[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017169870A1 - 薄鋼板及びめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 - Google Patents

薄鋼板及びめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 Download PDF

Info

Publication number
WO2017169870A1
WO2017169870A1 PCT/JP2017/010820 JP2017010820W WO2017169870A1 WO 2017169870 A1 WO2017169870 A1 WO 2017169870A1 JP 2017010820 W JP2017010820 W JP 2017010820W WO 2017169870 A1 WO2017169870 A1 WO 2017169870A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
steel plate
temperature
plated
Prior art date
Application number
PCT/JP2017/010820
Other languages
English (en)
French (fr)
Inventor
典晃 ▲高▼坂
船川 義正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020187028113A priority Critical patent/KR102130233B1/ko
Priority to EP17774414.1A priority patent/EP3412789B1/en
Priority to US16/089,193 priority patent/US10920294B2/en
Priority to MX2018011871A priority patent/MX2018011871A/es
Priority to JP2017537331A priority patent/JP6292353B2/ja
Priority to CN201780021233.1A priority patent/CN108884538B/zh
Publication of WO2017169870A1 publication Critical patent/WO2017169870A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a method of manufacturing a thin steel plate and a plated steel plate, a hot-rolled steel plate, a method of manufacturing a cold-rolled full hard steel plate, a method of manufacturing a heat-treated plate, a method of manufacturing a thin steel plate, and a method of manufacturing a plated steel plate.
  • the thin steel sheet of the present invention has a tensile strength (TS): 780 MPa or more, and has excellent bending fatigue characteristics. For this reason, the thin steel plate of this invention is suitable for the raw material of the frame
  • Patent Document 1 in mass%, C: 0.03 to 0.13%, Si ⁇ 0.7%, Mn: 2.0 to 4.0%, P ⁇ 0.05%, S ⁇ 0 .005%, Sol. Al: O. Ferrite phase and volume containing 01 to 0.1%, N ⁇ 0.005%, Ti: 0.005 to 0.1%, B: 0.0002 to 0.0040%, and an average particle size of 5 ⁇ m or less It is said that a hot-dip galvanized steel sheet excellent in stretch flangeability and secondary work brittleness resistance can be obtained by having a martensite phase with a rate of 15 to 80%.
  • Patent Document 2 by mass%, C: more than 0.02% and 0.20% or less, Si: 0.01 to 2.0%, Mn: 0.1 to 3.0%, P: 0.003 0.10%, S: 0.020% or less, Al: 0.001 to 1.0%, N: 0.0004 to 0.015%, Ti: 0.03 to 0.2%,
  • the balance is Fe and impurities, and the metal structure of the steel sheet contains ferrite in an area ratio of 30 to 95%, and the remaining second phase is one or two of martensite, bainite, pearlite, cementite, and retained austenite.
  • the martensite area ratio is 0 to 50%
  • the steel sheet is formed of Ti-based carbonitride precipitates having a particle size of 2 to 30 nm and an average interparticle distance of 30 to 300 nm. And having a particle size of 3 ⁇ m or more Fatigue bending the bending notches in that it contains out-based TiN with an average distance between particles 50 ⁇ 500 [mu] m is a good high-tensile hot-dip galvanized steel sheet is obtained.
  • Patent Document 3 by mass%, C: 0.05 to 0.30%, Mn: 0.8 to 3.00%, P: 0.003 to 0.100%, S: 0.010% or less, Al: 0.10-2.50%, Cr: 0.03-0.50%, N: 0.007% or less, including ferrite phase, residual austenite phase and low-temperature transformation phase, ferrite phase fraction
  • a hot dip galvanized steel sheet having a high fatigue strength in a state having a punched fracture surface is obtained by precipitating AlN in a region from the steel sheet surface excluding the plating layer to 1 ⁇ m in a volume ratio of 97% or less.
  • Patent Document 4 C: 0.1 to 0.2%, Si: 2.0% or less, Mn: 1.0 to 3.0%, P: 0.1% or less, S: 0% by mass 0.07% or less, Al: 1.0% or less, Cr: 0.1 to 3.0%, and N: 0.01% or less, with the balance being Fe and inevitable impurities, with a steel structure in area ratio And having a composite structure in which ferrite is 20 to 60%, martensite is 40 to 80%, bainite is 5% or less and residual austenite is 5% or less, and the average grain size of the ferrite is 8 ⁇ m or less.
  • the tensile strength of 980 MPa is obtained by using auto-tempered martensite in which at least 3/4 of the site is an area ratio of iron carbide with a size of 5 to 500 nm deposited at least 1 ⁇ 10 5 per 1 mm 2. With the above, a steel sheet with good bending workability can be obtained. To have.
  • Patent Document 5 in mass%, C: 0.05% or more and less than 0.12%, Si: 0.35% or more and less than 0.80%, Mn: 2.0 to 3.5%, P: 0.0. 001 to 0.040%, S: 0.0001 to 0.0050%, Al: 0.005 to 0.1%, N: 0.0001 to 0.0060%, Cr: 0.01% to 0.5 %, Ti: 0.010 to 0.080%, Nb: 0.010 to 0.080% and B: 0.0001 to 0.0030%, the balance is composed of Fe and inevitable impurities, and the volume It has a structure containing a ferrite phase with a fraction of 20 to 70% and an average crystal grain size of 5 ⁇ m or less, a tensile strength of 980 MPa or more, and an adhesion amount (per side) of the steel sheet: 20 to 150 g / workability by having a galvanized layer of m 2, weldability and fatigue properties High strength galvanized steel sheet excellent is to be obtained.
  • fatigue crack propagation can be suppressed by controlling the Si content and making the bainite phase and / or the martensite phase fine.
  • the occurrence of fatigue cracks no consideration has been given to the occurrence of fatigue cracks from the surface layer of the plate thickness.If fatigue cracks occur, they may cause unexpected failures or local rust in actual parts. Fatigue resistance may be reduced.
  • the present invention has been made in view of such circumstances, and is a thin steel plate that includes a ferrite phase at a certain level, has a low yield ratio, has a tensile strength of 780 MPa or more, and has good bending fatigue properties, plating
  • An object of the present invention is to provide a method for producing a hot-rolled steel plate, a method for producing a cold-rolled full hard steel plate, and a method for producing a heat-treated plate, which are necessary for producing a thin steel plate and a plated steel plate. It is also intended to provide.
  • the present inventors diligently studied the requirements for a thin steel plate having a tensile strength of 780 MPa or more and having a ferrite phase while having good bending fatigue characteristics.
  • a martensite phase (hereinafter referred to as a martensite phase) as it was quenched, at least with a scanning electron microscope in which carbides could not be observed.
  • a martensite phase As a result of evaluating the bending fatigue characteristics of the dual-phase structure steel of ferrite phase and martensite phase, it is the softest in the surface layer part in the plate thickness direction (as will be described later, the region from the steel plate surface to the depth of 20 ⁇ m in the plate thickness direction). It was clarified that the bending fatigue characteristics deteriorated due to the occurrence of slip bands that persisted in the coarse ferrite grains that became the part, leading to cracks. Therefore, the inventors have come up with the idea that it is important to make the ferrite grain size in the surface layer portion fine.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • the component ratio of the balance consisting of Fe and inevitable impurities and the area ratio of the ferrite phase determined from the structure observation are 20% or more and 80% or less, the area ratio of the martensite phase is 20% or more and 80% or less, steel sheet surface layer
  • the steel structure has an average ferrite grain size of 5.0 ⁇ m or less and an inclusion density of the steel sheet surface layer part of 200 pieces / mm 2 or less. 95% or less when the hardness at the position of 2t (t is the thickness of the steel sheet) is 100%.
  • the thin steel sheet tensile strength is greater than or equal to 780MPa.
  • the component composition is mass%, further Cr: 0.001% to 0.8%, Mo: 0.001% to 0.5%, Sb: 0.001% to 0.2% % Or less, Nb: 0.001% or more and 0.1% or less of 1 type or 2 types or more,
  • the component composition is in mass%, and further contains 1.0% or less of one or more of REM, Cu, Ni, V, Sn, Mg, Ca, and Co in total [1] or [ 2].
  • a plated steel sheet comprising a plating layer on the surface of the high-strength thin steel sheet according to any one of [1] to [3].
  • the plating layer contains Fe: 20.0 mass% or less, Al: 0.001 mass% or more and 1.0 mass% or less, and Pb, Sb, Si, Sn, Mg, Mn, Ni , Cr, Co, Ca, Cu, Li, Ti, Be, Bi, REM in total containing 0 mass% or more and 3.5 mass% or less, and the balance from Zn and inevitable impurities
  • a steel material having the component composition according to any one of [1] to [3] is heated at 1100 ° C. or higher and 1300 ° C. or lower, and hot rolling, rough rolling and finish rolling are performed, cooling and winding.
  • the finish rolling start temperature is 1050 ° C. or less
  • the finish rolling end temperature is 820 ° C. or more
  • the finish rolling is finished within 3 seconds until the start of cooling
  • the average cooling rate to 600 ° C. is 30 ° C./s or more
  • the coiling temperature The manufacturing method of the hot rolled sheet steel which makes 350 degreeC or more and 580 degrees C or less.
  • the cold-rolled full hard steel sheet obtained by the production method according to [7] is heated to an annealing temperature of 780 ° C. or higher and 860 ° C. or lower, and after the heating, the average cooling rate up to 550 ° C. is 20 ° C./s.
  • a method for producing a heat-treated plate wherein the cold-rolled full hard steel plate obtained by the production method according to [7] is heated to 780 ° C. or more and 860 ° C. or less and subjected to pickling in which the thickness reduction is 2 ⁇ m or more and 30 ⁇ m or less. .
  • the heat-treated plate obtained by the production method according to [9] is heated to an annealing temperature of 720 ° C. or higher and 780 ° C. or lower, and after the heating, the average cooling rate to 550 ° C. is 20 ° C./s or higher.
  • a method for producing a thin steel sheet wherein the steel sheet is cooled at a stop temperature of 250 ° C. or higher and 550 ° C. or lower, and a dew point in a temperature range of 600 ° C. or higher is ⁇ 40 ° C. or lower.
  • [11] A method for producing a plated steel sheet, in which a thin steel sheet obtained by the production method according to [8] or [10] is plated.
  • the thin steel sheet obtained in the present invention has a ferrite phase of a certain level or more, and has a high strength of tensile strength (TS): 780 MPa or more and excellent bending fatigue characteristics.
  • TS tensile strength
  • the manufacturing method of the hot-rolled steel sheet of the present invention, the manufacturing method of the cold-rolled full hard steel sheet, and the manufacturing method of the heat-treated sheet are thin steel sheets as a manufacturing method of intermediate products for obtaining the above excellent thin steel sheets and plated steel sheets. And contributes to the above-described improvement of the properties of plated steel sheets.
  • the present invention is a thin steel plate and a plated steel plate, a method for producing a hot-rolled steel plate, a method for producing a cold-rolled full hard steel plate, a method for producing a heat-treated plate, a method for producing a thin steel plate, and a method for producing a plated steel plate.
  • the thin steel sheet of the present invention is not only a useful final product, but also an intermediate product for obtaining the plated steel sheet of the present invention.
  • the plated steel sheet starts from a steel material such as a slab, and the manufacturing process becomes a hot-rolled steel sheet, a cold-rolled full hard steel sheet, and a thin steel sheet. It is manufactured after.
  • the plated steel sheet is manufactured from a steel material such as a slab to become a hot-rolled steel sheet, a cold-rolled full hard steel sheet, a heat-treated sheet, and a thin steel sheet. Manufactured through a process.
  • the manufacturing method of the hot-rolled steel sheet of the present invention is a manufacturing method until obtaining the hot-rolled steel sheet in the above process.
  • the method for producing a cold-rolled full hard steel plate according to the present invention is a method for obtaining a cold-rolled full hard steel plate from a hot-rolled steel plate in the above process.
  • the method for producing a heat-treated plate according to the present invention is a method for obtaining a heat-treated plate from a cold-rolled full hard steel plate in the above-described process, in the case of pretreatment heating and pickling after cold rolling.
  • the method for producing a thin steel sheet of the present invention is a method for obtaining a thin steel sheet from a cold-rolled full hard steel sheet, in the case of a method that does not perform pretreatment heating and pickling after cold rolling, after cold rolling.
  • pretreatment heating and pickling it is a manufacturing method until a thin steel plate is obtained from a heat-treated plate.
  • the method for producing a plated steel sheet according to the present invention is a process for obtaining a plated steel sheet from a thin steel sheet in the above process.
  • the component compositions of hot-rolled steel sheet, cold-rolled full hard steel sheet, heat-treated sheet, thin steel sheet and plated steel sheet are common, and the steel structures of thin steel sheet and plated steel sheet are common.
  • a thin steel plate, a plated steel plate, and a manufacturing method it explains in order of a common matter, a thin steel plate, a plated steel plate, and a manufacturing method.
  • the characteristics related to the surface hardness of the thin steel sheet are also maintained in the plated steel sheet (for the surface hardness, the thin steel sheet from which plating has been removed from the plated steel sheet by controlling the dew point during annealing is also applied to the thin steel sheet before plating. Have the same characteristics).
  • the component composition of the thin steel sheet or the like of the present invention is mass%, C: 0.04% to 0.18%, Si: 0.6% or less, Mn: 1.5% to 3.2%, P : 0.05% or less, S: 0.015% or less, Al: 0.08% or less, N: 0.0100% or less, Ti: 0.010% or more and 0.035% or less, B: 0.0002% More than 0.0030% is contained, and the balance consists of Fe and inevitable impurities.
  • the above component composition is in mass%, and Cr: 0.001% to 0.8%, Mo: 0.001% to 0.5%, Sb: 0.001% to 0.2%
  • Nb You may contain 1 type or 2 types or more of 0.001% or more and 0.1% or less.
  • the above component composition may be in mass%, and may further contain one or more of REM, Cu, Ni, Nb, V, Sn, Mg, Ca, Co in a total of 1.0% or less.
  • C 0.04% or more and 0.18% or less C is an element that increases the hardness of the martensite phase and contributes to increasing the strength of the steel sheet.
  • Tensile strength In order to obtain 780 MPa or more, it is necessary to contain at least 0.04% of C.
  • the C content exceeds 0.18%, the hardness of the martensite phase excessively increases, stress concentration resulting from the hardness difference between the ferrite phase and the martensite phase occurs during bending fatigue, and bending fatigue characteristics Reduce. Therefore, the C content is set to 0.18% or less.
  • the desirable C content for the lower limit is 0.05% or more.
  • the desirable C content for the upper limit is 0.16% or less.
  • Si 0.6% or less Si hardens the ferrite phase and reduces the hardness difference between the ferrite phase and the martensite phase. Thereby, stress concentration generation at the time of bending fatigue can be suppressed. From such a viewpoint, it is desirable to contain Si by 0.1% or more. On the other hand, Si forms an oxide containing Si on the surface of the steel sheet, lowers the bending fatigue characteristics, and lowers the chemical conversion treatment properties and the plating properties. From the above viewpoint, in the present invention, since up to 0.6% is acceptable, the upper limit of the Si content is set to 0.6%. Preferably, it is 0.45% or less. The lower limit is not particularly defined and is included up to 0%, but 0.001% Si may be inevitably mixed into the steel in the manufacture. Therefore, the lower limit is, for example, 0.001% or more.
  • Mn 1.5% or more and 3.2% or less
  • Mn is an element that lowers the transformation temperature from the ferrite phase to the austenite phase and contributes to the formation of the martensite phase.
  • Mn is an element that lowers the transformation temperature from the ferrite phase to the austenite phase and contributes to the formation of the martensite phase.
  • Mn is an element that lowers the transformation temperature from the ferrite phase to the austenite phase and contributes to the formation of the martensite phase.
  • Mn is an element that lowers the transformation temperature from the ferrite phase to the austenite phase and contributes to the formation of the martensite phase.
  • Mn is an element that lowers the transformation temperature from the ferrite phase to the austenite phase and contributes to the formation of the martensite phase.
  • Mn is an element that lowers the transformation temperature from the ferrite phase to the austenite phase and contributes to the formation of the martensite phase.
  • Mn is an element that lowers the transformation temperature from the
  • P 0.05% or less
  • P is an element that segregates at grain boundaries and deteriorates bending fatigue characteristics. Therefore, it is preferable to reduce the P content as much as possible.
  • the P content is acceptable up to 0.05%. Preferably it is 0.04% or less. Although it is desirable to reduce the P content as much as possible, 0.001% may be inevitably mixed in production. Therefore, the lower limit is, for example, 0.001% or more.
  • S 0.015% or less S forms coarse MnS in steel, which becomes a nucleation site of ferrite during hot rolling.
  • S 0.0005% or more. More preferably, it is 0.003% or more.
  • the S content upper limit was made 0.015%. Preferably it is 0.010% or less.
  • Al 0.08% or less
  • Al content 0.01% or more.
  • a more preferable Al content is 0.02% or more.
  • Al forms an oxide that deteriorates workability. Therefore, the upper limit of the Al content is set to 0.08%. Preferably it is 0.07% or less.
  • N 0.0100% or less
  • N is a harmful element because it lowers the aging resistance in a solid solution state and becomes a stress concentration occurrence point during bending fatigue in a state where a nitride is formed. Therefore, it is desirable to reduce the N content as much as possible.
  • the N content is acceptable up to 0.0100%. Preferably it is 0.0060% or less. Although it is desirable to reduce the N content as much as possible, 0.0005% may be inevitably mixed in production. Therefore, the lower limit is, for example, 0.0005% or more.
  • Ti 0.010% or more and 0.035% or less Ti is an element having an effect of promoting the hardenability improvement effect by B by fixing N as nitride and suppressing formation of nitride containing B. Since N is inevitably mixed, Ti needs to be 0.010% or more. On the other hand, when the Ti content exceeds 0.035%, a decrease in bending fatigue characteristics due to the carbonitride containing Ti becomes obvious. From the above, the Ti content is set to 0.010% or more and 0.035% or less. A preferable Ti content for the lower limit is 0.015% or more. The preferable Ti content for the upper limit is 0.030% or less. Since the solid solution N has a particularly bad influence, it is more preferable to satisfy the formula (1).
  • the average ferrite grain size of the surface layer portion is reduced, and the bending fatigue characteristics are remarkably enhanced.
  • [% Ti] and [% N] represent the contents (mass%) of Ti and N, respectively.
  • B 0.0002% or more and 0.0030% or less B is an element that improves the hardenability of the steel sheet and contributes to the refinement of ferrite grains. On the other hand, if it is contained excessively, the bending fatigue characteristics are lowered by the effect of the solid solution B. From the above, the B content is set to 0.0002% or more and 0.0030% or less. A preferable B content for the lower limit is 0.0005% or more. The preferable B content for the upper limit is 0.0020% or less.
  • Cr and Mo are elements that are effective in refining ferrite grains in order to contribute to increasing the strength of the steel sheet by solid solution strengthening and to improve the hardenability of the steel sheet.
  • the Cr content exceeds 0.8%, the surface properties are deteriorated and the chemical conversion property and the plating property are lowered.
  • the Mo content exceeds 0.5%, the transformation temperature of the steel sheet changes greatly, deviates from the structure required in the present invention, and the bending fatigue characteristics are reduced.
  • Sb is an element that enriches the surface and contributes to the suppression of the surface decarburization of the steel sheet, and can stably refine the ferrite grains on the surface layer of the steel sheet.
  • the Sb content needs to be 0.001% or more.
  • the Sb content exceeds 0.2%, the surface properties are deteriorated, and the chemical conversion property and the plating property are lowered.
  • Nb is an element useful for refining crystal grains. To obtain this effect, Nb needs to be contained in an amount of 0.001% or more.
  • the upper limit of Nb content was set to 0.1%.
  • Cr 0.001% to 0.8%
  • Mo 0.001% to 0.5%
  • Sb 0.001% to 0.2%
  • Nb 0.001% More than 0.1%.
  • a preferable Cr content for the lower limit is 0.01% or more.
  • a preferable Cr content for the upper limit is 0.7% or less.
  • a preferable Mo content for the lower limit is 0.01% or more.
  • a preferable Mo content for the upper limit is 0.3% or less.
  • a preferable Sb content for the lower limit is 0.001% or more.
  • a preferable Sb content for the upper limit is 0.05% or less.
  • the preferable Nb content for the lower limit is 0.003% or more.
  • a preferable Nb content for the upper limit is 0.07% or less.
  • any one or more of REM, Cu, Ni, Sn, V, Mg, Ca, Co may be contained in a total of 1.0% or less.
  • These elements are elements mixed as inevitable impurities, and a total of up to 1.0% is acceptable from the viewpoint of workability (moldability) and aging resistance. Preferably, it is 0.2% or less in total.
  • the lower limit is a total of one or more, preferably 0.01% or more.
  • Components other than the above components are Fe and inevitable impurities.
  • Cr, Mo, Sb, and Nb are less than the lower limit, the effect of the present invention is not impaired. Therefore, when these elements are contained below the lower limit, these elements are unavoidable impurities.
  • the steel structure of the thin steel sheet of the present invention has a ferrite phase area ratio of 20% or more and 80% or less, a martensite phase area ratio of 20% or more and 80% or less, and an average ferrite of the steel sheet surface layer portion determined from the structure observation.
  • the particle size is 5.0 ⁇ m or less, and the inclusion density in the steel sheet surface layer is 200 pieces / mm 2 or less.
  • the area ratio, average ferrite particle size, and inclusion density mean values obtained by the methods described in the examples.
  • Area ratio of ferrite phase 20% or more and 80% or less
  • the ferrite phase has excellent workability and is soft, so it can reduce the yield strength. In order to obtain the workability and yield strength required in the present invention, the area ratio of the ferrite phase was set to 20% or more. On the other hand, if the ferrite phase is excessively increased, a tensile strength of 780 MPa cannot be obtained. From the above, the area ratio of the ferrite phase was set to 20% or more and 80% or less.
  • the ferrite area ratio preferable for the lower limit is 30% or more, and the ferrite area ratio preferable for the upper limit is 70% or less.
  • Martensite phase area ratio 20% or more and 80% or less Since the martensite phase has high hardness, it contributes to high strength of the steel sheet. In order to obtain a tensile strength of 780 MPa or more, the area ratio of the martensite phase needs to be 20% or more. On the other hand, if the area ratio of the martensite phase exceeds 80%, the workability deteriorates and it becomes unsuitable for automobile members. Therefore, the area ratio of the martensite phase is set to 80% or less. A preferred martensite area ratio for the lower limit is 30% or more, and a preferred martensite area ratio for the upper limit is 70% or less.
  • ferrite and martensite are important in the steel structure, and the total of these is preferably 85% or more in terms of area ratio.
  • the remainder includes a bainite phase, a tempered martensite phase, and a retained austenite phase.
  • the bainite phase and the tempered martensite phase are preferably reduced as much as possible in order to reduce strength and material stability.
  • the total area ratio of the bainite phase and the tempered martensite phase is allowable up to 15%. More preferably, the total is 10% or less. A large amount of retained austenite is not produced in the present invention, and the maximum area ratio is 4%.
  • the surface layer portion is formed through the formation of an internal oxide layer during hot rolling (an oxide layer formed on the inner side of the surface and at least part of which is present to a depth of 20 ⁇ m) and a scale generated during hot rolling.
  • the structure of the surface layer portion can be changed by decarburization via the moisture in the furnace during the decarburization or annealing.
  • the range from the steel sheet surface to a depth of 20 ⁇ m may be controlled, and this is defined as “steel sheet surface layer part (surface layer part of steel sheet)” in the present invention.
  • steel sheet surface layer part surface layer part of steel sheet
  • strain is applied to the coarse ferrite grains in a concentrated manner, so that a sticky slip band that causes cracks during bending fatigue is generated. Bending fatigue characteristics deteriorate.
  • it is necessary to make the average ferrite grain size of the steel sheet surface layer portion 5.0 ⁇ m or less. Preferably, it is 3.5 ⁇ m or less.
  • the lower limit of the average ferrite particle size obtained in the present invention is about 0.5 ⁇ m.
  • Inclusion density in the steel plate surface layer portion 200 pieces / mm 2 or less Inclusions present in the steel plate surface layer portion cause cracking, and therefore it is preferable to reduce the amount of inclusions as much as possible.
  • 200 pieces / mm 2 can be allowed. Preferably, it is 150 pieces / mm 2 or less.
  • the steel sheet surface hardness is 100% when the hardness (steel sheet center part hardness) at a position of 1/2 t (t is the thickness of the steel sheet) in the thickness direction from the steel sheet surface is 100%. 95% or more.
  • Steel sheet surface hardness ⁇ steel sheet center hardness ⁇ 0.95 Bending fatigue properties also depend on surface hardness. When the steel sheet surface hardness representing the surface layer hardness is less than 95% of the center hardness, the fatigue strength ratio ( fatigue strength / tensile strength) decreases. In order to avoid this adverse effect, the steel sheet surface hardness needs to be 95% or more of the hardness of the central portion. Preferably, it is 97% or more.
  • ⁇ Thin steel plate> The component composition and steel structure of the thin steel sheet are as described above. Moreover, although the thickness of a thin steel plate is not specifically limited, It is preferable that a plate thickness is 3.2 mm or less because the tension
  • the plated steel sheet of the present invention is composed of the thin steel sheet of the present invention and a plating layer formed on the surface thereof.
  • the component composition and the steel structure of the thin steel plate are as described above, and thus the description thereof is omitted.
  • the plating layer is not particularly limited, and is, for example, a hot dipping layer or an electroplating layer.
  • the hot-plated layer includes those that are alloyed.
  • the plated layer is preferably a galvanized layer.
  • the galvanized layer may contain Al or Mg.
  • hot dip zinc-aluminum-magnesium alloy plating Zn—Al—Mg plating layer
  • the Al content is 1% by mass or more and 22% by mass or less
  • the Mg content is 0.1% by mass or more and 10% by mass or less
  • the balance is Zn.
  • the Zn—Al—Mg plating layer in addition to Zn, Al, and Mg, one or more selected from Si, Ni, Ce, and La may be contained in a total amount of 1% by mass or less. In addition, since a plating metal is not specifically limited, Al plating etc. may be sufficient besides the above Zn plating.
  • Components constituting the plating layer are not particularly limited and may be general components.
  • the plated layer contains, in mass%, Fe: 20.0 mass% or less, Al: 0.001 mass% or more and 1.0 mass% or less.
  • the Fe content is 0 to 5.0% by mass in the hot dip galvanized layer, and the Fe content is more than 5.0% by mass to 20.0% by mass in the galvannealed steel sheet.
  • a plating metal is not specifically limited, Al plating etc. may be sufficient besides the above Zn plating.
  • the temperature is the steel sheet surface temperature unless otherwise specified.
  • the steel sheet surface temperature can be measured using a radiation thermometer or the like.
  • the average cooling rate is ((surface temperature before cooling ⁇ surface temperature after cooling) / cooling time).
  • a method for producing a hot-rolled steel sheet heats a steel material having the above composition at 1100 ° C. or more and 1300 ° C. or less, and performs hot rolling consisting of rough rolling and finish rolling, with a finish rolling start temperature of 1050 ° C. or less,
  • the finish rolling finish temperature is 820 ° C. or higher
  • the finish cooling is finished within 3 seconds from the end of finish rolling to the start of cooling at an average cooling rate of 30 ° C./s to 600 ° C.
  • the coil is wound at 350 ° C. to 580 ° C.
  • the melting method for producing the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Further, secondary refining may be performed in a vacuum degassing furnace. Then, it is preferable to use a slab (steel material) by a continuous casting method from the viewpoint of productivity and quality. Also, the slab may be formed by a known casting method such as ingot-bundling rolling or continuous slab casting.
  • Heating temperature of steel material 1100 ° C. or higher and 1300 ° C. or lower
  • the heating temperature needs to be 1100 ° C. or higher.
  • the heating temperature exceeds 1300 ° C., the thickness of the internal oxide layer generated on the surface layer of the steel sheet increases so that it cannot be removed by pickling, so that the bending fatigue characteristics deteriorate.
  • the heating temperature of the steel material was set to 1100 ° C. or higher and 1300 ° C. or lower.
  • a desirable heating temperature for the lower limit is 1120 ° C. or higher.
  • a desirable heating temperature for the upper limit is 1260 ° C. or less.
  • Finishing rolling start temperature 1050 ° C or less
  • Finishing rolling end temperature 820 ° C or more
  • the scale is once removed at the finish rolling start side, but the scale and internal oxide layer generated during finish rolling adversely affect the bending fatigue characteristics. . Since the amount of scale and internal oxide layer produced depends on the temperature, it is necessary to start rolling at as low a temperature as possible. Further, when the finish rolling temperature is high, the ferrite grains tend to increase. In the present invention, since up to 1050 ° C. is acceptable, the finish rolling start temperature is set to 1050 ° C. or less. The lower limit of the finish rolling start temperature is preferably 1000 ° C. or higher.
  • the finish rolling end temperature is set to 820 ° C. or higher. Further, the upper limit of the finish rolling end temperature is preferably 900 ° C. or less.
  • Time from the end of finish rolling to the start of cooling within 3 seconds (including 0 seconds) Average cooling rate up to 600 ° C .: 30 ° C./s or more
  • Average cooling rate up to 600 ° C .: 30 ° C./s or more
  • the scale generation proceeds at 600 ° C. or higher in a short time.
  • the average cooling rate was set to 30 ° C./s or more from the start of cooling during cooling to 600 ° C.
  • the cooling is performed at an average cooling rate of 35 ° C./s or higher up to 580 ° C. within 2 seconds until the start of cooling.
  • the cooling start temperature substantially coincides with the finish rolling end temperature (the temperature is only slightly lowered within 3 seconds, which is the time from the end of finish rolling to the start of cooling).
  • the cooling stop temperature is usually the following winding temperature.
  • the average cooling rate from 600 ° C. to the coiling temperature is not particularly limited, and even if it is 30 ° C./s or more, it is less than 30 ° C./s. There may be.
  • Winding temperature 350 ° C. or higher and 580 ° C. or lower It takes at least 1 hour or more for the steel sheet after winding to be cooled to room temperature. In order to suppress the internal oxide layer and scale formation during this period and to suppress the inclusion density, the coiling temperature needs to be 580 ° C. or lower. On the other hand, when the coiling temperature is lower than 350 ° C., the shape of the plate is deteriorated and the cold rolling property is lowered. Therefore, the winding temperature range is set to 350 ° C. or higher and 580 ° C. or lower. A preferable coiling temperature for the lower limit is 400 ° C. or higher. A preferable winding temperature for the upper limit is 550 ° C. or lower.
  • the steel sheet After the winding, the steel sheet is cooled by air cooling or the like, and used for manufacturing the following cold-rolled full hard steel sheet.
  • a hot-rolled steel plate becomes a transaction object as an intermediate product, it is normally a transaction object in a cooled state after winding.
  • the method for producing a cold-rolled full hard steel plate according to the present invention is a method in which the hot-rolled steel plate obtained by the above method is subjected to pickling with a thickness reduction amount of 5 ⁇ m or more and 50 ⁇ m or less, followed by cold rolling after the pickling. It is.
  • Sheet thickness reduction amount 5 ⁇ m or more and 50 ⁇ m or less
  • the range of the plate thickness reduction amount in pickling is set to 5 ⁇ m or more and 50 ⁇ m or less.
  • a preferable thickness reduction amount for the lower limit is 10 ⁇ m or more, and a preferable thickness reduction amount for the upper limit is 40 ⁇ m or less.
  • Cold rolling In order to obtain a desired sheet thickness, it is necessary to cold-roll the hot-rolled sheet (hot-rolled steel sheet) after pickling.
  • the rolling rate in cold rolling is not particularly limited, but is usually 30% or more for the lower limit and 95% or less for the upper limit.
  • the method for producing a thin steel sheet includes a method of heating and cooling a cold-rolled full hard steel sheet to produce a thin steel sheet, and pre-heating and cold-washing the cold-rolled full hard steel sheet to form a heat treated plate and heating the heat treated plate.
  • the manufacturing method of the thin steel plate which does not perform pre-processing heating and pickling heats the cold-rolled full hard steel plate obtained above to annealing temperature 780 degreeC or more and 860 degrees C or less, and after this heating, average cooling to 550 degreeC
  • This is a method of cooling under conditions where the speed is 20 ° C./s or more and the cooling stop temperature is 250 ° C. or more and 550 ° C. or less.
  • the dew point in the temperature range of 600 ° C. or more in the heating and cooling is ⁇ 40 ° C. or less.
  • Annealing temperature 780 ° C. or more and 860 ° C. or less
  • the annealing temperature is lower than 780 ° C.
  • the strain imparted by cold rolling is not removed, and the ductility is remarkably lowered, making it unsuitable as a member for automobile use.
  • the annealing temperature exceeds 860 ° C.
  • the ferrite phase disappears and the workability is lowered.
  • the annealing temperature was set to 780 ° C. or more and 860 ° C. or less.
  • a preferable annealing temperature for the lower limit is 790 ° C. or higher
  • a preferable annealing temperature for the upper limit is 850 ° C. or lower.
  • the temperature is maintained at a predetermined annealing temperature, and cooling is performed under the following conditions.
  • Average cooling rate up to 550 ° C . 20 ° C./s or more Cooling stop temperature: 250 ° C. or more and 550 ° C. or less
  • the average cooling rate up to 550 ° C. needs to be 20 ° C./s or more.
  • About an upper limit, 100 degrees C / s or less is preferable. Since ferrite grains may grow at 550 ° C. or higher, the temperature range for adjusting the average cooling rate is set to 550 ° C., and the upper limit of the cooling stop temperature is set to 550 ° C.
  • the temperature range for adjusting the average cooling rate is up to 530 ° C.
  • the upper limit of the cooling stop temperature is 530 ° C.
  • the cooling stop temperature is set to 250 ° C. or higher.
  • it is 300 ° C. or higher.
  • the average cooling rate from 550 ° C. to the cooling stop temperature is not particularly limited, and may be 20 ° C./s or more and less than 20 ° C./s.
  • Dew point in the temperature range of 600 ° C or higher: -40 ° C or lower During annealing, if the dew point becomes higher in the temperature range of 600 ° C or higher, decarburization proceeds through moisture in the air, and the ferrite grains on the steel sheet surface layer become coarse In addition, since the hardness is reduced, a stable excellent tensile strength cannot be obtained, and the bending fatigue characteristics are reduced. Therefore, the dew point in the temperature range of 600 ° C. or higher during annealing needs to be ⁇ 40 ° C. or lower. Preferably, it is ⁇ 45 ° C. or lower. In the case of annealing through the normal heating, soaking and cooling processes, the temperature range of 600 ° C.
  • the lower limit of the dew point of the atmosphere is not particularly specified, but if it is less than ⁇ 80 ° C., the effect is saturated and disadvantageous in terms of cost, it is preferably ⁇ 80 ° C. or higher.
  • the temperature in the above temperature range is based on the steel sheet surface temperature. That is, when the steel sheet surface temperature is in the above temperature range, the dew point is adjusted to the above range.
  • the strain given by cold rolling can be removed, so the annealing temperature can be lowered during annealing, and the surface layer Can be stably suppressed.
  • the steel sheet In pretreatment heating and pickling, the steel sheet is heated to 780 ° C. or more and 860 ° C. or less, and the plate thickness is reduced in the range of 2 ⁇ m or more and 30 ⁇ m or less by pickling.
  • the heating temperature in the pretreatment heating is set to 780 ° C. or more and 860 ° C. or less.
  • a preferable heating temperature for the lower limit is 790 ° C. or higher, and a preferable heating temperature for the upper limit is 850 ° C. or lower.
  • the thickness reduction amount is 2 ⁇ m or more and 30 ⁇ m or less.
  • the thickness reduction amount exceeds 30 ⁇ m, the crystal grains of the steel sheet surface layer are easily peeled off by a roll during annealing, and the surface properties of the steel sheet are remarkably deteriorated. Therefore, the upper limit of the thickness reduction amount is set to 30 ⁇ m.
  • the preferred thickness reduction for the lower limit is 5 ⁇ m or more, and the preferred thickness reduction for the upper limit is 25 ⁇ m or less.
  • Annealing is performed after the pickling.
  • the annealing temperature in that case is 720 degreeC or more and 780 degrees C or less.
  • the annealing temperature is lower than 720 ° C., the plate meanders during the passing of the annealing line, leading to a decrease in productivity.
  • the annealing temperature exceeds 780 ° C., the merit of improving the cleanliness of the steel sheet surface layer portion is lost by providing the pretreatment heat pickling. Therefore, the annealing temperature was set to 720 ° C. or higher and 780 ° C. or lower.
  • the conditions other than the annealing temperature, the dew point, and the like are the same as those in the case where pretreatment heating and pickling are not performed, and thus description thereof is omitted.
  • the method for producing a plated steel sheet according to the present invention is a method for plating the thin steel sheet.
  • the kind of plating process is not specifically limited, For example, they are a hot dipping process and an electroplating process.
  • the hot dipping process may be a process of alloying after hot dipping.
  • the plating layer may be formed by a hot dip galvanizing process, a process of alloying after hot dip galvanizing, or a plating layer may be formed by electroplating such as Zn-Ni electroalloy plating.
  • hot dip zinc-aluminum-magnesium alloy plating may be applied.
  • the above annealing may be performed in a continuous hot dipping line, followed by cooling after annealing and dipping in a hot dipping bath to form a plating layer on the surface. Further, as described in the explanation of the plating layer, Zn plating is preferable, but plating treatment using other metal such as Al plating may be used.
  • Conditions shown in Tables 2 and 3 are hot-rolled sheets (hot-rolled steel sheets) by hot rolling the steel material having a component composition shown in Table 1 and having a thickness of 250 mm under the hot-rolling conditions shown in Tables 2 and 3.
  • Tables 2 and 3 (the manufacturing conditions in Table 3 are to produce heat-treated sheets, (The manufacturing conditions for annealing this heat-treated plate.)
  • the cold-rolled steel plate (CR material) is a continuous annealing line under the annealing conditions shown in the figure, and the galvanized steel plate (GI material) or the alloyed galvanized steel plate (GA material) is continuously melted.
  • Annealing was performed on the plating line.
  • an alloying treatment was performed after plating.
  • the temperature of the plating bath immersed in the continuous hot dipping line (plating composition: Zn—0.13 mass% Al) is 460 ° C.
  • the amount of plating is GI (hot dip plated steel), GA (alloyed) dip plated steel sheet) both per one surface 45 g / m 2 or more 65 g / m 2 or less
  • Fe content of the zinc plating layer in the case of galvannealed layer is in the range of 14 wt% 6 wt% or more or less .
  • the amount of Fe contained in the plated layer is set to a range of 4% by mass or less.
  • the thickness of the thin steel plate was 1.4 mm.
  • Specimens were collected from the thin steel plates (CR material, GI material and GA material) obtained as described above and evaluated by the following methods.
  • the area ratio of each phase was evaluated by the following method. Cut out from the steel plate so that the cross-section of the plate parallel to the rolling direction becomes the observation surface, the center portion appears to be corroded with 1% nital, and is magnified 2000 times with a scanning electron microscope to obtain a 1/4 thickness portion for 10 fields of view. I took a picture.
  • the ferrite phase is a structure having a form in which corrosion marks and cementite are not observed in the grains, and martensite indicates a form in which carbides are not observed in the grains with a white contrast.
  • the ferrite phase and martensite phase were separated from each other by image analysis, and the area ratio relative to the observation field was obtained. When a bainite phase other than the ferrite phase and martensite phase and a retained austenite phase are included, they are shown in Table 3 as symbols. Note that tempered martensite was not observed under the annealing conditions shown in Tables 2 and 3.
  • the ferrite grain size of the steel sheet surface layer part is cut out from the steel sheet so that the cross section of the plate thickness parallel to the rolling direction becomes the observation surface, and is 20 ⁇ m from the steel plate surface (the surface of the thin steel plate portion, not the surface of the plating layer) in the plate thickness direction.
  • the area appears corroded with 1% nital, magnified 2000 times with a scanning electron microscope, and the surface area of the steel sheet was photographed for 10 fields of view.
  • the area of each ferrite grain was determined by image analysis for the ferrite grains in this photographed image.
  • the equivalent circle diameter corresponding to the area was obtained. Table 4 shows the average value of the equivalent circle diameter as the average ferrite particle diameter.
  • the inclusion density in the surface layer portion of the steel sheet is cut out from the steel sheet so that the cross section of the plate thickness parallel to the rolling direction becomes the observation surface, and is 20 ⁇ m in the thickness direction from the steel sheet surface (the surface of the thin steel sheet portion, not the surface of the plating layer).
  • the observation surface which is the region, was mirror-polished, then magnified 400 times with an optical microscope, and continuous photographs of the steel sheet surface layer portion of 1 mm in actual length were taken. Using the obtained photographs, the number of inclusions observed with a black contrast in the range from the steel sheet surface to a depth of 20 ⁇ m was counted, and the inclusion density was determined by dividing the number by the measurement area.
  • the hardness of the steel sheet surface and the steel sheet interior was determined by a Vickers hardness test.
  • the hardness of the surface of the steel sheet was determined by measuring a total of 20 points with a test load of 0.2 kgf from the surface of the steel sheet from which the plating layer was removed by pickling in the case of having a plating layer, and obtaining an average value.
  • For the hardness inside the steel plate a total of five points were measured at a test load of 1 kgf for a plate thickness of 1 ⁇ 2 part in a cross section parallel to the rolling direction, and an average value was obtained. If the average value of the hardness of the steel sheet surface was 95% or more of the average value of the hardness inside the steel sheet (0.95 or more in the table), the characteristic required by the present invention was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

フェライト相を一定以上含み、降伏比が低く、引張強さ:780MPa以上を有し、かつ良好な曲げ疲労特性を有する薄鋼板等を提供する。本発明の薄鋼板は、特定の成分組成と、フェライト相の面積率が20%以上80%以下、マルテンサイト相の面積率が20%以上80%以下、鋼板表層部の平均フェライト粒径が5.0μm以下、鋼板表層部の介在物密度が200個/mm2以下である鋼組織と、を有し、鋼板表面から厚み方向に1/2t(tは鋼板の厚み)の位置の硬さを100%としたときに、鋼板表面硬さが95%以上である。

Description

薄鋼板及びめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
 本発明は、薄鋼板及びめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法に関する。本発明の薄鋼板は、引張強さ(TS):780MPa以上を有し、優れた曲げ疲労特性を兼ね備える。このため、本発明の薄鋼板は、自動車用骨格部材の素材に適する。
 近年、地球環境保全の観点から、CO排出量の低減を目的として、自動車業界全体で自動車の燃費改善が指向されている。自動車の燃費改善には、使用部品の薄肉化による自動車の軽量化が最も有効である。このため、近年、自動車部品用素材として、高強度鋼板の使用量が増加しつつある。
 自動車部材は降伏強さ以下の応力を繰り返し与えられるため、耐疲労特性(曲げ疲労特性)も重要となる。耐疲労特性を向上させるため、フェライト相を少なくし、ベイナイト相、マルテンサイト相もしくは焼き戻しマルテンサイト相で構成される組織設計がなされることも多い。しかし、この組織設計がなされた鋼板は、成形性(加工性)の良いフェライト相を少なくしたため、成形性に劣る欠点も有する。フェライト相を含みながら耐疲労特性を改善した技術も、これまでに提案されている。
 例えば、特許文献1では、質量%で、C:0.03~0.13%、Si≦0.7%、Mn:2.0~4.0%、P≦0.05%、S≦0.005%、Sol.Al:O.01~0.1%、N≦0.005%、Ti:0.005~0.1%、B:0.0002~0.0040%を含有し、平均粒径が5μm以下のフェライト相と体積率が15~80%のマルテンサイト相を有することで伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板が得られるとしている。
 特許文献2では、質量%で、C:0.02%を超え0.20%以下、Si:0.01~2.0%、Mn:0.1~3.0%、P:0.003~0.10%、S:0.020%以下、Al:0.001~1.0%、N:0.0004~0.015%、Ti:0.03~0.2%を含有し、残部がFeおよび不純物であるとともに、鋼板の金属組織がフェライトを面積率で30~95%含有し、残部の第2相がマルテンサイト、ベイナイト、パーライト、セメンタイトおよび残留オーステナイトのうちの1種または2種以上からなり、かつマルテンサイトを含有するときのマルテンサイトの面積率は0~50%であり、そして、鋼板が粒径2~30nmのTi系炭窒化析出物を平均粒子間距離30~300nmで含有し、かつ粒径3μm以上の晶出系TiNを平均粒子間距離50~500μmで含有することで切り欠き曲げ曲げ疲労特性が良好な高張力溶融亜鉛めっき鋼板が得られるとしている。
 特許文献3では、質量%で、C:0.05~0.30%、Mn:0.8~3.00%、P:0.003~0.100%、S:0.010%以下、Al:0.10~2.50%、Cr:0.03~0.50%、N:0.007%以下を含有し、フェライト相、残留オーステナイト相及び低温変態相を含み、フェライト相分率が体積比で97%以下であり、かつ、めっき層を除く鋼板表面から1μmまでの領域にAlNを析出させることで打ち抜き破面を有する状態での疲労強度が高い溶融亜鉛めっき鋼板が得られるとしている。
 特許文献4では、質量%で、C:0.1~0.2%、Si:2.0%以下、Mn:1.0~3.0%、P:0.1%以下、S:0.07%以下、Al:1.0%以下、Cr:0.1~3.0%およびN:0.01%以下を含有し、残部はFeおよび不可避不純物からなり、鋼組織として面積率で、フェライトが20~60%、マルテンサイトが40~80%、ベイナイトが5%以下および残留オーステナイトが5%以下である複合組織を有し、該フェライトの平均粒径が8μm以下であり、該マルテンサイトのうち面積比で3/4以上が、大きさ:5~500nmの鉄系炭化物を1mmあたり1×10個以上析出させたオートテンパードマルテンサイトとすることで、引張強さが980MPa以上で曲げ加工性が良好な鋼板が得られるとしている。
 特許文献5では、質量%で、C:0.05%以上0.12%未満、Si:0.35%以上0.80%未満、Mn:2.0~3.5%、P:0.001~0.040%、S:0.0001~0.0050%、Al:0.005~0.1%、N:0.0001~0.0060%、Cr:0.01%~0.5%、Ti:0.010~0.080%、Nb:0.010~0.080%およびB:0.0001~0.0030%を含有し、残部がFeおよび不可避不純物の組成からなり、体積分率が20~70%で、かつ平均結晶粒径が5μm以下のフェライト相を含有する組織を有し、引張強度が980MPa以上で、さらに鋼板表面に付着量(片面当たり):20~150g/mの溶融亜鉛めっき層を有することで加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板が得られるとしている。
特開2004-211140号公報 特開2006-63360号公報 特開2007-262553号公報 特開2010-275628号公報 特願2010-542856号公報
 特許文献1で提案された技術では、曲げ疲労時に最も応力が大きくなる鋼板表層部について、なんら検討されておらず、耐疲労特性が良好な鋼板を得ることはできない。
 特許文献2で提案された技術では、表層部に分散したTi系の炭窒化物の周りに応力集中が発生し、耐疲労特性が劣る場合がある。
 特許文献3で提案された技術では、引張強さ780MPa以上の高強度の場合、表層に分散するAlNにより曲げ疲労時の割れが助長されるうえ、AlNを分散させるために空気比を1.0以上とする必要がある。その結果、表層が軟化するために、耐疲労特性が劣化する。
 特許文献4で提案された技術では、Si含有量を制御し、ベイナイト相および/またはマルテンサイト相を微細とすることで疲労亀裂の伝播を抑制できるとしている。しかし、疲労亀裂の発生について、板厚表層部からの疲労亀裂の発生について、何ら検討されておらず、疲労亀裂が発生した場合、実部品において予期せぬ不具合の原因や、局部的な錆びによって耐疲労特性が低下することがある。
 特許文献5で提案された技術では、表層の硬度を保つために分散させた、Tiを含む硬質な炭窒化物が、曲げ疲労時に亀裂発生の原因になり、耐疲労特性が劣化する。
 いずれの先行技術においても、引張強さが780MPa以上を有し、優れた曲げ疲労特性を兼備した鋼板を得ることは困難である。本発明はかかる事情に鑑みてなされたものであって、フェライト相を一定以上含みつつ、降伏比が低く、引張強さ:780MPa以上を有し、かつ良好な曲げ疲労特性を有する薄鋼板、めっき鋼板およびこれらの製造方法を提供することを目的とするとともに、薄鋼板及びめっき鋼板を製造するために必要な熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法を提供することも目的とする。
 本発明者らは上記課題を解決するために、引張強さ780MPa以上かつフェライト相を有しながら良好な曲げ疲労特性を兼備する薄鋼板の要件について鋭意検討した。
 高強度化にあたり、硬質相を入れる、もしくはフェライト相を析出物で強化する手法を検討した結果、析出物で高強度化を図った場合、析出物周りに発生する応力集中により、曲げ疲労特性の低下がみられた。
 そこで、硬質相によって高強度化を図ることとしたが、ベイナイト相や焼き戻しマルテンサイト相では強度不足や強度ばらつきが大きくなる結果が得られた。
 そこで、実質的に高強度化させるには、少なくとも走査電子顕微鏡では内部に炭化物が観察できない、焼入ままマルテンサイト相(以下、マルテンサイト相と呼称する)を活用することとした。フェライト相とマルテンサイト相との二相組織鋼の曲げ疲労特性を評価した結果、板厚方向の表層部(後述する通り、鋼板表面から板厚方向に深さ20μmまでの領域)で最も軟質な部分となる粗大なフェライト粒に固執すべり帯が発生し、割れに至ることで曲げ疲労特性が低下していることが明らかとなった。そのため、表層部のフェライト粒径を微細とすることが重要であることを想到した。
 表層部は鋼板表面から脱炭しやすく、脱炭によりフェライト粒の粗大化および混粒化を促していることがわかった。脱炭抑制、すなわちフェライト粒の微細化および整粒化には焼鈍時の露点を制御する必要があることがわかった。さらに、熱延時に不可避的に生成される内部酸化層を除去する必要があることも知見し、酸洗ラインで除去する必要があることも判明した。
 本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
 [1]質量%で、C:0.04%以上0.18%以下、Si:0.6%以下、Mn:1.5%以上3.2%以下、P:0.05%以下、S:0.015%以下、Al:0.08%以下、N:0.0100%以下、Ti:0.010%以上0.035%以下、B:0.0002%以上0.0030%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成と、組織観察より求めた、フェライト相の面積率が20%以上80%以下、マルテンサイト相の面積率が20%以上80%以下、鋼板表層部の平均フェライト粒径が5.0μm以下、鋼板表層部の介在物密度が200個/mm以下である鋼組織と、を有し、鋼板表面硬さが、鋼板表面から厚み方向に1/2t(tは鋼板の厚み)の位置の硬さを100%としたときに、95%以上であり、引張強度が780MPa以上である薄鋼板。
 [2]前記成分組成は、質量%で、さらに、Cr:0.001%以上0.8%以下、Mo:0.001%以上0.5%以下、Sb:0.001%以上0.2%以下、Nb:0.001%以上0.1%以下の1種または2種以上を含有することを特徴とする[1]に記載の薄鋼板。
 [3]前記成分組成は、質量%で、さらに、REM、Cu、Ni、V、Sn、Mg、Ca、Coのうちの1種以上を合計で1.0%以下含有する[1]または[2]に記載の薄鋼板。
 [4][1]~[3]のいずれかに記載の高強度薄鋼板の表面にめっき層を備えるめっき鋼板。
 [5]前記めっき層が、Fe:20.0質量%以下、Al:0.001質量%以上1.0質量%以下を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0質量%以上3.5質量%以下含有し、残部がZn及び不可避不純物からなる溶融亜鉛めっき層又は合金化溶融亜鉛めっき層である[4]に記載のめっき鋼板。
 [6][1]から[3]のいずれかに記載の成分組成を有する鋼素材を、1100℃以上1300℃以下で加熱し、粗圧延と仕上げ圧延からなる熱間圧延、冷却、巻取りを施すにあたり、仕上げ圧延開始温度を1050℃以下、仕上げ圧延終了温度を820℃以上、仕上げ圧延終了後冷却開始までを3秒以内、600℃までの平均冷却速度を30℃/s以上、巻取温度を350℃以上580℃以下とする熱延鋼板の製造方法。
 [7][6]に記載の製造方法で得られた熱延鋼板に、板厚減少量が5μm以上50μm以下の酸洗を施し、該酸洗後、冷間圧延を施す冷延フルハード鋼板の製造方法。
 [8][7]に記載の製造方法で得られた冷延フルハード鋼板を、焼鈍温度780℃以上860℃以下まで加熱し、該加熱後、550℃までの平均冷却速度が20℃/s以上、冷却停止温度が250℃以上550℃以下の条件で冷却し、600℃以上の温度域の露点が-40℃以下である薄鋼板の製造方法。
 [9][7]に記載の製造方法で得られた冷延フルハード鋼板を780℃以上860℃以下に加熱し、板厚減少量が2μm以上30μm以下の酸洗を施す熱処理板の製造方法。
 [10][9]に記載の製造方法で得られた熱処理板を、焼鈍温度720℃以上780℃以下まで加熱し、該加熱後、550℃までの平均冷却速度が20℃/s以上、冷却停止温度が250℃以上550℃以下の条件で冷却し、600℃以上の温度域の露点が-40℃以下である薄鋼板の製造方法。
 [11][8]又は[10]に記載の製造方法で得られた薄鋼板にめっきを施すめっき鋼板の製造方法。
 本発明で得られる薄鋼板は、一定以上のフェライト相を有するとともに、引張強さ(TS):780MPa以上の高強度と、優れた曲げ疲労特性を兼ね備える。本発明の薄鋼板を用いてなるめっき鋼板を自動車部品に適用すれば、自動車部品のさらなる軽量化が実現される。
 また、本発明の熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法は、上記の優れた薄鋼板やめっき鋼板を得るための中間製品の製造方法として、薄鋼板やめっき鋼板の上記の特性改善に寄与する。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 本発明は、薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法である。先ず、これらの関係について説明する。
 本発明の薄鋼板は、有用な最終製品であるだけでなく、本発明のめっき鋼板を得るための中間製品でもある。冷間圧延後に前処理加熱及び酸洗を行わない方法の場合には、めっき鋼板は、スラブ等の鋼素材から出発して、熱延鋼板、冷延フルハード鋼板、薄鋼板となる製造過程を経て製造される。冷間圧延後に前処理加熱及び酸洗を行う方法の場合には、めっき鋼板は、スラブ等の鋼素材から出発して、熱延鋼板、冷延フルハード鋼板、熱処理板、薄鋼板となる製造過程を経て製造される。
 また、本発明の熱延鋼板の製造方法は、上記過程の熱延鋼板を得るまでの製造方法である。
 本発明の冷延フルハード鋼板の製造方法は、上記過程において熱延鋼板から冷延フルハード鋼板を得るまでの製造方法である。
 本発明の熱処理板の製造方法は、上記過程において、冷間圧延後に前処理加熱及び酸洗を行う方法の場合に、冷延フルハード鋼板から熱処理板を得るまでの製造方法である。
 本発明の薄鋼板の製造方法は、上記過程において、冷間圧延後に前処理加熱及び酸洗を行わない方法の場合は冷延フルハード鋼板から薄鋼板を得るまでの製造方法、冷間圧延後に前処理加熱及び酸洗を行う方法の場合は熱処理板から薄鋼板を得るまでの製造方法である。
 本発明のめっき鋼板の製造方法は、上記過程において、薄鋼板からめっき鋼板を得るまでの製造方法である。
 上記関係があることから、熱延鋼板、冷延フルハード鋼板、熱処理板、薄鋼板、めっき鋼板の成分組成は共通し、薄鋼板、めっき鋼板の鋼組織が共通する。以下、共通事項、薄鋼板、めっき鋼板、製造方法の順で説明する。また、薄鋼板の表面硬さに関する特徴はめっき鋼板においても維持される(表面硬さについて、焼鈍中の露点を制御することで、めっき鋼板からめっきを除去した薄鋼板も、めっき前の薄鋼板と同様の特徴を有する)。
 <成分組成>
 本発明の薄鋼板等の成分組成は、質量%で、C:0.04%以上0.18%以下、Si:0.6%以下、Mn:1.5%以上3.2%以下、P:0.05%以下、S:0.015%以下、Al:0.08%以下、N:0.0100%以下、Ti:0.010%以上0.035%以下、B:0.0002%以上0.0030%以下を含有し、残部がFeおよび不可避的不純物からなる。
 また、上記成分組成は、質量%で、さらに、Cr:0.001%以上0.8%以下、Mo:0.001%以上0.5%以下、Sb:0.001%以上0.2%以下、Nb:0.001%以上、0.1%以下の1種または2種以上を含有してもよい。
 また、上記成分組成は、質量%で、さらに、REM、Cu、Ni、Nb、V、Sn、Mg、Ca、Coのうちの1種以上を合計で1.0%以下含有してもよい。
 以下、各成分について説明する。以下の説明において元素の含有量を表す「%」は「質量%」を意味する。
 C:0.04%以上0.18%以下
 Cは、マルテンサイト相の硬度を上昇させ、鋼板の高強度化に寄与する元素である。引張強さ:780MPa以上を得るには、少なくともCを0.04%以上含有させる必要がある。一方、C含有量が0.18%を上回ると、マルテンサイト相の硬度が過度に上昇し、フェライト相とマルテンサイト相との硬度差に起因する応力集中が曲げ疲労時に発生し、曲げ疲労特性を低下させる。そのため、C含有量は0.18%以下とした。下限について望ましいC含有量は0.05%以上である。上限について望ましいC含有量は0.16%以下である。
 Si:0.6%以下
 Siは、フェライト相を硬化させ、フェライト相とマルテンサイト相との硬度差を減少させる。これにより、曲げ疲労時の応力集中発生を抑制することができる。このような観点から、Siを0.1%以上含有させることが望ましい。一方、Siは鋼板表面にSiを含む酸化物を形成し、曲げ疲労特性を低下させるうえ、化成処理性やめっき性を低下させる。以上の観点から、本発明では、0.6%までは許容できるため、Si含有量上限を0.6%とした。好ましくは、0.45%以下である。下限は特に定めず、0%まで含まれるが、製造上0.001%のSiは不可避的に鋼中に混入する場合がある。したがって、下限は、例えば、0.001%以上である。
 Mn:1.5%以上3.2%以下
 Mnは、フェライト相からオーステナイト相への変態温度を低下させ、マルテンサイト相生成に寄与する元素である。所望のマルテンサイト相の面積率を得るには、Mnは少なくとも1.5%以上含有させる必要がある。一方、Mn含有量が3.2%を上回ると、Mnのミクロレベルでの偏析により曲げ疲労特性が低下する。以上から、Mn含有量は1.5%以上3.2%以下とした。下限について好ましいMn含有量は1.7%以上である。上限について好ましいMn含有量は3.0%以下である。
 P:0.05%以下
 Pは、粒界に偏析して曲げ疲労特性を悪化させる元素である。したがって、P含有量は極力低減することが好ましい。本発明では、P含有量は0.05%まで許容できる。好ましくは0.04%以下である。P含有量は極力低減する方が望ましいが、製造上、0.001%は不可避的に混入する場合がある。したがって、下限は、例えば、0.001%以上である。
 S:0.015%以下
 Sは、鋼中で粗大なMnSを形成し、これが熱間圧延時にフェライトの核生成サイトとなる。フェライトの核生成を促進させることにより、高温でオーステナイト相からフェライト相への変態が開始するため、本発明で求める微細なフェライト粒を有する鋼板が得られる。この効果を得るには、Sは0.0005%以上含有させることが好ましい。より好ましくは0.003%以上である。一方、S含有量が0.015%を超えるとMnSにより加工性が低下する。そのため、S含有量上限を0.015%とした。好ましくは0.010%以下である。
 Al:0.08%以下
 Alを製鋼の段階で脱酸剤として添加する場合、Al含有量を0.01%以上含有することが好ましい。さらに好ましいAl含有量は0.02%以上である。一方、Alは加工性を悪化させる酸化物を形成する。そのため、Al含有量上限を0.08%とした。好ましくは0.07%以下である。
 N:0.0100%以下
 Nは、固溶状態では耐時効性を低下させ、窒化物を形成した状態では曲げ疲労時の応力集中発生箇所となるので、有害な元素である。そのため、N含有量はできる限り低減することが望ましい。本発明ではN含有量が0.0100%まで許容できる。好ましくは0.0060%以下である。N含有量は極力低減する方が望ましいが、製造上、0.0005%は不可避的に混入する場合がある。したがって、下限は例えば、0.0005%以上である。
 Ti:0.010%以上0.035%以下
 TiはNを窒化物として固定し、Bを含む窒化物形成を抑制することで、Bによる焼入性向上効果を促す効果のある元素である。Nは不可避的に混入するため、Tiは0.010%以上必要となる。一方で、Ti含有量が0.035%を上回るとTiを含む炭窒化物による曲げ疲労特性低下が顕在化する。以上から、Ti含有量は0.010%以上0.035%以下とした。下限について好ましいTi含有量は0.015%以上である。上限について好ましいTi含有量は0.030%以下である。固溶Nが特に悪影響をおよぼすことから、(1)式を満足することがより好ましい。(1)式を満足することで、表層部の平均フェライト粒径が小さくなり、曲げ疲労特性が顕著に高まる。曲げ疲労強度比を0.74以上までさらに高めるには、(1)式を満たすことが望ましい。
2.95≧[%Ti]/3.4[%N]≧1.00   (1)
 ここで、[%Ti]および[%N]は、それぞれTiおよびNの含有量(質量%)を表す。
 B:0.0002%以上0.0030%以下
 Bは鋼板の焼入性を向上させ、フェライト粒の微細化に寄与する元素である。一方で、過度に含有させると固溶Bの影響により曲げ疲労特性が低下する。以上から、B含有量は0.0002%以上0.0030%以下とした。下限について好ましいB含有量は0.0005%以上である。上限について好ましいB含有量は0.0020%以下である。
 以上が本発明の基本構成であるが、さらに、質量%で、Cr:0.001%以上0.8%以下、Mo:0.001%以上0.5%以下、Sb:0.001%以上0.2%以下、Nb:0.001%以上0.1%以下の1種または2種以上を含有してもよい。
 Cr、Moは固溶強化により鋼板の高強度化に寄与するうえ、鋼板の焼入性を向上させるため、フェライト粒の微細化に効果がある元素である。これらの効果を得るには、Crの場合は0.001%以上含有させる必要があり、Moの場合は0.001%以上含有させる必要がある。一方、Cr含有量が0.8%を上回ると表面性状が劣化し、化成処理性やめっき性を低下させる。Mo含有量が0.5%を上回ると鋼板の変態温度が大きく変化し、本発明で求める組織構成から逸脱し、曲げ疲労特性が低下する。Sbは表面濃化し、鋼板の表面脱炭の抑制に寄与する元素であり、鋼板表層部のフェライト粒を安定的に微細化することができる。この効果を得るにはSb含有量を0.001%以上にする必要がある。一方、Sb含有量が0.2%を超えると表面性状が悪化し、化成処理性やめっき性を低下させる。Nbは結晶粒の微細化に役に立つ元素であり、この効果を得るには0.001%以上含有させる必要がある。一方、過度にNbを含有させると粗大なNbを含む炭窒化物により、曲げ疲労特性が劣化することから、Nb含有量上限量を0.1%とした。以上の観点から、Cr:0.001%以上0.8%以下、Mo:0.001%以上0.5%以下、Sb:0.001%以上0.2%以下、Nb:0.001%以上0.1%以下とした。下限について好ましいCr含有量は0.01%以上である。上限について好ましいCr含有量は0.7%以下である。下限について好ましいMo含有量は0.01%以上である。上限について好ましいMo含有量は0.3%以下である。下限について好ましいSb含有量は0.001%以上である。上限について好ましいSb含有量は0.05%以下である。下限について好ましいNb含有量は0.003%以上である。上限について好ましいNb含有量は0.07%以下である。
 また、REM、Cu、Ni、Sn、V、Mg、Ca、Coのいずれか1種以上を合計で1.0%以下含有してもよい。これら元素は不可避的不純物として混入する元素であり、加工性(成形性)や耐時効性の観点から合計で1.0%までは許容できる。好ましくは合計で0.2%以下である。なお、加工性(成形性)や耐時効性の観点から、下限は、1種以上の合計で、0.01%以上が好ましい。
 上記成分以外の成分は、Feおよび不可避的不純物である。なお、Cr、Mo、Sb、Nbが上記下限値未満であっても本発明の効果を害さない。そこで、これらの元素を下限値未満で含む場合、これらの元素は不可避的不純物とする。
 <鋼組織>
 続いて、本発明の薄鋼板等の鋼組織について説明する。本発明の薄鋼板等の鋼組織は、組織観察より求めた、フェライト相の面積率が20%以上80%以下、マルテンサイト相の面積率が20%以上80%以下、鋼板表層部の平均フェライト粒径5.0μm以下、鋼板表層部の介在物密度が200個/mm以下である。面積率、平均フェライト粒径、介在物密度は、実施例に記載の方法で得られる値を意味する。
 フェライト相の面積率:20%以上80%以下
 フェライト相は優れた加工性を有するうえ、軟質であるため降伏強さを低くすることができる。本発明で求める加工性および降伏強さを得るため、フェライト相の面積率は20%以上とした。一方、フェライト相が過度に増加すると、引張強さ780MPaを得ることができなくなる。以上から、フェライト相の面積率を20%以上80%以下とした。下限について好ましいフェライト面積率は30%以上であり、上限について好ましいフェライト面積率は70%以下である。
 マルテンサイト相の面積率:20%以上80%以下
 マルテンサイト相は高硬度であるため、鋼板の高強度化に寄与する。引張強さ780MPa以上を得るには、マルテンサイト相の面積率は20%以上必要である。一方、マルテンサイト相の面積率が80%を上回ると加工性が低下し、自動車用部材に適さなくなる。そのため、マルテンサイト相の面積率を80%以下とした。下限について好ましいマルテンサイト面積率は30%以上であり、上限について好ましいマルテンサイト面積率は70%以下である。
 上記の通り、鋼組織において、フェライトとマルテンサイトが重要であり、これらの合計が面積率で85%以上が好ましい。
 残部はベイナイト相、焼き戻しマルテンサイト相、残留オーステナイト相が挙げられる。ベイナイト相および焼き戻しマルテンサイト相は強度および材質安定性を低下させるため、可能な限り低減することが好ましい。本発明ではベイナイト相と焼き戻しマルテンサイト相の面積率の合計で15%までは許容できる。より好ましくはそれら合計で10%以下である。残留オーステナイトは本発明では多くは生成されず、最大でも面積率で4%である。
 鋼板表層部の平均フェライト粒径:5.0μm以下
 鋼板表層部は曲げ疲労時での負荷応力が板厚方向に対して最大となるため、曲げ疲労特性を向上させるためには、板厚中心部付近ではなく表層部を制御する必要がある。上述の通り、表層部は熱延時の内部酸化層(表面より内側に形成され少なくとも一部が表層から20μmの深さまでに存在する酸化物の層)の形成、熱延時に生成されるスケールを介した脱炭や焼鈍時の炉内水分を介した脱炭により、表層部の組織は変化しうる。曲げ疲労特性を低下させないためには、鋼板表面から深さ20μmまでの範囲を制御すればよく、これを本発明では「鋼板表層部(鋼板の表層部)」と定義する。鋼板表層部に粗大なフェライト粒が存在していた場合、粗大なフェライト粒に対して集中してひずみが付与されるため、曲げ疲労時の亀裂発生の原因となる固執すべり帯が生成されることで曲げ疲労特性が低下する。この悪影響を抑制するには、鋼板表層部の平均フェライト粒径を5.0μm以下とする必要がある。好ましくは、3.5μm以下である。本発明で得られる平均フェライト粒径の下限値は0.5μm程度である。
 鋼板表層部の介在物密度:200個/mm以下
 鋼板表層部に存在する介在物は亀裂発生の原因となるため、できる限りその量を低減することが好ましい。本発明では200個/mmまで許容できる。好ましくは、150個/mm以下である。
 <特性>
 次いで、本発明の薄鋼板等の特性について説明する。本発明の薄鋼板等においては、鋼板表面硬さが、鋼板表面から厚み方向に1/2t(tは鋼板の厚み)の位置の硬さ(鋼板中央部硬さ)を100%としたときに、95%以上である。
 鋼板表面硬さ≧鋼板中央部硬さ×0.95
 曲げ疲労特性は、表層硬さにも依存する。表層硬さを表す鋼板表面硬さが、中央部硬さの95%を下回ると、疲労強度比(=疲労強度/引張強さ)が低下する。この悪影響を避けるには、鋼板表面硬さが中央部の硬さの95%以上とする必要がある。好ましくは、97%以上である。
 <薄鋼板>
 薄鋼板の成分組成および鋼組織は上記の通りである。また、薄鋼板の厚みは特に限定されないが、鋼板の張力が増大し、焼鈍時の製造性が低下するという理由で板厚が3.2mm以下であることが好ましい。また、通常、厚みは0.8mm以上である。
 <めっき鋼板>
 本発明のめっき鋼板は、本発明の薄鋼板と、その表面に形成されためっき層とから構成される。
 薄鋼板の成分組成および鋼組織については上記の通りであるため説明を省略する。
 続いて、めっき層について説明する。本発明のめっき鋼板において、めっき層は特に限定されず、例えば、溶融めっき層、電気めっき層である。溶融めっき層には合金化したものも含む。めっき層は亜鉛めっき層が好ましい。亜鉛めっき層はAlやMgを含有してもよい。また、溶融亜鉛-アルミニウム-マグネシウム合金めっき(Zn-Al-Mgめっき層)も好ましい。この場合、Al含有量を1質量%以上22質量%以下、Mg含有量を0.1質量%以上10質量%以下とし残部はZnとすることが好ましい。また、Zn-Al-Mgめっき層の場合、Zn、Al、Mg以外に、Si、Ni、Ce及びLaから選ばれる一種以上を合計で1質量%以下含有してもよい。なお、めっき金属は特に限定されないため、上記のようなZnめっき以外に、Alめっき等でもよい。
 めっき層を構成する成分は特に限定されず、一般的な成分であればよい。例えば、溶融亜鉛めっき層や合金化溶融亜鉛めっき層の場合、めっき層は、質量%で、Fe:20.0質量%以下、Al:0.001質量%以上1.0質量%以下を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0質量%以上3.5質量%以下含有し、残部がZn及び不可避的不純物からなる溶融亜鉛めっき層又は合金化溶融亜鉛めっき層である。通常、溶融亜鉛めっき層ではFe含有量が0~5.0質量%であり、合金化溶融亜鉛めっき鋼板ではFe含有量が5.0質量%超~20.0質量%である。
 なお、めっき金属は特に限定されないため、上記のようなZnめっき以外に、Alめっき等でもよい。
 <熱延鋼板の製造方法>
 以下、熱延鋼板の製造方法から順に製造方法の発明について説明する。なお、以下の説明において、温度は特に断らない限り鋼板表面温度とする。鋼板表面温度は放射温度計等を用いて測定し得る。また、平均冷却速度は((冷却前の表面温度-冷却後の表面温度)/冷却時間)とする。
 熱延鋼板の製造方法は、上記成分組成を有する鋼素材を、1100℃以上1300℃以下で加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施すにあたり、仕上げ圧延開始温度を1050℃以下、仕上げ圧延終了温度を820℃以上、仕上げ圧延終了後冷却開始まで3秒以内で600℃までの平均冷却速度30℃/s以上で冷却し、350℃以上580℃以下で巻き取る方法である。
 上記鋼素材製造のための、溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その後、生産性や品質上の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましい。また、造塊-分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしてもよい。
 鋼素材の加熱温度:1100℃以上1300℃以下
 本発明においては、粗圧延に先立ち鋼素材を加熱して、鋼素材の鋼組織を実質的に均質なオーステナイト相とする必要がある。820℃以上で仕上げ圧延を完了させるには、加熱温度は1100℃以上とする必要がある。一方、加熱温度が1300℃を上回ると鋼板表層部に生成される内部酸化層の厚さが酸洗で除去できないほど増加するため、曲げ疲労特性が低下する。以上から、鋼素材の加熱温度は1100℃以上1300℃以下とした。下限について望ましい加熱温度は1120℃以上である。上限について望ましい加熱温度は1260℃以下である。なお、上記加熱後の粗圧延の粗圧延条件については特に限定されない。
 仕上げ圧延開始温度:1050℃以下
 仕上げ圧延終了温度:820℃以上
 仕上げ圧延入り側で、一旦スケールが除去されるが、仕上げ圧延中に生成されるスケールや内部酸化層が曲げ疲労特性に悪影響をおよぼす。スケールおよび内部酸化層の生成量は温度に依るので、可能な限り低温で圧延を開始する必要がある。また、仕上げ圧延温度が高いとフェライト粒が大きくなる傾向にある。本発明では、1050℃までは許容できるので、仕上げ圧延開始温度を1050℃以下とした。なお、仕上げ圧延開始温度の下限は、1000℃以上が好ましい。一方、仕上げ圧延終了温度が820℃を下回ると、圧延時にオーステナイト相からフェライト相への変態が進行するため、鋼板表面における強度ばらつきが大きくなり、冷間圧延性を大きく低下させ、冷間圧延時の板の破断といったトラブルの原因となる。したがって、仕上げ圧延終了温度は820℃以上とした。また、仕上げ圧延終了温度の上限は、900℃以下が好ましい。
 仕上げ圧延終了後冷却開始までの時間:3秒以内(0秒を含む)
 600℃までの平均冷却速度:30℃/s以上
 仕上げ圧延終了後はスケールおよび内部酸化層の生成を抑制するため、可能な限り早く冷却を開始する必要がある。また、フェライト粒の粗大化を抑える点からも冷却までの時間は短い方が好ましい。本発明では3秒までは許容できるため、仕上げ圧延完了後、冷却開始までの経過時間は3秒以内とした。冷却時の平均冷却速度が小さい場合には、高温に暴露される時間が長くなるため、スケールが生成されることとなる。また、フェライト粒も大きくなる傾向にある。スケールの生成は、短時間では600℃以上で進行する。これを抑制するため、冷却時の冷却開始から600℃まで平均冷却速度は30℃/s以上とした。好ましくは、冷却開始まで2秒以内で580℃までの平均冷却速度35℃/s以上で冷却することである。なお、冷却開始温度は仕上げ圧延終了温度とほぼ一致する(仕上げ圧延終了後冷却開始までの時間である3秒以内において若干温度低下するのみである)。冷却停止温度は通常は下記の巻取温度である。600℃から巻取温度までの平均冷却速度(好ましい範囲においては580℃から巻取温度までの平均冷却速度)は特に限定されず、30℃/s以上であっても、30℃/s未満であってもよい。
 巻取温度:350℃以上580℃以下
 巻取後の鋼板が室温までに冷却されるには、少なくとも1時間以上を要する。この間の内部酸化層やスケール生成を抑制し、介在物密度を抑えるため、巻き取り温度は580℃以下とする必要がある。一方、巻き取り温度が350℃を下回ると、板の形状が悪化し、冷間圧延性の低下を招く。そのため、巻取温度の範囲を350℃以上580℃以下とした。下限について好ましい巻取温度は400℃以上である。上限について好ましい巻取温度は550℃以下である。
 上記巻取後、空冷等により鋼板は冷やされ、下記の冷延フルハード鋼板の製造に用いられる。なお、熱延鋼板が中間製品として取引対象となる場合、通常、巻取後に冷やされた状態で取引対象となる。
 <冷延フルハード鋼板の製造方法>
 本発明の冷延フルハード鋼板の製造方法は、上記方法で得られた熱延鋼板に、板厚減少量が5μm以上50μm以下の酸洗を施し、該酸洗後、冷間圧延を施す方法である。
 板厚減少量:5μm以上50μm以下
 曲げ疲労特性向上の観点から、熱延鋼板の製造の際に不可避的に生成された内部酸化層やスケールを介した脱炭層を除去する必要がある。また、介在物密度を抑える点からも一定以上の板厚減少量の酸洗を行う必要がある。曲げ疲労特性を改善するには、少なくとも5μm以上、板厚を酸洗で減少させる必要がある。一方、板厚減少量が50μmを上回ると、鋼板表面の粗度が悪化し冷間圧延性に悪影響をもたらす。そこで、酸洗での板厚減少量の範囲を5μm以上50μm以下とした。下限について好ましい板厚減少量は10μm以上であり、上限について好ましい板厚減少量は40μm以下である。
 冷間圧延
 所望の板厚を得るため、酸洗後の熱延板(熱延鋼板)に冷間圧延を施す必要がある。冷間圧延における圧延率は特に限定されないが、通常、下限については30%以上であり、上限については95%以下である。
 <薄鋼板の製造方法>
 薄鋼板の製造方法には、冷延フルハード鋼板を加熱し冷却して薄鋼板を製造する方法と、冷延フルハード鋼板を前処理加熱及び酸洗して熱処理板とし該熱処理板を加熱し冷却して薄鋼板を製造する方法とがある。先ず前処理加熱及び酸洗を行わない方法について説明する。
 前処理加熱及び酸洗を行わない薄鋼板の製造方法は、上記で得られた冷延フルハード鋼板を、焼鈍温度780℃以上860℃以下まで加熱し、該加熱後、550℃までの平均冷却速度が20℃/s以上、冷却停止温度が250℃以上550℃以下の条件で冷却する方法であり、上記加熱及び冷却における600℃以上の温度域の露点を-40℃以下とする。
 焼鈍温度:780℃以上860℃以下
 焼鈍では、冷間圧延で与えられたひずみを除去したうえで、フェライト相を残存させる必要がある。焼鈍温度が780℃を下回ると、冷間圧延で与えられたひずみが除去されず延性が著しく低下し、自動車用途の部材として適さなくなる。一方、焼鈍温度が860℃を上回るとフェライト相がなくなることで加工性が低下する。以上から、焼鈍温度は780℃以上860℃以下とした。下限について好ましい焼鈍温度は790℃以上であり、上限について好ましい焼鈍温度は850℃以下である。なお、通常、所定の焼鈍温度で均熱保持されて、下記の条件の冷却を行う。
 550℃までの平均冷却速度:20℃/s以上
 冷却停止温度:250℃以上550℃以下
 上記焼鈍温度での加熱後は急冷することによってフェライト粒成長を抑制する必要がある。フェライト粒成長を抑制するには550℃までの平均冷却速度が20℃/s以上である必要がある。上限については100℃/s以下が好ましい。550℃以上ではフェライト粒成長する可能性があるため、平均冷却速度を調整する温度範囲を550℃までとし、冷却停止温度の上限を550℃とした。好ましくは、平均冷却速度を調整する温度範囲を530℃までとし、冷却停止温度の上限が530℃である。一方、冷却停止温度が250℃を下回ると鋼板の形状が悪化し、製品として適さなくなるので、冷却停止温度は250℃以上とした。好ましくは、300℃以上である。なお、550℃から冷却停止温度までの平均冷却速度は特に限定されず、20℃/s以上でも、20℃/s未満でもよい。
 600℃以上の温度域の露点:-40℃以下
 焼鈍時、600℃以上の温度域において露点が高くなると、空気中の水分を介して脱炭が進行し、鋼板表層部のフェライト粒が粗大化するうえ硬さが低下するために、安定的に優れた引張強度が得られなかったり、曲げ疲労特性が低下したりする。そのため、焼鈍時に600℃以上の温度域の露点は-40℃以下とする必要がある。好ましくは、-45℃以下である。なお、通常の加熱、均熱保持、冷却の過程を経る焼鈍の場合は、全過程において600℃以上の温度域については-40℃以下とする必要がある。雰囲気の露点の下限は特に規定はしないが、-80℃未満では効果が飽和し、コスト面で不利となるため-80℃以上が好ましい。なお、上記温度域の温度は鋼板表面温度を基準とする。即ち、鋼板表面温度が上記温度域にある場合に、露点を上記範囲に調整する。
 続いて、前処理加熱及び酸洗を行い熱処理板とした後、薄鋼板を製造する方法について説明する。
 冷延フルハード鋼板に対して前処理加熱及び酸洗を施すことで、冷間圧延で与えられたひずみを除去することができるので、焼鈍の際に焼鈍温度を低温化させることができ、表層からの脱炭を安定的に抑制することが可能である。
 前処理加熱及び酸洗では、鋼板を780℃以上860℃以下に加熱し、酸洗で2μm以上30μm以下の範囲で板厚を減少させる。
 前処理加熱の加熱温度が780℃を下回ると冷間圧延時で与えられたひずみを除去することができない。一方、860℃を上回ると、焼鈍ラインの炉体に対する熱による損傷が大きくなり生産性を低下させる。そのため、前処理加熱での加熱温度は780℃以上860℃以下とした。下限について好ましい加熱温度は790℃以上であり、上限について好ましい加熱温度は850℃以下である。
 上記加熱後に、板厚減少量が2μm以上30μm以下の酸洗を施す。前処理加熱で生成された内部酸化層や脱炭層を除去するため、上記加熱後に板厚減少量が2μm以上の酸洗を施す必要がある。一方、板厚減少量が30μmを上回ると鋼板表層の結晶粒が焼鈍の際にロールで剥がれ落ちやすくなり、鋼板の表面性状を著しく悪化させる。そのため、板厚減少量上限を30μmとした。下限について好ましい板厚減少量は5μm以上であり、上限について好ましい板厚減少量は25μm以下である。
 上記酸洗後に焼鈍を行う。その際の焼鈍温度は720℃以上780℃以下である。焼鈍温度が720℃を下回ると焼鈍ラインの通板中に板が蛇行することで生産性の低下につながる。一方、焼鈍温度が780℃を上回ると、前処理加熱酸洗を設けることで鋼板表層部の清浄度を向上させたメリットが失われる。そのため、焼鈍温度は720℃以上780℃以下とした。なお、焼鈍温度以外の条件、露点等は、前処理加熱及び酸洗を行わない場合と同様であるため説明を省略する。
 <めっき鋼板の製造方法>
 本発明のめっき鋼板の製造方法は、上記薄鋼板にめっきを施す方法である。めっき処理の種類は特に限定されず、例えば、溶融めっき処理、電気めっき処理である。溶融めっき処理は、溶融めっき後に合金化を行う処理であってもよい。具体的には、溶融亜鉛めっき処理、溶融亜鉛めっき後に合金化を行う処理でめっき層を形成してもよいし、Zn-Ni電気合金めっき等の電気めっきにより、めっき層を形成してもよいし、溶融亜鉛-アルミニウム-マグネシウム合金めっきを施してもよい。自動車用鋼板に多用される溶融めっきを行う場合には、上記焼鈍を連続溶融めっきラインで行い、焼鈍後の冷却に引き続いて溶融めっき浴に浸漬して、表面にめっき層を形成すればよい。また、上述のめっき層の説明で記載の通り、Znめっきが好ましいが、Alめっき等の他の金属を用いためっき処理でもよい。
 表1に示す成分組成を有する厚み250mmの鋼素材に、表2および表3に示す熱延条件で熱間圧延を施して熱延板(熱延鋼板)とし、表2および表3に示す条件で酸洗し、表2および表3に示す条件で冷間圧延を施して冷延板(冷延フルハード鋼板)とし、表2および表3(表3の製造条件は熱処理板を製造し、この熱処理板を焼鈍する製造条件である。)に示す焼鈍条件で冷延鋼板(CR材)は連続焼鈍ラインで、溶融めっき鋼板(GI材)もしくは合金化溶融めっき鋼板(GA材)は連続溶融めっきラインで焼鈍を施した。合金化めっき鋼板の製造ではめっき後に合金化処理を施した。ここで、連続溶融めっきラインで浸漬するめっき浴(めっき組成:Zn-0.13質量%Al)の温度は460℃であり、めっき付着量はGI材(溶融めっき鋼板)、GA材(合金化溶融めっき鋼板)ともに片面当たり45g/m以上65g/m以下とし、合金化溶融亜鉛めっき層の場合にはめっき層中に含有するFe量は6質量%以上14質量%以下の範囲とした。また、溶融亜鉛めっき層の場合にはめっき層中に含有するFe量は4質量%以下の範囲とした。なお、薄鋼板の厚みは1.4mmであった。
 上記により得られた薄鋼板(CR材、GI材およびGA材)から試験片を採取し、以下の手法で評価した。
 (i)組織観察
 各相の面積率は以下の手法により評価した。鋼板から、圧延方向に平行な板厚断面が観察面となるよう切り出し、中心部を1%ナイタールで腐食現出し、走査電子顕微鏡で2000倍に拡大して板厚1/4部を10視野分撮影した。フェライト相は粒内に腐食痕やセメンタイトが観察されない形態を有する組織であり、マルテンサイトは白いコントラストで粒内に炭化物が観察されない形態を指す。これらを画像解析によりフェライト相およびマルテンサイト相を分離し、観察視野に対する面積率を求めた。フェライト相およびマルテンサイト相以外のベイナイト相および残留オーステナイト相を含む場合には記号で表3に示した。なお、表2および表3に示す焼鈍条件では焼き戻しマルテンサイトは観察されなかった。
 鋼板表層部のフェライト粒径は、鋼板から、圧延方向に平行な板厚断面が観察面となるよう切り出し、鋼板表面(めっき層の表面ではなく薄鋼板部分の表面)から板厚方向に20μmの領域を1%ナイタールで腐食現出し、走査電子顕微鏡で2000倍に拡大して鋼板表層部を10視野分撮影し、この撮影画像におけるフェライト粒を対象に、画像解析により各フェライト粒の面積を求め、その面積に相当する円相当径を求めた。表4には、その円相当径の平均値を平均フェライト粒径として示した。
 鋼板表層部の介在物密度は、鋼板から圧延方向に平行な板厚断面が観察面となるように切り出し、鋼板表面(めっき層の表面ではなく薄鋼板部分の表面)から板厚方向に20μmの領域である観察面を鏡面研磨した後、光学顕微鏡で400倍に拡大して実際の長さで1mm分の鋼板表層部の連続写真を撮影した。得られた写真を用いて、鋼板表面から深さ20μmまでの範囲に黒いコントラストで観察される介在物の個数を数え、その個数を測定面積で除して介在物密度を求めた。
 (ii)引張試験
 得られた鋼板から圧延方向に対して垂直方向にJIS5号引張試験片を作製し、JIS Z 2241(2011)の規定に準拠した引張試験を5回行い、平均の降伏強度(降伏強さ)(YS)、引張強さ(TS)、全伸び(El)を求めた。引張試験のクロスヘッドスピードは10mm/minとした。表3において、引張強さ:780MPa以上、降伏比(=降伏強さ/引張強さ)が0.75以下の鋼板を本発明で求める機械的性質とした。
 (iii)曲げ疲労特性
 得られた鋼板から圧延方向に対して垂直方向にJIS Z 2275に準拠した板幅15mmの1号試験片を採取し、平面曲げ疲労試験機を用いてJIS Z 2273に準拠した曲げ疲労試験を行った。応力比-1、繰り返し速度20Hz、最大繰り返し数を10回として、10回の応力付加で破断に至らなかった応力振幅を求め、引張強さで除して疲労強度比を求めた。本発明で求める疲労強度比は0.70以上とした。
 (iv)硬さ
 鋼板表面と鋼板内部の硬さはビッカース硬さ試験によって求めた。鋼板表面の硬さは、めっき層を有する場合はめっき層を酸洗により除去した鋼板表面から試験荷重0.2kgfで計20点測定し、平均値を求めた。鋼板内部の硬さは圧延方向に平行な断面の板厚1/2部を試験荷重1kgfで計5点測定し、平均値を求めた。鋼板表面の硬さの平均値が鋼板内部の硬さの平均値の95%以上(表中の0.95以上)であれば、本発明で求める特性とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 

Claims (11)

  1.  質量%で、
    C:0.04%以上0.18%以下、
    Si:0.6%以下、
    Mn:1.5%以上3.2%以下、
    P:0.05%以下、
    S:0.015%以下、
    Al:0.08%以下、
    N:0.0100%以下、
    Ti:0.010%以上0.035%以下、
    B:0.0002%以上0.0030%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
     組織観察より求めた、フェライト相の面積率が20%以上80%以下、マルテンサイト相の面積率が20%以上80%以下、鋼板表層部の平均フェライト粒径が5.0μm以下、鋼板表層部の介在物密度が200個/mm以下である鋼組織と、を有し、
     鋼板表面硬さが、鋼板表面から厚み方向に1/2t(tは鋼板の厚み)の位置の硬さを100%としたときに、95%以上であり、引張強度が780MPa以上である薄鋼板。
  2.  前記成分組成は、質量%で、さらに、
    Cr:0.001%以上0.8%以下、
    Mo:0.001%以上0.5%以下、
    Sb:0.001%以上0.2%以下、
    Nb:0.001%以上0.1%以下の1種または2種以上を含有する請求項1に記載の薄鋼板。
  3.  前記成分組成は、質量%で、さらに、REM、Cu、Ni、V、Sn、Mg、Ca、Coのうちの1種以上を合計で1.0%以下含有する請求項1または2に記載の薄鋼板。
  4.  請求項1~3のいずれかに記載の高強度薄鋼板の表面にめっき層を備えることを特徴とするめっき鋼板。
  5.  前記めっき層が、Fe:20.0質量%以下、Al:0.001質量%以上1.0質量%以下を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0質量%以上3.5質量%以下含有し、残部がZn及び不可避不純物からなる溶融亜鉛めっき層又は合金化溶融亜鉛めっき層である請求項4に記載のめっき鋼板。
  6.  請求項1から3のいずれかに記載の成分組成を有する鋼素材を、1100℃以上1300℃以下で加熱し、粗圧延と仕上げ圧延からなる熱間圧延、冷却、巻取りを施すにあたり、仕上げ圧延開始温度を1050℃以下、仕上げ圧延終了温度を820℃以上、仕上げ圧延終了後冷却開始までを3秒以内、600℃までの平均冷却速度を30℃/s以上、巻取温度を350℃以上580℃以下とする熱延鋼板の製造方法。
  7.  請求項6に記載の製造方法で得られた熱延鋼板に、板厚減少量が5μm以上50μm以下の酸洗を施し、該酸洗後、冷間圧延を施す冷延フルハード鋼板の製造方法。
  8.  請求項7に記載の製造方法で得られた冷延フルハード鋼板を、焼鈍温度780℃以上860℃以下まで加熱し、該加熱後、550℃までの平均冷却速度が20℃/s以上、冷却停止温度が250℃以上550℃以下の条件で冷却し、600℃以上の温度域の露点が-40℃以下である薄鋼板の製造方法。
  9.  請求項7に記載の製造方法で得られた冷延フルハード鋼板を780℃以上860℃以下に加熱し、板厚減少量が2μm以上30μm以下の酸洗を施す熱処理板の製造方法。
  10.  請求項9に記載の製造方法で得られた熱処理板を、焼鈍温度720℃以上780℃以下まで加熱し、該加熱後、550℃までの平均冷却速度が20℃/s以上、冷却停止温度が250℃以上550℃以下の条件で冷却し、600℃以上の温度域の露点が-40℃以下である薄鋼板の製造方法。
  11.  請求項8又は10に記載の製造方法で得られた薄鋼板にめっきを施すめっき鋼板の製造方法。
PCT/JP2017/010820 2016-03-31 2017-03-17 薄鋼板及びめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 WO2017169870A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187028113A KR102130233B1 (ko) 2016-03-31 2017-03-17 박강판 및 도금 강판, 그리고 열연 강판의 제조 방법, 냉연 풀하드 강판의 제조 방법, 열 처리판의 제조 방법, 박강판의 제조 방법 및 도금 강판의 제조 방법
EP17774414.1A EP3412789B1 (en) 2016-03-31 2017-03-17 Steel sheet and coated steel sheet, hot rolled steel sheet manufacturing method, cold rolled full hard steel sheet manufacturing method, heat-treated steel sheet manufacturing method, steel sheet manufacturing method and coated steel sheet manufacturing method
US16/089,193 US10920294B2 (en) 2016-03-31 2017-03-17 Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full-hard cold-rolled steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet
MX2018011871A MX2018011871A (es) 2016-03-31 2017-03-17 Lamina de acero, lamina de acero recubierta, metodo para producir lamina de acero laminada en caliente, metodo para producir lamina de acero laminada en frio de dureza completa, metodo para producir lamina tratada termicamente, metodo para producir lamina de acero y metodo para producir lamina de acero recubierta.
JP2017537331A JP6292353B2 (ja) 2016-03-31 2017-03-17 薄鋼板及びめっき鋼板、並びに薄鋼板の製造方法及びめっき鋼板の製造方法
CN201780021233.1A CN108884538B (zh) 2016-03-31 2017-03-17 薄钢板和镀覆钢板、以及薄钢板和镀覆钢板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-070738 2016-03-31
JP2016070738 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017169870A1 true WO2017169870A1 (ja) 2017-10-05

Family

ID=59965397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010820 WO2017169870A1 (ja) 2016-03-31 2017-03-17 薄鋼板及びめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法

Country Status (7)

Country Link
US (1) US10920294B2 (ja)
EP (1) EP3412789B1 (ja)
JP (2) JP6292353B2 (ja)
KR (1) KR102130233B1 (ja)
CN (1) CN108884538B (ja)
MX (1) MX2018011871A (ja)
WO (1) WO2017169870A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112585291A (zh) * 2018-08-22 2021-03-30 杰富意钢铁株式会社 高强度钢板及其制造方法
EP3825432A4 (en) * 2018-08-22 2021-05-26 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND MANUFACTURING PROCESS FOR IT
EP3929323A4 (en) * 2018-11-30 2022-01-05 Posco ULTRA-HIGH STRENGTH STEEL WITH EXCELLENT COLD MACHINABILITY AND SSC RESISTANCE AND ASSOCIATED MANUFACTURING PROCESS
CN116694990A (zh) * 2023-05-25 2023-09-05 鞍钢股份有限公司 汽车底盘用600MPa级绿色清洁表面钢板及其制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656216C1 (ru) * 2017-03-24 2018-06-01 Федеральное государственное бюджетное учреждение науки Институт биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова Российской академии наук Способ ультравысокопроизводительного скрининга клеток или микроорганизмов и средство для ультравысокопроизводительного скрининга клеток или микроорганизмов
KR102209552B1 (ko) * 2018-12-19 2021-01-28 주식회사 포스코 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
MX2021009063A (es) 2019-01-30 2021-08-27 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para la produccion de la misma.
WO2020203158A1 (ja) * 2019-03-29 2020-10-08 日本製鉄株式会社 鋼板
CN110117755B (zh) * 2019-05-21 2020-11-03 安徽工业大学 一种980MPa级低屈强比冷轧中锰钢的制备方法
KR102404770B1 (ko) * 2019-12-20 2022-06-07 주식회사 포스코 항복비가 우수한 고강도 열연강판 및 그 제조방법
CN114182138B (zh) * 2021-12-14 2023-01-03 西安交通大学 一种生物可降解Zn-Mg-Bi锌合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247829A (ja) * 1991-01-25 1992-09-03 Sumitomo Metal Ind Ltd 表面性状と成形性に優れた熱延鋼板の製造方法
JP2000109951A (ja) * 1998-08-05 2000-04-18 Kawasaki Steel Corp 伸びフランジ性に優れる高強度熱延鋼板およびその製造方法
JP2008156734A (ja) * 2006-12-26 2008-07-10 Jfe Steel Kk 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2016013145A1 (ja) * 2014-07-25 2016-01-28 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2016013144A1 (ja) * 2014-07-25 2016-01-28 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956550B2 (ja) * 1999-02-02 2007-08-08 Jfeスチール株式会社 強度延性バランスに優れた高強度溶融亜鉛メッキ鋼板の製造方法
DE19936151A1 (de) 1999-07-31 2001-02-08 Thyssenkrupp Stahl Ag Höherfestes Stahlband oder -blech und Verfahren zu seiner Herstellung
KR100415718B1 (ko) 1999-09-16 2004-01-24 제이에프이 엔지니어링 가부시키가이샤 고강도 박강판 및 그 제조방법
TWI290177B (en) 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
JP4258215B2 (ja) * 2002-12-27 2009-04-30 Jfeスチール株式会社 溶融亜鉛めっき鋼板およびその製造方法
JP4966485B2 (ja) 2004-08-25 2012-07-04 住友金属工業株式会社 高張力溶融亜鉛めっき鋼板とその製造方法
JP3889768B2 (ja) * 2005-03-31 2007-03-07 株式会社神戸製鋼所 塗膜密着性と延性に優れた高強度冷延鋼板および自動車用鋼部品
JP5114860B2 (ja) 2006-03-30 2013-01-09 Jfeスチール株式会社 溶融亜鉛めっき鋼板及びその製造方法
JP4924730B2 (ja) 2009-04-28 2012-04-25 Jfeスチール株式会社 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
BRPI1010678A2 (pt) 2009-05-27 2016-03-15 Nippon Steel Corp chapade aço de alta resistência, chapa de aço banhada a quente e chapa de aço banhada a quente de liga que têm excelentes características de fadiga, alongamento e colisão, e método de fabricação para as ditas chapas de aço
JP5862002B2 (ja) 2010-09-30 2016-02-16 Jfeスチール株式会社 疲労特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5834717B2 (ja) * 2011-09-29 2015-12-24 Jfeスチール株式会社 高降伏比を有する溶融亜鉛めっき鋼板およびその製造方法
US10590503B2 (en) 2013-12-18 2020-03-17 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247829A (ja) * 1991-01-25 1992-09-03 Sumitomo Metal Ind Ltd 表面性状と成形性に優れた熱延鋼板の製造方法
JP2000109951A (ja) * 1998-08-05 2000-04-18 Kawasaki Steel Corp 伸びフランジ性に優れる高強度熱延鋼板およびその製造方法
JP2008156734A (ja) * 2006-12-26 2008-07-10 Jfe Steel Kk 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2016013145A1 (ja) * 2014-07-25 2016-01-28 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2016013144A1 (ja) * 2014-07-25 2016-01-28 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112585291A (zh) * 2018-08-22 2021-03-30 杰富意钢铁株式会社 高强度钢板及其制造方法
EP3825432A4 (en) * 2018-08-22 2021-05-26 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND MANUFACTURING PROCESS FOR IT
EP3825433A4 (en) * 2018-08-22 2021-05-26 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND MANUFACTURING PROCESS FOR IT
CN112585291B (zh) * 2018-08-22 2022-05-27 杰富意钢铁株式会社 高强度钢板及其制造方法
US11846002B2 (en) 2018-08-22 2023-12-19 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
US11898230B2 (en) 2018-08-22 2024-02-13 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
EP3929323A4 (en) * 2018-11-30 2022-01-05 Posco ULTRA-HIGH STRENGTH STEEL WITH EXCELLENT COLD MACHINABILITY AND SSC RESISTANCE AND ASSOCIATED MANUFACTURING PROCESS
CN116694990A (zh) * 2023-05-25 2023-09-05 鞍钢股份有限公司 汽车底盘用600MPa级绿色清洁表面钢板及其制造方法

Also Published As

Publication number Publication date
EP3412789A1 (en) 2018-12-12
CN108884538A (zh) 2018-11-23
MX2018011871A (es) 2018-12-17
JP6292353B2 (ja) 2018-03-14
JP2018031077A (ja) 2018-03-01
KR102130233B1 (ko) 2020-07-03
EP3412789A4 (en) 2019-03-20
US20190112682A1 (en) 2019-04-18
KR20180119638A (ko) 2018-11-02
EP3412789B1 (en) 2020-02-05
JP6503584B2 (ja) 2019-04-24
US10920294B2 (en) 2021-02-16
CN108884538B (zh) 2020-06-23
JPWO2017169870A1 (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
KR102407357B1 (ko) 고강도 냉연 강판 및 그의 제조 방법
JP6292353B2 (ja) 薄鋼板及びめっき鋼板、並びに薄鋼板の製造方法及びめっき鋼板の製造方法
CN107532266B (zh) 镀覆钢板
KR101930186B1 (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
JP5042232B2 (ja) 成形性及びメッキ特性に優れた高強度冷延鋼板、これを用いた亜鉛系メッキ鋼板及びその製造方法
KR101485236B1 (ko) 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
KR101622063B1 (ko) 고강도 냉연 강판 및 그 제조 방법
WO2013105633A1 (ja) ホットスタンプ成形体、及びホットスタンプ成形体の製造方法
US20110030854A1 (en) High-strength steel sheet and method for manufacturing the same
JP2017048412A (ja) 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
EP2757169A1 (en) High-strength steel sheet having excellent workability and method for producing same
JP6274360B2 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
WO2016031165A1 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP2022510873A (ja) 冷間圧延熱処理鋼板及びその製造方法
WO2017168957A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017168958A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017169869A1 (ja) 薄鋼板およびめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6384623B2 (ja) 高強度鋼板およびその製造方法
JP2013139591A (ja) 加工性に優れた高強度熱延鋼板及びその製造方法
JP5853884B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP5659604B2 (ja) 高強度鋼板およびその製造方法
JP6278161B1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
CN115210398B (zh) 钢板、构件和它们的制造方法
CN115151673B (zh) 钢板、构件和它们的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017537331

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017774414

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774414

Country of ref document: EP

Effective date: 20180904

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/011871

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20187028113

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774414

Country of ref document: EP

Kind code of ref document: A1