[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017171511A1 - Method for producing metal foam - Google Patents

Method for producing metal foam Download PDF

Info

Publication number
WO2017171511A1
WO2017171511A1 PCT/KR2017/003614 KR2017003614W WO2017171511A1 WO 2017171511 A1 WO2017171511 A1 WO 2017171511A1 KR 2017003614 W KR2017003614 W KR 2017003614W WO 2017171511 A1 WO2017171511 A1 WO 2017171511A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
less
metal foam
weight
present application
Prior art date
Application number
PCT/KR2017/003614
Other languages
French (fr)
Korean (ko)
Inventor
유동우
이진규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170040972A external-priority patent/KR102056098B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17775935.4A priority Critical patent/EP3437767B1/en
Priority to CN201780022262.XA priority patent/CN109070225B/en
Priority to JP2018551154A priority patent/JP6852858B2/en
Priority to US16/089,191 priority patent/US11141786B2/en
Publication of WO2017171511A1 publication Critical patent/WO2017171511A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles

Definitions

  • the present application relates to a method for producing a metal foam.
  • Metal foam has various useful properties such as light weight, energy absorbency, heat insulation, fire resistance or eco-friendliness, and thus can be applied to various fields including lightweight structures, transportation machines, building materials, or energy absorbing devices. .
  • the metal foam not only has a high specific surface area but also improves the flow of fluids or electrons such as liquids, gases, and the like, so that substrates, catalysts, sensors, actuators, secondary batteries, fuel cells, and gases for heat exchangers can be further improved. It may be usefully applied to a gas diffusion layer (GDL) or a microfluidic flow controller.
  • GDL gas diffusion layer
  • microfluidic flow controller a microfluidic flow controller.
  • metal foam or metal skeleton refers to a porous structure containing metal as a main component.
  • the main component of the metal is that the proportion of the metal is 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight or more, based on the total weight of the metal foam or metal skeleton. It means when the weight percent or more, 85 weight% or more, 90 weight% or more or 95 weight% or more.
  • the upper limit of the ratio of the metal contained as the main component is not particularly limited, and may be, for example, about 100% by weight, 99% by weight or 98% by weight.
  • porosity may refer to a case in which porosity is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, or at least 80%.
  • the upper limit of the porosity is not particularly limited and may be, for example, less than about 100%, about 99% or less, or about 98% or less.
  • the porosity can be calculated in a known manner by calculating the density of the metal foam or the like.
  • the method of manufacturing a metal foam of the present application may include sintering a structure including a metal component.
  • structure refers to a structure before undergoing a process performed to form a metal foam such as the sintering, that is, a structure before the metal foam is produced.
  • the structure although referred to as a porous structure does not necessarily have to be porous by itself, and may be called a porous structure for convenience, as long as it can form a metal foam that is finally a porous metal structure.
  • the structure may include a metal component and an organic binder, and may form the structure by molding a mixture including the metal component and the organic binder.
  • the metal component may include at least a metal having a predetermined relative permeability and conductivity.
  • Application of such a metal, according to one example of the present application can be smoothly performed sintering according to the method when the induction heating method described later as the sintering is applied.
  • the relative permeability ( ⁇ r ) is the ratio ( ⁇ / ⁇ 0 ) of the permeability ( ⁇ ) of the material to the permeability ( ⁇ 0 ) in the vacuum.
  • the metal has relative permeability of 95 or more, 100 or more, 110 or more, 120 or more, 130 or more, 140 or more, 150 or more, 160 or more, 170 or more, 180 or more, 190 or more, 200 or more, 210 or more, 220 or more, 230 or more Over 240, over 250, over 260, over 270, over 280, over 290, over 300, over 310, over 320, over 330, over 340, over 350, over 360, over 370, over 380, over 390, over 400 410 or more, 420 or more, 430 or more, 440 or more, 450 or more, 460 or more, 470 or more, 480 or more, 490 or more, 500 or more, 510 or more, 520 or more, 530 or more, 540 or more, 550 or more, 560 or more, At least 570, at least 580, or at least 590.
  • the upper limit of the relative permeability may be, for example, about 300,000 or less.
  • the metal may be a conductive metal.
  • the term conductive metal has a conductivity at 20 ° C. of at least about 8 MS / m, at least 9 MS / m, at least 10 MS / m, at least 11 MS / m, at least 12 MS / m, at least 13 MS / m or 14.5 MS / It may mean a metal that is m or more or such an alloy.
  • the upper limit of the conductivity is not particularly limited, and for example, the conductivity may be about 30 MS / m or less, 25 MS / m or less, or 20 MS / m or less.
  • the metal having the relative permeability and conductivity as described above may simply be referred to as a conductive magnetic metal.
  • the conductive magnetic metal By applying the conductive magnetic metal, sintering can be more effectively performed when the induction heating process described later is performed.
  • a metal nickel, iron or cobalt may be exemplified, but is not limited thereto.
  • the metal component may comprise a second metal, different from the metal, with the conductive magnetic metal, if necessary.
  • the metal foam may be formed of a metal alloy.
  • the second metal a metal having a relative permeability and / or conductivity in the same range as the above-mentioned conductive magnetic metal may be used, and a metal having a relative permeability and / or conductivity outside such range may be used.
  • 1 type may be included in a 2nd metal and 2 or more types may be included.
  • the kind of the second metal is not particularly limited as long as it is different from the conductive magnetic metal to which it is applied.
  • metals other than the conductive magnetic metal may be applied in magnesium, but the present invention is not limited thereto.
  • the proportion of the conductive magnetic metal in the metal component or structure is not particularly limited.
  • the ratio may be adjusted so that proper joule heat can be generated when the induction heating method described below is applied.
  • the metal component or structure may include 30 wt% or more of the conductive magnetic metal based on the weight of the entire metal component.
  • the proportion of the conductive magnetic metal in the metal component or structure may be at least about 35 wt%, at least about 40 wt%, at least about 45 wt%, at least about 50 wt%, at least about 55 wt%, 60 wt% Or at least 65 wt%, at least 70 wt%, at least 75 wt%, at least 80 wt%, at least 85 wt% or at least 90 wt%.
  • the upper limit of the ratio of the conductive magnetic metal is not particularly limited, and for example, the ratio of the conductive magnetic metal in the metal component or structure may be less than about 100 wt% or less than or equal to 95 wt%. However, the ratio is an exemplary ratio. For example, since the heat generated by induction heating by the application of the electromagnetic field can be adjusted according to the strength of the applied electromagnetic field, the electrical conductivity and resistance of the metal, the ratio may be changed according to specific conditions.
  • the metal component forming the structure may be in powder form.
  • the metals in the metal component may have an average particle diameter in the range of about 0.1 ⁇ m to about 200 ⁇ m.
  • the average particle diameter is, in another example, about 0.5 ⁇ m or more, about 1 ⁇ m or more, about 2 ⁇ m or more, about 3 ⁇ m or more, about 4 ⁇ m or more, about 5 ⁇ m or more, about 6 ⁇ m or more, about 7 ⁇ m or more, or about 8 ⁇ m. It may be abnormal.
  • the average particle diameter may be about 150 ⁇ m or less, 100 ⁇ m or less, 90 ⁇ m or less, 80 ⁇ m or less, 70 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less.
  • metal in a metal component what differs in an average particle diameter can also be applied.
  • the average particle diameter may be selected in consideration of the form of the desired metal foam, for example, the thickness and porosity of the metal foam.
  • the structure may comprise an organic binder together with the metal component.
  • the structure may be manufactured by molding a slurry including the metal component and the organic binder.
  • organic binder that can be applied in the present application is not particularly limited.
  • organic binder for example, polyalkylene carbonate having an alkylene unit having 1 to 8 carbon atoms such as alkyl cellulose, polypropylene carbonate or polyethylene carbonate having an alkyl group having 1 to 8 carbon atoms such as methyl cellulose or ethyl cellulose or Polyvinyl alcohol-based binders such as polyvinyl alcohol or polyvinylacetate; Polyalkylene oxide including an alkylene group having 1 to 8 carbon atoms such as polyethylene oxide or polypropylene oxide may be exemplified, but is not limited thereto.
  • the organic binder may be included, for example, in a ratio of about 10 parts by weight to 400 parts by weight with respect to 100 parts by weight of the metal component.
  • the ratio may be 10 parts by weight or more to ensure proper porosity, and 400 parts by weight or less may be used to efficiently advance the firing between metal components, thereby stably maintaining the foam form.
  • the ratio of the binder is, in another example, at least about 20 parts by weight, at least about 30 parts by weight, at least about 40 parts by weight, at least about 50 parts by weight, at least about 60 parts by weight, at least about 70 parts by weight, at least about 80 parts by weight or About 90 parts by weight or more, about 350 parts by weight or less, about 300 parts by weight or less, about 250 parts by weight or less, about 200 parts by weight or less, or about 150 parts by weight or less.
  • the structure may contain known additives which are additionally required in addition to the above-mentioned components.
  • additives include, but are not limited to, solvents and binders.
  • the manner of forming the structure is not particularly limited. Various methods for forming a structure are known in the manufacturing field of metal foam, and all of these methods may be applied in the present application.
  • the structure may be formed by maintaining a slurry containing the metal component and the organic binder in a suitable template, or by coating the mixture in a suitable manner.
  • the shape of such a structure is not particularly limited as determined according to the desired metal foam.
  • the structure may be in the form of a film or sheet.
  • the thickness may be 5,000 ⁇ m or less, 3,500 ⁇ m or less, 2,000 ⁇ m or less, 1000 ⁇ m or less, 800 ⁇ m or less, 700 ⁇ m or less and 500 ⁇ m or less.
  • Metal foams generally have brittle characteristics in terms of their porous structural characteristics, and thus are difficult to manufacture in the form of a film or sheet, in particular in the form of a thin film or sheet, and have a problem of brittleness even when manufactured.
  • the lower limit of the thickness of the structure is not particularly limited.
  • the thickness of the structure in the form of a film or sheet may be at least about 10 ⁇ m, at least 50 ⁇ m, or at least about 100 ⁇ m.
  • the metal foam may be manufactured by sintering the structure formed in the above manner.
  • the manner of performing sintering for producing the metal foam is not particularly limited, and a known sintering method may be applied. That is, the sintering may be performed by applying an appropriate amount of heat to the structure in an appropriate manner.
  • the sintering may be performed by an induction heating method. That is, as described above, since the metal component includes a conductive magnetic metal having a predetermined permeability and conductivity, an induction heating method may be applied. In this way, including the pores formed uniformly, the mechanical properties are excellent, and the porosity can also be more smoothly produced metal foam adjusted to the desired level.
  • Induction heating is a phenomenon in which heat is generated from a specific metal when an electromagnetic field is applied.
  • an electromagnetic field is applied to a metal having appropriate conductivity and permeability, eddy currents are generated in the metal, and joule heating is generated by the resistance of the metal.
  • the sintering process may be performed through such a phenomenon.
  • the sintering of the metal foam can be performed in a short time by applying the same method, thereby ensuring processability, and at the same time, a metal foam having high porosity and excellent mechanical strength can be manufactured.
  • the sintering process may include applying an electromagnetic field to the structure. Joule heat is generated by the induction heating phenomenon in the conductive magnetic metal of the metal component by the application of the electromagnetic field, whereby the structure can be sintered.
  • the conditions for applying the electromagnetic field are not particularly limited as determined by the type and ratio of the conductive magnetic metal in the structure.
  • the induction heating may be performed using an induction heater formed in the form of a coil or the like.
  • Induction heating may be performed by applying a current of about 100A to 1,000A.
  • the magnitude of the applied current may be 900 A or less, 800 A or less, 700 A or less, 600 A or less, 500 A or less, or 400 A or less.
  • the magnitude of the current may be about 150 A or more, about 200 A or more, or about 250 A or more.
  • Induction heating can be performed, for example, at a frequency of about 100 kHz to 1,000 kHz.
  • the frequency may be 900 kHz or less, 800 kHz or less, 700 kHz or less, 600 kHz or less, 500 kHz or less, or 450 kHz or less.
  • the frequency may, in another example, be at least about 150 kHz, at least about 200 kHz, or at least about 250 kHz.
  • Application of the electromagnetic field for the induction heating may be performed, for example, within a range of about 1 minute to 10 hours.
  • the application time is, in another example, about 9 hours or less, about 8 hours or less, about 7 hours or less, about 6 hours or less, about 5 hours or less, about 4 hours or less, about 3 hours or less, about 2 hours or less, about Up to 1 hour or up to about 30 minutes.
  • the above-mentioned induction heating conditions for example, the applied current, the frequency and the applied time may be changed in consideration of the type and ratio of the conductive magnetic metal as described above.
  • the sintering of the structure may be carried out only by the above-mentioned induction heating or, if necessary, by applying appropriate heat with the induction heating, i.e., application of an electromagnetic field.
  • the metal component may be sintered to form a metal foam.
  • the present application also relates to a metal foam.
  • the metal foam may be prepared by the method described above.
  • Such a metal foam may include, for example, at least the conductive magnetic metal described above.
  • the metal foam may include at least 30 wt%, at least 35 wt%, at least 40 wt%, at least 45 wt%, or at least 50 wt% of the conductive magnetic metal.
  • the proportion of the conductive magnetic metal in the metal foam may be about 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight, 80% by weight, 85% by weight or Or 90% by weight or more.
  • the upper limit of the ratio of the conductive magnetic metal is not particularly limited, and may be, for example, less than about 100% by weight or less than 95% by weight.
  • the metal foam may have a porosity in the range of about 40% to 99%. As mentioned, according to the method of the present application, the porosity and the mechanical strength can be adjusted while including uniformly formed pores.
  • the porosity may be 50% or more, 60% or more, 70% or more, 75% or more, or 80% or more, 95% or less, or 90% or less.
  • the metal foam may also exist in the form of a thin film or sheet.
  • the metal foam may be in the form of a film or sheet.
  • the metal foam in the form of a film or sheet has a thickness of 2,000 ⁇ m or less, 1,500 ⁇ m or less, 1,000 ⁇ m or less, 900 ⁇ m or less, 800 ⁇ m or less, 700 ⁇ m or less, 600 ⁇ m or less, 500 ⁇ m or less, 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 150 ⁇ m or less , About 100 ⁇ m or less, about 90 ⁇ m or less, about 80 ⁇ m or less, about 70 ⁇ m or less, about 60 ⁇ m or less, or about 55 ⁇ m or less.
  • the film or sheet-shaped metal foam has a thickness of about 10 ⁇ m, about 20 ⁇ m, about 30 ⁇ m, about 40 ⁇ m, about 50 ⁇ m, about 100 ⁇ m, about 150 ⁇ m, about 200 ⁇ m, about 250 ⁇ m, about 300 ⁇ m or more. , About 350 ⁇ m or more, about 400 ⁇ m or more, about 450 ⁇ m or more, or about 500 ⁇ m or more.
  • the metal foam may be utilized in various applications requiring a porous metal structure.
  • a metal foam in the form of a thin film or sheet having a desired porosity and excellent mechanical strength, thereby expanding the use of the metal foam in comparison with the existing. have.
  • the present application it is possible to provide a method for producing a metal foam including a uniformly formed pores, having a desired porosity and capable of forming a metal foam having excellent mechanical properties, and a metal foam having the above characteristics.
  • the present application can provide a method and a metal foam that can form a metal foam having the above-described physical properties in the form of a thin film or sheet.
  • Nickel powder (conductivity is about 14.5 MS / m, relative permeability is about 600, average particle diameter is about 10-20 ⁇ m) and ethyl cellulose are put in methylene chloride in a weight ratio of about 1: 1, and the co-electromagnetic mixer
  • the slurry was prepared by mixing using.
  • the prepared mixture was coated on a quartz plate with a thickness of about 200 ⁇ m to prepare a structure, and a metal foam was prepared by applying an electromagnetic field to the structure with a coil induction heater and sintering. At this time, the electromagnetic field was formed by applying a current of about 350 A at a frequency of about 380 kHz, and the application time was about 3 minutes.
  • the porosity of the prepared metal foam was about 65%, the SEM photograph is shown in FIG.
  • a metal foam was prepared in the same manner as in Example 1 except that polyethylene carbonate was used instead of ethyl cellulose.
  • the porosity of the prepared metal foam was about 45%, the SEM photograph is shown in FIG.
  • Polyvinyl alcohol was used instead of ethyl cellulose, and metal foam was prepared in the same manner as in Example 1 except that water was used instead of methylene chloride.
  • the porosity of the prepared metal foam was about 52%.
  • a metal foam was prepared in the same manner as in Example 1 except that polyethylene oxide was used instead of ethyl cellulose.
  • the porosity of the prepared metal foam was about 57%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present application provides a method for producing metal foam. The present application can provide a method for producing metal foam which comprises uniformly formed holes and having desired porosity while exhibiting superb mechanical properties, and can provide metal foam having such characteristics. Furthermore, the present application can provide a method which can form, within a short processing time, metal foam into a thin film or sheet while assuring the properties discussed above, and can provide metal foam having such properties.

Description

금속폼의 제조 방법Manufacturing method of metal foam
본 출원은 2016년 4월 1일자 제출된 대한민국 특허출원 제10-2016-0040362호 및 2017년 3월 30일자 제출된 대한민국 특허출원 제10-2017-0040972호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0040362, filed April 1, 2016 and Korean Patent Application No. 10-2017-0040972, filed March 30, 2017. All contents disclosed in the documents of the Korean patent application are included as part of the present specification.
본 출원은 금속폼의 제조 방법에 대한 것이다.The present application relates to a method for producing a metal foam.
금속폼(metal foam)은 경량성, 에너지 흡수성, 단열성, 내화성 또는 친환경 등의 다양하고 유용한 특성을 구비함으로써, 경량 구조물, 수송 기계, 건축 자재 또는 에너지 흡수 장치 등을 포함하는 다양한 분야에 적용될 수 있다. 또한, 금속폼은, 높은 비표면적을 가질 뿐만 아니라 액체, 기체 등의 유체 또는 전자의 흐름을 보다 향상시킬 수 있으므로, 열 교환 장치용 기판, 촉매, 센서, 액츄에이터, 2차 전지, 연료전지, 가스 확산층(GDL: gas diffusion layer) 또는 미세유체 흐름 제어기(microfluidic flow controller) 등에 적용되어 유용하게 사용될 수도 있다.Metal foam has various useful properties such as light weight, energy absorbency, heat insulation, fire resistance or eco-friendliness, and thus can be applied to various fields including lightweight structures, transportation machines, building materials, or energy absorbing devices. . In addition, the metal foam not only has a high specific surface area but also improves the flow of fluids or electrons such as liquids, gases, and the like, so that substrates, catalysts, sensors, actuators, secondary batteries, fuel cells, and gases for heat exchangers can be further improved. It may be usefully applied to a gas diffusion layer (GDL) or a microfluidic flow controller.
본 출원은, 균일한 기공을 포함하고, 목적하는 기공도를 가지면서도 기계적 강도가 우수한 금속폼을 제조할 수 있는 방법을 제공하는 것을 목적으로 한다.It is an object of the present application to provide a method for producing a metal foam having uniform porosity and excellent mechanical strength while having a desired porosity.
본 명세서에서 용어 금속폼 또는 금속 골격은, 금속을 주성분으로 포함하는 다공성 구조체를 의미한다. 상기에서 금속을 주성분으로 한다는 것은, 금속폼 또는 금속 골격의 전체 중량을 기준으로 금속의 비율이 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상, 90 중량% 이상 또는 95 중량% 이상인 경우를 의미한다. 상기 주성분으로 포함되는 금속의 비율의 상한은 특별히 제한되지 않으며, 예를 들면, 100 중량%, 99 중량% 또는 98 중량% 정도일 수 있다.As used herein, the term metal foam or metal skeleton refers to a porous structure containing metal as a main component. In the above, the main component of the metal is that the proportion of the metal is 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight or more, based on the total weight of the metal foam or metal skeleton. It means when the weight percent or more, 85 weight% or more, 90 weight% or more or 95 weight% or more. The upper limit of the ratio of the metal contained as the main component is not particularly limited, and may be, for example, about 100% by weight, 99% by weight or 98% by weight.
본 명세서에서 용어 다공성은, 기공도(porosity)가 적어도 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 75% 이상 또는 80% 이상인 경우를 의미할 수 있다. 상기 기공도의 상한은 특별히 제한되지 않으며, 예를 들면, 약 100% 미만, 약 99% 이하 또는 약 98% 이하 정도일 수 있다. 상기 기공도는 금속폼 등의 밀도를 계산하여 공지의 방식으로 산출할 수 있다.As used herein, the term porosity may refer to a case in which porosity is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, or at least 80%. The upper limit of the porosity is not particularly limited and may be, for example, less than about 100%, about 99% or less, or about 98% or less. The porosity can be calculated in a known manner by calculating the density of the metal foam or the like.
본 출원의 금속폼의 제조 방법은, 금속 성분을 포함하는 구조체를 소결하는 단계를 포함할 수 있다. 본 출원에서 용어 구조체는, 상기 소결 등과 같이 금속폼을 형성하기 위해 수행되는 공정을 거치기 전의 구조체, 즉 금속폼이 생성되기 전의 구조체를 의미한다. 또한, 상기 구조체는, 다공성 구조체라고 호칭되더라도 반드시 그 자체로 다공성일 필요는 없으며, 최종적으로 다공성의 금속 구조체인 금속폼을 형성할 수 있는 것이라면, 편의상 다공성 구조체라고 호칭될 수 있다. The method of manufacturing a metal foam of the present application may include sintering a structure including a metal component. In the present application, the term structure refers to a structure before undergoing a process performed to form a metal foam such as the sintering, that is, a structure before the metal foam is produced. In addition, the structure, although referred to as a porous structure does not necessarily have to be porous by itself, and may be called a porous structure for convenience, as long as it can form a metal foam that is finally a porous metal structure.
본 출원에서 상기 구조체는, 금속 성분과 유기 바인더를 포함할 수 있고, 상기 금속 성분과 유기 바인더를 포함하는 혼합물을 성형하여 상기 구조체를 형성할 수 있다.In the present application, the structure may include a metal component and an organic binder, and may form the structure by molding a mixture including the metal component and the organic binder.
일 예시에서 상기 금속 성분은, 소정 상대 투자율과 전도도를 가지는 금속을 적어도 포함할 수 있다. 이러한 금속의 적용은, 본 출원의 하나의 예시에 따라서 상기 소결로서 후술하는 유도 가열 방식이 적용될 경우에 해당 방식에 따른 소결이 원활하게 수행되도록 할 수 있다.In one example, the metal component may include at least a metal having a predetermined relative permeability and conductivity. Application of such a metal, according to one example of the present application can be smoothly performed sintering according to the method when the induction heating method described later as the sintering is applied.
예를 들면, 상기 금속으로는, 상대 투자율이 90 이상인 금속이 사용될 수 있다. 상대 투자율(μr)은, 해당 물질의 투자율(μ)과 진공속의 투자율(μ0)의 비율(μ/μ0)이다. 상기 금속은 상대 투자율이 95 이상, 100 이상, 110 이상, 120 이상, 130 이상, 140 이상, 150 이상, 160 이상, 170 이상, 180 이상, 190 이상, 200 이상, 210 이상, 220 이상, 230 이상, 240 이상, 250 이상, 260 이상, 270 이상, 280 이상, 290 이상, 300 이상, 310 이상, 320 이상, 330 이상, 340 이상, 350 이상, 360 이상, 370 이상, 380 이상, 390 이상, 400 이상, 410 이상, 420 이상, 430 이상, 440 이상, 450 이상, 460 이상, 470 이상, 480 이상, 490 이상, 500 이상, 510 이상, 520 이상, 530 이상, 540 이상, 550 이상, 560 이상, 570 이상, 580 이상 또는 590 이상일 수 있다. 상대 투자율이 높을 수록 후술하는 유도 가열을 위한 전자기장의 인가 시에 보다 높은 열을 발생하게 되므로 그 상한은 특별히 제한되지 않는다. 일 예시에서 상기 상대 투자율의 상한은 예를 들면, 약 300,000 이하일 수 있다. For example, as the metal, a metal having a relative permeability of 90 or more may be used. The relative permeability (μ r ) is the ratio (μ / μ 0 ) of the permeability (μ) of the material to the permeability (μ 0 ) in the vacuum. The metal has relative permeability of 95 or more, 100 or more, 110 or more, 120 or more, 130 or more, 140 or more, 150 or more, 160 or more, 170 or more, 180 or more, 190 or more, 200 or more, 210 or more, 220 or more, 230 or more Over 240, over 250, over 260, over 270, over 280, over 290, over 300, over 310, over 320, over 330, over 340, over 350, over 360, over 370, over 380, over 390, over 400 410 or more, 420 or more, 430 or more, 440 or more, 450 or more, 460 or more, 470 or more, 480 or more, 490 or more, 500 or more, 510 or more, 520 or more, 530 or more, 540 or more, 550 or more, 560 or more, At least 570, at least 580, or at least 590. The higher the relative permeability, the higher the heat generated upon application of the electromagnetic field for induction heating, which will be described later, so the upper limit is not particularly limited. In one example, the upper limit of the relative permeability may be, for example, about 300,000 or less.
상기 금속은 전도성 금속일 수 있다. 용어 전도성 금속은 20℃에서의 전도도가 약 8 MS/m 이상, 9 MS/m 이상, 10 MS/m 이상, 11 MS/m 이상, 12 MS/m 이상, 13 MS/m 이상 또는 14.5 MS/m 이상인 금속 또는 그러한 합금을 의미할 수 있다. 상기 전도도의 상한은 특별히 제한되지 않으며, 예를 들면, 상기 전도도는, 약 30 MS/m 이하, 25 MS/m 이하 또는 20 MS/m 이하일 수 있다.The metal may be a conductive metal. The term conductive metal has a conductivity at 20 ° C. of at least about 8 MS / m, at least 9 MS / m, at least 10 MS / m, at least 11 MS / m, at least 12 MS / m, at least 13 MS / m or 14.5 MS / It may mean a metal that is m or more or such an alloy. The upper limit of the conductivity is not particularly limited, and for example, the conductivity may be about 30 MS / m or less, 25 MS / m or less, or 20 MS / m or less.
본 출원에서 상기와 같은 상대 투자율과 전도도를 가지는 금속은 단순하게 전도성 자성 금속으로도 호칭될 수 있다.In the present application, the metal having the relative permeability and conductivity as described above may simply be referred to as a conductive magnetic metal.
상기 전도성 자성 금속을 적용함으로써, 후술하는 유도 가열 공정이 진행될 경우에 소결을 보다 효과적으로 진행할 수 있다. 이와 같은 금속으로는 니켈, 철 또는 코발트 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.By applying the conductive magnetic metal, sintering can be more effectively performed when the induction heating process described later is performed. As such a metal, nickel, iron or cobalt may be exemplified, but is not limited thereto.
금속 성분은, 필요한 경우에 상기 전도성 자성 금속과 함께 상기 금속과는 다른 제 2 금속을 포함할 수 있다. 이러한 경우에는, 금속폼이 금속 합금으로 형성될 수 있다. 상기 제 2 금속으로는 상기 언급한 전도성 자성 금속과 같은 범위의 상대 투자율 및/또는 전도도를 가지는 금속이 사용될 수도 있고, 그러한 범위 외의 상대 투자율 및/또는 전도도를 가지는 금속이 사용될 수 있다. 또한, 제 2 금속은 1종이 포함될 수도 있고, 2종 이상이 포함될 수도 있다. 이러한 제 2 금속의 종류는 적용되는 전도성 자성 금속과 다른 종류인 한 특별히 제한되지 않으며, 예를 들면, 구리, 인, 몰리브덴, 아연, 망간, 크롬, 인듐, 주석, 은, 백금, 금, 알루미늄 또는 마그네슘 등에서 전도성 자성 금속과 다른 금속 1종 이상이 적용될 수 있지만, 이에 제한되는 것은 아니다.The metal component may comprise a second metal, different from the metal, with the conductive magnetic metal, if necessary. In this case, the metal foam may be formed of a metal alloy. As the second metal, a metal having a relative permeability and / or conductivity in the same range as the above-mentioned conductive magnetic metal may be used, and a metal having a relative permeability and / or conductivity outside such range may be used. In addition, 1 type may be included in a 2nd metal and 2 or more types may be included. The kind of the second metal is not particularly limited as long as it is different from the conductive magnetic metal to which it is applied. For example, copper, phosphorus, molybdenum, zinc, manganese, chromium, indium, tin, silver, platinum, gold, aluminum or One or more metals other than the conductive magnetic metal may be applied in magnesium, but the present invention is not limited thereto.
금속 성분 또는 구조체 내에서 상기 전도성 자성 금속의 비율은 특별히 제한되지 않는다. 예를 들어, 상기 비율은, 후술하는 유도 가열 공법의 적용 시에 적절한 줄열을 발생시킬 수 있도록 비율이 조절될 수 있다. 예를 들면, 상기 금속 성분 또는 구조체는, 상기 전도성 자성 금속을 전체 금속 성분의 중량을 기준으로 30 중량% 이상 포함할 수 있다. 다른 예시에서 상기 금속 성분 또는 구조체 내의 상기 전도성 자성 금속의 비율은, 약 35 중량% 이상, 약 40 중량% 이상, 약 45 중량% 이상, 약 50 중량% 이상, 약 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상 또는 90 중량% 이상일 수 있다. 상기 전도성 자성 금속 비율의 상한은 특별히 제한되지 않으며, 예를 들면, 상기 금속 성분 또는 구조체 내에서 상기 전도성 자성 금속의 비율은, 약 100 중량% 미만 또는 95 중량% 이하일 수 있다. 그러나, 상기 비율은 예시적인 비율이다. 예를 들어, 전자기장의 인가에 의한 유도 가열에 의해 발생하는 열은, 가해주는 전자기장의 세기, 금속의 전기 전도도와 저항 등에 따라 조절이 가능하기 때문에, 상기 비율은 구체적인 조건에 따라서 변경될 수 있다. The proportion of the conductive magnetic metal in the metal component or structure is not particularly limited. For example, the ratio may be adjusted so that proper joule heat can be generated when the induction heating method described below is applied. For example, the metal component or structure may include 30 wt% or more of the conductive magnetic metal based on the weight of the entire metal component. In another example, the proportion of the conductive magnetic metal in the metal component or structure may be at least about 35 wt%, at least about 40 wt%, at least about 45 wt%, at least about 50 wt%, at least about 55 wt%, 60 wt% Or at least 65 wt%, at least 70 wt%, at least 75 wt%, at least 80 wt%, at least 85 wt% or at least 90 wt%. The upper limit of the ratio of the conductive magnetic metal is not particularly limited, and for example, the ratio of the conductive magnetic metal in the metal component or structure may be less than about 100 wt% or less than or equal to 95 wt%. However, the ratio is an exemplary ratio. For example, since the heat generated by induction heating by the application of the electromagnetic field can be adjusted according to the strength of the applied electromagnetic field, the electrical conductivity and resistance of the metal, the ratio may be changed according to specific conditions.
구조체를 형성하는 금속 성분은 분말(powder) 형태일 수 있다. 예를 들면, 상기 금속 성분 내의 금속들은, 평균 입경이 약 0.1 μm 내지 약 200 μm의 범위 내에 있을 수 있다. 상기 평균 입경은 다른 예시에서 약 0.5 μm 이상, 약 1 μm 이상, 약 2 μm 이상, 약 3 μm 이상, 약 4 μm 이상, 약 5 μm 이상, 약 6 μm 이상, 약 7 μm 이상 또는 약 8 μm 이상일 수 있다. 상기 평균 입경은 다른 예시에서 약 150 μm 이하, 100 μm 이하, 90 μm 이하, 80 μm 이하, 70 μm 이하, 60 μm 이하, 50 μm 이하, 40 μm 이하, 30 μm 이하 또는 20 μm 이하일 수 있다. 금속 성분 내의 금속으로는 서로 평균 입경이 상이한 것을 적용할 수도 있다. 상기 평균 입경은, 목적하는 금속폼의 형태, 예를 들면, 금속폼의 두께나 기공도 등을 고려하여 적절한 범위를 선택할 수 있다.The metal component forming the structure may be in powder form. For example, the metals in the metal component may have an average particle diameter in the range of about 0.1 μm to about 200 μm. The average particle diameter is, in another example, about 0.5 μm or more, about 1 μm or more, about 2 μm or more, about 3 μm or more, about 4 μm or more, about 5 μm or more, about 6 μm or more, about 7 μm or more, or about 8 μm. It may be abnormal. In another example, the average particle diameter may be about 150 μm or less, 100 μm or less, 90 μm or less, 80 μm or less, 70 μm or less, 60 μm or less, 50 μm or less, 40 μm or less, 30 μm or less, or 20 μm or less. As metal in a metal component, what differs in an average particle diameter can also be applied. The average particle diameter may be selected in consideration of the form of the desired metal foam, for example, the thickness and porosity of the metal foam.
구조체는 상기 금속 성분과 함께 유기 바인더를 포함할 수 있다. 예를 들어, 상기 금속 성분과 유기 바인더를 포함하는 슬러리 등을 성형하여 상기 구조체를 제조할 수 있다.The structure may comprise an organic binder together with the metal component. For example, the structure may be manufactured by molding a slurry including the metal component and the organic binder.
본 출원에서 적용될 수 있는 유기 바인더의 종류는 특별히 제한되지 않는다. 유기 바인더로는, 예를 들면, 메틸 셀룰로오스 또는 에틸 셀룰로오스 등의 탄소수 1 내지 8의 알킬기를 가지는 알킬 셀룰로오스, 폴리프로필렌 카보네이트 또는 폴리에틸렌 카보네이트 등의 탄소수 1 내지 8의 알킬렌 단위를 가지는 폴리알킬렌 카보네이트 또는 폴리비닐알코올 또는 폴리비닐아세테이트 등의 폴리비닐알코올계 바인더; 폴리에틸렌옥시드 또는 폴리프로필렌옥시드 등의 탄소수 1 내지 8의 알킬렌기를 포함하는 폴리알킬렌옥시드 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.The type of organic binder that can be applied in the present application is not particularly limited. As the organic binder, for example, polyalkylene carbonate having an alkylene unit having 1 to 8 carbon atoms such as alkyl cellulose, polypropylene carbonate or polyethylene carbonate having an alkyl group having 1 to 8 carbon atoms such as methyl cellulose or ethyl cellulose or Polyvinyl alcohol-based binders such as polyvinyl alcohol or polyvinylacetate; Polyalkylene oxide including an alkylene group having 1 to 8 carbon atoms such as polyethylene oxide or polypropylene oxide may be exemplified, but is not limited thereto.
구조체 내에서 유기 바인더는, 예를 들면, 상기 금속 성분 100 중량부 대비 약 10 중량부 내지 400 중량부의 비율로 포함되어 있을 수 있다. 상기 비율을 10 중량부 이상으로 하여 최종적으로 적절한 기공도를 확보할 수 있고, 400 중량부 이하로 하여 금속 성분간의 소성을 효율적으로 진행시켜 폼 형태를 안정적으로 유지할 수 있다. 상기 바인더의 비율은 다른 예시에서 약 20 중량부 이상, 약 30 중량부 이상, 약 40 중량부 이상, 약 50 중량부 이상, 약 60 중량부 이상, 약 70 중량부 이상, 약 80 중량부 이상 또는 약 90 중량부 이상이거나, 약 350 중량부 이하, 약 300 중량부 이하, 약 250 중량부 이하, 약 200 중량부 이하 또는 약 150 중량부 이하일 수 있다.In the structure, the organic binder may be included, for example, in a ratio of about 10 parts by weight to 400 parts by weight with respect to 100 parts by weight of the metal component. Finally, the ratio may be 10 parts by weight or more to ensure proper porosity, and 400 parts by weight or less may be used to efficiently advance the firing between metal components, thereby stably maintaining the foam form. The ratio of the binder is, in another example, at least about 20 parts by weight, at least about 30 parts by weight, at least about 40 parts by weight, at least about 50 parts by weight, at least about 60 parts by weight, at least about 70 parts by weight, at least about 80 parts by weight or About 90 parts by weight or more, about 350 parts by weight or less, about 300 parts by weight or less, about 250 parts by weight or less, about 200 parts by weight or less, or about 150 parts by weight or less.
구조체는, 상기 언급한 성분 외에 추가적으로 필요한 공지의 첨가제를 포함할 수도 있다. 이러한 첨가제의 예로는, 용매나 바인더 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.The structure may contain known additives which are additionally required in addition to the above-mentioned components. Examples of such additives include, but are not limited to, solvents and binders.
상기 구조체를 형성하는 방식은 특별히 제한되지 않는다. 금속폼의 제조 분야에서는 구조체를 형성하기 위한 다양한 방식이 공지되어 있고, 본 출원에서는 이와 같은 방식이 모두 적용될 수 있다. 예를 들면, 상기 구조체는, 적정한 틀(template)에 상기 금속 성분과 유기 바인더를 포함하는 슬러리를 유지하거나, 혹은 상기 혼합물을 적정한 방식으로 코팅하여 형성할 수 있다.The manner of forming the structure is not particularly limited. Various methods for forming a structure are known in the manufacturing field of metal foam, and all of these methods may be applied in the present application. For example, the structure may be formed by maintaining a slurry containing the metal component and the organic binder in a suitable template, or by coating the mixture in a suitable manner.
이와 같은 구조체의 형태는 목적하는 금속폼에 따라 정해지는 것으로 특별히 제한되지 않는다. 하나의 예시에서 상기 구조체는, 필름 또는 시트 형태일 수 있다. 예를 들면, 상기 구조체가 필름 또는 시트 형태일 때에 그 두께는 5,000 μm 이하, 3,500 μm 이하, 2,000 μm 이하, 1000 μm 이하, 800 μm 이하, 700 μm 이하500 μm 이하일 수 있다. 금속폼은, 다공성인 구조적 특징상 일반적으로 브리틀한 특성을 가지고, 따라서 필름 또는 시트 형태, 특히 얇은 두께의 필름 또는 시트 형태로 제작이 어렵고, 제작하게 되어도 쉽게 부스러지는 문제가 있다. 그렇지만, 본 출원의 방식에 의해서는, 얇은 두께이면서도, 내부에 균일하게 기공이 형성되고, 기계적 특성이 우수한 금속폼의 형성이 가능하다. The shape of such a structure is not particularly limited as determined according to the desired metal foam. In one example, the structure may be in the form of a film or sheet. For example, when the structure is in the form of a film or sheet, the thickness may be 5,000 μm or less, 3,500 μm or less, 2,000 μm or less, 1000 μm or less, 800 μm or less, 700 μm or less and 500 μm or less. Metal foams generally have brittle characteristics in terms of their porous structural characteristics, and thus are difficult to manufacture in the form of a film or sheet, in particular in the form of a thin film or sheet, and have a problem of brittleness even when manufactured. However, according to the method of the present application, it is possible to form a metal foam having a thin thickness and uniformly internal pores and excellent mechanical properties.
상기에서 구조체의 두께의 하한은 특별히 제한되지 않는다. 예를 들면, 상기 필름 또는 시트 형태의 구조체의 두께는 약 10 μm 이상, 50 μm 이상 또는 약 100 μm 이상일 수 있다.In the above, the lower limit of the thickness of the structure is not particularly limited. For example, the thickness of the structure in the form of a film or sheet may be at least about 10 μm, at least 50 μm, or at least about 100 μm.
상기와 같은 방식으로 형성된 구조체를 소결하여 금속폼을 제조할 수 있다. 이러한 경우에 상기 금속폼을 제조하기 위한 소결을 수행하는 방식은 특별히 제한되지 않으며, 공지의 소결법을 적용할 수 있다. 즉, 적절한 방식으로 상기 구조체에 적정한 양의 열을 인가하는 방식으로 상기 소결을 진행할 수 있다.The metal foam may be manufactured by sintering the structure formed in the above manner. In this case, the manner of performing sintering for producing the metal foam is not particularly limited, and a known sintering method may be applied. That is, the sintering may be performed by applying an appropriate amount of heat to the structure in an appropriate manner.
상기 기존의 공지 방식과는 다른 방식으로서, 본 출원에서는 상기 소결을 유도 가열 방식으로 수행할 수 있다. 즉, 전술한 바와 같이 금속 성분이 소정 투자율과 전도도의 전도성 자성 금속을 포함하기 때문에, 유도 가열 방식이 적용될 수 있다. 이러한 방식에 의해서 균일하게 형성된 기공을 포함하면서, 기계적 특성이 우수하며, 기공도도 목적하는 수준으로 조절된 금속폼의 제조가 보다 원활하게 될 수 있다.As a method different from the conventional known method, in the present application, the sintering may be performed by an induction heating method. That is, as described above, since the metal component includes a conductive magnetic metal having a predetermined permeability and conductivity, an induction heating method may be applied. In this way, including the pores formed uniformly, the mechanical properties are excellent, and the porosity can also be more smoothly produced metal foam adjusted to the desired level.
상기에서 유도 가열은, 전자기장이 인가되면 특정 금속에서 열이 발생하는 현상이다. 예를 들어, 적절한 전도성과 투자율을 가지는 금속에 전자기장을 인가하면, 금속에 와전류(eddy currents)가 발생하고, 금속의 저항에 의해 줄열(Joule heating)이 발생한다. 본 출원에서는 이러한 현상을 통한 소결 공정을 수행할 수 있다. 본 출원에서는 이와 같은 방식을 적용하여 금속폼의 소결을 단시간 내에 수행할 수 있어서 공정성을 확보하고, 동시에 기공도가 높은 박막 형태이면서도 기계적 강도가 우수한 금속폼을 제조할 수 있다.Induction heating is a phenomenon in which heat is generated from a specific metal when an electromagnetic field is applied. For example, when an electromagnetic field is applied to a metal having appropriate conductivity and permeability, eddy currents are generated in the metal, and joule heating is generated by the resistance of the metal. In the present application, the sintering process may be performed through such a phenomenon. In the present application, the sintering of the metal foam can be performed in a short time by applying the same method, thereby ensuring processability, and at the same time, a metal foam having high porosity and excellent mechanical strength can be manufactured.
상기 소결 공정은, 상기 구조체에 전자기장을 인가하는 단계를 포함할 수 있다. 상기 전자기장의 인가에 의해 상기 금속 성분의 전도성 자성 금속에서 유도 가열 현상에 의해서 줄열이 발생하고, 이에 의해 구조체는 소결될 수 있다. 이 때 전자기장을 인가하는 조건은 구조체 내의 전도성 자성 금속의 종류 및 비율 등에 따라서 결정되는 것으로 특별히 제한되지 않는다. The sintering process may include applying an electromagnetic field to the structure. Joule heat is generated by the induction heating phenomenon in the conductive magnetic metal of the metal component by the application of the electromagnetic field, whereby the structure can be sintered. At this time, the conditions for applying the electromagnetic field are not particularly limited as determined by the type and ratio of the conductive magnetic metal in the structure.
예를 들면, 상기 유도 가열은, 코일 등의 형태로 형성된 유도 가열기를 사용하여 진행할 수 있다. For example, the induction heating may be performed using an induction heater formed in the form of a coil or the like.
유도 가열은, 예를 들면, 100A 내지 1,000A 정도의 전류를 인가하여 수행할 수 있다. 상기 가해지는 전류의 크기는 다른 예시에서, 900A 이하, 800 A 이하, 700 A 이하, 600 A 이하, 500 A 이하 또는 400 A 이하일 수 있다. 상기 전류의 크기는 다른 예시에서 약 150 A 이상, 약 200 A 이상 또는 약 250 A 이상일 수 있다.Induction heating, for example, may be performed by applying a current of about 100A to 1,000A. In another example, the magnitude of the applied current may be 900 A or less, 800 A or less, 700 A or less, 600 A or less, 500 A or less, or 400 A or less. In another example, the magnitude of the current may be about 150 A or more, about 200 A or more, or about 250 A or more.
유도 가열은, 예를 들면, 약 100kHz 내지 1,000kHz의 주파수로 수행할 수 있다. 상기 주파수는, 다른 예시에서, 900 kHz 이하, 800 kHz 이하, 700 kHz 이하, 600 kHz 이하, 500 kHz 이하 또는 450 kHz 이하일 수 있다. 상기 주파수는, 다른 예시에서 약 150 kHz 이상, 약 200 kHz 이상 또는 약 250 kHz 이상일 수 있다. Induction heating can be performed, for example, at a frequency of about 100 kHz to 1,000 kHz. In another example, the frequency may be 900 kHz or less, 800 kHz or less, 700 kHz or less, 600 kHz or less, 500 kHz or less, or 450 kHz or less. The frequency may, in another example, be at least about 150 kHz, at least about 200 kHz, or at least about 250 kHz.
상기 유도 가열을 위한 전자기장의 인가는 예를 들면, 약 1분 내지 10시간의 범위 내에서 수행할 수 있다. 상기 인가 시간은, 다른 예시에서, 약 9시간 이하, 약 8 시간 이하, 약 7 시간 이하, 약 6 시간 이하, 약 5 시간 이하, 약 4 시간 이하, 약 3 시간 이하, 약 2 시간 이하, 약 1 시간 이하 또는 약 30분 이하일 수 있다.Application of the electromagnetic field for the induction heating may be performed, for example, within a range of about 1 minute to 10 hours. The application time is, in another example, about 9 hours or less, about 8 hours or less, about 7 hours or less, about 6 hours or less, about 5 hours or less, about 4 hours or less, about 3 hours or less, about 2 hours or less, about Up to 1 hour or up to about 30 minutes.
상기 언급한 유도 가열 조건, 예를 들면, 인가 전류, 주파수 및 인가 시간 등은 전술한 바와 같이 전도성 자성 금속의 종류 및 비율 등을 고려하여 변경될 수 있다.The above-mentioned induction heating conditions, for example, the applied current, the frequency and the applied time may be changed in consideration of the type and ratio of the conductive magnetic metal as described above.
상기 구조체의 소결은, 상기 언급한 유도 가열에 의해서만 수행하거나, 필요한 경우에 상기 유도 가열, 즉 전자기장의 인가와 함께 적절한 열을 인가하면서 수행할 수도 있다.The sintering of the structure may be carried out only by the above-mentioned induction heating or, if necessary, by applying appropriate heat with the induction heating, i.e., application of an electromagnetic field.
상기와 같은 소결 과정에서 발생된 열에 의해 구조체 내의 유기 바인더가 제거되면서 금속 성분이 소결되어 금속폼이 형성될 수 있다. As the organic binder in the structure is removed by the heat generated in the sintering process as described above, the metal component may be sintered to form a metal foam.
본 출원은 또한, 금속폼에 대한 것이다. 상기 금속폼은 전술한 방법에 의해 제조된 것일 수 있다. 이러한 금속폼은, 예를 들면, 전술한 전도성 자성 금속을 적어도 포함할 수 있다. 금속폼은 상기 전도성 자성 금속을 중량을 기준으로 30 중량% 이상, 35 중량% 이상, 40 중량% 이상, 45 중량% 이상 또는 50 중량% 이상 포함할 수 있다. 다른 예시에서 상기 금속폼 내의 전도성 자성 금속의 비율은, 약 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상 또는 90 중량% 이상일 수 있다. 상기 전도성 자성 금속의 비율의 상한은 특별히 제한되지 않으며, 예를 들면, 약 100 중량% 미만 또는 95 중량% 이하일 수 있다. The present application also relates to a metal foam. The metal foam may be prepared by the method described above. Such a metal foam may include, for example, at least the conductive magnetic metal described above. The metal foam may include at least 30 wt%, at least 35 wt%, at least 40 wt%, at least 45 wt%, or at least 50 wt% of the conductive magnetic metal. In another example, the proportion of the conductive magnetic metal in the metal foam may be about 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight, 80% by weight, 85% by weight or Or 90% by weight or more. The upper limit of the ratio of the conductive magnetic metal is not particularly limited, and may be, for example, less than about 100% by weight or less than 95% by weight.
상기 금속폼은, 기공도(porosity)가 약 40% 내지 99%의 범위 내일 수 있다. 언급한 바와 같이, 본 출원의 방법에 의하면, 균일하게 형성된 기공을 포함하면서, 기공도와 기계적 강도를 조절할 수 있다. 상기 기공도는, 50% 이상, 60% 이상, 70% 이상, 75% 이상 또는 80% 이상이거나, 95% 이하 또는 90% 이하일 수 있다.The metal foam may have a porosity in the range of about 40% to 99%. As mentioned, according to the method of the present application, the porosity and the mechanical strength can be adjusted while including uniformly formed pores. The porosity may be 50% or more, 60% or more, 70% or more, 75% or more, or 80% or more, 95% or less, or 90% or less.
상기 금속폼은 박막의 필름 또는 시트 형태로도 존재할 수 있다. 하나의 예시에서 금속폼은 필름 또는 시트 형태일 수 있다. 이러한 필름 또는 시트 형태의 금속폼은, 두께가 2,000μm 이하, 1,500μm 이하, 1,000μm 이하, 900μm 이하, 800μm 이하, 700μm 이하, 600μm 이하, 500μm 이하, 400μm 이하, 300μm 이하, 200μm 이하, 150μm 이하, 약 100μm 이하, 약 90μm 이하, 약 80μm 이하, 약 70μm 이하, 약 60μm 이하 또는 약 55μm 이하일 수 있다. 상기 필름 또는 시트 형태의 금속폼의 두께는 약 10μm 이상, 약 20μm 이상, 약 30μm 이상, 약 40μm 이상, 약 50μm 이상, 약 100μm 이상, 약 150μm 이상, 약 200μm 이상, 약 250μm 이상, 약 300μm 이상, 약 350μm 이상, 약 400μm 이상, 약 450μm 이상 또는 약 500μm 이상일 수 있지만, 이에 제한되는 것은 아니다. The metal foam may also exist in the form of a thin film or sheet. In one example, the metal foam may be in the form of a film or sheet. The metal foam in the form of a film or sheet has a thickness of 2,000 μm or less, 1,500 μm or less, 1,000 μm or less, 900 μm or less, 800 μm or less, 700 μm or less, 600 μm or less, 500 μm or less, 400 μm or less, 300 μm or less, 200 μm or less, 150 μm or less , About 100 μm or less, about 90 μm or less, about 80 μm or less, about 70 μm or less, about 60 μm or less, or about 55 μm or less. The film or sheet-shaped metal foam has a thickness of about 10 μm, about 20 μm, about 30 μm, about 40 μm, about 50 μm, about 100 μm, about 150 μm, about 200 μm, about 250 μm, about 300 μm or more. , About 350 μm or more, about 400 μm or more, about 450 μm or more, or about 500 μm or more.
상기 금속폼은, 다공성의 금속 구조체가 필요한 다양한 용도에서 활용될 수 있다. 특히, 본 출원의 방식에 따르면, 전술한 바와 같이 목적하는 수준의 기공도를 가지면서도 기계적 강도가 우수한 얇은 필름 또는 시트 형태의 금속폼의 제조가 가능하여, 기존 대비 금속폼의 용도를 확대할 수 있다.The metal foam may be utilized in various applications requiring a porous metal structure. In particular, according to the method of the present application, as described above, it is possible to manufacture a metal foam in the form of a thin film or sheet having a desired porosity and excellent mechanical strength, thereby expanding the use of the metal foam in comparison with the existing. have.
본 출원에서는, 균일하게 형성된 기공을 포함하고, 목적하는 기공도를 가지면서, 기계적 특성이 우수한 금속폼을 형성할 수 있는 금속폼의 제조 방법과 상기와 같은 특성을 가지는 금속폼을 제공할 수 있다. 또한, 본 출원에서는 얇은 두께의 필름 또는 시트 형태이면서도 상기 언급한 물성이 확보되는 금속폼을 형성할 수 있는 방법 및 그러한 금속폼을 제공할 수 있다.In the present application, it is possible to provide a method for producing a metal foam including a uniformly formed pores, having a desired porosity and capable of forming a metal foam having excellent mechanical properties, and a metal foam having the above characteristics. . In addition, the present application can provide a method and a metal foam that can form a metal foam having the above-described physical properties in the form of a thin film or sheet.
도 1 및 2는, 각각 실시예 1 및 2에서 형성된 금속폼에 대한 SEM 사진이다.1 and 2 are SEM photographs of the metal foams formed in Examples 1 and 2, respectively.
이하 실시예 및 비교예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 제한되는 것은 아니다.Hereinafter, the present application will be described in detail with reference to Examples and Comparative Examples, but the scope of the present application is not limited to the following Examples.
실시예 1.Example 1.
니켈 분말(전도도가 약 14.5 MS/m이고, 상대 투자율이 약 600 정도이며, 평균 입경이 약 10 내지 20μm 정도)과 에틸 셀룰로오스를 약 1:1의 중량 비율로 메틸렌 클로라이드에 넣고, 공자전믹서를 사용하여 혼합함으로써 슬러리를 제조하였다. 상기 제조된 혼합물을 약 200 μm 정도의 두께로 quartz 플레이트상에 코팅하여 구조체를 제조하고, 코일 형태의 유도 가열기로 전자기장을 상기 구조체에 인가하여 소결함으로써 금속폼을 제조하였다. 이 때 전자기장은 약 350 A의 전류를 약 380 kHz의 주파수로 인가하여 형성하였고, 인가 시간은 약 3 분 정도였다. 상기 제조된 금속폼의 기공도는 약 65%였고, 그 SEM 사진은 도 1에 나타내었다.Nickel powder (conductivity is about 14.5 MS / m, relative permeability is about 600, average particle diameter is about 10-20 μm) and ethyl cellulose are put in methylene chloride in a weight ratio of about 1: 1, and the co-electromagnetic mixer The slurry was prepared by mixing using. The prepared mixture was coated on a quartz plate with a thickness of about 200 μm to prepare a structure, and a metal foam was prepared by applying an electromagnetic field to the structure with a coil induction heater and sintering. At this time, the electromagnetic field was formed by applying a current of about 350 A at a frequency of about 380 kHz, and the application time was about 3 minutes. The porosity of the prepared metal foam was about 65%, the SEM photograph is shown in FIG.
실시예 2.Example 2.
에틸 셀룰로오스 대신 폴리에틸렌 카보네이트를 사용한 것을 제외하고는 실시예 1과 동일하게 금속폼을 제조하였다. 제조된 금속폼의 기공도는 약 45%였으며, 그 SEM 사진은 도 2에 나타내었다.A metal foam was prepared in the same manner as in Example 1 except that polyethylene carbonate was used instead of ethyl cellulose. The porosity of the prepared metal foam was about 45%, the SEM photograph is shown in FIG.
실시예 3.Example 3.
에틸 셀룰로오스 대신 폴리비닐알코올을 적용하고, 메틸렌클로라이드 대신 물을 적용한 것을 제외하고는 실시예 1과 동일하게 금속폼을 제조하였다. 제조된 금속폼의 기공도는 약 52%였다.Polyvinyl alcohol was used instead of ethyl cellulose, and metal foam was prepared in the same manner as in Example 1 except that water was used instead of methylene chloride. The porosity of the prepared metal foam was about 52%.
실시예 4.Example 4.
폴리에틸렌옥시드를 에틸 셀룰로오스 대신 사용한 것을 제외하고는 실시예 1과 동일하게 금속폼을 제조하였다. 제조된 금속폼의 기공도는 약 57%였다.A metal foam was prepared in the same manner as in Example 1 except that polyethylene oxide was used instead of ethyl cellulose. The porosity of the prepared metal foam was about 57%.

Claims (14)

  1. 상대 투자율이 90 이상인 전도성 금속을 포함하는 금속 성분 및 유기 바인더를 포함하는 구조체를 소결하는 단계를 포함하는 금속폼의 제조 방법.A method of manufacturing a metal foam comprising the step of sintering a structure comprising a metal component and an organic binder comprising a conductive metal having a relative permeability of 90 or more.
  2. 제 1 항에 있어서, 전도성 금속은 20℃에서의 전도도가 8 MS/m 이상인 금속폼의 제조 방법.The method of claim 1, wherein the conductive metal has a conductivity of 20 MS / m or more at 20 ° C.
  3. 제 1 항에 있어서, 전도성 금속은, 니켈, 철 또는 코발트인 금속폼의 제조 방법.The method of claim 1, wherein the conductive metal is nickel, iron, or cobalt.
  4. 제 1 항에 있어서, 구조체는, 전도성 금속을 중량을 기준으로 30 중량% 이상 포함하는 금속폼의 제조 방법.The method of claim 1, wherein the structure includes 30 wt% or more of the conductive metal by weight.
  5. 제 1 항에 있어서, 전도성 금속은 평균 입경이 5 μm 내지 100 μm의 범위 내에 있는 금속폼의 제조 방법.The method of claim 1, wherein the conductive metal has an average particle diameter in the range of 5 μm to 100 μm.
  6. 제 1 항에 있어서, 유기 바인더는, 알킬 셀룰로오스, 폴리알킬렌카보네이트, 폴리비닐알코올, 폴리알킬렌옥시드 또는 폴리비닐아세테이트인 금속폼의 제조 방법.The method for producing a metal foam according to claim 1, wherein the organic binder is alkyl cellulose, polyalkylene carbonate, polyvinyl alcohol, polyalkylene oxide or polyvinylacetate.
  7. 제 1 항에 있어서, 구조체는, 금속 성분 100 중량부 대비 10 내지 400 중량부의 유기 바인더를 포함하는 금속폼의 제조 방법.The method of claim 1, wherein the structure comprises 10 to 400 parts by weight of an organic binder based on 100 parts by weight of a metal component.
  8. 제 1 항에 있어서, 구조체는, 금속 성분과 유기 바인더를 포함하는 슬러리를 사용하여 제조하는 금속폼의 제조 방법.The method for producing a metal foam according to claim 1, wherein the structure is produced by using a slurry containing a metal component and an organic binder.
  9. 제 1 항에 있어서, 구조체는, 필름 또는 시트 형상인 금속폼의 제조 방법.The method for producing a metal foam according to claim 1, wherein the structure is in the form of a film or sheet.
  10. 제 9 항에 있어서, 필름 또는 시트의 두께가 5,000 μm 이하인 금속폼의 제조 방법.The method of claim 9, wherein the film or sheet has a thickness of 5,000 μm or less.
  11. 제 1 항에 있어서, 구조체의 소결은 상기 구조체에 전자기장을 인가하여 수행하는 금속폼의 제조 방법.The method of claim 1, wherein the sintering of the structure is performed by applying an electromagnetic field to the structure.
  12. 제 11 항에 있어서, 전자기장은, 100A 내지 1,000A 범위 내의 전류를 인가하여 형성하는 금속폼의 제조 방법.The method of claim 11, wherein the electromagnetic field is formed by applying a current within a range of 100A to 1,000A.
  13. 제 11 항에 있어서, 전자기장은, 100kHz 내지 1,000kHz 범위 내의 주파수로 전류를 인가하여 형성하는 금속폼의 제조 방법.The method of claim 11, wherein the electromagnetic field is formed by applying a current at a frequency within a range of 100 kHz to 1,000 kHz.
  14. 제 11 항에 있어서, 전자기장은 1분 내지 10 시간의 범위 내의 시간 동안 인가하는 금속폼의 제조 방법.The method of claim 11, wherein the electromagnetic field is applied for a time within a range of 1 minute to 10 hours.
PCT/KR2017/003614 2016-04-01 2017-04-03 Method for producing metal foam WO2017171511A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17775935.4A EP3437767B1 (en) 2016-04-01 2017-04-03 Method for producing metal foam
CN201780022262.XA CN109070225B (en) 2016-04-01 2017-04-03 Method for producing metal foam
JP2018551154A JP6852858B2 (en) 2016-04-01 2017-04-03 How to make metal foam
US16/089,191 US11141786B2 (en) 2016-04-01 2017-04-03 Method for manufacturing metal foam

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160040362 2016-04-01
KR10-2016-0040362 2016-04-01
KR1020170040972A KR102056098B1 (en) 2016-04-01 2017-03-30 Preparation method for metal foam
KR10-2017-0040972 2017-03-30

Publications (1)

Publication Number Publication Date
WO2017171511A1 true WO2017171511A1 (en) 2017-10-05

Family

ID=59964929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003614 WO2017171511A1 (en) 2016-04-01 2017-04-03 Method for producing metal foam

Country Status (1)

Country Link
WO (1) WO2017171511A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163082A (en) * 1991-12-16 1993-06-29 Tokin Corp Production of porous sintered compact
JP2005290494A (en) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology Method for manufacturing foamed sintered body
US20070274854A1 (en) * 2006-05-23 2007-11-29 General Electric Company Method of making metallic composite foam components
JP2009102701A (en) * 2007-10-24 2009-05-14 Mitsubishi Materials Corp Method for manufacturing porous sintered body of titanium and apparatus for manufacturing porous sintered body of titanium
KR20140038795A (en) * 2012-09-21 2014-03-31 한국전력공사 Support coated composite layers of mixed conductor, and manufacturing method of support coated composite layers of mixed conductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163082A (en) * 1991-12-16 1993-06-29 Tokin Corp Production of porous sintered compact
JP2005290494A (en) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology Method for manufacturing foamed sintered body
US20070274854A1 (en) * 2006-05-23 2007-11-29 General Electric Company Method of making metallic composite foam components
JP2009102701A (en) * 2007-10-24 2009-05-14 Mitsubishi Materials Corp Method for manufacturing porous sintered body of titanium and apparatus for manufacturing porous sintered body of titanium
KR20140038795A (en) * 2012-09-21 2014-03-31 한국전력공사 Support coated composite layers of mixed conductor, and manufacturing method of support coated composite layers of mixed conductor

Similar Documents

Publication Publication Date Title
KR102056098B1 (en) Preparation method for metal foam
WO2018101715A1 (en) Method for manufacturing metal foam
WO2018101712A1 (en) Method for producing metal foam
WO2018101714A1 (en) Method for producing metal foam
WO2018212554A1 (en) Method for manufacturing metal foam
KR102040462B1 (en) Preparation method for metal foam
WO2018212555A1 (en) Method for manufacturing heat pipe
WO2018070796A1 (en) Method for manufacturing metal foam
WO2019009672A1 (en) Method for preparing metal foam
WO2019059731A1 (en) Film preparation method
WO2017171511A1 (en) Method for producing metal foam
WO2018070795A1 (en) Metal alloy foam manufacturing method
WO2017171510A1 (en) Method for producing metal foam
KR20200002456A (en) Preparation method for metal foam
WO2019009668A1 (en) Method for preparing metal foam
KR102136551B1 (en) Preparation method for metal alloy foam

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018551154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775935

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775935

Country of ref document: EP

Kind code of ref document: A1