WO2017171206A1 - Gas detecting tag and method of manufacturing same - Google Patents
Gas detecting tag and method of manufacturing same Download PDFInfo
- Publication number
- WO2017171206A1 WO2017171206A1 PCT/KR2016/015208 KR2016015208W WO2017171206A1 WO 2017171206 A1 WO2017171206 A1 WO 2017171206A1 KR 2016015208 W KR2016015208 W KR 2016015208W WO 2017171206 A1 WO2017171206 A1 WO 2017171206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- processing module
- signal processing
- electrode pair
- substrate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000012545 processing Methods 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 239000010409 thin film Substances 0.000 claims abstract description 24
- 239000010408 film Substances 0.000 claims abstract description 22
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 238000001514 detection method Methods 0.000 claims description 41
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 229910001887 tin oxide Inorganic materials 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 127
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009429 electrical wiring Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical group O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002772 conduction electron Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 231100000812 repeated exposure Toxicity 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
Definitions
- the present invention relates to a gas detection tag and a method of manufacturing the same. Specifically, a gas sensor tag and a method for manufacturing a gas sensor integrated with an electronic tag and operating with energy based on a radio frequency received by the electronic tag to measure a gas concentration and its It relates to a manufacturing method.
- the gas detector is mainly used for detecting a specific gas leakage at an industrial site, monitoring a working environment at a production site, or detecting an air pollution.
- Gas detectors are produced and marketed by a number of global companies, including Figaro, FIS, Riken and Monox.
- gas packaging is applied to the packaging of food and IT products, and the market for wearable devices has expanded globally, increasing the demand for low power, integrated gas detectors.
- the short-range wireless communication technology is domestic registered utility model No. 20-0415756 “Gas valve automatic control device and gas valve remote control system using RF communication” or Korean Patent Publication No. 10-2015-0116194 “Semiconductor manufacturing process using near field communication” Gas cylinder information providing system ”and the like, the most of the obtained information is to wirelessly transmit.
- Conventional gas detectors use the applied voltage of 5 to 9 volts (V) because the principle of detecting the gas by measuring the difference in the output voltage to the applied voltage according to the concentration of the gas reacted to the sensor.
- the gas detector has been limited to be used for its installation location or monitoring function.
- the present invention was devised to solve the above problems, and an object of the present invention is to provide a gas detector capable of measuring the gas concentration without a battery for power supply or an external electrical wiring.
- the gas detection tag includes an electrode, an antenna and a signal processing module disposed on the substrate, an electrode formed on the substrate and electrically connected to the signal processing module to receive power from the signal processing module.
- the method of manufacturing a gas detection tag comprises the steps of providing a substrate, forming an antenna pattern on the substrate and mounting a signal processing module, the signal so that the power can be supplied from the signal processing module Forming an electrode pair on the substrate by being electrically connected to a processing module, forming a conductive thin film on the electrode pair, and forming a gas sensing film on the conductive thin film.
- the gas detection tag according to the present invention is a gas detection tag consisting of an electronic tag and a gas sensor formed integrally with the electronic tag, the electronic tag induces a current from the signal received from the mobile terminal, the gas sensor It operates by receiving the current induced in the electronic tag, characterized in that the gas detection signal of the gas sensor is transmitted to the mobile terminal through the electronic tag.
- the gas concentration can be measured without using a battery or an external power supply wiring by using a gas detection tag manufactured by integrating a gas sensor into an electronic tag, and the measured value is measured by an external portable terminal. Can be sent to.
- the gas detection tag according to the present invention can supply electric power to the gas sensor by inducing a current from a signal received from the mobile terminal, so there is no need to install a battery or an external wiring for supplying power.
- FIG. 1 is a view showing the configuration of a gas concentration measurement system using a gas detection tag and a mobile terminal according to the present invention.
- FIG. 2 is a block diagram showing the internal configuration of the gas detection tag according to the present invention.
- Figure 3 is a perspective view showing the appearance of a gas detection tag according to the present invention.
- FIG. 4 is a flowchart illustrating a process of manufacturing a gas detection tag according to the present invention.
- Figure 5 is a graph showing the response characteristics over time when detecting the carbon dioxide using the gas detection tag according to the present invention.
- the gas detection tag includes a substrate, an antenna and a signal processing module disposed on the substrate, an electrode pair formed on the substrate and electrically connected to the signal processing module, and receiving power from the signal processing module; A conductive thin film formed on the electrode pair and a gas sensing film surrounding the conductive thin film and receiving electric power from the electrode pair to generate an electrical conductivity difference according to a gas sensing reaction.
- FIG. 1 shows a configuration of a gas concentration measuring system using a gas detection tag and a mobile terminal according to the present invention.
- the gas concentration measuring system includes a mobile terminal 100 and a gas detection tag 200.
- An application for gas concentration measurement is installed in the mobile terminal 100, and the mobile terminal 100 and the gas detection tag 200 are connected through short-range communication through the execution of the application.
- Near field communication may use RFID or NFC.
- the mobile terminal 100 transmits a radio signal to the gas detection tag 200 through short-range communication, and the gas detection tag 200 is driven by using a current induced by the radio signal to measure gas concentration.
- the mobile terminal 100 displays a user interface screen for checking the gas concentration through the application.
- the mobile terminal 100 may be a smartphone or a tablet PC, but the present invention is not limited thereto, and any type of device may be used as long as the device can execute an application for gas concentration measurement.
- Figure 2 shows the internal configuration of the gas detection tag according to the present invention.
- the gas detection tag 200 includes an antenna 10, a signal processing module 20, a gas sensor 30, and the like, and the signal processing module 20 includes a modulator 21 and a demodulator 22. ), The oscillator 23, the rectifier circuit 24, the memory 25, the control unit 26 and the like.
- the antenna 10 and the signal processing module 20 constitute an electronic tag, and the gas detection tag 200 includes the gas sensor 30 integrated with the electronic tag.
- the antenna 10 receives a wireless signal from the mobile terminal 100 and transmits the signal to the signal processing module 20 or transmits a signal from the signal processing module 20 to the mobile terminal 100.
- the modulator 21 modulates the signal output from the controller 26 and transmits the modulated signal to the antenna 10, and the demodulator 22 demodulates the signal received from the antenna 10 and outputs the signal to the controller 26. do.
- the oscillator 23 converts the current derived from the signal received by the antenna 10 into an alternating current of a specific frequency and outputs it to the rectifier circuit 24.
- the rectifier circuit 24 directs the alternating current received from the oscillator 23 to a direct current. Is converted to and supplied to the gas sensor 30.
- the memory 25 stores a program or data for gas concentration measurement. In addition, the memory 25 stores a unique ID of the gas sensor 30.
- the control unit 26 receives and processes a signal of the mobile terminal 100 from the demodulator 22, generates gas concentration information from the potential difference generated by the gas sensor 30, and outputs the gas concentration information to the modulator 21.
- the controller 26 receives the potential difference signal according to the gas concentration from each gas sensor 30 when there are a plurality of gas sensors 30, and combines the unique IDs of the gas sensors stored in the memory 25 to provide gas concentration information. Create
- Figure 3 shows the appearance of a gas detection tag according to the present invention.
- the gas detection tag includes an antenna 10 and a signal processing module 20 disposed on a substrate 1, and a gas sensor 30 electrically connected to the signal processing module 20. It is.
- the gas sensor 30 includes an electrode pair 2, a conductive thin film 3 and a gas sensing film 4.
- the substrate 1 is an insulating substrate such as synthetic resin film, glass, ceramic, silicon substrate, or the like.
- the antenna 10 pattern is formed outside the substrate 1, and the signal processing module 20 is electrically connected to and mounted to the antenna 10 pattern.
- the electrode pair 2 is formed on the substrate 1 by being electrically connected to the signal processing module 20 so as to receive power from the signal processing module 20.
- the electrode pair 2 is connected to a rectifier circuit 24 for supplying a DC power supply and a control unit 26 which is a measurement part for receiving and processing a potential difference signal.
- the electrode pair 2 is, for example, a group including gold (Au), platinum (Pt), silver (Ag), nickel (Ni), copper (Cu), tungsten (W), aluminum (Al) or alloys thereof. In one or more selected metals.
- the conductive thin film 3 is formed on the electrode pair 2, and can increase the response speed and sensitivity of the gas sensor by promoting the decomposition reaction and the coupling reaction of the gas to be detected. That is, the conductive thin film 3 serves as a catalyst for promoting the sensing reaction of the gas sensing film 4 with respect to the gas to be sensed.
- the gas sensing film 4 surrounds the conductive thin film 3 and is formed on the conductive thin film.
- the gas sensing film 4 receives power from the electrode pair 2 to generate a difference in electrical conductivity according to gas sensing reaction.
- the gas sensing film 4 may be selected from one or more of a group of semiconductor metal oxides including titanium oxide (TiO 4 ), tin oxide (SnO 2 ), or an alloy thereof.
- TiO 4 titanium oxide
- SnO 2 tin oxide
- the present invention is not limited thereto, and various kinds of materials having varying electrical conductivity may be used as the gas sensing film 5.
- the reducing gas which is a gas to be sensed is exposed using tin oxide as the gas sensing film 4, the electrical conductivity of tin oxide is restored by the surface reaction of tin oxide.
- the reducing gas removes the oxygen adsorbed on the tin oxide, whereby the conduction electrons trapped in the oxygen move into the tin oxide to increase the electrical conductivity of the tin oxide.
- the gas sensing film 4 generates a difference in electrical conductivity when the gas is not exposed and when the gas is exposed, and a potential difference occurs in the electrode pair 2 due to the difference in electrical conductivity of the gas sensing film.
- the gas sensor 30 may detect the gas to be detected by using the potential difference.
- FIG. 4 shows a process of manufacturing a gas detection tag according to the present invention.
- the gas sensing tag manufacturing process includes preparing a substrate 1 (S10), forming a pattern of the antenna 10 on the substrate 1 (S12), and electrically connecting the antenna 10. Mounting the signal processing module 20 (S14), depositing a conductive paste pattern on the substrate 1 by a printing method to form an electrode pair electrically connected to the signal processing module 20 (S16), Forming a conductive thin film 3 on the electrode pair 2 (S18), and applying the conductive thin film 4 on the conductive thin film 4 to form a gas sensing film 4 (S20).
- the antenna 10 is formed of a pattern radiator at the edge of the substrate 1, and the signal processing module 20 is mounted inside the antenna 10 pattern.
- the electrode pair 2 is formed in the form of a plurality of straps parallel to each other, and a conduction path is formed therebetween.
- the conductive thin film 3 is formed on the upper surface of the substrate 1 and the upper surface of the electrode pair 2 to promote the sensing reaction of the gas sensing film 5.
- the conductive thin film 3 is arranged so that when the electrons move along the conductive path between the electrode pairs 2, the electrons alternately move in the gas sensing film 4 and the conductive thin film 3.
- the gas sensing film 4 is formed to have a predetermined thickness so that the sensing target gas introduced from the outside can diffuse through the gas sensing film 4 and sufficiently reach the conductive thin film 3.
- Figure 5 is a graph showing the response characteristics with time when detecting the carbon dioxide using the gas detection tag according to the present invention.
- a gas detection tag to the food packaging container can be used to detect the gas composition of oxygen, carbon dioxide and nitrogen in the food packaging container in real time.
- the gas detection tag according to the present invention is disposed in a food packaging container, and the portable terminal and the gas detection tag are connected through short-range communication to expose carbon dioxide gas to the food packaging container.
- the gas detection tag is powered by the radio frequency signal transmitted from the mobile terminal, and then detects the response characteristic of carbon dioxide, which is expressed as a response sensitivity over time.
- V o described in the response characteristic of the graph is a sensor measured voltage in air
- V gas is a sensor measured voltage when exposed to carbon dioxide.
- reaction sensitivity is measured continuously after the measured voltage is stabilized to confirm the repeatability of the measurement.
- the gas detection tag according to the present invention exhibits the same level of response even after three repeated exposures of carbon dioxide.
- the gas detection tag has been described as including one gas sensor, but two or more gas sensors may be included, and other sensors such as a temperature sensor or a humidity sensor may be included in addition to the gas sensor.
- the gas detection tag may transmit various gas concentration information, temperature information, humidity information, etc. to the mobile terminal.
- the present invention relates to a gas detection tag and a method of manufacturing the same, which can measure the gas concentration by operating the energy according to the radio frequency received by the electronic tag by integrating the gas sensor into the electronic tag, and can be used in industrial fields requiring gas detection. Do.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
The present invention relates to a gas detecting tag and a method of manufacturing same and, particularly, to a gas detecting tag which is operated by means of energy from a wireless frequency received at an electronic tag in which a gas sensor is integrated, and is capable of measuring a gas concentration, and a method of manufacturing same. To this end, the gas detecting tag according to the present invention includes: a substrate; an antenna and signal processing module disposed on the substrate; an electrode pair formed on the substrate and electrically connected to the signal processing module to receive power from the signal processing module; a conductive thin film formed on the electrode pair; and a gas detecting film that surrounds the conductive thin film and receives power from the electrode pair to generate a difference in electrical conductivity depending on a gas detecting reaction.
Description
본 발명은 가스감지 태그 및 이의 제조 방법에 관한 것으로서, 상세하게는 전자태그에 가스센서가 일체화되어 전자태그에 수신되는 무선 주파수에 의한 에너지로 동작하여 가스농도를 측정할 수 있는 가스감지 태그 및 이의 제조 방법에 관한 것이다. The present invention relates to a gas detection tag and a method of manufacturing the same. Specifically, a gas sensor tag and a method for manufacturing a gas sensor integrated with an electronic tag and operating with energy based on a radio frequency received by the electronic tag to measure a gas concentration and its It relates to a manufacturing method.
일반적으로 가스 탐지기는 산업현장 등에서 특정 가스누설 탐지, 생산현장의 작업환경 감시 또는 대기환경 오염 탐지 등에 주로 사용된다. 가스 탐지기는 피가로(Figaro), 에프아이에스(FIS), 리켄(Riken) 및 모녹스(Monox) 등 다수의 글로벌 업체에서 생산 및 출시되고 있다. In general, the gas detector is mainly used for detecting a specific gas leakage at an industrial site, monitoring a working environment at a production site, or detecting an air pollution. Gas detectors are produced and marketed by a number of global companies, including Figaro, FIS, Riken and Monox.
이러한 가스 탐지기는 단일 가스에 한정적으로 반응하며 대부분 고가의 부피가 큰 센서이므로 가스 탐지기가 적용되는 분야는 제한적이다.These gas detectors are limited to a single gas, and most of them are expensive bulky sensors.
최근에는 식품이나 IT 제품의 포장에도 가스 포장이 적용되고 있으며, 웨어러블 디바이스 시장이 전 세계적으로 확대되어 저전력의 집적화된 가스 탐지기에 대해 요구가 증가하고 있다.Recently, gas packaging is applied to the packaging of food and IT products, and the market for wearable devices has expanded globally, increasing the demand for low power, integrated gas detectors.
근거리 무선통신 기술은 국내 등록실용신안 제20-0415756호 “RF통신을 이용한 가스밸브 자동제어장치 및 가스밸브 원격제어 시스템”이나 국내 공개특허 제10-2015-0116194호 “근거리 통신을 이용한 반도체 제조 공정용 가스 실린더 정보 제공 시스템” 등과 같이 대부분 획득된 정보를 무선으로 전송하는 것을 목적으로 한다. The short-range wireless communication technology is domestic registered utility model No. 20-0415756 “Gas valve automatic control device and gas valve remote control system using RF communication” or Korean Patent Publication No. 10-2015-0116194 “Semiconductor manufacturing process using near field communication” Gas cylinder information providing system ”and the like, the most of the obtained information is to wirelessly transmit.
기존의 가스 탐지기는 센서에 반응되는 가스의 농도에 따라 인가되는 전압에 대한 출력전압의 차이를 측정하여 가스를 검출하는 원리이므로, 일반적으로 5~9볼트(V)의 인가전압을 사용한다. Conventional gas detectors use the applied voltage of 5 to 9 volts (V) because the principle of detecting the gas by measuring the difference in the output voltage to the applied voltage according to the concentration of the gas reacted to the sensor.
따라서 가스 탐지기에 전력을 공급해야 하는 이유로 전기적 배선이 필요하거나 5V 이상의 건전지 연결이 불가피하여 종래 가스 탐지기는 그 설치장소나 감시기능에 맞게 사용하는데 제약이 있었다.As a result, electrical wiring is required or the connection of a battery of 5V or more is inevitable for supplying power to the gas detector. Therefore, the gas detector has been limited to be used for its installation location or monitoring function.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 본 발명의 목적은 전력 공급을 위한 건전지 또는 외부의 전기적 배선 없이 가스농도를 측정할 수 있는 가스 탐지기를 제공하는 것이다. The present invention was devised to solve the above problems, and an object of the present invention is to provide a gas detector capable of measuring the gas concentration without a battery for power supply or an external electrical wiring.
이를 위하여, 본 발명에 따른 가스감지 태그는 기판과, 상기 기판 위에 배치된 안테나 및 신호처리 모듈과, 상기 기판 위에 형성되며 상기 신호처리 모듈에 전기적으로 연결되어 상기 신호처리 모듈로부터 전원을 공급받는 전극 쌍과, 상기 전극 쌍 위에 형성되는 전도성 박막과, 상기 전도성 박막을 둘러싸며 상기 전극 쌍으로부터 전원을 인가받아 가스 감지 반응에 따른 전기 전도도 차이를 발생시키는 가스 감지 막을 포함한다. To this end, the gas detection tag according to the present invention includes an electrode, an antenna and a signal processing module disposed on the substrate, an electrode formed on the substrate and electrically connected to the signal processing module to receive power from the signal processing module. A pair, a conductive thin film formed on the electrode pair, and a gas sensing film surrounding the conductive thin film to generate an electrical conductivity difference according to a gas sensing reaction by receiving power from the electrode pair.
또한, 본 발명에 따른 가스감지 태그의 제조 방법은 기판을 구비하는 단계와, 상기 기판에 안테나 패턴을 형성하고 신호처리 모듈을 장착하는 단계와, 상기 신호처리 모듈로부터 전원을 공급받을 수 있도록 상기 신호처리 모듈과 전기적으로 연결시켜 상기 기판에 전극 쌍을 형성하는 단계와, 상기 전극 쌍 위에 전도성 박막을 형성하는 단계와, 상기 전도성 박막 위에 가스 감지 막을 형성하는 단계를 포함한다. In addition, the method of manufacturing a gas detection tag according to the present invention comprises the steps of providing a substrate, forming an antenna pattern on the substrate and mounting a signal processing module, the signal so that the power can be supplied from the signal processing module Forming an electrode pair on the substrate by being electrically connected to a processing module, forming a conductive thin film on the electrode pair, and forming a gas sensing film on the conductive thin film.
또한, 본 발명에 따른 가스감지 태그는 전자태그와, 상기 전자태그에 일체화되어 형성된 가스센서로 구성된 가스감지 태그로서, 상기 전자태그는 휴대단말로부터 수신된 신호로부터 전류를 유도하고, 상기 가스센서는 상기 전자태그에서 유도된 전류를 공급받아 동작하여, 상기 가스센서의 가스감지신호가 상기 전자태그를 통해 상기 휴대단말로 전송되는 것을 특징으로 한다. In addition, the gas detection tag according to the present invention is a gas detection tag consisting of an electronic tag and a gas sensor formed integrally with the electronic tag, the electronic tag induces a current from the signal received from the mobile terminal, the gas sensor It operates by receiving the current induced in the electronic tag, characterized in that the gas detection signal of the gas sensor is transmitted to the mobile terminal through the electronic tag.
상술한 바와 같이, 본 발명에 따르면 전자태그에 가스센서를 일체화시켜 제작한 가스감지 태그를 사용하여 건전지나 외부의 전력 공급 배선 없이 가스농도를 측정할 수 있으며, 측정한 결과 값을 외부의 휴대단말로 전송할 수 있다. As described above, according to the present invention, the gas concentration can be measured without using a battery or an external power supply wiring by using a gas detection tag manufactured by integrating a gas sensor into an electronic tag, and the measured value is measured by an external portable terminal. Can be sent to.
즉, 본 발명에 따른 가스감지 태그는 휴대단말로부터 수신된 신호로부터 전류를 유도하여 가스센서에 전력을 공급할 수 있어서 내부에 건전지나 전력 공급을 위한 외부 배선을 설치할 필요가 없다.That is, the gas detection tag according to the present invention can supply electric power to the gas sensor by inducing a current from a signal received from the mobile terminal, so there is no need to install a battery or an external wiring for supplying power.
도 1은 본 발명에 따른 가스감지 태그 및 휴대단말을 이용한 가스농도 측정시스템의 구성을 나타낸 도면.1 is a view showing the configuration of a gas concentration measurement system using a gas detection tag and a mobile terminal according to the present invention.
도 2는 본 발명에 따른 가스감지 태그의 내부 구성을 나타낸 블록도. Figure 2 is a block diagram showing the internal configuration of the gas detection tag according to the present invention.
도 3은 본 발명에 따른 가스감지 태그의 모습을 나타낸 사시도.Figure 3 is a perspective view showing the appearance of a gas detection tag according to the present invention.
도 4는 본 발명에 따른 가스감지 태그를 제조하는 과정을 나타낸 순서도.4 is a flowchart illustrating a process of manufacturing a gas detection tag according to the present invention.
도 5는 본 발명에 따른 가스감지 태그를 사용하여 이산화탄소를 감지하였을 때 시간에 따른 응답 특성을 나타낸 그래프. Figure 5 is a graph showing the response characteristics over time when detecting the carbon dioxide using the gas detection tag according to the present invention.
본 발명에 따른 가스감지 태그는 기판과, 상기 기판 위에 배치된 안테나 및 신호처리 모듈과, 상기 기판 위에 형성되며 상기 신호처리 모듈에 전기적으로 연결되어 상기 신호처리 모듈로부터 전원을 공급받는 전극 쌍과, 상기 전극 쌍 위에 형성되는 전도성 박막과, 상기 전도성 박막을 둘러싸며 상기 전극 쌍으로부터 전원을 인가받아 가스 감지 반응에 따른 전기 전도도 차이를 발생시키는 가스 감지 막을 포함한다. The gas detection tag according to the present invention includes a substrate, an antenna and a signal processing module disposed on the substrate, an electrode pair formed on the substrate and electrically connected to the signal processing module, and receiving power from the signal processing module; A conductive thin film formed on the electrode pair and a gas sensing film surrounding the conductive thin film and receiving electric power from the electrode pair to generate an electrical conductivity difference according to a gas sensing reaction.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시 예를 상세하게 설명한다. 본 발명의 구성 및 그에 따른 작용 효과는 이하의 상세한 설명을 통해 명확하게 이해될 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The construction of the present invention and the effects thereof will be clearly understood through the following detailed description.
본 발명의 상세한 설명에 앞서, 동일한 구성요소에 대해서는 다른 도면상에 표시되더라도 가능한 동일한 부호로 표시하며, 공지된 구성에 대해서는 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 구체적인 설명은 생략하기로 함에 유의한다.Prior to the detailed description of the present invention, the same components are denoted by the same reference numerals as much as possible even if displayed on different drawings, and the known components will be omitted if it is determined that the gist of the present invention may obscure the gist of the present invention. do.
도 1은 본 발명에 따른 가스감지 태그 및 휴대단말을 이용한 가스농도 측정시스템의 구성을 나타낸 것이다. 1 shows a configuration of a gas concentration measuring system using a gas detection tag and a mobile terminal according to the present invention.
도 1을 참조하면, 가스농도 측정 시스템은 휴대단말(100)과 가스감지 태그(200)로 구성된다. Referring to FIG. 1, the gas concentration measuring system includes a mobile terminal 100 and a gas detection tag 200.
휴대단말(100)에는 가스농도 측정을 위한 애플리케이션이 설치되어 있으며 애플리케이션의 실행을 통해 휴대단말(100)과 가스감지 태그(200)는 근거리 통신을 통해 연결된다. 근거리 통신으로는 RFID나 NFC 등이 사용될 수 있다. An application for gas concentration measurement is installed in the mobile terminal 100, and the mobile terminal 100 and the gas detection tag 200 are connected through short-range communication through the execution of the application. Near field communication may use RFID or NFC.
휴대단말(100)은 근거리 통신을 통해 가스감지 태그(200)로 무선 신호를 송신하고, 가스감지 태그(200)는 무선 신호에 의해 유도된 전류를 이용하여 구동되어 가스농도를 측정한다. The mobile terminal 100 transmits a radio signal to the gas detection tag 200 through short-range communication, and the gas detection tag 200 is driven by using a current induced by the radio signal to measure gas concentration.
가스감지 태그(200)가 가스농도를 측정하고 그에 따른 가스감지 신호를 휴대단말(100)로 전송하면, 휴대단말(100)은 애플리케이션을 통해 사용자에게 가스농도 확인을 위한 사용자인터페이스 화면을 표시한다. When the gas detection tag 200 measures the gas concentration and transmits the gas detection signal to the mobile terminal 100, the mobile terminal 100 displays a user interface screen for checking the gas concentration through the application.
본 발명에 따른 휴대단말(100)은 스마트폰이나 태블릿 PC 등이 될 수 있으나, 이에 한정되는 것은 아니며 가스농도 측정을 위한 애플리케이션이 실행될 수 있는 기기라면 어떠한 종류라도 상관 없다. The mobile terminal 100 according to the present invention may be a smartphone or a tablet PC, but the present invention is not limited thereto, and any type of device may be used as long as the device can execute an application for gas concentration measurement.
도 2는 본 발명에 따른 가스감지 태그의 내부 구성을 나타낸 것이다. Figure 2 shows the internal configuration of the gas detection tag according to the present invention.
도 2를 참조하면, 가스감지 태그(200)는 안테나(10), 신호처리 모듈(20), 가스센서(30) 등을 포함하며, 신호처리 모듈(20)은 변조기(21), 복조기(22), 발진기(23), 정류회로(24), 메모리(25), 제어부(26) 등을 포함한다. Referring to FIG. 2, the gas detection tag 200 includes an antenna 10, a signal processing module 20, a gas sensor 30, and the like, and the signal processing module 20 includes a modulator 21 and a demodulator 22. ), The oscillator 23, the rectifier circuit 24, the memory 25, the control unit 26 and the like.
안테나(10) 및 신호처리 모듈(20)은 전자 태그를 구성하여, 가스감지 태그(200)는 전자 태그에 가스센서(30)가 일체로 구성된 것이다. The antenna 10 and the signal processing module 20 constitute an electronic tag, and the gas detection tag 200 includes the gas sensor 30 integrated with the electronic tag.
안테나(10)는 휴대단말(100)로부터 무선 신호를 수신하여 신호처리 모듈(20)로 전달하거나 신호처리 모듈(20)에서 나온 신호를 휴대단말(100)로 전송한다. The antenna 10 receives a wireless signal from the mobile terminal 100 and transmits the signal to the signal processing module 20 or transmits a signal from the signal processing module 20 to the mobile terminal 100.
변조기(21)는 제어부(26)에서 출력된 신호를 변조하여 변조된 신호를 안테나(10)로 전달하고, 복조기(22)는 안테나(10)에서 수신한 신호를 복조하여 제어부(26)로 출력한다. The modulator 21 modulates the signal output from the controller 26 and transmits the modulated signal to the antenna 10, and the demodulator 22 demodulates the signal received from the antenna 10 and outputs the signal to the controller 26. do.
발진기(23)는 안테나(10)에서 수신한 신호로부터 유도된 전류를 특정 주파수의 교류로 변환하여 정류회로(24)로 출력하고, 정류회로(24)는 발진기(23)에서 입력받은 교류를 직류로 변환하여 가스센서(30)에 공급한다. The oscillator 23 converts the current derived from the signal received by the antenna 10 into an alternating current of a specific frequency and outputs it to the rectifier circuit 24. The rectifier circuit 24 directs the alternating current received from the oscillator 23 to a direct current. Is converted to and supplied to the gas sensor 30.
메모리(25)는 가스농도 측정을 위한 프로그램이나 데이터를 저장한다. 또한 메모리(25)는 가스센서(30)의 고유 아이디를 저장한다. The memory 25 stores a program or data for gas concentration measurement. In addition, the memory 25 stores a unique ID of the gas sensor 30.
제어부(26)는 복조기(22)로부터 휴대단말(100)의 신호를 입력받아 처리하고, 가스센서(30)에서 발생한 전위차로부터 가스농도 정보를 생성하여 변조기(21)로 출력한다. The control unit 26 receives and processes a signal of the mobile terminal 100 from the demodulator 22, generates gas concentration information from the potential difference generated by the gas sensor 30, and outputs the gas concentration information to the modulator 21.
제어부(26)는 복수의 가스센서(30)가 존재하는 경우 각 가스센서(30)로부터 가스농도에 따른 전위차 신호를 입력받고 메모리(25)에 저장된 가스센서의 고유 아이디를 결합하여 가스농도 정보를 생성한다. The controller 26 receives the potential difference signal according to the gas concentration from each gas sensor 30 when there are a plurality of gas sensors 30, and combines the unique IDs of the gas sensors stored in the memory 25 to provide gas concentration information. Create
도 3은 본 발명에 따른 가스감지 태그의 모습을 나타낸 것이다. Figure 3 shows the appearance of a gas detection tag according to the present invention.
도 3을 참조하면, 가스감지 태그는 기판(1) 상에 안테나(10) 및 신호처리 모듈(20)이 배치되어 있으며, 또한 신호처리 모듈(20)과 전기적으로 연결된 가스센서(30)가 형성되어 있다. Referring to FIG. 3, the gas detection tag includes an antenna 10 and a signal processing module 20 disposed on a substrate 1, and a gas sensor 30 electrically connected to the signal processing module 20. It is.
가스센서(30)는 전극 쌍(2), 전도성 박막(3) 및 가스 감지 막(4)을 포함한다. The gas sensor 30 includes an electrode pair 2, a conductive thin film 3 and a gas sensing film 4.
기판(1)은 합성수지 필름, 유리, 세라믹, 실리콘 기판 등과 같은 절연 기판이다. 이러한 기판(1)의 외곽에 안테나(10) 패턴이 형성되고, 신호처리 모듈(20)이 안테나(10) 패턴에 전기적으로 연결되어 장착된다. The substrate 1 is an insulating substrate such as synthetic resin film, glass, ceramic, silicon substrate, or the like. The antenna 10 pattern is formed outside the substrate 1, and the signal processing module 20 is electrically connected to and mounted to the antenna 10 pattern.
전극 쌍(2)은 신호처리 모듈(20)로부터 전원을 공급받을 수 있도록 신호처리 모듈(20)과 전기적으로 연결되어 기판(1) 상에 형성된다. The electrode pair 2 is formed on the substrate 1 by being electrically connected to the signal processing module 20 so as to receive power from the signal processing module 20.
구체적으로 전극 쌍(2)은 직류 전원을 공급하는 정류회로(24) 및 전위차 신호를 입력받아 처리하는 계측 부분인 제어부(26)와 연결된다.Specifically, the electrode pair 2 is connected to a rectifier circuit 24 for supplying a DC power supply and a control unit 26 which is a measurement part for receiving and processing a potential difference signal.
전극 쌍(2)은 일례로서, 금 (Au), 백금 (Pt), 은 (Ag), 니켈 (Ni), 구리 (Cu), 텅스텐(W), 알루미늄(Al) 또는 이들의 합금을 포함한 그룹에서 하나 이상 선택된 금속으로 형성된다. The electrode pair 2 is, for example, a group including gold (Au), platinum (Pt), silver (Ag), nickel (Ni), copper (Cu), tungsten (W), aluminum (Al) or alloys thereof. In one or more selected metals.
전도성 박막(3)은 전극 쌍(2) 위에 형성되며, 감지 대상 가스의 분해반응과 결합반응을 촉진함으로써 가스센서의 응답속도 및 감도를 증가시킬 수 있다. 즉, 전도성 박막(3)은 감지 대상 가스에 대한 가스 감지 막(4)의 감지 반응을 촉진하는 촉매 작용을 한다. The conductive thin film 3 is formed on the electrode pair 2, and can increase the response speed and sensitivity of the gas sensor by promoting the decomposition reaction and the coupling reaction of the gas to be detected. That is, the conductive thin film 3 serves as a catalyst for promoting the sensing reaction of the gas sensing film 4 with respect to the gas to be sensed.
가스 감지 막(4)은 전도성 박막(3)을 둘러싸며 전도성 박막 위에 형성된다. 가스 감지 막(4)은 전극 쌍(2)으로부터 전원을 인가받아 가스의 감지 반응에 따른 전기 전도도 차이를 발생시킨다. The gas sensing film 4 surrounds the conductive thin film 3 and is formed on the conductive thin film. The gas sensing film 4 receives power from the electrode pair 2 to generate a difference in electrical conductivity according to gas sensing reaction.
가스 감지 막(4)은 티타늄산화물 (TiO4), 주석산화물 (SnO2) 또는 이들의 합금을 포함하는 반도체 금속산화물 그룹에서 하나 이상 선택될 수 있다. 그러나 이에 한정되는 것은 아니며 전기 전도도가 변하는 다양한 종류의 물질을 가스 감지 막(5)으로 사용할 수 있다. The gas sensing film 4 may be selected from one or more of a group of semiconductor metal oxides including titanium oxide (TiO 4 ), tin oxide (SnO 2 ), or an alloy thereof. However, the present invention is not limited thereto, and various kinds of materials having varying electrical conductivity may be used as the gas sensing film 5.
예를 들어, 가스 감지 막(4)으로서 주석 산화물을 사용하여 감지 대상 가스인 환원성 가스가 노출될 때, 주석 산화물의 표면 반응에 의해 주석 산화물의 전기 전도도가 회복된다. 환원성 가스는 주석 산화물에 흡착된 산소를 제거하며 이때, 산소에 포획되었던 전도 전자는 주석 산화물 내부로 이동하여 주석 산화물의 전기 전도도가 증가한다. For example, when the reducing gas which is a gas to be sensed is exposed using tin oxide as the gas sensing film 4, the electrical conductivity of tin oxide is restored by the surface reaction of tin oxide. The reducing gas removes the oxygen adsorbed on the tin oxide, whereby the conduction electrons trapped in the oxygen move into the tin oxide to increase the electrical conductivity of the tin oxide.
이와 같이 가스 감지 막(4)은 가스가 노출되지 않을 때와 노출되었을 때의 전기 전도도 차이를 발생시키며, 이렇게 발생한 가스 감지 막의 전기 전도도 차이에 의해 전극 쌍(2)에 전위차가 발생한다. 가스 센서(30)는 이러한 전위차를 이용하여 감지 대상 가스를 감지할 수 있다.As described above, the gas sensing film 4 generates a difference in electrical conductivity when the gas is not exposed and when the gas is exposed, and a potential difference occurs in the electrode pair 2 due to the difference in electrical conductivity of the gas sensing film. The gas sensor 30 may detect the gas to be detected by using the potential difference.
도 4는 본 발명에 따른 가스감지 태그를 제조하는 과정을 나타낸 것이다. 4 shows a process of manufacturing a gas detection tag according to the present invention.
도 4를 참조하면, 가스감지 태그 제조 과정은 기판(1)을 준비하는 단계(S10), 기판(1) 위에 안테나(10) 패턴을 형성하는 단계(S12), 안테나(10)에 전기적으로 연결하여 신호처리 모듈(20)을 장착하는 단계(S14), 기판(1)에 프린팅 방식으로 전도성 페이스트 패턴을 증착하여 신호처리 모듈(20)과 전기적으로 연결되는 전극 쌍을 형성하는 단계(S16), 전극 쌍(2) 위에 전도성 박막(3)을 형성하는 단계(S18), 전도성 박막(4) 위에 도포하여 가스 감지 막(4)을 형성하는 단계(S20)를 포함한다. Referring to FIG. 4, the gas sensing tag manufacturing process includes preparing a substrate 1 (S10), forming a pattern of the antenna 10 on the substrate 1 (S12), and electrically connecting the antenna 10. Mounting the signal processing module 20 (S14), depositing a conductive paste pattern on the substrate 1 by a printing method to form an electrode pair electrically connected to the signal processing module 20 (S16), Forming a conductive thin film 3 on the electrode pair 2 (S18), and applying the conductive thin film 4 on the conductive thin film 4 to form a gas sensing film 4 (S20).
안테나(10)는 기판(1)의 테두리에 패턴 방사체로 형성되며, 신호처리 모듈(20)은 안테나(10) 패턴 안쪽에 장착된다. The antenna 10 is formed of a pattern radiator at the edge of the substrate 1, and the signal processing module 20 is mounted inside the antenna 10 pattern.
전극 쌍(2)은 서로 평행한 복수 개의 스트랩(strap) 형태로 형성되고, 그 사이에 전도 길(conduction path)이 형성된다. The electrode pair 2 is formed in the form of a plurality of straps parallel to each other, and a conduction path is formed therebetween.
전도성 박막(3)은 기판(1)의 상면 및 전극 쌍(2)의 상면에 형성되어 가스 감지 막(5)의 감지 반응을 촉진한다. The conductive thin film 3 is formed on the upper surface of the substrate 1 and the upper surface of the electrode pair 2 to promote the sensing reaction of the gas sensing film 5.
전도성 박막(3)은 전극 쌍(2) 사이의 전도 길을 따라 전자가 이동할 때, 전자가 가스 감지 막(4)과 전도성 박막(3)에서 번갈아 가며 이동할 수 있도록 배치된다.The conductive thin film 3 is arranged so that when the electrons move along the conductive path between the electrode pairs 2, the electrons alternately move in the gas sensing film 4 and the conductive thin film 3.
가스 감지 막(4)은 외부로부터 도입되는 감지 대상 가스가 가스 감지 막(4)을 통해 확산하여 전도성 박막(3)에 충분히 도달될 수 있도록 일정 두께로 형성된다. The gas sensing film 4 is formed to have a predetermined thickness so that the sensing target gas introduced from the outside can diffuse through the gas sensing film 4 and sufficiently reach the conductive thin film 3.
도 5는 본 발명에 따른 가스감지 태그를 사용하여 이산화탄소를 감지하였을 때 시간에 따른 응답 특성을 나타낸 그래프이다. Figure 5 is a graph showing the response characteristics with time when detecting the carbon dioxide using the gas detection tag according to the present invention.
본 발명의 실시예에서는 가스감지 태그를 식료품 포장 용기에 적용하여 식료품 포장 용기 내 산소, 이산화탄소 및 질소의 가스 조성을 실시간 감지하는데 사용할 수 있다. In the embodiment of the present invention by applying a gas detection tag to the food packaging container can be used to detect the gas composition of oxygen, carbon dioxide and nitrogen in the food packaging container in real time.
본 발명에 따른 가스감지 태그를 식료품 포장 용기에 배치하고 휴대단말과 가스감지 태그를 근거리 통신을 통해 연결한 후 식료품 포장 용기에 이산화탄소 가스를 노출시킨다. The gas detection tag according to the present invention is disposed in a food packaging container, and the portable terminal and the gas detection tag are connected through short-range communication to expose carbon dioxide gas to the food packaging container.
그러면 휴대단말로부터 전송된 무선 주파수 신호에 의해 가스감지 태그가 전력을 공급받아 동작하고 이후 시간에 따른 반응 감도로 표시되는 이산화탄소의 응답 특성을 검출한다. Then, the gas detection tag is powered by the radio frequency signal transmitted from the mobile terminal, and then detects the response characteristic of carbon dioxide, which is expressed as a response sensitivity over time.
도 5에서, 그래프의 응답 특성에 기재된 Vo 는 공기 중에서의 센서측정 전압이고, Vgas는 이산화탄소에 노출되었을 때의 센서측정 전압이다. In FIG. 5, V o described in the response characteristic of the graph is a sensor measured voltage in air, and V gas is a sensor measured voltage when exposed to carbon dioxide.
특히 이산화탄소에 노출된 후, 반복적 측정 가능성을 확인하기 위해 측정 전압이 안정화된 후에 연속적으로 반응 감도를 측정한다.In particular, after exposure to carbon dioxide, the reaction sensitivity is measured continuously after the measured voltage is stabilized to confirm the repeatability of the measurement.
본 발명에 의한 가스감지 태그는 3회의 반복적인 이산화탄소의 노출에도 동일한 수준의 응답 특성을 나타내고 있음을 알 수 있다. It can be seen that the gas detection tag according to the present invention exhibits the same level of response even after three repeated exposures of carbon dioxide.
본 발명의 실시예에서는 가스감지 태그에 하나의 가스센서가 포함되어 있는 것으로 설명하였으나, 2개 이상의 가스센서가 포함될 수 있으며, 가스센서 외에 온도센서나 습도센서 등의 다른 센서도 포함될 수 있다. 이 경우 가스감지 태그는 다종의 가스농도정보, 온도정보, 습도정보 등을 함께 휴대단말로 전송할 수 있다. In the exemplary embodiment of the present invention, the gas detection tag has been described as including one gas sensor, but two or more gas sensors may be included, and other sensors such as a temperature sensor or a humidity sensor may be included in addition to the gas sensor. In this case, the gas detection tag may transmit various gas concentration information, temperature information, humidity information, etc. to the mobile terminal.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술적 사상에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. The above description is merely illustrative of the present invention, and various modifications may be made by those skilled in the art without departing from the technical spirit of the present invention.
따라서 본 발명의 명세서에 개시된 실시 예들은 본 발명을 한정하는 것이 아니다. 본 발명의 범위는 아래의 특허청구범위에 의해 해석되어야 하며, 그와 균등한 범위 내에 있는 모든 기술도 본 발명의 범위에 포함되는 것으로 해석해야 할 것이다.Therefore, the embodiments disclosed in the specification of the present invention are not intended to limit the present invention. The scope of the present invention should be construed by the claims below, and all techniques within the scope equivalent thereto will be construed as being included in the scope of the present invention.
본 발명은 전자태그에 가스센서가 일체화되어 전자태그에 수신되는 무선 주파수에 의한 에너지로 동작하여 가스농도를 측정할 수 있는 가스감지 태크 및 그 제조방법에 관한 것으로 가스감지가 필요한 산업분야에 이용가능하다.The present invention relates to a gas detection tag and a method of manufacturing the same, which can measure the gas concentration by operating the energy according to the radio frequency received by the electronic tag by integrating the gas sensor into the electronic tag, and can be used in industrial fields requiring gas detection. Do.
Claims (6)
- 기판과,Substrate,상기 기판 위에 배치된 안테나 및 신호처리 모듈과,An antenna and a signal processing module disposed on the substrate;상기 기판 위에 형성되며 상기 신호처리 모듈에 전기적으로 연결되어 상기 신호처리 모듈로부터 전원을 공급받는 전극 쌍과,An electrode pair formed on the substrate and electrically connected to the signal processing module to receive power from the signal processing module;상기 전극 쌍 위에 형성되는 전도성 박막과,A conductive thin film formed on the electrode pair;상기 전도성 박막을 둘러싸며 상기 전극 쌍으로부터 전원을 인가받아 가스 감지 반응에 따른 전기 전도도 차이를 발생시키는 가스 감지 막을 포함하는 가스감지 태그. And a gas sensing film surrounding the conductive thin film and receiving power from the electrode pair to generate an electrical conductivity difference according to a gas sensing reaction.
- 제1항에 있어서,The method of claim 1,상기 전극 쌍은 금(Au), 백금(Pt), 은(Ag), 니켈(Ni), 구리(Cu), 텅스텐(W), 알루미늄(Al) 또는 이들의 합금을 포함한 그룹에서 하나 이상 선택된 금속으로서 전도성 페이스트로 형성되는 것을 특징으로 하는 가스감지 태그.The electrode pair is at least one metal selected from the group consisting of gold (Au), platinum (Pt), silver (Ag), nickel (Ni), copper (Cu), tungsten (W), aluminum (Al) or alloys thereof. Gas sensing tag, characterized in that formed as a conductive paste.
- 제1항에 있어서,The method of claim 1,상기 가스 감지 막은 티타늄산화물(TiO4), 주석산화물(SnO2) 또는 이들의 합금을 포함하는 반도체 금속산화물 그룹에서 선택된 어느 하나인 것을 특징으로 하는 가스감지 태그. The gas sensing film is any one selected from the group of semiconductor metal oxides including titanium oxide (TiO4), tin oxide (SnO2) or alloys thereof.
- 제1항에 있어서,The method of claim 1,상기 신호처리 모듈은 외부장치로부터 상기 안테나에 수신된 신호를 복조하는 복조기와,The signal processing module includes a demodulator for demodulating a signal received by the antenna from an external device;상기 안테나에 수신된 신호로부터 교류를 출력하는 발진기와,An oscillator for outputting alternating current from a signal received at the antenna;상기 발진기에서 출력된 교류를 직류로 변환하는 정류회로를 포함하여, Including a rectifier circuit for converting the alternating current output from the oscillator into direct current,상기 정류회로에서 출력된 직류가 상기 전극 쌍에 공급되는 것을 특징으로 하는 가스감지 태그.Gas detection tag, characterized in that the direct current output from the rectifier circuit is supplied to the electrode pair.
- 기판을 구비하는 단계와,Providing a substrate,상기 기판에 안테나 패턴을 형성하고 신호처리 모듈을 장착하는 단계와, Forming an antenna pattern on the substrate and mounting a signal processing module;상기 신호처리 모듈로부터 전원을 공급받을 수 있도록 상기 신호처리 모듈과 전기적으로 연결시켜 상기 기판에 전극 쌍을 형성하는 단계와,Forming an electrode pair on the substrate by being electrically connected to the signal processing module to receive power from the signal processing module;상기 전극 쌍 위에 전도성 박막을 형성하는 단계와,Forming a conductive thin film on the electrode pair;상기 전도성 박막 위에 가스 감지 막을 형성하는 단계를 포함하는 가스감지 태그의 제조 방법. A gas sensing tag manufacturing method comprising the step of forming a gas sensing film on the conductive thin film.
- 전자태그와,With electronic tags,상기 전자태그에 일체화되어 형성된 가스센서로 구성된 가스감지 태그로서, A gas detection tag composed of a gas sensor formed integrally with the electronic tag,상기 전자태그는 휴대단말로부터 수신된 신호로부터 전류를 유도하고, 상기 가스센서는 상기 전자태그에서 유도된 전류를 공급받아 동작하여, 상기 가스센서의 가스감지신호가 상기 전자태그를 통해 상기 휴대단말로 전송되는 것을 특징으로 하는 가스감지 태그.The electronic tag induces a current from the signal received from the mobile terminal, the gas sensor is operated by receiving the current induced in the electronic tag, the gas detection signal of the gas sensor to the mobile terminal through the electronic tag Gas detection tag, characterized in that transmitted.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0038568 | 2016-03-30 | ||
KR20160038568 | 2016-03-30 | ||
KR1020160060965A KR20170112854A (en) | 2016-03-30 | 2016-05-18 | Gas detection tag and manufacturing method thereof |
KR10-2016-0060965 | 2016-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017171206A1 true WO2017171206A1 (en) | 2017-10-05 |
Family
ID=59964794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/015208 WO2017171206A1 (en) | 2016-03-30 | 2016-12-23 | Gas detecting tag and method of manufacturing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017171206A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3958205A4 (en) * | 2019-04-17 | 2022-11-16 | Greens Systems Co., Ltd. | Food freshness monitoring method and system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040043132A (en) * | 2001-11-14 | 2004-05-22 | 마츠시타 덴끼 산교 가부시키가이샤 | Gas sensor, and production method for gas sensor |
KR101044306B1 (en) * | 2009-05-08 | 2011-07-01 | 군산대학교산학협력단 | Gas sensor |
JP2011191889A (en) * | 2010-03-12 | 2011-09-29 | Murata Mfg Co Ltd | Remote detection system |
JP5495077B2 (en) * | 2012-05-01 | 2014-05-21 | 謙治 佐藤 | Wireless tag type sensor |
KR101595296B1 (en) * | 2014-03-20 | 2016-02-18 | 방용기 | A management system for LPG gas vessel |
-
2016
- 2016-12-23 WO PCT/KR2016/015208 patent/WO2017171206A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040043132A (en) * | 2001-11-14 | 2004-05-22 | 마츠시타 덴끼 산교 가부시키가이샤 | Gas sensor, and production method for gas sensor |
KR101044306B1 (en) * | 2009-05-08 | 2011-07-01 | 군산대학교산학협력단 | Gas sensor |
JP2011191889A (en) * | 2010-03-12 | 2011-09-29 | Murata Mfg Co Ltd | Remote detection system |
JP5495077B2 (en) * | 2012-05-01 | 2014-05-21 | 謙治 佐藤 | Wireless tag type sensor |
KR101595296B1 (en) * | 2014-03-20 | 2016-02-18 | 방용기 | A management system for LPG gas vessel |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3958205A4 (en) * | 2019-04-17 | 2022-11-16 | Greens Systems Co., Ltd. | Food freshness monitoring method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107750334B (en) | Measuring device for determining physical, chemical, biological properties and/or substances | |
WO2014182034A1 (en) | Time synchronization method for high energy efficiency in wireless network and network applying same | |
WO2017171206A1 (en) | Gas detecting tag and method of manufacturing same | |
KR20170112854A (en) | Gas detection tag and manufacturing method thereof | |
CN108382729B (en) | Packaging box with NFC chip and control method thereof | |
KR100806876B1 (en) | Catalytic combustion type gas sensor for detecting leakage of combustible gas | |
CN109709377A (en) | A kind of current detector | |
WO2017115941A1 (en) | Sensor monitoring method based on dual mode, and device thereof | |
CN108614163A (en) | Distributed electrode type three-dimensional electric field sensor | |
CN110545298A (en) | Exhibition hall multi-information acquisition system | |
CN108258658A (en) | Monitoring device and system | |
CN209459790U (en) | A kind of passive wireless temperature sensor of gasket construction | |
Dvoynikov et al. | Implementation of a monitoring system for an electrical network based on a contactless temperature sensor and a hall effect current sensor | |
CN208443442U (en) | Atmospheric environment monitoring equipment and system thereof | |
CN212300514U (en) | Non-contact container liquid level measuring device | |
CN105509809B (en) | It is a kind of that there is the temperature transmitter for detecting function | |
JP2018028477A (en) | Electric power measurement device | |
CN211827543U (en) | Wireless sensor module assembly and wireless sensor system for a process environment | |
KR102267065B1 (en) | An Internet of Things-based acid sensor system | |
CN209858075U (en) | Temperature and humidity detection device and temperature and humidity detection system applied to cold chain | |
CN205580521U (en) | Transmission line status monitoring device and system | |
CN209858091U (en) | Temperature and humidity detection system and temperature and humidity detection device | |
US20140278257A1 (en) | Probe communications module and a computing device | |
CN216747652U (en) | Large-scale outdoor structure equipment moisture detector of high accuracy | |
WO2021221380A1 (en) | Remote body temperature monitoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16897226 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16897226 Country of ref document: EP Kind code of ref document: A1 |