기술연구원 | 실험용 동물 eeg 측정용 박막형 다채널 미세전극 및 미세전극을 이용한 실험용 동물 eeg 측정 방법 |
US20130060098A1 (en) * | 2009-12-23 | 2013-03-07 | Delta, Dansk Elektronik, Lys Og Akustik | Monitoring device |
KR20120016474A (ko) * | 2010-08-16 | 2012-02-24 | 삼성전자주식회사 | 생체용 전극 및 이를 포함하는 생체신호 측정장치 |
WO2015054312A1 (en) * | 2013-06-03 | 2015-04-16 | Mc10, Inc. | Conformal sensor systems for sensing and analysis |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110074778A (zh) * | 2019-05-29 | 2019-08-02 | 北京脑陆科技有限公司 | 一种基于eeg设备的大规模脑电睡眠监测系统 |
Also Published As
Publication number | Publication date |
---|---|
KR101749511B1 (ko) | 2017-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9072448B2 (en) | Electrode system with rigid-flex circuit | |
CN109843154B (zh) | 用于测量发色团浓度的改变的测量装置和设备 | |
US7826882B2 (en) | Electrode lead set for measuring physiologic information | |
US8364238B2 (en) | Electrode system | |
EP2892422B1 (en) | Electrode array and method of measuring using it | |
WO2016208912A1 (ko) | 전기 자극 및 생체 전위 측정 장치 | |
WO2018110927A1 (ko) | 패치형 센서모듈 | |
JP2002502655A (ja) | 汎用心電図センサ位置決め装置および方法 | |
EP3179907A1 (en) | Ecg patch and methods of use | |
WO2019156493A1 (en) | Electronic device including detachable measurement module and attachment pad | |
WO2010082748A2 (ko) | 동잡음 제거를 위한 광전용적맥파 계측용 센서모듈의 형태 및 방법 | |
JP7097891B2 (ja) | 電気生理測定用電極キャリア | |
WO2015076462A1 (ko) | 생체 신호를 측정하는 방법 및 장치 | |
WO2017026796A1 (ko) | 패치형 심전도 센서 | |
WO2017175957A1 (ko) | Eeg 측정용 다채널 미세전극 | |
WO2012026638A1 (ko) | 스포이트가 체결된 생체 의료용 전극 | |
WO2017086591A1 (ko) | 스마트 밴드용 유연기판 모듈 | |
JP2003070759A (ja) | 携帯型心電計及びその装着方法並びに使用方法 | |
Mohammadi et al. | A compact ECoG system with bidirectional capacitive data telemetry | |
CN114391816A (zh) | 智能健康监护贴 | |
CN114699082A (zh) | 柔性可穿戴式表面肌电传感器 | |
CN108392197A (zh) | 一种导电贴膜及心电监测装置 | |
WO2020162650A1 (ko) | R2r 그라비아 인쇄 방법을 이용한 전기화학 센서 태그 제조 방법 | |
US11399762B1 (en) | Modular electroencephalograph (EEG) system | |
Geng | Hybrid integration of active bio-signal cable with intelligent electrode: steps toward wearable pervasive-healthcare applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17779258 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17779258 Country of ref document: EP Kind code of ref document: A1 |