WO2017175866A1 - 多能性幹細胞から、内胚葉系細胞を選択的に誘導する方法 - Google Patents
多能性幹細胞から、内胚葉系細胞を選択的に誘導する方法 Download PDFInfo
- Publication number
- WO2017175866A1 WO2017175866A1 PCT/JP2017/014563 JP2017014563W WO2017175866A1 WO 2017175866 A1 WO2017175866 A1 WO 2017175866A1 JP 2017014563 W JP2017014563 W JP 2017014563W WO 2017175866 A1 WO2017175866 A1 WO 2017175866A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- anterior
- definitive endoderm
- posterior
- medium
- Prior art date
Links
Images
Definitions
- the present application selectively induces definitive endoderm subtypes that are deeply involved in the differentiation of pluripotent stem cells into specific endoderm lineage cells, thereby leading to anterior and posterior foregut from pluripotent stem cells, and
- the present invention relates to a method for selectively inducing the middle hindgut.
- the present application also relates to a method for selectively inducing desired endoderm cells further than any one of anterior foregut, posterior foregut and middle hindgut.
- Human pluripotent stem cells such as human embryonic stem cells (hESC) or human induced pluripotent stem cells (hiPSC), differentiate into cells that make up endoderm organs such as pancreas, liver, lung and small intestine It has been reported in recent years (Non-Patent Documents 5-7, 14, 17, 18, 21, 25, 27). In these reports, human pluripotent stem cells are induced into definitive endoderm cells via primitive streak (PS), and then induced into various endoderm cells. It is said that definitive endoderm cell induction from human pluripotent stem cells can be confirmed by the expression of two known definitive endoderm marker genes, SOX17 and FOXA2.
- definitive endoderm cells are classified into two different populations, anterior definitive endoderm cells (Anterior Definitive Endoderm) and posterior definitive endoderm cells (Posterior Definitive Endoderm). These cells are further suggested to be patterned along the anteroposterior axis of the embryo and differentiated into separate cells (28).
- Definitive endoderm cells are formed through primitive streak cells (Non-patent Documents 1, 20, and 23).
- the formation of primitive streak is an indispensable step for the differentiation of definitive endoderm, and if there is no formation of primitive streak, it is said that a defect occurs in the formation of definitive endoderm (Non-patent Documents 3 and 26).
- Prototype fate map experiments using mouse embryos indicate that definitive endoderm progenitor cells are found in anterior primitive streak cells that express the T-box transcription factor, Eomesodermin (Eomes) (non- Patent Documents 4, 10, and 23).
- Eomes Eomesodermin
- FBS fetal bovine serum
- WNT3A Wingless-type MMTV integration site family
- member 3A BMP: bone morphogenetic protein
- FGF fibroblast growth factor
- PI3K inhibitor inositol phospholipid 3 kinase inhibitor.
- Pagliuca FW, Millman, JR, Guertler, M., Segel, M., Van Dervort, A., Ryu, JH, Peterson, QP, Greiner, D., Melton, DA, 2014. Generation of functional human cells in vitro. Cell 159, 428-439.
- Smad2 signaling in extraembryonic tissues determines anterior-posterior polar Watson, CL, Mahe, MM, Munera, J., Howell, JC, Sundaram, N., Poling, HM, Schweitzer, JI, Vallance, JE, Mayhew, CN, Sun, Y., Grabowski, G., Finkbeiner SR, Spence, JR, Shroyer, NF, Wells, JM, Helmrath, MA, 2014.
- the present application aims to provide a method of selectively inducing a definitive endoderm subtype that differentiates from a mammalian pluripotent stem cell into a specific endoderm cell. It is another object of the present application to provide a method for selectively inducing the anterior foregut and posterior foregut and the middle foregut through each definitive endoderm subtype of pluripotent stem cells. It is another object of the present application to provide a method for selectively inducing differentiation from pluripotent stem cells to desired endoderm cells.
- the present application differentiates anterior and primitive developmental anterior streak cells (Anterior Primitive Streak, APS) from pluripotent stem cells, and three different types of definitive endoderm cell subpopulations: anterior to the definitive endoderm Selective differentiation into domain (Anterior domain of Anterior Definitive Endoderm, AADE) cells, anterior definitive endoderm posterior domain (Posterior domain of Anterior Definitive Endoderm, PADE) cells, and posterior definitive endoderm (Posterior Definitive Endoderm, PDE) cells Provide a way to make it happen.
- AADE anterior domain of Anterior Definitive Endoderm
- PADE anterior definitive endoderm posterior domain
- posterior definitive endoderm Posterior Definitive Endoderm, PDE
- the present application further includes a source selected from the group consisting of Posterior ⁇ Foregut (PFG) cells, Anterior ⁇ Foregut (AFG) cells and Midhindgut (MHG) cells from these definitive endoderm cell populations, respectively.
- PFG Posterior ⁇ Foregut
- AFG Anterior ⁇ Foregut
- MHG Midhindgut
- the present application relates to a definitive body selected from the group consisting of pluripotent stem cells, anterior definitive endoderm anterior domain (AADE) cells, anterior definitive endoderm definitive domain (PADE) cells, and posterior definitive endoderm (PDE) cells.
- AADE anterior definitive endoderm anterior domain
- PADE anterior definitive endoderm definitive domain
- PDE posterior definitive endoderm
- a method for selectively inducing germ cell subpopulation comprising the following steps (i) and (ii): (I) culturing pluripotent stem cells in a medium containing activin A and a GSK3 ⁇ inhibitor to obtain early anterior primitive streak cells or late anterior primitive streak cells, and (ii) the obtained early anterior primitive Striatal cells, or late anterior primitive streak cells, are cultured in a medium containing activin A and with or without a BMP inhibitor to produce anterior definitive endoderm anterior domain cells, anterior definitive endoderm Obtaining domain cells or posterior definitive endoderm cells.
- the present application further includes a subpopulation of definitive endoderm cells selected from the group consisting of anterior definitive endoderm anterior domain (AADE) cells, anterior definitive endoderm posterior domain (PADE) cells, and posterior definitive endoderm (PDE) cells.
- Gastrointestinal tract selected from the group consisting of anterior foregut (AFG) cells, posterior foregut (PFG) cells, and midhindgut (MHG) cells, comprising a step of culturing in a medium containing no stimulating factor GT) A method of inducing into a cell is provided.
- the present application provides a method for inducing anterior foregut cells, posterior foregut cells, and middle and foregut cells from pluripotent stem cells via three patterns of definitive endoderm cells.
- the anterior foregut is differentiated into the middle ear, thymus, thyroid, trachea, lungs, and esophagus
- the posterior foregut is differentiated into the stomach, duodenum, pancreas, and liver
- the midhindgut cells are differentiated into the small and large intestines It is known. That is, differentiation induction from human pluripotent stem cells to desired cells can be selectively and reliably performed by the method of the present application.
- Also included in the present application is a method of further differentiation-inducing cells from the anterior foregut cells, posterior foregut cells or mid-hind enterocytes obtained by the method of the present application to obtain cells constituting each endoderm organ.
- Immunostaining was performed for AFP, a marker for hepatoblasts. Representative images of 3 independent experiments are shown. Scale bar, 100 ⁇ m.
- Immunostaining was performed for HNF1 ⁇ , HNF4 ⁇ and SOX2 in gastrointestinal (GT) stage cells derived from hiPSC in two ways. In addition, SOX2 and AFP were immunostained for cells in the late gastrointestinal (LGT) stage induced thereafter. Scale bar 100 ⁇ m.
- APS anterior primitive streak
- AFG anterior foregut
- LAFG anterior foregut region of late gastrulation.
- hiPSC-derived late gastrulation (LGT) cells were differentiated into ALB (+) hepatocyte-like cells. Scale bar, 100 ⁇ m.
- hiPSC-derived late gastrulation (LGT) cells were differentiated into NKX2.1 (+) alveolar progenitor cells. Scale bar, 100 ⁇ m.
- PCA Principal component analysis
- hiPSC human induced pluripotent stem cells
- LAFG anterior foregut region
- LPFG posterior foregut region
- a heat map showing the difference in gene expression profiles between the anterior definitive endoderm anterior domain (AADE) and the anterior definitive endoderm posterior domain (PADE).
- APS anterior primitive streak
- AFG anterior foregut
- PFG posterior foregut.
- BRACHYURY, EOMES and CDX2 were immunostained for early and late anterior primitive streak (APS) cells.
- Scale bar 100 ⁇ m.
- Two types of definitive endoderm cells were immunostained for SOX17 and FOXA2 (B). Scale bar, 100 ⁇ m.
- AADE Anterior domain of anterior definitive endoderm
- PDE Posterior definitive endoderm Immunostaining images of gastrointestinal (GT) stage cells for HNF1 ⁇ , HNF4 ⁇ and CDX2. Scale bar, 100 ⁇ m.
- PFG Posterior foregut
- MHG Middle hindgut Results of qRT-PCR analysis of CDX2 mRNA expression at various differentiation stages.
- LAPS Late anterior primitive streak
- PDE Posterior definitive endoderm
- MHG Middle hindgut
- the anterior definitive endoderm anterior domain AADE
- the anterior definitive endoderm posterior domain PADE
- the posterior definitive endoderm PDE
- PFG posterior foregut
- AFG anterior foregut
- ACG anterior foregut
- G midhind gut
- APS anterior primitive streak
- GT gastrulation
- the definitive endoderm cell subpopulation (Posterior domain of Anterior Definitive) that differentiates into the anterior foregut but not into the posterior foregut Endoderm, PADE cells), but if a BMP inhibitor is not included, confirms that it induces a DE cell subpopulation (Anterior domain of Anterior Definitive Endoderm, AADE cells) that differentiates into the posterior foregut (FIG. 2).
- AADE produced from human iPS cells is the cell that will be the future posterior foregut region formed before Noggin and Chordin are expressed in the primitive nodules, while PADE is the effect of Noggin and Chordin from the primitive nodules It is the cell that will be the future anterior foregut region formed below.
- Human iPS cell-derived posterior definitive endoderm Posterior Definitive Endoderm, PDE is induced from late APS and differentiates into mid-hind enterocytes (Fig. 5B).
- a pluripotent stem cell is a stem cell that has pluripotency that can be differentiated into all cells existing in a living body and also has proliferative ability.
- Embryonic stem (ES) cells JA Thomson et al. (1998), Science 282: 1145-1147; JA Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92: 7844-7848; JA Thomson et al. (1996), Biol. Reprod., 55: 254-259; JA Thomson and VS Marshall (1998), Curr. Top. Dev. Biol., 38: 133-165), clones obtained by nuclear transfer Embryonic-derived embryonic stem (ntES) cells (T.
- ntES nuclear transfer Embryonic-derived embryonic stem
- Pluripotent stem (iPS) cells K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676; K. Takahashi et al. (2007), Cell, 131: 861-872; J. Yu et al. (2007), Science, 318: 1917-1920; Nakagawa, M., et al., Nat.NBiotechnol. 26: 101-1062008 (2008); WO2007 / 069666
- many derived from cultured fibroblasts and bone marrow stem cells include functional cells (Muse cells) (WO2011 / 007900).
- human pluripotent stem cells are used.
- the pluripotent stem cells used in the method of the present application may be cultured in a single cell state by being substantially separated (or dissociated) by any method, or cell aggregates in which cells adhere to each other You may culture in a state. More preferably, the cells are cultured in a single cell state.
- the separation method include mechanical separation and separation solution having protease activity and collagenase activity (for example, trypsin and collagenase-containing solution Accutase (TM) and Accumax (TM) (Innovative Cell Technologies, Inc) ) Or separation using a separation solution having only collagenase activity.
- Pluripotent stem cells can be adherently cultured using a coated culture dish.
- the culture temperature is not limited to the following, but is about 30 to 40 ° C., preferably about 37 ° C.
- the culture is performed in an atmosphere of CO 2 -containing air, and the CO 2 concentration is Preferably it is about 2 to 5%.
- Step (i) of the present application is a step of culturing pluripotent stem cells in a medium containing activin A and a GSK3 inhibitor.
- the medium used in step (i) can be prepared by appropriately adding activin A to a basal medium used for culturing animal cells.
- a basal medium for example, MEM Zinc Option medium, IMEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI Examples include 1640 medium, Fischer's medium, and mixed media thereof.
- the basal medium may contain serum (eg, fetal bovine serum (FBS)) or may be serum free.
- serum eg, fetal bovine serum (FBS)
- albumin, transferrin, KnockOut Serum Replacement (KSR) serum substitute for ES cell culture
- KSR KnockOut Serum Replacement
- N2 supplement Thermo Fisher Scientific
- B27 supplement Thermo Fisher Scientific
- fatty acid fatty acid
- Insulin fetal bovine serum
- Thermo Fisher Scientific N2 supplement
- B27 supplement Thermo Fisher Scientific
- fatty acid fatty acid
- Insulin collagen precursors
- trace elements 2-mercaptoethanol
- 3'-thiol glycerol and other serum replacements, including lipids, amino acids, L-glutamine, GlutaMAX (Thermo Fisher Scientific)
- NEAA non-essential amino acids
- the medium used in step (i) may further contain a ROCK inhibitor.
- the ROCK inhibitor is not particularly limited as long as it can suppress the function of Rho-kinase (ROCK).
- ROCK Rho-kinase
- Y-27632 eg, Ishizaki et al., Mol. Pharmacol. 57, 976-983 (2000) Narumiya et al., Methods Enzymol. 325,273-284 (2000)
- Fasudil / HA1077 eg, Uenata et al., Nature 389: 990-994 (1997)
- SR3677 eg, Feng Y et al. , J Med Chem.
- ROCK inhibitors for example, US Patent Application Publication Nos. 2005/0209261, 2005/0192304, 2004/0014755, 2004/0002508,. 2004/0002507, 2003/0125344, 2003/0087919, and International Publications 2003/062227, 2003/059913, 2003/062225, 2002/076976 No., 2004/039796.
- one or more ROCK inhibitors may be used.
- Preferred ROCK inhibitors used in this step include Y-27632, Fasudil / HA1077, SR3677, GSK269962 and H-1152.
- the concentration in the medium is 0.1 ⁇ M to 100 ⁇ M, preferably 1 ⁇ M to 500 ⁇ M, more preferably 5 ⁇ M to 200 ⁇ M, for example, about 10 ⁇ M.
- concentration in the medium is 0.1 ⁇ M to 100 ⁇ M, preferably 1 ⁇ M to 500 ⁇ M, more preferably 5 ⁇ M to 200 ⁇ M, for example, about 10 ⁇ M.
- when “about” is accompanied by a numerical value it includes up to ⁇ 30%, ⁇ 20%, or ⁇ 10% of the numerical value.
- activin A activin derived from mammals such as humans and mice can be used.
- activin used in the present invention it is preferable to use activin derived from the same animal species as the pluripotent stem cell used for differentiation.
- human-derived pluripotent stem cell is used as a starting material. It is preferable to use it.
- These activins are commercially available.
- the concentration of activin A in the medium is usually 0.1 to 200 ng / ml, for example 5 to 150 ng / ml, preferably 80 to 120 ng / ml, particularly preferably about 100 ng / ml.
- a GSK3 inhibitor is defined as a substance that inhibits the kinase activity of GSK-3 ⁇ protein (for example, phosphorylation ability for ⁇ -catenin), and many are already known.
- BIO indirubin derivative BIO (also known as GSK-3 ⁇ inhibitor IX; 6-bromoindirubin 3′-oxime), a maleimide derivative SB216763 (3- (2,4-dichlorophenyl) -4- (1-methyl-1H-indol-3-yl) ) -1H-pyrrole-2,5-dione), SB415286 (3-[(3-chloro-4-hydroxyphenyl) amino] -4- (2-nitrophenyl) -1H-pyrrole-2,5-dione) , GSK-3 ⁇ inhibitor VII (4-dibromoacetophenone), a phenyl ⁇ bromomethyl ketone compound, L803-mts (also known as GSK-3 ⁇ peptide inhibitor; Myr-N-GKE
- a relatively low concentration of GSK3 ⁇ inhibitor is used in order to obtain Early Early APS cells.
- “Relatively low concentration” means that the concentration is lower than that in the case of inducing the late front primitive streak (LateLAPS) described below.
- the concentration in the medium may be 1 ⁇ M to less than 4 ⁇ M, for example, 1.5 ⁇ M to 3.5 ⁇ M, preferably about 3 ⁇ M.
- the generation of the early primordial streak can be confirmed by the fact that the cells express BRACHYURY and EOMES and do not express CDX2.
- a relatively high concentration of GSK3 ⁇ inhibitor is used to obtain late anterior primitive streak (LateLAPS) cells.
- concentration in the medium for obtaining late anterior primitive streak (Late APS) cells may be 4 ⁇ M or more, for example, 4 ⁇ M to 15 ⁇ M, preferably about 8 ⁇ M.
- the generation of late anterior primitive streak cells can be confirmed by the cells expressing BRACHYURY, EOMES and CDX2.
- the culture days in step (i) may be 12 hours to 36 hours, for example, about 1 day.
- the pluripotent stem cells are expressed in early anterior primitive streak cells (cultured in the presence of a relatively low concentration of GSK3 ⁇ inhibitor) or late anterior primitive streak cells (comparison) In the presence of a high concentration of GSK3 ⁇ inhibitor).
- step (ii) the cells obtained in step (i) are cultured in a medium containing activin A and containing or not containing a BMP inhibitor. What is necessary is just to select suitably from the well-known basal medium for animal cultures similar to process (i) as a basal medium used for process (ii).
- the basal media may be the same or different in steps (i) and (ii).
- activin A may be added to a medium obtained by adding fetal calf serum to RPMI1640 as a basal medium.
- the type and amount of activin A may be the same as in step (i).
- BMP inhibitors include proteinaceous inhibitors such as Chordin, Noggin, Follistatin, Dorsomorphin 6- [4- (2-piperidin-1-yl-ethoxy) phenyl] -3-pyridin-4-yl-pyrazolo [1, 5-a] pyrimidine, its derivatives (P. B. Yu et al. (2007), Circulation, 116: II_60; PB Yu et al. (2008), Nat. Chem. Biol., 4: 33-41; J . Hao et al.
- LDN-193189 (4- (6- (4- (piperazin-1-yl) phenyl) pyrazolo [1,5-a] pyrimidin -3-yl) quinoline), and LDN-193189 is preferably used.
- the concentration may be, for example, 100-1000 nM, 300-700 nM, for example, about 500 nM.
- the culture period in step (ii) may be 36 to 60 hours, for example, about 2 days.
- three types of subpopulations of definitive endoderm cells can be selectively obtained. That is, (1) When the early anterior primitive streak cells are cultured in the presence of activin A and a BMP inhibitor, posterior domain (PADE) cells of the anterior definitive endoderm are obtained. (2) When the anterior primordial streak cells are cultured under conditions where activin A is present but no BMP inhibitor is present, anterior definitive endoderm anterior domain (AADE) cells are obtained. (3) When the late anterior primitive streak cells are cultured under conditions where activin A is present but no BMP inhibitor is present, posterior definitive endoderm (PDE) cells are obtained. All definitive endoderm cells express SOX17 and FOXA2.
- the present application includes an anterior foregut (AFG) cell, anterior posterior, comprising the step (iii) of culturing the PADE cell, AADE cell, or PDE cell obtained in step (ii) in a medium not containing a differentiation-inducing factor. Further provided is a method of obtaining intestinal (PFG) cells, or middle hindgut (MHG) cells.
- AFG anterior foregut
- PEG intestinal
- MHG middle hindgut
- the basal medium used in this step may be appropriately selected from those described in step (i).
- Examples of the basal medium include IMEM Zinc Option medium.
- the basal medium is used without adding actin, GSK3 ⁇ inhibitor, BMP inhibitor or other differentiation inducer.
- the basal medium to be used may contain one or more substances listed in the above step (i) and other substances added to a normal animal cell culture medium.
- the culture period in step (iii) may be 3-8 days, for example, about 6 days.
- Step (iii) induces PADE cells into the anterior foregut (AFG) cells, AADE cells into the posterior foregut (PFG) cells, and PDE cells into the midhindgut (MHG) cells.
- First Embodiment A method for producing an anterior foregut cell from a human pluripotent stem cell via a posterior domain cell of the anterior definitive endoderm, comprising the following steps (i-1) to (iii-1) : (I-1) a step of culturing pluripotent stem cells in a medium containing activin A and a relatively low concentration of a GSK3 ⁇ inhibitor, and (ii-1) the cells obtained in the step (i-1) are activin A step of culturing in a medium containing A and a BMP inhibitor, and (iii-1) a step of culturing the cells obtained in the step (ii-1) in a medium containing no differentiation-inducing factor.
- a method for producing posterior foregut cells from human pluripotent stem cells via anterior definitive endoderm anterior domain cells comprising the following steps (i-2) to (iii-2) : (I-2) culturing pluripotent stem cells in a medium containing activin A and a relatively low concentration of GSK3 ⁇ inhibitor; (Ii-2) culturing the cells obtained in the step (i-2) in a medium containing activin A, and (iii-2) differentiating the cells obtained in the step (ii-2).
- a step of culturing in a medium containing no inducer comprising the following steps (i-2) to (iii-2) : (I-2) culturing pluripotent stem cells in a medium containing activin A and a relatively low concentration of GSK3 ⁇ inhibitor; (Ii-2) culturing the cells obtained in the step (i-2) in a medium containing activin A, and (iii-2) differentiating the cells obtained in the step (ii-2).
- a method for producing a middle hindgut cell from a pluripotent stem cell via a posterior definitive endoderm cell comprising the following steps (i-3) to (iii-3): (I-3) a step of culturing pluripotent stem cells in a medium containing activin A and a relatively high concentration of GSK3 ⁇ inhibitor, and (ii-3) the cells obtained in the step (i-3), A step of culturing in a medium containing activin A, and (iii-3) a step of culturing the cells obtained in the step (ii-3) in a medium containing no differentiation-inducing factor.
- AFG cells differentiate into cells that make up the middle ear, thymus, thyroid, trachea, lungs, and esophagus.
- PFG is differentiated into cells that make up the stomach, duodenum, pancreas and liver.
- MHG is differentiated into cells constituting the small and large intestines.
- HiPSC colonies cultured to 80% confluence were separated into single cells by 0.5 mM EDTA by an enzymatic method.
- the cells were added with 100 ng / ml recombinant human / mouse / rat activin A and 3 ⁇ M CHIR99021 (Axon Medchem, Groningen, Netherlands) for early APS induction, and 100 ng for late APS induction.
- Late APS cells were treated with RPMI 1640 medium supplemented with 2% (vol / vol) B27 supplement (GFR-B27), 50 U / ml P / S and 100 ng / ml activin A for 2 days Cultured and induced into posterior definitive endoderm (PDE) cells.
- RPMI 1640 medium supplemented with 2% (vol / vol) B27 supplement (GFR-B27), 50 U / ml P / S and 100 ng / ml activin A for 2 days Cultured and induced into posterior definitive endoderm (PDE) cells.
- LGT cells Differentiation into liver and lung lineage cells
- the obtained LGT cells were transformed into the previously reported differentiation protocol (Kajiwara M et al., 2012, Proc Natl Acad Sci USA 109, 12538-12543, Gotoh S et al., 2014, Stem Cell Reports 3, 394-403.)
- hepatocyte-like cells Differentiation into hepatocyte-like cells Using hiPSC-derived LGT cells obtained in 1.4, 20 ng / mL recombinant human hepatocyte growth factor (HGF; PeproTech, Rocky Hill, NJ) and 20 ng / mL recombinant human oncostatin M ( The cells were cultured in a hepatocyte culture medium containing OsM; PeproTech) for 6 days to induce differentiation into hepatocyte-like cells.
- HGF human hepatocyte growth factor
- OsM PeproTech
- HiPSC-derived LGT cells obtained in 1.4 were obtained from 1 ⁇ B27 and N2 supplements (Thermo Fisher Scientific), 50 U / ml P / S, 0.05 mg / ml L-ascorbic acid (Sigma- Aldrich, Tokyo, Japan), 0.4 mM monothioglycerol (Wako), 100 ng / ml recombinant human bone morphogenetic protein (BMP) 4 (R & D Systems), 0.5 ⁇ M all-trans retinoic acid (ATRA; Sigma-Aldrich) and The cells were cultured for 4 days in DMEM / F12 medium (Thermo Fisher Scientific) containing Glutamax containing 3.5 ⁇ M CHIR99021.
- DMEM / F12 medium Thermo Fisher Scientific
- Immunostaining Cells were fixed with 4% paraformaldehyde (PFA) / PBS for 20 minutes at 4 ° C. After washing with PBS, the cells were blocked with 5% normal donkey serum (Funakoshi, Tokyo, Japan) / PBST (PBS / 0.1% Triton X-100) for 1 hour at room temperature. The primary antibody was diluted with blocking solution and incubated with the sample overnight at 4 ° C. After washing 3 times with PBS, the cells were incubated with the secondary antibody for 1 hour at room temperature.
- PFA paraformaldehyde
- PBS normal donkey serum
- PBST PBS / 0.1% Triton X-100
- PCR was performed.
- the PCR cycle was as follows: for the housekeeping gene ⁇ -ACTIN, initial denaturation for 2.5 minutes at 94 ° C, followed by 94 ° C for 30 seconds, 60 ° C for 1 minute, 72 ° C for 30 seconds. 25 cycles and a final extension reaction were performed at 72 ° C. for 10 minutes.
- qPCR was performed using Step One Plus Real-Time PCR System (Applied Biosystems) and SYBR Green PCR Master Mix (Takara). Denaturation was performed at 95 ° C. for 30 seconds, followed by 24 cycles of 95 ° C. for 5 seconds and 60 ° C. for 30 seconds. As recommended by the manufacturer, the threshold cycle method was used to analyze the gene expression level data and calibrate to the gene expression level of ⁇ -ACTIN. PCR reactions were performed in triplicate for each sample. Table 3 shows the primer sequences used.
- RNA sequencing 100 ng of total RNA from cultured cells was subjected to library preparation using KAPA stranded mRNA-seq Kits (KAPA Biosystems, Woburn, Mass.) According to the manufacturer's instructions.
- the library was sequenced in HiSeq2500 100-cycle single-read mode. All sequence read data was extracted in FASTQ format using BCL2FASTQ Conversion Software 1.8.4 in CASAVA 1.8.2 pipeline. Map the sequence reading data to the hg19 reference gene downloaded on April 25, 2014 using Tophat v2.0.14. Calculation of gene expression values, and normalize it by RPKMforgenes (10th December 2012). The level was expressed as log 2 (RPKM + 1).
- a heat map of gene expression was created by the heatmap.2 function of the R 3.2.1 gplots library. Two-way hierarchical clustering of gene expression of tissue and cell samples was performed using the hclust function of R3.2.1.
- DE cells are A single cell type pluripotent endoderm progenitor cell that can differentiate into any endoderm cell (FIG. 1A, left), 2) DE cells contain multiple types of lineage-determined endoderm progenitor cell populations (FIG. 1A, right).
- the DE cells are a single type of pluripotent endoderm progenitor cells, even if the DE cells are induced by different differentiation protocols, they are uniformly endodermal cells, for example It was hypothesized that it could be differentiated into late fetal (LGT) stage alpha-fetoprotein (AFP) (+) cells, ie hepatoblasts.
- LGT late fetal
- AFP alpha-fetoprotein
- AFP (+) from hiPSC by modifying a previously reported induction protocol for liver lineage cells (Takebe, T. et al., 2014, Nat Protoc 9, 396-409.).
- a direct differentiation method into cells was developed. Induction of APS by treatment with activin A and CHIR99021, followed by treatment with activin A alone, is very efficient in SOX17 (+) FOXA2 (+) DE cells (FIG. 1B Method 1, FIG. 1C top). Induced.
- LGT-stage AFP (+) cells were generated from DE cells by treatment with BMP4 and fibroblast growth factor 2 (FGF2) (upper figure in FIG. 1D).
- DE cells By removing exogenous mesodermal differentiation signals such as BMP and neutralizing endogenous BMP using the BMP antagonist noggin or the BMP receptor inhibitor LDN193189, DE cells It has been reported that it can be derived from APS cells (Non-patent Document 11). We confirmed that SOX17 (+) FOXA2 (+) DE cells were reliably generated from APS cells by treatment with activin A and LDN193189 (FIG. 1B method 2, FIG. 1C lower figure). However, the latter cells could not be differentiated into AFP (+) cells by treatment with BMP4 and FGF2 (lower figure in FIG. 1D). These data show that DE cells derived from hiPSC using different protocols differ in their ability to differentiate into AFP-positive late gastrulation foregut region cells. That is, the fate of differentiating into various endoderm cells was already restricted at the DE stage, and it was found that the model diagram shown on the right side of FIG. 1A was correct.
- hiPSC-derived LGT cells were used from the LGT cells produced by Method A or B using the previously reported methods (Non-Patent Documents 6 and 7). Differentiation into progenitor cells was induced. It was confirmed that hiPSC-derived LGT cells induced by method A differentiated into ALBUMIN (ALB) (+) cells, but not differentiated into ventral anterior foregut cells of NKX2.1 (+) (FIG. 2D, 2E top). In contrast, LGT cells induced by Method B differentiated into NKX2.1 (+) cells without differentiating into AFP (+) or ALB (+) cells (FIG. 2D, 2E lower panel).
- ALBUMIN ALBUMIN
- DE cells induced by Method A are anterior definitive endoderm anterior domain (AADE) cells that produce the posterior foregut region of GT and LGT cells
- DE cells induced by Method B Suggests that the anterior definitive endoderm posterior domain (PADE) cells differentiate into the anterior foregut region of GT and LGT cells.
- AADE anterior definitive endoderm anterior domain
- PADE anterior definitive endoderm posterior domain
- the cells were further cultured for 2 days in the presence of 100 ng / ml of activin A.
- the obtained cells were positive for SOX17 (+) FOXA2 (+), and definitive endoderm cells were It was confirmed that it was generated (lower figure in FIG. 4B).
- the cells were further cultured for 3 days without adding exogenous inducers.
- the ability of the resulting cells to develop into the endoderm system was examined, and differentiated cells that were positively stained for HNF1 ⁇ , HNF4 ⁇ , and CDX2, which are markers of the middle hindgut, were found (lower panel in FIG. 4C).
- definitive endoderm cells contain a plurality of subtypes, and each differentiates into a specific endoderm lineage (FIG. 5B). Moreover, the method of selectively deriving each subtype of definitive endoderm cells from pluripotent stem cells was established (FIG. 5A).
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
多能性幹細胞から前方胚体内胚葉の前方ドメイン(AADE)細胞、前方胚体内胚葉の後方ドメイン(PADE)細胞、および後方胚体内胚葉(PDE)細胞からなる群から選ばれる胚体内胚葉細胞のサブポピュレーションへと選択的に誘導する方法であって、以下の工程(i)および(ii)を含む方法: (i)多能性幹細胞をアクチビンAとGSK3β阻害剤を含む培地中で培養して、前期前方原始線条細胞または後期前方原始線条細胞を得る工程、および (ii)得られた前期前方原始線条細胞、または後期前方原始線条細胞を、アクチビンAを含み、かつBMP阻害剤を含む、または含まない培地中で培養して、前方胚体内胚葉の前方ドメイン細胞、前方胚体内胚葉の後方ドメイン細胞または後方胚体内胚葉細胞を得る工程。胚体内胚葉のサブポピュレーションより、所望の内胚葉系細胞へ分化誘導できる。
Description
本願は、多能性幹細胞から特定の内胚葉系の細胞への分化に深く関与する胚体内胚葉サブタイプを選択的に誘導することによって、多能性幹細胞から前方前腸および後方前腸、および中後腸を選択的に誘導する方法に関する。本願はまた、前方前腸、後方前腸および中後腸のいずれかよりさらに所望の内胚葉系細胞を選択的に誘導する方法に関する。
ヒト胚性幹細胞(hESC)またはヒト人工多能性幹細胞(hiPSC)などの、ヒト多能性幹細胞(hPSC)は、膵臓、肝臓、肺および小腸などの内胚葉系臓器を構成する細胞に分化し得ることが、近年報告されている(非特許文献5-7、14、17、18、21、25、27)。これらの報告において、ヒト多能性幹細胞は、原始線条(PS)を経て胚体内胚葉細胞に誘導され、その後、各種内胚葉系細胞へと誘導される。ヒト多能性幹細胞からの胚体内胚葉細胞誘導は、2つの既知の胚体内胚葉マーカー遺伝子、SOX17およびFOXA2の発現により確認できるとされている。
脊椎動物の発生において、胚体内胚葉細胞は2つの異なる集団、前方胚体内胚葉細胞(Anterior Definitive Endoderm)および後方胚体内胚葉細胞(Posterior Definitive Endoderm)に分類されることが知られている。これらの細胞はさらに、胚の前後軸に沿ってパターン形成され、それぞれ別個の細胞へと分化されると示唆されている(非特許文献28)。
胚体内胚葉細胞は、原始線条細胞を経て形成される(非特許文献1、20、23)。原始線条の形成は、胚体内胚葉の分化に不可欠なステップであり、原始線条の形成がなければ、胚体内胚葉の形成に欠陥が生じるとされている(非特許文献3、26)。マウス胚を用いた予定運命地図の実験から、胚体内胚葉の前駆細胞が、T-box転写因子、 Eomesodermin (Eomes)を発現する前方原始線条細胞内に認められることが示されている(非特許文献4、10、23)。前方胚体内胚葉細胞および後方胚体内胚葉細胞が、異なる発生段階の原始線条に由来することを示唆する報告がある(非特許文献13)。
これまで、表1に示すような種々の方法を用いてヒト多能性幹細胞から胚体内胚葉細胞を誘導することが報告されている。
Arnold, S.J., Sugnaseelan, J., Groszer, M., Srinivas, S., Robertson, E.J., 2009. Generation and analysis of a mouse line harboring GFP in the Eomes/Tbr2 locus. Genesis 47, 775-781.
Bossard, P., Zaret, K.S., 2000. Repressive and restrictive mesodermal interactions with gut endoderm: possible relation to Meckel's Diverticulum. Development 127, 4915-4923.
Conlon, F.L., Lyons, K.M., Takaesu, N., Barth, K.S., Kispert, A., Herrmann, B., Robertson, E.J., 1994. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120, 1919-1928.
Costello, I., Pimeisl, I.M., Draeger, S., Bikoff, E.K., Robertson, E.J., Arnold, S.J., 2011. The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat Cell Biol 13, 1084-1091.
Ghaedi, M., Niklason, L.E., Williams, J., 2015. Development of Lung Epithelium from Induced Pluripotent Stem Cells. Curr Transplant Rep 2, 81-89.
Gotoh, S., Ito, I., Nagasaki, T., Yamamoto, Y., Konishi, S., Korogi, Y., Matsumoto, H., Muro, S., Hirai, T., Funato, M., Mae, S., Toyoda, T., Sato-Otsubo, A., Ogawa, S., Osafune, K., Mishima, M., 2014. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Reports 3, 394-403.
Kajiwara, M., Aoi, T., Okita, K., Takahashi, R., Inoue, H., Takayama, N., Endo, H., Eto, K., Toguchida, J., Uemoto, S., Yamanaka, S., 2012. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci U S A 109, 12538-12543.
Kimura, W., Yasugi, S., Fukuda, K., 2007. Regional specification of the endoderm in the early chick embryo. Dev Growth Differ 49, 365-372.
Kimura, W., Yasugi, S., Stern, C.D., Fukuda, K., 2006. Fate and plasticity of the endoderm in the early chick embryo. Dev Biol 289, 283-295.
Lawson, K.A., Meneses, J.J., Pedersen, R.A., 1991. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891-911.
Loh, K.M., Ang, L.T., Zhang, J., Kumar, V., Ang, J., Auyeong, J.Q., Lee, K.L., Choo, S.H., Lim, C.Y., Nichane, M., Tan, J., Noghabi, M.S., Azzola, L., Ng, E.S., Durruthy-Durruthy, J., Sebastiano, V., Poellinger, L., Elefanty, A.G., Stanley, E.G., Chen, Q., Prabhakar, S., Weissman, I.L., Lim, B., 2014. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell 14, 237-252.
Mae, S., Shono, A., Shiota, F., Yasuno, T., Kajiwara, M., Gotoda-Nishimura, N., Arai, S., Sato-Otubo, A., Toyoda, T., Takahashi, K., Nakayama, N., Cowan, C.A., Aoi, T., Ogawa, S., McMahon, A.P., Yamanaka, S., Osafune, K., 2013. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4, 1367.
Matsushita, S., 1999. Fate mapping study of the endoderm in the posterior part of the 1.5-day-old chick embryo. Dev Growth Differ 41, 313-319.
McCracken, K.W., Howell, J.C., Wells, J.M., Spence, J.R., 2011. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc 6, 1920-1928.
Mendjan, S., Mascetti, V.L., Ortmann, D., Ortiz, M., Karjosukarso, D.W., Ng, Y., Moreau, T., Pedersen, R.A., 2014. NANOG and CDX2 pattern distinct subtypes of human mesoderm during exit from pluripotency. Cell Stem Cell 15, 310-325.
Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., Shibata, T., Kunisada, T., Takahashi, M., Takahashi, J., Saji, H., Yamanaka, S., 2011. A more efficient method to generate integration-free human iPS cells. Nat Methods 8, 409-412.
Pagliuca, F.W., Millman, J.R., Guertler, M., Segel, M., Van Dervort, A., Ryu, J.H., Peterson, Q.P., Greiner, D., Melton, D.A., 2014. Generation of functional human pancreatic β cells in vitro. Cell 159, 428-439.
Rezania, A., Bruin, J.E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., O'Dwyer, S., Quiskamp, N., Mojibian, M., Albrecht, T., Yang, Y.H., Johnson, J.D., Kieffer, T.J., 2014. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32, 1121-1133.
Shin, D., Lee, Y., Poss, K.D., Stainier, D.Y., 2011. Restriction of hepatic competence by Fgf signaling. Development 138, 1339-1348.
Stern, C.D., Charite, J., Deschamps, J., Duboule, D., Durston, A.J., Kmita, M., Nicolas, J.F., Palmeirim, I., Smith, J.C., Wolpert, L., 2006. Head-tail patterning of the vertebrate embryo: one, two or many unresolved problems? Int J Dev Biol 50, 3-15.
Takayama, K., Morisaki, Y., Kuno, S., Nagamoto, Y., Harada, K., Furukawa, N., Ohtaka, M., Nishimura, K., Imagawa, K., Sakurai, F., Tachibana, M., Sumazaki, R., Noguchi, E., Nakanishi, M., Hirata, K., Kawabata, K., Mizuguchi, H., 2014. Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes. Proc Natl Acad Sci U S A 111, 16772-16777.
Takebe, T., Zhang, R.R., Koike, H., Kimura, M., Yoshizawa, E., Enomura, M., Koike, N., Sekine, K., Taniguchi, H., 2014. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc 9, 396-409.
Tam, P.P., Loebel, D.A., 2007. Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 8, 368-381.
Tam, P.P., Parameswaran, M., Kinder, S.J., Weinberger, R.P., 1997. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124, 1631-1642.
Toyoda, T., Mae, S., Tanaka, H., Kondo, Y., Funato, M., Hosokawa, Y., Sudo, T., Kawaguchi, Y., Osafune, K., 2015. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res 14, 185-197.
Waldrip, W.R., Bikoff, E.K., Hoodless, P.A., Wrana, J.L., Robertson, E.J., 1998. Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 92, 797-808.
Watson, C.L., Mahe, M.M., Munera, J., Howell, J.C., Sundaram, N., Poling, H.M., Schweitzer, J.I., Vallance, J.E., Mayhew, C.N., Sun, Y., Grabowski, G., Finkbeiner, S.R., Spence, J.R., Shroyer, N.F., Wells, J.M., Helmrath, M.A., 2014. An in vivo model of human small intestine using pluripotent stem cells. Nat Med 20, 1310-1314.
Zorn, A.M., Wells, J.M., 2009. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25, 221-251. 上記引用文献は引用により本願の一部を構成する。
本願は哺乳動物の多能性幹細胞から特定の内胚葉系細胞へ分化する胚体内胚葉サブタイプへ選択的に誘導する方法を提供することを目的とする。本願はまた、多能性幹細胞を各胚体内胚葉サブタイプを経て前方前腸および後方前腸、および中後腸を選択的に誘導する方法を提供することを目的とする。本願はさらに、多能性幹細胞から所望の内胚葉系細胞へ選択的に分化誘導する方法を提供することを目的とする。
本願は、多能性幹細胞から、前期および後期発生段階の前方原始線条細胞(Anterior Primitive Streak, APS)を分化させ、3つの異なるタイプの胚体内胚葉細胞サブポピュレーション:前方胚体内胚葉の前方ドメイン(Anterior domain of Anterior Definitive Endoderm, AADE)細胞、前方胚体内胚葉の後方ドメイン(Posterior domain of Anterior Definitive Endoderm, PADE)細胞、および後方胚体内胚葉(Posterior Definitive Endoderm, PDE)細胞へ選択的に分化させる方法を提供する。本願はさらにこれらの胚体内胚葉細胞集団からそれぞれ後方前腸(Posterior Foregut, PFG)細胞、前方前腸(Anterior Foregut, AFG)細胞ならびに中後腸(Midhindgut, MHG)細胞からなる群から選ばれる原腸(Gut Tube, GT)細胞を誘導する方法を提供する。
即ち、本願は多能性幹細胞から前方胚体内胚葉の前方ドメイン(AADE)細胞、前方胚体内胚葉の後方ドメイン(PADE)細胞、および後方胚体内胚葉(PDE)細胞からなる群から選ばれる胚体内胚葉細胞のサブポピュレーションへと選択的に誘導する方法であって、以下の工程(i)および(ii)を含む方法を提供する:
(i)多能性幹細胞をアクチビンAとGSK3β阻害剤を含む培地中で培養して、前期前方原始線条細胞または後期前方原始線条細胞を得る工程、および
(ii)得られた前期前方原始線条細胞、または後期前方原始線条細胞を、アクチビンAを含み、かつBMP阻害剤を含む、または含まない培地中で培養して、前方胚体内胚葉の前方ドメイン細胞、前方胚体内胚葉の後方ドメイン細胞または後方胚体内胚葉細胞を得る工程。
(i)多能性幹細胞をアクチビンAとGSK3β阻害剤を含む培地中で培養して、前期前方原始線条細胞または後期前方原始線条細胞を得る工程、および
(ii)得られた前期前方原始線条細胞、または後期前方原始線条細胞を、アクチビンAを含み、かつBMP阻害剤を含む、または含まない培地中で培養して、前方胚体内胚葉の前方ドメイン細胞、前方胚体内胚葉の後方ドメイン細胞または後方胚体内胚葉細胞を得る工程。
本願はさらに前方胚体内胚葉の前方ドメイン(AADE)細胞、前方胚体内胚葉の後方ドメイン(PADE)細胞、および後方胚体内胚葉(PDE)細胞からなる群から選ばれる胚体内胚葉細胞のサブポピュレーションを、刺激因子を含まない培地にて培養する工程を含む、前方前腸(AFG)細胞、後方前腸(PFG)細胞および中後腸(Midhindgut, MHG)細胞からなる群から選ばれる原腸(GT)細胞へと誘導する方法を提供する。
本願は、多能性幹細胞から3つのパターンの胚体内胚葉細胞を経て前方前腸細胞および後方前腸細胞並びに中後腸細胞を誘導する方法を提供する。前方前腸は中耳、胸腺、甲状腺、気管、肺および食道へと分化され、後方前腸は胃、十二指腸、膵臓および肝臓へと分化され、中後腸細胞は小腸および大腸へと分化されることが知られている。即ち、本願の方法にてヒト多能性幹細胞から所望の細胞への分化誘導を選択的かつ確実に行うことが可能となる。
本願の方法により得られる前方前腸細胞、後方前腸細胞または中後腸細胞から、更に分化誘導して各内胚葉系の臓器を構成する細胞を得る方法もまた、本願に含まれる。
初期胚発生に必要不可欠な、異なる誘導因子のセットを用いるいくつかの分化プロトコールが、ヒト多能性幹細胞から胚体内胚葉細胞を誘導するために提案されている(表1)。誘導された胚体内胚葉細胞の共通の特徴の1つは、分化方法にかかわらず、2つのマーカー遺伝子、SOX17およびFOXA2を発現していることである。以下に示す試験より、多能性幹細胞から胚体内胚葉への誘導方法をコントロールすることによって、前方前腸、後方前腸および中後腸細胞へとさらに分化される胚体内胚葉の3つのサブポピュレーションを選択的に誘導することを可能とした(図5A)。
ニワトリの発生過程において、Brachyury(+)Eomes(+)細胞がHamburger Hamilton (HH)のステージ3から5の間、APSに存在することが知られている(A Chicken Embryo Gene Expression Database; http://geisha.arizona.edu/geisha(2016.03.03確認)。2つのBMPアンタゴニスト、NogginおよびChordinの原始結節(node)における発現が、HHのステージ4から認められる。それゆえ、HHステージ4以降のEomes(+)APSは、NogginおよびChordinに影響を受けていると想定した。
前方原始線条から胚体内胚葉への誘導ステップにおけるBMP阻害剤を添加することにより、前方前腸には分化するが後方前腸には分化しない胚体内胚葉細胞サブポピュレーション(Posterior domain of Anterior Definitive Endoderm, PADE細胞)を誘導し、一方、BMP阻害剤が含まれなかった場合は、後方前腸に分化するDE細胞サブポピュレーション(Anterior domain of Anterior Definitive Endoderm, AADE細胞)を誘導することを確認した(図2)。従って、ヒトiPS細胞から産生されたAADEは、原始結節においてNogginおよびChordinが発現される前に形成される将来後方前腸領域となる細胞であり、一方PADEは、原始結節からNogginおよびChordinの影響下で形成される将来前方前腸領域となる細胞である。ヒトiPS細胞由来の後方胚体内胚葉(Posterior Definitive Endoderm、PDE)は、後期APSから誘導され、中後腸細胞へと分化する(図5B)。
本願明細書および請求の範囲において多能性幹細胞とは、生体に存在する全ての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であり、それには、例えば胚性幹(ES)細胞(J.A. Thomson et al. (1998), Science 282:1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848;J.A. Thomson et al. (1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38:133-165)、核移植により得られるクローン胚由来の胚性幹(ntES)細胞(T. Wakayama et al. (2001), Science, 292:740-743; S. Wakayama et al. (2005), Biol. Reprod., 72:932-936; J. Byrne et al. (2007), Nature, 450:497-502)、精子幹細胞(「GS細胞」)(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616; K. Shinohara et al. (2004), Cell, 119:1001-1012)、胚性生殖細胞(「EG細胞」)(Y. Matsui et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551)、人工多能性幹(iPS)細胞(K. Takahashi and S. Yamanaka (2006) Cell, 126:663-676; K. Takahashi et al. (2007), Cell, 131:861-872; J. Yu et al. (2007), Science, 318:1917-1920; Nakagawa, M.ら,Nat. Biotechnol. 26:101-106 (2008);WO2007/069666)、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)(WO2011/007900)などが含まれる。本願においてはヒト多能性幹細胞が用いられる。
本願の方法において用いられる多能性幹細胞は、任意の方法で実質的に分離(または解離)することで単一細胞の状態として培養してもよく、または、細胞同士が接着した細胞凝集塊の状態で培養してもよい。より好ましくは、単一細胞の状態に分離して培養する。分離の方法としては、例えば、力学的分離や、プロテアーゼ活性とコラゲナーゼ活性を有する分離溶液(例えば、トリプシンとコラゲナーゼの含有溶液Accutase(TM)およびAccumax(TM)(Innovative Cell Technologies, Inc)が挙げられる)またはコラゲナーゼ活性のみを有する分離溶液を用いた分離が挙げられる。多能性幹細胞は、コーティング処理された培養皿を用いて接着培養することができる。
本願の方法の各工程において、培養温度は、以下に限定されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われ、CO2濃度は、好ましくは約2~5%である。
本願の工程(i)は、多能性幹細胞をアクチビンA、およびGSK3阻害剤を含む培地で培養する工程である。
工程(i)で使用される培地は、動物細胞の培養に用いられる基礎培地へアクチビンAを適宜添加して調製することができる。基礎培地としては、例えば、MEM Zinc Option培地、IMEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle's Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium(DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、およびこれらの混合培地などが包含される。基礎培地には、血清(例えば、ウシ胎児血清(FBS))が含有されていてもよいし、または無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、KnockOut Serum Replacement(KSR)(ES細胞培養時の血清代替物)(Thermo Fisher Scientific)、N2サプリメント(Thermo Fisher Scientific)、B27サプリメント(Thermo Fisher Scientific)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、GlutaMAX(Thermo Fisher Scientific)、非必須アミノ酸(NEAA)、ビタミン、増殖因子、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、およびこれらの同等物などの1つ以上の物質、あるいはその他の通常動物培養用培地に添加される1つ以上の物質を含有しうる。1つの実施形態において、基礎培地は、B27サプリメントとウシ胎児血清を含むRPMI 1640培地である。
工程(i)で使用される培地は、動物細胞の培養に用いられる基礎培地へアクチビンAを適宜添加して調製することができる。基礎培地としては、例えば、MEM Zinc Option培地、IMEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle's Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium(DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、およびこれらの混合培地などが包含される。基礎培地には、血清(例えば、ウシ胎児血清(FBS))が含有されていてもよいし、または無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、KnockOut Serum Replacement(KSR)(ES細胞培養時の血清代替物)(Thermo Fisher Scientific)、N2サプリメント(Thermo Fisher Scientific)、B27サプリメント(Thermo Fisher Scientific)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、GlutaMAX(Thermo Fisher Scientific)、非必須アミノ酸(NEAA)、ビタミン、増殖因子、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、およびこれらの同等物などの1つ以上の物質、あるいはその他の通常動物培養用培地に添加される1つ以上の物質を含有しうる。1つの実施形態において、基礎培地は、B27サプリメントとウシ胎児血清を含むRPMI 1640培地である。
工程(i)に使用される培地は、さらにROCK阻害剤を含んでいてもよい。ROCK阻害剤は、Rho-キナーゼ(ROCK)の機能を抑制できるものである限り特に限定されず、例えば、Y-27632(例、Ishizaki et al., Mol. Pharmacol. 57, 976-983 (2000);Narumiya et al., Methods Enzymol. 325,273-284 (2000)参照)、Fasudil/HA1077(例、Uenata et al., Nature 389: 990-994 (1997)参照)、SR3677(例、Feng Y et al., J Med Chem. 51: 6642-6645(2008)参照)、GSK269962(例、Stavenger RA et al., J Med Chem. 50: 2-5 (2007)またはWO2005/037197参照)、H-1152(例、Sasaki et al., Pharmacol. Ther. 93: 225-232 (2002)参照)、Wf-536(例、Nakajima et al., Cancer Chemother Pharmacol. 52(4): 319-324 (2003)参照)およびそれらの誘導体、ならびにROCKに対するアンチセンス核酸、RNA干渉誘導性核酸(例、siRNA)、ドミナントネガティブ変異体、およびそれらの発現ベクターが挙げられる。また、ROCK阻害剤としては他の公知の低分子化合物も使用できる(例えば、米国特許出願公開第2005/0209261号、同第2005/0192304号、同第2004/0014755号、同第2004/0002508号、同第2004/0002507号、同第2003/0125344号、同第2003/0087919号、及び国際公開第2003/062227号、同第2003/059913号、同第2003/062225号、同第2002/076976号、同第2004/039796号参照)。本発明では、1種または2種以上のROCK阻害剤が使用され得る。本工程で用いる好ましいROCK阻害剤としては、Y-27632、Fasudil/HA1077、SR3677、GSK269962およびH-1152が挙げられる。
ROCK阻害剤としてY-27632を用いる場合の培地中の濃度は、0.1μMから100μM、好ましくは、1μMから500μM、さらに好ましくは、5μMから200μM、例えば約10μMである。なお、本願明細書および請求の範囲において、数値に付随して「約」という場合、数値の±30%、または±20%、もしくは±10%の値まで含むものとする。
アクチビンAとしてはヒト、マウス等いずれの哺乳動物由来のアクチビンをも使用することができる。本発明に使用するアクチビンとしては、分化に用いる多能性幹細胞と同一の動物種由来のアクチビンを用いることが好ましく、例えばヒト由来の多能性幹細胞を出発原料とする場合、ヒト由来のアクチビンを用いることが好ましい。これらのアクチビンは商業的に入手可能である。
アクチビンAの培地中の濃度は、通常0.1から200ng/ml、例えば5から150ng/ml、好ましくは80から120ng/ml特に好ましくは約100ng/mlである。
GSK3阻害剤とは、GSK-3βタンパク質のキナーゼ活性(例えば、βカテニンに対するリン酸化能)を阻害する物質として定義され、既に多数のものが知られているが、例えば、インジルビン誘導体であるBIO(別名、GSK-3β阻害剤IX;6-ブロモインジルビン3'-オキシム)、マレイミド誘導体であるSB216763(3-(2,4-ジクロロフェニル)-4-(1-メチル-1H-インドール-3-イル)-1H-ピロール-2,5-ジオン)、SB415286(3-[(3-クロロ-4-ヒドロキシフェニル)アミノ]-4-(2-ニトロフェニル)-1H-ピロール-2,5-ジオン)、フェニルαブロモメチルケトン化合物であるGSK-3β阻害剤VII(4-ジブロモアセトフェノン)、細胞膜透過型のリン酸化ペプチドであるL803-mts(別名、GSK-3βペプチド阻害剤;Myr-N-GKEAPPAPPQSpP-NH2)および高い選択性を有するCHIR99021 (6-[2-[4-(2,4-Dichlorophenyl)-5-(4-methyl-1H-imidazol-2-yl)
pyrimidin-2-ylamino]ethylamino]pyridine-3-carbonitrile) が挙げられる。これらの化合物は、例えばCalbiochem社やBiomol社等から市販されており容易に利用することが可能である。本発明で使用されるGSK-3β阻害剤は、好ましくは、CHIR99021であり得る。
pyrimidin-2-ylamino]ethylamino]pyridine-3-carbonitrile) が挙げられる。これらの化合物は、例えばCalbiochem社やBiomol社等から市販されており容易に利用することが可能である。本発明で使用されるGSK-3β阻害剤は、好ましくは、CHIR99021であり得る。
工程(i)において、前期前方原始線条(Early APS)細胞を得るためには比較的低濃度のGSK3β阻害剤を用いる。「比較的低濃度」とは、以下に説明する後期前方原始線条(Late APS)を誘導する場合より低濃度であることを意味する。CHIR99021を用いる場合、培地中の濃度は、1μMから4μM未満、例えば1.5μMから3.5μM、好ましくは約3μMとすればよい。
前期前方原始線条が生成したことは、細胞がBRACHYURY、EOMESを発現し、CDX2を発現していないことによって確認することができる。
工程(i)において、後期前方原始線条(Late APS)細胞を得るためには、比較的高濃度のGSK3β阻害剤を用いる。GSK3β阻害剤としてCHIR99021を用いる場合、後期前方原始線条(Late APS)細胞を得るための培地中の濃度は、4μM以上、例えば4μMから15μM、好ましくは約8μMとすればよい。
後期前方原始線条細胞が生成したことは、細胞がBRACHYURY、EOMESおよびCDX2を発現することによって確認することができる。
工程(i)の培養日数は、12時間~36時間、例えば約1日間とすればよい。
工程(i)のGSK 3β阻害剤の濃度の違いによって、多能性幹細胞は前期前方原始線条細胞(比較的低濃度のGSK3β阻害剤の存在下で培養)または後期前方原始線条細胞(比較的高濃度のGSK3β阻害剤の存在下で培養)へと誘導される。
工程(i)のGSK 3β阻害剤の濃度の違いによって、多能性幹細胞は前期前方原始線条細胞(比較的低濃度のGSK3β阻害剤の存在下で培養)または後期前方原始線条細胞(比較的高濃度のGSK3β阻害剤の存在下で培養)へと誘導される。
工程(ii)においては、工程(i)で得られた細胞をアクチビンAを含み、BMP阻害剤を含むまたは含まない培地中で培養する。
工程(ii)に用いられる基礎培地としては、工程(i)と同様の公知の動物培養用基礎培地から適宜選択すればよい。工程(i)および(ii)で基礎培地は同一であっても相違していてもよい。例えば基礎培地としてRPMI1640にウシ胎児血清を加えた培地を基礎培地として、ここへアクチビンAを添加すればよい。アクチビンAの種類および量としては、工程(i)と同一でよい。
工程(ii)に用いられる基礎培地としては、工程(i)と同様の公知の動物培養用基礎培地から適宜選択すればよい。工程(i)および(ii)で基礎培地は同一であっても相違していてもよい。例えば基礎培地としてRPMI1640にウシ胎児血清を加えた培地を基礎培地として、ここへアクチビンAを添加すればよい。アクチビンAの種類および量としては、工程(i)と同一でよい。
BMP阻害剤は、Chordin、Noggin、Follistatin、などのタンパク質性阻害剤、Dorsomorphin 6-[4-(2-piperidin-1-yl-ethoxy)phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a]pyrimidine、その誘導体 (P. B. Yu et al. (2007), Circulation, 116:II_60; P.B. Yu et al. (2008), Nat. Chem. Biol., 4:33-41; J. Hao et al. (2008), PLoS ONE, 3(8):e2904)およびLDN-193189(4-(6-(4-(piperazin-1-yl)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)quinoline)が例示され、好適にはLDN-193189が用いられる。
BMP阻害剤としてLDN-193189を用いる場合、その濃度は例えば100-1000nM、300-700nM、例えば約500nMとすればよい。
工程(ii)の培養期間は36時間から60時間、例えば約2日間とすればよい。
工程(ii)において、3種類の胚体内胚葉細胞のサブポピュレーションを選択的に得ることができる。即ち、
(1)前期前方原始線条細胞を、アクチビンAとBMP阻害剤の存在下で培養した場合には、前方胚体内胚葉の後方ドメイン(PADE)細胞が得られる。
(2)前期前方原始線条細胞を、アクチビンAが存在するが、BMP阻害剤が存在しない条件下で培養した場合には、前方胚体内胚葉の前方ドメイン(AADE)細胞が得られる。
(3)後期前方原始線条細胞を、アクチビンAが存在するが、BMP阻害剤が存在しない条件下で培養した場合には、後方胚体内胚葉(PDE)細胞が得られる。
いずれの胚体内胚葉細胞も、SOX17およびFOXA2を発現する。
工程(ii)の培養期間は36時間から60時間、例えば約2日間とすればよい。
工程(ii)において、3種類の胚体内胚葉細胞のサブポピュレーションを選択的に得ることができる。即ち、
(1)前期前方原始線条細胞を、アクチビンAとBMP阻害剤の存在下で培養した場合には、前方胚体内胚葉の後方ドメイン(PADE)細胞が得られる。
(2)前期前方原始線条細胞を、アクチビンAが存在するが、BMP阻害剤が存在しない条件下で培養した場合には、前方胚体内胚葉の前方ドメイン(AADE)細胞が得られる。
(3)後期前方原始線条細胞を、アクチビンAが存在するが、BMP阻害剤が存在しない条件下で培養した場合には、後方胚体内胚葉(PDE)細胞が得られる。
いずれの胚体内胚葉細胞も、SOX17およびFOXA2を発現する。
本願は、工程(ii)で得られたPADE細胞、AADE細胞、またはPDE細胞を、分化誘導因子を含まない培地中で培養する工程(iii)を含む、前方前腸(AFG)細胞、後方前腸(PFG)細胞、または中後腸(MHG)細胞を得る方法をさらに提供する。
本工程にて用いられる基礎培地は工程(i)に記載したものより適宜選択すればよい。基礎培地として、例えばIMEM Zinc Option培地が例示される。基礎培地にはアクビチン、GSK3β阻害剤、BMP阻害剤その他分化誘導因子としての物質を添加せずに用いる。なお、使用する基礎培地には上記工程(i)にて列記した物質その他通常動物細胞培養用培地に添加される物質を1つ以上含んでいてもよい。工程(iii)の培養期間は3-8日、例えば約6日とすればよい。
工程(iii)によって、PADE細胞は前方前腸(AFG)細胞へ、AADE細胞は後方前腸(PFG)細胞へ、およびPDE細胞は中後腸(MHG)細胞へと誘導される。
工程(iii)によって、PADE細胞は前方前腸(AFG)細胞へ、AADE細胞は後方前腸(PFG)細胞へ、およびPDE細胞は中後腸(MHG)細胞へと誘導される。
即ち、本願は下記3つの態様を含む:
1 第1の態様
ヒト多能性幹細胞から前方胚体内胚葉の後方ドメイン細胞を経て前方前腸細胞を製造する方法であって、以下の工程(i-1)から(iii-1)を含む方法:
(i-1)多能性幹細胞をアクチビンAと比較的低濃度のGSK3β阻害剤を含む培地中で培養する工程、および
(ii-1)前記工程(i-1)で得られた細胞をアクチビンAおよびBMP阻害剤を含む培地中で培養する工程、および
(iii-1)前記工程(ii-1)で得られた細胞を、分化誘導因子を含まない培地中で培養する工程。
1 第1の態様
ヒト多能性幹細胞から前方胚体内胚葉の後方ドメイン細胞を経て前方前腸細胞を製造する方法であって、以下の工程(i-1)から(iii-1)を含む方法:
(i-1)多能性幹細胞をアクチビンAと比較的低濃度のGSK3β阻害剤を含む培地中で培養する工程、および
(ii-1)前記工程(i-1)で得られた細胞をアクチビンAおよびBMP阻害剤を含む培地中で培養する工程、および
(iii-1)前記工程(ii-1)で得られた細胞を、分化誘導因子を含まない培地中で培養する工程。
2 第2の態様
ヒト多能性幹細胞から前方胚体内胚葉の前方ドメイン細胞を経て後方前腸細胞を製造する方法であって、以下の工程(i-2)から(iii-2)を含む方法:
(i-2)多能性幹細胞をアクチビンAと比較的低濃度のGSK3β阻害剤を含む培地中で培養する工程、
(ii-2)前記工程(i-2)で得られた細胞をアクチビンAを含む培地中で培養する工程、および
(iii-2)前記工程(ii-2)で得られた細胞を、分化誘導因子を含まない培地中で培養する工程。
ヒト多能性幹細胞から前方胚体内胚葉の前方ドメイン細胞を経て後方前腸細胞を製造する方法であって、以下の工程(i-2)から(iii-2)を含む方法:
(i-2)多能性幹細胞をアクチビンAと比較的低濃度のGSK3β阻害剤を含む培地中で培養する工程、
(ii-2)前記工程(i-2)で得られた細胞をアクチビンAを含む培地中で培養する工程、および
(iii-2)前記工程(ii-2)で得られた細胞を、分化誘導因子を含まない培地中で培養する工程。
3 第3の態様
多能性幹細胞から後方胚体内胚葉細胞を経て中後腸細胞を製造する方法であって、以下の工程(i-3)から(iii-3)を含む方法:
(i-3)多能性幹細胞をアクチビンAと比較的高濃度のGSK3β阻害剤を含む培地中で培養する工程、および
(ii-3)前記工程(i-3)で得られた細胞を、アクチビンAを含む培地中で培養する工程、および
(iii-3)前記工程(ii-3)で得られた細胞を、分化誘導因子を含まない培地中で培養する工程。
多能性幹細胞から後方胚体内胚葉細胞を経て中後腸細胞を製造する方法であって、以下の工程(i-3)から(iii-3)を含む方法:
(i-3)多能性幹細胞をアクチビンAと比較的高濃度のGSK3β阻害剤を含む培地中で培養する工程、および
(ii-3)前記工程(i-3)で得られた細胞を、アクチビンAを含む培地中で培養する工程、および
(iii-3)前記工程(ii-3)で得られた細胞を、分化誘導因子を含まない培地中で培養する工程。
AFG細胞は中耳、胸腺、甲状腺、気管、肺および食道を構成する細胞へと分化される。PFGは胃、十二指腸、膵臓および肝臓を構成する細胞へと分化される。およびMHGは小腸および大腸を構成する細胞へと分化されることが知られている。各細胞ヘ分化誘導する方法は知られており、当業者は公知の方法から適宜選択することができる。本願の方法にて得られる各細胞を、さらに分化誘導して上記細胞を得る方法もまた、本願に含まれる。
以下実施例に基づき本願を更に詳細に説明する。
1. 材料および方法
1.1. 細胞培養
フィーダーフリー培養物を得るために、hiPSC(585A1細胞)(Okita K et al., 2011, Kajiwara M et al., 2012)を、製造元の指示に従い、Essential 8 培地(Thermo Fisher Scientific, Waltham, MA)で維持した。通例の継代培養のために、hiPSCコロニーを、0.5 mM EDTA(Wako, Osaka, Japan)を用いて酵素法により分離し、10μM Y-27632 (Wako)を添加することで1:100の割合に分けた。
1. 材料および方法
1.1. 細胞培養
フィーダーフリー培養物を得るために、hiPSC(585A1細胞)(Okita K et al., 2011, Kajiwara M et al., 2012)を、製造元の指示に従い、Essential 8 培地(Thermo Fisher Scientific, Waltham, MA)で維持した。通例の継代培養のために、hiPSCコロニーを、0.5 mM EDTA(Wako, Osaka, Japan)を用いて酵素法により分離し、10μM Y-27632 (Wako)を添加することで1:100の割合に分けた。
1.2. 前方原始線条(APS)への分化
80%のコンフルエントに培養したhiPSCコロニーを、0.5 mM EDTAにより、酵素法で単一細胞に分離した。当該細胞を、前期APS誘導のためには100 ng/ml recombinant human/mouse/rat アクチビンAおよび3μM CHIR99021 (Axon Medchem, Groningen, Netherlands)を添加した、および、後期APS誘導のためには、100 ng/ml アクチビンA および8μM CHIR99021を添加した、2%(vol/vol)のB27サプリメント (GFR-B27, Growth Factor Reduced, Thermo Fisher Scientific)、50 U/mlペニシリン/ストレプトマイシン(P/S, Thermo Fisher Scientific)および、10μM Y-27632を含む、RPMI 1640 培地 (NACALAI TESQUE, Kyoto, Japan)に再懸濁し、Matrigel(Becton Dickinson, Franklin Lakes, NJ)でコートしたプレートに9×104 cells/cm2で播種して、1日間培養した。
80%のコンフルエントに培養したhiPSCコロニーを、0.5 mM EDTAにより、酵素法で単一細胞に分離した。当該細胞を、前期APS誘導のためには100 ng/ml recombinant human/mouse/rat アクチビンAおよび3μM CHIR99021 (Axon Medchem, Groningen, Netherlands)を添加した、および、後期APS誘導のためには、100 ng/ml アクチビンA および8μM CHIR99021を添加した、2%(vol/vol)のB27サプリメント (GFR-B27, Growth Factor Reduced, Thermo Fisher Scientific)、50 U/mlペニシリン/ストレプトマイシン(P/S, Thermo Fisher Scientific)および、10μM Y-27632を含む、RPMI 1640 培地 (NACALAI TESQUE, Kyoto, Japan)に再懸濁し、Matrigel(Becton Dickinson, Franklin Lakes, NJ)でコートしたプレートに9×104 cells/cm2で播種して、1日間培養した。
1.3. 胚体内胚葉(DE)への分化
前期APSからDE細胞への分化
AADE細胞への誘導のためには2%(vol/vol)B27サプリメント(GFR-B27)、50 U/ml P/Sおよび100 ng/mlアクチビンAを添加したRPMI 1640培地で、PADE細胞への誘導のためには100 ng/ml アクチビンAおよび 500 nM LDN193189 (Axon Medchem)を添加したRPMI 1640培地で、2日間培養することにより、前期APSから前方胚体内胚葉の前方ドメイン(AADE)細胞または前方胚体内胚葉の後方ドメイン(PADE)へと誘導した。
後期APSからDE細胞への分化
後期APS細胞を2%(vol/vol)B27サプリメント(GFR-B27)、50 U/ml P/Sおよび100 ng/ml アクチビンAを添加したRPMI 1640培地で2日間培養して、後方胚体内胚葉(PDE)細胞へ誘導した。
前期APSからDE細胞への分化
AADE細胞への誘導のためには2%(vol/vol)B27サプリメント(GFR-B27)、50 U/ml P/Sおよび100 ng/mlアクチビンAを添加したRPMI 1640培地で、PADE細胞への誘導のためには100 ng/ml アクチビンAおよび 500 nM LDN193189 (Axon Medchem)を添加したRPMI 1640培地で、2日間培養することにより、前期APSから前方胚体内胚葉の前方ドメイン(AADE)細胞または前方胚体内胚葉の後方ドメイン(PADE)へと誘導した。
後期APSからDE細胞への分化
後期APS細胞を2%(vol/vol)B27サプリメント(GFR-B27)、50 U/ml P/Sおよび100 ng/ml アクチビンAを添加したRPMI 1640培地で2日間培養して、後方胚体内胚葉(PDE)細胞へ誘導した。
1.4. 原腸 (Gut Tube, GT)細胞および後期原腸(Late Gut Tube, LGT)細胞への分化
GT細胞誘導のために、3つのタイプのDE細胞(AADE、PADEおよびPDE)を、Improved MEM Zinc Option (iMEM) 培地(Thermo Fisher Scientific)で3日間培養した。その後、GT細胞を、同じ培地を用いて3日間培養してLGT細胞へ分化させた。
GT細胞誘導のために、3つのタイプのDE細胞(AADE、PADEおよびPDE)を、Improved MEM Zinc Option (iMEM) 培地(Thermo Fisher Scientific)で3日間培養した。その後、GT細胞を、同じ培地を用いて3日間培養してLGT細胞へ分化させた。
1.5. 肝臓および肺系列細胞への分化
得られたLGT細胞を、既報の分化プロトコール(Kajiwara M et al., 2012, Proc Natl Acad Sci U S A 109, 12538-12543, Gotoh S et al., 2014, Stem Cell Reports 3, 394-403.)に従い、肝細胞様細胞および肺胞上皮前駆細胞にさらに分化させた。
肝細胞様細胞への分化
1.4で得たhiPSC由来LGT細胞を、20 ng/mL組換えヒト肝細胞増殖因子 (HGF; PeproTech, Rocky Hill, NJ)および20 ng/mL組換えヒトオンコスタチンM (OsM; PeproTech)を含有する肝細胞培養培地で6日間培養して、肝細胞様細胞への分化を誘導した。
肺胞上皮前駆細胞への分化
1.4で得たhiPSC由来のLGT細胞を、1×B27および N2 サプリメント (Thermo Fisher Scientific)、50 U/ml P/S、0.05 mg/ml L-アスコルビン酸 (Sigma-Aldrich, Tokyo, Japan)、0.4 mM モノチオグリセロール(Wako)、100 ng/ml 組換えヒト骨形成タンパク質(BMP)4 (R&D Systems)、0.5μM 全トランス型レチノイン酸 (ATRA; Sigma-Aldrich)および3.5μM CHIR99021を含有する、Glutamaxを添加したDMEM/F12培地 (Thermo Fisher Scientific)で、4日間培養した。
得られたLGT細胞を、既報の分化プロトコール(Kajiwara M et al., 2012, Proc Natl Acad Sci U S A 109, 12538-12543, Gotoh S et al., 2014, Stem Cell Reports 3, 394-403.)に従い、肝細胞様細胞および肺胞上皮前駆細胞にさらに分化させた。
肝細胞様細胞への分化
1.4で得たhiPSC由来LGT細胞を、20 ng/mL組換えヒト肝細胞増殖因子 (HGF; PeproTech, Rocky Hill, NJ)および20 ng/mL組換えヒトオンコスタチンM (OsM; PeproTech)を含有する肝細胞培養培地で6日間培養して、肝細胞様細胞への分化を誘導した。
肺胞上皮前駆細胞への分化
1.4で得たhiPSC由来のLGT細胞を、1×B27および N2 サプリメント (Thermo Fisher Scientific)、50 U/ml P/S、0.05 mg/ml L-アスコルビン酸 (Sigma-Aldrich, Tokyo, Japan)、0.4 mM モノチオグリセロール(Wako)、100 ng/ml 組換えヒト骨形成タンパク質(BMP)4 (R&D Systems)、0.5μM 全トランス型レチノイン酸 (ATRA; Sigma-Aldrich)および3.5μM CHIR99021を含有する、Glutamaxを添加したDMEM/F12培地 (Thermo Fisher Scientific)で、4日間培養した。
1.6. 免疫染色
細胞を、4% パラホルムアルデヒド(PFA)/PBSを用いて、20分間、4℃で固定した。PBSで洗浄後、細胞を5% 正常ロバ血清(Funakoshi, Tokyo, Japan)/PBST (PBS/0.1% Triton X-100)を用いて、1時間、室温でブロッキングした。一次抗体をブロッキング溶液で希釈し、サンプルと共に一晩、4℃でインキュベートした。PBSで3回洗浄後、細胞を、二次抗体と共に、1時間、室温でインキュベートした。本研究で用いた二次抗体には、Alexa Fluor 488-、546-または647-結合の、抗マウス、ウサギ、またはヤギIgGロバ抗体が含まれ、1:200希釈で用いた。核染色のために、Hoechst 33342三塩酸塩三水和物(Thermo Fisher Scientific)を、1:200希釈で用いた。用いた一次抗体を表2に示す。
細胞を、4% パラホルムアルデヒド(PFA)/PBSを用いて、20分間、4℃で固定した。PBSで洗浄後、細胞を5% 正常ロバ血清(Funakoshi, Tokyo, Japan)/PBST (PBS/0.1% Triton X-100)を用いて、1時間、室温でブロッキングした。一次抗体をブロッキング溶液で希釈し、サンプルと共に一晩、4℃でインキュベートした。PBSで3回洗浄後、細胞を、二次抗体と共に、1時間、室温でインキュベートした。本研究で用いた二次抗体には、Alexa Fluor 488-、546-または647-結合の、抗マウス、ウサギ、またはヤギIgGロバ抗体が含まれ、1:200希釈で用いた。核染色のために、Hoechst 33342三塩酸塩三水和物(Thermo Fisher Scientific)を、1:200希釈で用いた。用いた一次抗体を表2に示す。
1.7. RT-PCRおよび、リアルタイム定量RT-PCR (qRT-PCR)
全RNAを、RNeasyキット(Qiagen, Tokyo, Japan)を用いて、製造元の推奨に従い単離し、続いて、標準的プロトコール(Mae S et al., 2013)を用いてcDNA合成を行った。端的には、第一鎖cDNAを、1μgの全RNAから、ReverTra Ace (TOYOBO, Osaka, Japan)を用いて合成した。当該cDNAサンプルを、サーマルサイクラー(Veriti 96-well Thermal Cycler, Applied Biosystems, Waltham, MA)を用いたPCR増幅に供し、Ex-Taq PCR キット(Takara, Shiga, Japan)を用いて、製造元の指示に従い、PCRを行った。PCRサイクルは以下の通りであった:ハウスキーピング遺伝子β-ACTINに対して、初期変性を94℃で2.5分間、続いて、94℃で30秒間、60℃で1分間、72℃で30秒間を25サイクル、および最終伸長反応を72℃で10分間行った。他の遺伝子に対しては、初期変性を94℃で2.5分間、続いて、94℃で30秒間、58℃-50℃で30-60秒間、72℃で30秒間を30-40サイクル、および最終伸長反応を72℃で10分間で行うサイクルで行った。qPCRを、Step One Plus Real-Time PCR System (Applied Biosystems)および SYBR Green PCR Master Mix (Takara)を用いて行った。変性を95℃で30秒間行い、続いて、95℃で5秒間、60℃で30秒間を24サイクル行った。製造元が推奨するように、遺伝子発現レベルのデータを解析し、β-ACTINの遺伝子発現レベルにキャリブレーションするために、閾値サイクル法(threshold cycle method)を用いた。PCR反応は、各サンプルに対し、三連で行った。用いたプライマーの配列を表3に示す。
全RNAを、RNeasyキット(Qiagen, Tokyo, Japan)を用いて、製造元の推奨に従い単離し、続いて、標準的プロトコール(Mae S et al., 2013)を用いてcDNA合成を行った。端的には、第一鎖cDNAを、1μgの全RNAから、ReverTra Ace (TOYOBO, Osaka, Japan)を用いて合成した。当該cDNAサンプルを、サーマルサイクラー(Veriti 96-well Thermal Cycler, Applied Biosystems, Waltham, MA)を用いたPCR増幅に供し、Ex-Taq PCR キット(Takara, Shiga, Japan)を用いて、製造元の指示に従い、PCRを行った。PCRサイクルは以下の通りであった:ハウスキーピング遺伝子β-ACTINに対して、初期変性を94℃で2.5分間、続いて、94℃で30秒間、60℃で1分間、72℃で30秒間を25サイクル、および最終伸長反応を72℃で10分間行った。他の遺伝子に対しては、初期変性を94℃で2.5分間、続いて、94℃で30秒間、58℃-50℃で30-60秒間、72℃で30秒間を30-40サイクル、および最終伸長反応を72℃で10分間で行うサイクルで行った。qPCRを、Step One Plus Real-Time PCR System (Applied Biosystems)および SYBR Green PCR Master Mix (Takara)を用いて行った。変性を95℃で30秒間行い、続いて、95℃で5秒間、60℃で30秒間を24サイクル行った。製造元が推奨するように、遺伝子発現レベルのデータを解析し、β-ACTINの遺伝子発現レベルにキャリブレーションするために、閾値サイクル法(threshold cycle method)を用いた。PCR反応は、各サンプルに対し、三連で行った。用いたプライマーの配列を表3に示す。
1.8. RNA塩基配列決定
培養細胞から100ngの全RNAを、製造元の指示に従い、KAPA stranded mRNA-seq Kits (KAPA Biosystems, Woburn, MA)を用いたライブラリ調製に供した。当該ライブラリを、HiSeq2500の100サイクルのSingle-Readモードにおいて、塩基配列決定した。全ての配列読み取りデータを、CASAVA 1.8.2パイプラインにおけるBCL2FASTQ Conversion Software 1.8.4を用いて、FASTQフォーマットで抽出した。配列読み取りデータを、遺伝子発現値のTophat v2.0.14. Calculationを用いて、2014年4月25日にダウンロードしたhg19参照遺伝子にマッピングし、RPKMforgenes (10th December 2012)により補正(normalization)を行い、発現レベルをlog2 (RPKM+1)で表した。遺伝子発現のヒートマップを、R 3.2.1のgplotsライブラリのheatmap.2関数により、作成した。組織および細胞サンプルの遺伝子発現のTwo-way階層的クラスタリングを、R3.2.1のhclust関数を用いて実行した。
培養細胞から100ngの全RNAを、製造元の指示に従い、KAPA stranded mRNA-seq Kits (KAPA Biosystems, Woburn, MA)を用いたライブラリ調製に供した。当該ライブラリを、HiSeq2500の100サイクルのSingle-Readモードにおいて、塩基配列決定した。全ての配列読み取りデータを、CASAVA 1.8.2パイプラインにおけるBCL2FASTQ Conversion Software 1.8.4を用いて、FASTQフォーマットで抽出した。配列読み取りデータを、遺伝子発現値のTophat v2.0.14. Calculationを用いて、2014年4月25日にダウンロードしたhg19参照遺伝子にマッピングし、RPKMforgenes (10th December 2012)により補正(normalization)を行い、発現レベルをlog2 (RPKM+1)で表した。遺伝子発現のヒートマップを、R 3.2.1のgplotsライブラリのheatmap.2関数により、作成した。組織および細胞サンプルの遺伝子発現のTwo-way階層的クラスタリングを、R3.2.1のhclust関数を用いて実行した。
2. 結果
2.1.異なる分化プロトコールにより、異なるタイプの胚体内胚葉(Definitive Endoderm, DE)細胞が生成されることを確認した
胚体内胚葉細胞集団の特徴を示す2つのモデルが存在する:1)DE細胞は、任意の内胚葉系細胞ヘ分化可能な単一細胞タイプの多能性内胚葉前駆細胞である(図1A、左)、2)DE細胞は、複数のタイプの系列決定内胚葉前駆細胞集団を含有し得る(図1A、右)。本発明者らは、DE細胞が単一タイプの多能性内胚葉前駆細胞であるとすれば、異なる分化プロトコールで誘導されたDE細胞であっても、一様に内胚葉系の細胞、例えば後期原腸(LGT)段階のαフェトプロテイン(AFP)(+)細胞、すなわち肝芽細胞へ分化され得ると仮定した。
2.1.異なる分化プロトコールにより、異なるタイプの胚体内胚葉(Definitive Endoderm, DE)細胞が生成されることを確認した
胚体内胚葉細胞集団の特徴を示す2つのモデルが存在する:1)DE細胞は、任意の内胚葉系細胞ヘ分化可能な単一細胞タイプの多能性内胚葉前駆細胞である(図1A、左)、2)DE細胞は、複数のタイプの系列決定内胚葉前駆細胞集団を含有し得る(図1A、右)。本発明者らは、DE細胞が単一タイプの多能性内胚葉前駆細胞であるとすれば、異なる分化プロトコールで誘導されたDE細胞であっても、一様に内胚葉系の細胞、例えば後期原腸(LGT)段階のαフェトプロテイン(AFP)(+)細胞、すなわち肝芽細胞へ分化され得ると仮定した。
この仮説を調べるために、我々は、肝系列細胞の既報の誘導プロトコール(Takebe, T. et al., 2014, Nat Protoc 9, 396-409.)を改変することにより、hiPSCから、AFP(+)細胞への、直接分化方法を開発した。アクチビンAおよびCHIR99021で処理し、続いてアクチビンA単独で処理することによるAPSの誘導は、SOX17(+)FOXA2(+)DE細胞(図1B方法1、図1C上図)を非常に効率的に誘導した。さらに、BMP4および繊維芽細胞増殖因子2(FGF2)による処理により、DE細胞からLGT段階のAFP(+)細胞を生成した(図1D上図)。
BMPなどの外因性の中胚葉分化シグナルを除去することにより、および、BMPアンタゴニストであるnoggin、またはBMP受容体阻害剤であるLDN193189を用いて内因性BMPを中和することにより、DE細胞が、APS細胞から誘導され得ることが報告されている(非特許文献11)。我々は、アクチビンAおよびLDN193189による処理によっても、APS細胞からSOX17(+)FOXA2(+)DE細胞が確実に生成されることを確認した(図1B方法2、図1C下図)。しかしながら、後者の細胞は、BMP4とFGF2による処理によってAFP(+)細胞に分化させることはできなかった(図1D下図)。これらのデータは、異なるプロトコールを用いてhiPSCから誘導されたDE細胞の、AFP陽性の後期原腸の前腸領域細胞への分化能が異なることを示す。即ち、種々の内胚葉系細胞へ分化する運命は、DE段階で既に制限されていることを示し、図1A右に示すモデル図が正しいことが判った。
2.2. 2つのDE細胞サブタイプの分化指向性
DE細胞サブポピュレーションの分化可能性が、特定の内胚葉系細胞に制限されているかどうかを調べるために、図1Bの2つの方法によって産生されたDEサブポピュレーションを、誘導因子を添加することなくさらに3~6日間培養して分化させた(図2A)。3日間培養後に、方法Aの細胞は、GT細胞の後方前腸領域のマーカーである、HNF1βおよびHNF4α陽性細胞に分化した。GT細胞の前方前腸領域のマーカーであるSOX2を発現する細胞はほとんど存在しなかった(図2A、2B上図)。HNF1β(+)HNF4α(+)細胞を更に培養したところ、LGT段階のAFP(+)細胞に分化した(図2B上図)。
DE細胞サブポピュレーションの分化可能性が、特定の内胚葉系細胞に制限されているかどうかを調べるために、図1Bの2つの方法によって産生されたDEサブポピュレーションを、誘導因子を添加することなくさらに3~6日間培養して分化させた(図2A)。3日間培養後に、方法Aの細胞は、GT細胞の後方前腸領域のマーカーである、HNF1βおよびHNF4α陽性細胞に分化した。GT細胞の前方前腸領域のマーカーであるSOX2を発現する細胞はほとんど存在しなかった(図2A、2B上図)。HNF1β(+)HNF4α(+)細胞を更に培養したところ、LGT段階のAFP(+)細胞に分化した(図2B上図)。
この結果は、方法Aで誘導されたDE細胞が、外因性の誘導因子を添加することなく、後期原腸の後方前腸領域の細胞、即ち肝芽細胞に分化することを示している。一方、方法Bの細胞は、LGT段階ではSOX2(+)であり、後期原腸の前方前腸領域の細胞へと分化した。HNF1β、HNF4αおよびAFPは陰性であった(図2B下図)。各段階でのSOX2 mRNA発現についてのqRT-PCR解析により確認した(図2C)。これらの結果は、特定の内胚葉系列へ将来分化する可能性は、DE段階にすでに制限されていることを示唆している。
インビトロにおけるhiPSC由来LGT細胞の発生能を評価するために、方法AまたはBで産生されたLGT細胞から、既報の方法(非特許文献6および7)を用いて、肝細胞様細胞および肺胞上皮前駆細胞への分化を誘導した。方法Aで誘導されたhiPSC由来LGT細胞が、ALBUMIN(ALB)(+)細胞に分化したが、NKX2.1(+)の腹側前方前腸細胞には分化しないことを確認した(図2D、2E上図)。対照的に、方法Bで誘導されたLGT細胞は、AFP(+)またはALB(+)細胞に分化することなく、NKX2.1(+)細胞へと分化した(図2D、2E下図)。これらの結果は、方法Aで誘導されたDE細胞が、GTおよびLGT細胞の後方前腸領域を生じる前方胚体内胚葉の前方ドメイン(AADE)細胞であり、一方、方法Bで誘導されたDE細胞が、GTおよびLGT細胞の前方前腸領域に分化する前方胚体内胚葉の後方ドメイン(PADE)細胞であることを、示唆している。
2.3. AADEとPADEの遺伝子発現プロファイルの比較
上記結果は、異なるプロトコールで生成されるDE細胞が、それぞれ特定の内胚葉系への分化能を有することを示唆している。DE細胞の2つのタイプ、AADEおよびPADE細胞、並びにそれらから派生するGTおよびLGT細胞の間の、遺伝子発現パターンの違いを明らかにするために、RNA配列決定解析を行った。その結果、AADEおよびPADE細胞の間の、周知のPSおよびDEマーカーの発現レベルにほとんど違いはなかった(図3A)。主成分分析(PCA)によってもまた、AADEおよびPADE細胞の間において、相対的に同様な遺伝子発現プロファイルを確認した(図3B)。しかしながら、AADEおよびPADE細胞集団の間で、異なって発現された273の遺伝子を同定した(図3Cおよび表4)。これらのデータは、AADEおよびPADEは、周知のDEおよびPSマーカーに対して同様の発現パターンを有するが、これらのDEサブポピュレーションを区別できる候補マーカーが存在することを示唆している。
上記結果は、異なるプロトコールで生成されるDE細胞が、それぞれ特定の内胚葉系への分化能を有することを示唆している。DE細胞の2つのタイプ、AADEおよびPADE細胞、並びにそれらから派生するGTおよびLGT細胞の間の、遺伝子発現パターンの違いを明らかにするために、RNA配列決定解析を行った。その結果、AADEおよびPADE細胞の間の、周知のPSおよびDEマーカーの発現レベルにほとんど違いはなかった(図3A)。主成分分析(PCA)によってもまた、AADEおよびPADE細胞の間において、相対的に同様な遺伝子発現プロファイルを確認した(図3B)。しかしながら、AADEおよびPADE細胞集団の間で、異なって発現された273の遺伝子を同定した(図3Cおよび表4)。これらのデータは、AADEおよびPADEは、周知のDEおよびPSマーカーに対して同様の発現パターンを有するが、これらのDEサブポピュレーションを区別できる候補マーカーが存在することを示唆している。
2.4.後期前方原始線条(late APS)、後方胚体内胚葉(PDE)および中後腸(MHG)細胞の誘導方法の確立
中後腸細胞への制限された分化能を有するPDE細胞の新規分化プロトコールを確立するために、hiPSCからのAPSへの分化をさらに調べた。中胚葉サブタイプへのパターン形成は、PSにおける中胚葉誘導のタイミングと相関するとの報告から(非特許文献15)、DEパターン形成もまた、APSにおけるDE細胞分化のタイミングに対応するであろうと仮定した。この仮定のもと、100 ng/mlのアクチビンAおよび3μMのCHIR99021で処理することにより誘導されたhiPSC由来APS細胞の特徴を調べた(図2A)。免疫染色により、これらの細胞はAPSマーカーBRACHYURYおよびEOMES陽性であるが、後期原始線条のマーカーであるCDX2に対して陽性の細胞はほとんどなかった(図4A上図)。これらのデータは、100 ng/mlのアクチビンAおよび3μMのCHIR99021による処理により、hiPSCが前期APS細胞に分化されることを示している。そこで、後期原始線条への分化プロトコール(非特許文献15)を改変することにより、hiPSCから後期APS細胞を分化させる新規の方法を開発した。100ng/mlのアクチビンAおよび8μMのCHIR99021の存在下で1日間培養を行った。得られた細胞の免疫染色により、BRACHYURY(+)EOMES(+)CDX2(+)である後期APS細胞が生成していることを確認した(図4A下図)。
中後腸細胞への制限された分化能を有するPDE細胞の新規分化プロトコールを確立するために、hiPSCからのAPSへの分化をさらに調べた。中胚葉サブタイプへのパターン形成は、PSにおける中胚葉誘導のタイミングと相関するとの報告から(非特許文献15)、DEパターン形成もまた、APSにおけるDE細胞分化のタイミングに対応するであろうと仮定した。この仮定のもと、100 ng/mlのアクチビンAおよび3μMのCHIR99021で処理することにより誘導されたhiPSC由来APS細胞の特徴を調べた(図2A)。免疫染色により、これらの細胞はAPSマーカーBRACHYURYおよびEOMES陽性であるが、後期原始線条のマーカーであるCDX2に対して陽性の細胞はほとんどなかった(図4A上図)。これらのデータは、100 ng/mlのアクチビンAおよび3μMのCHIR99021による処理により、hiPSCが前期APS細胞に分化されることを示している。そこで、後期原始線条への分化プロトコール(非特許文献15)を改変することにより、hiPSCから後期APS細胞を分化させる新規の方法を開発した。100ng/mlのアクチビンAおよび8μMのCHIR99021の存在下で1日間培養を行った。得られた細胞の免疫染色により、BRACHYURY(+)EOMES(+)CDX2(+)である後期APS細胞が生成していることを確認した(図4A下図)。
後期APS細胞からDE細胞誘導のため、さらに100ng/mlのアクチビンAの存在下でさらに2日間培養したところ、得られた細胞はSOX17(+)FOXA2(+)陽性であり、胚体内胚葉細胞が生成していることを確認した(図4B下図)。外因性の誘導因子を添加することなくさらに3日間培養した。得られた細胞の内胚葉系への発生能を調べ、中後腸マーカーである、HNF1β、HNF4αおよびCDX2に対して陽性に染色される分化した細胞を見出した(図4C下図)。これらの発見はまた、CDX2 mRNA発現についてのqRT-PCR解析により確認した。対照的に、hiPSCから前期APSおよびAADEを経て生み出されたGT細胞のhiPSC由来後方前腸領域は、GT細胞のCDX2(+)中後腸領域に分化しなかった(図4A、4B、4C上図)。これらの結果は、PDE細胞を介した、hiPSCから中後腸細胞への効率的な分化方法は、後期APS細胞を生成することによって確立され得ること、および、DEサブタイプへのパターン形成が、APSにおけるDE誘導のタイミングと相関していることを、示唆している(図5A)。
以上の結果より、胚体内胚葉細胞が複数のサブタイプを含有し、それぞれが特定の内胚葉系列へ分化することを確認した(図5B)。また多能性幹細胞から、それぞれの胚体内胚葉細胞のサブタイプを選択的に誘導する方法を確立した(図5A)。
Claims (13)
- 多能性幹細胞から前方胚体内胚葉の前方ドメイン(AADE)細胞、前方胚体内胚葉の後方ドメイン(PADE)細胞、および後方胚体内胚葉(PDE)細胞からなる群から選ばれる胚体内胚葉細胞のサブポピュレーションへと選択的に誘導する方法であって、以下の工程(i)および(ii)を含む方法:
(i)多能性幹細胞をアクチビンAとGSK3β阻害剤を含む培地中で培養して、前期前方原始線条細胞または後期前方原始線条細胞を得る工程、および
(ii)得られた前期前方原始線条細胞、または後期前方原始線条細胞を、アクチビンAを含み、かつBMP阻害剤を含む、または含まない培地中で培養して、前方胚体内胚葉の前方ドメイン細胞、前方胚体内胚葉の後方ドメイン細胞または後方胚体内胚葉細胞を得る工程。 - 請求項1において、工程(ii)で得られた胚体内胚葉細胞のサブポピュレーションを、分化誘導因子を含まない培地中で培養する工程をさらに含む、前方前腸(AFG)細胞、後方前腸(PFG)細胞および中後腸(MHG)細胞からなる群から選ばれる原腸細胞へと選択的に誘導する方法。
- 胚体内胚葉のサブポピュレーションが前方胚体内胚葉の後方ドメイン(PADE)細胞であって、以下の工程(i)および(ii):
(i)多能性幹細胞をアクチビンAと比較的低濃度のGSK3β阻害剤を含む培地中で培養して前期前方原始線条細胞を得る工程、および
(ii)工程(i)で得られた前期前方原始線条細胞をアクチビンAおよびBMP阻害剤を含む培地中で培養する工程を含む、請求項1または2記載の方法。 - 得られた前方胚体内胚葉の後方ドメイン細胞を分化誘導因子を含まない培地中で培養して前方前腸(AFG)細胞を得る工程を更に含む、請求項3記載の方法。
- 前記BMP阻害剤が、LDN-193189である、請求項3または4記載の方法。
- 胚体内胚葉のサブポピュレーションが前方胚体内胚葉の前方ドメイン(AADE)細胞であって、
(i)多能性幹細胞をアクチビンAと比較的低濃度のGSK3β阻害剤を含む培地中で培養して前期前方原始線条細胞を得る工程、および
(ii)前記工程(i)で得られた前期前方原始線条細胞を、アクチビンAを含む培地中で培養する工程を含む、請求項1または2記載の方法。 - 得られた前方胚体内胚葉の前方ドメイン細胞を分化誘導因子を含まない培地中で培養して後方前腸(PFG)細胞を得る工程を更に含む、請求項6記載の方法。
- 前記GSK3β阻害剤が、CHIR99021であり、培地中におけるCHIR99021の濃度が約3μMである、請求項3~7いずれかに記載の方法。
- 胚体内胚葉のサブポピュレーションが、後方胚体内胚葉(PDE)細胞であって、以下の工程(i)および(ii):
(i)多能性幹細胞をアクチビンAと比較的高濃度のGSK3β阻害剤を含む培地中で培養する工程、および
(ii)前記工程(i)で得られた細胞を、アクチビンAを含む培地中で培養する工程を含む、請求項1または2記載の方法。 - 得られた後方胚体内胚葉(PDE)細胞を分化誘導因子を含まない培地中で培養して、中後腸(MHG)細胞を得る工程を更に含む、請求項9記載の方法。
- 前記GSK3β阻害剤が、CHIR99021であり、培地中におけるCHIR99021の濃度が4μM以上である、請求項9または10に記載の方法。
- 培地中における前記CHIR99021の濃度が約8μMである、請求項11に記載の方法。
- 多能性幹細胞が、ヒトiPS細胞またはヒトES細胞である、請求項1~12何れかに記載の方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018510678A JP7201223B2 (ja) | 2016-04-08 | 2017-04-07 | 多能性幹細胞から、内胚葉系細胞を選択的に誘導する方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662320040P | 2016-04-08 | 2016-04-08 | |
US62/320040 | 2016-04-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017175866A1 true WO2017175866A1 (ja) | 2017-10-12 |
Family
ID=60001224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/014563 WO2017175866A1 (ja) | 2016-04-08 | 2017-04-07 | 多能性幹細胞から、内胚葉系細胞を選択的に誘導する方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7201223B2 (ja) |
WO (1) | WO2017175866A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020532992A (ja) * | 2017-09-07 | 2020-11-19 | ステモニックス インコーポレイティド | 胚体内胚葉へのヒト幹細胞の効率的な分化 |
CN112553145A (zh) * | 2020-12-25 | 2021-03-26 | 汕头大学医学院 | 一种高效定型内胚层细胞的诱导分化方法 |
CN116590219A (zh) * | 2022-09-19 | 2023-08-15 | 苏州南医大创新中心 | 一种干细胞来源的类原肠胚模型及其构建方法和应用 |
CN117126798A (zh) * | 2023-10-20 | 2023-11-28 | 北京大学第三医院(北京大学第三临床医学院) | 一种用于多能干细胞衍生肺类器官的培养基以及培养方法 |
WO2024060465A1 (zh) * | 2022-09-19 | 2024-03-28 | 南京医科大学 | 一种类原肠胚干细胞系的构建方法及应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014062138A1 (en) * | 2012-10-19 | 2014-04-24 | Agency For Science, Technology And Research | Methods of differentiating stem cells into one or more cell lineages |
WO2014200115A1 (ja) * | 2013-06-11 | 2014-12-18 | 国立大学法人京都大学 | 腎前駆細胞の製造方法及び腎前駆細胞を含む医薬 |
-
2017
- 2017-04-07 JP JP2018510678A patent/JP7201223B2/ja active Active
- 2017-04-07 WO PCT/JP2017/014563 patent/WO2017175866A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014062138A1 (en) * | 2012-10-19 | 2014-04-24 | Agency For Science, Technology And Research | Methods of differentiating stem cells into one or more cell lineages |
WO2014200115A1 (ja) * | 2013-06-11 | 2014-12-18 | 国立大学法人京都大学 | 腎前駆細胞の製造方法及び腎前駆細胞を含む医薬 |
Non-Patent Citations (2)
Title |
---|
KUNISADA Y. ET AL.: "Small molecules induce efficient differentiation into insulin- producing cells from human induced pluripotent stem cells", STEM CELL RESEARCH, vol. 8, no. 2, March 2012 (2012-03-01), pages 274 - 284, XP055094959 * |
MATSUNO K. ET AL.: "Redefining definitive endoderm subtypes by robust induction of human induced pluripotent stem cells", DIFFERENTIATION, vol. 92, no. 5, 14 April 2016 (2016-04-14), pages 281 - 290, XP055429558 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020532992A (ja) * | 2017-09-07 | 2020-11-19 | ステモニックス インコーポレイティド | 胚体内胚葉へのヒト幹細胞の効率的な分化 |
CN112553145A (zh) * | 2020-12-25 | 2021-03-26 | 汕头大学医学院 | 一种高效定型内胚层细胞的诱导分化方法 |
CN112553145B (zh) * | 2020-12-25 | 2024-04-02 | 汕头大学医学院 | 一种高效定型内胚层细胞的诱导分化方法 |
CN116590219A (zh) * | 2022-09-19 | 2023-08-15 | 苏州南医大创新中心 | 一种干细胞来源的类原肠胚模型及其构建方法和应用 |
WO2024060465A1 (zh) * | 2022-09-19 | 2024-03-28 | 南京医科大学 | 一种类原肠胚干细胞系的构建方法及应用 |
CN117126798A (zh) * | 2023-10-20 | 2023-11-28 | 北京大学第三医院(北京大学第三临床医学院) | 一种用于多能干细胞衍生肺类器官的培养基以及培养方法 |
CN117126798B (zh) * | 2023-10-20 | 2024-05-03 | 北京大学第三医院(北京大学第三临床医学院) | 一种用于多能干细胞衍生肺类器官的培养基以及培养方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7201223B2 (ja) | 2023-01-10 |
JPWO2017175866A1 (ja) | 2019-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2963886C (en) | In vitro production of foregut stem cells | |
JP7356658B2 (ja) | ドーパミン産生神経前駆細胞の製造方法 | |
EP2898063B1 (en) | In vitro pancreatic differentiation of pluripotent mammalian cells | |
US11021686B2 (en) | In vitro production of cholangiocytes | |
JP2019088308A (ja) | ヒト多能性幹細胞由来肝細胞様細胞の成熟 | |
Matsuno et al. | Redefining definitive endoderm subtypes by robust induction of human induced pluripotent stem cells | |
JP7201223B2 (ja) | 多能性幹細胞から、内胚葉系細胞を選択的に誘導する方法 | |
US10323228B2 (en) | Differentiation of hepatocyte-like cells from stem cells | |
CN106536718B (zh) | 胰芽细胞的制造方法及含有胰芽细胞的胰疾病治疗剂 | |
EP4177335A1 (en) | Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same | |
TW201803983A (zh) | 多能性幹細胞分化成腸的中腸內胚層細胞 | |
JP7162349B2 (ja) | 尿管芽様組織誘導方法 | |
WO2015178397A1 (ja) | インスリン産生細胞の分化誘導方法 | |
JP7471558B2 (ja) | ネフロン前駆細胞の製造方法 | |
JPWO2020022261A1 (ja) | 新規腎前駆細胞マーカーおよびそれを利用した腎前駆細胞の濃縮方法 | |
WO2021125340A1 (ja) | ネフロン前駆細胞を拡大培養するための培地、ネフロン前駆細胞を拡大培養する方法、腎臓オルガノイドの製造方法 | |
WO2019177118A1 (ja) | 多能性幹細胞から各種細胞への段階的製造方法 | |
WO2016009196A1 (en) | In vitro mesodermal differentiation | |
WO2024070494A1 (ja) | 膵内胚葉細胞の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018510678 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17779243 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17779243 Country of ref document: EP Kind code of ref document: A1 |