[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017171348A2 - Method for performing operation relating to location registration in slice structure in wireless communication system, and device therefor - Google Patents

Method for performing operation relating to location registration in slice structure in wireless communication system, and device therefor Download PDF

Info

Publication number
WO2017171348A2
WO2017171348A2 PCT/KR2017/003309 KR2017003309W WO2017171348A2 WO 2017171348 A2 WO2017171348 A2 WO 2017171348A2 KR 2017003309 W KR2017003309 W KR 2017003309W WO 2017171348 A2 WO2017171348 A2 WO 2017171348A2
Authority
WO
WIPO (PCT)
Prior art keywords
location registration
function
timer
network
periodic
Prior art date
Application number
PCT/KR2017/003309
Other languages
French (fr)
Korean (ko)
Other versions
WO2017171348A3 (en
Inventor
김래영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017171348A2 publication Critical patent/WO2017171348A2/en
Publication of WO2017171348A3 publication Critical patent/WO2017171348A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/02Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration by periodical registration

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for performing an operation related to location registration in a slice structure.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • D2D communication establishes a direct link between user equipments (UEs), and directly communicates voice and data between terminals without passing through an evolved NodeB (eNB).
  • UEs user equipments
  • eNB evolved NodeB
  • the D2D communication may include a scheme such as UE-to-UE communication, Peer-to-Peer communication, and the like.
  • the D2D communication scheme may be applied to machine-to-machine (M2M) communication, machine type communication (MTC), and the like.
  • M2M machine-to-machine
  • MTC machine type communication
  • D2D communication has been considered as a way to solve the burden on the base station due to the rapidly increasing data traffic.
  • the D2D communication unlike the conventional wireless communication system, since the data is exchanged between devices without passing through a base station, the network can be overloaded.
  • the D2D communication it is possible to expect the effect of reducing the procedure of the base station, the power consumption of the devices participating in the D2D, increase the data transmission speed, increase the capacity of the network, load balancing, cell coverage expansion.
  • V2X vehicle to everything
  • a technical task is to efficiently perform location registration, for example, location registration, under a network slicing structure.
  • the first MM function in a method in which a first mobility management (MM) function performs an operation related to location registration of a user equipment (UE) in a wireless communication system, the first MM function is determined from the UE.
  • An embodiment of the present invention provides a first MM function apparatus for performing an operation related to location registration of a user equipment (UE) in a wireless communication system, the apparatus comprising: a transceiver; And a processor, wherein the processor is further configured to receive an attach request from a UE via the transceiver, the first MM function determines a first periodic location registration timer value, and sets the first periodic location registration timer value. And transmitting a response to the attach request to the UE, receiving information including a second periodic location registration timer, and comparing the first periodic location registration timer value with the second periodic location registration timer value.
  • the first MM function apparatus determines a timer having a small value as a third periodic position registration timer as a result of the comparison.
  • the information including the second periodic location registration timer may be a location registration service subscription request.
  • the location registration service subscription request is transmitted from the second MM function of the selected slice by the UE performing a session setup request, and the first MM function transmits the third periodic location registration timer to the second MM function. Can be.
  • the second MM function may be configured to transmit the location registration subscription request to an MM function that transmits and receives a NAS message with the UE.
  • the first MM function may transmit a session setup request to the second MM function.
  • the first MM function may also determine a third location registration range when determining the third periodic location registration timer.
  • the third location registration range may be an area in which the first location registration range determined by the first MM function and the second location registration range determined by the second MM function are common.
  • the present invention it is possible to efficiently provide mobility management when network slicing is used. Specifically, according to the present invention, due to the different timer for each slice, it is possible to eliminate the inefficiency of the UE to perform location registration repeatedly.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • FIG 8 illustrates a possible scenario when the UE is served from one or more network slices.
  • FIG. 9 illustrates an architecture reference model usable in a 5G system.
  • 10 to 11 illustrate a method of performing a terminal location registration related operation according to each embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • EPC Evolved Packet Core
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data Rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data Rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • the 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services. It is the reference point between the PDN GW and the packet data network.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active.
  • BCHs broadcaster channels
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing).
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • the UE performs a tracking area update (TAU) to manage the reachability and location of the UE in the idle mode.
  • TAU tracking area update
  • the UE periodically performs a TAU (periodic TAU or P-TAU) even if the MME does not depart from the range of tracking the location of the UE. At this time, P-TAU is performed based on a periodic location registration timer.
  • Table 2 below shows the periodic tracking area update timer (see T3412 and TS 24.301).
  • the timer value is included in the ATTACH ACCEPT, TRACKING AREA UPDATE ACCEPT message in the network and provided to the UE.
  • the network may provide the UE with an longer periodic tracking area update timer to reduce network load from P-TAU signaling.
  • the network may provide the UE with an longer periodic tracking area update timer to reduce network load from P-TAU signaling.
  • Table 3 below is the TAU Accept message format described in TS 24.301.
  • the markings 9.x, 9.x.x.x, etc. in the table are indexes in the TS 24.301 document.
  • Protocol discriminator 9 M V 1/2 Security header type Security header type 9.3.1 M V 1/2 Tracking area update accept message identity Message type 9.8 M V One EPS update result EPS update result 9.9.3.13 M V 1/2 Spare half octet Spare half octet 9.9.2.9 M V 1/2 5A T3412 value GPRS timer 9.9.3.16 O TV 2 50 GUTI EPS mobile identity 9.9.3.12 O TLV 13 54 TAI list Tracking area identity list 9.9.3.33 O TLV 8-98 57 EPS bearer context status EPS bearer context status 9.9.2.1 O TLV 4 13 Location area identification Location area identification 9.9.2.2 O TV 6 23 MS identity Mobile identity 9.9.2.3 O TLV 7-10 53 EMM cause EMM cause 9.9.3.9 O TV 2 17 T3402 value GPRS timer 9.9.3.16 O TV 2 59 T3423 value GPRS timer 9.9.3.16 O TV 2 4A Equivalent PLMNs PLMN list 9.9.2.8
  • the MME shall include the T3412 value IE in the normal and combined TAU procedures.
  • the MME may include the T3412 value IE in the periodic TAU procedure.
  • the network may include a T3412 extended value IE to provide a longer periodic tracking area update timer to the UE.
  • the P-TAU timer T3412 and the longer P-TAU timer T3412 extended value may be set to values of various sizes such as GPRS Timer and GPRS Timer 3 disclosed in TS 24.008 and may be provided to the UE.
  • network slicing may include three layers, a service instance layer, a network slice instance layer, and a resource layer.
  • the service instance layer represents the service to be supported (end user service or business service). Each of these services may be represented by a service instance.
  • the service instance may represent an operator service or a third party provided service.
  • Network slice instances provide the network characteristics required for service instances. Network slice instances can be shared among multiple service instances provided by network operators.
  • the UE may be provided with service from one or more network slices as illustrated in FIG.
  • the UE may be provided with services from multiple slices, and may send and receive traffic through several slices at the same time, but may also exchange traffic through only one slice at a time.
  • the UE when Service # 1 is provided with Slice # 1 and Service # 2 is provided with Slice # 2, the UE generates mobile originated (MO) traffic for Service # 1. Can be sent through.
  • MO mobile originated traffic for Service # 1.
  • Another example is when there is no traffic transmitted and received by the UE (in a mobile communication system such as EPS, the UE may be in the IDLE state in this case) and mobile terminated (MT) traffic for Service # 2 occurs. This can be delivered via Slice # 2.
  • the UE may be served from one or more network slices, which may be in one of three scenarios as illustrated in FIG. 8.
  • group A targets logical separation / isolation between CN instances where the UE obtains service from different network slices and different CN instances.
  • This group features independent subscription management / mobility management for each network slice dealing with the UE, with the potential side effect of additional signaling in the network and radio.
  • isolation in the CN portion of the network is easiest to achieve.
  • Group B assumes that some network functions are common among the network slices, while others are in separate network slices.
  • Group C assumes that control plane processing is common between slices while the user plane is processed with other network slices.
  • MME has been divided into Core Access and Mobility Management Function (AMF) and Session Management Function (SMF) in 5G CN (Core Network).
  • AMF Core Access and Mobility Management Function
  • SMF Session Management Function
  • 5G CN Core Network
  • the NAS interaction and mobility management (MM) with the UE are performed by the AMF
  • the session management (SM) is performed by the SMF.
  • the SMF manages a user plane function (UPF), which has a user-plane function, that is, a gateway for routing user traffic.
  • the SMF is responsible for the control-plane portion of the S-GW and the P-GW in the conventional EPC.
  • the user-plane part can be considered to be in charge of the UPF.
  • PDU Protocol Data Unit
  • the PDU session refers to an association between the UE and the DN providing the PDU connectivity service of the Ethernet type or the unstructured type as well as the IP type.
  • UDM Unified Data Management
  • PCF Policy Control Function
  • the functions can be provided in an expanded form to satisfy the requirements of the 5G system. For details on the 5G system architecture, each function and each interface, TS 23.501 is applicable.
  • Group A all control-plane and user-plane functions are included in each slice.
  • AMF, SMF, and UPF are all included in each slice.
  • AMFs in charge of mobility management are commonly located instead of being included for each slice. That is, there is one AMF in common regardless of how many slices a UE is served by.
  • SMF responsible for session management and UPF which is a gateway, are included in each slice.
  • SMFs in charge of session management are commonly located instead of being included in each slice. That is, there is one SMF in common regardless of how many slices a UE is served by.
  • SMF responsible for mobility management and UPF which is a gateway, are included in each slice.
  • the access management function that the UE performs authentication upon initial registration is commonly used regardless of the slice, and the functions, such as reachability and location tracking, are included in the slice.
  • SMF and UPF are also included in the slice.
  • Group C all control-plane functions are commonly located. Therefore, AMF and SMF are not included in each slice, and there is a common one regardless of how many slices a UE is served. UPF, on the other hand, is included in each slice.
  • each slice may have a control plane (CP) function, if such CP function is a function of the MM or MM (ie reachability, location tracking, etc.).
  • CP control plane
  • the P-TAU can be controlled by a plurality of MM functions.
  • the CP function is shared by the slices as in Group C, a plurality of CP instances may be running for each slice. In this case, the P-TAU may be controlled by the MM function belonging to each CP instance.
  • the MM function (MME in the case of EPS) does not use a constant value as a P-TAU timer value provided to the UE, but various values based on network conditions, operator policy, local configuration, subscriber information, etc. It may be set to provide to the UE. This may also be the case in a network system structure sliced to provide various services. That is, a periodic location registration timer may be set in consideration of a service provided by each slice and / or reflecting a situation of each slice (eg, signaling load of a slice). At the same time, if a UE receiving services from multiple slices needs to perform periodic location registration with multiple CP functions in the network, in this case, a different location registration timer causes the UE to perform periodic location registration. do.
  • the CP function may inform the UE of the periodic location registration timer. It is unclear whether to provide. Therefore, the following describes a method for efficiently providing an MM under a network slicing structure according to an embodiment of the present invention.
  • the MM function may be a part of the MM function or a periodic location registration function.
  • a slice may mean the same as a network slice and a network slice instance.
  • step S1001 the UE (UE-1 in the figure) transmits an attach request to perform an attach to the network.
  • the UE may request an operation of setting up a session with an attach request.
  • the session setup operation may be requested to the network.
  • the session may be a PDU session or a PDN connection.
  • the UE transmits an attach request message to the network.
  • the UE may transmit a general MM Request message to the network.
  • slice # 1 is selected for the UE. Selection of the slice includes information (APN, service descriptor, application related information, UE capability information, etc.) included in the message (attach request message and / or session setup request message) received from the UE described in step S1001, RAT / RAN One or more of the type / information, subscriber information, and network configuration information may be used.
  • information API, service descriptor, application related information, UE capability information, etc.
  • Attach request message and / or session setup request message received from the UE described in step S1001
  • RAT / RAN One or more of the type / information, subscriber information, and network configuration information may be used.
  • MM function # 1 which is an MM function belonging to slice # 1 (or operating for slice # 1), determines a first periodic location registration (update) timer (ie, P_timer # 1) value.
  • the first periodic location registration timer is used to determine the characteristics of the service provided by the slice, the situation of the user plane function of the slice (e.g. load / congestion of the gateway of the slice), the situation of the control plane function of the slice (e.g. signaling signaling of the slice). / Congestion), subscriber information, and network settings.
  • the MM function # 1 may also determine the location registration range (ie, A # 1) for the UE while determining the first periodic location registration timer value. This may be determined based on one or more of characteristics of a service provided by the slice, a service area of a user plane function of the slice, subscriber information, and network configuration.
  • the location registration range indicates an area / range in which the UE should perform location registration with the network if it is out of the range.
  • the MM function # 1 transmits a response / allow message for the attach request to the UE.
  • the response / allow message for the attach request may include the first periodic location registration timer value and / or location registration range.
  • the UE stores the received first location registration timer value (ie, sets its location registration timer P_timer to the received timer value P_timer # 1). Then start P_timer # 1.
  • MM function # 1 also manages a periodic location registration timer value for the UE and starts it. The UE also stores the received location registration range.
  • step S1005 P_timer, the location registration timer of the UE, expires (step S1005), and the UE performs location registration with the network. That is, in step S1006, the UE transmits a location update request, and in step S1007, the MM function # 1 transmits a location update acceptance message in response. In step S1008, the UE sends a session setup request message to the network for setting up an additional session. These messages are delivered to MM function # 1 in the exchange of NAS messages with the UE. That is, the second MM function and the like may be configured to transmit the location registration subscription request to the MM function for transmitting and receiving NAS messages with the UE.
  • step S1009 slice # 2 is selected for the UE.
  • the selection criteria are as described above in step S1002.
  • the MM function # 1 delivers the session setup request received from the UE to the MM function # 2 which belongs to slice # 2 or operates for slice # 2, thereby completing the session setup. That is, the MM function # 1 transmits a session setup request message to the MM function # 2 (step S1010).
  • step S1011 the MM function # 2 determines a second periodic location registration timer (ie, P_timer # 2) value and a location registration range (ie, A # 2) for the UE. For details, refer to step S1003.
  • the MM function # 2 transmits a location registration service subscription request including the determined P_timer # 2 value and A # 2 to the MM function # 1, which is an MM function that exchanges a NAS message with the UE. That is, the second MM function may be configured to transmit the location registration subscription request to an MM function that transmits and receives a NAS message with the UE.
  • the purpose of the location registration service subscription request is to inform the MM function # 2 that it wants to check reachability with a period of P_timer # 2 for the UE, or vice versa, if the MM function # 2 does not reach reachability with a period of P_timer # 2 for the UE. It may be a request.
  • the purpose of the location registration service subscription request may be to request that the UE notifies when it leaves the A # 2 area.
  • the MM function # 1 transmits a response to the location registration service subscription request to the MM function # 2.
  • the MM function # 1 compares the first periodic position registration timer value set by the self and the second periodic position registration timer value received from the MM function # 2 to check / recognize the smallest value (step S1014). .
  • a small value (the smallest value when the timer to be compared is received from several MM functions) is determined as a new P_timer value (third periodic location registration timer) for the UE.
  • P_timer # 2 is smaller than P_timer # 1.
  • step S1015 the MM function # 1 compares the position registration range set by itself with the position registration range received from the MM function # 2 to check / recognize overlapping ranges (common areas). This range is then determined as a new location registration range for the UE.
  • a # 1 includes TAI # 1, TAI # 2, TAI # 3, TAI # 4, and TAI # 5, and A # 2 represents TAI # 2, TAI # 3, TAI # 4, and TAI # 6. It is assumed to be included. Accordingly, the newly determined location registration range A # 3 includes TAI # 2, TAI # 3, and TAI # 4.
  • the MM function # 1 transmits a message indicating that the information on location registration has been changed to the UE (step S1016).
  • a message location update information message
  • the UE having received the location update information message stores the received location registration timer value and location registration range. And start the periodic location registration timer according to the new location registration timer value.
  • the response message is then sent to the MM function #.
  • MM function # 1 also manages a periodic location registration timer value for the UE and starts it.
  • the MM function # 1 informs the MM function # 2 of the P_timer value and location registration range provided to the UE (via a Notify message). It also informs the UE that it is reachable. This is for re-starting the P_timer value for the UE managed by the MM function of another slice. If the MM function # 2 requests the MM function # 1 to notify the UE only when the UE does not reachability in the period of P_timer # 2, this notification may not be transmitted.
  • the MM function # 1 may start and manage the P_timer value for each slice.
  • the UE can not only reach reachability of the UE to the slice corresponding to the P_timer period of each slice, or vice versa, but only when not reachable. This applies throughout the present invention.
  • Steps S1020 to S1024 describe the case where the timer of the UE expires. Specifically, when the UE's own location registration timer P_timer expires (step S1020), the UE performs location registration with the network (steps S1021 to S1022). The UE restarts P_timer, which is a location registration timer. The MM function # 1 also restarts P_timer, which is a location registration timer for the UE.
  • the MM function # 1 notifies the MM function # 2 that the UE is reachable (via a Notify message). This may be an explicit or implicit notification that the UE has performed location registration.
  • the MM function # 2 re-starts P_timer, which is a location registration timer for the UE. If, in S1022, the MM function # 1 allocates the location registration range to a new location registration range other than A # 3, unlike this shown in FIG. 10, this information is provided to the MM function # 2.
  • Steps S1025 to S1029 are explanations for the case where the UE is out of the location registration range as the UE moves.
  • the UE moves out of the location registration range A # 3 (step S1025).
  • the UE performs location registration with the network (steps S1026 to S1027).
  • the MM function # 1 responds by allocating a new location registration range A # 4 to the UE.
  • the UE re-starts P_timer, which is a location registration timer.
  • the MM function # 1 also restarts P_timer, which is a location registration timer for the UE.
  • the MM function # 1 informs the MM function # 2 of a new location registration range of the UE (via a Notify message).
  • the MM function # 2 re-starts P_timer, which is a location registration timer for the UE.
  • the MM function # 1 may notify the MM function # 2 of the reachability of the UE based on a periodic location registration timer requested by the MM function # 2, which is the MM function of another slice, or notify the UE if the UE has become unreachable.
  • the second embodiment is an example in which a node / entity performing a function of the MM controller exists separately from the MM function.
  • the MM controller may be referred to as an MM coordinator, an MM anchor point, a mobility controller, a mobility coordinator, a mobility anchor point, or a central MM function.
  • the MM controller may control the MM function for all slices belonging to a specific slice serving the UE but serving the UE, and control the MM function for all slices serving the UE without belonging to the specific slice.
  • the MM function may be controlled for all slices serving the UE belonging to the slice including the MM function.
  • the unit of location registration is a unit of cell, a location registration area of RAN, a tracking area unit, a TA collection unit, a location registration area unit, a location registration area collection unit, a CN location registration area unit CN location registration area Vowel units may vary. This also applies to the unit of location registration of the first embodiment.
  • a UE attaches to a network.
  • the UE may request an operation of setting up a session with an attach request.
  • the session setup operation may be requested to the network.
  • the MM controller may forward the session setup request to the network function in charge of the session setup if the session setup request is included in the UE.
  • the session may be interpreted as a PDU session or a PDN connection.
  • the UE transmits the Attach Request message to the network.
  • the UE may transmit the general MM Request message to the network.
  • slice # 1 is selected for the UE.
  • the selection criteria may include information (eg, APN, service descriptor, application related information, UE capability information, etc.) included in the message received from the UE described in step S1101 (that is, an attach request message and / or a session setup request message), RAT / One or more of RAN type / information, subscriber information, and configuration information of a network may be used.
  • MM function # 1 which is an MM function belonging to slice # 1 or operating for slice # 1, determines a periodic location registration timer (ie, P_timer # 1) value.
  • the MM function # 1 transmits a location registration service subscription request including the determined P_timer # 1 value to the MM controller.
  • the purpose of the location registration service subscription request is to inform the MM function # 1 that it wants to check reachability with a period of P_timer # 1 for the UE, or vice versa, when the MM function # 1 does not reach reachability with a period of P_timer # 1 for the UE. It may be a request.
  • step S1105 the MM controller transmits a response to the location registration service subscription request to the MM function # 1. At this time or later, the MM controller may transmit information indicating that the UE is reachable to the MM function # 1.
  • step S1106 the MM controller sends a response / allow message for the attach request to the UE.
  • the periodic location registration timer value is included.
  • the UE stores the received location registration timer value (ie, sets its location registration timer P_timer to the received timer value P_timer # 1). And start it.
  • the MM controller also manages the periodic location registration timer value for the UE and starts it.
  • step S1107 the UE's own location registration timer P_timer expires.
  • steps S1108 to S1109 the UE performs location registration with the network.
  • the MM controller notifies (via a Notify message) that the UE is reachable to the MM function # 1. This may be an explicit or implicit notification that the UE has performed location registration.
  • the MM function # 1 restarts P_timer, which is a location registration timer for the UE.
  • step S1114 the MM function # 1 is requested to inform the UE when the reachability is not reachable in the period of P_timer # 1, steps S1110 to 11 may be omitted.
  • the MM controller notifies the MM function # 1 that the UE is no longer reachable. This may be an explicit or implicit notification that the UE has not performed location registration. The same applies to MM functions belonging to different slices. That is, it is applied throughout the present invention.
  • step S1112 the UE sends a request message to set up an additional session to the network.
  • These messages may be received by the MM controller, or may be received by session management (SM) related network functions. In the latter case, it may be a function that performs an SM control function for all slices in the same form as an SM controller, or may be an SM function belonging to a slice in which a session is formed by the session setup request.
  • SM session management
  • step S1113 slice # 2 is selected for the UE.
  • the selection criteria refer to step S1102.
  • MM function # 2 which is an MM function belonging to slice # 2 or operating for slice # 2, determines a periodic location registration timer (ie, P_timer # 2) value. See step S1103 for details.
  • the MM function # 2 transmits a message including P_timer # 2 to the MM controller. This is the same operation performed by the MM function # 1 and the MM controller in steps S1104 to S1105.
  • step S1117 the MM controller checks / recognizes the smallest value by comparing the periodic location registration timer value (ie, P_timer value) received from all slices serving the UE. This value is then determined as a new P_timer value for the UE.
  • P_timer value the periodic location registration timer value
  • step S1118 if the newly determined P_timer value is smaller than the P_timer value previously provided to the UE, the MM controller sends a message informing the UE of the new P_timer value.
  • P_timer # 2 is smaller than P_timer # 1. Accordingly, a message including a P_timer # 2 value, which is a new P_timer value, is transmitted to the UE.
  • step S1119 the UE, which has received this, stores the received location registration timer value (ie, sets its location registration timer P_timer to the received timer value P_timer # 2). And start it.
  • the MM controller also manages the periodic location registration timer value for the UE and starts it.
  • the MM controller starts the newly adjusted P_timer value, and thus slices other slices (that is, slices other than the slice providing the P_timer value on which the new P_timer value is based). ) (Via Notify message) that the UE is reachable. This is to re-start the P_timer value for the UE managed by the MM function of each slice. If the MM function # 1 requests the UE to notify the UE when it is not reachable with a period of P_timer # 1, this notification is not transmitted.
  • the MM controller may start and manage the P_timer value for each slice.
  • the UE can not only reach reachability of the UE to the slice corresponding to the P_timer period of each slice, or vice versa, but only when not reachable. This applies throughout the present invention.
  • step S1122 the UE's own location registration timer P_timer expires.
  • steps S1123 to S1124 the UE performs location registration with the network.
  • steps S1125 to S1126 the MM controller informs MM function # 2 that the UE is reachable (via a Notify message). This may be an explicit or implicit notification that the UE has performed location registration.
  • the MM function # 2 re-starts P_timer, which is a location registration timer for the UE.
  • the MM controller may notify the MM function # 1 of the reachability of the UE based on the periodic location registration timer requested by the MM function # 1.
  • the MM controller may notify each MM function of the reachability of the UE based on the periodic location registration timer requested by the MM function of each slice, or notify the UE when the UE has become unreachable.
  • the MM function is in / belongs to the CN (Core Network), but otherwise i) if the RAN function has an MM function and the MM controller is also in the RAN, ii) there is an MM function in the RAN slice and the MM controller Is in the CN, iii) the MM function in the CN slice and the MM controller can be extended even in the RAN.
  • the MM controller described the function of adjusting the periodic position registration timer value differently for each slice, but this is also applicable when the position registration range (for example, TAI list in EPS) is set differently for each slice. . In this case, a smaller location registration range can be provided to the UE. Accordingly, the MM controller may simultaneously adjust the periodic location registration timer value and the location registration range.
  • the position registration range for example, TAI list in EPS
  • the RAN (or AN: Access network) is illustrated as being common regardless of the slice, but the RAN may be different for each slice.
  • the same RAT or RAN is also sliced so that an appropriate RAN slice may be selected, or a different RAN may be selected because the RAT is different.
  • the UE exchanges a message with the network, it may be in the form of a NAS message or an AS message.
  • FIG. 12 is a diagram showing the configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
  • the terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the processor 120 may be configured to perform a terminal operation proposed in the present invention.
  • the network node device 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the processor 220 may be configured to perform the network node operation proposed in the present invention.
  • the processor 220 receives an attach request from the UE through the transmission and reception apparatus, the first MM function determines a first periodic location registration timer value, and includes the first periodic location registration timer value. Transmit a response to the attach request to the UE, receive information including a second periodic location registration timer, compare the first periodic location registration timer value with the second periodic location registration timer value, As a result of the comparison, a timer having a small value may be determined as a third periodic location registration timer.
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An embodiment of the present invention relates to a method for performing, by a first mobility management (MM) function, an operation relating to location registration of a user equipment (UE) in a wireless communication system, the method comprising the steps of: receiving an attach request from a UE, by a first MM function; determining a first periodic location registration timer value by the first MM function; transmitting a response to the attach request, which includes the first periodic location registration timer value, to the UE by the first MM function; receiving information including a second periodic location registration timer by the first MM function; comparing the first periodic location registration timer value and a value of the second periodic location registration timer by the first MM function; and determining, as a third periodic location registration timer, a timer having the smaller value determined as a result of the comparison, by the first MM function.

Description

무선 통신 시스템에서 슬라이스 구조에서 위치 등록에 관련된 동작 수행 방법 및 이를 위한 장치Method for performing operation related to location registration in slice structure in wireless communication system and apparatus therefor
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 슬라이스 구조에서 위치 등록에 관련된 동작 수행 방법 및 장치에 대한 것이다.The following description relates to a wireless communication system, and more particularly, to a method and apparatus for performing an operation related to location registration in a slice structure.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data. In general, a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access (MCD) systems and multi-carrier frequency division multiple access (MC-FDMA) systems.
장치 대 장치(Device-to-Device; D2D) 통신이란 단말(User Equipment; UE)들 간에 직접적인 링크를 설정하여, 기지국(evolved NodeB; eNB)을 거치지 않고 단말 간에 음성, 데이터 등을 직접 주고 받는 통신 방식을 말한다. D2D 통신은 단말-대-단말(UE-to-UE) 통신, 피어-대-피어(Peer-to-Peer) 통신 등의 방식을 포함할 수 있다. 또한, D2D 통신 방식은 M2M(Machine-to-Machine) 통신, MTC(Machine Type Communication) 등에 응용될 수 있다. Device-to-Device (D2D) communication establishes a direct link between user equipments (UEs), and directly communicates voice and data between terminals without passing through an evolved NodeB (eNB). Say the way. The D2D communication may include a scheme such as UE-to-UE communication, Peer-to-Peer communication, and the like. In addition, the D2D communication scheme may be applied to machine-to-machine (M2M) communication, machine type communication (MTC), and the like.
D2D 통신은 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다. 예를 들어, D2D 통신에 의하면 기존의 무선 통신 시스템과 달리 기지국을 거치지 않고 장치 간에 데이터를 주고 받기 때문에 네트워크의 과부하를 줄일 수 있게 된다. 또한, D2D 통신을 도입함으로써, 기지국의 절차 감소, D2D에 참여하는 장치들의 소비 전력 감소, 데이터 전송 속도 증가, 네트워크의 수용 능력 증가, 부하 분산, 셀 커버리지 확대 등의 효과를 기대할 수 있다.D2D communication has been considered as a way to solve the burden on the base station due to the rapidly increasing data traffic. For example, according to the D2D communication, unlike the conventional wireless communication system, since the data is exchanged between devices without passing through a base station, the network can be overloaded. In addition, by introducing the D2D communication, it is possible to expect the effect of reducing the procedure of the base station, the power consumption of the devices participating in the D2D, increase the data transmission speed, increase the capacity of the network, load balancing, cell coverage expansion.
현재, D2D 통신에 연계된 형태로써, V2X(Vehicle to Everything) 통신에 대한 논의가 진행되고 있다. V2X는 차량 단말들간의 V2V, 차량과 다른 종류의 단말간의 V2P, 차량과 RSU(roadside unit) 간의 V2I 통신을 포함하는 개념이다.Currently, a discussion on vehicle to everything (V2X) communication is being conducted as a form linked to D2D communication. V2X is a concept including V2V between vehicle terminals, V2P between a vehicle and other types of terminals, and V2I communication between a vehicle and a roadside unit (RSU).
본 발명에서는 네트워크 슬라이싱 구조 하에서 MM, 구체적으로 예를 들어 위치 등록을 효율적으로 수행할 수 있는 방법을 기술적 과제로 한다.In the present invention, a technical task is to efficiently perform location registration, for example, location registration, under a network slicing structure.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 발명의 일 실시예는, 무선통신시스템에서 제1 MM(Mobility Management) 펑션(function)이 UE(User Equipment)의 위치 등록에 관련된 동작을 수행하는 방법에 있어서, 제1 MM 펑션이 UE로부터 어태치 요청을 수신하는 단계; 상기 제1 MM 펑션이 제1 주기적 위치 등록 타이머 값을 결정하는 단계; 상기 제1 MM 펑션이 상기 제1 주기적 위치 등록 타이머 값을 포함하는, 상기 어태치 요청에 대한 응답을 상기 UE로 전송하는 단계; 상기 제1 MM 펑션이 제2 주기적 위치 등록 타이머를 포함하는 정보를 수신하는 단계; 상기 제1 MM 펑션이 상기 제1 주기적 위치 등록 타이머 값과 상기 제2 주기적 위치 등록 타이머 값을 비교하는 단계; 및 상기 제1 MM 펑션이 상기 비교 결과 작은 값을 갖는 타이머를 제3 주기적 위치 등록 타이머로 결정하는 단계를 포함하는, 제1 MM 펑션의 단말 위치 등록 관련 동작 수행 방법이다.According to an embodiment of the present invention, in a method in which a first mobility management (MM) function performs an operation related to location registration of a user equipment (UE) in a wireless communication system, the first MM function is determined from the UE. Receiving a attach request; Determining, by the first MM function, a first periodic location registration timer value; The first MM function sending a response to the attach request to the UE, wherein the response includes the first periodic location registration timer value; Receiving, by the first MM function, information including a second periodic location registration timer; Comparing, by the first MM function, the first periodic location registration timer value with the second periodic location registration timer value; And determining, by the first MM function, a timer having a small value as a result of the comparison as a third periodic location registration timer.
본 발명의 일 실시예는, 무선통신시스템에서 UE(User Equipment)의 위치 등록에 관련된 동작을 수행하는 제1 MM 펑션(function) 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는, 상기 송수신 장치를 통해 UE로부터 어태치 요청을 수신하고, 상기 제1 MM 펑션이 제1 주기적 위치 등록 타이머 값을 결정하고, 상기 제1 주기적 위치 등록 타이머 값을 포함하는, 상기 어태치 요청에 대한 응답을 상기 UE로 전송하며, 제2 주기적 위치 등록 타이머를 포함하는 정보를 수신하고, 상기 제1 주기적 위치 등록 타이머 값과 상기 제2 주기적 위치 등록 타이머 값을 비교하며, 상기 비교 결과 작은 값을 갖는 타이머를 제3 주기적 위치 등록 타이머로 결정하는, 제1 MM 펑션 장치이다.An embodiment of the present invention provides a first MM function apparatus for performing an operation related to location registration of a user equipment (UE) in a wireless communication system, the apparatus comprising: a transceiver; And a processor, wherein the processor is further configured to receive an attach request from a UE via the transceiver, the first MM function determines a first periodic location registration timer value, and sets the first periodic location registration timer value. And transmitting a response to the attach request to the UE, receiving information including a second periodic location registration timer, and comparing the first periodic location registration timer value with the second periodic location registration timer value. The first MM function apparatus determines a timer having a small value as a third periodic position registration timer as a result of the comparison.
상기 제2 주기적 위치 등록 타이머를 포함하는 정보는 위치 등록 서비스 가입 요청일 수 있다.The information including the second periodic location registration timer may be a location registration service subscription request.
상기 위치 등록 서비스 가입 요청은, 상기 UE가 세션 셋업 요청을 수행하여 선택된 슬라이스의 제2 MM 펑션으로부터 전송된 것이며, 상기 제1 MM 펑션은 상기 제3 주기적 위치 등록 타이머를 상기 제2 MM 펑션으로 전송할 수 있다.The location registration service subscription request is transmitted from the second MM function of the selected slice by the UE performing a session setup request, and the first MM function transmits the third periodic location registration timer to the second MM function. Can be.
상기 제2 MM 펑션은 상기 UE와 NAS 메시지를 송수신하는 MM 펑션에게 상기 위치 등록 가입 요청을 전송하도록 구성된 것일 수 있다.The second MM function may be configured to transmit the location registration subscription request to an MM function that transmits and receives a NAS message with the UE.
상기 제1 MM 펑션은 상기 제2 MM 펑션으로 세션 셋업 요청을 전달할 수 있다.The first MM function may transmit a session setup request to the second MM function.
상기 제1 MM 펑션은 제3 주기적 위치 등록 타이머 결정시 제3 위치 등록 범위도 함께 결정할 수 있다.The first MM function may also determine a third location registration range when determining the third periodic location registration timer.
상기 제3 위치 등록 범위는, 상기 제1 MM 펑션이 결정한 제1 위치 등록 범위와 상기 제2 MM 펑션이 결정한 제2 위치 등록 범위가 공통되는 영역일 수 있다.The third location registration range may be an area in which the first location registration range determined by the first MM function and the second location registration range determined by the second MM function are common.
본 발명에 따르면, network slicing이 사용될 때 mobility management를 효율적으로 제공할 수 있다. 구체적으로, 본 발명에 의할 경우 슬라이스별로 상이한 타이머로 인해 UE가 반복적으로 위치 등록을 수행해야 하는 비효율을 제거할 수 있다.According to the present invention, it is possible to efficiently provide mobility management when network slicing is used. Specifically, according to the present invention, due to the different timer for each slice, it is possible to eliminate the inefficiency of the UE to perform location registration repeatedly.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다. BRIEF DESCRIPTION OF THE DRAWINGS The drawings appended hereto are for the purpose of providing an understanding of the present invention and for illustrating various embodiments of the present invention and for describing the principles of the present invention together with the description of the specification.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다. 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.5 is a flowchart illustrating a random access procedure.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.6 is a diagram illustrating a connection process in a radio resource control (RRC) layer.
도 7에는 네트워크 슬라이싱의 개념이 예시되어 있다. 7 illustrates the concept of network slicing.
도 8은 UE가 하나 이상의 네트워크 슬라이스로부터 서비스를 받을 때 가능한 시나리오를 도시한다.8 illustrates a possible scenario when the UE is served from one or more network slices.
도 9는 5G 시스템에서 사용 가능한 아키텍처 참조 모델(Architecture reference model)을 도시한다.9 illustrates an architecture reference model usable in a 5G system.
도 10 내지 도 11에는 본 발명의 각 실시예에 따른 단말 위치 등록 관련 동작 수행 방법이 도시되어 있다.10 to 11 illustrate a method of performing a terminal location registration related operation according to each embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.12 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.Specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.The following techniques can be used in various wireless communication systems. For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다. Terms used in this document are defined as follows.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.UMTS (Universal Mobile Telecommunications System): A third generation mobile communication technology based on Global System for Mobile Communication (GSM) developed by 3GPP.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다. Evolved Packet System (EPS): A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN. UMTS is an evolutionary network.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.NodeB: base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.eNodeB: base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다. UE (User Equipment): a user device. The UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like. In addition, the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device. In the context of MTC, the term UE or UE may refer to an MTC device.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다. Home NodeB (HNB): A base station of a UMTS network, which is installed indoors and has a coverage of a micro cell.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다. HeNB (Home eNodeB): A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.Mobility Management Entity (MME): A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.Packet Data Network-Gateway (PDN-GW) / PGW: A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.Serving Gateway (SGW): A network node of an EPS network that performs mobility anchor, packet routing, idle mode packet buffering, and triggers the MME to page the UE.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다. Non-Access Stratum (NAS): Upper stratum of the control plane between the UE and the MME. A functional layer for exchanging signaling and traffic messages between a UE and a core network in an LTE / UMTS protocol stack, which supports session mobility and establishes and maintains an IP connection between the UE and the PDN GW. Supporting is the main function.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크. Packet Data Network (PDN): A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결. PDN connection: A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다. RAN (Radio Access Network): a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.Home Location Register (HLR) / Home Subscriber Server (HSS): A database containing subscriber information in the 3GPP network. The HSS may perform functions such as configuration storage, identity management, and user state storage.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.Public Land Mobile Network (PLMN): A network composed for the purpose of providing mobile communication services to individuals. It may be configured separately for each operator.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
EPC(Evolved Packet Core)Evolved Packet Core (EPC)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.EPC is a key element of System Architecture Evolution (SAE) to improve the performance of 3GPP technologies. SAE is a research project to determine network structure supporting mobility between various kinds of networks. SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다. Specifically, the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services. In a conventional mobile communication system (i.e., a second generation or third generation mobile communication system), the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data. The function has been implemented. However, in the 3GPP LTE system, an evolution of the third generation mobile communication system, the sub-domains of CS and PS have been unified into one IP domain. That is, in the 3GPP LTE system, the connection between the terminal and the terminal having the IP capability (capability), IP-based base station (for example, eNodeB (evolved Node B)), EPC, application domain (for example, IMS ( IP Multimedia Subsystem)). That is, EPC is an essential structure for implementing end-to-end IP service.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.The EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다. The SGW (or S-GW) acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW. In addition, when the UE moves over the area served by the eNodeB, the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later). SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data Rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다. The PDN GW (or P-GW) corresponds to the termination point of the data interface towards the packet data network. The PDN GW may support policy enforcement features, packet filtering, charging support, and the like. In addition, mobility management between 3GPP networks and non-3GPP networks (for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다. Although the example of the network structure of FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다. The MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. The MME controls control plane functions related to subscriber and session management. The MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks. The MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다. SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다. The ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다. As described with reference to FIG. 1, a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.). In the 3GPP system, a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point. Table 1 below summarizes the reference points shown in FIG. 1. In addition to the examples of Table 1, there may be various reference points according to the network structure.
레퍼런스 포인트Reference point 설명Explanation
S1-MMES1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)Reference point for the control plane protocol between E-UTRAN and MME
S1-US1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)Reference point between E-UTRAN and Serving GW for the per bearer user plane tunneling and inter eNodeB path switching during handover
S3S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)Reference point between the MME and SGSN providing user and bearer information exchange for mobility between 3GPP access networks in idle and / or active state. This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
S4S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)(Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.) and the 3GPP Anchor function of Serving GW.In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW. It provides user plane tunneling and tunnel management between Serving GW and PDN GW. for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11S11 MME와 SGW 간의 레퍼런스 포인트Reference point between MME and SGW
SGiSGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)Reference point between the PDN GW and the PDN. The PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services. It is the reference point between the PDN GW and the packet data network.Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.Among the reference points shown in FIG. 1, S2a and S2b correspond to non-3GPP interfaces. S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW. S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.As shown, an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active. Can perform functions for dynamic allocation to the UE, configuration and provision for measurement of the eNodeB, radio bearer control, radio admission control, and connection mobility control. Within the EPC, paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station, and FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.The air interface protocol is based on the 3GPP radio access network standard. The air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.The protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.Hereinafter, each layer of the radio protocol of the control plane shown in FIG. 3 and the radio protocol in the user plane shown in FIG. 4 will be described.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.The physical layer, which is the first layer, provides an information transfer service using a physical channel. The physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel. In addition, data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.The physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis. Here, one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis. One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers. The transmission time interval (TTI), which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.According to 3GPP LTE, the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
제2계층에는 여러 가지 계층이 존재한다.There are several layers in the second layer.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.First, the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing). The MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.The Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.The Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size. In addition, in the LTE system, the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.The radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release. In this case, RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.Hereinafter, the RRC state and the RRC connection method of the UE will be described. The RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell. That is, the terminal in the RRC_IDLE state is only detected whether the terminal exists in a larger area than the cell, and the terminal must transition to the RRC_CONNECTED state in order to receive a normal mobile communication service such as voice or data. Each TA is identified by a tracking area identity (TAI). The terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell. When it is necessary to establish an RRC connection, the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state. There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.A non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.The following describes the NAS layer shown in FIG. 3 in detail.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.ESM (evolved Session Management) belonging to the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network. The default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN). At this time, the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer. LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth. In case of Default bearer, Non-GBR bearer is assigned. In the case of a dedicated bearer, a bearer having a QoS characteristic of GBR or non-GBR may be allocated.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.The bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID. One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.5 is a flowchart illustrating a random access procedure in 3GPP LTE.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.The random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.The UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB. Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.Transmission of the random access preamble is limited to a specific time and frequency resource for each cell. The PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.The UE sends the randomly selected random access preamble to the eNodeB. The UE selects one of the 64 candidate random access preambles. Then, the corresponding subframe is selected by the PRACH configuration index. The UE transmits the selected random access preamble in the selected subframe.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE. The random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.6 shows a connection process in a radio resource control (RRC) layer.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.As shown in FIG. 6, the RRC state is shown depending on whether the RRC is connected. The RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB. When the RRC state is connected, the RRC state is referred to as an RRC connected state. The non-state is called the RRC idle state.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.Since the UE in the connected state has an RRC connection, the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE. On the other hand, the UE in the idle state (idle state) can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit. The tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.There are several cases in which the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.In order to establish an RRC connection with the eNodeB, the UE in an idle state must proceed with an RRC connection procedure as described above. The RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.1) When a UE in idle mode attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to an eNodeB's paging, the UE first sends an RRC connection request message. Send to eNodeB.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.2) When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.3) When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
한편, EPS에서는 유휴 모드인 UE의 reachability 및 location을 관리하기 위해 UE로 하여금 TAU(Tracking Area Update)를 수행토록 한다. TAU 대한 상세한 사항은 3GPP TS 23.401의 4.3.5절 (Mobility management functions), 5.3.3절 (Tracking Area Update procedures) 및 TS 24.301의 5.5.3절 (Tracking area updating procedure (S1 mode only)) 등을 참고하며, 본 명세서의 내용을 산입된다. UE는 MME가 UE의 위치를 track하는 범위를 벗어나지 않더라도 주기적으로 TAU (periodic TAU 또는 P-TAU)를 수행한다. 이 때 주기적인 위치 등록 관련 타이머에 기반하여 P-TAU를 수행한다.Meanwhile, in EPS, the UE performs a tracking area update (TAU) to manage the reachability and location of the UE in the idle mode. For more details on TAU, refer to Section 4.3.5 (Mobility management functions), Section 5.3.3 (Tracking Area Update procedures) of 3GPP TS 23.401, and Section 5.5.3 (Tracking area updating procedure (S1 mode only)) of TS 24.301. For reference, the contents of the present specification are included. The UE periodically performs a TAU (periodic TAU or P-TAU) even if the MME does not depart from the range of tracking the location of the UE. At this time, P-TAU is performed based on a periodic location registration timer.
다음 표 2는 periodic tracking area update timer (T3412, TS 24.301 참조)이다. 통상적으로 상기 타이머 값은 네트워크에서 ATTACH ACCEPT, TRACKING AREA UPDATE ACCEPT 메시지에 포함시켜 UE에게 제공한다.Table 2 below shows the periodic tracking area update timer (see T3412 and TS 24.301). Typically, the timer value is included in the ATTACH ACCEPT, TRACKING AREA UPDATE ACCEPT message in the network and provided to the UE.
TIMER NUM.TIMER NUM. TIMER VALUETIMER VALUE STATESTATE CAUSE OF STARTCAUSE OF START NORMAL STOPNORMAL STOP ON ON EXPIRYEXPIRY
T3412T3412 Default 54 min.NOTE 2NOTE 5Default 54 min.NOTE 2NOTE 5 EMM-REGISTEREDEMM-REGISTERED In EMM-REGISTERED, when EMM-CONNECTED mode is left.In EMM-REGISTERED, when EMM-CONNECTED mode is left. When entering state EMM-DEREGISTERED or when entering EMM-CONNECTED mode. When entering state EMM-DEREGISTERED or when entering EMM-CONNECTED mode. Initiation of the periodic TAU procedure if the UE is not attached for emergency bearer services or T3423 started under the conditions as specified in subclause 5.3.5.Implicit detach from network if the UE is attached for emergency bearer services.Initiation of the periodic TAU procedure if the UE is not attached for emergency bearer services or T3423 started under the conditions as specified in subclause 5.3.5.Implicit detach from network if the UE is attached for emergency bearer services.
NOTE 2: The value of this timer is provided by the network operator during the attach and tracking area updating procedures.NOTE 5: The default value of this timer is used if the network does not indicate a value in the TRACKING AREA UPDATE ACCEPT message and the UE does not have a stored value for this timer.NOTE 2: The default value of this timer is used if the network does not indicate a value in the TRACKING AREA UPDATE ACCEPT message and the UE does not have a stored value for this timer.
네트워크는 P-TAU 시그널링으로부터 네트워크 load를 줄이고자 longer periodic tracking area update timer를 UE에게 제공할 수도 있다. 이에 관한 상세한 설명은 TS 23.401 4.3.17.3 절을 참조한다.The network may provide the UE with an longer periodic tracking area update timer to reduce network load from P-TAU signaling. For further details, see TS 23.401 Section 4.3.17.3.
다음 표 3은 TS 24.301에 기술된 TAU Accept 메시지 포맷이다. 표에서 9.x, 9.x.x.x 등의 표시는 TS 24.301 문서 내 인덱스이다.Table 3 below is the TAU Accept message format described in TS 24.301. The markings 9.x, 9.x.x.x, etc. in the table are indexes in the TS 24.301 document.
IEIIEI Information ElementInformation Element Type/ReferenceType / Reference PresencePresence FormatFormat LengthLength
Protocol discriminatorProtocol discriminator Protocol discriminator 9.2Protocol discriminator 9.2 MM VV 1/21/2
Security header typeSecurity header type Security header type 9.3.1Security header type 9.3.1 MM VV 1/21/2
Tracking area update accept message identityTracking area update accept message identity Message type 9.8Message type 9.8 MM VV 1One
EPS update resultEPS update result EPS update result 9.9.3.13EPS update result 9.9.3.13 MM VV 1/21/2
Spare half octetSpare half octet Spare half octet 9.9.2.9Spare half octet 9.9.2.9 MM VV 1/21/2
5A5A T3412 valueT3412 value GPRS timer 9.9.3.16GPRS timer 9.9.3.16 OO TVTV 22
5050 GUTIGUTI EPS mobile identity 9.9.3.12EPS mobile identity 9.9.3.12 OO TLVTLV 1313
5454 TAI listTAI list Tracking area identity list 9.9.3.33Tracking area identity list 9.9.3.33 OO TLVTLV 8-988-98
5757 EPS bearer context statusEPS bearer context status EPS bearer context status 9.9.2.1EPS bearer context status 9.9.2.1 OO TLVTLV 44
1313 Location area identificationLocation area identification Location area identification 9.9.2.2Location area identification 9.9.2.2 OO TVTV 66
2323 MS identityMS identity Mobile identity 9.9.2.3Mobile identity 9.9.2.3 OO TLVTLV 7-107-10
5353 EMM causeEMM cause EMM cause 9.9.3.9EMM cause 9.9.3.9 OO TVTV 22
1717 T3402 valueT3402 value GPRS timer 9.9.3.16GPRS timer 9.9.3.16 OO TVTV 22
5959 T3423 valueT3423 value GPRS timer 9.9.3.16GPRS timer 9.9.3.16 OO TVTV 22
4A4A Equivalent PLMNsEquivalent PLMNs PLMN list 9.9.2.8PLMN list 9.9.2.8 OO TLVTLV 5-475-47
3434 Emergency number listEmergency number list Emergency number list 9.9.3.37Emergency number list 9.9.3.37 OO TLVTLV 5-505-50
6464 EPS network feature supportEPS network feature support EPS network feature support 9.9.3.12AEPS network feature support 9.9.3.12A OO TLVTLV 33
F-F- Additional update resultAdditional update result Additional update result 9.9.3.0AAdditional update result 9.9.3.0A OO TVTV 1One
5E5E T3412 extended valueT3412 extended value GPRS timer 3 9.9.3.16BGPRS timer 3 9.9.3.16B OO TLVTLV 33
6A6A T3324 valueT3324 value GPRS timer 2 9.9.3.16AGPRS timer 2 9.9.3.16A OO TLVTLV 33
6E6E Extended DRX parametersExtended DRX parameters Extended DRX parameters 9.9.3.46Extended DRX parameters 9.9.3.46 OO TLVTLV 33
MME는 T3412 value IE를 노멀 및 combined TAU 절차에서 포함해야만 한다. 그리고, MME는 T3412 value IE를 주기적인 TAU 절차에 포함할 수 있다. 네트워크는 longer periodic tracking area update timer를 UE에게 제공하기 위해 T3412 extended value IE를 포함할 수 있다. P-TAU 타이머인 T3412 및 longer P-TAU 타이머인 T3412 extended value는 TS 24.008에 개시된 GPRS Timer, GPRS Timer 3 등 다양한 크기의 값으로 설정되어 UE에게 제공될 수 있다. The MME shall include the T3412 value IE in the normal and combined TAU procedures. In addition, the MME may include the T3412 value IE in the periodic TAU procedure. The network may include a T3412 extended value IE to provide a longer periodic tracking area update timer to the UE. The P-TAU timer T3412 and the longer P-TAU timer T3412 extended value may be set to values of various sizes such as GPRS Timer and GPRS Timer 3 disclosed in TS 24.008 and may be provided to the UE.
기존 LTE/LTE-A 시스템에서는 통합적인 코어 네트워크에 의해 네트워크 기능들이 수행되던 것과 대비해, 차세대 통신 시스템(예를 들어 5G 시스템 등)에서는 네트워크 슬라이싱의 도입이 논의되고 있다. 도 7에는 네트워크 슬라이싱의 개념이 예시되어 있다. 도 7을 참조하면, 네트워크 슬라이싱은 서비스 인스턴스 계층, 네트워크 슬라이스 인스턴스 계층, 자원 계층의 3 개 계층으로 구성될 수 있다. 서비스 인스턴스 계층은 지원될 서비스 (최종 사용자 서비스 또는 비즈니스 서비스)를 나타낸다. 이러한 각각의 서비스는 서비스 인스턴스로 표시될 수 있다. 일반적으로 서비스는 네트워크 운영자 또는 제3자에 의해 제공 될 수 있으므로, 서비스 인스턴스는 오퍼레이터 서비스 또는 제3자 제공 서비스를 나타내는 것일 수 있다. 네트워크 슬라이스 인스턴스는 서비스 인스턴스에 필요한 네트워크 특성을 제공한다. 네트워크 슬라이스 인스턴스는 네트워크 운영자가 제공하는 여러 서비스 인스턴스간에 공유 될 수 있다. (이외 네트워크 슬라이싱에 관한 상세한 내용들은 TR 23.799에 의해 참조될 수 있다.) UE는 도 7에 예시된 것과 같은 하나 이상의 네트워크 슬라이스로부터 서비스를 제공받을 수 있다. UE가 다수의 슬라이스로부터 서비스를 제공받을 수도 있고, 동시에 여러 슬라이스를 통해 트래픽을 주고받을 수 있지만, 어떤 시점에 하나의 슬라이스만을 통해 트래픽을 주고받을 수도 있다. 후자의 경우, 예컨대 Service#1은 Slice#1로, Service#2는 Slice#2로 서비스를 제공 받은 경우 UE는 Service#1에 대한 mobile originated (MO) traffic이 생성된 바, 이를 Slice#1을 통해 전송할 수 있다. 또 다른 예로는 UE가 주고받는 트래픽이 아예 없는 상태에서 (기존의 EPS와 같은 이동통신 시스템에서는 이러한 경우 UE가 IDLE 상태로 있을 수 있음), Service#2에 대한 mobile terminated (MT) traffic이 발생한 경우, 이는 Slice#2를 통해 전달받을 수 있다.The introduction of network slicing is being discussed in next-generation communication systems (eg, 5G systems), in contrast to the traditional LTE / LTE-A system where network functions were performed by an integrated core network. 7 illustrates the concept of network slicing. Referring to FIG. 7, network slicing may include three layers, a service instance layer, a network slice instance layer, and a resource layer. The service instance layer represents the service to be supported (end user service or business service). Each of these services may be represented by a service instance. In general, since the service may be provided by a network operator or a third party, the service instance may represent an operator service or a third party provided service. Network slice instances provide the network characteristics required for service instances. Network slice instances can be shared among multiple service instances provided by network operators. (Other details regarding network slicing may be referred to by TR 23.799.) The UE may be provided with service from one or more network slices as illustrated in FIG. The UE may be provided with services from multiple slices, and may send and receive traffic through several slices at the same time, but may also exchange traffic through only one slice at a time. In the latter case, for example, when Service # 1 is provided with Slice # 1 and Service # 2 is provided with Slice # 2, the UE generates mobile originated (MO) traffic for Service # 1. Can be sent through. Another example is when there is no traffic transmitted and received by the UE (in a mobile communication system such as EPS, the UE may be in the IDLE state in this case) and mobile terminated (MT) traffic for Service # 2 occurs. This can be delivered via Slice # 2.
UE는 하나 이상의 네트워크 슬라이스로부터 서비스를 제공받을 수 있는데, 이는 도 8에 예시된 것과 같은 3가지 시나리오 중 하나에 의할 수 있다.The UE may be served from one or more network slices, which may be in one of three scenarios as illustrated in FIG. 8.
도 8을 참조하면, 그룹 A는 UE가 상이한 네트워크 슬라이스들 및 상이한 CN 인스턴스들로부터 서비스를 획득하고, CN 인스턴스들 간의 논리적 분리/격리를 목표로 한다. 이 그룹은 UE를 다루는 각 네트워크 슬라이스에 대해 독립적인 서브스크립션 관리/이동성 관리를 특징으로 하며, 네트워크 및 무선에서 추가적인 시그널링에 의한 잠재적 부작용 가능성이 있다. 반면 네트워크의 CN 부분에서 격리는 이루기 가장 쉽다. 그룹 B는 일부 네트워크 기능이 네트워크 슬라이스 사이에서 공통적인 반면 다른 기능은 개별 네트워크 슬라이스에 있다고 가정한다. 그룹 C는 사용자 평면이 다른 네트워크 슬라이스로 처리되는 동안 제어 평면 처리가 슬라이스간에 공통적이라고 가정한다.Referring to FIG. 8, group A targets logical separation / isolation between CN instances where the UE obtains service from different network slices and different CN instances. This group features independent subscription management / mobility management for each network slice dealing with the UE, with the potential side effect of additional signaling in the network and radio. In contrast, isolation in the CN portion of the network is easiest to achieve. Group B assumes that some network functions are common among the network slices, while others are in separate network slices. Group C assumes that control plane processing is common between slices while the user plane is processed with other network slices.
종래 EPC에서 MME는 5G CN(Core Network)에서는 AMF(Core Access and Mobility Management Function)와 SMF(Session Management Function)로 분리되었다. 이에 UE와의 NAS interaction 및 MM(Mobility Management)은 AMF가, 그리고 SM(Session Management)은 SMF가 수행하게 된다. 또한 SMF는 user-plane 기능을 갖는, 즉 user traffic을 라우팅하는 gateway인 UPF(User Plane Function)를 관리하는데, 이는 종래 EPC에서 S-GW와 P-GW의 control-plane 부분은 SMF가 담당하고, user-plane 부분은 UPF가 담당하는 것으로 간주할 수 있다. User traffic의 라우팅을 위해 RAN과 DN(Data Network) 사이에 UPF는 하나 이상이 존재할 수 있다. 종래 EPS에서의 PDN connection에 대응하는 개념으로 5G system에서는 PDU(Protocol Data Unit) session이 정의되었다. PDU session은 IP type 뿐만 아니라 Ethernet type 또는 unstructured type의 PDU connectivity service를 제공하는 UE와 DN 간의 association을 일컫는다. 그 외에 UDM(Unified Data Management)은 EPC의 HSS에 대응되는 기능을 수행하며, PCF(Policy Control Function)은 EPC의 PCRF에 대응되는 기능을 수행한다. 물론 5G system의 요구사항을 만족하기 위해 그 기능들이 확장된 형태로 제공될 수 있다. 5G system architecture, 각 function, 각 interface에 대한 자세한 사항은 TS 23.501을 준용한다.In the conventional EPC, MME has been divided into Core Access and Mobility Management Function (AMF) and Session Management Function (SMF) in 5G CN (Core Network). The NAS interaction and mobility management (MM) with the UE are performed by the AMF, and the session management (SM) is performed by the SMF. In addition, the SMF manages a user plane function (UPF), which has a user-plane function, that is, a gateway for routing user traffic. The SMF is responsible for the control-plane portion of the S-GW and the P-GW in the conventional EPC. The user-plane part can be considered to be in charge of the UPF. There may be one or more UPFs between the RAN and the DN for the routing of user traffic. As a concept corresponding to the PDN connection in the conventional EPS, PDU (Protocol Data Unit) session is defined in 5G system. The PDU session refers to an association between the UE and the DN providing the PDU connectivity service of the Ethernet type or the unstructured type as well as the IP type. In addition, UDM (Unified Data Management) performs a function corresponding to the HSS of the EPC, PCF (Policy Control Function) performs a function corresponding to the PCRF of the EPC. Of course, the functions can be provided in an expanded form to satisfy the requirements of the 5G system. For details on the 5G system architecture, each function and each interface, TS 23.501 is applicable.
앞서, UE가 다수개의 network 슬라이스로부터 서비스를 받는 경우 Group A, Group B, Group C와 같이 3개의 예제 시나리오에 의해 서비스를 받는 것이 가능하다고 기술하였다. 도 9에 도시한 next generation system (즉, 5G system)의 스터디 결과 도출된 architecture를 Group A, Group B, Group C에 대입해 보면 다음과 같다. 특히, UE가 서비스를 받는 관점에서 AMF, SMF, UPF가 가장 주요한 역할을 하는 바, 이들 function이 어떻게 슬라이스에 포함되는지를 살펴보면 다음과 같다.Previously, when the UE receives services from a plurality of network slices, it is described that it is possible to receive services by three example scenarios such as Group A, Group B, and Group C. Substituting the architecture resulting from the study of the next generation system (i.e., 5G system) shown in FIG. 9 into Group A, Group B, and Group C is as follows. In particular, AMF, SMF, and UPF play the most important role in terms of receiving a UE. Here is how these functions are included in a slice.
Group A에서, 모든 control-plane function과 user-plane function이 각 슬라이스에 포함된다. 이에 AMF, SMF, UPF 모두 각 슬라이스에 포함된다.In Group A, all control-plane and user-plane functions are included in each slice. AMF, SMF, and UPF are all included in each slice.
Group B의 경우, 다음 세가지 예시적 형태의 시나리오가 가능하다. For Group B, three example types of scenarios are possible:
첫번째로, Mobility Management를 담당하는 AMF는 슬라이스 마다 포함하는 대신 common하게 위치한다. 즉, UE가 몇 개의 슬라이스에 의해 서비스를 받는 지와 무관하게 공통적으로 하나의 AMF가 존재한다. 반면, Session Management를 담당하는 SMF와 gateway인 UPF는 각 슬라이스에 포함된다. 두번째로, Session Management를 담당하는 SMF는 슬라이스 마다 포함하는 대신 common하게 위치한다. 즉, UE가 몇 개의 슬라이스에 의해 서비스를 받는 지와 무관하게 공통적으로 하나의 SMF가 존재한다. 반면, Mobility Management를 담당하는 SMF와 gateway인 UPF는 각 슬라이스에 포함된다. 세번째로, AMF의 기능 중에서 UE가 최초 등록시 인증을 수행하는 Access Management 기능을 슬라이스와 무관하게 공통적으로 두고, AMF의 기능 중에서 reachability, location tracking 등의 기능을 슬라이스에 포함시킨다. 그리고, SMF와 UPF도 슬라이스에 포함시킨다.First, AMFs in charge of mobility management are commonly located instead of being included for each slice. That is, there is one AMF in common regardless of how many slices a UE is served by. On the other hand, SMF responsible for session management and UPF, which is a gateway, are included in each slice. Second, SMFs in charge of session management are commonly located instead of being included in each slice. That is, there is one SMF in common regardless of how many slices a UE is served by. On the other hand, SMF responsible for mobility management and UPF, which is a gateway, are included in each slice. Third, among the functions of the AMF, the access management function that the UE performs authentication upon initial registration is commonly used regardless of the slice, and the functions, such as reachability and location tracking, are included in the slice. In addition, SMF and UPF are also included in the slice.
Group C 에서, 모든 control-plane function이 common하게 위치한다. 이에 AMF와 SMF가 각 슬라이스에 포함되지 않고 UE가 몇 개의 슬라이스에 의해 서비스를 받는 지와 무관하게 공통적으로 하나씩 존재한다. 반면에 UPF는 각 슬라이스에 포함된다.In Group C, all control-plane functions are commonly located. Therefore, AMF and SMF are not included in each slice, and there is a common one regardless of how many slices a UE is served. UPF, on the other hand, is included in each slice.
상술한 바와 같은 네트워크 슬라이스 구조에서, UE가 동시에 다수의 슬라이스로부터 다양한 서비스를 제공받는 경우, 두 개 이상의 슬라이스에서 MM(mobility management)를 수행할 수 있다. 예를 들어, 도 8에 예시된 Group A 및 Group B는 각 슬라이스가 control plane (CP) 펑션을 가질 수 있는 바, 만약 이러한 CP 펑션이 MM 또는 MM의 일부 기능 (즉, reachability, location tracking 등)을 수행한다면 다수의 MM 펑션에 의해 P-TAU가 제어될 수 있다. 만약, Group C와 같이 CP 펑션이 슬라이스들에 의해 share된다고 해도 각 슬라이스를 위해 다수의 CP instance가 running할 수도 있으며, 이런 경우 각 CP instance에 속한 MM 펑션에 의해 P-TAU가 제어될 수 있다.In the network slice structure as described above, when the UE is provided with various services from a plurality of slices at the same time, it is possible to perform mobility management (MM) in two or more slices. For example, in Group A and Group B illustrated in FIG. 8, each slice may have a control plane (CP) function, if such CP function is a function of the MM or MM (ie reachability, location tracking, etc.). If the P-TAU can be controlled by a plurality of MM functions. If the CP function is shared by the slices as in Group C, a plurality of CP instances may be running for each slice. In this case, the P-TAU may be controlled by the MM function belonging to each CP instance.
앞서 언급된 바와 같이, MM 펑션은 (EPS의 경우 MME) UE에게 제공하는 P-TAU 타이머 값으로 일정한 값을 사용하는 것이 아니라, 네트워크의 상황, 사업자 정책, local configuration, 가입자 정보 등에 기반하여 다양한 값으로 설정하여 UE에게 제공할 수 있다. 이는 다양한 서비스를 제공하기 위해 슬라이스화된 네트워크 시스템 구조에서도 마찬가지일 수 있다. 즉, 슬라이스마다 자신이 제공하는 서비스를 고려하여 및/또는 각 슬라이스의 상황 (예, 슬라이스의 시그널링 로드)을 반영하여 주기적인 위치 등록 타이머가 설정될 수 있다. 동시에 다수의 슬라이스로부터 서비스를 제공받는 UE가 네트워크에 있는 다수의 CP 펑션으로 주기적인 위치 등록을 수행해야 한다면 이러한 경우 서로 다른 위치 등록 타이머로 인해 UE는 일일이 주기적인 위치 등록을 수행해야 하는 문제가 발생한다. UE와 MM 펑션 또는 주기적인 위치 등록을 수행하는 CP 펑션이 네트워크에서 대표로 하나 존재한다고 해도 슬라이스마다 서로 다른 값의 주기적인 위치 등록 타이머가 운영된다면 상기 CP 펑션은 UE에게 어떻게 주기적인 위치 등록 타이머를 제공할지가 불분명하다. 따라서, 이하에서는 본 발명의 실시예에 의한, 네트워크 슬라이싱 구조 하에서 MM을 효율적으로 제공하는 방법에 대해 설명한다. 이하의 설명에서 MM 펑션은 MM 펑션의 일부 또는 주기적인 위치 등록 펑션일 수 있다. 그리고, 슬라이스는 네트워크 슬라이스, 네트워크 슬라이스 instance와 동일한 의미일 수 있다.As mentioned above, the MM function (MME in the case of EPS) does not use a constant value as a P-TAU timer value provided to the UE, but various values based on network conditions, operator policy, local configuration, subscriber information, etc. It may be set to provide to the UE. This may also be the case in a network system structure sliced to provide various services. That is, a periodic location registration timer may be set in consideration of a service provided by each slice and / or reflecting a situation of each slice (eg, signaling load of a slice). At the same time, if a UE receiving services from multiple slices needs to perform periodic location registration with multiple CP functions in the network, in this case, a different location registration timer causes the UE to perform periodic location registration. do. Even if there is one representative function in the network with the UE and the MM function or periodic location registration, if the periodic location registration timer of different values is operated for each slice, the CP function may inform the UE of the periodic location registration timer. It is unclear whether to provide. Therefore, the following describes a method for efficiently providing an MM under a network slicing structure according to an embodiment of the present invention. In the following description, the MM function may be a part of the MM function or a periodic location registration function. And, a slice may mean the same as a network slice and a network slice instance.
실시예 1Example 1
도 10에는 본 발명의 일 실시예에 의한 각 노드들의 위치 등록에 관련된 동작이 도시되어 있다. 도 10을 참조하면, 단계 S1001에서, UE(도면의 UE-1)는 어태치 요청을 전송함으로써, 네트워크에 어태치를 수행한다. 이 때 UE는 어태치 요청과 함께 세션을 셋업하는 동작을 요청할 수도 있다. 또는 어태치가 완료된 후에 세션 셋업 동작을 네트워크에 요청할 수도 있다. UE로부터 상기 어태치 요청을 수신한 MM function#1은 어태치 요청에 세션 셋업 요청이 포함되어 있는 경우 이를 세션 셋업을 담당하는 네트워크 펑션으로 전달하거나, 자신이 처리할 수도 있다. 여기서 세션은 PDU 세션 또는 PDN connection일 수 있다. 도 10에서는 UE가 어태치 요청 메시지를 네트워크로 전송하는 것으로 예시되었으나 이와는 달리 일반적인 MM Request 메시지를 네트워크로 전송하는 것일 수도 있다.10 illustrates an operation related to location registration of each node according to an embodiment of the present invention. Referring to FIG. 10, in step S1001, the UE (UE-1 in the figure) transmits an attach request to perform an attach to the network. In this case, the UE may request an operation of setting up a session with an attach request. Or, after the attach is completed, the session setup operation may be requested to the network. Receiving the attach request from the UE, MM function # 1, if the attach request includes a session setup request, it may be delivered to the network function in charge of session setup or may process it. Here, the session may be a PDU session or a PDN connection. In FIG. 10, the UE transmits an attach request message to the network. Alternatively, the UE may transmit a general MM Request message to the network.
단계 S1002에서, UE를 위해 slice#1이 선택된다. 슬라이스의 선택에는 상기 단계 S1001에서 설명한 UE로부터 수신한 메시지(어태치 요청 메시지 및/또는 세션 셋업 요청 메시지)에 포함된 정보(APN, Service descriptor, Application 관련 정보, UE capability 정보 등), RAT/RAN 종류/정보, 가입자 정보, 네트워크의 설정 정보 중 하나 이상이 사용될 수 있다.In step S1002, slice # 1 is selected for the UE. Selection of the slice includes information (APN, service descriptor, application related information, UE capability information, etc.) included in the message (attach request message and / or session setup request message) received from the UE described in step S1001, RAT / RAN One or more of the type / information, subscriber information, and network configuration information may be used.
단계 S1003에서, slice#1에 속한(또는 slice#1을 위해 동작하는) MM 펑션인 MM function#1은 제1 주기적인 위치 등록(업데이트) 타이머 (즉, P_timer#1) 값을 결정한다. 제1 주기적인 위치 등록 타이머는, 슬라이스가 제공하는 서비스의 특성, 슬라이스의 user plane 펑션의 상황 (예, 슬라이스의 gateway의 로드/혼잡도), 슬라이스의 control plane 펑션의 상황 (예, 슬라이스의 시그널링 로드/혼잡도), 가입자 정보, 네트워크 설정 중 하나 이상에 기반하여 결정할 수 있다. 또는, 각 슬라이스 마다 default 값이 있을 수도 있다. In step S1003, MM function # 1, which is an MM function belonging to slice # 1 (or operating for slice # 1), determines a first periodic location registration (update) timer (ie, P_timer # 1) value. The first periodic location registration timer is used to determine the characteristics of the service provided by the slice, the situation of the user plane function of the slice (e.g. load / congestion of the gateway of the slice), the situation of the control plane function of the slice (e.g. signaling signaling of the slice). / Congestion), subscriber information, and network settings. Alternatively, there may be a default value for each slice.
MM function#1은 상기 제1 주기적인 위치 등록 타이머 값을 결정하면서, UE에 대해 위치 등록 범위 (즉, A#1)도 함께 결정할 수 있다. 이는 슬라이스가 제공하는 서비스의 특성, 슬라이스의 user plane 펑션의 서비스 지역, 가입자 정보, 네트워크 설정 중 하나 이상에 기반하여 결정할 수 있다. 상기 위치 등록 범위는 UE가 해당 범위를 벗어나면 네트워크로 위치 등록을 수행해야 하는 지역/범위를 나타낸다.The MM function # 1 may also determine the location registration range (ie, A # 1) for the UE while determining the first periodic location registration timer value. This may be determined based on one or more of characteristics of a service provided by the slice, a service area of a user plane function of the slice, subscriber information, and network configuration. The location registration range indicates an area / range in which the UE should perform location registration with the network if it is out of the range.
단계 S1004에서, MM function#1은 어태치 요청에 대한 응답/허용 메시지를 UE에게 전송한다. 어태치 요청에 대한 응답/허용 메시지에는 제1 주기적인 위치 등록 타이머 값 및/또는 위치 등록 범위가 포함될 수 있다. 이를 수신한 UE는 상기 수신한 제1 위치 등록 타이머 값을 저장한다 (즉, 자신의 위치 등록 타이머인 P_timer를 상기 수신한 타이머 값인 P_timer#1로 설정). 그리고 P_timer#1을 start한다. MM function#1 역시 상기 UE에 대한 주기적인 위치 등록 타이머 값을 관리하며 이를 start한다. UE는 또한 상기 수신한 위치 등록 범위를 저장한다.In step S1004, the MM function # 1 transmits a response / allow message for the attach request to the UE. The response / allow message for the attach request may include the first periodic location registration timer value and / or location registration range. Upon receiving this, the UE stores the received first location registration timer value (ie, sets its location registration timer P_timer to the received timer value P_timer # 1). Then start P_timer # 1. MM function # 1 also manages a periodic location registration timer value for the UE and starts it. The UE also stores the received location registration range.
이후, UE의 위치 등록 타이머인 P_timer가 만료(expire)되고(단계 S1005), UE는 네트워크로 위치 등록을 수행한다. 즉, 단계 S1006에서 UE는 위치 업데이트 요청을 전송하고, 단계 S1007에서 MM function #1은 이에 대한 응답으로 위치 업데이트 수락 메시지를 전송한다. 단계 S1008에서, UE가 추가적인 세션을 셋업하기 위한 세션 셋업 요청 메시지를 네트워크로 전송한다. 이러한 메시지는 UE와 NAS 메시지를 주고 받는 관계에 있는 MM function#1로 전달된다. 즉, 제2 MM 펑션 등은 상기 UE와 NAS 메시지를 송수신하는 MM 펑션으로 상기 위치 등록 가입 요청을 전송하도록 구성(configured)되어 있을 수 있다.Thereafter, P_timer, the location registration timer of the UE, expires (step S1005), and the UE performs location registration with the network. That is, in step S1006, the UE transmits a location update request, and in step S1007, the MM function # 1 transmits a location update acceptance message in response. In step S1008, the UE sends a session setup request message to the network for setting up an additional session. These messages are delivered to MM function # 1 in the exchange of NAS messages with the UE. That is, the second MM function and the like may be configured to transmit the location registration subscription request to the MM function for transmitting and receiving NAS messages with the UE.
단계 S1009에서, UE를 위해 slice#2가 선택된다. 이 때, 선택 기준은 앞서 단계 S1002에서 설명된 것과 같다.In step S1009, slice # 2 is selected for the UE. At this time, the selection criteria are as described above in step S1002.
MM function#1은 slice#2에 속한 또는 slice#2를 위해 동작하는 MM 펑션인 MM function#2에게 UE로부터 받은 세션 셋업 요청을 전달하여 세션 셋업이 완료되도록 한다. 즉, MM function#1은 MM function#2에게 세션 셋업 요청 메시지를 전송한다(단계 S1010)The MM function # 1 delivers the session setup request received from the UE to the MM function # 2 which belongs to slice # 2 or operates for slice # 2, thereby completing the session setup. That is, the MM function # 1 transmits a session setup request message to the MM function # 2 (step S1010).
단계 S1011에서, MM function#2는 제2 주기적인 위치 등록 타이머 (즉, P_timer#2) 값 및 UE에 대해 위치 등록 범위 (즉, A#2)를 결정한다. 구체적인 내용은 단계 S1003을 참고한다.In step S1011, the MM function # 2 determines a second periodic location registration timer (ie, P_timer # 2) value and a location registration range (ie, A # 2) for the UE. For details, refer to step S1003.
단계 S1012에서, MM function#2는 결정한 P_timer#2 값 및 A#2를 포함하는 위치 등록 서비스 가입 요청을 UE와 NAS 메시지를 주고 받는 MM 펑션인 MM function#1에게 전송한다. 즉, 상기 제2 MM 펑션은 상기 UE와 NAS 메시지를 송수신하는 MM 펑션으로 상기 위치 등록 가입 요청을 전송하도록 구성(configured)된 것일 수 있다. 상기 위치 등록 서비스 가입 요청의 목적은 MM function#2가 UE에 대해 P_timer#2의 주기로 reachability를 확인하고 싶음을 알리거나 그 반대로 UE에 대해 P_timer#2의 주기로 reachability하지 않은 경우에 이를 통보해 줄 것을 요청하는 것일 수 있다. 또한, 상기 위치 등록 서비스 가입 요청의 목적은 UE이 A#2 지역을 벗어나면 이를 통보해 줄 것을 요청하는 것일 수 있다. 단계 S1013에서, MM function#1은 MM function#2에게 위치 등록 서비스 가입 요청에 대한 응답을 전송한다.In step S1012, the MM function # 2 transmits a location registration service subscription request including the determined P_timer # 2 value and A # 2 to the MM function # 1, which is an MM function that exchanges a NAS message with the UE. That is, the second MM function may be configured to transmit the location registration subscription request to an MM function that transmits and receives a NAS message with the UE. The purpose of the location registration service subscription request is to inform the MM function # 2 that it wants to check reachability with a period of P_timer # 2 for the UE, or vice versa, if the MM function # 2 does not reach reachability with a period of P_timer # 2 for the UE. It may be a request. In addition, the purpose of the location registration service subscription request may be to request that the UE notifies when it leaves the A # 2 area. In step S1013, the MM function # 1 transmits a response to the location registration service subscription request to the MM function # 2.
이후, MM function#1은 자신이 설정한 제1 주기적인 위치 등록 타이머 값과 MM function#2로부터 수신한 제2 주기적인 위치 등록 타이머 값을 비교하여 가장 작은 값을 확인/인지한다(단계 S1014). 그리고 비교 결과 작은 값(비교 대상인 타이머가 여러 MM function으로부터 수신된 경우 가장 작은 값)을 UE를 위한 새로운 P_timer 값(제3 주기적인 위치 등록 타이머)으로 결정한다. 도 10에서는 P_timer#2가 P_timer#1 보다 더 작은 값인 것으로 가정한다.Thereafter, the MM function # 1 compares the first periodic position registration timer value set by the self and the second periodic position registration timer value received from the MM function # 2 to check / recognize the smallest value (step S1014). . As a result of the comparison, a small value (the smallest value when the timer to be compared is received from several MM functions) is determined as a new P_timer value (third periodic location registration timer) for the UE. In FIG. 10, it is assumed that P_timer # 2 is smaller than P_timer # 1.
단계 S1015에서, MM function#1은 자신이 설정한 위치 등록 범위와 MM function#2로부터 수신한 위치 등록 범위를 비교하여 서로 겹치는 범위(공통되는 영역(area))를 확인/인지한다. 그리고 이 범위를 UE를 위한 새로운 위치 등록 범위로 결정한다. 도 10에서는 A#1이 TAI#1, TAI#2, TAI#3, TAI#4, TAI#5를 포함하고, A#2가 TAI#2, TAI#3, TAI#4, TAI#6을 포함하는 것으로 가정한다. 따라서 새롭게 결정된 위치 등록 범위인 A#3은 TAI#2, TAI#3, TAI#4를 포함한다.In step S1015, the MM function # 1 compares the position registration range set by itself with the position registration range received from the MM function # 2 to check / recognize overlapping ranges (common areas). This range is then determined as a new location registration range for the UE. In FIG. 10, A # 1 includes TAI # 1, TAI # 2, TAI # 3, TAI # 4, and TAI # 5, and A # 2 represents TAI # 2, TAI # 3, TAI # 4, and TAI # 6. It is assumed to be included. Accordingly, the newly determined location registration range A # 3 includes TAI # 2, TAI # 3, and TAI # 4.
만약, 새롭게 결정된 P_timer 값(제3 주기적인 위치 등록 타이머 값)이 UE에게 이전에 제공했던 P_timer 값과 다른 경우 또는 새롭게 결정된 위치 등록 범위가 UE에게 이전에 제공했던 위치 등록 범위와 다른 경우, MM function#1은 UE에게 위치 등록에 대한 정보가 변경되었음을 알리는 메시지를 전송한다(단계 S1016). 도 10에서는 P_timer 값과 위치 등록 범위가 모두 변경된 바, UE에게 새 P_timer 값인 P_timer#2 값 및 새 위치 등록 범위인 A#3을 포함하는 메시지(위치 업데이트 정보 메시지)를 전송한다. 단계 S1017에서, 위치 업데이트 정보 메시지를 수신한 UE은 상기 수신한 위치 등록 타이머 값 및 위치 등록 범위를 저장한다. 그리고 새로운 위치 등록 타이머 값에 맞게 주기적인 위치 등록 타이머를 start한다. 그리고 MM function#에게 응답 메시지를 전송한다. MM function#1 역시 상기 UE에 대한 주기적인 위치 등록 타이머 값을 관리하며 이를 start한다.If the newly determined P_timer value (third periodic location registration timer value) is different from the P_timer value previously provided to the UE or the newly determined location registration range is different from the previously registered location registration range to the UE, the MM function # 1 transmits a message indicating that the information on location registration has been changed to the UE (step S1016). In FIG. 10, since both the P_timer value and the location registration range are changed, a message (location update information message) including a new P_timer value P_timer # 2 value and a new location registration range A # 3 is transmitted to the UE. In step S1017, the UE having received the location update information message stores the received location registration timer value and location registration range. And start the periodic location registration timer according to the new location registration timer value. The response message is then sent to the MM function #. MM function # 1 also manages a periodic location registration timer value for the UE and starts it.
단계 S1018 내지 S1019에서, MM function#1은 MM function#2에게 (Notify 메시지를 통해) UE에게 제공한 P_timer 값 및 위치 등록 범위를 알린다. 또한 이와 함께 UE이 reachable함을 통보한다. 이는 다른 슬라이스의 MM 펑션이 관리하는 UE에 대한 P_timer 값을 re-start하도록 하기 위함이다. 만약, MM function#2가 MM function#1에게 UE이 P_timer#2의 주기로 reachability하지 않은 경우에만 이를 통보해 줄 것을 요청한 경우에는, 이러한 통보를 전송하지 않을 수도 있다.In steps S1018 to S1019, the MM function # 1 informs the MM function # 2 of the P_timer value and location registration range provided to the UE (via a Notify message). It also informs the UE that it is reachable. This is for re-starting the P_timer value for the UE managed by the MM function of another slice. If the MM function # 2 requests the MM function # 1 to notify the UE only when the UE does not reachability in the period of P_timer # 2, this notification may not be transmitted.
상술한 바와 같이 MM function#1이 UE를 서비스하는 모든 슬라이스에 대해 공통의 P_timer 값을 start 하는 대신, 각 슬라이스 별로 P_timer 값을 start 하여 관리할 수도 있다. 이러한 경우 각 슬라이스의 P_timer 주기에 맞게 해당 슬라이스로 UE의 reachability를 통보하거나 그 반대로 reachable 하지 않은 경우에만 통보할 수 있다. 이는 본 발명 전반에 걸쳐 적용된다.As described above, instead of starting the common P_timer value for all slices serving the UE, the MM function # 1 may start and manage the P_timer value for each slice. In this case, the UE can not only reach reachability of the UE to the slice corresponding to the P_timer period of each slice, or vice versa, but only when not reachable. This applies throughout the present invention.
단계 S1020~ S1024는 UE의 타이머가 만료되는 경우에 대한 설명이다. 구체적으로, UE이 자신의 위치 등록 타이머인 P_timer가 expire하면(단계 S1020), UE은 네트워크로 위치 등록을 수행(단계 S1021 내지 S1022)한다. UE은 위치 등록 타이머인 P_timer를 re-start한다. MM function#1도 UE에 대한 위치 등록 타이머인 P_timer를 re-start한다. Steps S1020 to S1024 describe the case where the timer of the UE expires. Specifically, when the UE's own location registration timer P_timer expires (step S1020), the UE performs location registration with the network (steps S1021 to S1022). The UE restarts P_timer, which is a location registration timer. The MM function # 1 also restarts P_timer, which is a location registration timer for the UE.
단계 S1023내지 S1024에서, MM function#1은 MM function#2에게 UE가 reachable함을 (Notify 메시지를 통해) 통보한다. 이는 UE가 위치 등록을 수행했음을 명시적으로 또는 암시적으로 알리는 것일 수 있다. MM function#2는 UE에 대한 위치 등록 타이머인 P_timer를 re-start한다. 만약, S1022에서 도 10에서 도시된 것과 달리 MM function#1이 위치 등록 범위를 A#3가 아닌 새로운 위치 등록 범위로 할당한 경우, 이 정보가 MM function#2에게 제공된다.In steps S1023 to S1024, the MM function # 1 notifies the MM function # 2 that the UE is reachable (via a Notify message). This may be an explicit or implicit notification that the UE has performed location registration. The MM function # 2 re-starts P_timer, which is a location registration timer for the UE. If, in S1022, the MM function # 1 allocates the location registration range to a new location registration range other than A # 3, unlike this shown in FIG. 10, this information is provided to the MM function # 2.
단계 S1025~ S1029는 UE이 이동함에 따라 위치 등록 범위를 벗어나는 경우에 대한 설명이다. UE가 이동함에 따라 위치 등록 범위인 A#3를 벗어난다(단계 S1025). 이 경우, UE는 네트워크로 위치 등록을 수행(단계 S1026 내지 S1027)한다. MM function#1은 UE에게 새로운 위치 등록 범위인 A#4를 할당하여 응답한다. UE는 위치 등록 타이머인 P_timer를 re-start한다. MM function#1도 UE에 대한 위치 등록 타이머인 P_timer를 re-start한다.Steps S1025 to S1029 are explanations for the case where the UE is out of the location registration range as the UE moves. As the UE moves out of the location registration range A # 3 (step S1025). In this case, the UE performs location registration with the network (steps S1026 to S1027). The MM function # 1 responds by allocating a new location registration range A # 4 to the UE. The UE re-starts P_timer, which is a location registration timer. The MM function # 1 also restarts P_timer, which is a location registration timer for the UE.
단계 S1028 내지 S1029에서, MM function#1은 MM function#2에게 (Notify 메시지를 통해) UE의 새로운 위치 등록 범위를 알린다. MM function#2는 UE에 대한 위치 등록 타이머인 P_timer를 re-start한다.In steps S1028 to S1029, the MM function # 1 informs the MM function # 2 of a new location registration range of the UE (via a Notify message). The MM function # 2 re-starts P_timer, which is a location registration timer for the UE.
이후 MM function#1은 다른 슬라이스의 MM 펑션인 MM function#2가 요청한 주기적인 위치 등록 타이머에 기반하여 MM function#2에게 UE의 reachability를 통보하거나 UE가 unreachable해졌다고 간주하면 이를 알릴 수 있다.Thereafter, the MM function # 1 may notify the MM function # 2 of the reachability of the UE based on a periodic location registration timer requested by the MM function # 2, which is the MM function of another slice, or notify the UE if the UE has become unreachable.
실시예 2Example 2
실시예 2는 실시예 1과 달리 MM 콘트롤러의 기능을 수행하는 노드/엔티티가 MM 펑션과 별도로 존재하는 경우의 예시이다. 이하의 설명에서 MM 콘트롤러는 MM Coordinator, MM Anchor Point, Mobility controller, Mobility Coordinator, Mobility Anchor Point, Central MM function 등으로 불릴 수도 있다. MM 콘트롤러는, UE를 서비스하는 특정 슬라이스에 속하지만 UE에게 서비스를 제공하는 모든 슬라이스에 대해 MM 펑션을 제어할 수도 있고, 특정 슬라이스에 속하지 않고 UE에게 서비스를 제공하는 모든 슬라이스에 대해 MM 펑션을 제어할 수도 있고, MM 펑션을 포함하는 슬라이스에 속하여 UE에게 서비스를 제공하는 모든 슬라이스에 대해 MM 펑션을 제어할 수도 있다. 이하에서는 UE의 MM 펑션을 제어하는 네트워크 노드가 UE의 관점에서 하나임을 가정한다. 즉, UE는 하나의 MM 펑션에게만 위치 등록 또는 주기적인 위치 등록을 수행한다. 여기에서 위치 등록의 단위는 cell 단위, RAN의 위치 등록 area 단위, Tracking Area 단위, TA의 모음 단위, 위치 등록 area 단위, 위치 등록 area의 모음 단위, CN의 위치 등록 area 단위 CN의 위치 등록 area의 모음 단위 등으로 다양할 수 있다. 이는 상기 실시예 1의 위치 등록의 단위에도 적용된다.Unlike Embodiment 1, the second embodiment is an example in which a node / entity performing a function of the MM controller exists separately from the MM function. In the following description, the MM controller may be referred to as an MM coordinator, an MM anchor point, a mobility controller, a mobility coordinator, a mobility anchor point, or a central MM function. The MM controller may control the MM function for all slices belonging to a specific slice serving the UE but serving the UE, and control the MM function for all slices serving the UE without belonging to the specific slice. In addition, the MM function may be controlled for all slices serving the UE belonging to the slice including the MM function. Hereinafter, it is assumed that there is one network node controlling the MM function of the UE from the perspective of the UE. That is, the UE performs location registration or periodic location registration for only one MM function. Here, the unit of location registration is a unit of cell, a location registration area of RAN, a tracking area unit, a TA collection unit, a location registration area unit, a location registration area collection unit, a CN location registration area unit CN location registration area Vowel units may vary. This also applies to the unit of location registration of the first embodiment.
도 11을 참조하면, 단계 S1101에서, UE(도면의 UE-1)이 네트워크에 어태치를 수행한다. 이 때 UE는 어태치 요청과 함께 세션을 셋업하는 동작을 요청할 수도 있다. 또는 어태치가 완료된 후에 세션 셋업 동작을 네트워크에 요청할 수도 있다. UE로부터 상기 어태치 요청을 수신한 MM 콘트롤러는 여기에 세션 셋업 요청이 포함되어 있는 경우 이를 세션 셋업을 담당하는 네트워크 펑션으로 전달할 수도 있고 자신이 처리할 수도 있다. 상기에서 세션은 PDU 세션 또는 PDN connection으로 해석될 수 있다. 여기서는 UE가 Attach Request 메시지를 네트워크로 전송하는 것으로 기술하였으나 이와는 달리 일반적인 MM Request 메시지를 네트워크로 전송하는 것일 수도 있다.Referring to FIG. 11, in step S1101, a UE (UE-1 in the figure) attaches to a network. In this case, the UE may request an operation of setting up a session with an attach request. Or, after the attach is completed, the session setup operation may be requested to the network. Receiving the attach request from the UE, the MM controller may forward the session setup request to the network function in charge of the session setup if the session setup request is included in the UE. In the above, the session may be interpreted as a PDU session or a PDN connection. In this case, the UE transmits the Attach Request message to the network. Alternatively, the UE may transmit the general MM Request message to the network.
단계 S1102에서, UE를 위해 slice#1이 선택된다. 선택 기준은 단계 S1101에서 설명한 UE로부터 수신한 메시지 (이는 어태치 요청 메시지 및/또는 세션 셋업 요청 메시지)에 포함된 정보 (예컨대, APN, Service descriptor, Application 관련 정보, UE capability 정보 등), RAT/RAN 종류/정보, 가입자 정보, 네트워크의 설정 정보 중 하나 이상이 사용될 수 있다. 단계 S1103에서, slice#1에 속한 또는 slice#1을 위해 동작하는 MM 펑션인 MM function#1은, 주기적인 위치 등록 타이머 (즉, P_timer#1) 값을 결정한다. 이는 슬라이스가 제공하는 서비스의 특성, 슬라이스의 user plane 펑션의 상황 (예, 슬라이스의 gateway의 로드/혼잡도), 슬라이스의 control plane 펑션의 상황 (예, 슬라이스의 시그널링 로드/혼잡도), 가입자 정보, 네트워크 설정 중 하나 이상에 기반하여 결정할 수 있다. 각 슬라이스 마다 default 값이 있을 수도 있다.In step S1102, slice # 1 is selected for the UE. The selection criteria may include information (eg, APN, service descriptor, application related information, UE capability information, etc.) included in the message received from the UE described in step S1101 (that is, an attach request message and / or a session setup request message), RAT / One or more of RAN type / information, subscriber information, and configuration information of a network may be used. In step S1103, MM function # 1, which is an MM function belonging to slice # 1 or operating for slice # 1, determines a periodic location registration timer (ie, P_timer # 1) value. This includes the characteristics of the services provided by the slice, the context of the slice's user plane function (eg, load / congestion of the gateway of the slice), the context of slice's control plane function (eg, signaling load / congestion of the slice), subscriber information, network You can decide based on one or more of the settings. There may be a default value for each slice.
단계 S1104에서, MM function#1은 결정한 P_timer#1 값을 포함하는 위치 등록 서비스 가입 요청을 MM 콘트롤러에게 전송한다. 상기 위치 등록 서비스 가입 요청의 목적은 MM function#1이 UE에 대해 P_timer#1의 주기로 reachability를 확인하고 싶음을 알리거나 그 반대로 UE에 대해 P_timer#1의 주기로 reachability하지 않은 경우에 이를 통보해 줄 것을 요청하는 것일 수 있다.In step S1104, the MM function # 1 transmits a location registration service subscription request including the determined P_timer # 1 value to the MM controller. The purpose of the location registration service subscription request is to inform the MM function # 1 that it wants to check reachability with a period of P_timer # 1 for the UE, or vice versa, when the MM function # 1 does not reach reachability with a period of P_timer # 1 for the UE. It may be a request.
단계 S1105에서, MM 콘트롤러는 MM function#1에게 상기 위치 등록 서비스 가입 요청에 대한 응답을 전송한다. 이 때 또는 이후에 MM 콘트롤러는 MM function#1에게 UE이 reachable함을 알리는 정보를 전송할 수 있다.In step S1105, the MM controller transmits a response to the location registration service subscription request to the MM function # 1. At this time or later, the MM controller may transmit information indicating that the UE is reachable to the MM function # 1.
단계 S1106에서, MM 콘트롤러는 어태치 요청에 대한 응답/허용 메시지를 UE에게 전송한다. 이 때 주기적인 위치 등록 타이머 값을 포함시킨다. 이를 수신한 UE는 상기 수신한 위치 등록 타이머 값을 저장한다 (즉, 자신의 위치 등록 타이머인 P_timer를 상기 수신한 타이머 값인 P_timer#1로 설정). 그리고 이를 start한다. MM 콘트롤러 역시 상기 UE에 대한 주기적인 위치 등록 타이머 값을 관리하며 이를 start한다.In step S1106, the MM controller sends a response / allow message for the attach request to the UE. At this time, the periodic location registration timer value is included. Upon receiving this, the UE stores the received location registration timer value (ie, sets its location registration timer P_timer to the received timer value P_timer # 1). And start it. The MM controller also manages the periodic location registration timer value for the UE and starts it.
단계 S1107에서, UE가 자신의 위치 등록 타이머인 P_timer가 expire한다. 단계 S1108 내지 S1109에서, UE는 네트워크로 위치 등록을 수행한다.In step S1107, the UE's own location registration timer P_timer expires. In steps S1108 to S1109, the UE performs location registration with the network.
단계 S1110 내지 S1111에서, MM 콘트롤러는 MM function#1에게 UE가 reachable함을 (Notify 메시지를 통해) 통보한다. 이는 UE가 위치 등록을 수행했음을 명시적으로 또는 암시적으로 알리는 것일 수 있다. MM function#1은 UE에 대한 위치 등록 타이머인 P_timer를 re-start한다.In steps S1110 to S1111, the MM controller notifies (via a Notify message) that the UE is reachable to the MM function # 1. This may be an explicit or implicit notification that the UE has performed location registration. The MM function # 1 restarts P_timer, which is a location registration timer for the UE.
만약 단계 S1114에서 MM function#1이 UE에 대해 P_timer#1의 주기로 reachability하지 않은 경우에 이를 통보해 줄 것을 요청한 경우에는 단계 S1110 ~ 11이 생략될 수 있다. 이러한 경우에는 UE가 P_timer#1이 expire 했는데도 불구하고 위치 등록을 수행하지 않은 경우 MM 콘트롤러는 MM function#1에게 UE가 더 이상 reachable하지 않음을 통보한다. 이는 UE가 위치 등록을 수행하지 않았음을 명시적으로 또는 암시적으로 알리는 것일 수 있다. 이는 다른 슬라이스에 속한 MM 펑션에도 동일하게 적용된다. 즉, 본 발명 전반에 걸쳐 적용된다.If in step S1114 the MM function # 1 is requested to inform the UE when the reachability is not reachable in the period of P_timer # 1, steps S1110 to 11 may be omitted. In this case, when the UE does not perform the location registration even though P_timer # 1 has expired, the MM controller notifies the MM function # 1 that the UE is no longer reachable. This may be an explicit or implicit notification that the UE has not performed location registration. The same applies to MM functions belonging to different slices. That is, it is applied throughout the present invention.
단계 S1112에서, UE가 추가적인 세션을 셋업하기 위한 요청 메시지를 네트워크로 전송한다. 이러한 메시지는 MM 콘트롤러가 수신할 수도 있고, 세션 Management (SM) 관련 네트워크 펑션이 수신할 수도 있다. 후자의 경우 SM 콘트롤러와 같은 형태로 모든 슬라이스에 대해 SM 제어 기능을 하는 펑션 일 수도 있고, 상기 세션 셋업 요청에 의해 세션이 형성되는 슬라이스에 속한 SM 펑션일 수도 있다. 이 경우 단계 S1113에서 기술한 slice#2가 선택된 바 해당 SM 펑션으로 상기 세션 셋업 요청 메시지가 전달된 것일 수 있다.In step S1112, the UE sends a request message to set up an additional session to the network. These messages may be received by the MM controller, or may be received by session management (SM) related network functions. In the latter case, it may be a function that performs an SM control function for all slices in the same form as an SM controller, or may be an SM function belonging to a slice in which a session is formed by the session setup request. In this case, as slice # 2 described in step S1113 is selected, the session setup request message may be delivered to the corresponding SM function.
단계 S1113에서, UE를 위해 slice#2가 선택된다. 그 선택 기준은 단계 S1102를 참고한다.In step S1113, slice # 2 is selected for the UE. The selection criteria refer to step S1102.
단계 S1114에서, slice#2에 속한 또는 slice#2를 위해 동작하는 MM 펑션인 MM function#2는 주기적인 위치 등록 타이머 (즉, P_timer#2) 값을 결정한다. 상세는 단계 S1103을 참고한다.In step S1114, MM function # 2, which is an MM function belonging to slice # 2 or operating for slice # 2, determines a periodic location registration timer (ie, P_timer # 2) value. See step S1103 for details.
단계 S1115 내지 S1116에서, MM function#2는 MM 콘트롤러로 P_timer#2를 포함하는 메시지를 전송한다. 이는 단계 S1104 ~ S1105에서 MM function#1과 MM 콘트롤러가 수행한 동작과 동일하다.In steps S1115 to S1116, the MM function # 2 transmits a message including P_timer # 2 to the MM controller. This is the same operation performed by the MM function # 1 and the MM controller in steps S1104 to S1105.
단계 S1117에서, MM 콘트롤러는 UE를 서비스하는 모든 슬라이스로부터 수신한 주기적인 위치 등록 타이머 값 (즉, P_timer 값)을 비교하여 가장 작은 값을 확인/인지한다. 그리고 이 값을 UE를 위한 새로운 P_timer 값으로 결정한다.In step S1117, the MM controller checks / recognizes the smallest value by comparing the periodic location registration timer value (ie, P_timer value) received from all slices serving the UE. This value is then determined as a new P_timer value for the UE.
단계 S1118에서, 만약, 새롭게 결정된 P_timer 값이 UE에게 이전에 제공했던 P_timer 값보다 작은 경우, MM 콘트롤러는 UE에게 새 P_timer 값을 알리는 메시지를 전송한다. 도 11에서는 P_timer#2가 P_timer#1 보다 작은 것으로 가정한다. 이에 UE에게 새 P_timer 값인 P_timer#2 값을 포함하는 메시지를 전송한다.In step S1118, if the newly determined P_timer value is smaller than the P_timer value previously provided to the UE, the MM controller sends a message informing the UE of the new P_timer value. In FIG. 11, it is assumed that P_timer # 2 is smaller than P_timer # 1. Accordingly, a message including a P_timer # 2 value, which is a new P_timer value, is transmitted to the UE.
단계 S1119에서, 이를 수신한 UE는 상기 수신한 위치 등록 타이머 값을 저장한다 (즉, 자신의 위치 등록 타이머인 P_timer를 상기 수신한 타이머 값인 P_timer#2로 설정). 그리고 이를 start한다. MM 콘트롤러 역시 상기 UE에 대한 주기적인 위치 등록 타이머 값을 관리하며 이를 start한다.In step S1119, the UE, which has received this, stores the received location registration timer value (ie, sets its location registration timer P_timer to the received timer value P_timer # 2). And start it. The MM controller also manages the periodic location registration timer value for the UE and starts it.
단계 S1120 내지 S1121에서, MM 콘트롤러는 새롭게 조정된 P_timer 값을 start 함에 따라 다른 슬라이스들 (즉, 상기 새 P_timer 값의 기반이 된 P_timer 값을 제공한 슬라이스가 아닌 다른 슬라이스들로 도 11에서는 slice#1)에게 UE가 reachable함을 (Notify 메시지를 통해) 통보한다. 이는 각 슬라이스의 MM 펑션이 관리하는 UE에 대한 P_timer 값을 re-start하도록 하기 위함이다. 만약, MM function#1이 UE에 대해 P_timer#1의 주기로 reachability하지 않은 경우에 이를 통보해 줄 것을 요청한 경우에는, 이러한 통보를 전송하지 않는다.In steps S1120 to S1121, the MM controller starts the newly adjusted P_timer value, and thus slices other slices (that is, slices other than the slice providing the P_timer value on which the new P_timer value is based). ) (Via Notify message) that the UE is reachable. This is to re-start the P_timer value for the UE managed by the MM function of each slice. If the MM function # 1 requests the UE to notify the UE when it is not reachable with a period of P_timer # 1, this notification is not transmitted.
상기와 같이 MM 콘트롤러가 UE를 서비스하는 모든 슬라이스에 대해 공통의 P_timer 값을 start 하는 대신, 각 슬라이스 별로 P_timer 값을 start 하여 관리할 수도 있다. 이러한 경우 각 슬라이스의 P_timer 주기에 맞게 해당 슬라이스로 UE의 reachability를 통보하거나 그 반대로 reachable 하지 않은 경우에만 통보할 수 있다. 이는 본 발명 전반에 걸쳐 적용된다.As described above, instead of starting the common P_timer value for all slices serving the UE, the MM controller may start and manage the P_timer value for each slice. In this case, the UE can not only reach reachability of the UE to the slice corresponding to the P_timer period of each slice, or vice versa, but only when not reachable. This applies throughout the present invention.
단계 S1122에서, UE가 자신의 위치 등록 타이머인 P_timer가 expire한다. 단계 S1123 내지 S1124에서, UE는 네트워크로 위치 등록을 수행한다. 단계 S1125 내지 S1126에서, MM 콘트롤러는 MM function#2에게 UE이 reachable함을 (Notify 메시지를 통해) 통보한다. 이는 UE가 위치 등록을 수행했음을 명시적으로 또는 암시적으로 알리는 것일 수 있다. MM function#2는 UE에 대한 위치 등록 타이머인 P_timer를 re-start한다.In step S1122, the UE's own location registration timer P_timer expires. In steps S1123 to S1124, the UE performs location registration with the network. In steps S1125 to S1126, the MM controller informs MM function # 2 that the UE is reachable (via a Notify message). This may be an explicit or implicit notification that the UE has performed location registration. The MM function # 2 re-starts P_timer, which is a location registration timer for the UE.
이후 MM 콘트롤러는 MM function#1이 요청한 주기적인 위치 등록 타이머에 기반하여 MM function#1에게 UE의 reachability를 통보할 수 있다. Thereafter, the MM controller may notify the MM function # 1 of the reachability of the UE based on the periodic location registration timer requested by the MM function # 1.
즉, MM 콘트롤러는 각 슬라이스의 MM 펑션이 요청한 주기적인 위치 등록 타이머에 기반하여 각 MM 펑션에게 UE의 reachability를 통보하거나 UE가 unreachable해졌다고 간주하면 이를 알릴 수 있다.That is, the MM controller may notify each MM function of the reachability of the UE based on the periodic location registration timer requested by the MM function of each slice, or notify the UE when the UE has become unreachable.
상술한 설명에서, MM 펑션이 CN (Core 네트워크)에 있는/속한 것으로 가정하였으나 이와는 달리 i) RAN 슬라이스에 MM 펑션이 있고 MM 콘트롤러도 RAN에 있는 경우, ii) RAN 슬라이스에 MM 펑션이 있고 MM 콘트롤러는 CN에 있는 경우, iii) CN 슬라이스에 MM 펑션이 있고 MM 콘트롤러는 RAN에 있는 경우에도 확장 적용될 수 있다. In the above description, it is assumed that the MM function is in / belongs to the CN (Core Network), but otherwise i) if the RAN function has an MM function and the MM controller is also in the RAN, ii) there is an MM function in the RAN slice and the MM controller Is in the CN, iii) the MM function in the CN slice and the MM controller can be extended even in the RAN.
또한, MM 콘트롤러가 슬라이스마다 주기적인 위치 등록 타이머 값이 다른 경우 이를 조정하는 기능에 대해 설명하였으나 이는 슬라이스 마다 위치 등록 범위 (예를 들어 EPS에서는 TAI list에 해당)를 다르게 설정한 경우에도 적용 가능하다. 이러한 경우 더 작은 위치 등록 범위를 UE에게 제공할 수 있다. 이에 상기 MM 콘트롤러는 주기적인 위치 등록 타이머 값의 조정 및 위치 등록 범위의 조정을 동시에 수행할 수 있다.In addition, the MM controller described the function of adjusting the periodic position registration timer value differently for each slice, but this is also applicable when the position registration range (for example, TAI list in EPS) is set differently for each slice. . In this case, a smaller location registration range can be provided to the UE. Accordingly, the MM controller may simultaneously adjust the periodic location registration timer value and the location registration range.
상술한 각 실시예에 대한 설명에서 RAN (또는 AN: Access 네트워크)의 경우 슬라이스와 무관하게 공통인 것으로 도시하였으나, 각 슬라이스마다 RAN이 다를 수도 있다. 이는 동일한 RAT이나 RAN도 슬라이스되어 있어서 적절한 RAN 슬라이스가 선택된 것일 수도 있고, RAT이 달라서 다른 RAN이 선택된 것일 수도 있다. 또한, UE가 네트워크와 메시지를 교환 시, NAS 메시지의 형태일 수도 있고 AS 메시지의 형태일 수도 있다. In the above description of the embodiments, the RAN (or AN: Access network) is illustrated as being common regardless of the slice, but the RAN may be different for each slice. The same RAT or RAN is also sliced so that an appropriate RAN slice may be selected, or a different RAN may be selected because the RAT is different. In addition, when the UE exchanges a message with the network, it may be in the form of a NAS message or an AS message.
도 12는 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.12 is a diagram showing the configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
도 12를 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다. The terminal device 100 according to the present invention with reference to FIG. 12 may include a transceiver 110, a processor 120, and a memory 130. The transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device. The terminal device 100 may be connected to an external device by wire and / or wirelessly. The processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device. The memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown). In addition, the processor 120 may be configured to perform a terminal operation proposed in the present invention.
도 12를 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 구체적으로, 프로세서(220)은 상기 송수신 장치를 통해 UE로부터 어태치 요청을 수신하고, 상기 제1 MM 펑션이 제1 주기적 위치 등록 타이머 값을 결정하고, 상기 제1 주기적 위치 등록 타이머 값을 포함하는, 상기 어태치 요청에 대한 응답을 상기 UE로 전송하며, 제2 주기적 위치 등록 타이머를 포함하는 정보를 수신하고, 상기 제1 주기적 위치 등록 타이머 값과 상기 제2 주기적 위치 등록 타이머 값을 비교하며, 상기 비교 결과 작은 값을 갖는 타이머를 제3 주기적 위치 등록 타이머로 결정할 수 있다.Referring to FIG. 12, the network node device 200 according to the present invention may include a transceiver 210, a processor 220, and a memory 230. The transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device. The network node device 200 may be connected to an external device by wire and / or wirelessly. The processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device. The memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown). In addition, the processor 220 may be configured to perform the network node operation proposed in the present invention. In detail, the processor 220 receives an attach request from the UE through the transmission and reception apparatus, the first MM function determines a first periodic location registration timer value, and includes the first periodic location registration timer value. Transmit a response to the attach request to the UE, receive information including a second periodic location registration timer, compare the first periodic location registration timer value with the second periodic location registration timer value, As a result of the comparison, a timer having a small value may be determined as a third periodic location registration timer.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다. In addition, the specific configuration of the terminal device 100 and the network device 200 as described above, may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. Embodiments of the present invention described above may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.For implementation in hardware, a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations. The software code may be stored in a memory unit and driven by a processor. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable any person skilled in the art to make and practice the invention. Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art will variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. I can understand that you can. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.Various embodiments of the present invention as described above have been described with reference to the 3GPP system, but may be applied to various mobile communication systems in the same manner.

Claims (14)

  1. 무선통신시스템에서 제1 MM(Mobility Management) 펑션(function)이 UE(User Equipment)의 위치 등록에 관련된 동작을 수행하는 방법에 있어서,A method of performing a function related to location registration of a user equipment (UE) by a first mobility management (MM) function in a wireless communication system,
    제1 MM 펑션이 UE로부터 어태치 요청을 수신하는 단계;The first MM function receiving an attach request from the UE;
    상기 제1 MM 펑션이 제1 주기적 위치 등록 타이머 값을 결정하는 단계;Determining, by the first MM function, a first periodic location registration timer value;
    상기 제1 MM 펑션이 상기 제1 주기적 위치 등록 타이머 값을 포함하는, 상기 어태치 요청에 대한 응답을 상기 UE로 전송하는 단계;The first MM function sending a response to the attach request to the UE, wherein the response includes the first periodic location registration timer value;
    상기 제1 MM 펑션이 제2 주기적 위치 등록 타이머를 포함하는 정보를 수신하는 단계;Receiving, by the first MM function, information including a second periodic location registration timer;
    상기 제1 MM 펑션이 상기 제1 주기적 위치 등록 타이머 값과 상기 제2 주기적 위치 등록 타이머 값을 비교하는 단계; 및Comparing, by the first MM function, the first periodic location registration timer value with the second periodic location registration timer value; And
    상기 제1 MM 펑션이 상기 비교 결과 작은 값을 갖는 타이머를 제3 주기적 위치 등록 타이머로 결정하는 단계;Determining, by the first MM function, a timer having a small value as a result of the comparison as a third periodic location registration timer;
    를 포함하는, 제1 MM 펑션의 단말 위치 등록 관련 동작 수행 방법.A method of performing an operation related to terminal location registration of a first MM function comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제2 주기적 위치 등록 타이머를 포함하는 정보는 위치 등록 서비스 가입 요청인, 제1 MM 펑션의 단말 위치 등록 관련 동작 수행 방법.The information including the second periodic location registration timer is a location registration service subscription request, the method of performing a terminal location registration related operation of the first MM function.
  3. 제2항에 있어서,The method of claim 2,
    상기 위치 등록 서비스 가입 요청은, 상기 UE가 세션 셋업 요청을 수행하여 선택된 슬라이스의 제2 MM 펑션으로부터 전송된 것이며,The location registration service subscription request is transmitted from the second MM function of the selected slice by the UE performing a session setup request.
    상기 제1 MM 펑션은 상기 제3 주기적 위치 등록 타이머를 상기 제2 MM 펑션으로 전송하는, 제1 MM 펑션의 단말 위치 등록 관련 동작 수행 방법.And the first MM function transmits the third periodic location registration timer to the second MM function.
  4. 제3항에 있어서,The method of claim 3,
    상기 제2 MM 펑션은 상기 UE와 NAS 메시지를 송수신하는 MM 펑션에게 상기 위치 등록 가입 요청을 전송하도록 구성된 것인, 제1 MM 펑션의 단말 위치 등록 관련 동작 수행 방법.And the second MM function is configured to transmit the location registration subscription request to an MM function that transmits and receives a NAS message with the UE.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1 MM 펑션은 상기 제2 MM 펑션으로 세션 셋업 요청을 전달하는, 제1 MM 펑션의 단말 위치 등록 관련 동작 수행 방법.The first MM function transmits a session setup request to the second MM function, terminal location registration related operation of the first MM function.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 MM 펑션은 제3 주기적 위치 등록 타이머 결정시 제3 위치 등록 범위도 함께 결정하는, 제1 MM 펑션의 단말 위치 등록 관련 동작 수행 방법.And the first MM function determines a third location registration range when determining a third periodic location registration timer.
  7. 제6항에 있어서,The method of claim 6,
    상기 제3 위치 등록 범위는, 상기 제1 MM 펑션이 결정한 제1 위치 등록 범위와 상기 제2 MM 펑션이 결정한 제2 위치 등록 범위가 공통되는 영역인, 제1 MM 펑션의 단말 위치 등록 관련 동작 수행 방법.The third location registration range is an area in which the first location registration range determined by the first MM function and the second location registration range determined by the second MM function are common, and the terminal location registration related operation of the first MM function is performed. Way.
  8. 무선통신시스템에서 UE(User Equipment)의 위치 등록에 관련된 동작을 수행하는 제1 MM 펑션(function) 장치에 있어서,A first MM function device for performing an operation related to location registration of a user equipment (UE) in a wireless communication system,
    송수신 장치; 및A transceiver; And
    프로세서를 포함하고, Includes a processor,
    상기 프로세서는, 상기 송수신 장치를 통해 UE로부터 어태치 요청을 수신하고, 상기 제1 MM 펑션이 제1 주기적 위치 등록 타이머 값을 결정하고, 상기 제1 주기적 위치 등록 타이머 값을 포함하는, 상기 어태치 요청에 대한 응답을 상기 UE로 전송하며,The processor is further configured to receive an attach request from a UE through the transceiver device, wherein the first MM function determines a first periodic location registration timer value and includes the first periodic location registration timer value. Send a response to the request to the UE,
    제2 주기적 위치 등록 타이머를 포함하는 정보를 수신하고, 상기 제1 주기적 위치 등록 타이머 값과 상기 제2 주기적 위치 등록 타이머 값을 비교하며, 상기 비교 결과 작은 값을 갖는 타이머를 제3 주기적 위치 등록 타이머로 결정하는, 제1 MM 펑션 장치.Receiving information including a second periodic location registration timer, comparing the first periodic location registration timer value with the second periodic location registration timer value, and comparing the timer having a smaller value as a result of the third periodic location registration timer. Determined by, the first MM function device.
  9. 제8항에 있어서,The method of claim 8,
    상기 제2 주기적 위치 등록 타이머를 포함하는 정보는 위치 등록 서비스 가입 요청인, 제1 MM 펑션 장치.And the information including the second periodic location registration timer is a location registration service subscription request.
  10. 제9항에 있어서,The method of claim 9,
    상기 위치 등록 서비스 가입 요청은, 상기 UE가 세션 셋업 요청을 수행하여 선택된 슬라이스의 제2 MM 펑션 장치로부터 전송된 것이며,The location registration service subscription request is transmitted from the second MM function device of the selected slice by the UE performing a session setup request.
    상기 제1 MM 펑션 장치는 상기 제3 주기적 위치 등록 타이머를 상기 제2 MM 펑션으로 전송하는, 제1 MM 펑션 장치.The first MM function device sends the third periodic location registration timer to the second MM function.
  11. 제10항에 있어서,The method of claim 10,
    상기 제2 MM 펑션 장치는 상기 UE와 NAS 메시지를 송수신하는 MM 펑션에게 상기 위치 등록 가입 요청을 전송하도록 구성된 것인, 제1 MM 펑션 장치.The second MM function device is configured to send the location registration subscription request to the MM function for transmitting and receiving NAS messages with the UE, the first MM function device.
  12. 제8항에 있어서,The method of claim 8,
    상기 제1 MM 펑션 장치는 상기 제2 MM 펑션 장치로 세션 셋업 요청을 전달하는, 제1 MM 펑션 장치.And the first MM function device forwards a session setup request to the second MM function device.
  13. 제8항에 있어서,The method of claim 8,
    상기 제1 MM 펑션 장치는 제3 주기적 위치 등록 타이머 결정시 제3 위치 등록 범위도 함께 결정하는, 제1 MM 펑션 장치.Wherein the first MM function device also determines a third location registration range when determining a third periodic location registration timer.
  14. 제13항에 있어서,The method of claim 13,
    상기 제3 위치 등록 범위는, 상기 제1 MM 펑션 장치가 결정한 제1 위치 등록 범위와 상기 제2 MM 펑션 장치가 결정한 제2 위치 등록 범위가 공통되는 영역인, 제1 MM 펑션 장치.And the third position registration range is an area in which a first position registration range determined by the first MM function device and a second position registration range determined by the second MM function device are common.
PCT/KR2017/003309 2016-03-28 2017-03-28 Method for performing operation relating to location registration in slice structure in wireless communication system, and device therefor WO2017171348A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662314351P 2016-03-28 2016-03-28
US62/314,351 2016-03-28

Publications (2)

Publication Number Publication Date
WO2017171348A2 true WO2017171348A2 (en) 2017-10-05
WO2017171348A3 WO2017171348A3 (en) 2018-09-07

Family

ID=59964942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003309 WO2017171348A2 (en) 2016-03-28 2017-03-28 Method for performing operation relating to location registration in slice structure in wireless communication system, and device therefor

Country Status (1)

Country Link
WO (1) WO2017171348A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074344A1 (en) * 2017-10-13 2019-04-18 Samsung Electronics Co., Ltd. Method and system for maintaining service continuity by user equipment (ue) in wireless communication system
WO2019088599A1 (en) * 2017-10-31 2019-05-09 엘지전자 주식회사 Method for protecting data encrypted by home network key in wireless communication system and device therefor
US11558774B2 (en) 2017-10-13 2023-01-17 Samsung Electronics Co., Ltd. User equipment (UE) and core network for managing network slice congestion in wireless communication system
US11910243B2 (en) 2018-11-02 2024-02-20 Nokia Solutions And Networks Oy Methods and apparatuses for network slice minimum and maximum resource quotas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542408B1 (en) * 2009-03-23 2015-08-06 엘지전자 주식회사 METHOD FOR controlling access of terminal to Home eNodeB
US8787337B2 (en) * 2010-08-13 2014-07-22 Intel Corporation Techniques for managing mobility management signaling in a wireless network
CN102448045B (en) * 2010-09-30 2015-05-20 电信科学技术研究院 Method and equipment for processing mobile management context
EP2442596B1 (en) * 2010-10-15 2014-04-02 Alcatel Lucent Method and apparatus for providing distributed mobility management in a network
CN102595368B (en) * 2011-01-17 2015-01-07 华为技术有限公司 Method, system and device for registering

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074344A1 (en) * 2017-10-13 2019-04-18 Samsung Electronics Co., Ltd. Method and system for maintaining service continuity by user equipment (ue) in wireless communication system
CN110771219A (en) * 2017-10-13 2020-02-07 三星电子株式会社 Method and system for maintaining service continuity through user equipment in wireless communication system
US11096245B2 (en) 2017-10-13 2021-08-17 Samsung Electronics Co., Ltd. Method and system for maintaining service continuity by user equipment (UE) in wireless communication system
CN110771219B (en) * 2017-10-13 2022-09-09 三星电子株式会社 Method and system for maintaining service continuity through user equipment in wireless communication system
US11558774B2 (en) 2017-10-13 2023-01-17 Samsung Electronics Co., Ltd. User equipment (UE) and core network for managing network slice congestion in wireless communication system
US11743971B2 (en) 2017-10-13 2023-08-29 Samsung Electronics Co., Ltd Method and system for maintaining service continuity by user equipment (UE) in wireless communication system
US12058563B2 (en) 2017-10-13 2024-08-06 Samsung Electronics Co., Ltd. User Equipment (UE) and core network for managing network slice congestion in wireless communication system
WO2019088599A1 (en) * 2017-10-31 2019-05-09 엘지전자 주식회사 Method for protecting data encrypted by home network key in wireless communication system and device therefor
US11910243B2 (en) 2018-11-02 2024-02-20 Nokia Solutions And Networks Oy Methods and apparatuses for network slice minimum and maximum resource quotas

Also Published As

Publication number Publication date
WO2017171348A3 (en) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2019160376A1 (en) Method for signal transmission and reception by smf in wireless communication system and device therefor
WO2018084635A1 (en) Method for moving from ngs to eps in wireless communication system and apparatus therefor
WO2017142362A1 (en) Method for transmitting/receiving location registration-related message in wireless communication system and apparatus for same
WO2018155934A1 (en) Method for receiving data related to non-3gpp through 3gpp access in wireless communication system, and device therefor
WO2019022442A9 (en) Method for supporting sms transmission for user equipment that can receive service from 3gpp 5g system and from eps in wireless communication system, and apparatus therefor
WO2016190670A1 (en) Method and terminal for transmitting data traffic in wireless communication system
WO2015174702A1 (en) Method and apparatus for signal transmission and reception of hss/mme in wireless communication system
WO2016039579A1 (en) Method for establishing mcptt group call in wireless communication system and device therefor
WO2017171427A1 (en) System information transmission method and base station, and system information reception method and user equipment
WO2017191973A1 (en) Method for performing location registration by remote ue in wireless communication system, and apparatus therefor
WO2017126948A1 (en) Method for transmitting/receiving v2x message in local network in wireless communication system and apparatus for same
WO2017026872A1 (en) Signal transmission and reception method by remote ue in a wireless communication system and device for same
WO2018008922A2 (en) Method for supporting nas signaling by base station in wireless communication system and apparatus therefor
WO2017086618A1 (en) Device-to-device direct communication method in wireless communication system and device therefor
WO2018221943A1 (en) Method for transceiving signal in association with multi-homing based psa addition in wireless communication system and apparatus therefor
WO2018009025A1 (en) Method for transceiving signals related to pdn connection in wireless communication system, and device therefor
WO2016111603A1 (en) Method for transmitting and receiving signals related to pdn connection recovery in wireless communication system, and device therefor
WO2016144009A1 (en) Method and terminal for controlling network traffic in wireless communication system
WO2016126092A1 (en) Method for selecting plmn of terminal in wireless communication system and apparatus for same
WO2017026772A1 (en) Method for selecting p-cscf and transmitting sip message in wireless communication system and device for same
WO2016163635A1 (en) Method for selecting plmn of terminal in wireless communication system and apparatus therefor
WO2016153327A2 (en) Method for receiving and transmitting tau-less psm related signal in wireless communication system, and apparatus therefor
WO2019059740A1 (en) Method for transmitting/receiving ims voice support-related signal by ng-ran in wireless communication system, and apparatus therefor
WO2016056815A1 (en) Method for transmitting/receiving signal related to nbifom in wireless communication system, and apparatus therefor
WO2016003199A1 (en) Method for performing d2d communication in wireless communication system and device therefor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775772

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 17775772

Country of ref document: EP

Kind code of ref document: A2