[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017169130A1 - 積層型リチウムイオン電池 - Google Patents

積層型リチウムイオン電池 Download PDF

Info

Publication number
WO2017169130A1
WO2017169130A1 PCT/JP2017/004309 JP2017004309W WO2017169130A1 WO 2017169130 A1 WO2017169130 A1 WO 2017169130A1 JP 2017004309 W JP2017004309 W JP 2017004309W WO 2017169130 A1 WO2017169130 A1 WO 2017169130A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
electrode
lithium ion
ion battery
negative electrode
Prior art date
Application number
PCT/JP2017/004309
Other languages
English (en)
French (fr)
Inventor
香織 石川
八木 弘雅
渡邉 耕三
藤原 勲
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017169130A1 publication Critical patent/WO2017169130A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion battery including a stacked electrode group.
  • Patent Document 1 teaches that a zigzag separator is folded so as to cover the outermost plate (electrode) of the electrode group. As a result, the outermost electrode of the electrode group is easily impregnated with the electrolytic solution, and the electrical characteristics are improved.
  • a multilayer electrode group is surrounded by a porous sheet such as a porous film. This is because the impregnation property of the liquid electrolyte is enhanced, the electrode group is prevented from being displaced, and the outermost electrode is protected. Therefore, the outer main surface of the outermost electrode of the electrode group shown in Patent Document 1 is covered with both the separator and the porous sheet.
  • the stacked lithium ion battery according to one aspect of the present disclosure is folded in a manner to be interposed between a plurality of first electrodes and a plurality of second electrodes that are alternately stacked and between the adjacent first electrode and the second electrode.
  • a laminated electrode group including a folded portion and a long separator having a first end that is one short side and a second end that is the other short side.
  • the zigzag folded portion does not cover at least one of the first main surface and the second main surface that intersect in the stacking direction of the electrode group.
  • the thickness of the electrode group in the stacking direction can be reduced, the resulting stacked lithium ion battery can be thinned.
  • FIG. 1 is a cross-sectional view schematically showing an electrode group and a porous sheet surrounding the electrode group according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view schematically showing a part of the electrode group according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a part of the electrode group according to the embodiment of the present invention ((a) and (b)).
  • FIG. 4 is a cross-sectional view schematically showing an electrode group according to another embodiment of the present invention.
  • FIG. 5 is a perspective view schematically showing a stacked lithium ion battery according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing a stacked lithium ion battery taken along line BB in FIG.
  • FIG. 1 is a cross-sectional view schematically showing an electrode group 10 and a porous sheet 70 surrounding the electrode group 10 according to the present embodiment.
  • FIG. 2 is an exploded perspective view schematically showing a part of the electrode group 10 according to the present embodiment.
  • 3A and 3B are cross-sectional views schematically showing a part of the electrode group 10 according to the present embodiment.
  • the same reference numerals are given to components having the same function.
  • the electrode group 10 includes a plurality of first electrodes 11 and a plurality of second electrodes 12 stacked alternately, and a separator 13 interposed between the adjacent first electrode 11 and second electrode 12.
  • the separator 13 is a long body, and has a serpentine folding portion 131 that is serpentinely folded while sandwiching one of the first electrode 11 and the second electrode 12. For example, 10 to 50 first electrodes 11 and second electrodes 12 are laminated.
  • the zigzag folding portion 131 includes a planar region 131 a that faces at least a part of at least one main surface of the first electrode 11 and the second electrode 12 in the separator 13, and one first electrode.
  • the bent regions 131b that face at least a part of the end surface of the eleventh or one second electrode 12 (the surface that intersects the main surface) are alternately disposed portions.
  • the bent region 131b is a region sandwiched between two lines L1 and L2 formed by the plane passing through the end face of the electrode and the separator 13 intersecting each other.
  • the planar region 131a and a part of the bent region 131b overlap, the overlapping region (the hatched region in FIG. 2) may be regarded as the planar region 131a.
  • the zigzag folding part 131 does not cover at least one of the first main surface S1 and the second main surface S2 that intersects the stacking direction X of the electrode group 10 (see FIG. 1). Therefore, even when the periphery of the electrode group 10 is surrounded by a porous sheet 70 such as a porous film, at least one of the first main surface S1 and the second main surface S2 is covered only with the porous sheet 70. Therefore, the obtained lithium ion battery 100 can be thinned. Especially, it is preferable that neither the 1st main surface S1 nor the 2nd main surface S2 is covered with the zigzag folding part 131 from a viewpoint of thickness reduction.
  • the zigzag folding portion 131 not covering the first main surface S1 or the second main surface S2 allows the zigzag folding portion 131 to be slightly applied to the end of each main surface. This is because it cannot be said that the zigzag folded portion 131 substantially covers the main surface. Specifically, as shown in FIG. 3, when the width of the first main surface S1 in the longitudinal direction Y is W, the zigzag folding portion 131 (or the first end portion 13X) is W ⁇ the first main surface S1. When facing a region of 1/10 or less, it cannot be said that the zigzag folded portion 131 covers the first main surface S1.
  • the zigzag fold 131 faces the region of 1/10 or less of the width of the second main surface S2 in the longitudinal direction Y, the zigzag fold 131 is also the second main surface S2. It cannot be said that the surface S2 is covered.
  • the 1st electrode 11 is arrange
  • the outermost electrode group 10 may be the second electrode 12, one may be the first electrode 11, and the other may be the second electrode 12.
  • the size of the main surface of the first electrode 11 may be larger, smaller, or the same as the size of the main surface of the second electrode 12.
  • the separator 13 includes the zigzag folding portion 131 and the second embodiment in which the separator 13 includes the zigzag folding portion 131 and the outer peripheral portion 132 will be described in order.
  • the separator 13 is composed of a zigzag folding portion 131. That is, the first end surface 13X which is one short side (side intersecting the longitudinal direction Y) of the separator 13 and the second end portion 13Y which is the other short side are both the first main surface S1 and the second main surface. Does not face the surface S2 (FIG. 1), or faces a region from the side closer to the bent region 131b of the first main surface S1 and the second main surface S2 to 1/10 of the width W of each main surface (FIG. 3A).
  • first end portion 13X and the second end portion 13Y are disposed between the first main surface S1 and the second main surface S2.
  • the first end portion 13X and the second end portion 13Y are both disposed between the first main surface S1 and the second main surface S2.
  • a plane including the first main surface S1 and a plane including the second main surface S2 It is the area
  • first end portion 13X is disposed between the first main surface S1 and the second main surface S2 until the first end portion 13X faces the first main surface S1.
  • first end portion 13X may be in a position that does not face any electrode of the first main surface S1 and further the second main surface S2.
  • second end portion 13Y is disposed between the first main surface S1 and the second main surface S2 until the second end portion 13Y faces the second main surface S2.
  • the second end portion 13Y may be in a position that does not oppose any electrode of the second main surface S2 and further the first main surface S1.
  • the electrode group 10 is preferably surrounded by a porous sheet 70.
  • the electrode group 10 is wound by the porous sheet 70 in a direction that avoids the side where the negative electrode tab and the positive electrode tab described later extend. This is because the electrode group 10 is protected from external factors and the displacement between the electrodes is suppressed. From the above viewpoint, it is preferable that the porous sheet 70 surrounds the electrode group 10 one or more times. The ends of the porous sheet 70 are joined together by, for example, an insulating tape or heat welding.
  • the material of the porous sheet 70 is not particularly limited as long as it has insulating properties, and may be the same as or different from the separator 13. Further, from the viewpoint of impregnation properties when using an electrolyte containing a liquid, the porous sheet 70 is preferably as porous as possible.
  • the porosity of the porous sheet 70 is preferably 40% or more, and more preferably 60% or more.
  • the porosity of the porous sheet 70 is preferably 80% or less, and 70% or less. Is more preferable.
  • the porosity of the separator 13 disposed between the electrodes is preferably not excessively large from the viewpoint of preventing an internal short circuit.
  • the porosity of the separator 13 is preferably 60% or less, and more preferably 55% or less.
  • the porosity of the separator 13 is preferably 30% or more, and more preferably 40% or more.
  • the porosity is a porosity, that is, a value calculated by the following formula.
  • Porosity (1 ⁇ total volume of material constituting porous sheet / apparent volume of porous sheet) ⁇ 100 [%]
  • the porous material (that is, the separator 13) disposed between the electrodes and the porous material (that is, the porous sheet 70) surrounding the electrode group 10 are separated from each other according to the purpose.
  • the porosity can be selected. For example, by selecting a material having a larger porosity than that of the separator 13 as the porous sheet 70, both impregnation and prevention of internal short circuit can be achieved.
  • the specific configurations of the separator 13 and the porous sheet 70 will be described later.
  • FIG. 4 is a cross-sectional view schematically showing an electrode group 10A according to this embodiment.
  • the separator 13A includes a zigzag folded portion 131 and an outer peripheral portion 132.
  • the outer peripheral portion 132 has a first end portion 13 ⁇ / b> X that is one end portion of the separator 13 ⁇ / b> A, and extends from the zigzag folding portion 131.
  • the zigzag fold 131 has a second end 13Y which is the other end of the separator 13A.
  • the separator 13A includes the first main surface S1 while being folded from the second end portion 13Y as a starting point.
  • 11 A and the second electrode 12 ⁇ / b> A adjacent thereto extend so as to be interposed, and a zigzag fold 131 is formed.
  • the separator 13A extends in a direction toward the second main surface side, and as it is, a plurality of stacked electrodes (the first electrode 11 and the second electrode 12) and a zigzag folding portion 131 (hereinafter, together with the stacked body)
  • the outer peripheral portion 132 is formed.
  • the zigzag folding part 131 and the outer peripheral part 132 are continuous.
  • the boundary D between the zigzag folded portion 131 and the outer peripheral portion 132 is substantially opposed to the end portion of the first electrode 11A, and is located in the vicinity of the first main surface S1.
  • the outer peripheral portion 132 includes a first region 132a that covers from one end face of the second electrode 12A to the end face on the same side of the first electrode 11B having the second main face S2, and a second main part 132a.
  • 132c and a fourth region 132d covering the first main surface S1 are provided in this order from the boundary D.
  • the obtained lithium ion battery 100 can be thinned.
  • the boundary D that is, one end portion of the outer peripheral portion 132
  • the other end portion (first end portion 13X) of the outer peripheral portion 132 is also disposed on the end surface along the stacking direction X of the electrode group 10A. That's fine. That is, the overlap between the end portions of the outer peripheral portion 132 can be disposed between the first main surface S1 and the second main surface S2. Therefore, it becomes easy to make a lithium ion battery thin.
  • the separator 13A according to the present embodiment has two functions of the separator 13 and the porous sheet 70 in the first embodiment. That is, by preparing a separator 13A that is longer than the separator 13, it is possible to perform an operation of surrounding the outer periphery of the obtained laminate on the extension of the operation of interposing the separator 13A between the electrodes. Therefore, productivity is improved.
  • FIG. 5 is a perspective view schematically showing the external appearance of the lithium ion battery 100.
  • 6 is a cross-sectional view schematically showing the lithium ion battery 100 taken along line BB in FIG. 6 shows a case where the lithium ion battery 100 includes two electrode groups 10, the number of the electrode groups 10 is not limited to this, and one or more electrode groups may be included.
  • the electrode group 10 is housed in a battery case 20 including a rectangular metal container 21 having a bottom and an opening and a lid 22 that closes the opening of the metal container 21.
  • a battery case 20 including a rectangular metal container 21 having a bottom and an opening and a lid 22 that closes the opening of the metal container 21.
  • One end of the negative electrode terminal 30 protrudes from one end of the lid portion 22, and one end of the positive electrode terminal 40 protrudes from the other end.
  • the ends of the negative electrode terminal 30 and the positive electrode terminal 40 that protrude from the lid 22 are each formed into a rivet shape, whereby the negative electrode terminal 30 and the positive electrode terminal 40 are fixed to the lid 22 via washers 50A or 50B. .
  • the negative electrode terminal 30 and the positive electrode terminal 40, and the negative electrode current collecting plate 31 and the positive electrode current collecting plate are provided with thread grooves (not shown) to be engaged with each other, and fixed to the lid 22. Also good.
  • the negative electrode terminal 30 and the positive electrode terminal 40 are insulated from the lid 22 by insulating gaskets 61 and 62 (see FIG. 6).
  • the other end of the negative electrode terminal 30 inserted into the battery case 20 is electrically connected to the negative electrode current collector plate 31.
  • the other end of the positive electrode terminal 40 is electrically connected to a positive current collector plate (not shown).
  • a current interrupting mechanism such as a fuse may be connected to at least one of a connection path between the negative electrode terminal 30 and the negative electrode current collector plate 31 and a connection path between the positive electrode terminal 40 and the positive electrode current collector plate. .
  • An insulating gasket 63 is interposed between the negative electrode current collector plate 31 and the lid 22 to insulate the negative electrode current collector plate 31 from the lid 22.
  • an insulating insulating container 80 may be disposed so as to cover the inner surface of the metal container 21.
  • the insulating container 80 has a square shape having a bottom and an opening, and insulates the electrode group 10 from the metal container 21. Further, the surface of the electrode group 10 that contacts the inner wall surface of the insulating container 80 is surrounded by the porous sheet 70 (or the outer peripheral portion 132 of the separator 13A). Thereby, while insulating the electrode group 10 and the metal container 21, the gap
  • Each negative electrode 11 constituting the electrode group 10 is electrically connected to a negative electrode current collector 31 via a negative electrode lead wire 32.
  • the positive electrode 12 is electrically connected to the positive electrode current collector plate via a positive electrode lead wire (not shown).
  • the negative electrode lead wire 32 is joined to the negative electrode tab 111b (see FIG. 2) of the negative electrode 11.
  • a plurality of negative electrode lead wires 32 joined to the negative electrode tab 111b of each negative electrode 11 constituting one electrode group 10 are electrically connected to each other by welding or the like, and then are connected to, for example, the electrode group 10 of the negative electrode current collector plate 31. Bonded to the opposite surface.
  • the positive electrode lead wire is bonded to the surface of the positive electrode current collector plate facing the electrode group 10.
  • the electrode groups 10 are arranged such that one main surfaces intersecting the stacking direction X of the electrode groups 10 face each other.
  • the tabs of each electrode may be sufficiently long and welded together, and then joined to each current collector plate.
  • the negative electrode terminal 30 and the negative electrode current collector plate 31, the positive electrode terminal 40 and the positive electrode current collector plate are bonded to a predetermined portion of the lid 22 with gaskets (61, 62 and 63) interposed therebetween. Fix each of the locations.
  • the electrode group 10 is produced, each lead wire is joined to the electrode group 10, and the lead wires are joined together.
  • the integrated lead wire is joined to each current collector plate fixed to the lid 22.
  • the electrode group 10 is impregnated with the electrolytic solution, and the electrode group 10 containing the electrolytic solution is inserted into the insulating container 80.
  • the electrode group 10 is accommodated in the metal container 21 together with the insulating container 80, and the metal container 21 and the lid 22 are joined and sealed by welding or the like.
  • the impregnation with the electrolytic solution may be performed after the electrode group 10 is accommodated in the metal container 21.
  • the material of the metal container 21 and the metal container 21 constituting the battery case 20 is not particularly limited, and examples thereof include iron and stainless steel.
  • the materials of the metal container 21 and the metal container 21 may be different from each other, but are preferably the same from the viewpoint of bonding strength and the like.
  • the shape and size of the metal container 21 are not particularly limited, and may be set as appropriate according to the application, the shape and size of the electrode group 10, and the like.
  • the thickness of the wall surface of the metal container 21 is not particularly limited, and is, for example, 0.5 to 1.5 mm.
  • the negative electrode 11 includes a negative electrode core material 111 and a negative electrode active material layer 112 formed on both surfaces of the negative electrode core material 111.
  • the negative electrode core 111 includes a negative electrode main body 111a and a negative electrode tab 111b extending from a part of the negative electrode main body 111a.
  • the negative electrode active material layer 112 is not formed on at least a part of both surfaces of the negative electrode tab 111b.
  • the negative electrode lead wire 32 is used, one end of the negative electrode lead wire 32 is joined to the negative electrode tab 111b by resistance welding or the like.
  • the negative electrode active material layer 112 may be formed only on one surface of the negative electrode main body 111a.
  • the negative electrode core material 111 is a porous or non-porous conductive substrate.
  • a material of the negative electrode core material 111 for example, a metal foil such as stainless steel, nickel, copper, copper alloy, and aluminum is preferably used.
  • the thickness of the negative electrode core material 111 is not particularly limited, but is preferably 5 ⁇ m to 20 ⁇ m.
  • the negative electrode active material layer 112 includes a negative electrode active material as an essential component, and includes a binder, a conductive agent, and the like as optional components.
  • metallic lithium an alloy (such as a silicon alloy or a tin alloy), a carbon material (such as graphite or hard carbon), a silicon compound, a tin compound, or a lithium titanate compound is used.
  • a negative electrode mixture containing a negative electrode active material is mixed with a liquid component to prepare a negative electrode slurry.
  • the negative electrode slurry is applied to both surfaces of the negative electrode main body 111a to dry the coating film.
  • the dried coating film is rolled together with the negative electrode core material 111 to form the negative electrode active material layer 112 having a predetermined thickness.
  • the thickness of the negative electrode active material layer 112 is not particularly limited, but is preferably 70 ⁇ m to 150 ⁇ m. Note that when the negative electrode active material is an alloy or a compound, the negative electrode active material layer 112 may be formed by a vacuum process.
  • the positive electrode 12 includes a positive electrode core material 121 and a positive electrode active material layer 122 formed on both surfaces of the positive electrode core material 121.
  • the positive electrode core member 121 includes a positive electrode main body 121a and a positive electrode tab 121b extending from a part of the positive electrode main body 121a.
  • the positive electrode active material layer 122 is not formed on both surfaces of the positive electrode tab 121b.
  • one end of the positive electrode lead wire is joined to the positive electrode tab 121b by resistance welding or the like.
  • the positive electrode active material layer 122 may be formed only on one surface of the positive electrode main body 121a.
  • the positive electrode core material 121 is a porous or non-porous conductive substrate.
  • a metal foil such as aluminum or an aluminum alloy is preferably used.
  • the thickness of the positive electrode core material 121 is not particularly limited, but is preferably 10 ⁇ m to 20 ⁇ m.
  • the positive electrode active material layer 122 includes a positive electrode active material as an essential component, and includes a binder, a conductive agent, and the like as optional components.
  • a positive electrode active material of the lithium ion secondary battery a lithium-containing composite oxide is preferable, and for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like are used.
  • the positive electrode active material of the lithium ion primary battery manganese dioxide, graphite fluoride, or the like is used.
  • a positive electrode slurry containing a positive electrode active material is mixed with a liquid component to prepare a positive electrode slurry.
  • the positive electrode slurry is applied to both surfaces of the positive electrode main body 121a to dry the coating film.
  • the dried coating film is rolled together with the positive electrode core material 121 to form the positive electrode active material layer 122 having a predetermined thickness.
  • the thickness of the positive electrode active material layer 122 is not particularly limited, but is preferably 70 ⁇ m to 130 ⁇ m.
  • binder that can be included in the negative electrode active material layer 112 and / or the positive electrode active material layer 122 include, for example, a fluororesin (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyamide, polyimide, polyamideimide, polyacrylic acid, Examples include styrene butadiene rubber.
  • conductive agent that can be included in the negative electrode active material layer 112 and / or the positive electrode active material layer 122 include graphite, carbon black, and carbon fiber.
  • an insulating microporous thin film, a woven fabric, or a non-woven fabric is used.
  • the microporous thin film may be a single layer film or a multilayer film.
  • polyolefin such as polypropylene and polyethylene is preferably used. This is because polyolefin is excellent in durability and has a shutdown function.
  • the thickness of the separator 13 is not particularly limited, and is, for example, 10 ⁇ m to 300 ⁇ m, preferably 10 to 40 ⁇ m, more preferably 10 to 25 ⁇ m.
  • the length of the separator 13 in the longitudinal direction Y is not particularly limited as long as it can be interposed between the negative electrode and the positive electrode stacked at least while being folded.
  • the electrolyte may be in a liquid, gel, or solid state.
  • the liquid electrolyte is usually composed of a lithium salt and a non-aqueous solvent in which the lithium salt is dissolved.
  • the non-aqueous solvent is not particularly limited, and cyclic carbonates, chain carbonates, cyclic carboxylic acid esters, and the like are used.
  • the cyclic carbonate include propylene carbonate and ethylene carbonate.
  • the chain carbonate include diethyl carbonate, ethyl methyl carbonate, and dimethyl carbonate.
  • Examples of the cyclic carboxylic acid ester include ⁇ -butyric lactone and ⁇ -valerolactone.
  • the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 CO 2 and the like.
  • the gel electrolyte is usually composed of a polymer matrix, and the solvent and lithium salt impregnated in the polymer matrix.
  • the solid electrolyte is usually composed of a polymer matrix and the lithium salt contained in the polymer matrix.
  • the material used for the polymer matrix is not particularly limited, and for example, a material that gels by absorbing the liquid electrolyte can be used.
  • a material that gels by absorbing the liquid electrolyte can be used.
  • Specific examples include a fluororesin containing a vinylidene fluoride unit, an acrylic resin containing a (meth) acrylic acid and / or (meth) acrylic acid ester unit, and a polyether resin containing a polyalkylene oxide unit.
  • fluororesin containing a vinylidene fluoride unit examples include polyvinylidene fluoride (PVdF), a copolymer (VdF-HFP) containing a vinylidene fluoride (VdF) unit and a hexafluoropropylene (HFP) unit, and vinylidene fluoride (VdF). ) Units and trifluoroethylene (TFE) units.
  • PVdF polyvinylidene fluoride
  • VdF-HFP copolymer containing a vinylidene fluoride (VdF) unit and a hexafluoropropylene (HFP) unit
  • VdF vinylidene fluoride
  • TFE trifluoroethylene
  • the material of the negative electrode lead wire 32 is not particularly limited as long as it is electrochemically and chemically stable and has conductivity, and may be a metal or a nonmetal. Among these, a metal foil is preferable. Examples of the metal foil include copper foil, copper alloy foil, and nickel foil.
  • the thickness of the negative electrode lead wire 32 is preferably 25 to 200 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the material of the positive electrode lead wire is not particularly limited as long as it is electrochemically and chemically stable and has conductivity, and may be a metal or a nonmetal. Among these, a metal foil is preferable. Examples of the metal foil include aluminum foil, aluminum alloy foil, nickel, nickel alloy, iron, and stainless steel.
  • the thickness of the positive lead wire is preferably 25 to 200 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the material of the gaskets 61, 62 and 63 is not particularly limited.
  • polypropylene (PP), polyethylene (PE), polyphenylene sulfide (PPS), perfluoroalkylethylene-hexafluoropropylene copolymer (PFA), crosslinked type Rubber etc. are mentioned.
  • PFA is preferable because it has low moisture permeability and can suppress the ingress of moisture into the battery case.
  • porous sheet 70 As the porous sheet 70, an insulating microporous thin film, woven fabric or non-woven fabric is used. Examples of the material of the porous sheet 70 include the materials exemplified for the separator 13.
  • the thickness of the porous sheet 70 is not particularly limited, and is, for example, 10 to 300 ⁇ m, and preferably 10 to 50 ⁇ m.
  • the material of the insulating container 80 is not particularly limited, and examples thereof include polypropylene (PP), polyethylene (PE), polyphenylene sulfide (PPS), perfluoroalkylethylene-hexafluoropropylene copolymer (PFA), and the like.
  • the thickness, shape, and size of the wall surface of the insulating container 80 are not particularly limited, and may be set as appropriate according to the application, the shape, size, and the like of the electrode group 10.
  • the lithium ion battery of the present invention can be used in the same applications as conventional lithium ion batteries, and is particularly useful as a main power source or auxiliary power source for electronic devices, electrical devices, machine tools, transportation devices, power storage devices, and the like.
  • Electronic devices include personal computers, mobile phones, mobile devices, portable information terminals, portable game devices, and the like.
  • Electrical equipment includes vacuum cleaners and video cameras.
  • Machine tools include electric tools and robots.
  • Transportation equipment includes electric vehicles, hybrid electric vehicles, plug-in HEVs, fuel cell vehicles, and the like. Examples of power storage devices include uninterruptible power supplies.
  • Negative electrode core material 111a Negative electrode main-body part 111b Negative electrode tab 112 Negative electrode active material layer 12, 12A 2nd electrode (positive electrode) 121 positive electrode core material 121a positive electrode main body part 121b positive electrode tab 122 positive electrode active material layer 13, 13A separator 13X first end part 13Y second end part 131 zigzag folding part 131a flat area 131b bending area 132 outer peripheral part 132a first area 132b second area 132c Third region 132d Fourth region 20 Battery case 21 Metal container 22 Lid 30 Negative electrode terminal 31 Negative electrode current collector plate 32 Negative electrode lead wire 40 Positive electrode terminal 50A, 50B Washers 61, 62, 63 Gasket 70 Porous sheet 80 Insulating container

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Primary Cells (AREA)

Abstract

積層型リチウムイオン電池は、交互に積層された複数の第1電極および複数の第2電極と、隣接する前記第1電極と前記第2電極との間に介在するようにつづら折りされたつづら折り部を有するとともに、一方の短辺である第1端部と他方の短辺である第2端部とを有する長尺状のセパレータと、を含む積層型の電極群を備える。つづら折り部は、電極群の積層方向に交わる第1主面および第2主面の少なくとも一方を覆わない。

Description

積層型リチウムイオン電池
 本発明は、積層型の電極群を備えるリチウムイオン電池に関する。
 積層型のリチウムイオン電池として、交互に積層された正極と負極との間に介在するように、長尺のセパレータをつづら折りしながら配置する構成が知られている。特許文献1は、つづら折りしたセパレータを、電極群の最外のプレート(電極)を覆うように折り畳むことを教示している。これにより、電極群の最外にある電極にも電解液が含浸され易くなって、電気特性が向上する。
特表2004-503055号公報
 通常、積層型の電極群は、その周囲が多孔質フィルム等の多孔質シートで包囲される。液体状の電解質の含浸性を高めるとともに、電極群のズレ防止や、最外に配された電極を保護するためである。そのため、特許文献1に示される電極群の最外にある電極の外側の主面は、セパレータおよび多孔質シートの両方で覆われる。
 近年、電子機器の小型化および低背化に伴って、電子機器に接続される電池にも小型化および薄型化が要求される。上記のように、最外にある電極の外側の主面がセパレータおよび多孔質シートの両方で覆われることは、薄型化の点で不利である。さらに、電解液の電極群への含浸性を高める観点からも、最外にある電極の外側の主面をセパレータおよび多孔質シートの両方で覆うことは不利に働く。
 本開示の一局面の積層型リチウムイオン電池は、交互に積層された複数の第1電極および複数の第2電極と、隣接する第1電極と第2電極との間に介在するようにつづら折りされたつづら折り部を有するとともに、一方の短辺である第1端部と他方の短辺である第2端部とを有する長尺状のセパレータと、を含む積層型の電極群を備える。つづら折り部は、電極群の積層方向に交わる第1主面および第2主面の少なくとも一方を覆わない。
 本開示によれば、電極群の積層方向の厚みを小さくすることができるため、得られる積層型リチウムイオン電池を薄型化できる。
図1は、本発明の実施形態に係る電極群および電極群を包囲する多孔質シートを模式的に示す断面図である。 図2は、本発明の実施形態に係る電極群の一部を模式的に示す分解斜視図である。 図3は、本発明の実施形態に係る電極群の一部を模式的に示す断面図である((a)および(b))。 図4は、本発明の他の実施形態に係る電極群を模式的に示す断面図である。 図5は、本発明の実施形態に係る積層型リチウムイオン電池を模式的に示す斜視図である。 図6は、図5のB-B線における積層型リチウムイオン電池を模式的に示す断面図である。
 (電極群)
 以下、本実施形態に係る電極群について、図1~図3を参照しながら説明する。図1は、本実施形態に係る電極群10および電極群10を包囲する多孔質シート70を模式的に示す断面図である。図2は、本実施形態に係る電極群10の一部を模式的に示す分解斜視図である。図3(a)および(b)は、本実施形態に係る電極群10の一部を模式的に示す断面図である。図中、同じ機能を有する構成要素には、同じ符号を付している。
 電極群10は、交互に積層された複数の第1電極11および複数の第2電極12と、隣接する第1電極11と第2電極12との間に介在するセパレータ13と、を備える。セパレータ13は、長尺体であって、第1電極11および第2電極12の一方を挟み込みながらつづら折りされた、つづら折り部131を有する。第1電極11および第2電極12は、例えば、それぞれ10~50枚積層される。
 つづら折り部131とは、図2に示すように、セパレータ13のうち、第1電極11および第2電極12の少なくとも一方の主面の少なくとも一部に対向する平面領域131aと、1つの第1電極11または1つの第2電極12の端面(上記主面に交わる面)の少なくとも一部に対向する屈曲領域131bとが、交互に配置された部分である。屈曲領域131bは、電極の端面を通る平面とセパレータ13とが交わってできる2本の線L1およびL2で挟まれる領域である。平面領域131aと屈曲領域131bの一部とが重複する場合、重複する領域(図2においてハッチングされた領域)は、平面領域131aとみなせばよい。
 つづら折り部131は、電極群10の積層方向X(図1参照)に交わる第1主面S1および第2主面S2の少なくとも一方を覆わない。そのため、電極群10の周囲が多孔質フィルム等の多孔質シート70で包囲される場合であっても、第1主面S1および第2主面S2の少なくとも一方は、多孔質シート70のみで覆われるため、得られるリチウムイオン電池100を薄型化することが可能となる。なかでも、薄型化の観点から、第1主面S1および第2主面S2のいずれもが、つづら折り部131によって覆われないことが好ましい。
 ここで、第1主面S1あるいは第2主面S2を覆わないとは、つづら折り部131が各主面の端部に少しだけかかることを許容する。この場合、つづら折り部131が、実質的に主面を覆っているとは言えないためである。具体的には、図3に示すように、長手方向Yにおける第1主面S1の幅をWとしたとき、つづら折り部131(あるいは第1端部13X)が、第1主面S1のW×1/10以下の領域に対向している場合、つづら折り部131は、第1主面S1を覆っているとは言えない。第2主面S2に対しても同様に、つづら折り部131が、長手方向Yにおける第2主面S2の幅の1/10以下の領域に対向している場合、つづら折り部131は、第2主面S2を覆っているとは言えない。
 なお、図示例では、第1電極11が電極群10の両方の最外に配置されているが、これに限定されない。例えば、電極群10の最外はいずれも第2電極12であってもよいし、一方が第1電極11であり、他方が第2電極12であってもよい。また、第1電極11の主面の大きさは、第2電極12の主面の大きさよりも大きくてもよいし、小さくてもよいし、同じであってもよい。
 以下、セパレータ13がつづら折り部131からなる第1実施形態と、セパレータ13がつづら折り部131および外周部132を備える第2実施形態とを、順に説明する。
 [第1実施形態]
 まず、第1実施形態を、引き続き図1および3を参照しながら説明する。
 本実施形態では、セパレータ13は、つづら折り部131から構成される。つまり、セパレータ13の一方の短辺(長手方向Yに交わる辺)である第1端部13Xと他方の短辺である第2端部13Yとは、いずれも第1主面S1および第2主面S2に対向していないか(図1)、第1主面S1および第2主面S2の屈曲領域131bに近い方の辺から、各主面の幅Wの1/10までの領域に対向している(図3(a))。
 なかでも、薄型化の観点から、第1端部13Xおよび第2端部13Yの少なくとも一方が、第1主面S1と第2主面S2との間に配置されることが好ましい。特に、第1端部13Xおよび第2端部13Yが、ともに第1主面S1と第2主面S2との間に配置されることが好ましい。第1主面S1と第2主面S2との間とは、図3(a)および(b)に示すように、第1主面S1を含む平面と、第2主面S2を含む平面とで挟まれた領域Rである。すなわち、第1端部13Xが第1主面S1と第2主面S2との間に配置されるとは、第1端部13Xが、第1主面S1に対向することまでは要しない。図3(b)に示すように、第1端部13Xは、第1主面S1、さらには第2主面S2のいずれの電極にも対向しない位置にあってもよい。同様に、第2端部13Yが第1主面S1と第2主面S2との間に配置されるとは、第2端部13Yが、第2主面S2に対向することまでは要しない。第2端部13Yは、第2主面S2、さらには第1主面S1のいずれの電極にも対向しない位置にあってもよい。
 本実施形態において、図1に示すように、電極群10は多孔質シート70で包囲されることが好ましい。この場合、電極群10は、後述する負極タブおよび正極タブが延出している辺を避ける方向に、多孔質シート70により巻回される。電極群10の外的要因からの保護と、電極同士のズレを抑制するためである。上記の観点から、多孔質シート70は、電極群10の周囲を1周以上囲むことが好ましい。多孔質シート70の端部同士は、例えば、絶縁テープ、熱溶着により接合される。
 多孔質シート70の材質は、絶縁性を備える限り特に限定されず、セパレータ13と同じであってもよいし、異なっていてもよい。また、液体を含む電解質を用いる場合の含浸性の観点から、多孔質シート70の多孔度は大きいほど好ましい。例えば、多孔質シート70の多孔度は40%以上であることが好ましく、60%以上であることがより好ましい。なお、多孔質シート70の機械的強度や電極群10の保護および電極間のズレの抑制を考慮すると、多孔質シート70の多孔度は80%以下であることが好ましく、70%以下であることがより好ましい。
 一方、電極間に配置されるセパレータ13の多孔度は、内部短絡の防止の観点から、過度に大きくないことが好ましい。例えば、セパレータ13の多孔度は60%以下であることが好ましく、55%以下であることがより好ましい。なお、液体を含む電解質を用いる場合の含浸性を考慮すると、セパレータ13の多孔度は30%以上であることが好ましく、40%以上であることがより好ましい。
 多孔度は、すなわち空隙率であり、以下の式により算出される値である。
 空隙率=(1-多孔質シートを構成する材料の総体積/多孔質シートのみかけの体積)×100[%]
 このように、電極間に配置される多孔質材料(すなわちセパレータ13)と、電極群10の周囲を囲む多孔質材料(すなわち多孔質シート70)とを別体とすることにより、目的に応じた多孔度を選択することができる。例えば、多孔質シート70として、セパレータ13よりも多孔度の大きな材料を選択することにより、含浸性および内部短絡の防止が両立する。なお、セパレータ13および多孔質シート70の具体的な構成については後述する。
 [第2実施形態]
 次に、図4を参照しながら、第2実施形態を説明する。図4は、本実施形態に係る電極群10Aを模式的に示す断面図である。
 本実施形態では、セパレータ13Aは、つづら折り部131と外周部132とを含む。外周部132は、セパレータ13Aの一方の端部である第1端部13Xを有しており、つづら折り部131から延在している。つづら折り部131は、セパレータ13Aの他方の端部である第2端部13Yを有する。
 図4のように、例えば、第2端部13Yが第2主面S2側にある場合、セパレータ13Aは、第2端部13Yを始点としてつづら折りされながら、第1主面S1を備える第1電極11Aとこれに隣接する第2電極12Aとの間に介在するように延在して、つづら折り部131を形成する。続いて、セパレータ13Aは、第2主面側に向かう方向に延出し、そのまま、積層された複数の電極(第1電極11および第2電極12)およびつづら折り部131(以下、併せて積層体と称する)を1周以上包囲して、外周部132を形成する。すなわち、つづら折り部131と外周部132とは連続している。つづら折り部131と外周部132との境界Dは、第1電極11Aの端部にほぼ対向しており、第1主面S1の近傍に位置している。
 具体的には、外周部132は、第2電極12Aの一方の端面から、第2主面S2を備える第1電極11Bの上記と同じ側の端面までを覆う第1領域132aと、第2主面S2を覆う第2領域132bと、第1電極11Bの上記とは異なる側の他方の端面から、第1電極11Bの他方の端面と同じ側の第1電極11Aの端面までを覆う第3領域132cと、第1主面S1を覆う第4領域132dと、を境界Dからこの順に備える。
 この場合も、第1主面S1および第2主面S2は、外周部132のみで覆われるため、得られるリチウムイオン電池100を薄型化することが可能となる。また、境界D(すなわち、外周部132の一方の端部)は、電極群10Aの積層方向Xに沿った端面に位置している。そのため、外周部132の端部同士を接合して巻き止めする際、外周部132の他方の端部(第1端部13X)もまた、電極群10Aの積層方向Xに沿った端面に配置すればよい。つまり、外周部132の端部同士の重なりを、第1主面S1と第2主面S2との間に配置することができる。よって、リチウムイオン電池を薄型化させ易くなる。
 また、本実施形態に係るセパレータ13Aは、第1実施形態におけるセパレータ13と多孔質シート70との2つの機能を備える。つまり、セパレータ13より長尺のセパレータ13Aを準備することにより、セパレータ13Aを電極間に介在させる作業の延長上で、得られた積層体の外周を包囲する作業を行い得る。そのため、生産性が向上する。
 (積層型リチウムイオン電池)
 以下、図2、図5および図6を参照しながら、第1電極11が負極であり、第2電極12が正極である場合を例にとって、本発明の一実施形態である角型の積層型リチウムイオン電池(以下、単にリチウムイオン電池100と称す)を説明する。図5は、リチウムイオン電池100の外観を模式的に示す斜視図である。図6は、図5のB-B線におけるリチウムイオン電池100を模式的に示す断面図である。なお、図6では、リチウムイオン電池100が2つの電極群10を含む場合を示すが、電極群10の数はこれに限定されず、1つ以上含まれていればよい。
 リチウムイオン電池100において、電極群10は、底部および開口を有する角型の金属容器21および金属容器21の開口を塞ぐ蓋22を備える電池ケース20に収容される。蓋部22の一方の端部からは負極端子30の一端が突出し、他方の端部からは正極端子40の一端が突出する。負極端子30および正極端子40の蓋22から突出する端部は、それぞれリベット状に成形されており、これにより、負極端子30および正極端子40はワッシャ50Aまたは50Bを介して蓋22に固定される。なお、負極端子30および正極端子40と、負極集電板31および正極集電板(図示せず)とに、それぞれ係合するネジ溝(図示せず)を設けて、蓋22に固定してもよい。負極端子30および正極端子40は、絶縁性のガスケット61および62(図6参照)により、蓋22とは絶縁されている。
 一方、電池ケース20の内部に挿入された負極端子30の他端は、負極集電板31に電気的に接続している。正極端子40の他端も同様に、図示しない正極集電板に電気的に接続している。負極端子30と負極集電板31との接続経路、および、正極端子40と正極集電板との接続経路の少なくとも一方に、ヒューズ等の電流遮断機構(図示せず)を接続してもよい。
 負極集電板31と蓋22との間には、絶縁性のガスケット63が介在しており、負極集電板31と蓋22とを絶縁している。さらに、金属容器21の内表面を覆うように絶縁性の絶縁容器80が配置されてもよい。絶縁容器80は、底部および開口を有する角型形状を備えており、電極群10と金属容器21とを絶縁している。また、電極群10の絶縁容器80の内壁面に接触する面は、多孔質シート70(もしくは、セパレータ13Aの外周部132)により包囲されている。これにより、電極群10と金属容器21とを絶縁するとともに、積層された電極同士のズレが防止され、電極群10の絶縁容器80との接触等による損傷が抑制される。
 電極群10を構成する各負極11は、それぞれ負極リード線32を介して負極集電板31に電気的に接続される。正極12も同様に、図示しない正極リード線を介して正極集電板に電気的に接続される。負極リード線32は、負極11の負極タブ111b(図2参照)に接合される。1つの電極群10を構成する各負極11の負極タブ111bに接合された複数の負極リード線32は、溶接等により互いに電気的に接続された後、負極集電板31の例えば電極群10に対向する面に接合される。正極リード線も同様にして、正極集電板の電極群10に対向する面に接合される。複数の電極群10を金属容器21に収容する場合、各電極群10の積層方向Xに交わる一方の主面同士が対向するように配置する。なお、各リード線を用いずに、各電極のタブを十分に長くして互いに溶接した後、各集電板に接合してもよい。
 リチウムイオン電池100を組み立てる際には、まず、負極端子30と負極集電板31、正極端子40と正極集電板とを、ガスケット(61、62および63)を介在させながら、蓋22の所定の箇所にそれぞれ固定する。別途、電極群10を作製して、電極群10に各リード線を接合し、リード線同士を接合する。次いで、一体化されたリード線を、蓋22に固定された各集電板に接合する。その後、電極群10に電解液を含浸させ、電解液を含んだ状態の電極群10を絶縁容器80に挿入する。最後に、電極群10を絶縁容器80とともに金属容器21に収容して、金属容器21と蓋22とを溶接等により接合して封止する。電解液の含浸は、電極群10を金属容器21に収容した後、行ってもよい。
 (電池ケース)
 電池ケース20を構成する金属容器21および金属容器21の材質は特に限定されず、例えば、鉄、ステンレス鋼等が挙げられる。金属容器21および金属容器21の材質はそれぞれ異なっていてもよいが、接合強度等の観点から、同じであることが好ましい。金属容器21の形状および大きさは特に限定されず、用途、電極群10の形状および大きさ等に応じて、適宜設定すればよい。金属容器21の壁面の厚みも特に限定されず、例えば、0.5~1.5mmである。
 (負極)
 負極11は、図2に示すように、負極芯材111と、負極芯材111の両面に形成された負極活物質層112とを具備する。負極芯材111は、負極本体部111aと負極本体部111aの一部から延出した負極タブ111bとを備えている。負極タブ111bの両表面の少なくとも一部には、負極活物質層112は形成されていない。負極リード線32を用いる場合、負極タブ111bには、負極リード線32の一端部が抵抗溶接等により接合される。なお、負極活物質層112は、負極本体部111aの片面にのみ形成されてもよい。
 負極芯材111は、多孔性または無孔の導電性基板である。負極芯材111の材料としては、例えばステンレス鋼、ニッケル、銅、銅合金、アルミニウムなどの金属箔が好ましく使用される。負極芯材111の厚さは特に限定されないが、5μm~20μmが好ましい。
 負極活物質層112は、必須成分として負極活物質を含み、任意成分として結着剤、導電剤などを含む。負極活物質としては、金属リチウム、合金(珪素合金、錫合金など)、炭素材料(黒鉛、ハードカーボンなど)、珪素化合物、錫化合物、チタン酸リチウム化合物などが用いられる。負極活物質層112を形成する際には、負極活物質を含む負極合剤を液状成分と混合して負極スラリーを調製する。次に、負極スラリーを負極本体部111aの両方表面に塗工して塗膜を乾燥させる。次に、乾燥した塗膜を負極芯材111とともに圧延することで、所定厚さを有する負極活物質層112が形成される。負極活物質層112の厚さは、特に限定されないが、70μm~150μmが好ましい。なお、負極活物質が合金または化合物である場合、真空プロセスにより負極活物質層112を形成してもよい。
 (正極)
 正極12は、正極芯材121と、正極芯材121の両面に形成された正極活物質層122とを具備する。正極芯材121は、正極本体部121aと正極本体部121aの一部から延出した正極タブ121bとを備えている。正極タブ121bの両表面には、正極活物質層122は形成されていない。正極リード線を用いる場合、正極タブ121bには、正極リード線の一端部が抵抗溶接等により接合される。なお、正極活物質層122は、正極本体部121aの片面にのみ形成されてもよい。
 正極芯材121は、多孔性または無孔の導電性基板である。正極芯材121の材料は、例えばアルミニウム、アルミニウム合金などの金属箔が好ましく使用される。正極芯材121の厚さは、特に限定されないが、10μm~20μmが好ましい。
 正極活物質層122は、必須成分として正極活物質を含み、任意成分として結着剤、導電剤などを含む。リチウムイオン二次電池の正極活物質としては、リチウム含有複合酸化物が好ましく、例えばLiCoO2、LiNiO2、LiMn24などが用いられる。リチウムイオン一次電池の正極活物質としては、二酸化マンガン、フッ化黒鉛などが用いられる。正極活物質層122を形成する際には、正極活物質を含む正極合剤を液状成分と混合して正極スラリーを調製する。次に、正極スラリーを正極本体部121aの両表面に塗工して塗膜を乾燥させる。次に、乾燥した塗膜を正極芯材121とともに圧延することで、所定厚さを有する正極活物質層122が形成される。正極活物質層122の厚さは、特に限定されないが、70μm~130μmが好ましい。
 負極活物質層112および/または正極活物質層122に含まれ得る結着剤としては、例えば、フッ素樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレンなど)、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリル酸、スチレンブタジエンゴムなどが挙げられる。また、負極活物質層112および/または正極活物質層122に含まれ得る導電剤としては、例えば黒鉛、カーボンブラック、炭素繊維などが挙げられる。
 (セパレータ)
 セパレータ13としては、絶縁性の微多孔薄膜、織布または不織布が用いられる。微多孔薄膜は、単層膜でもよく、多層膜でもよい。セパレータ13の材料としては、例えばポリプロピレン、ポリエチレンなどのポリオレフィンを用いることが好ましい。ポリオレフィンは耐久性に優れ、かつシャットダウン機能を有するためである。セパレータ13の厚さは特に限定されず、例えば10μm~300μmであり、10~40μmが好ましく、10~25μmがより好ましい。セパレータ13の長手方向Yの長さは、少なくとも積層される負極と正極との間に、つづら折りされながら介在できる程度であれば、特に限定されない。
 (電解質)
 電解質は、液体、ゲルまたは固体のいずれの状態でもよい。
 液体状の電解質は、通常、リチウム塩と、リチウム塩を溶解させる非水溶媒とで構成される。非水溶媒としては、特に限定されないが、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネートなどが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネートなどが挙げられる。環状カルボン酸エステルとしては、γ-ブチ口ラクトン、γ-バレロラクトンなどが挙げられる。リチウム塩としては、例えばLiPF、LiClO、LiBF、LiCFSO、LiCFCOなどが挙げられる。
 ゲル状の電解質は、通常、ポリマーマトリックスと、ポリマーマトリックスに含浸された上記の溶媒およびリチウム塩とで構成される。固体状の電解質は、通常、ポリマーマトリックスと、ポリマーマトリックスに含有された上記のリチウム塩とで構成される。
 ポリマーマトリックスに用いられる材料(マトリックスポリマー)としては、特に限定されず、例えば、液体電解質を吸収してゲル化する材料を使用することができる。具体的には、フッ化ビニリデン単位を含むフッ素樹脂、(メタ)アクリル酸および/または(メタ)アクリル酸エステル単位を含むアクリル系樹脂、ポリアルキレンオキサイド単位を含むポリエーテル樹脂などが挙げられる。
 フッ化ビニリデン単位を含むフッ素樹脂としては、ポリフッ化ビニリデン(PVdF)、フッ化ビニリデン(VdF)単位とヘキサフルオロプロピレン(HFP)単位とを含む共重合体(VdF-HFP)、フッ化ビニリデン(VdF)単位とトリフルオロエチレン(TFE)単位とを含む共重合体などが挙げられる。
 (負極リード線)
 負極リード線32の材質は、電気化学的および化学的に安定であり、導電性を有するものであれば、特に限定されず、金属であっても非金属であってもよい。なかでも、金属箔であることが好ましい。金属箔としては、例えば、銅箔、銅合金箔、ニッケル箔などが挙げられる。負極リード線32の厚みは、25~200μmが好ましく、50~100μmがより好ましい。
 (正極リード線)
 正極リード線の材質は、電気化学的および化学的に安定であり、導電性を有するものであれば、特に限定されず、金属であっても非金属であってもよい。なかでも、金属箔であることが好ましい。金属箔としては、例えば、アルミニウム箔、アルミニウム合金箔、ニッケル、ニッケル合金、鉄、ステンレス鋼などが挙げられる。正極リード線の厚みは、25~200μmが好ましく、50~100μmがより好ましい。
 (ガスケット)
 ガスケット61、62および63の材質は特に限定されず、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリフェニレンサルファイド(PPS)、パーフルオロアルキルエチレン-六フッ化プロピレン共重合体(PFA)、架橋形ゴム等が挙げられる。なかでも、透湿度が低く、電池ケース内部への水分の侵入を抑制することが出来る点で、PFAが好ましい。
 (多孔質シート)
 多孔質シート70としては、絶縁性の微多孔薄膜、織布または不織布が用いられる。多孔質シート70の材質としては、セパレータ13で例示した材料が挙げられる。多孔質シート70の厚さは特に限定されず、例えば10~300μmであり、10~50μmが好ましい。
 (絶縁容器)
 絶縁容器80の材質は特に限定されず、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリフェニレンサルファイド(PPS)、パーフルオロアルキルエチレン-六フッ化プロピレン共重合体(PFA)等が挙げられる。絶縁容器80の壁面の厚み、形状および大きさは特に限定されず、用途、電極群10の形状および大きさ等に応じて、適宜設定すればよい。
 本発明のリチウムイオン電池は、従来のリチウムイオン電池と同様の用途に使用でき、特に、電子機器、電気機器、工作機器、輸送機器、電力貯蔵機器等の主電源又は補助電源として有用である。電子機器には、パーソナルコンピュータ、携帯電話、モバイル機器、携帯情報端末、携帯用ゲーム機器等がある。電気機器には、掃除機、ビデオカメラ等がある。工作機器には、電動工具、ロボット等がある。輸送機器には、電気自動車、ハイブリッド電気自動車、プラグインHEV、燃料電池自動車等がある。電力貯蔵機器には、無停電電源等がある。
 100 リチウムイオン電池
 10,10A 極群
 11,11A,11B 第1電極(負極)
 111 負極芯材
 111a 負極本体部
 111b 負極タブ
 112 負極活物質層
 12,12A 第2電極(正極)
 121 正極芯材
 121a 正極本体部
 121b 正極タブ
 122 正極活物質層
 13,13A セパレータ
 13X 第1端部
 13Y 第2端部
 131 つづら折り部
 131a 平面領域
 131b 屈曲領域
 132 外周部
 132a 第1領域
 132b 第2領域
 132c 第3領域
 132d 第4領域
 20 電池ケース
 21 金属容器
 22 蓋
 30 負極端子
 31 負極集電板
 32 負極リード線
 40 正極端子
 50A,50B ワッシャ
 61,62,63 ガスケット
 70 多孔質シート
 80 絶縁容器

Claims (7)

  1.  交互に積層された複数の第1電極および複数の第2電極と、隣接する前記第1電極と前記第2電極との間に介在するようにつづら折りされたつづら折り部を有するとともに、一方の短辺である第1端部と他方の短辺である第2端部とを有する長尺状のセパレータと、
    を含む積層型の電極群を備え、
     前記つづら折り部が、前記電極群の積層方向に交わる第1主面および第2主面の少なくとも一方を覆わない、積層型リチウムイオン電池。
  2.  前記つづら折り部が、少なくとも前記第1主面を覆わず、
     前記セパレータが、さらに、前記つづら折り部から延在するとともに前記第1端部を有する外周部を有し、
     前記つづら折り部が、前記第2端部を有し、
     前記第2端部が、前記第2主面側に位置し、
     前記つづら折り部と前記外周部との境界が、前記第1主面側に位置し、
     前記外周部は、前記境界から、前記第1主面から前記第2主面に向かう方向に延出して、前記電極群の周囲を1周以上囲むように延在している、請求項1に記載の積層型リチウムイオン電池。
  3.  前記つづら折り部が、前記第1主面および前記第2主面のいずれも覆わない、請求項1または2に記載の積層型リチウムイオン電池。
  4.  前記第1端部および前記第2端部が、それぞれ前記第1主面と前記第2主面との間に配置される、請求項3に記載の積層型リチウムイオン電池。
  5.  さらに、前記電極群の周囲を1周以上囲む多孔質シートを備える、請求項1に記載の積層型リチウムイオン電池。
  6.  前記多孔質シートの多孔度が、前記セパレータの多孔度よりも大きい、請求項5に記載の積層型リチウムイオン電池。
  7.  前記セパレータの前記多孔度が30~60%であり、
     前記多孔質シートの前記多孔度が40~80%である、請求項6に記載の積層型リチウムイオン電池。
PCT/JP2017/004309 2016-03-31 2017-02-07 積層型リチウムイオン電池 WO2017169130A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016071059A JP2019091523A (ja) 2016-03-31 2016-03-31 積層型リチウムイオン電池
JP2016-071059 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017169130A1 true WO2017169130A1 (ja) 2017-10-05

Family

ID=59962910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004309 WO2017169130A1 (ja) 2016-03-31 2017-02-07 積層型リチウムイオン電池

Country Status (2)

Country Link
JP (1) JP2019091523A (ja)
WO (1) WO2017169130A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145331A (ja) * 2018-02-20 2019-08-29 Tdk株式会社 非水電解液二次電池
CN110391466A (zh) * 2018-04-19 2019-10-29 大众汽车有限公司 用于锂离子蓄电池单池的电池卷芯、锂离子蓄电池单池、储能器
JP2020518989A (ja) * 2017-05-08 2020-06-25 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. ロール型アルカリ金属電池及び製造方法
CN112259800A (zh) * 2020-11-02 2021-01-22 广东利元亨智能装备股份有限公司 一种电芯配对方法
JP2022547559A (ja) * 2019-09-12 2022-11-14 ビーワイディー カンパニー リミテッド 電池、電池モジュール、電池パック及び自動車
WO2023081532A1 (en) * 2021-11-08 2023-05-11 Advanced Cell Engineering, Inc. Slot electrode stack and electrochemical cells and batteries containing a slot electrode stack
WO2023171547A1 (ja) * 2022-03-10 2023-09-14 株式会社京都製作所 積層型電池の製造方法及び製造装置
US12148877B2 (en) 2017-05-08 2024-11-19 Honeycomb Battery Company Rolled alkali metal batteries and production process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186739A (ja) * 2009-01-14 2010-08-26 Panasonic Corp 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法
JP2011216408A (ja) * 2010-04-01 2011-10-27 Denso Corp リチウム二次電池及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186739A (ja) * 2009-01-14 2010-08-26 Panasonic Corp 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法
JP2011216408A (ja) * 2010-04-01 2011-10-27 Denso Corp リチウム二次電池及びその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518989A (ja) * 2017-05-08 2020-06-25 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. ロール型アルカリ金属電池及び製造方法
JP7195275B2 (ja) 2017-05-08 2022-12-23 ナノテク インストゥルメンツ,インコーポレイテッド ロール型アルカリ金属電池及び製造方法
US12148877B2 (en) 2017-05-08 2024-11-19 Honeycomb Battery Company Rolled alkali metal batteries and production process
JP2019145331A (ja) * 2018-02-20 2019-08-29 Tdk株式会社 非水電解液二次電池
JP7020167B2 (ja) 2018-02-20 2022-02-16 Tdk株式会社 非水電解液二次電池
CN110391466A (zh) * 2018-04-19 2019-10-29 大众汽车有限公司 用于锂离子蓄电池单池的电池卷芯、锂离子蓄电池单池、储能器
CN110391466B (zh) * 2018-04-19 2022-09-13 大众汽车有限公司 用于锂离子蓄电池单池的电池卷芯、锂离子蓄电池单池、储能器
JP2022547559A (ja) * 2019-09-12 2022-11-14 ビーワイディー カンパニー リミテッド 電池、電池モジュール、電池パック及び自動車
JP7427773B2 (ja) 2019-09-12 2024-02-05 ビーワイディー カンパニー リミテッド 電池、電池モジュール、電池パック及び自動車
CN112259800A (zh) * 2020-11-02 2021-01-22 广东利元亨智能装备股份有限公司 一种电芯配对方法
WO2023081532A1 (en) * 2021-11-08 2023-05-11 Advanced Cell Engineering, Inc. Slot electrode stack and electrochemical cells and batteries containing a slot electrode stack
WO2023171547A1 (ja) * 2022-03-10 2023-09-14 株式会社京都製作所 積層型電池の製造方法及び製造装置

Also Published As

Publication number Publication date
JP2019091523A (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2017169130A1 (ja) 積層型リチウムイオン電池
JP6735445B2 (ja) 捲回型電池
JP5451694B2 (ja) 非水電解質電池モジュール
US20230006311A1 (en) Electrochemical device and electronic device containing same
JP5537094B2 (ja) 電池
JP5830953B2 (ja) 二次電池、バッテリユニットおよびバッテリモジュール
JP6859059B2 (ja) リチウムイオン二次電池及びその製造方法
JP5452303B2 (ja) 二次電池とその製造方法
JP4293501B2 (ja) 電気化学デバイス
WO2013111256A1 (ja) 二次電池
US11121439B2 (en) Secondary battery
KR20130132231A (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
JP2002298825A (ja) 電気化学デバイスの製造方法、および電気化学デバイス
JP5081348B2 (ja) シート型電池
US20110076544A1 (en) Stack type battery
JP6270613B2 (ja) 角形二次電池
JP4856815B2 (ja) シート型電池
JP4720384B2 (ja) バイポーラ電池
JP6055983B2 (ja) 電池用集電体およびリチウムイオン電池
JP6718985B2 (ja) 角形二次電池
JP2002260601A (ja) 電気化学デバイスおよびその製造方法
WO2022163616A1 (ja) 蓄電素子及び蓄電装置
JP2019096466A (ja) 蓄電素子
JP2019053818A (ja) 蓄電素子、及び蓄電素子を備える蓄電装置
CN108701867B (zh) 层叠型非水电解质二次电池

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773679

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP