[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017170673A1 - Transparent electroconductive laminate - Google Patents

Transparent electroconductive laminate Download PDF

Info

Publication number
WO2017170673A1
WO2017170673A1 PCT/JP2017/012869 JP2017012869W WO2017170673A1 WO 2017170673 A1 WO2017170673 A1 WO 2017170673A1 JP 2017012869 W JP2017012869 W JP 2017012869W WO 2017170673 A1 WO2017170673 A1 WO 2017170673A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal oxide
transparent conductive
silver
film
Prior art date
Application number
PCT/JP2017/012869
Other languages
French (fr)
Japanese (ja)
Inventor
健 古田
涼介 塩野
Original Assignee
北川工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北川工業株式会社 filed Critical 北川工業株式会社
Publication of WO2017170673A1 publication Critical patent/WO2017170673A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a transparent conductive laminate.
  • This type of laminate (hereinafter referred to as a transparent conductive laminate) mainly comprises a base material made of transparent plastic and the like, and a transparent conductive layer formed on the base material, and transparency is required. (See, for example, Patent Documents 1 to 3).
  • the transparent conductive laminate of Patent Document 1 includes a transparent conductive film made of ITO (Indium Tin Oxide) as a conductive layer. Moreover, the transparent conductive laminated body of patent document 2 is equipped with the mesh-shaped metal film as a conductive layer. Moreover, the transparent conductive laminated body of patent document 3 is equipped with the layer which consists of metal nanowire as a conductive layer.
  • ITO Indium Tin Oxide
  • the transparent conductive laminates are further provided with a function of reflecting heat rays (infrared rays), and such laminates are attached to, for example, windows of buildings and automobiles, It is used to suppress the rise of the temperature in the building by reflecting solar radiation (infrared rays) (see, for example, Patent Document 4).
  • this type of transparent conductive laminate has a base material, a metal film as a heat ray reflective layer that is a conductive layer and reflects heat rays, and sandwiches the metal film. And a metal oxide layer for increasing visible light transmittance.
  • a silver-based thin film is used for reasons such as excellent heat ray reflection efficiency.
  • the conductive layer of the transparent conductive laminate is made of an ITO transparent conductive film, it is difficult to reduce the resistance value. Moreover, in the structure provided with the ITO transparent conductive film, a sufficient heat ray reflection effect cannot be obtained.
  • the mesh-like metal film is conspicuous in appearance, which is a problem. Although it may be possible to make the mesh of the metal film very fine to make it inconspicuous, such processing is technically impossible to realize.
  • the conductive layer is made of a metal nanowire layer, it is possible to reduce the resistance value and ensure high transparency.
  • the metal nanowire layer has a problem of poor durability.
  • the conductive layer is made of a silver-based thin film
  • the resistance value can be lowered and high transparency can be secured, and the appearance is also good.
  • the transparent conductive laminate having a conductive layer made of a silver-based thin film has a problem of low durability.
  • a fine spot-pattern-like defect may occur in the transparent conductive laminate.
  • a defective portion is presumed to be caused by aggregation of silver components contained in the silver-based thin film (conductive layer), a migration phenomenon, or the like. Aggregation and migration of silver components are caused by contact with moisture such as water vapor or corrosive gas (for example, gas containing sulfur).
  • Such a defective part not only causes the appearance of the transparent conductive laminate to be damaged, but also can cause a decrease in strength such as inducing peeling of the laminate constituting the transparent conductive laminate.
  • a decrease in strength such as inducing peeling of the laminate constituting the transparent conductive laminate.
  • An object of the present invention is to improve durability in a transparent conductive laminate including a silver-based thin film layer.
  • a base material layer including a resin film and having a 10-point average surface roughness of at least one surface side of 50 nm or less, and an aluminum-added zinc oxide
  • a plurality of metal layers each including at least one metal oxide selected from the group consisting of titanium-added zinc oxide, zinc-added indium oxide and niobium oxide, and arranged on the one surface side so as to be spaced apart from each other
  • An oxide layer and a silver-based thin film layer made of a thin film of silver or a silver alloy and interposed between the adjacent metal oxide layers, and the most of the metal oxide layers from the base material layer
  • the transparent conductive laminate in which the thickness of the surface-side metal oxide layer disposed at a distant position is 20 nm or more was found to be excellent in durability, and the present invention was completed.
  • the base layer is preferably composed of a laminate of the resin film and a planarizing layer laminated on one or both sides of the resin film.
  • the resin film of the base material layer is preferably made of a polyester film.
  • the thickness of the silver thin film layer is preferably 6 nm to 30 nm.
  • the transparent conductive laminate includes a protective layer laminated on the outer side of the surface-side metal oxide layer.
  • the protective layer preferably has a thickness of 1 ⁇ m to 3 ⁇ m.
  • the metal oxide layer is preferably made of zinc-added indium oxide or aluminum-added zinc oxide.
  • Sectional drawing which represented typically the structure of the transparent conductive laminated body which concerns on one Embodiment Sectional drawing which represented typically the structure of the base material layer in which the planarization layer is formed in both surfaces of the core material which consists of a resin film
  • Sectional drawing which represented typically the structure of the transparent conductive laminated body (with a protective layer) which concerns on other embodiment Sectional drawing which represented typically the structure of the transparent conductive laminated body (with a protective layer) which concerns on other embodiment.
  • Sectional drawing which represented typically the structure of the transparent conductive laminated body which concerns on other embodiment Sectional drawing which represented typically the composition of the light control film which applied a transparent conductive layered product Graph showing the relationship between the thickness of the protective layer and the surface resistivity in the transparent conductive laminate
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a transparent conductive laminate 1 according to an embodiment.
  • the transparent conductive laminate 1 includes a base layer 2, two metal oxide layers (optical adjustment layers) 3, 3, and a silver-based thin film layer interposed between the metal oxide layers. (Heat ray reflective layer) 4 is provided.
  • the base material layer 2 side of the transparent conductive laminate may be referred to as “back side” and the opposite side may be referred to as “front side”.
  • the base material layer 2 is made of a resin film, and is used for the purpose of ensuring the strength of the transparent conductive laminate 1 and supporting the metal oxide layer 3 and the like.
  • the resin material constituting the resin film is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include polyester resins.
  • the polyester resin for example, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, or the like can be used.
  • film materials other than polyester resin may be used as long as transparency is ensured.
  • polyolefin resin such as polyethylene and polypropylene
  • polyamide resin such as nylon 6 and nylon 12
  • polyvinyl alcohol and ethylene-vinyl alcohol copolymer polyvinyl alcohol and ethylene-vinyl alcohol copolymer.
  • a film made of a synthetic resin such as polystyrene, triacetyl cellulose, acrylic, polyvinyl chloride, polycarbonate, polyimide, polyethersulfone, cyclic polyolefin, or the like can be used.
  • the base material layer 2 has a configuration composed only of a resin film, as shown in FIG.
  • planarization layers (hard coat layers) 22 and 23 are respectively formed on both surfaces of the core material 21 made of a resin film.
  • it may be a base material layer having a configuration in which a flattening layer (hard coat layer) is formed only on one surface (any one surface) of the core material 21.
  • the thickness of the planarizing layer is not particularly limited, but is preferably 1 ⁇ m to 10 ⁇ m, for example.
  • the thickness of the flattening layer is less than 1 ⁇ m, it is difficult to sufficiently perform the flattening as expected.
  • the thickness of the flattening layer exceeds 10 ⁇ m, it is difficult to expect further flattening, so that it tends to be wasteful in terms of resources and economy.
  • Examples of the material constituting the planarizing layer include an energy ray curable acrylic resin composition.
  • examples of the energy rays here include ultraviolet rays and electron beams.
  • the energy ray curable acrylic resin composition a composition containing an acrylic monomer or oligomer as a main component and a photopolymerization initiator added thereto can be used.
  • Examples of the monomer include me, til (meth) acrylate, lauryl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, phenoxyethyl (meth) acrylate, and tetrahydrofurfuryl (meth) acrylate.
  • Monofunctional acrylates such as isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxy (meth) acrylate, and neopentyl glycol di (meth) acrylate 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol Ritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol tri (meth) acrylate
  • oligomer examples include polyester (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, polyether (meth) acrylate, alkit (meth) acrylate, melamine (meth) acrylate, and silicone (meth).
  • An acrylate etc. can be mentioned.
  • the content of the polymerizable compound in the energy beam curable composition is preferably in the range of 5 to 50% by mass, preferably in the range of 10 to 40% by mass with respect to 100% by mass of the total solid content of the energy beam curable composition. More preferably, the range of 15 to 35% by mass is particularly preferable.
  • the energy ray curable composition preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, benzophenone, 2-chlorobenzophenone, 4,4′-dichlorobenzophenone, 4,4′-bisdiethylaminobenzophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, methyl benzoylformate, p-isopropyl- ⁇ -hydroxyisobutylphenone, ⁇ -hydroxyisobutylphenone, 2, Carbonyl compounds such as 2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone,
  • a laminate such as a metal oxide layer 3 is formed on one surface of the base material layer 2.
  • the surface roughness Rz ten-point average surface roughness of the surface of the base material layer on the side where the laminate such as the metal oxide layer is formed is 50 nm or less.
  • a base material layer consists only of a resin film (for example, base material layer 2)
  • the surface roughness of the resin film becomes the surface roughness of a base material layer.
  • the surface of the planarization layer (for example, the planarization layer 22) on the side where a laminate such as a metal oxide layer is formed has a surface of at least 50 nm or less.
  • the surface roughness Rz (ten-point average surface roughness) is provided.
  • a laminate such as a metal oxide layer may be formed on any side.
  • the thickness of the base material layer is not particularly limited, but for example, preferably 1 ⁇ m to 200 ⁇ m, and more preferably 5 ⁇ m to 150 ⁇ m. When the thickness of the base material layer is in such a range, the surface roughness (ten-point surface roughness) of the base material layer can be easily controlled to 50 nm or less.
  • the surface of the base material layer may be subjected to surface treatment such as plasma treatment, corona discharge treatment, flame treatment or the like, if necessary.
  • surface treatment such as plasma treatment, corona discharge treatment, flame treatment or the like.
  • the surface roughness after surface treatment is 50 nm or less. There must be.
  • the silver-based thin film layer (heat ray reflective layer) 4 is made of a silver or silver alloy thin film, and has a function of reflecting heat rays (infrared rays) together with conductivity.
  • Examples of silver or a silver alloy constituting the silver-based thin film layer 4 include silver (Ag), a silver palladium alloy (AgPd), a silver palladium copper alloy (AgPdCu), and a silver copper alloy (AgCu).
  • the silver or silver alloy used for the silver-based thin film layer 4 is preferably a silver palladium alloy.
  • the thickness of the silver-based thin film layer 4 is not particularly limited, but is preferably 6 nm to 30 nm, for example, and more preferably 10 nm to 20 nm.
  • the silver-based thin film layer 4 is interposed between adjacent metal oxide layers 3 and 3 as shown in FIG.
  • the metal oxide layer (optical adjustment layer) 3 includes a layer including a specific metal oxide layer described later, suppresses reflection of visible light in the silver-based thin film layer (heat ray reflective layer) 4 and transmits visible light. It is formed for the purpose of improving.
  • the transparent conductive laminate 1 shown in FIG. 1 includes two metal oxide layers 3 and 3. One metal oxide layer 3 is laminated on the front side of the base material layer 2, and the other metal oxide layer 3 is laminated on the front side of the metal oxide layer 4. These metal oxide layers 3 and 3 are formed so as to sandwich the silver-based thin film layer 4.
  • the one arranged on the most front side (that is, the one arranged most distant from the base material layer) is particularly referred to as a “surface-side metal oxide layer”.
  • the metal oxide layer 3 arranged on the most front side becomes the surface-side photometal oxide layer 30.
  • the metal oxide layer 3 disposed at the position closest to the base material layer 2 is directly formed on the base material layer 2.
  • the material (metal oxide) constituting the metal oxide layer 3 As the material (metal oxide) constituting the metal oxide layer 3, at least one metal oxide selected from the group consisting of aluminum-added zinc oxide, titanium-added zinc oxide, zinc-added indium oxide and niobium oxide is used.
  • the metal oxide layer 3 is formed from such a metal oxide, even if the transparent conductive laminate is used in a high-temperature and high-humidity environment, aggregation and migration phenomenon of the silver component contained in the silver-based thin film layer 4 Etc. can be suppressed.
  • the metal oxide layer 3 may contain substances other than the metal oxide mentioned above.
  • the aluminum element content in the zinc oxide is preferably 0.1 to 20 atomic%.
  • the metal oxide is composed of titanium-added zinc oxide
  • the content of titanium element in the zinc oxide is preferably 0.1 to 20 atomic%.
  • the content of zinc element in indium oxide is preferably 0.1 to 20 atomic%.
  • the metal oxide layer 3 is preferably set to have a higher refractive index of visible light than the silver-based thin film layer 4.
  • the refractive index (wavelength: 589.3 nm) of the metal oxide layer 3 is preferably set to, for example, 1.9 or more.
  • the thickness of the metal oxide layer 3 (single layer thickness) is set to 20 nm to 70 nm, for example.
  • the thickness of the surface side metal oxide layer is set to at least 20 nm or more.
  • the plurality of metal oxide layers are made of the same material.
  • metal oxide layers may be comprised from a mutually different material.
  • film formation method There is no restriction
  • film formation methods include physical vapor deposition such as vacuum deposition (electron beam deposition, resistance heating deposition), sputtering, ion plating, ion beam, ion assist, and laser ablation.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • PVD thermal CVD method
  • photo CVD method a plasma CVD method.
  • the physical vapor deposition (PVD) method is preferable, and the sputtering method is particularly preferable because the metal oxide layer 3 and the like can be reliably laminated on the base material layer 2.
  • a DC sputtering method having a high film formation rate is preferable.
  • a multilayer film is formed by a sputtering method
  • a one-chamber method in which films are alternately or sequentially formed from a plurality of targets in one chamber may be used, or a multi-chamber method in which films are continuously formed in a plurality of chambers.
  • the multi-chamber method is preferable from the viewpoint of preventing productivity and material contamination.
  • the transparent conductive laminate may include other layers in addition to the base material layer 2, the metal oxide layer 3, and the silver-based thin film layer 4 described above as long as the object of the present invention is not impaired.
  • an adhesive layer may be formed on the back surface side of the base material layer 2. Such an adhesive layer is utilized when a transparent conductive laminated body is affixed with respect to a to-be-adhered body (for example, window glass).
  • an adhesive utilized for the said adhesive layer For example, an acrylic adhesive, a rubber adhesive, a vinyl alkyl ether adhesive, a silicone adhesive, a polyester adhesive, a polyamide adhesive
  • known pressure-sensitive adhesives such as an adhesive, a urethane-based pressure-sensitive adhesive, a fluorine-based pressure-sensitive adhesive, and an epoxy-based pressure-sensitive adhesive.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, and is appropriately set depending on the purpose.
  • the surface (adhesive surface) of the pressure-sensitive adhesive layer may be protected by a release liner until it is used (that is, before being attached to the adherend).
  • the release liner is not particularly limited, and examples thereof include a polyester film such as polyethylene terephthalate and a paper surface coated with a silicone release treatment agent.
  • a protective layer made of a hard coat layer or the like may be formed on the surface-side metal oxide layer.
  • the transparent conductive laminate may be provided with a barrier layer or the like as long as the object of the present invention is not impaired.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of a transparent conductive laminate (with a protective layer) 1X according to another embodiment.
  • This transparent conductive laminate 1X is obtained by forming a protective layer 11 outside the metal oxide layer 3 (surface-side photometal oxide layer 30) on the front side of the transparent conductive laminate 1 shown in FIG. Consists of.
  • the protective layer is used for the purpose of improving the durability (strength, wet heat durability, scratch resistance, etc.) of the transparent conductive laminate.
  • the protective layer 11 is provided like the transparent conductive laminate 1X shown in FIG. 3, the wear resistance, strength, wet heat durability and the like are improved.
  • a material constituting the protective layer for example, the same kind of material as that constituting the planarization layer described above (for example, an ultraviolet curable hard coat layer) is used.
  • the protective layer is made of, for example, a cured composition obtained by mixing an acrylic monomer, a polymerization initiator, an organic solvent, and the like.
  • acrylic monomer for example, monofunctional acrylate, bifunctional acrylate, trifunctional or higher acrylate, and the like are used.
  • polymerization initiator a photopolymerization initiator that generates light by receiving light such as ultraviolet rays, a thermal polymerization initiator that generates heat by receiving heat, and the like are used.
  • the organic solvent for example, methyl isobutyl ketone (MIBK), ethyl acetate, toluene or the like is used.
  • MIBK methyl isobutyl ketone
  • a leveling agent an adhesive agent (phosphate ester compound), an acrylic oligomer, or the like may be further added to the composition for forming the protective layer.
  • an adhesive agent phosphate ester compound
  • acrylic oligomer copolymer acrylate, epoxy acrylate, polyester acrylate, polyurethane acrylate, or the like may be used.
  • the thickness of the protective layer is preferably set to 1 ⁇ m or more and 3 ⁇ m or less.
  • long-term reliability evaluation 7 described later: wet heat durability 2
  • wet heat durability 2 required for in-vehicle use or the like
  • the thickness of the protective layer is in such a range, the surface resistivity of the transparent conductive laminate can be reduced to 10 9 ⁇ / ⁇ or less, and as a result, adhesion of dust and the like is prevented by the electrostatic diffusion function. can do.
  • the thickness of a protective layer will be less than 1 micrometer, the wet heat durability of a transparent conductive laminated body will be impaired.
  • the thickness of a protective layer exceeds 3 micrometers, the surface resistivity of a transparent conductive laminated body will become large, and static electricity diffusivity will not be ensured.
  • various additives such as a leveling agent may be added as long as the object of the present invention is not impaired.
  • a protective layer is provided on the transparent conductive laminate, light interference fringes may appear in the transparent conductive laminate due to the influence of the refractive index of various materials constituting the transparent conductive laminate. Depending on the use of the transparent conductive laminate, there is no problem even if such interference fringes appear, but it is preferable that no interference fringes occur.
  • the metal oxide layer is preferably zinc-added indium oxide or aluminum-added zinc oxide, and particularly preferably zinc-added indium oxide.
  • FIG. 4 is a cross-sectional view schematically showing the configuration of a transparent conductive laminate 1B according to another embodiment having a plurality of silver-based thin film layers 4 and 4.
  • This transparent conductive laminate 1B includes two silver-based thin film layers (heat ray reflective layers) 4 and 4, and the first silver-based thin film layer 4 close to the base material layer 2 is a base material layer. 2 between the first metal oxide layer 3 close to 2 and the second metal oxide layer 3.
  • the second silver-based thin film layer 4 disposed on the front side is between the second metal oxide layer 3 and the third metal oxide layer 3 disposed on the front side. It is sandwiched.
  • the third metal oxide layer is a surface-side metal oxide layer.
  • the transparent conductive laminate of the present invention may have a structure including a plurality of (two or more) silver-based thin film layers.
  • the visible light transmittance of the transparent conductive laminate is not particularly limited, for example, 50% or more is preferable, and 60% or more is more preferable.
  • the visible light transmittance can be measured according to JIS A5759.
  • the transparent conductive laminate of the present invention is excellent in durability. Therefore, even when used under high-temperature and high-humidity conditions (for example, a temperature of 85 ° C. and a humidity of 85% RH), the occurrence of spot-like defects derived from the silver component contained in the silver-based thin film layer is suppressed.
  • high-temperature and high-humidity conditions for example, a temperature of 85 ° C. and a humidity of 85% RH
  • the transparent conductive laminate of the present invention is used for, for example, an electromagnetic wave sealing member, an electrode member, and the like. Further, since the transparent conductive laminate has flexibility, it can be attached to not only a planar adherend but also a curved adherend.
  • FIG. 5 is a cross-sectional view schematically showing the configuration of the light control film 10 to which the transparent conductive laminates 1C and 1C are applied.
  • the light control film 10 is a film that changes the light transmittance according to the presence or absence of voltage application, and is used in a form of being attached to a window glass of a building or a vehicle.
  • the light control film 10 is dispersed in the pair of transparent conductive laminates 1C and 1C, the transparent matrix polymer layer 6 interposed between the pair of transparent conductive laminates 1C and 1C, and the matrix polymer layer 6. And a plurality of liquid crystal capsules 7.
  • the liquid crystal capsule 7 is one in which liquid crystal molecules are enclosed in a microcapsule.
  • the transparent conductive laminate 1 ⁇ / b> C includes a base material layer 2 including a resin film and the like, and an electrode layer 5 laminated on the base material layer 2.
  • the electrode layer 5 is composed of a laminate of a silver-based thin film layer and a metal oxide layer.
  • the pair of transparent conductive laminates 1C and 1C sandwich the matrix polymer layer 6 with the electrode layers 5 and 5 facing each other.
  • the pair of electrode layers 5 and 5 are connected to each other via the battery 8 and the switch 9.
  • the switch 9 of the light control film 10 When the switch 9 of the light control film 10 is in an open state (OFF state), no potential difference is generated between the pair of electrode layers 5 and 5, so that the liquid crystal molecules in the microcapsule are arranged in a random manner. Therefore, in the light control film 10 with the switch 9 open, the liquid crystal capsule 7 functions to prevent light transmission.
  • the switch of the light control film 10 when the switch of the light control film 10 is in the closed state (ON state), a potential difference is generated between the pair of electrode layers 5.5, and the liquid crystal molecules in the microcapsule are aligned in the direction in which the pair of electrodes 5 and 5 are aligned. It is oriented in a form along (the thickness direction of the light control film 10). Therefore, in the light control film 10 in which the switch 9 is closed, the liquid crystal capsule 7 functions so as to transmit light.
  • the transparent conductive laminate of the present invention can be used as a member constituting a light control film. Further, such a member can also be used as a screen (so-called active screen) having flexibility (by controlling the transmittance so that a projected image can be displayed when the transmittance is low). is there.
  • the transparent conductive laminate is used, for example, as a heat ray reflecting member by being attached to a window glass of a building from the indoor side.
  • a transparent conductive laminated body is affixed in the form in which the base material layer side faces a window glass.
  • the transparent conductive laminate of the present invention may be affixed not only to the indoor side of the window glass of the building but also to the outside of the window glass as necessary.
  • the transparent conductive laminate is attached not only to the window glass of buildings but also to various window glasses and transparent members such as vehicles (for example, automobiles, trains), and window vehicles of ships, etc. It can be used for heat insulation.
  • each layer was formed on a base material layer using a roll-to-roll-type magnetron sputtering apparatus.
  • the flow rate of gas for example, argon gas and oxygen gas supplied into each chamber of the sputtering apparatus was appropriately adjusted using a predetermined mass flow controller.
  • the amount of oxygen contained in the metal oxide layer was adjusted by the amount of oxygen gas introduced during sputtering.
  • Example 1 As a base material layer, a PET film with a flattening layer having a thickness of 50 ⁇ m and a 10-point average surface roughness (Rz) of 13 nm, on which a flattening layer made of an acrylic resin was formed on both surfaces, was prepared. A first metal oxide layer made of an aluminum-added zinc oxide film was formed on one surface of the flattened PET film by sputtering. Next, a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and further, an aluminum-added zinc oxide film is formed on the silver-based thin film layer. A second metal oxide layer (surface-side metal oxide layer) was formed.
  • Rz 10-point average surface roughness
  • Example 1 The thickness of each layer constituting this transparent conductive laminate is as shown in Table 1.
  • the thickness of each layer of the transparent conductive laminate was measured by fluorescent X-ray analysis (manufactured by Rigaku Corporation, ZSX-100e). Further, the surface roughness Rz of the base material layer was measured using a scanning probe microscope (product name “SPM9600”, manufactured by Shimadzu Corporation). The following examples and comparative examples were similarly measured for the surface roughness Rz of the base material layer, the thickness of each layer of the transparent conductive laminate, and the like.
  • the film formation conditions for sputtering in Example 1 are as follows.
  • Example 2 As a base material layer, a PET film with a flattening layer having a thickness of 125 ⁇ m and a ten-point average surface roughness (Rz) of 13 nm in which a flattening layer made of an acrylic resin was formed on both surfaces was prepared. A first metal oxide layer made of a titanium-added zinc oxide film was formed on one surface of the planarized PET film with sputtering. Next, a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and further, a titanium-added zinc oxide film is formed on the silver-based thin film layer. A second metal oxide layer (surface side metal oxide layer) was formed to produce a transparent conductive laminate. The film formation conditions for sputtering are as follows.
  • Example 3 As the base material layer, the same PET film with a flattening layer as in Example 2 (thickness: 125 ⁇ m, Rz: 13 nm) was prepared. A first metal oxide layer made of a zinc-added indium oxide film was formed on one surface of the planarized PET film by sputtering. Next, a metal oxide layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and further made of a zinc-added indium oxide film on the silver-based thin film layer. A second metal oxide layer (surface side metal oxide layer) was formed to produce a transparent conductive laminate. The film formation conditions for sputtering are as follows.
  • Example 4 As the base material layer, the same PET film with a flattening layer as in Example 2 (thickness: 125 ⁇ m, Rz: 13 nm) was prepared. A first metal oxide layer made of a niobium oxide film was formed on one surface of the flattened PET film by sputtering. Next, a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and a second niobium oxide film made of niobium oxide is formed on the silver-based thin film layer. A transparent metal laminate was produced by forming a metal oxide layer (surface-side metal oxide layer) as the first layer. The film formation conditions for sputtering are as follows.
  • Example 5 As a base material layer, a PET film (thickness: 50 ⁇ m, Rz: 50 nm) having no hard coat layer formed on both sides was prepared. A first metal oxide layer made of an aluminum-added zinc oxide film was formed on one surface of the flattened PET film by sputtering. Next, a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and further, an aluminum-added zinc oxide film is formed on the silver-based thin film layer. A second metal oxide layer (surface-side metal oxide layer) was formed. In this way, the transparent conductive laminate of Example 1 was produced. The thickness of each layer constituting this transparent conductive laminate is as shown in Table 1. The film formation conditions for sputtering are as follows.
  • Example 1 As the base material layer, the same PET film with a flattening layer as in Example 2 (thickness: 125 ⁇ m, Rz: 13 nm) was prepared. A first metal oxide layer made of a tin-added indium oxide film was formed on one surface of the flattened PET film by sputtering. Next, a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and a second tin-added indium oxide film is formed on the silver-based thin film layer. A metal oxide layer as a first layer was formed to produce a transparent conductive laminate. The film formation conditions for sputtering are as follows.
  • a PET film (thickness: 100 ⁇ m, Rz: 127 nm) having no hard coat layer formed on both surfaces was prepared.
  • a first metal oxide layer made of a niobium oxide film was formed on one surface of the PET film by sputtering.
  • a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and a second niobium oxide film made of niobium oxide is formed on the silver-based thin film layer.
  • a metal oxide layer as a first layer was formed to produce a transparent conductive laminate.
  • the film formation conditions for sputtering are as follows.
  • Example 3 As the base material layer, the same PET film with a flattening layer as in Example 2 (thickness: 125 ⁇ m, Rz: 13 nm) was prepared. A first metal oxide layer made of a zinc-added indium oxide film was formed on one surface of the planarized PET film by sputtering. Next, a first silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and zinc-added oxidation is further formed on the silver-based thin film layer. A second metal oxide layer made of an indium film was formed.
  • a second silver-based thin film layer is formed on the second metal oxide layer, and a third-layer metal made of a zinc-added indium oxide film is further formed on the silver-based thin film layer.
  • An oxide layer was formed to produce a transparent conductive laminate.
  • the film formation conditions for sputtering are as follows.
  • Test samples (5 cm long and 5 cm wide squares) were prepared from the transparent conductive laminates in Examples 1 to 5 and Comparative Examples 1 to 3, respectively. Each test sample was laminated on a slide glass using a transparent optical adhesive film in a form in which the film formation side was bonded, and placed in a humidity environment of a temperature of 85 ° C. and a humidity of 85% RH. It was visually confirmed whether or not a defect having a diameter of 0.5 mm or more was formed on the test sample, and the wet heat durability of each test sample was evaluated.
  • the evaluation criteria are as follows. The evaluation results are shown in Table 1.
  • each of the transparent conductive laminates of Examples 1 to 5 was excellent in wet heat durability.
  • each of the transparent conductive laminates of Examples 1 to 4 was inhibited from generating defects even after 500 hours or more in the wet heat durability test.
  • the transparent conductive laminate of Comparative Example 1 uses tin-added indium oxide (ITO) as the metal oxide layer. It has been confirmed that a metal oxide layer made of such a material cannot suppress defects derived from the silver component contained in the silver-based thin film layer.
  • ITO indium oxide
  • the surface roughness (Rz) of the base material layer is 127 nm, and the surface of the base material layer is rough. Since the thickness of the metal oxide layer or silver-based thin film layer is very small compared to the base material layer, if the surface of the base material layer is rough, the metal oxide layer or silver-based thin film formed on the surface of the base material layer It is presumed that there are locations where pinholes are generated in the layer or where the laminated structure is not formed and the silver component is exposed. And it is estimated that the defect originating in the silver component generate
  • the thickness of the third metal oxide layer (surface side metal oxide layer) arranged on the most front side among the three metal oxide layers is 19 nm. Yes. As described above, it is confirmed that when the thickness of the metal oxide layer (surface side metal oxide layer) arranged on the most front side is thin, defects derived from the silver component contained in the silver-based thin film layer cannot be suppressed. It was.
  • Example 6 As a base material layer, the same PET film with a flattening layer as in Example 3 was prepared. On one surface of the PET film with a planarizing layer, from the first metal oxide layer made of a zinc-added indium oxide film and a silver palladium alloy film by sputtering under the same conditions as in Example 3. A metal oxide layer and a second metal oxide layer (surface-side metal oxide layer) made of a zinc-added indium oxide film were formed in this order. Further, a protective layer (thickness: 1 ⁇ m) made of an ultraviolet curable acrylic resin was formed on the second metal oxide layer to obtain a transparent conductive laminate. The thickness of each layer constituting this transparent conductive laminate is as shown in Table 2. Table 2 also shows the thickness of each layer constituting the transparent conductive laminates of the following examples and comparative examples.
  • the protective layer is composed of 100 parts by weight of dipentaerythritol hexaacrylate (trade name “A-DPH”, manufactured by Shin-Nakamura Chemical Co., Ltd.) as a tri- or higher functional acrylic monomer, and a phosphate ester as an adhesive with an oxide film.
  • A-DPH dipentaerythritol hexaacrylate
  • a compound (trade name “PM-21”, manufactured by Nippon Kayaku Co., Ltd.), 5 weights of 1-hydroxy-cyclohexyl-phenyl-ketone (trade name “Irgacure 184”, manufactured by BASF) as a photopolymerization initiator
  • a composition comprising 160 parts by weight of ethyl acetate as a diluent is coated on the second metal oxide layer with a bar coater, and ultraviolet rays are applied to the coating film on the metal oxide layer. It was formed by irradiation.
  • Example 7 A transparent conductive laminate was produced in the same manner as in Example 6 except that the thickness of the protective layer was changed to 3 ⁇ m.
  • Example 8 As a base material layer, the same PET film with a flattening layer as in Example 1 was prepared. On one surface of the PET film with the planarizing layer, from the first metal oxide layer made of an aluminum-added zinc oxide film and a silver palladium alloy film by sputtering under the same conditions as in Example 1. A silver-based thin film layer and a second metal oxide layer (surface-side metal oxide layer) made of an aluminum-added zinc oxide film were formed in this order. Further, a protective layer (thickness: 1 ⁇ m) made of an ultraviolet curable acrylic resin was formed on the second metal oxide layer to obtain a transparent conductive laminate.
  • a protective layer thickness: 1 ⁇ m
  • Example 4 A transparent conductive laminate was produced in the same manner as in Example 6 except that the thickness of the protective layer was changed to 0.6 ⁇ m.
  • Example 5 A transparent conductive laminate was produced in the same manner as in Example 6 except that the thickness of the protective layer was changed to 5 ⁇ m.
  • Example 6 As a base material layer, the same PET film with a flattening layer as in Example 2 was prepared. On one surface of the PET film with the flattening layer, by sputtering under the same conditions as in Example 2, First metal oxide layer made of titanium-added zinc oxide film, silver-based thin film layer made of silver-palladium alloy film, and second metal oxide layer made of titanium-added zinc oxide film (surface Side metal oxide layer) was formed in this order. Further, as in Example 6, a protective layer (thickness: 1 ⁇ m) made of an ultraviolet curable acrylic resin was formed on the second metal oxide layer to obtain a transparent conductive laminate. .
  • Example 7 As a base material layer, the same PET film with a flattening layer as in Example 4 (Example 2) (thickness: 125 ⁇ m, Rz: 13 nm) was prepared. On one surface of the PET film with the flattening layer, the first metal oxide layer made of a niobium oxide film and the silver made of a silver-palladium alloy film are formed by sputtering under the same conditions as in Example 4. A second metal oxide layer (surface-side metal oxide layer) made of a system thin film layer and a niobium oxide film was formed in this order. Further, as in Example 6, a protective layer (thickness: 1 ⁇ m) made of an ultraviolet curable acrylic resin was formed on the second metal oxide layer to obtain a transparent conductive laminate. .
  • Comparative Example 8 As a base material layer, the same PET film with a flattening layer (thickness: 125 ⁇ m, Rz: 13 nm) as in Comparative Example 1 (Example 2) was prepared. From one surface of the PET film with a planarizing layer, from the first metal oxide layer made of a tin-added indium oxide film and a silver palladium alloy film by sputtering under the same conditions as in Comparative Example 1. A silver-based thin film layer and a second metal oxide layer made of tin-added indium oxide were formed in this order. Further, as in Example 6, a protective layer (thickness: 1 ⁇ m) made of an ultraviolet curable acrylic resin was formed on the second metal oxide layer to obtain a transparent conductive laminate. .
  • Example 9 As the base material layer, the same PET film with a flattening layer as in Example 2 (thickness: 125 ⁇ m, Rz: 13 nm) was prepared. A metal layer made of a copper film was formed on one surface of the planarized PET film with sputtering by sputtering. Further, a protective layer (thickness: 1 ⁇ m) made of an ultraviolet curable acrylic resin was formed on the metal layer in the same manner as in Example 6 to obtain a transparent conductive laminate. The film formation conditions for sputtering are as follows.
  • Test samples (12 cm long and 12 cm wide squares) were prepared from the transparent conductive laminates of Examples 6 to 8 and Comparative Examples 4 to 9, respectively. Each test sample was placed between a transmission jig and a reception jig, and the shielding effect (dB) in the UHF band having a frequency of 300 MHz to 1000 MHz was continuously measured according to the KEC method.
  • a sample (comparative test sample) excluding the protective layer of each test sample is prepared, and the shield effect (dB) is continuously applied to the comparative test sample according to the KEC method. It was measured.
  • each of the transparent conductive laminates of Examples 6 and 7 in which the metal oxide layer is made of zinc-added indium oxide and includes a protective layer has wet heat durability (evaluation 7: wet heat durability). The result was excellent in property 2).
  • the wet heat durability 2 test performed in the evaluation 7 is a severer condition than the wet heat durability 1 performed in the evaluation 2.
  • Examples 6 and 7 resulted in excellent visible light transmittance, appearance, shielding characteristics, and electrostatic diffusibility.
  • Example 8 interference fringes appeared in the transparent conductive laminate due to the provision of the protective layer, but the other evaluations were the same as in Examples 6 and 7. It was.
  • the interference fringe was also formed by providing the protective layer.
  • the surface resistivity was 10 9 ⁇ / ⁇ or more, which resulted in a problem with electrostatic diffusibility.
  • Comparative Example 9 is a case of a transparent conductive laminate in which a metal layer (copper) and a protective layer are formed in this order on a PET film with a planarizing layer.
  • the visible light transmittance was less than 50%, and the shield characteristics were problematic.
  • the shielding characteristics It is known that the shielding effect by the KEC method is remarkably lowered in the ordinary general conductive film for shielding due to the influence of the insulating protective film. On the other hand, in the case of the transparent conductive laminates of Examples 6 to 8, it is possible to suppress the reduction of the shielding effect in the frequency band of the UHF band of 300 MHz to 1000 MHz.
  • zinc-added indium oxide is most preferable.
  • zinc-doped indium oxide is used as the metal oxide layer, the reduction in visible light transmittance due to the formation of the protective layer (hard coat layer) is suppressed, and the occurrence of interference fringes is also prevented.
  • the surface resistivity is 4.98 ⁇ / ⁇
  • the protective layer thickness is 0.6 ⁇ m (Example 4).
  • the surface resistivity is 1.15 ⁇ 10 6 ⁇ / ⁇
  • the thickness of the protective layer is 1 ⁇ m (Example 6)
  • the surface resistivity is 3.32 ⁇ 10 7 ⁇ / ⁇ .
  • the surface resistivity is 9.70 ⁇ 10 8 ⁇ / ⁇
  • the protective layer thickness is 5 ⁇ m
  • the surface resistivity is 7 .60 ⁇ 10 9 ⁇ / ⁇ and is the surface resistivity in the case the thickness of the protective layer of 7 ⁇ m is, 4.13 ⁇ 10 9 ⁇ / ⁇ and is the surface resistivity in the case the thickness of the protective layer of 14 ⁇ m is 7.64 ⁇ 10 11 ⁇ / ⁇ .
  • the surface resistivity of the transparent conductive laminate can be controlled to be less than 1.0 ⁇ 10 9 ⁇ / ⁇ when the thickness of the protective layer is 3 ⁇ m or less.

Landscapes

  • Laminated Bodies (AREA)

Abstract

A transparent electroconductive laminate 1 according to the present invention is provided with: a substrate layer 2 comprising a resin film and having a ten-point average surface roughness on at least one side of not more than 50 nm; a plurality of metal oxide layers 3, 3, each comprising at least one metal oxide selected from the group consisting of aluminum-doped zinc oxide, titanium-doped zinc oxide, zinc-doped indium oxide, and niobium oxide, and disposed on the one side with a distance therebetween; and a silver-based thin film layer 4 comprising a thin film of silver or a silver alloy and interposed between the metal oxide layers 3, 3 that are adjacent to each other. The thickness of a surface-side metal oxide layer 30 disposed at the position farthest from the substrate layer, among the metal oxide layers 3, is at least 20 nm.

Description

透明導電性積層体Transparent conductive laminate
 本発明は、透明導電性積層体に関する。 The present invention relates to a transparent conductive laminate.
 透明性及び導電性に優れた積層体が知られている。この種の積層体(以下、透明導電性積層体)は、主として、透明なプラスチック等からなる基材と、基材上に形成される透明な導電層とを備えており、透明性が要求される電磁波シールド部材や電極部材等に利用されている(例えば、特許文献1~3参照)。 A laminate having excellent transparency and conductivity is known. This type of laminate (hereinafter referred to as a transparent conductive laminate) mainly comprises a base material made of transparent plastic and the like, and a transparent conductive layer formed on the base material, and transparency is required. (See, for example, Patent Documents 1 to 3).
 特許文献1の透明導電性積層体は、導電層として、ITO(Indium Tin Oxide)からなる透明導電膜を備えている。また、特許文献2の透明導電性積層体は、導電層として、メッシュ状の金属膜を備えている。また、特許文献3の透明導電性積層体は、導電層として、金属ナノワイヤからなる層を備えている。 The transparent conductive laminate of Patent Document 1 includes a transparent conductive film made of ITO (Indium Tin Oxide) as a conductive layer. Moreover, the transparent conductive laminated body of patent document 2 is equipped with the mesh-shaped metal film as a conductive layer. Moreover, the transparent conductive laminated body of patent document 3 is equipped with the layer which consists of metal nanowire as a conductive layer.
 ところで、透明導電性積層体の中には、更に、熱線(赤外線)を反射する機能を備えたものもあり、そのような積層体は、例えば、建物や自動車等の窓ガラスに貼り付けられ、日射(赤外線)を反射して建物内の温度が上昇することを抑制等するために用いられている(例えば、特許文献4参照)。この種の透明導電性積層体は、特許文献4に示されるように、基材と、導電層でありかつ熱線を反射するための熱線反射層としての金属膜と、この金属膜を挟む形で積層され可視光透過性を高めるための金属酸化物層とを備えている。なお、金属膜としては、熱線の反射効率に優れる等の理由により、銀系薄膜が利用されている。 By the way, some of the transparent conductive laminates are further provided with a function of reflecting heat rays (infrared rays), and such laminates are attached to, for example, windows of buildings and automobiles, It is used to suppress the rise of the temperature in the building by reflecting solar radiation (infrared rays) (see, for example, Patent Document 4). As shown in Patent Document 4, this type of transparent conductive laminate has a base material, a metal film as a heat ray reflective layer that is a conductive layer and reflects heat rays, and sandwiches the metal film. And a metal oxide layer for increasing visible light transmittance. As the metal film, a silver-based thin film is used for reasons such as excellent heat ray reflection efficiency.
特開2004-152727号公報JP 2004-152727 A 特開2004-221564号公報JP 2004-221564 A 特開2011-258578号公報JP 2011-258578 A 特開2014-8681号公報JP 2014-8861 A
(発明が解決しようとする課題)
 透明導電性積層体の導電層がITO透明導電膜からなる場合、抵抗値を低くすることが難しい。また、ITO透明導電膜を備えた構成では、十分な熱線反射効果を得ることができない。
(Problems to be solved by the invention)
When the conductive layer of the transparent conductive laminate is made of an ITO transparent conductive film, it is difficult to reduce the resistance value. Moreover, in the structure provided with the ITO transparent conductive film, a sufficient heat ray reflection effect cannot be obtained.
 導電層がメッシュ状の金属膜からなる場合、外観上、メッシュ状の金属膜が目立ってしまい、問題となっていた。なお、金属膜のメッシュを非常に細かく加工して目立たなくすることも考えられるが、そのような加工は技術的に実現不可能である。 When the conductive layer is made of a mesh-like metal film, the mesh-like metal film is conspicuous in appearance, which is a problem. Although it may be possible to make the mesh of the metal film very fine to make it inconspicuous, such processing is technically impossible to realize.
 導電層が金属ナノワイヤ層からなる場合、抵抗値を低くすること、及び高い透明性を確保することは可能である。しかしながら、金属ナノワイヤ層は、耐久性が乏しく、問題となっていた。 When the conductive layer is made of a metal nanowire layer, it is possible to reduce the resistance value and ensure high transparency. However, the metal nanowire layer has a problem of poor durability.
 なお、導電層が銀系薄膜からなる場合、抵抗値を低くすること、及び高い透明性を確保することが可能であり、また、外観的にも良好である。しかしながら、導電層が銀系薄膜からなる透明導電性積層体は、耐久性が低いという問題があった。 When the conductive layer is made of a silver-based thin film, the resistance value can be lowered and high transparency can be secured, and the appearance is also good. However, the transparent conductive laminate having a conductive layer made of a silver-based thin film has a problem of low durability.
 例えば、この種の透明導電性積層体を高温多湿環境下で用いた場合、透明導電性積層体に細かな斑点模様状の欠陥部が発生することがあった。このような欠陥部は、銀系薄膜(導電層)中に含まれる銀成分の凝集やマイグレーション現象等が発生原因と推測される。銀成分の凝集やマイグレーション現象は、特に、水蒸気等の水分や、腐食性ガス(例えば、硫黄を含むガス)との接触により発生する。 For example, when this type of transparent conductive laminate is used in a high-temperature and high-humidity environment, a fine spot-pattern-like defect may occur in the transparent conductive laminate. Such a defective portion is presumed to be caused by aggregation of silver components contained in the silver-based thin film (conductive layer), a migration phenomenon, or the like. Aggregation and migration of silver components are caused by contact with moisture such as water vapor or corrosive gas (for example, gas containing sulfur).
 このような欠陥部は、透明導電性積層体の美観を損ねる原因となるのみならず、透明導電性積層体を構成する積層物の剥離を誘発する等の強度低を引き起こす原因にもなり得るため、問題となっていた。 Such a defective part not only causes the appearance of the transparent conductive laminate to be damaged, but also can cause a decrease in strength such as inducing peeling of the laminate constituting the transparent conductive laminate. Was a problem.
 本発明の目的は、銀系薄膜層を含む透明導電性積層体において、耐久性を向上させることである。 An object of the present invention is to improve durability in a transparent conductive laminate including a silver-based thin film layer.
(課題を解決するための手段)
 本発明者らは、前記目的を達成すべく鋭意検討を行った結果、樹脂フィルムを含み、少なくとも一方の面側の十点平均表面粗さが50nm以下である基材層と、アルミ添加酸化亜鉛、チタン添加酸化亜鉛、亜鉛添加酸化インジウム、酸化ニオブからなる群より選ばれる少なくとも1種の金属酸化物を各々が含み、前記一方の面側に互いに間隔を保つ形で配される複数層の金属酸化物層と、銀又は銀合金の薄膜からなり、隣り合った前記金属酸化物層の間に介在される銀系薄膜層とを備え、前記金属酸化物層のうち、前記基材層から最も離れた位置に配される表面側金属酸化物層の厚みが20nm以上である透明導電性積層体が、耐久性に優れることを見出し、本願発明の完成に至った。
(Means for solving the problem)
As a result of intensive studies to achieve the above object, the present inventors have found that a base material layer including a resin film and having a 10-point average surface roughness of at least one surface side of 50 nm or less, and an aluminum-added zinc oxide A plurality of metal layers each including at least one metal oxide selected from the group consisting of titanium-added zinc oxide, zinc-added indium oxide and niobium oxide, and arranged on the one surface side so as to be spaced apart from each other An oxide layer and a silver-based thin film layer made of a thin film of silver or a silver alloy and interposed between the adjacent metal oxide layers, and the most of the metal oxide layers from the base material layer The transparent conductive laminate in which the thickness of the surface-side metal oxide layer disposed at a distant position is 20 nm or more was found to be excellent in durability, and the present invention was completed.
 前記透明導電性積層体において、前記基材層が、前記樹脂フィルムと、前記樹脂フィルムの片面又は両面に積層された平坦化層との積層物からなるものが好ましい。 In the transparent conductive laminate, the base layer is preferably composed of a laminate of the resin film and a planarizing layer laminated on one or both sides of the resin film.
 前記透明導電性積層体において、前記基材層の前記樹脂フィルムが、ポリエステル系フィルムからなるものが好ましい。 In the transparent conductive laminate, the resin film of the base material layer is preferably made of a polyester film.
 前記透明導電性積層体において、前記銀系薄膜層の厚みが、6nm~30nmであることが好ましい。 In the transparent conductive laminate, the thickness of the silver thin film layer is preferably 6 nm to 30 nm.
 前記透明導電性積層体において、前記表面側金属酸化物層の外側に積層される保護層を備えることが好ましい。 It is preferable that the transparent conductive laminate includes a protective layer laminated on the outer side of the surface-side metal oxide layer.
 前記透明導電性積層体において、前記保護層の厚みが、1μm以上3μm以下であることが好ましい。 In the transparent conductive laminate, the protective layer preferably has a thickness of 1 μm to 3 μm.
 前記透明導電性積層体において、前記金属酸化物層が、亜鉛添加酸化インジウム、又はアルミ添加酸化亜鉛からなることが好ましい。 In the transparent conductive laminate, the metal oxide layer is preferably made of zinc-added indium oxide or aluminum-added zinc oxide.
(発明の効果)
 本発明によれば、銀系薄膜層を含む透明導電性積層体において、耐久性を向上させることができる。
(The invention's effect)
ADVANTAGE OF THE INVENTION According to this invention, durability can be improved in the transparent conductive laminated body containing a silver-type thin film layer.
一実施形態に係る透明導電性積層体の構成を模式的に表した断面図Sectional drawing which represented typically the structure of the transparent conductive laminated body which concerns on one Embodiment. 樹脂フィルムからなる芯材の両面に平坦化層が形成されている基材層の構成を模式的に表した断面図Sectional drawing which represented typically the structure of the base material layer in which the planarization layer is formed in both surfaces of the core material which consists of a resin film 他の実施形態に係る透明導電性積層体(保護層付き)の構成を模式的に表した断面図Sectional drawing which represented typically the structure of the transparent conductive laminated body (with a protective layer) which concerns on other embodiment. 他の実施形態に係る透明導電性積層体の構成を模式的に表した断面図Sectional drawing which represented typically the structure of the transparent conductive laminated body which concerns on other embodiment. 透明導電性積層体を応用した調光フィルムの構成を模式的に表した断面図Sectional drawing which represented typically the composition of the light control film which applied a transparent conductive layered product 透明導電性積層体における保護層の厚みと表面抵抗率との関係を示すグラフGraph showing the relationship between the thickness of the protective layer and the surface resistivity in the transparent conductive laminate
 本発明の一実施形態に係る透明導電性積層体について、図面を参照しつつ説明する。
 図1は、一実施形態に係る透明導電性積層体1の構成を模式的に表した断面図である。透明導電性積層体1は、図1に示されるように、基材層2、2つの金属酸化物層(光学調整層)3,3、金属酸化物層の間に介在される銀系薄膜層(熱線反射層)4を備えている。なお、本明細書において、透明導電性積層体の基材層2側を「裏側」と称し、その反対側を「表側」と称する場合がある。
A transparent conductive laminate according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing the configuration of a transparent conductive laminate 1 according to an embodiment. As shown in FIG. 1, the transparent conductive laminate 1 includes a base layer 2, two metal oxide layers (optical adjustment layers) 3, 3, and a silver-based thin film layer interposed between the metal oxide layers. (Heat ray reflective layer) 4 is provided. In the present specification, the base material layer 2 side of the transparent conductive laminate may be referred to as “back side” and the opposite side may be referred to as “front side”.
(基材層)
 基材層2は、樹脂フィルムからなり、透明導電性積層体1の強度確保、金属酸化物層3等の支持等の目的で利用される。樹脂フィルムを構成する樹脂材料としては、本発明の目的を損なわない限り、特に制限はないが、例えば、ポリエステル系樹脂が挙げられる。ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等を用いることができる。また、透明性が確保されていれば、ポリエステル樹脂以外のフィルム材でもよく、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、ナイロン6、ナイロン12などのポリアミド樹脂、ポリビニルアルコールやエチレン―ビニルアルコール共重合体などのビニルアルコール樹脂、さらにはポリスチレン、トリアセチルセルロース、アクリル、ポリ塩化ビニル、ポリカーボネート、ポリイミド、ポリエーテルサルホン、環状ポリオレフィンなどの合成樹脂からなるフィルムを用いることができる。
(Base material layer)
The base material layer 2 is made of a resin film, and is used for the purpose of ensuring the strength of the transparent conductive laminate 1 and supporting the metal oxide layer 3 and the like. The resin material constituting the resin film is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include polyester resins. As the polyester resin, for example, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, or the like can be used. In addition, film materials other than polyester resin may be used as long as transparency is ensured. For example, polyolefin resin such as polyethylene and polypropylene, polyamide resin such as nylon 6 and nylon 12, polyvinyl alcohol and ethylene-vinyl alcohol copolymer. A film made of a synthetic resin such as polystyrene, triacetyl cellulose, acrylic, polyvinyl chloride, polycarbonate, polyimide, polyethersulfone, cyclic polyolefin, or the like can be used.
 基材層2は、図1に示されるように、樹脂フィルムのみからなる構成である。なお、本発明の場合、図2に示される基材層2Aのように、樹脂フィルムからなる芯材21の両面に平坦化層(ハードコート層)22,23がそれぞれ形成された構成であってもよいし、芯材21の片面(何れか一方の面)のみに平坦化層(ハードコート層)が形成された構成の基材層であってもよい。 The base material layer 2 has a configuration composed only of a resin film, as shown in FIG. In the case of the present invention, as in the base material layer 2A shown in FIG. 2, planarization layers (hard coat layers) 22 and 23 are respectively formed on both surfaces of the core material 21 made of a resin film. Alternatively, it may be a base material layer having a configuration in which a flattening layer (hard coat layer) is formed only on one surface (any one surface) of the core material 21.
 上記平坦化層の厚みは、特に制限されないが、例えば、1μm~10μmが好ましい。平坦化層の厚みが1μm未満になると、期待するような平坦化を充分に行うことが難しくなる。一方、平坦化層の厚みが10μmを超えると、さらなる平坦化を期待することは困難であるので、資源的にも経済的にも無駄となりやすい。 The thickness of the planarizing layer is not particularly limited, but is preferably 1 μm to 10 μm, for example. When the thickness of the flattening layer is less than 1 μm, it is difficult to sufficiently perform the flattening as expected. On the other hand, if the thickness of the flattening layer exceeds 10 μm, it is difficult to expect further flattening, so that it tends to be wasteful in terms of resources and economy.
 上記平坦化層を構成する材料としては、例えば、エネルギー線硬化型のアクリル系樹脂組成物を挙げることができる。また、ここでいうエネルギー線としては、例えば、紫外線、電子線等を挙げることができる。上記エネルギー線硬化型のアクリル系樹脂組成物としては、アクリル系のモノマーやオリゴマー等を主成分として、さらに光重合開始剤などが添加された組成物を利用することができる。 Examples of the material constituting the planarizing layer include an energy ray curable acrylic resin composition. In addition, examples of the energy rays here include ultraviolet rays and electron beams. As the energy ray curable acrylic resin composition, a composition containing an acrylic monomer or oligomer as a main component and a photopolymerization initiator added thereto can be used.
 上記モノマーとしては、例えばメ、チル(メタ)アクリレート、ラウリル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシ(メタ)アクリレート等の単官能アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)トリアクリレート、トリメチロールプロパン(メタ)アクリル酸安息香酸エステル、トリメチロールプロパン安息香酸エステル等の多官能アクリレート、グリセリンジ(メタ)アクリレートヘキサメチレンジイソシアネート、ペンタエリスリトールトリ(メタ)アクリレートヘキサメチレンジイソシアネート等のウレタンアクリレート等を挙げることができる。 Examples of the monomer include me, til (meth) acrylate, lauryl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, phenoxyethyl (meth) acrylate, and tetrahydrofurfuryl (meth) acrylate. , Monofunctional acrylates such as isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxy (meth) acrylate, and neopentyl glycol di (meth) acrylate 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol Ritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol tri (meth) acrylate Polyfunctional acrylate such as tripentaerythritol hexa (meth) triacrylate, trimethylolpropane (meth) acrylic acid benzoate, trimethylolpropane benzoate, glycerin di (meth) acrylate hexamethylene diisocyanate, pentaerythritol tri (meth) ) Urethane acrylates such as acrylate hexamethylene diisocyanate.
 また、上記オリゴマーとしては、例えば、ポリエステル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アルキット(メタ)アクリレート、メラミン(メタ)アクリレート、シリコーン(メタ)アクリレート等を挙げることができる。 Examples of the oligomer include polyester (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, polyether (meth) acrylate, alkit (meth) acrylate, melamine (meth) acrylate, and silicone (meth). An acrylate etc. can be mentioned.
 エネルギー線硬化性組成物における重合性化合物の含有量は、エネルギー線硬化性組成物の固形分総量100質量%に対して、5~50質量%の範囲が好ましく、10~40質量%の範囲がより好ましく、特に15~35質量%の範囲が好ましい。 The content of the polymerizable compound in the energy beam curable composition is preferably in the range of 5 to 50% by mass, preferably in the range of 10 to 40% by mass with respect to 100% by mass of the total solid content of the energy beam curable composition. More preferably, the range of 15 to 35% by mass is particularly preferable.
 エネルギー線として紫外線を用いる場合は、エネルギー線硬化性組成物は光重合開始剤を含むことが好ましい。かかる光重合開始剤の具体例としては、例えばアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ベンゾフェノン、2-クロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、メチルベンゾイルフォルメート、p-イソプロピル-α-ヒドロキシイソブチルフェノン、α-ヒドロキシイソブチルフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのカルボニル化合物、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントンなどの硫黄化合物などを用いることができる。これらの光重合開始剤は単独で使用してもよいし、2種以上組み合せて用いてもよい。 When ultraviolet rays are used as energy rays, the energy ray curable composition preferably contains a photopolymerization initiator. Specific examples of the photopolymerization initiator include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, benzophenone, 2-chlorobenzophenone, 4,4′-dichlorobenzophenone, 4,4′-bisdiethylaminobenzophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, methyl benzoylformate, p-isopropyl-α-hydroxyisobutylphenone, α-hydroxyisobutylphenone, 2, Carbonyl compounds such as 2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone, tetramethylthiuram monosulfide, teto Sulfur compounds such as lamethylthiuram disulfide, thioxanthone, 2-chlorothioxanthone, and 2-methylthioxanthone can be used. These photopolymerization initiators may be used alone or in combination of two or more.
 基材層2の一方の面上には、金属酸化物層3等の積層物が形成される。本発明の場合、基材層の表面のうち、金属酸化物層等の積層物が形成される側の表面における表面粗さRz(十点平均表面粗さ)は、50nm以下となっている。 A laminate such as a metal oxide layer 3 is formed on one surface of the base material layer 2. In the case of the present invention, the surface roughness Rz (ten-point average surface roughness) of the surface of the base material layer on the side where the laminate such as the metal oxide layer is formed is 50 nm or less.
 なお、基材層が樹脂フィルムのみからなる場合(例えば、基材層2)、その樹脂フィルムの表面粗さが、基材層の表面粗さとなる。これに対し、基材層が平坦化層を備えている場合、金属酸化物層等の積層物が形成される側の平坦化層(例えば、平坦化層22)の表面が、少なくとも50nm以下の表面粗さRz(十点平均表面粗さ)を備えていることになる。 In addition, when a base material layer consists only of a resin film (for example, base material layer 2), the surface roughness of the resin film becomes the surface roughness of a base material layer. On the other hand, when the base material layer is provided with a planarization layer, the surface of the planarization layer (for example, the planarization layer 22) on the side where a laminate such as a metal oxide layer is formed has a surface of at least 50 nm or less. The surface roughness Rz (ten-point average surface roughness) is provided.
 また、基材層(芯材)の片面のみに平坦化層が形成されている場合、何れの面に、金属酸化物層等の積層物が形成されてもよい。 Further, when a planarization layer is formed only on one side of the base material layer (core material), a laminate such as a metal oxide layer may be formed on any side.
 基材層の厚みは、特に制限されないが、例えば、 例えば、1μm~200μmが好ましく、5μm~150μmがより好ましい。基材層の厚みが、このような範囲であると、基材層の表面粗さ(十点表面粗さ)を、50nm以下に制御し易い。 The thickness of the base material layer is not particularly limited, but for example, preferably 1 μm to 200 μm, and more preferably 5 μm to 150 μm. When the thickness of the base material layer is in such a range, the surface roughness (ten-point surface roughness) of the base material layer can be easily controlled to 50 nm or less.
 なお、本発明の目的を損なわない限り、基材層の表面に、必要に応じて、プラズマ処理、コロナ放電処理、火炎処理等の表面処理を行ってもよい。なお、基材層の表面(前記積層物が形成される側の表面)に、これらの表面処理を行った場合、表面処理後の表面粗さ(十点平均表面粗さ)が、50nm以下である必要がある。 As long as the object of the present invention is not impaired, the surface of the base material layer may be subjected to surface treatment such as plasma treatment, corona discharge treatment, flame treatment or the like, if necessary. In addition, when these surface treatments are performed on the surface of the base material layer (the surface on which the laminate is formed), the surface roughness after surface treatment (10-point average surface roughness) is 50 nm or less. There must be.
(銀系薄膜層)
 銀系薄膜層(熱線反射層)4は、銀又は銀合金の薄膜からなり、導電性と共に、熱線(赤外線)を反射する機能を有する。銀系薄膜層4を構成する銀又は銀合金としては、例えば、銀(Ag)、銀パラジウム合金(AgPd)、銀パラジウム銅合金(AgPdCu)、銀銅合金(AgCu)等が挙げられる。なお、銀系薄膜層4に利用される銀又は銀合金としては、銀パラジウム合金が好ましい。
(Silver-based thin film layer)
The silver-based thin film layer (heat ray reflective layer) 4 is made of a silver or silver alloy thin film, and has a function of reflecting heat rays (infrared rays) together with conductivity. Examples of silver or a silver alloy constituting the silver-based thin film layer 4 include silver (Ag), a silver palladium alloy (AgPd), a silver palladium copper alloy (AgPdCu), and a silver copper alloy (AgCu). The silver or silver alloy used for the silver-based thin film layer 4 is preferably a silver palladium alloy.
 銀系薄膜層4の厚みは、特に制限されないが、例えば、6nm~30nmが好ましく、10nm~20nmがより好ましい。 The thickness of the silver-based thin film layer 4 is not particularly limited, but is preferably 6 nm to 30 nm, for example, and more preferably 10 nm to 20 nm.
 銀系薄膜層4は、図1に示されるように、隣り合った金属酸化物層3,3の間で挟まれる形で、それらの間に介在される。 The silver-based thin film layer 4 is interposed between adjacent metal oxide layers 3 and 3 as shown in FIG.
(金属酸化物層)
 金属酸化物層(光学調整層)3は、後述する特定の金属酸化物層を含む層からなり、銀系薄膜層(熱線反射層)4における可視光の反射を抑制しかつ可視光の透過性を向上させる等の目的で形成される。図1に示される透明導電性積層体1は、2つの金属酸化物層3,3を備えている。一方の金属酸化物層3は、基材層2の表側に積層され、他方の金属酸化物層3は、金属酸化物層4の表側に積層されている。これらの金属酸化物層3,3は、銀系薄膜層4を挟むように形成されている。
(Metal oxide layer)
The metal oxide layer (optical adjustment layer) 3 includes a layer including a specific metal oxide layer described later, suppresses reflection of visible light in the silver-based thin film layer (heat ray reflective layer) 4 and transmits visible light. It is formed for the purpose of improving. The transparent conductive laminate 1 shown in FIG. 1 includes two metal oxide layers 3 and 3. One metal oxide layer 3 is laminated on the front side of the base material layer 2, and the other metal oxide layer 3 is laminated on the front side of the metal oxide layer 4. These metal oxide layers 3 and 3 are formed so as to sandwich the silver-based thin film layer 4.
 なお、複数の金属酸化物層のうち、最も表側に配されるもの(つまり、基材層から最も離れた位置に配されるもの)を、特に「表面側金属酸化物層」と称する。例えば、図1において、最も表側に配される金属酸化物層3が、表面側光金属酸化物層30となる。 Note that, among the plurality of metal oxide layers, the one arranged on the most front side (that is, the one arranged most distant from the base material layer) is particularly referred to as a “surface-side metal oxide layer”. For example, in FIG. 1, the metal oxide layer 3 arranged on the most front side becomes the surface-side photometal oxide layer 30.
 また、基材層2に最も近い位置に配される金属酸化物層3は、基材層2上に直接、形成されている。 Further, the metal oxide layer 3 disposed at the position closest to the base material layer 2 is directly formed on the base material layer 2.
 金属酸化物層3を構成する材質(金属酸化物)としては、アルミ添加酸化亜鉛、チタン添加酸化亜鉛、亜鉛添加酸化インジウム、酸化ニオブからなる群より選ばれる少なくとも1種の金属酸化物が使用される。金属酸化物層3が、このような金属酸化物から形成されると、透明導電性積層体が高温多湿環境下で使用されても、銀系薄膜層4に含まれる銀成分の凝集やマイグレーション現象等の発生を抑制することができる。なお、本発明の目的を損なわない限り、金属酸化物層3は、上述した金属酸化物以外の物質を含有してもよい。 As the material (metal oxide) constituting the metal oxide layer 3, at least one metal oxide selected from the group consisting of aluminum-added zinc oxide, titanium-added zinc oxide, zinc-added indium oxide and niobium oxide is used. The When the metal oxide layer 3 is formed from such a metal oxide, even if the transparent conductive laminate is used in a high-temperature and high-humidity environment, aggregation and migration phenomenon of the silver component contained in the silver-based thin film layer 4 Etc. can be suppressed. In addition, unless the objective of this invention is impaired, the metal oxide layer 3 may contain substances other than the metal oxide mentioned above.
 なお、金属酸化物がアルミ添加酸化亜鉛からなる場合、酸化亜鉛中のアルミニウム元素の含有率は、0.1~20原子%が好ましい。 When the metal oxide is made of aluminum-added zinc oxide, the aluminum element content in the zinc oxide is preferably 0.1 to 20 atomic%.
 また、金属酸化物がチタン添加酸化亜鉛からなる場合、酸化亜鉛中のチタン元素の含有率は、0.1~20原子%が好ましい。 Further, when the metal oxide is composed of titanium-added zinc oxide, the content of titanium element in the zinc oxide is preferably 0.1 to 20 atomic%.
 また、金属酸化物が亜鉛添加酸化インジウムからなる場合、酸化インジウム中の亜鉛元素の含有率は、0.1~20原子%が好ましい。 When the metal oxide is made of zinc-added indium oxide, the content of zinc element in indium oxide is preferably 0.1 to 20 atomic%.
 また、金属酸化物層3は、銀系薄膜層4と比べて、可視光の屈折率が高く設定されることが好ましい。金属酸化物層3の屈折率(波長:589.3nm)は、例えば、1.9以上に設定されることが好ましい。 Further, the metal oxide layer 3 is preferably set to have a higher refractive index of visible light than the silver-based thin film layer 4. The refractive index (wavelength: 589.3 nm) of the metal oxide layer 3 is preferably set to, for example, 1.9 or more.
 また、金属酸化物層3の厚み(単層の厚み)は、例えば、20nm~70nmに設定される。なお、表面側金属酸化物層の厚みは、少なくとも20nm以上に設定される。表面側金属酸化物層の厚みが、このような範囲であると、透明導電性積層体が高温多湿環境下で使用されても、銀系薄膜層に含まれる銀成分の凝集やマイグレーション現象等の発生を抑制することができる。 The thickness of the metal oxide layer 3 (single layer thickness) is set to 20 nm to 70 nm, for example. In addition, the thickness of the surface side metal oxide layer is set to at least 20 nm or more. When the thickness of the surface-side metal oxide layer is in such a range, even if the transparent conductive laminate is used in a high-temperature and high-humidity environment, the aggregation of silver components contained in the silver-based thin film layer, migration phenomenon, etc. Occurrence can be suppressed.
 本実施形態の場合、複数の金属酸化物層は、互いに同じ材質からなる。なお、本発明の目的を損なわない限り、金属酸化物層同士が互いに異なる材質から構成されてもよい。 In the case of this embodiment, the plurality of metal oxide layers are made of the same material. In addition, as long as the objective of this invention is not impaired, metal oxide layers may be comprised from a mutually different material.
(成膜方法)
 銀系薄膜層4、及び金属酸化物層3,3を基材層2上に成膜する方法としては、特に制限はなく、目的に応じて適宜選択される。成膜方法としては、例えば、真空蒸着法(電子線ビーム蒸着法、抵抗加熱蒸着法)、スパッタリング法、イオンプレーティング法、イオンビーム法、イオンアシスト法、レーザーアブレーション法等の物理的気相成長(PVD)法、熱CVD法、光CVD法、プラズマCVD法等の化学的気相成長(CVD)法等が挙げられる。これらの中でも、物理的気相成長(PVD)法が好ましく、基材層2に対して金属酸化物層3等を確実に積層し易い等の理由により、スパッタリング法が特に好ましい。
(Film formation method)
There is no restriction | limiting in particular as a method of forming into a film the silver-type thin film layer 4 and the metal oxide layers 3 and 3 on the base material layer 2, According to the objective, it selects suitably. Examples of film formation methods include physical vapor deposition such as vacuum deposition (electron beam deposition, resistance heating deposition), sputtering, ion plating, ion beam, ion assist, and laser ablation. Examples thereof include a chemical vapor deposition (CVD) method such as a (PVD) method, a thermal CVD method, a photo CVD method, and a plasma CVD method. Among these, the physical vapor deposition (PVD) method is preferable, and the sputtering method is particularly preferable because the metal oxide layer 3 and the like can be reliably laminated on the base material layer 2.
 また、スパッタリング法としては、成膜レートの高いDCスパッタリング法が好ましい。なお、スパッタリング法により多層成膜する場合、1つのチャンバで複数のターゲットから交互又は順番に成膜する1チャンバ法であってもよいし、複数のチャンバで連続的に成膜するマルチチャンバ法であってもよいが、生産性及び材料コンタミネーションを防止する等の観点より、マルチチャンバ法が好ましい。 Further, as the sputtering method, a DC sputtering method having a high film formation rate is preferable. Note that when a multilayer film is formed by a sputtering method, a one-chamber method in which films are alternately or sequentially formed from a plurality of targets in one chamber may be used, or a multi-chamber method in which films are continuously formed in a plurality of chambers. However, the multi-chamber method is preferable from the viewpoint of preventing productivity and material contamination.
(その他の層)
 透明導電性積層体は、本発明の目的を損なわない限り、上述した基材層2、金属酸化物層3、銀系薄膜層4以外に、その他の層を備えてもよい。例えば、基材層2の裏面側に、粘着剤層が形成されてもよい。このような粘着剤層は、被着体(例えば、窓ガラス)に対して透明導電性積層体が貼り付けられる際に利用される。
(Other layers)
The transparent conductive laminate may include other layers in addition to the base material layer 2, the metal oxide layer 3, and the silver-based thin film layer 4 described above as long as the object of the present invention is not impaired. For example, an adhesive layer may be formed on the back surface side of the base material layer 2. Such an adhesive layer is utilized when a transparent conductive laminated body is affixed with respect to a to-be-adhered body (for example, window glass).
 前記粘着剤層に利用される粘着剤としては、特に制限はなく、例えば、アクリル系粘着剤、ゴム系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、フッ素系粘着剤、エポキシ系粘着剤等の公知の粘着剤が挙げられる。粘着剤層の厚みも、特に制限はなく、目的に応じて適宜、設定される。 There is no restriction | limiting in particular as an adhesive utilized for the said adhesive layer, For example, an acrylic adhesive, a rubber adhesive, a vinyl alkyl ether adhesive, a silicone adhesive, a polyester adhesive, a polyamide adhesive And known pressure-sensitive adhesives such as an adhesive, a urethane-based pressure-sensitive adhesive, a fluorine-based pressure-sensitive adhesive, and an epoxy-based pressure-sensitive adhesive. The thickness of the pressure-sensitive adhesive layer is not particularly limited, and is appropriately set depending on the purpose.
 なお、前記粘着剤層の表面(粘着面)は、使用時まで(つまり、被着体に貼り付けられる前まで)は、剥離ライナーによって保護されてもよい。剥離ライナーとしては、特に制限はなく、例えば、ポリエチレンテレフタレート等のポリエステルフィルムや紙の表面に、シリコーン系の剥離処理剤を塗布したもの等が挙げられる。 The surface (adhesive surface) of the pressure-sensitive adhesive layer may be protected by a release liner until it is used (that is, before being attached to the adherend). The release liner is not particularly limited, and examples thereof include a polyester film such as polyethylene terephthalate and a paper surface coated with a silicone release treatment agent.
 また、透明導電性積層体は、表面側金属酸化物層上に、ハードコート層等からなる保護層が形成されてもよい。 In the transparent conductive laminate, a protective layer made of a hard coat layer or the like may be formed on the surface-side metal oxide layer.
 また、透明導電性積層体は、本発明の目的を損なわない限り、バリア層等を備えてもよい。 Further, the transparent conductive laminate may be provided with a barrier layer or the like as long as the object of the present invention is not impaired.
(保護層を含む透明導電性積層体)
 図3は、他の実施形態に係る透明導電性積層体(保護層付き)1Xの構成を模式的に表した断面図である。この透明導電性積層体1Xは、図1に示される透明導電性積層体1の表側にある金属酸化物層3(表面側光金属酸化物層30)の外側に、保護層11を形成したものからなる。
(Transparent conductive laminate including protective layer)
FIG. 3 is a cross-sectional view schematically showing the configuration of a transparent conductive laminate (with a protective layer) 1X according to another embodiment. This transparent conductive laminate 1X is obtained by forming a protective layer 11 outside the metal oxide layer 3 (surface-side photometal oxide layer 30) on the front side of the transparent conductive laminate 1 shown in FIG. Consists of.
 保護層は、透明導電性積層体の更なる耐久性(強度、湿熱耐久性、耐擦傷性等)の向上等を目的として、用いられる。 The protective layer is used for the purpose of improving the durability (strength, wet heat durability, scratch resistance, etc.) of the transparent conductive laminate.
 図3に示される透明導電性積層体1Xのように、保護層11を備えると、耐摩耗性、強度、湿熱耐久性等が向上する。保護層を構成する材料としては、例えば、上述した平坦化層を構成する材料と同種のもの(例えば、紫外線硬化型のハードコート層)が利用される。 If the protective layer 11 is provided like the transparent conductive laminate 1X shown in FIG. 3, the wear resistance, strength, wet heat durability and the like are improved. As a material constituting the protective layer, for example, the same kind of material as that constituting the planarization layer described above (for example, an ultraviolet curable hard coat layer) is used.
 保護層は、例えば、アクリル系モノマー、重合開始剤、有機溶剤等を混合してなる組成物を、硬化させたものからなる。アクリル系モノマーとしては、例えば、単官能アクリレート、2官能アクリレート、3官能以上のアクリレート等が用いられる。重合開始剤としては、紫外線等の光を受けてラジカルを生成する光重合開始剤、熱を受けてラジカルを生成する熱重合開始剤等が利用される。有機溶剤としては、例えば、メチルイソブチルケトン(MIBK)、酢酸エチル、トルエン等が利用される。なお、保護層を形成するための前記組成物には、更に、レベリング剤、密着剤(リン酸エステル化合物)、アクリル系オリゴマー等が添加されてもよい。アクリル系オリゴマーとしては、共重合アクリレート、エポキシアクリレート、ポリエステルアクリレート、ポリウレタンアクリレート等が用いられてもよい。 The protective layer is made of, for example, a cured composition obtained by mixing an acrylic monomer, a polymerization initiator, an organic solvent, and the like. As the acrylic monomer, for example, monofunctional acrylate, bifunctional acrylate, trifunctional or higher acrylate, and the like are used. As the polymerization initiator, a photopolymerization initiator that generates light by receiving light such as ultraviolet rays, a thermal polymerization initiator that generates heat by receiving heat, and the like are used. As the organic solvent, for example, methyl isobutyl ketone (MIBK), ethyl acetate, toluene or the like is used. In addition, a leveling agent, an adhesive agent (phosphate ester compound), an acrylic oligomer, or the like may be further added to the composition for forming the protective layer. As the acrylic oligomer, copolymer acrylate, epoxy acrylate, polyester acrylate, polyurethane acrylate, or the like may be used.
 保護層の厚みは、1μm以上3μm以下に設定されることがこのましい。保護層の厚みがこのような範囲であると、例えば、車載用途等で必要とされる長期信頼性(後述の評価7:湿熱耐久性2)が確保される。また、保護層の厚みがこのような範囲であると、透明導電性積層体の表面抵抗率を10Ω/□以下にすることができ、その結果、静電気拡散機能によりホコリ等の付着を防止することができる。なお、保護層の厚みが1μm未満になると、透明導電性積層体の湿熱耐久性が損なわれる。また、保護層の厚みが、3μmを超えると、透明導電性積層体の表面抵抗率が大きくなり、静電気拡散性が確保されない。 The thickness of the protective layer is preferably set to 1 μm or more and 3 μm or less. When the thickness of the protective layer is in such a range, for example, long-term reliability (evaluation 7 described later: wet heat durability 2) required for in-vehicle use or the like is ensured. Moreover, when the thickness of the protective layer is in such a range, the surface resistivity of the transparent conductive laminate can be reduced to 10 9 Ω / □ or less, and as a result, adhesion of dust and the like is prevented by the electrostatic diffusion function. can do. In addition, when the thickness of a protective layer will be less than 1 micrometer, the wet heat durability of a transparent conductive laminated body will be impaired. Moreover, when the thickness of a protective layer exceeds 3 micrometers, the surface resistivity of a transparent conductive laminated body will become large, and static electricity diffusivity will not be ensured.
 なお、保護層を構成する材料中には、本発明の目的を損なわない限り、レベリング剤等の各種添加剤が添加されてもよい。 In the material constituting the protective layer, various additives such as a leveling agent may be added as long as the object of the present invention is not impaired.
 なお、透明導電性積層体に保護層を設けると、透明導電性積層体を構成する各種材料の屈折率等の影響により、透明導電性積層体に光の干渉縞が現れる場合がある。透明導電性積層体の用途によっては、そのような干渉縞が現れても問題はないが、干渉縞は発生しない方が好ましい。 If a protective layer is provided on the transparent conductive laminate, light interference fringes may appear in the transparent conductive laminate due to the influence of the refractive index of various materials constituting the transparent conductive laminate. Depending on the use of the transparent conductive laminate, there is no problem even if such interference fringes appear, but it is preferable that no interference fringes occur.
 透明導電性積層体が保護層を備える場合、金属酸化物層としては、亜鉛添加酸化インジウム、アルミ添加酸化亜鉛が好ましく、特に、亜鉛添加酸化インジウムが好ましい。 When the transparent conductive laminate is provided with a protective layer, the metal oxide layer is preferably zinc-added indium oxide or aluminum-added zinc oxide, and particularly preferably zinc-added indium oxide.
(複数の銀系薄膜層を含む透明導電性積層体)
 図4は、複数の銀系薄膜層4,4を有する他の実施形態に係る透明導電性積層体1Bの構成を模式的に表した断面図である。この透明導電性積層体1Bは、2層の銀系薄膜層(熱線反射層)4,4を備えており、基材層2に近い第1層目の銀系薄膜層4は、基材層2に近い第1層目の金属酸化物層3と、第2層目の金属酸化物層3との間で挟まれている。また、表側に配される第2層目の銀系薄膜層4は、第2層目の金属酸化物層3と、表側に配される第3層目の金属酸化物層3との間で挟まれている。なお、この場合、第3層目の金属酸化物層が、表面側金属酸化物層となる。
(Transparent conductive laminate including multiple silver-based thin film layers)
FIG. 4 is a cross-sectional view schematically showing the configuration of a transparent conductive laminate 1B according to another embodiment having a plurality of silver-based thin film layers 4 and 4. As shown in FIG. This transparent conductive laminate 1B includes two silver-based thin film layers (heat ray reflective layers) 4 and 4, and the first silver-based thin film layer 4 close to the base material layer 2 is a base material layer. 2 between the first metal oxide layer 3 close to 2 and the second metal oxide layer 3. The second silver-based thin film layer 4 disposed on the front side is between the second metal oxide layer 3 and the third metal oxide layer 3 disposed on the front side. It is sandwiched. In this case, the third metal oxide layer is a surface-side metal oxide layer.
 このように本発明の透明導電性積層体は、複数層(2層以上)の銀系薄膜層を備える構成であってもよい。 Thus, the transparent conductive laminate of the present invention may have a structure including a plurality of (two or more) silver-based thin film layers.
(可視光透過率)
 透明導電性積層体の可視光透過率は、特に制限されないが、例えば、50%以上が好ましく、60%以上がより好ましい。可視光透過率は、JIS A5759に準拠して測定することができる。
(Visible light transmittance)
Although the visible light transmittance of the transparent conductive laminate is not particularly limited, for example, 50% or more is preferable, and 60% or more is more preferable. The visible light transmittance can be measured according to JIS A5759.
(効果・用途等)
 本発明の透明導電性積層体は、耐久性に優れている。そのため、高温高湿条件下(例えば、温度85℃、湿度85%RH)で使用しても、銀系薄膜層中に含まれる銀成分に由来する斑点状の欠陥の発生が抑制される。
(Effect / Use etc.)
The transparent conductive laminate of the present invention is excellent in durability. Therefore, even when used under high-temperature and high-humidity conditions (for example, a temperature of 85 ° C. and a humidity of 85% RH), the occurrence of spot-like defects derived from the silver component contained in the silver-based thin film layer is suppressed.
 本発明の透明導電性積層体は、例えば、電磁波シール部材、電極部材等に利用される。また、透明導電性積層体は、可撓性を備えているため、平面状の被着体のみならず、湾曲面状の被着体に対しても貼り付けることが可能である。 The transparent conductive laminate of the present invention is used for, for example, an electromagnetic wave sealing member, an electrode member, and the like. Further, since the transparent conductive laminate has flexibility, it can be attached to not only a planar adherend but also a curved adherend.
 ここで、図5を参照しつつ、透明導電性積層体の具体的な応用例を説明する。図5は、透明導電性積層体1C,1Cを応用した調光フィルム10の構成を模式的に表した断面図である。調光フィルム10は、電圧の印加の有無に応じて光の透過率を変化させるフィルムであり、建築物、車両等の窓ガラスに貼り付ける形で利用される。 Here, a specific application example of the transparent conductive laminate will be described with reference to FIG. FIG. 5 is a cross-sectional view schematically showing the configuration of the light control film 10 to which the transparent conductive laminates 1C and 1C are applied. The light control film 10 is a film that changes the light transmittance according to the presence or absence of voltage application, and is used in a form of being attached to a window glass of a building or a vehicle.
 調光フィルム10は、一対の透明導電性積層体1C,1Cと、一対の透明導電性積層体1C,1Cの間に介在される透明なマトリックスポリマー層6と、マトリックスポリマー層6中に分散されている複数の液晶カプセル7とを備えている。液晶カプセル7は、マイクロカプセル内に液晶分子が封入されたものである。 The light control film 10 is dispersed in the pair of transparent conductive laminates 1C and 1C, the transparent matrix polymer layer 6 interposed between the pair of transparent conductive laminates 1C and 1C, and the matrix polymer layer 6. And a plurality of liquid crystal capsules 7. The liquid crystal capsule 7 is one in which liquid crystal molecules are enclosed in a microcapsule.
 透明導電性積層体1Cは、樹脂フィルム等を含む基材層2と、基材層2上に積層される電極層5とを備えている。電極層5は、銀系薄膜層と金属酸化物層の積層物からなる。一対の透明導電性積層体1C,1Cは、互いの電極層5,5同士が対向する形で、マトリックスポリマー層6を挟んでいる。なお、一対の電極層5,5は、バッテリ8及びスイッチ9を介して 互いに接続されている。 The transparent conductive laminate 1 </ b> C includes a base material layer 2 including a resin film and the like, and an electrode layer 5 laminated on the base material layer 2. The electrode layer 5 is composed of a laminate of a silver-based thin film layer and a metal oxide layer. The pair of transparent conductive laminates 1C and 1C sandwich the matrix polymer layer 6 with the electrode layers 5 and 5 facing each other. The pair of electrode layers 5 and 5 are connected to each other via the battery 8 and the switch 9.
 調光フィルム10のスイッチ9が開状態(OFF状態)の場合、一対の電極層5,5の間に電位差は発生しないため、マイクロカプセル内の液晶分子がランダムに並んだ状態となる。そのため、スイッチ9が開状態の調光フィルム10では、液晶カプセル7が光の透過を妨げるように機能する。 When the switch 9 of the light control film 10 is in an open state (OFF state), no potential difference is generated between the pair of electrode layers 5 and 5, so that the liquid crystal molecules in the microcapsule are arranged in a random manner. Therefore, in the light control film 10 with the switch 9 open, the liquid crystal capsule 7 functions to prevent light transmission.
 これに対し、調光フィルム10のスイッチが閉状態(ON状態)の場合、一対の電極層5.5の間に電位差が生じ、マイクロカプセル内の液晶分子が一対の電極5,5の並び方向(調光フィルム10の厚み方向)に沿う形で配向する。そのため、スイッチ9が閉状態の調光フィルム10では、液晶カプセル7が光を透過させるように機能する。 On the other hand, when the switch of the light control film 10 is in the closed state (ON state), a potential difference is generated between the pair of electrode layers 5.5, and the liquid crystal molecules in the microcapsule are aligned in the direction in which the pair of electrodes 5 and 5 are aligned. It is oriented in a form along (the thickness direction of the light control film 10). Therefore, in the light control film 10 in which the switch 9 is closed, the liquid crystal capsule 7 functions so as to transmit light.
 このように、本発明の透明導電性積層体は、調光フィルムを構成する部材として利用することができる。また、このような部材を、フレキシブル性を備える(透過率を制御することで、透過率が低い場合に投影映像を映し出すことが可能な)スクリーン(所謂、アクティブスクリーン)として利用することも可能である。 Thus, the transparent conductive laminate of the present invention can be used as a member constituting a light control film. Further, such a member can also be used as a screen (so-called active screen) having flexibility (by controlling the transmittance so that a projected image can be displayed when the transmittance is low). is there.
 透明導電性積層体は、例えば、建物の窓ガラスに室内側から貼り付けて熱線反射部材として使用される。その際、透明導電性積層体は、基材層側が窓ガラスを向く形で貼り付けられる。 The transparent conductive laminate is used, for example, as a heat ray reflecting member by being attached to a window glass of a building from the indoor side. In that case, a transparent conductive laminated body is affixed in the form in which the base material layer side faces a window glass.
 本発明の透明導電性積層体は、建物の窓ガラスの室内側のみならず、必要に応じて、窓ガラスの外側に貼り付けられてもよい。また、透明導電性積層体は、建物の窓ガラスのみならず、車両(例えば、自動車、電車)、船舶等の乗り物の窓ガラス等、種々の窓ガラスや透明部材に貼り付けて、遮熱及び断熱用途に用いることができる。 The transparent conductive laminate of the present invention may be affixed not only to the indoor side of the window glass of the building but also to the outside of the window glass as necessary. In addition, the transparent conductive laminate is attached not only to the window glass of buildings but also to various window glasses and transparent members such as vehicles (for example, automobiles, trains), and window vehicles of ships, etc. It can be used for heat insulation.
 以下、実施例に基づいて本発明を更に詳細に説明する。なお、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. In addition, this invention is not limited at all by these Examples.
 なお、以下に示される実施例、及び比較例では、ロール・トウ・ロール方式のマグネトロンスパッタリング装置を用いて、基材層上に各層を成膜した。また、スパッタリング装置の各チャンバー内に供給されるガス(例えば、アルゴンガス及び酸素ガス)の流量は、所定のマスフローコントローラを用いて適宜、調節した。金属酸化物層の膜中に含まれる酸素量はスパッタリング成膜時の酸素ガス導入量で調整した。 In Examples and Comparative Examples shown below, each layer was formed on a base material layer using a roll-to-roll-type magnetron sputtering apparatus. In addition, the flow rate of gas (for example, argon gas and oxygen gas) supplied into each chamber of the sputtering apparatus was appropriately adjusted using a predetermined mass flow controller. The amount of oxygen contained in the metal oxide layer was adjusted by the amount of oxygen gas introduced during sputtering.
〔実施例1〕
 基材層として、両面にアクリル系樹脂からなる平坦化層が形成された厚み50μm、かつ十点平均表面粗さ(Rz)が13nmの平坦化層付きPETフィルムを用意した。その平坦化層付きPETフィルムの一方の面上に、スパッタリングにより、アルミ添加酸化亜鉛の膜からなる第1層目の金属酸化物層を形成した。次いで、第1層目の金属酸化物層上に、スパッタリングにより、銀パラジウム合金の膜からなる銀系薄膜層を形成し、更に、その銀系薄膜層上に、アルミ添加酸化亜鉛の膜からなる第2層目の金属酸化物層(表面側金属酸化物層)を形成した。このようにして、実施例1の透明導電性積層体を作製した。この透明導電性積層体を構成する各層の厚みは、表1に示される通りである。透明導電性積層体の各層の厚み等は、蛍光X線分析(リガク社製、ZSX-100e)によって測定した。また、基材層の表面粗さRzは、走査型プローブ顕微鏡(製品名「SPM9600」、株式会社島津製作所製)を用いて測定した。なお、以降の実施例、比較例についても同様にして、基材層の表面粗さRz、透明導電性積層体の各層の厚み等を測定した。実施例1におけるスパッタリングの成膜条件は、以下の通りである。
[Example 1]
As a base material layer, a PET film with a flattening layer having a thickness of 50 μm and a 10-point average surface roughness (Rz) of 13 nm, on which a flattening layer made of an acrylic resin was formed on both surfaces, was prepared. A first metal oxide layer made of an aluminum-added zinc oxide film was formed on one surface of the flattened PET film by sputtering. Next, a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and further, an aluminum-added zinc oxide film is formed on the silver-based thin film layer. A second metal oxide layer (surface-side metal oxide layer) was formed. In this way, the transparent conductive laminate of Example 1 was produced. The thickness of each layer constituting this transparent conductive laminate is as shown in Table 1. The thickness of each layer of the transparent conductive laminate was measured by fluorescent X-ray analysis (manufactured by Rigaku Corporation, ZSX-100e). Further, the surface roughness Rz of the base material layer was measured using a scanning probe microscope (product name “SPM9600”, manufactured by Shimadzu Corporation). The following examples and comparative examples were similarly measured for the surface roughness Rz of the base material layer, the thickness of each layer of the transparent conductive laminate, and the like. The film formation conditions for sputtering in Example 1 are as follows.
<成膜条件:各金属酸化物層>
 ターゲット:AZOターゲット(AGCセラミックス社製)、成膜圧力:0.4Pa、DCパワー:2.5W/cm
<成膜条件:銀系薄膜層>
 ターゲット:パラジウムを1原子%含有する銀、成膜圧力:0.4Pa、DCパワー:0.6W/cm
<Film formation conditions: each metal oxide layer>
Target: AZO target (manufactured by AGC Ceramics), film forming pressure: 0.4 Pa, DC power: 2.5 W / cm 2
<Film formation conditions: Silver-based thin film layer>
Target: Silver containing 1 atomic% of palladium, film forming pressure: 0.4 Pa, DC power: 0.6 W / cm 2
〔実施例2〕
 基材層として、両面にアクリル系樹脂からなる平坦化層が形成された厚み125μm、かつ十点平均表面粗さ(Rz)が13nmの平坦化層付きPETフィルムを用意した。その平坦化層付きPETフィルムの一方の面上に、スパッタリングにより、チタン添加酸化亜鉛の膜からなる第1層目の金属酸化物層を形成した。次いで、第1層目の金属酸化物層上に、スパッタリングにより、銀パラジウム合金の膜からなる銀系薄膜層を形成し、更に、その銀系薄膜層上に、チタン添加酸化亜鉛の膜からなる第2層目の金属酸化物層(表面側金属酸化物層)を形成して、透明導電性積層体を作製した。スパッタリングの成膜条件は、以下の通りである。
[Example 2]
As a base material layer, a PET film with a flattening layer having a thickness of 125 μm and a ten-point average surface roughness (Rz) of 13 nm in which a flattening layer made of an acrylic resin was formed on both surfaces was prepared. A first metal oxide layer made of a titanium-added zinc oxide film was formed on one surface of the planarized PET film with sputtering. Next, a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and further, a titanium-added zinc oxide film is formed on the silver-based thin film layer. A second metal oxide layer (surface side metal oxide layer) was formed to produce a transparent conductive laminate. The film formation conditions for sputtering are as follows.
<成膜条件:各金属酸化物層>
 ターゲット:SZOターゲット(Tiを5原子%含有するZnO、AGCセラミックス社製)、成膜圧力:0.4Pa、DCパワー:2.5W/cm
<成膜条件:銀系薄膜層>
 ターゲット:パラジウムを1原子%含有する銀、成膜圧力:0.4Pa、DCパワー:0.6W/cm
<Film formation conditions: each metal oxide layer>
Target: SZO target (ZnO containing 5 atomic% of Ti, manufactured by AGC Ceramics), film forming pressure: 0.4 Pa, DC power: 2.5 W / cm 2
<Film formation conditions: Silver-based thin film layer>
Target: Silver containing 1 atomic% of palladium, film forming pressure: 0.4 Pa, DC power: 0.6 W / cm 2
〔実施例3〕
 基材層として、実施例2と同じ平坦化層付きPETフィルム(厚み:125μm、Rz:13nm)を用意した。その平坦化層付きPETフィルムの一方の面上に、スパッタリングにより、亜鉛添加酸化インジウムの膜からなる第1層目の金属酸化物層を形成した。次いで、第1層目の金属酸化物層上に、スパッタリングにより、銀パラジウム合金の膜からなる金属酸化物層を形成し、更に、その銀系薄膜層上に、亜鉛添加酸化インジウムの膜からなる第2層目の金属酸化物層(表面側金属酸化物層)を形成して、透明導電性積層体を作製した。スパッタリングの成膜条件は、以下の通りである。
Example 3
As the base material layer, the same PET film with a flattening layer as in Example 2 (thickness: 125 μm, Rz: 13 nm) was prepared. A first metal oxide layer made of a zinc-added indium oxide film was formed on one surface of the planarized PET film by sputtering. Next, a metal oxide layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and further made of a zinc-added indium oxide film on the silver-based thin film layer. A second metal oxide layer (surface side metal oxide layer) was formed to produce a transparent conductive laminate. The film formation conditions for sputtering are as follows.
<成膜条件:各金属酸化物層>
 ターゲット:IZOターゲット(出光興産株式会社製)、成膜圧力:0.4Pa、DCパワー:2.5W/cm
<成膜条件:銀系薄膜層>
 ターゲット:パラジウムを1原子%含有する銀、成膜圧力:0.4Pa、DCパワー:0.6W/cm
<Film formation conditions: each metal oxide layer>
Target: IZO target (manufactured by Idemitsu Kosan Co., Ltd.), film forming pressure: 0.4 Pa, DC power: 2.5 W / cm 2
<Film formation conditions: Silver-based thin film layer>
Target: Silver containing 1 atomic% of palladium, film forming pressure: 0.4 Pa, DC power: 0.6 W / cm 2
〔実施例4〕
 基材層として、実施例2と同じ平坦化層付きPETフィルム(厚み:125μm、Rz:13nm)を用意した。その平坦化層付きPETフィルムの一方の面上に、スパッタリングにより、酸化ニオブの膜からなる第1層目の金属酸化物層を形成した。次いで、第1層目の金属酸化物層上に、スパッタリングにより、銀パラジウム合金の膜からなる銀系薄膜層を形成し、更に、その銀系薄膜層上に、酸化ニオブの膜からなる第2層目の金属酸化物層(表面側金属酸化物層)を形成して、透明導電性積層体を作製した。スパッタリングの成膜条件は、以下の通りである。
Example 4
As the base material layer, the same PET film with a flattening layer as in Example 2 (thickness: 125 μm, Rz: 13 nm) was prepared. A first metal oxide layer made of a niobium oxide film was formed on one surface of the flattened PET film by sputtering. Next, a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and a second niobium oxide film made of niobium oxide is formed on the silver-based thin film layer. A transparent metal laminate was produced by forming a metal oxide layer (surface-side metal oxide layer) as the first layer. The film formation conditions for sputtering are as follows.
<成膜条件:各金属酸化物層>
 ターゲット:NBOターゲット(AGCセラミック社製)、成膜圧力:0.4Pa、DCパワー:2.5W/cm
<成膜条件:銀系薄膜層>
 ターゲット:パラジウムを1原子%含有する銀、成膜圧力:0.4Pa、DCパワー:0.6W/cm
<Film formation conditions: each metal oxide layer>
Target: NBO target (manufactured by AGC Ceramics), film forming pressure: 0.4 Pa, DC power: 2.5 W / cm 2
<Film formation conditions: Silver-based thin film layer>
Target: Silver containing 1 atomic% of palladium, film forming pressure: 0.4 Pa, DC power: 0.6 W / cm 2
〔実施例5〕
 基材層として、両面にハードコート層が形成されていないPETフィルム(厚み:50μm、Rz:50nm)を用意した。その平坦化層付きPETフィルムの一方の面上に、スパッタリングにより、アルミ添加酸化亜鉛の膜からなる第1層目の金属酸化物層を形成した。次いで、第1層目の金属酸化物層上に、スパッタリングにより、銀パラジウム合金の膜からなる銀系薄膜層を形成し、更に、その銀系薄膜層上に、アルミ添加酸化亜鉛の膜からなる第2層目の金属酸化物層(表面側金属酸化物層)を形成した。このようにして、実施例1の透明導電性積層体を作製した。この透明導電性積層体を構成する各層の厚みは、表1に示される通りである。スパッタリングの成膜条件は、以下の通りである。
Example 5
As a base material layer, a PET film (thickness: 50 μm, Rz: 50 nm) having no hard coat layer formed on both sides was prepared. A first metal oxide layer made of an aluminum-added zinc oxide film was formed on one surface of the flattened PET film by sputtering. Next, a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and further, an aluminum-added zinc oxide film is formed on the silver-based thin film layer. A second metal oxide layer (surface-side metal oxide layer) was formed. In this way, the transparent conductive laminate of Example 1 was produced. The thickness of each layer constituting this transparent conductive laminate is as shown in Table 1. The film formation conditions for sputtering are as follows.
<成膜条件:各金属酸化物層>
 ターゲット:AZOターゲット(AGCセラミックス社製)、成膜圧力:0.4Pa、DCパワー:2.5W/cm
<成膜条件:銀系薄膜層>
 ターゲット:パラジウムを1原子%含有する銀、成膜圧力:0.4Pa、DCパワー:0.6W/cm
<Film formation conditions: each metal oxide layer>
Target: AZO target (manufactured by AGC Ceramics), film forming pressure: 0.4 Pa, DC power: 2.5 W / cm 2
<Film formation conditions: Silver-based thin film layer>
Target: Silver containing 1 atomic% of palladium, film forming pressure: 0.4 Pa, DC power: 0.6 W / cm 2
〔比較例1〕
 基材層として、実施例2と同じ平坦化層付きPETフィルム(厚み:125μm、Rz:13nm)を用意した。その平坦化層付きPETフィルムの一方の面上に、スパッタリングにより、錫添加酸化インジウムの膜からなる第1層目の金属酸化物層を形成した。次いで、第1層目の金属酸化物層上に、スパッタリングにより、銀パラジウム合金の膜からなる銀系薄膜層を形成し、更に、その銀系薄膜層上に、錫添加酸化インジウムからなる第2層目の金属酸化物層を形成して、透明導電性積層体を作製した。スパッタリングの成膜条件は、以下の通りである。
[Comparative Example 1]
As the base material layer, the same PET film with a flattening layer as in Example 2 (thickness: 125 μm, Rz: 13 nm) was prepared. A first metal oxide layer made of a tin-added indium oxide film was formed on one surface of the flattened PET film by sputtering. Next, a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and a second tin-added indium oxide film is formed on the silver-based thin film layer. A metal oxide layer as a first layer was formed to produce a transparent conductive laminate. The film formation conditions for sputtering are as follows.
<成膜条件:各金属酸化物層>
 ターゲット:ITOターゲット(三井金属鉱業株式会社製)、成膜圧力:0.4Pa、DCパワー:2.5W/cm
<成膜条件:銀系薄膜層>
 ターゲット:パラジウムを1原子%含有する銀、成膜圧力:0.4Pa、DCパワー:0.6W/cm
<Film formation conditions: each metal oxide layer>
Target: ITO target (manufactured by Mitsui Mining & Smelting Co., Ltd.), film forming pressure: 0.4 Pa, DC power: 2.5 W / cm 2
<Film formation conditions: Silver-based thin film layer>
Target: Silver containing 1 atomic% of palladium, film forming pressure: 0.4 Pa, DC power: 0.6 W / cm 2
〔比較例2〕
 基材層として、両面にハードコート層が形成されていないPETフィルム(厚み:100μm、Rz:127nm)を用意した。
 PETフィルムの一方の面上に、スパッタリングにより、酸化ニオブの膜からなる第1層目の金属酸化物層を形成した。次いで、第1層目の金属酸化物層上に、スパッタリングにより、銀パラジウム合金の膜からなる銀系薄膜層を形成し、更に、その銀系薄膜層上に、酸化ニオブの膜からなる第2層目の金属酸化物層を形成して、透明導電性積層体を作製した。スパッタリングの成膜条件は、以下の通りである。
[Comparative Example 2]
As a base material layer, a PET film (thickness: 100 μm, Rz: 127 nm) having no hard coat layer formed on both surfaces was prepared.
A first metal oxide layer made of a niobium oxide film was formed on one surface of the PET film by sputtering. Next, a silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and a second niobium oxide film made of niobium oxide is formed on the silver-based thin film layer. A metal oxide layer as a first layer was formed to produce a transparent conductive laminate. The film formation conditions for sputtering are as follows.
<成膜条件:各金属酸化物層>
 ターゲット:NBOターゲット(AGCセラミック社製)、成膜圧力:0.4Pa、DCパワー:2.5W/cm
<成膜条件:銀系薄膜層>
 ターゲット:パラジウムを1原子%含有する銀、成膜圧力:0.4Pa、DCパワー:0.6W/cm
<Film formation conditions: each metal oxide layer>
Target: NBO target (manufactured by AGC Ceramics), film forming pressure: 0.4 Pa, DC power: 2.5 W / cm 2
<Film formation conditions: Silver-based thin film layer>
Target: Silver containing 1 atomic% of palladium, film forming pressure: 0.4 Pa, DC power: 0.6 W / cm 2
〔比較例3〕
 基材層として、実施例2と同じ平坦化層付きPETフィルム(厚み:125μm、Rz:13nm)を用意した。その平坦化層付きPETフィルムの一方の面上に、スパッタリングにより、亜鉛添加酸化インジウムの膜からなる第1層目の金属酸化物層を形成した。次いで、第1層目の金属酸化物層上に、スパッタリングにより、銀パラジウム合金の膜からなる第1層目の銀系薄膜層を形成し、更に、その銀系薄膜層上に、亜鉛添加酸化インジウムの膜からなる第2層目の金属酸化物層を形成した。そして、第2層目の金属酸化物層上に、第2層目の銀系薄膜層を形成し、更にその銀系薄膜層上に、亜鉛添加酸化インジウムの膜からなる第3層目の金属酸化物層を形成して、透明導電性積層体を作製した。スパッタリングの成膜条件は、以下の通りである。
[Comparative Example 3]
As the base material layer, the same PET film with a flattening layer as in Example 2 (thickness: 125 μm, Rz: 13 nm) was prepared. A first metal oxide layer made of a zinc-added indium oxide film was formed on one surface of the planarized PET film by sputtering. Next, a first silver-based thin film layer made of a silver-palladium alloy film is formed on the first metal oxide layer by sputtering, and zinc-added oxidation is further formed on the silver-based thin film layer. A second metal oxide layer made of an indium film was formed. Then, a second silver-based thin film layer is formed on the second metal oxide layer, and a third-layer metal made of a zinc-added indium oxide film is further formed on the silver-based thin film layer. An oxide layer was formed to produce a transparent conductive laminate. The film formation conditions for sputtering are as follows.
<成膜条件:各金属酸化物層>
 ターゲット:IZOターゲット(出光興産株式会社製)、成膜圧力:0.4Pa、DCパワー:2.5W/cm
<成膜条件:銀系薄膜層>
 ターゲット:パラジウムを1原子%含有する銀、成膜圧力:0.4Pa、DCパワー:0.6W/cm
<Film formation conditions: each metal oxide layer>
Target: IZO target (manufactured by Idemitsu Kosan Co., Ltd.), film forming pressure: 0.4 Pa, DC power: 2.5 W / cm 2
<Film formation conditions: Silver-based thin film layer>
Target: Silver containing 1 atomic% of palladium, film forming pressure: 0.4 Pa, DC power: 0.6 W / cm 2
〔評価1:可視光透過率〕
 実施例1~5及び比較例1~3における各透明導電性積層体の可視光透過率(波長範囲:380nm~780nm)を、JIS A5759に準拠して測定した。なお、測定に用いた装置は、日本分光社製、UV-3010であった。可視光透過率の結果は、表1に示した。
[Evaluation 1: Visible light transmittance]
The visible light transmittance (wavelength range: 380 nm to 780 nm) of each transparent conductive laminate in Examples 1 to 5 and Comparative Examples 1 to 3 was measured in accordance with JIS A5759. The apparatus used for the measurement was UV-3010 manufactured by JASCO Corporation. The results of visible light transmittance are shown in Table 1.
〔評価2:湿熱耐久性1〕
 実施例1~5及び比較例1~3における各透明導電性積層体から、それぞれ試験サンプル(縦5cm、横5cmの正方形)を作製した。各試験サンプルを、成膜面側が貼り合わせられる形で、透明光学粘着フィルムを用いてスライドガラスにラミネートした状態で、温度85℃、湿度85%RHの湿環境下におき、時間の経過と共に、試験サンプルに直径が0.5mm以上の欠陥が形成されるか否かを目視で確認し、各試験サンプルの湿熱耐久性を評価した。評価基準は、以下のとおりである。評価結果は、表1に示した。
[Evaluation 2: Wet heat durability 1]
Test samples (5 cm long and 5 cm wide squares) were prepared from the transparent conductive laminates in Examples 1 to 5 and Comparative Examples 1 to 3, respectively. Each test sample was laminated on a slide glass using a transparent optical adhesive film in a form in which the film formation side was bonded, and placed in a humidity environment of a temperature of 85 ° C. and a humidity of 85% RH. It was visually confirmed whether or not a defect having a diameter of 0.5 mm or more was formed on the test sample, and the wet heat durability of each test sample was evaluated. The evaluation criteria are as follows. The evaluation results are shown in Table 1.
 <評価基準>
 「◎」:経過時間が500時間を超えても欠陥が発生しなかった場合(特に優れた湿熱耐久性を備える場合)
 「○」:経過時間が250時間を超えかつ500時間以内に欠陥が発生した場合(優れた湿熱耐久性を備える場合)
 「×」:経過時間が250時間以内に欠陥が発生した場合(湿熱耐久性が無い場合)
<Evaluation criteria>
“◎”: When no defect occurs even when the elapsed time exceeds 500 hours (particularly when having excellent wet heat durability)
“◯”: When the elapsed time exceeds 250 hours and a defect occurs within 500 hours (with excellent wet heat durability)
“×”: When a defect occurs within 250 hours (when there is no wet heat durability)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1~5の各透明導電性積層体は、何れも湿熱耐久性に優れる結果となった。特に、実施例1~4の各透明導電性積層体は、湿熱耐久試験において、500時間以上経過した後も、欠陥が発生することが抑制された。 As shown in Table 1, each of the transparent conductive laminates of Examples 1 to 5 was excellent in wet heat durability. In particular, each of the transparent conductive laminates of Examples 1 to 4 was inhibited from generating defects even after 500 hours or more in the wet heat durability test.
 これに対し、比較例1~3の透明導電性積層体では、250時間以内に、斑点状に欠陥が発生した。比較例1の透明導電性積層体は、金属酸化物層として錫添加酸化インジウム(ITO)を使用するものである。このような材質からなる金属酸化物層では、銀系薄膜層に含まれる銀成分に由来する欠陥を抑制することができないことが確かめられた。 On the other hand, in the transparent conductive laminates of Comparative Examples 1 to 3, defects occurred in spots in 250 hours. The transparent conductive laminate of Comparative Example 1 uses tin-added indium oxide (ITO) as the metal oxide layer. It has been confirmed that a metal oxide layer made of such a material cannot suppress defects derived from the silver component contained in the silver-based thin film layer.
 また、比較例2の透明導電性積層体は、基材層の表面粗さ(Rz)が、127nmであり、基材層の表面が粗くなっている。金属酸化物層や銀系薄膜層の厚みは、基材層と比べると非常に小さいため、基材層の表面が粗いと、基材層の表面上に形成した金属酸化物層や銀系薄膜層にピンホールが発生したり、積層構造が形成されず銀成分が露出している個所が存在すると推測される。そして、そのような個所が起点となって、銀成分に由来する欠陥が発生したものと推測される。 Further, in the transparent conductive laminate of Comparative Example 2, the surface roughness (Rz) of the base material layer is 127 nm, and the surface of the base material layer is rough. Since the thickness of the metal oxide layer or silver-based thin film layer is very small compared to the base material layer, if the surface of the base material layer is rough, the metal oxide layer or silver-based thin film formed on the surface of the base material layer It is presumed that there are locations where pinholes are generated in the layer or where the laminated structure is not formed and the silver component is exposed. And it is estimated that the defect originating in the silver component generate | occur | produced from such a location.
 また、比較例3の透明導電性積層体は、3つの金属酸化物層のうち、最も表側に配される3番目の金属酸化物層(表面側金属酸化物層)の厚みが19nmとなっている。このように、最も表側に配される金属酸化物層(表面側金属酸化物層)の厚みが薄いと、銀系薄膜層に含まれる銀成分に由来する欠陥を抑制することができないことが確かめられた。 Further, in the transparent conductive laminate of Comparative Example 3, the thickness of the third metal oxide layer (surface side metal oxide layer) arranged on the most front side among the three metal oxide layers is 19 nm. Yes. As described above, it is confirmed that when the thickness of the metal oxide layer (surface side metal oxide layer) arranged on the most front side is thin, defects derived from the silver component contained in the silver-based thin film layer cannot be suppressed. It was.
〔実施例6〕
 基材層として、実施例3と同様の平坦化層付きPETフィルムを用意した。その平坦化層付きPETフィルムの一方の面上に、実施例3と同様の条件で、スパッタリングにより、亜鉛添加酸化インジウムの膜からなる第1層目の金属酸化物層、銀パラジウム合金の膜からなる金属酸化物層、及び亜鉛添加酸化インジウムの膜からなる第2層目の金属酸化物層(表面側金属酸化物層)をこの順で形成した。そして更に、第2層目の金属酸化物層上に、紫外線硬化型のアクリル系樹脂からなる保護層(厚み:1μm)を形成して、透明導電性積層体を得た。この透明導電性積層体を構成する各層の厚みは、表2に示される通りである。また、以降の実施例、比較例の透明導電性積層体を構成する各層の厚みも、表2に示される。
Example 6
As a base material layer, the same PET film with a flattening layer as in Example 3 was prepared. On one surface of the PET film with a planarizing layer, from the first metal oxide layer made of a zinc-added indium oxide film and a silver palladium alloy film by sputtering under the same conditions as in Example 3. A metal oxide layer and a second metal oxide layer (surface-side metal oxide layer) made of a zinc-added indium oxide film were formed in this order. Further, a protective layer (thickness: 1 μm) made of an ultraviolet curable acrylic resin was formed on the second metal oxide layer to obtain a transparent conductive laminate. The thickness of each layer constituting this transparent conductive laminate is as shown in Table 2. Table 2 also shows the thickness of each layer constituting the transparent conductive laminates of the following examples and comparative examples.
 なお、上記保護層は、3官能以上のアクリルモノマーとしてジペンタエリスリトールヘキサアクリレート(商品名「A-DPH」、新中村化学工業製)を100重量部、酸化膜との密着剤として、リン酸エステル化合物(商品名「PM-21」、日本化薬製)を3重量部、光重合開始剤として、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名「イルガキュア184」、BASF社製)を5重量部、及び希釈剤として酢酸エチルを160重量部配合してなる組成物を、バーコーターにて第2層目の金属酸化物層上に塗工し、金属酸化物層上の塗膜に紫外線を照射することで形成した。 The protective layer is composed of 100 parts by weight of dipentaerythritol hexaacrylate (trade name “A-DPH”, manufactured by Shin-Nakamura Chemical Co., Ltd.) as a tri- or higher functional acrylic monomer, and a phosphate ester as an adhesive with an oxide film. 3 parts by weight of a compound (trade name “PM-21”, manufactured by Nippon Kayaku Co., Ltd.), 5 weights of 1-hydroxy-cyclohexyl-phenyl-ketone (trade name “Irgacure 184”, manufactured by BASF) as a photopolymerization initiator And a composition comprising 160 parts by weight of ethyl acetate as a diluent is coated on the second metal oxide layer with a bar coater, and ultraviolet rays are applied to the coating film on the metal oxide layer. It was formed by irradiation.
〔実施例7〕
 保護層の厚みを3μmに変更したこと以外は、実施例6と同様にして、透明導電性積層体を作製した。
Example 7
A transparent conductive laminate was produced in the same manner as in Example 6 except that the thickness of the protective layer was changed to 3 μm.
〔実施例8〕
 基材層として、実施例1と同様の平坦化層付きPETフィルムを用意した。その平坦化層付きPETフィルムの一方の面上に、実施例1と同様の条件で、スパッタリングにより、アルミ添加酸化亜鉛の膜からなる第1層目の金属酸化物層、銀パラジウム合金の膜からなる銀系薄膜層、及びアルミ添加酸化亜鉛の膜からなる第2層目の金属酸化物層(表面側金属酸化物層)をこの順で形成した。そして更に、第2層目の金属酸化物層上に、紫外線硬化型のアクリル系樹脂からなる保護層(厚み:1μm)を形成して、透明導電性積層体を得た。
Example 8
As a base material layer, the same PET film with a flattening layer as in Example 1 was prepared. On one surface of the PET film with the planarizing layer, from the first metal oxide layer made of an aluminum-added zinc oxide film and a silver palladium alloy film by sputtering under the same conditions as in Example 1. A silver-based thin film layer and a second metal oxide layer (surface-side metal oxide layer) made of an aluminum-added zinc oxide film were formed in this order. Further, a protective layer (thickness: 1 μm) made of an ultraviolet curable acrylic resin was formed on the second metal oxide layer to obtain a transparent conductive laminate.
〔比較例4〕
 保護層の厚みを0.6μmに変更したこと以外は、実施例6と同様にして、透明導電性積層体を作製した。
[Comparative Example 4]
A transparent conductive laminate was produced in the same manner as in Example 6 except that the thickness of the protective layer was changed to 0.6 μm.
〔比較例5〕
 保護層の厚みを5μmに変更したこと以外は、実施例6と同様にして、透明導電性積層体を作製した。
[Comparative Example 5]
A transparent conductive laminate was produced in the same manner as in Example 6 except that the thickness of the protective layer was changed to 5 μm.
〔比較例6〕
 基材層として、実施例2と同様の平坦化層付きPETフィルムを用意した。その平坦化層付きPETフィルムの一方の面上に、実施例2と同様の条件で、スパッタリングにより、
チタン添加酸化亜鉛の膜からなる第1層目の金属酸化物層、銀パラジウム合金の膜からなる銀系薄膜層、及びチタン添加酸化亜鉛の膜からなる第2層目の金属酸化物層(表面側金属酸化物層)をこの順で形成した。そして更に、第2層目の金属酸化物層上に、実施例6と同様、紫外線硬化型のアクリル系樹脂からなる保護層(厚み:1μm)を形成して、透明導電性積層体を得た。
[Comparative Example 6]
As a base material layer, the same PET film with a flattening layer as in Example 2 was prepared. On one surface of the PET film with the flattening layer, by sputtering under the same conditions as in Example 2,
First metal oxide layer made of titanium-added zinc oxide film, silver-based thin film layer made of silver-palladium alloy film, and second metal oxide layer made of titanium-added zinc oxide film (surface Side metal oxide layer) was formed in this order. Further, as in Example 6, a protective layer (thickness: 1 μm) made of an ultraviolet curable acrylic resin was formed on the second metal oxide layer to obtain a transparent conductive laminate. .
〔比較例7〕
 基材層として、実施例4(実施例2)と同じ平坦化層付きPETフィルム(厚み:125μm、Rz:13nm)を用意した。その平坦化層付きPETフィルムの一方の面上に、実施例4と同様の条件で、スパッタリングにより、酸化ニオブの膜からなる第1層目の金属酸化物層、銀パラジウム合金の膜からなる銀系薄膜層、及び酸化ニオブの膜からなる第2層目の金属酸化物層(表面側金属酸化物層)をこの順で形成した。そして更に、第2層目の金属酸化物層上に、実施例6と同様、紫外線硬化型のアクリル系樹脂からなる保護層(厚み:1μm)を形成して、透明導電性積層体を得た。
[Comparative Example 7]
As a base material layer, the same PET film with a flattening layer as in Example 4 (Example 2) (thickness: 125 μm, Rz: 13 nm) was prepared. On one surface of the PET film with the flattening layer, the first metal oxide layer made of a niobium oxide film and the silver made of a silver-palladium alloy film are formed by sputtering under the same conditions as in Example 4. A second metal oxide layer (surface-side metal oxide layer) made of a system thin film layer and a niobium oxide film was formed in this order. Further, as in Example 6, a protective layer (thickness: 1 μm) made of an ultraviolet curable acrylic resin was formed on the second metal oxide layer to obtain a transparent conductive laminate. .
〔比較例8〕
 基材層として、比較例1(実施例2)と同じ平坦化層付きPETフィルム(厚み:125μm、Rz:13nm)を用意した。その平坦化層付きPETフィルムの一方の面上に、比較例1と同様の条件で、スパッタリングにより、錫添加酸化インジウムの膜からなる第1層目の金属酸化物層、銀パラジウム合金の膜からなる銀系薄膜層、及び錫添加酸化インジウムからなる第2層目の金属酸化物層をこの順で形成した。そして更に、第2層目の金属酸化物層上に、実施例6と同様、紫外線硬化型のアクリル系樹脂からなる保護層(厚み:1μm)を形成して、透明導電性積層体を得た。
[Comparative Example 8]
As a base material layer, the same PET film with a flattening layer (thickness: 125 μm, Rz: 13 nm) as in Comparative Example 1 (Example 2) was prepared. From one surface of the PET film with a planarizing layer, from the first metal oxide layer made of a tin-added indium oxide film and a silver palladium alloy film by sputtering under the same conditions as in Comparative Example 1. A silver-based thin film layer and a second metal oxide layer made of tin-added indium oxide were formed in this order. Further, as in Example 6, a protective layer (thickness: 1 μm) made of an ultraviolet curable acrylic resin was formed on the second metal oxide layer to obtain a transparent conductive laminate. .
〔比較例9〕
 基材層として、実施例2と同じ平坦化層付きPETフィルム(厚み:125μm、Rz:13nm)を用意した。その平坦化層付きPETフィルムの一方の面上に、スパッタリングにより、銅の膜からなる金属層を形成した。そして更に、その金属層上に、実施例6と同様、紫外線硬化型のアクリル系樹脂からなる保護層(厚み:1μm)を形成して、透明導電性積層体を得た。スパッタリングの成膜条件は、以下の通りである。
[Comparative Example 9]
As the base material layer, the same PET film with a flattening layer as in Example 2 (thickness: 125 μm, Rz: 13 nm) was prepared. A metal layer made of a copper film was formed on one surface of the planarized PET film with sputtering by sputtering. Further, a protective layer (thickness: 1 μm) made of an ultraviolet curable acrylic resin was formed on the metal layer in the same manner as in Example 6 to obtain a transparent conductive laminate. The film formation conditions for sputtering are as follows.
<成膜条件:金属層>
 ターゲット:Cuターゲット(東洋サクセス株式会社製)、成膜圧力:0.4Pa、DCパワー:2.5W/cm
<Deposition conditions: metal layer>
Target: Cu target (manufactured by Toyo Success Co., Ltd.), film forming pressure: 0.4 Pa, DC power: 2.5 W / cm 2
〔評価3:可視光透過率〕
 実施例6~8及び比較例4~9における各透明導電性積層体の可視光透過率(波長範囲:380nm~780nm)を、上記実施例1等と同様、JIS A5759に準拠して測定した。可視光透過率の結果は、表3に示した。なお、保護層を備えた透明導電性積層体の場合、可視光透過率が50%以上であると、可視光透過性に優れると言える。
[Evaluation 3: Visible light transmittance]
The visible light transmittance (wavelength range: 380 nm to 780 nm) of each transparent conductive laminate in Examples 6 to 8 and Comparative Examples 4 to 9 was measured in accordance with JIS A5759 as in Example 1 and the like. The results of visible light transmittance are shown in Table 3. In addition, in the case of the transparent conductive laminated body provided with the protective layer, it can be said that it is excellent in visible light transmittance | permeability that visible light transmittance is 50% or more.
〔評価4:外観〕
 実施例6~8及び比較例4~9における各透明導電性積層体について、干渉縞の有無を目視で確認した。結果は、表3に示した。なお、表3において、干渉縞がない場合を「〇」で表し、干渉縞がある場合を「×」で表した。
[Evaluation 4: Appearance]
The transparent conductive laminates in Examples 6 to 8 and Comparative Examples 4 to 9 were visually checked for the presence of interference fringes. The results are shown in Table 3. In Table 3, a case where there is no interference fringe is indicated by “◯”, and a case where there is an interference fringe is indicated by “x”.
〔評価5:シールド特性〕
 実施例6~8及び比較例4~9における各透明導電性積層体から、それぞれ試験サンプル(縦12cm、横12cmの正方形)を作製した。各試験サンプルを、送信用の治具と、受信用の治具との間に入れ、KEC法に従って、周波数が300MHz~1000MHzのUHF帯のシールド効果(dB)を連続的に測定した。また、各試験サンプルの比較対象として、各試験サンプルの保護層を除いたもの(比較試験サンプル)を用意し、比較試験サンプルについても同様に、KEC法に従って、シールド効果(dB)を連続的に測定した。
[Evaluation 5: Shield characteristics]
Test samples (12 cm long and 12 cm wide squares) were prepared from the transparent conductive laminates of Examples 6 to 8 and Comparative Examples 4 to 9, respectively. Each test sample was placed between a transmission jig and a reception jig, and the shielding effect (dB) in the UHF band having a frequency of 300 MHz to 1000 MHz was continuously measured according to the KEC method. In addition, as a comparison target of each test sample, a sample (comparative test sample) excluding the protective layer of each test sample is prepared, and the shield effect (dB) is continuously applied to the comparative test sample according to the KEC method. It was measured.
 保護層を設けることによるシールド効果の低下率(受信側での信号の減衰)が、前記UHF帯(300MHz~1000MHzの範囲)のすべてにおいて、マイナス10%以内の場合、シールド効果に優れる(表3中、「〇」と表記)と判断し、また、前記シールド効果の低下率が、前記UHF帯(300MHz~1000MHzの範囲)の何れかの周波数において、1回でもマイナス10%を下回った場合、シールド効果に問題がある(表3中、「×」と表記)と判断した。結果は、表3に示した。なお、表3には、参考として、周波数が300MHzの場合の低下率(%)の値を記載した。各周波数における低下率の計算式は、以下のとおりである。
 低下率(%)={(保護層あり(dB))-(保護層なし(dB))}/(保護層なし(dB))×100
When the reduction rate of the shield effect (signal attenuation on the receiving side) by providing the protective layer is within minus 10% in all the UHF bands (range of 300 MHz to 1000 MHz), the shield effect is excellent (Table 3). If the rate of decrease in the shielding effect falls below minus 10% at any frequency in the UHF band (300 MHz to 1000 MHz), It was determined that there was a problem with the shielding effect (indicated as “x” in Table 3). The results are shown in Table 3. In Table 3, as a reference, the rate of decrease (%) when the frequency is 300 MHz is shown. The calculation formula of the decrease rate at each frequency is as follows.
Decrease rate (%) = {(with protective layer (dB)) − (without protective layer (dB))} / (without protective layer (dB)) × 100
〔評価6:静電気拡散性〕
 実施例6~8及び比較例4~9における各透明導電性積層体について、定電圧印加/漏洩電流測定方式に従って、表面抵抗率を測定した。結果は、表3に示した。なお、表面抵抗率が10Ω/□未満の場合、静電気拡散性に優れる(表3中、「〇」と表記)と判断し、また、表面抵抗率が10Ω/□以上の場合、静電気拡散性に問題がある(表2中、「×」と表記)と判断した。
[Evaluation 6: Static electricity diffusibility]
The surface resistivity of each of the transparent conductive laminates in Examples 6 to 8 and Comparative Examples 4 to 9 was measured according to a constant voltage application / leakage current measurement method. The results are shown in Table 3. In addition, when the surface resistivity is less than 10 9 Ω / □, it is judged that the electrostatic diffusibility is excellent (indicated as “◯” in Table 3), and when the surface resistivity is 10 9 Ω / □ or more, It was judged that there was a problem with electrostatic diffusibility (indicated as “x” in Table 2).
〔評価7:湿熱耐久性2〕
 実施例6~8及び比較例4~9における各透明導電性積層体から、それぞれ試験サンプル(縦5cm、横5cmの正方形)を作製した。各試験サンプルを、成膜面が曝露された状態で、温度85℃、湿度85%RHの湿環境下に1000時間放置した。その後、各試験サンプルの外観を目視で観察し、0.5mm以上の欠陥形成(マイグレーションによる凝集)の有無を確認することで、各試験サンプルの湿熱耐久性を評価した。評価基準は、以下のとおりである。評価結果は、表3に示した。
[Evaluation 7: Wet heat durability 2]
Test samples (5 cm long and 5 cm wide squares) were prepared from the transparent conductive laminates in Examples 6 to 8 and Comparative Examples 4 to 9, respectively. Each test sample was left for 1000 hours in a humid environment at a temperature of 85 ° C. and a humidity of 85% RH with the film formation surface exposed. Thereafter, the appearance of each test sample was visually observed, and the wet heat durability of each test sample was evaluated by confirming the presence or absence of defect formation (aggregation by migration) of 0.5 mm or more. The evaluation criteria are as follows. The evaluation results are shown in Table 3.
 <評価基準>
 「〇」:1000時間経過後に、欠陥(マイグレーションによる凝集)が無かった場合(優れた湿熱耐久性を備える場合)
 「×」:1000時間経過後に、欠陥(マイグレーションによる凝集)が発生した場合(湿熱耐久性が無い場合)
<Evaluation criteria>
“◯”: When there is no defect (aggregation due to migration) after 1000 hours (with excellent wet heat durability)
“×”: When a defect (aggregation due to migration) occurs after 1000 hours (when there is no wet heat durability)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、金属酸化物層が亜鉛添加酸化インジウムからなり、保護層を備える実施例6,7の各透明導電性積層体は、何れも、湿熱耐久性(評価7:湿熱耐久性2)に優れる結果となった。なお、上記評価7で行った湿熱耐久性2の試験は、上記評価2で行った湿熱耐久性1よりも過酷な条件である。また、実施例6,7は、可視光透過率、外観、シールド特性、静電気拡散性に優れる結果となった。 As shown in Table 3, each of the transparent conductive laminates of Examples 6 and 7 in which the metal oxide layer is made of zinc-added indium oxide and includes a protective layer has wet heat durability (evaluation 7: wet heat durability). The result was excellent in property 2). The wet heat durability 2 test performed in the evaluation 7 is a severer condition than the wet heat durability 1 performed in the evaluation 2. In addition, Examples 6 and 7 resulted in excellent visible light transmittance, appearance, shielding characteristics, and electrostatic diffusibility.
 また、実施例8の場合、保護層を設けたことにより、透明導電性積層体に干渉縞が現れてしまったものの、それ以外の評価は、実施例6,7と同様、優れた結果となった。 In the case of Example 8, interference fringes appeared in the transparent conductive laminate due to the provision of the protective layer, but the other evaluations were the same as in Examples 6 and 7. It was.
 また、比較例4の場合、保護層の厚みが薄いため、湿熱耐久性に問題が生じた。また、比較例5の場合、保護層の厚みが厚すぎるため、静電気拡散性に問題が生じた。 Moreover, in the case of the comparative example 4, since the thickness of the protective layer was thin, there was a problem in wet heat durability. Moreover, in the case of the comparative example 5, since the thickness of the protective layer was too thick, a problem arose in electrostatic diffusibility.
 また、金属酸化物層がチタン添加酸化亜鉛からなる比較例6の場合、湿熱耐久性に問題が生じた。また、比較例6の場合、保護層を設けたことで、干渉縞も形成された。 Further, in the case of Comparative Example 6 in which the metal oxide layer was made of titanium-added zinc oxide, there was a problem in wet heat durability. Moreover, in the case of the comparative example 6, the interference fringe was also formed by providing the protective layer.
 また、金属酸化物層が酸化ニオブからなる比較例7の場合、湿熱耐久性に問題が生じた。また、比較例7の場合、保護層を設けたことで、干渉縞も形成された。また、比較例7の場合、表面抵抗率が10Ω/□以上となり、静電気拡散性に問題がある結果となった。 Moreover, in the case of the comparative example 7 whose metal oxide layer consists of niobium oxide, a problem arose in wet heat durability. Moreover, in the case of the comparative example 7, the interference fringe was also formed by providing the protective layer. In the case of Comparative Example 7, the surface resistivity was 10 9 Ω / □ or more, which resulted in a problem with electrostatic diffusibility.
 また、金属酸化物層が錫添加酸化インジウムからなる比較例8の場合、湿熱耐久性に問題が生じた。また、比較例8の場合、保護層を設けたことで、干渉縞も形成された。 Further, in the case of Comparative Example 8 in which the metal oxide layer was made of tin-added indium oxide, there was a problem in wet heat durability. Moreover, in the case of the comparative example 8, the interference fringe was also formed by providing the protective layer.
 比較例9は、平坦化層付きPETフィルム上に、金属層(銅)と、保護層とをこの順で形成した透明導電性積層体の場合である。比較例9の場合、可視光透過率が50%未満であり、また、シールド特性に問題がある結果となった。 Comparative Example 9 is a case of a transparent conductive laminate in which a metal layer (copper) and a protective layer are formed in this order on a PET film with a planarizing layer. In the case of Comparative Example 9, the visible light transmittance was less than 50%, and the shield characteristics were problematic.
 ここで、シールド特性について言及する。通常の一般的なシールド用導電フィルムでは、絶縁保護膜の影響により、KEC法によるシールド効果が著しく低下することが知られている。これに対し、実施例6~8の透明導電性積層体の場合、300MHz~1000MHzのUHF帯の周波数帯域でシールド効果の低減を抑制することができる。 Here we will refer to the shielding characteristics. It is known that the shielding effect by the KEC method is remarkably lowered in the ordinary general conductive film for shielding due to the influence of the insulating protective film. On the other hand, in the case of the transparent conductive laminates of Examples 6 to 8, it is possible to suppress the reduction of the shielding effect in the frequency band of the UHF band of 300 MHz to 1000 MHz.
 また、金属酸化物層の材料としては、実施例6,7に示されるように、亜鉛添加酸化インジウムが最も好ましい。金属酸化物層として、亜鉛添加酸化インジウムを利用すると、保護層(ハードコート層)を形成することによる可視光透過率の低下が抑制され、しかも干渉縞の発生も防止される。 As the material for the metal oxide layer, as shown in Examples 6 and 7, zinc-added indium oxide is most preferable. When zinc-doped indium oxide is used as the metal oxide layer, the reduction in visible light transmittance due to the formation of the protective layer (hard coat layer) is suppressed, and the occurrence of interference fringes is also prevented.
〔評価8:保護層の厚みと表面抵抗率との関係〕
 透明導電性積層体における保護層の厚み(μm)と、表面抵抗率(Ω/□)との関係を、図6に示した。図6の横軸は、保護層の厚み(μm)を表し、縦軸は、表面抵抗率(Ω/□)を表す。表面抵抗率は、静電気拡散性の評価と同様、定電圧印加/漏洩電流測定方式に従って測定したものである。
[Evaluation 8: Relationship between protective layer thickness and surface resistivity]
The relationship between the thickness (μm) of the protective layer in the transparent conductive laminate and the surface resistivity (Ω / □) is shown in FIG. The horizontal axis in FIG. 6 represents the thickness (μm) of the protective layer, and the vertical axis represents the surface resistivity (Ω / □). The surface resistivity is measured according to a constant voltage application / leakage current measurement method, as in the evaluation of electrostatic diffusibility.
 なお、保護層を備えていない場合(実施例3、保護層の厚み:0μm)の表面抵抗率は、4.98Ω/□であり、保護層の厚みが0.6μmの場合(実施例4)の表面抵抗率は、1.15×10Ω/□であり、保護層の厚みが1μmの場合(実施例6)の表面抵抗率は、3.32×10Ω/□であり、保護層の厚みが3μmの場合(実施例7)の表面抵抗率は、9.70×10Ω/□であり、保護層の厚みが5μmの場合(比較例5)の表面抵抗率は、7.60×10Ω/□であり、保護層の厚みが7μmの場合の表面抵抗率は、4.13×10Ω/□であり、保護層の厚みが14μmの場合の表面抵抗率は、7.64×1011Ω/□であった。 When the protective layer is not provided (Example 3, protective layer thickness: 0 μm), the surface resistivity is 4.98Ω / □, and the protective layer thickness is 0.6 μm (Example 4). The surface resistivity is 1.15 × 10 6 Ω / □, and when the thickness of the protective layer is 1 μm (Example 6), the surface resistivity is 3.32 × 10 7 Ω / □. When the layer thickness is 3 μm (Example 7), the surface resistivity is 9.70 × 10 8 Ω / □, and when the protective layer thickness is 5 μm (Comparative Example 5), the surface resistivity is 7 .60 × 10 9 Ω / □ and is the surface resistivity in the case the thickness of the protective layer of 7μm is, 4.13 × 10 9 Ω / □ and is the surface resistivity in the case the thickness of the protective layer of 14μm is 7.64 × 10 11 Ω / □.
 図6に示されるように、保護層の厚みが3μm以下であれば、透明導電性積層体の表面抵抗率を、1.0×10Ω/□未満に制御できることが確認された。 As shown in FIG. 6, it was confirmed that the surface resistivity of the transparent conductive laminate can be controlled to be less than 1.0 × 10 9 Ω / □ when the thickness of the protective layer is 3 μm or less.
 1,1B,1C,1X…透明導電性積層体、2,2A…基材層、3…金属酸化物層(光学調整層)、30…表面側金属酸化物層、4…銀系薄膜層(熱線反射層)、11…保護層 DESCRIPTION OF SYMBOLS 1,1B, 1C, 1X ... Transparent conductive laminated body, 2, 2A ... Base material layer, 3 ... Metal oxide layer (optical adjustment layer), 30 ... Surface side metal oxide layer, 4 ... Silver-type thin film layer ( Heat ray reflective layer), 11 ... protective layer

Claims (7)

  1.  樹脂フィルムを含み、少なくとも一方の面側の十点平均表面粗さが50nm以下である基材層と、
     アルミ添加酸化亜鉛、チタン添加酸化亜鉛、亜鉛添加酸化インジウム、酸化ニオブからなる群より選ばれる少なくとも1種の金属酸化物を各々が含み、前記一方の面側に互いに間隔を保つ形で配される複数層の金属酸化物層と、
     銀又は銀合金の薄膜からなり、隣り合った前記金属酸化物層の間に介在される銀系薄膜層とを備え、
     前記金属酸化物層のうち、前記基材層から最も離れた位置に配される表面側金属酸化物層の厚みが20nm以上である透明導電性積層体。
    A base material layer including a resin film and having a 10-point average surface roughness of at least one surface side of 50 nm or less;
    Each includes at least one metal oxide selected from the group consisting of aluminum-added zinc oxide, titanium-added zinc oxide, zinc-added indium oxide, and niobium oxide, and is arranged in such a manner as to be spaced from each other on the one surface side. A plurality of metal oxide layers;
    Comprising a silver or silver alloy thin film, comprising a silver-based thin film layer interposed between the adjacent metal oxide layers,
    The transparent conductive laminated body whose thickness of the surface side metal oxide layer distribute | arranged to the position most distant from the said base material layer among the said metal oxide layers is 20 nm or more.
  2.  前記基材層が、前記樹脂フィルムと、前記樹脂フィルムの片面又は両面に積層された平坦化層との積層物からなる請求項1に記載の透明導電性積層体。 The transparent conductive laminate according to claim 1, wherein the base material layer is composed of a laminate of the resin film and a planarization layer laminated on one side or both sides of the resin film.
  3.  前記基材層の前記樹脂フィルムが、ポリエステル系フィルムからなる請求項1又は2に記載の透明導電性積層体。 The transparent conductive laminate according to claim 1 or 2, wherein the resin film of the base material layer is a polyester film.
  4.  前記銀系薄膜層の厚みが、6nm~30nmである請求項1~3の何れか一項に記載の透明導電性積層体。 The transparent conductive laminate according to any one of claims 1 to 3, wherein the silver-based thin film layer has a thickness of 6 nm to 30 nm.
  5.  前記表面側金属酸化物層の外側に積層される保護層を備える請求項1~4の何れか一項に記載の透明導電性積層体。 The transparent conductive laminate according to any one of claims 1 to 4, further comprising a protective layer laminated outside the surface-side metal oxide layer.
  6.  前記保護層の厚みが、1μm以上3μm以下である請求項5に記載の透明導電性積層体。 The transparent conductive laminate according to claim 5, wherein the protective layer has a thickness of 1 μm to 3 μm.
  7.  前記金属酸化物層が、亜鉛添加酸化インジウム、又はアルミ添加酸化亜鉛からなる請求項5又は6に記載の透明導電性積層体。 The transparent conductive laminate according to claim 5 or 6, wherein the metal oxide layer is made of zinc-added indium oxide or aluminum-added zinc oxide.
PCT/JP2017/012869 2016-03-29 2017-03-29 Transparent electroconductive laminate WO2017170673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-065811 2016-03-29
JP2016065811 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017170673A1 true WO2017170673A1 (en) 2017-10-05

Family

ID=59965823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012869 WO2017170673A1 (en) 2016-03-29 2017-03-29 Transparent electroconductive laminate

Country Status (1)

Country Link
WO (1) WO2017170673A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112309612A (en) * 2020-10-27 2021-02-02 江西慧光微电子有限公司 Metal conductive film, touch panel and electronic product
WO2022050045A1 (en) 2020-09-04 2022-03-10 デクセリアルズ株式会社 Conductive layered product, optical device using same, and manufacturing method for conductive layered product
CN114231903A (en) * 2021-12-08 2022-03-25 洛阳理工学院 Niobium oxide/silver nanowire double-layer structure flexible transparent conductive film and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1170610A (en) * 1996-07-26 1999-03-16 Asahi Glass Co Ltd Transparent conductive film and formation of transparent electrode
JP2000294980A (en) * 1999-04-06 2000-10-20 Nippon Sheet Glass Co Ltd Translucent electromagnetic wave filter and fabrication thereof
WO2005020655A1 (en) * 2003-08-25 2005-03-03 Asahi Glass Company, Limited Electromagnetic shielding multilayer body and display using same
JP2006156927A (en) * 2004-11-04 2006-06-15 Asahi Glass Co Ltd Electromagnetic wave cutoff film for plasma display, and protective plate for plasma display
JP2013141753A (en) * 2012-01-10 2013-07-22 Toray Ind Inc Laminated film
WO2015125512A1 (en) * 2014-02-20 2015-08-27 コニカミノルタ株式会社 Transparent conductor manufacturing method and transparent conductor manufacturing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1170610A (en) * 1996-07-26 1999-03-16 Asahi Glass Co Ltd Transparent conductive film and formation of transparent electrode
JP2000294980A (en) * 1999-04-06 2000-10-20 Nippon Sheet Glass Co Ltd Translucent electromagnetic wave filter and fabrication thereof
WO2005020655A1 (en) * 2003-08-25 2005-03-03 Asahi Glass Company, Limited Electromagnetic shielding multilayer body and display using same
JP2006156927A (en) * 2004-11-04 2006-06-15 Asahi Glass Co Ltd Electromagnetic wave cutoff film for plasma display, and protective plate for plasma display
JP2013141753A (en) * 2012-01-10 2013-07-22 Toray Ind Inc Laminated film
WO2015125512A1 (en) * 2014-02-20 2015-08-27 コニカミノルタ株式会社 Transparent conductor manufacturing method and transparent conductor manufacturing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050045A1 (en) 2020-09-04 2022-03-10 デクセリアルズ株式会社 Conductive layered product, optical device using same, and manufacturing method for conductive layered product
KR20230041765A (en) 2020-09-04 2023-03-24 데쿠세리아루즈 가부시키가이샤 Conductive multilayer body, optical device using the same, and manufacturing method of the conductive multilayer body
CN112309612A (en) * 2020-10-27 2021-02-02 江西慧光微电子有限公司 Metal conductive film, touch panel and electronic product
CN114231903A (en) * 2021-12-08 2022-03-25 洛阳理工学院 Niobium oxide/silver nanowire double-layer structure flexible transparent conductive film and preparation method thereof
CN114231903B (en) * 2021-12-08 2023-09-26 洛阳理工学院 Niobium oxide/silver nanowire double-layer structure flexible transparent conductive film and preparation method thereof

Similar Documents

Publication Publication Date Title
EP3175982B1 (en) Infrared radiation reflecting film
EP1134072A2 (en) Transparent shock-absorbing laminate and flat panel display using the same
JP6601199B2 (en) Transparent conductor
EP2666628A1 (en) Far infrared reflecting laminate
JP4893097B2 (en) Conductive laminate and protective plate for plasma display
KR20070115702A (en) A conductive laminate, an electromagnetic wave shielding film for plasma display and a protective plate for plasma display
KR100722342B1 (en) Transparent Gel Self-Adhesive Agent, Transparent Gel Self-Adhesive Sheet, Optical Filter for Display
JPWO2011108438A1 (en) Functional laminate, transparent conductive laminate for touch panel, and touch panel using the same
US20100226005A1 (en) Optical Article and Process for Producing the Same
US20160303838A1 (en) Transparent conductive multilayer assembly
JPWO2006088108A1 (en) Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
US7396583B2 (en) Laminate and display filter using the same
WO2017170673A1 (en) Transparent electroconductive laminate
JP2006186309A (en) Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
JP2007206146A (en) Antireflection film, method of manufacturing the same and display equipped with the antireflection film
EP3243655B1 (en) Light-transmitting laminate for optical applications
TW202306757A (en) Optical multilayer body and image display device
JP2014141015A (en) Laminate film
JP2008036952A (en) Electroconductive laminate and protective plate for plasma display
JP2002323860A (en) Optical filter for display and display device and protective plate for display using the same
WO2018047729A1 (en) Dimming device
JP3681280B2 (en) Optical filter for display
JP2000105312A (en) Filter for plasma display panel
JP2003098339A (en) Method for manufacturing filter for display
JP2007208275A (en) Electromagnetic shielding material which has electromagnetic wave shielding property, transparency, invisibility and good warping characteristics, and display using the electromagnetic shielding material

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775207

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP