[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017168620A1 - Unmanned aircraft flight control system, method, and program - Google Patents

Unmanned aircraft flight control system, method, and program Download PDF

Info

Publication number
WO2017168620A1
WO2017168620A1 PCT/JP2016/060337 JP2016060337W WO2017168620A1 WO 2017168620 A1 WO2017168620 A1 WO 2017168620A1 JP 2016060337 W JP2016060337 W JP 2016060337W WO 2017168620 A1 WO2017168620 A1 WO 2017168620A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
flight control
sensing data
unmanned aircraft
condition
Prior art date
Application number
PCT/JP2016/060337
Other languages
French (fr)
Japanese (ja)
Inventor
俊二 菅谷
Original Assignee
株式会社オプティム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプティム filed Critical 株式会社オプティム
Priority to PCT/JP2016/060337 priority Critical patent/WO2017168620A1/en
Publication of WO2017168620A1 publication Critical patent/WO2017168620A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to a system, method, and program for controlling the flight of an unmanned aerial vehicle.
  • unmanned aerial vehicles drones
  • it is considered to fly an unmanned aerial vehicle equipped with a camera, a sensor or the like to a disaster area to check the state of the disaster area or to transport goods.
  • Patent Document 1 discloses a control system having a ground control device, a control unmanned aircraft that can communicate with the ground control device, and a reconnaissance unmanned aircraft that can communicate with the control unmanned aircraft.
  • an object of the present invention is to provide an unmanned aerial vehicle flight control system, method, and program capable of automatically flying an unmanned aerial vehicle in a remote place that meets a predetermined condition.
  • An unmanned aerial vehicle flight control system includes a reception unit that receives sensing data from a sensor, a determination unit that determines whether the sensing data satisfies a predetermined condition, and the determination unit includes a condition Flight control means for flying the unmanned aerial vehicle to the position of the sensor corresponding to the sensing data determined to satisfy the above.
  • the unmanned aerial vehicle flight control system may include a registration unit that registers the position of the sensor.
  • the above-described flight control means may cause the unmanned aircraft to fly to a position where a sensor corresponding to the sensing data determined by the determination means to satisfy the condition is registered.
  • the unmanned aerial vehicle flight control system may include position detection means for detecting the position of the sensor.
  • the above-described flight control means may cause the unmanned aircraft to fly to the detected position of the sensor corresponding to the sensing data determined by the determining means to satisfy the condition.
  • the above-described flight control means may cause the unmanned airplane to fly so as to pass through the positions of a plurality of sensors respectively corresponding to the plurality of sensing data determined by the determining means to satisfy the condition.
  • the unmanned aerial vehicle flight control system may include sensor information that associates the type of sensing data with the type of unmanned aircraft.
  • the above-described flight control means may cause the type of unmanned aircraft associated with the type of sensing data satisfying a predetermined condition in the sensor information to fly to the position of the sensor.
  • the above-described flight control means may set an operation after arrival at the sensor position to an unmanned aircraft that flies to the sensor position.
  • an unmanned aerial vehicle flight control system, method, and program capable of automatically flying an unmanned aerial vehicle in a remote place that meets a predetermined condition.
  • summary of an unmanned aircraft flight control system The figure which shows the structural example of a control system.
  • the flowchart which shows an example of a process of a control system.
  • FIG. 1 is a diagram for explaining the operation outline of the unmanned aircraft flight control system 1.
  • the unmanned aerial vehicle flight control system 1 includes a control system 10, at least one sensor 4, and at least one unmanned aircraft 6.
  • the control system 10 can transmit and receive data to and from the sensor 4 and the unmanned aircraft 6 through a predetermined communication network 8.
  • the communication network 8 is, for example, an Internet network, a LAN (Local Area Network), or a VPN (Virtual Private Network).
  • the sensor 4 senses (measures) various physical quantities such as sound, light, temperature, humidity, pressure, wind speed, current, and voltage, and sends the sensing data (measurement data) to the control system 10 via the communication network 8. Send.
  • the control system 10 determines whether or not the sensing data received from the sensor 4 satisfies a predetermined condition. If the determination result is affirmative, the unmanned aircraft 6 is caused to fly to the position of the sensor 4. The control system 10 may determine the type of the unmanned aircraft 6 to fly according to the type of the sensor 4 that transmitted the sensing data that satisfies the condition.
  • control system 10 may fly the unmanned aircraft 6 for water spraying to the position of the sensor 4 and spray water. .
  • control system 10 may cause the unmanned aircraft 6 for video shooting to fly to the position of the sensor 4 and take a video.
  • the unmanned aircraft 6 is automatically caused to fly to the position of the sensor 4 at a necessary timing, and necessary work is performed near the position of the sensor 4. Can be made. Details will be described below.
  • FIG. 2 shows a configuration example of the control system 10.
  • the control system 10 includes, as hardware, a CPU 40, a memory 42, a storage 46, a network I / F 44, and an internal bus 48 that interconnects these devices.
  • the network I / F 44 controls data transmitted to and received from the sensor 4 and the unmanned aircraft 6 via the communication network 8.
  • the network I / F 44 may be a wired I / F or a wireless I / F.
  • the network I / F 44 may be, for example, a NIC (Network Interface Card).
  • the CPU 40 implements various functions of the control system 10 by executing a program stored in the memory 42.
  • the memory 42 stores programs and data for realizing the functions of the control system 10.
  • the memory 42 is, for example, a DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory), or the like.
  • the memory 42 may store a reception unit 110, a flight determination unit 112, a flight control unit 114, a registration unit 116, and a position detection unit 118 as programs. These programs may be held in the storage 46 and read to the memory 42 as appropriate. Each program will be described later.
  • the storage 46 stores programs and / or data used in the control system 10.
  • the storage 46 is, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like.
  • the storage 46 may store a sensor management table 300 as data.
  • FIG. 3 shows a configuration example of the sensor management table 300.
  • the sensor management table 300 manages information on each sensor 4.
  • the sensor management table 300 may include sensor ID 302, sensor position 304, sensor type 306, sensing data 308, condition 310, and unmanned aircraft type 312 as data items.
  • the sensor ID 302 information for uniquely identifying the sensor 4 is stored.
  • the sensor position 304 information indicating the position of the sensor 4 with the sensor ID 302 is stored.
  • the sensor position 304 may store longitude and latitude (that is, absolute coordinates), and may store a direction and distance (that is, relative position) from a predetermined position (for example, the position of the unmanned aircraft 6).
  • the sensor type 306 the type of the sensor 4 with the sensor ID 302 is stored.
  • the sensor type 306 may store, for example, a temperature sensor, a humidity sensor, an air temperature sensor, a weather sensor, a wind sensor, a voltage sensor, and the like.
  • the sensing data 308 stores data measured by the sensor 4 with the sensor ID 302 (that is, sensing data).
  • the sensing data 308 may store, for example, temperature, humidity, temperature, weather, and the like. That is, the data stored in the sensing data 308 may be different depending on the sensor type 306.
  • the sensing data 308 may also store the date and time when the sensing data was measured.
  • the condition 310 stores the condition of the sensing data 308 for the unmanned aircraft 6 to start. For example, when the sensing data 308 satisfies the corresponding condition 310, the unmanned aircraft 6 may be started toward the sensor position 304.
  • the condition 310 may store a plurality of conditions. For example, the condition 310 may store a condition such as “A1 or more and less than A2”.
  • the function type of the unmanned aircraft 6 is stored in the unmanned aircraft type 312.
  • the unmanned aerial vehicle type 312 may store, for example, an unmanned aerial vehicle for spraying water, an unmanned aircraft for photographing, an unmanned aircraft for spraying agricultural chemicals, and the like.
  • One unmanned aircraft 6 may have a plurality of functions.
  • the receiving means 110 receives sensing data from the sensor 4 via the communication network 8.
  • the receiving unit 110 may store the received sensing data in the sensing data 308 corresponding to the sensor ID 302 of the sensor data transmission source in the sensor management table 300.
  • the registration unit 116 registers the position of the sensor 4 in the sensor position 304 of the sensor management table 300.
  • the registration unit 116 further includes the sensor management table 300 for the type of the sensor 4, the conditions for starting the unmanned aircraft 6 with respect to the sensing data measured by the sensor 4, and the type of the unmanned aircraft to be started when the conditions are satisfied.
  • the sensor type 306, the condition 310, and the unmanned aircraft type 312 may be registered. Note that the administrator may manually register such information in the sensor management table 300 via the registration unit 116.
  • the position detecting means 118 detects the position of the sensor 4.
  • the position detection unit 118 may detect the position of the sensor 4 based on the GPS information received from the sensor 4. Information for detecting the position of the sensor 4 is not limited to GPS information.
  • the position detection unit 118 may detect the position of the sensor 4 based on a signal transmitted and received by the sensor 4 with the radio base station.
  • the position detection unit 118 may register the detected position of the sensor 4 in the sensor position 304 of the sensor management table 300. When the sensor 4 moves, the position detection unit 118 may periodically detect the position of the sensor 4 and update the sensor position 304 of the sensor management table 300.
  • Flight determination means 112 determines whether or not the sensing data satisfies a predetermined condition.
  • the flight determination unit 112 refers to the sensor management table 300 and determines whether the sensing data 308 satisfies a condition 310 corresponding to the sensing data.
  • the flight determination unit 112 refers to the record of the sensor ID 302 “1” in the sensor management table 300, and the sensing data 308 “80 ° C.” related to the sensor type 306 “temperature” is the condition 310 “50 ° C. or higher” (that is, It may be determined that the condition of a predetermined threshold or more is satisfied.
  • the flight determination unit 112 refers to the record of the sensor ID 302 “2” in the sensor management table 300, and the sensing data 308 “30%” related to the sensor type 306 “temperature” is the condition 310 “less than 50%” (that is, It may be determined that the condition (below the predetermined threshold) is satisfied (that is, less than the predetermined threshold).
  • the flight determination unit 112 refers to the record of the sensor ID 302 “4” in the sensor management table 300, and the sensing data 308 “rain” relating to the sensor type 306 “weather” does not satisfy the condition 310 “clear”. You may judge.
  • the flight control unit 114 causes the unmanned aircraft 6 to fly to the position of the sensor 4 that has transmitted the sensing data when the flight determination unit 112 determines that the sensing data satisfies the condition. For example, the flight control unit 114 determines that the sensing data 308 corresponding to the sensor ID 302 “1” in the sensor management table 300 satisfies the condition 310 in the flight determination unit 112, so the unmanned aircraft type 312 “A” May be caused to fly to the sensor position 304 “X1 degrees east longitude, Y1 degrees north latitude”.
  • the unmanned aircraft 6 When the flight determination unit 112 determines that each of the plurality of sensing data 308 satisfies the condition 310, the unmanned aircraft 6 may be caused to fly so as to pass through the plurality of sensor positions 304 respectively corresponding to the sensing data 308. . Further, the flight control means 114 may set an action after arriving at the sensor position 304 for the unmanned aerial vehicle 6 flying to the sensor position 304. These may be realized by the flight control unit 114 setting the flight control information 400 to the unmanned aircraft 6 and the unmanned aircraft 6 autonomously navigating based on the set flight control information 400.
  • FIG. 4 shows a configuration example of the flight control information 400.
  • the flight control information 400 may be information that associates the order 402, the sensor ID 404, the sensor position 406, and the action 408.
  • the order 402 indicates the order of the sensor position 406 through which the unmanned aerial vehicle 6 passes.
  • Sensor ID 404 and sensor position 406 are the same as sensor ID 302 and sensor position 304 in FIG.
  • Action 408 indicates an action to be performed when the unmanned aerial vehicle 6 arrives at the sensor position 406.
  • the flight determination unit 112 determines that the sensing data 308 of the sensor IDs 302 “1”, “2”, “10”, and “13” satisfy the condition 310 from the sensor management table 300 of FIG. To do.
  • the flight control means 114 generates flight control information 400 that causes the unmanned aircraft 6 to fly in the order of sensor IDs 404 “1”, “10”, “2”, and “13”, for example, as shown in FIG. It's okay.
  • the flight control unit 114 “spreads agricultural chemicals” on the unmanned aircraft 6 at the sensor position 406 of the sensor ID 404 “1”, and “takes a picture at the sensor position 406 of the sensor ID 404“ 10 ”.
  • the flight control information 400 for “spraying water” at the sensor position 406 of the sensor ID 402 “2” may be generated.
  • FIG. 5 is a flowchart showing an example of processing of the control system 10.
  • the receiving means 110 receives the sensing data from the sensor 4 and stores it in the sensing data 308 corresponding to the sensor ID 302 in the sensor management table 300 (step S100).
  • the flight determination unit 112 refers to the sensor management table 300 and determines whether there is sensing data 308 that satisfies the condition 310 (step S102). If there is sensing data 308 that satisfies the condition 310 (step S102: YES), the flight determination unit 112 proceeds to step S104, and if not (step S102: NO), the process ends.
  • the flight control means 114 identifies the sensor position 304 associated with the sensing data 308 that satisfies the condition 310 from the sensor management table 300 (step S104).
  • the flight control means 114 specifies the type 312 of the unmanned aerial vehicle 6 associated with the sensing data 308 that satisfies the condition 310 from the sensor management table 300 (step S106).
  • the flight control means 114 generates flight control information 400 including the identified sensor position 304, and registers the generated flight control information 400 in the unmanned aircraft 6 belonging to the identified unmanned aircraft type 312 (step S108). ).
  • the unmanned aerial vehicle 6 may autonomously sail to the sensor position 406 included in the set flight control information 400 and execute an action 408 associated with the sensor position 406.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

[Problem] To cause an unmanned aircraft to fly to the location of a sensor that satisfies a predetermined condition. [Solution] This unmanned aircraft flight control system comprises: a reception means for receiving sensing data from sensors; a determination means for determining whether or not sensing data satisfies a predetermined condition; and a flight control means for causing an unmanned aircraft to fly to the location of a sensor corresponding to sensing data that is determined to satisfy the predetermined condition.

Description

無人航空機飛行制御システム、方法、及びプログラムUnmanned aerial vehicle flight control system, method and program
 本発明は、無人航空機の飛行を制御するシステム、方法、及びプログラムに関する。 The present invention relates to a system, method, and program for controlling the flight of an unmanned aerial vehicle.
 近年、無人航空機(ドローン)の利用が検討されている。例えば、カメラやセンサ等を搭載した無人航空機を被災地に飛行させて、被災地の状態を確認したり、物資を運搬したりすることが検討されている。 In recent years, the use of unmanned aerial vehicles (drones) is being considered. For example, it is considered to fly an unmanned aerial vehicle equipped with a camera, a sensor or the like to a disaster area to check the state of the disaster area or to transport goods.
 特許文献1には、地上管制装置と、地上管制装置と通信可能な管制用無人航空機と、管制用無人航空機と通信可能な偵察用無人航空機とを有する管制システムが開示されている。 Patent Document 1 discloses a control system having a ground control device, a control unmanned aircraft that can communicate with the ground control device, and a reconnaissance unmanned aircraft that can communicate with the control unmanned aircraft.
特開2001-283400号公報JP 2001-283400 A
 従来、例えば遠隔地のセンサデータに異常値が発生し、無人航空機をその遠隔地に飛行させる場合、操縦者が無人航空機の飛行操作を行う必要がある。これは操縦者の負担が大きい。 Conventionally, for example, when an abnormal value is generated in sensor data at a remote location and the unmanned aircraft is caused to fly to the remote location, it is necessary for the operator to perform the flight operation of the unmanned aircraft. This is a heavy burden on the pilot.
 そこで本発明の目的は、所定の条件に適合する遠隔地に、無人航空機を自動的に飛行させることを可能とする無人航空機飛行制御システム、方法、及びプログラムを提供することにある。 Therefore, an object of the present invention is to provide an unmanned aerial vehicle flight control system, method, and program capable of automatically flying an unmanned aerial vehicle in a remote place that meets a predetermined condition.
 本発明の一実施形態に係る無人航空機飛行制御システムは、センサからセンシングデータを受信する受信手段と、センシングデータが所定の条件を満たしているか否かを判定する判定手段と、当該判定手段が条件を満たしていると判定したセンシングデータに対応するセンサの位置へ無人航空機を飛行させる飛行制御手段と、を備えることを特徴とする。 An unmanned aerial vehicle flight control system according to an embodiment of the present invention includes a reception unit that receives sensing data from a sensor, a determination unit that determines whether the sensing data satisfies a predetermined condition, and the determination unit includes a condition Flight control means for flying the unmanned aerial vehicle to the position of the sensor corresponding to the sensing data determined to satisfy the above.
 一実施形態に係る無人航空機飛行制御システムは、センサの位置を登録する登録手段を有してよい。上述の飛行制御手段は、判定手段が条件を満たしていると判定したセンシングデータに対応するセンサの登録されている位置へ無人航空機を飛行させてよい。 The unmanned aerial vehicle flight control system according to an embodiment may include a registration unit that registers the position of the sensor. The above-described flight control means may cause the unmanned aircraft to fly to a position where a sensor corresponding to the sensing data determined by the determination means to satisfy the condition is registered.
 一実施形態に係る無人航空機飛行制御システムは、センサの位置を検出する位置検出手段を有してよい。上述の飛行制御手段は、判定手段が条件を満たしていると判定したセンシングデータに対応するセンサの検出された位置へ無人航空機を飛行させてよい。 The unmanned aerial vehicle flight control system according to an embodiment may include position detection means for detecting the position of the sensor. The above-described flight control means may cause the unmanned aircraft to fly to the detected position of the sensor corresponding to the sensing data determined by the determining means to satisfy the condition.
 上述の飛行制御手段は、判定手段が条件を満たしていると判定した複数のセンシングデータにそれぞれ対応する複数のセンサの位置を経由するように、無人飛行機を飛行させてよい。 The above-described flight control means may cause the unmanned airplane to fly so as to pass through the positions of a plurality of sensors respectively corresponding to the plurality of sensing data determined by the determining means to satisfy the condition.
 一実施形態に係る無人航空機飛行制御システムは、センシングデータの種類と無人航空機の種類とを対応付けるセンサ情報を有してよい。上述の飛行制御手段は、センサ情報において所定の条件を満たしているセンシングデータの種類と対応付けられている種類の無人航空機をセンサの位置へ飛行させてよい。 The unmanned aerial vehicle flight control system according to an embodiment may include sensor information that associates the type of sensing data with the type of unmanned aircraft. The above-described flight control means may cause the type of unmanned aircraft associated with the type of sensing data satisfying a predetermined condition in the sensor information to fly to the position of the sensor.
 上述の飛行制御手段は、センサの位置へ飛行させる無人航空機に、センサの位置へ到着した後の動作を設定してよい。 The above-described flight control means may set an operation after arrival at the sensor position to an unmanned aircraft that flies to the sensor position.
 本発明によれば、所定の条件に適合する遠隔地に、無人航空機を自動的に飛行させることを可能とする無人航空機飛行制御システム、方法、及びプログラムを提供することができる。 According to the present invention, it is possible to provide an unmanned aerial vehicle flight control system, method, and program capable of automatically flying an unmanned aerial vehicle in a remote place that meets a predetermined condition.
無人航空機飛行制御システムの動作概要を説明する図。The figure explaining the operation | movement outline | summary of an unmanned aircraft flight control system. 制御システムの構成例を示す図。The figure which shows the structural example of a control system. センサ管理テーブルの構成例を示す図。The figure which shows the structural example of a sensor management table. 飛行制御情報の構成例を示す図。The figure which shows the structural example of flight control information. 制御システムの処理の一例を示すフローチャート。The flowchart which shows an example of a process of a control system.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、下記の記載は本発明の一例であって、本発明の技術的範囲はこれに限られるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description is an example of the present invention, and the technical scope of the present invention is not limited to this.
 図1は、無人航空機飛行制御システム1の動作概要を説明する図である。 FIG. 1 is a diagram for explaining the operation outline of the unmanned aircraft flight control system 1.
 無人航空機飛行制御システム1は、制御システム10と、少なくとも1つのセンサ4と、少なくとも1つの無人航空機6とを有する。 The unmanned aerial vehicle flight control system 1 includes a control system 10, at least one sensor 4, and at least one unmanned aircraft 6.
 制御システム10は、所定の通信ネットワーク8を通じて、センサ4及び無人航空機6と、データを送受信できる。通信ネットワーク8は、例えば、インターネット網、LAN(Local Area Network)、VPN(Virtual Private Network)である。 The control system 10 can transmit and receive data to and from the sensor 4 and the unmanned aircraft 6 through a predetermined communication network 8. The communication network 8 is, for example, an Internet network, a LAN (Local Area Network), or a VPN (Virtual Private Network).
 センサ4は、音、光、温度、湿度、圧力、風速、電流、電圧など、種々の物理量をセンシング(計測)し、そのセンシングデータ(計測データ)を、通信ネットワーク8を介して制御システム10へ送信する。 The sensor 4 senses (measures) various physical quantities such as sound, light, temperature, humidity, pressure, wind speed, current, and voltage, and sends the sensing data (measurement data) to the control system 10 via the communication network 8. Send.
 制御システム10は、センサ4から受信したセンシングデータが所定の条件を満たしているか否かを判定し、当該判定結果が肯定的な場合、無人航空機6をそのセンサ4の位置へ飛行させる。制御システム10は、その条件を満たしているセンシングデータを送信したセンサ4の種類に応じて、飛行させる無人航空機6の種別を決定してよい。 The control system 10 determines whether or not the sensing data received from the sensor 4 satisfies a predetermined condition. If the determination result is affirmative, the unmanned aircraft 6 is caused to fly to the position of the sensor 4. The control system 10 may determine the type of the unmanned aircraft 6 to fly according to the type of the sensor 4 that transmitted the sensing data that satisfies the condition.
 例えば、そのセンサ4が土地の乾燥状態(湿度)を計測するものであった場合、制御システム10は、水散布用の無人航空機6をそのセンサ4の位置へ飛行させ、水を散布させてよい。 For example, when the sensor 4 measures the dry state (humidity) of the land, the control system 10 may fly the unmanned aircraft 6 for water spraying to the position of the sensor 4 and spray water. .
 例えば、そのセンサ4が不審な音や光を感知するものであった場合、制御システム10は、映像撮影用の無人航空機6をそのセンサ4の位置へ飛行させ、映像を撮影させてよい。 For example, when the sensor 4 senses suspicious sound or light, the control system 10 may cause the unmanned aircraft 6 for video shooting to fly to the position of the sensor 4 and take a video.
 これにより、操作者が無人航空機6をセンサ4の位置まで操作せずとも、必要なタイミングで自動的に無人航空機6をセンサ4の位置まで飛行させ、そのセンサ4の位置付近で必要な作業をさせることができる。以下、詳細に説明する。 Thereby, even if the operator does not operate the unmanned aircraft 6 to the position of the sensor 4, the unmanned aircraft 6 is automatically caused to fly to the position of the sensor 4 at a necessary timing, and necessary work is performed near the position of the sensor 4. Can be made. Details will be described below.
 図2は、制御システム10の構成例を示す。 FIG. 2 shows a configuration example of the control system 10.
 制御システム10は、ハードウェアとして、CPU40、メモリ42、ストレージ46、及び、ネットワークI/F44と、これらのデバイスを相互接続する内部バス48とを備える。 The control system 10 includes, as hardware, a CPU 40, a memory 42, a storage 46, a network I / F 44, and an internal bus 48 that interconnects these devices.
 ネットワークI/F44は、通信ネットワーク8を介して、センサ4及び無人航空機6と送受信するデータを制御する。ネットワークI/F44は、有線I/F及び無線I/Fの何れであってもよい。ネットワークI/F44は、例えば、NIC(Network Interface Card)であってよい。 The network I / F 44 controls data transmitted to and received from the sensor 4 and the unmanned aircraft 6 via the communication network 8. The network I / F 44 may be a wired I / F or a wireless I / F. The network I / F 44 may be, for example, a NIC (Network Interface Card).
 CPU40は、メモリ42に格納されているプログラムを実行することにより、制御システム10の有する様々な機能を実現する。 The CPU 40 implements various functions of the control system 10 by executing a program stored in the memory 42.
 メモリ42には、制御システム10の機能を実現するためのプログラム及びデータが格納される。メモリ42は、例えば、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)などである。 The memory 42 stores programs and data for realizing the functions of the control system 10. The memory 42 is, for example, a DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory), or the like.
 メモリ42には、プログラムとして、受信手段110、飛行判定手段112、飛行制御手段114、登録手段116、位置検出手段118が格納されてよい。これらのプログラムは、ストレージ46に保持され、適宜メモリ42に読み出されてもよい。各プログラムの説明については後述する。 The memory 42 may store a reception unit 110, a flight determination unit 112, a flight control unit 114, a registration unit 116, and a position detection unit 118 as programs. These programs may be held in the storage 46 and read to the memory 42 as appropriate. Each program will be described later.
 ストレージ46には、制御システム10で使用されるプログラム及び/又はデータが格納される。ストレージ46は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)などである。ストレージ46には、データとして、センサ管理テーブル300が格納されてよい。 The storage 46 stores programs and / or data used in the control system 10. The storage 46 is, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like. The storage 46 may store a sensor management table 300 as data.
 図3は、センサ管理テーブル300の構成例を示す。 FIG. 3 shows a configuration example of the sensor management table 300.
 センサ管理テーブル300は、各センサ4の情報を管理する。センサ管理テーブル300は、データ項目として、センサID302、センサ位置304、センサ種類306、センシングデータ308、条件310、及び、無人航空機の種別312を有してよい。 The sensor management table 300 manages information on each sensor 4. The sensor management table 300 may include sensor ID 302, sensor position 304, sensor type 306, sensing data 308, condition 310, and unmanned aircraft type 312 as data items.
 センサID302には、センサ4を一意に識別するための情報が格納される。 In the sensor ID 302, information for uniquely identifying the sensor 4 is stored.
 センサ位置304には、センサID302のセンサ4の位置を示す情報が格納される。センサ位置304には、経度及び緯度(すなわち絶対座標)が格納されてもよいし、所定位置(例えば無人航空機6の位置)からの方角及び距離(すなわち相対位置)が格納されてもよい。 In the sensor position 304, information indicating the position of the sensor 4 with the sensor ID 302 is stored. The sensor position 304 may store longitude and latitude (that is, absolute coordinates), and may store a direction and distance (that is, relative position) from a predetermined position (for example, the position of the unmanned aircraft 6).
 センサ種類306には、センサID302のセンサ4の種類が格納される。センサ種類306には、例えば、温度センサ、湿度センサ、気温センサ、天候センサ、風力センサ、電圧センサなどが格納されてもよい。 In the sensor type 306, the type of the sensor 4 with the sensor ID 302 is stored. The sensor type 306 may store, for example, a temperature sensor, a humidity sensor, an air temperature sensor, a weather sensor, a wind sensor, a voltage sensor, and the like.
 センシングデータ308には、センサID302のセンサ4が計測したデータ(つまりセンシングデータ)が格納される。センシングデータ308には、例えば、温度、湿度、気温、天候などが格納されてよい。すなわち、センシングデータ308に格納されるデータは、センサ種類306に応じて異なってよい。また、センシングデータ308には、そのセンシングデータが計測された日時が合わせて格納されてもよい。 The sensing data 308 stores data measured by the sensor 4 with the sensor ID 302 (that is, sensing data). The sensing data 308 may store, for example, temperature, humidity, temperature, weather, and the like. That is, the data stored in the sensing data 308 may be different depending on the sensor type 306. The sensing data 308 may also store the date and time when the sensing data was measured.
 条件310には、無人航空機6が発進するためのセンシングデータ308の条件が格納される。例えば、センシングデータ308が対応する条件310を満たしている場合、無人航空機6をセンサ位置304へ向けて発進させてよい。なお、条件310には、複数の条件が格納されてもよい。例えば条件310には「A1以上且つA2未満」のような条件が格納されてもよい。 The condition 310 stores the condition of the sensing data 308 for the unmanned aircraft 6 to start. For example, when the sensing data 308 satisfies the corresponding condition 310, the unmanned aircraft 6 may be started toward the sensor position 304. The condition 310 may store a plurality of conditions. For example, the condition 310 may store a condition such as “A1 or more and less than A2”.
 無人航空機の種別312には、無人航空機6の機能の種別が格納される。無人航空機の種別312には、例えば、水散布用の無人航空機、写真撮影用の無人航空機、農薬散布用の無人航空機などが格納されてよい。なお、1つの無人航空機6が複数の機能を有してもよい。 The function type of the unmanned aircraft 6 is stored in the unmanned aircraft type 312. The unmanned aerial vehicle type 312 may store, for example, an unmanned aerial vehicle for spraying water, an unmanned aircraft for photographing, an unmanned aircraft for spraying agricultural chemicals, and the like. One unmanned aircraft 6 may have a plurality of functions.
 図2に戻り、各プログラムについて説明する。 Referring back to FIG. 2, each program will be described.
 受信手段110は、通信ネットワーク8を介して、センサ4からセンシングデータを受信する。受信手段110は、その受信したセンシングデータを、センサ管理テーブル300の、当該センシングデータの送信元のセンサID302に対応するセンシングデータ308に格納してよい。 The receiving means 110 receives sensing data from the sensor 4 via the communication network 8. The receiving unit 110 may store the received sensing data in the sensing data 308 corresponding to the sensor ID 302 of the sensor data transmission source in the sensor management table 300.
 登録手段116は、センサ4の位置を、センサ管理テーブル300のセンサ位置304に登録する。登録手段116は、さらに、センサ4の種類、センサ4が計測したセンシングデータに対する無人航空機6の発進の条件、その条件が満たされたときに発進させる無人航空機の種別を、それぞれ、センサ管理テーブル300のセンサ種類306、条件310、無人航空機の種別312に登録してよい。なお、管理者がこれらの情報を、登録手段116を介して手動でセンサ管理テーブル300に登録してもよい。 The registration unit 116 registers the position of the sensor 4 in the sensor position 304 of the sensor management table 300. The registration unit 116 further includes the sensor management table 300 for the type of the sensor 4, the conditions for starting the unmanned aircraft 6 with respect to the sensing data measured by the sensor 4, and the type of the unmanned aircraft to be started when the conditions are satisfied. The sensor type 306, the condition 310, and the unmanned aircraft type 312 may be registered. Note that the administrator may manually register such information in the sensor management table 300 via the registration unit 116.
 位置検出手段118は、センサ4の位置を検出する。位置検出手段118は、センサ4から受信したGPS情報に基づいて、当該センサ4の位置を検出してもよい。センサ4の位置を検出するための情報は、GPS情報に限られない。例えば、位置検出手段118は、センサ4が無線基地局と送受信する信号に基づいて、当該センサ4の位置を検出してもよい。位置検出手段118は、検出したセンサ4の位置を、センサ管理テーブル300のセンサ位置304に登録してよい。位置検出手段118は、センサ4が移動する場合、定期的に当該センサ4の位置を検出し、センサ管理テーブル300のセンサ位置304を更新してよい。 The position detecting means 118 detects the position of the sensor 4. The position detection unit 118 may detect the position of the sensor 4 based on the GPS information received from the sensor 4. Information for detecting the position of the sensor 4 is not limited to GPS information. For example, the position detection unit 118 may detect the position of the sensor 4 based on a signal transmitted and received by the sensor 4 with the radio base station. The position detection unit 118 may register the detected position of the sensor 4 in the sensor position 304 of the sensor management table 300. When the sensor 4 moves, the position detection unit 118 may periodically detect the position of the sensor 4 and update the sensor position 304 of the sensor management table 300.
 飛行判定手段112は、センシングデータが所定の条件を満たしているか否かを判定する。飛行判定手段112は、センサ管理テーブル300を参照し、センシングデータ308が、当該センシングデータに対応する条件310を満たしているか否かを判定する。 Flight determination means 112 determines whether or not the sensing data satisfies a predetermined condition. The flight determination unit 112 refers to the sensor management table 300 and determines whether the sensing data 308 satisfies a condition 310 corresponding to the sensing data.
 例えば、飛行判定手段112は、センサ管理テーブル300のセンサID302「1」のレコードを参照し、センサ種類306「温度」に係るセンシングデータ308「80℃」は、条件310「50℃以上」(つまり所定の閾値以上という条件)を満たしていると判定してよい。 For example, the flight determination unit 112 refers to the record of the sensor ID 302 “1” in the sensor management table 300, and the sensing data 308 “80 ° C.” related to the sensor type 306 “temperature” is the condition 310 “50 ° C. or higher” (that is, It may be determined that the condition of a predetermined threshold or more is satisfied.
 例えば、飛行判定手段112は、センサ管理テーブル300のセンサID302「2」のレコードを参照し、センサ種類306「温度」に係るセンシングデータ308「30%」は、条件310「50%未満」(つまり所定の閾値未満という条件)を満たしている(つまり所定の閾値未満)と判定してよい。 For example, the flight determination unit 112 refers to the record of the sensor ID 302 “2” in the sensor management table 300, and the sensing data 308 “30%” related to the sensor type 306 “temperature” is the condition 310 “less than 50%” (that is, It may be determined that the condition (below the predetermined threshold) is satisfied (that is, less than the predetermined threshold).
 例えば、飛行判定手段112は、センサ管理テーブル300のセンサID302「4」のレコードを参照し、センサ種類306「天候」に係るセンシングデータ308「雨」は、条件310「晴れ」を満たしていないと判定してよい。 For example, the flight determination unit 112 refers to the record of the sensor ID 302 “4” in the sensor management table 300, and the sensing data 308 “rain” relating to the sensor type 306 “weather” does not satisfy the condition 310 “clear”. You may judge.
 飛行制御手段114は、飛行判定手段112においてセンシングデータが条件を満たしていると判定された場合、そのセンシングデータを送信したセンサ4の位置へ、無人航空機6を飛行させる。例えば、飛行制御手段114は、センサ管理テーブル300のセンサID302「1」に対応するセンシングデータ308は、飛行判定手段112において条件310を満たしていると判定されるので、無人航空機の種別312「A」の無人航空機6を、センサ位置304「東経X1度、北緯Y1度」へ飛行させてよい。 The flight control unit 114 causes the unmanned aircraft 6 to fly to the position of the sensor 4 that has transmitted the sensing data when the flight determination unit 112 determines that the sensing data satisfies the condition. For example, the flight control unit 114 determines that the sensing data 308 corresponding to the sensor ID 302 “1” in the sensor management table 300 satisfies the condition 310 in the flight determination unit 112, so the unmanned aircraft type 312 “A” May be caused to fly to the sensor position 304 “X1 degrees east longitude, Y1 degrees north latitude”.
 飛行判定手段112が複数のセンシングデータ308がそれぞれ条件310を満たしていると判定した場合、それらセンシングデータ308にそれぞれ対応する複数のセンサ位置304を経由するように、無人航空機6を飛行させてよい。また、飛行制御手段114は、センサ位置304へ飛行させる無人航空機6に対して、そのセンサ位置304へ到着した後のアクションを設定してもよい。これらは、飛行制御手段114が飛行制御情報400を無人航空機6に設定し、無人航空機6がその設定された飛行制御情報400に基づいて自律航行することにより実現されてもよい。以下、図4を参照しながらさらに説明する。 When the flight determination unit 112 determines that each of the plurality of sensing data 308 satisfies the condition 310, the unmanned aircraft 6 may be caused to fly so as to pass through the plurality of sensor positions 304 respectively corresponding to the sensing data 308. . Further, the flight control means 114 may set an action after arriving at the sensor position 304 for the unmanned aerial vehicle 6 flying to the sensor position 304. These may be realized by the flight control unit 114 setting the flight control information 400 to the unmanned aircraft 6 and the unmanned aircraft 6 autonomously navigating based on the set flight control information 400. Hereinafter, further description will be given with reference to FIG.
 図4は、飛行制御情報400の構成例を示す。 FIG. 4 shows a configuration example of the flight control information 400.
 飛行制御情報400は、順番402、センサID404、センサ位置406、及び、アクション408を対応付ける情報であってよい。 The flight control information 400 may be information that associates the order 402, the sensor ID 404, the sensor position 406, and the action 408.
 順番402は、無人航空機6が経由するセンサ位置406の順番を示す。 The order 402 indicates the order of the sensor position 406 through which the unmanned aerial vehicle 6 passes.
 センサID404及びセンサ位置406は、図3のセンサID302及びセンサ位置304と同じである。 Sensor ID 404 and sensor position 406 are the same as sensor ID 302 and sensor position 304 in FIG.
 アクション408は、無人航空機6がセンサ位置406に到着したときに行うアクションを示す。 Action 408 indicates an action to be performed when the unmanned aerial vehicle 6 arrives at the sensor position 406.
 例えば、飛行判定手段112が、図3のセンサ管理テーブル300から、センサID302「1」、「2」、「10」、「13」のセンシングデータ308がそれぞれ条件310を満たしていると判定したとする。その場合、飛行制御手段114は、例えば図4のように、無人航空機6を、センサID404「1」、「10」、「2」、「13」の順番に飛行させる飛行制御情報400を生成してよい。また、飛行制御手段114は、例えば図4のように、無人航空機6に、センサID404「1」のセンサ位置406で「農薬を散布」、センサID404「10」のセンサ位置406で「写真を撮影」、センサID402「2」のセンサ位置406で「水を散布」させる飛行制御情報400を生成してもよい。 For example, the flight determination unit 112 determines that the sensing data 308 of the sensor IDs 302 “1”, “2”, “10”, and “13” satisfy the condition 310 from the sensor management table 300 of FIG. To do. In this case, the flight control means 114 generates flight control information 400 that causes the unmanned aircraft 6 to fly in the order of sensor IDs 404 “1”, “10”, “2”, and “13”, for example, as shown in FIG. It's okay. Further, as shown in FIG. 4, for example, the flight control unit 114 “spreads agricultural chemicals” on the unmanned aircraft 6 at the sensor position 406 of the sensor ID 404 “1”, and “takes a picture at the sensor position 406 of the sensor ID 404“ 10 ”. The flight control information 400 for “spraying water” at the sensor position 406 of the sensor ID 402 “2” may be generated.
 図5は、制御システム10の処理の一例を示すフローチャートである。 FIG. 5 is a flowchart showing an example of processing of the control system 10.
 受信手段110は、センサ4からセンシングデータを受信し、センサ管理テーブル300の当該センサID302に対応するセンシングデータ308に格納する(ステップS100)。 The receiving means 110 receives the sensing data from the sensor 4 and stores it in the sensing data 308 corresponding to the sensor ID 302 in the sensor management table 300 (step S100).
 飛行判定手段112は、センサ管理テーブル300を参照し、条件310を満たしているセンシングデータ308が存在するか否かを判定する(ステップS102)。飛行判定手段112は、条件310を満たしているセンシングデータ308が存在する場合(ステップS102:YES)、ステップS104へ進み、そうでない場合(ステップS102:NO)、本処理を終了する。 The flight determination unit 112 refers to the sensor management table 300 and determines whether there is sensing data 308 that satisfies the condition 310 (step S102). If there is sensing data 308 that satisfies the condition 310 (step S102: YES), the flight determination unit 112 proceeds to step S104, and if not (step S102: NO), the process ends.
 飛行制御手段114は、センサ管理テーブル300から、条件310を満たしているセンシングデータ308に対応付けられているセンサ位置304を特定する(ステップS104)。 The flight control means 114 identifies the sensor position 304 associated with the sensing data 308 that satisfies the condition 310 from the sensor management table 300 (step S104).
 また、飛行制御手段114は、センサ管理テーブル300から、条件310を満たしているセンシングデータ308に対応付けられている無人航空機6の種別312を特定する(ステップS106)。 Further, the flight control means 114 specifies the type 312 of the unmanned aerial vehicle 6 associated with the sensing data 308 that satisfies the condition 310 from the sensor management table 300 (step S106).
 飛行制御手段114は、その特定したセンサ位置304を含む飛行制御情報400を生成し、その特定した無人航空機の種別312に属する無人航空機6に、その生成した飛行制御情報400を登録する(ステップS108)。当該無人航空機6は、その設定された飛行制御情報400に含まれるセンサ位置406まで自律航行し、そのセンサ位置406に対応付けられているアクション408を実行してよい。 The flight control means 114 generates flight control information 400 including the identified sensor position 304, and registers the generated flight control information 400 in the unmanned aircraft 6 belonging to the identified unmanned aircraft type 312 (step S108). ). The unmanned aerial vehicle 6 may autonomously sail to the sensor position 406 included in the set flight control information 400 and execute an action 408 associated with the sensor position 406.
 上述した実施形態は、本発明の説明のための例示であり、本発明の範囲を実施形態にのみ限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。 The embodiment described above is an example for explaining the present invention, and is not intended to limit the scope of the present invention only to the embodiment. Those skilled in the art can implement the present invention in various other modes without departing from the gist of the present invention.
 1…無人航空機飛行制御システム 4…センサ 6…無人航空機 10…制御システム 110…受信手段 112…飛行判定手段 114…飛行制御手段 116…登録手段 118…位置検出手段 300…センサ管理テーブル 400…飛行制御情報

 
DESCRIPTION OF SYMBOLS 1 ... Unmanned aircraft flight control system 4 ... Sensor 6 ... Unmanned aircraft 10 ... Control system 110 ... Receiving means 112 ... Flight determination means 114 ... Flight control means 116 ... Registration means 118 ... Position detection means 300 ... Sensor management table 400 ... Flight control information

Claims (8)

  1.  センサのセンシングデータを受信する受信手段と、
     前記センシングデータが所定の条件を満たしているか否かを判定する判定手段と、
     前記条件を満たしていると判定されたセンシングデータに対応するセンサの位置へ、無人航空機を飛行させる飛行制御手段と、
    を備えることを特徴とする無人航空機飛行制御システム。
    Receiving means for receiving sensing data of the sensor;
    Determination means for determining whether or not the sensing data satisfies a predetermined condition;
    Flight control means for flying an unmanned aerial vehicle to the position of the sensor corresponding to the sensing data determined to satisfy the condition;
    An unmanned aerial vehicle flight control system comprising:
  2.  前記センサの位置を登録する登録手段を有し、
     前記飛行制御手段は、前記条件を満たしていると判定されたセンシングデータに対応するセンサの位置へ、無人航空機を飛行させる
    ことを特徴とする請求項1に記載の無人航空機飛行制御システム。
    Registration means for registering the position of the sensor;
    The unmanned aircraft flight control system according to claim 1, wherein the flight control unit causes the unmanned aircraft to fly to a position of a sensor corresponding to sensing data determined to satisfy the condition.
  3.  前記センサの位置を検出する位置検出手段を有し、
     前記飛行制御手段は、前記条件を満たしていると判定されたセンシングデータに対応するセンサの位置へ、無人航空機を飛行させる
    ことを特徴とする請求項1に記載の無人航空機飛行制御システム。
    Having position detecting means for detecting the position of the sensor;
    The unmanned aircraft flight control system according to claim 1, wherein the flight control unit causes the unmanned aircraft to fly to a position of a sensor corresponding to sensing data determined to satisfy the condition.
  4.  前記飛行制御手段は、前記条件を満たしていると判定された複数のセンシングデータにそれぞれ対応する複数のセンサの位置を経由するように、無人飛行機を飛行させる
    ことを特徴とする請求項1に記載の無人航空機飛行制御システム。
    The said flight control means makes an unmanned airplane fly so as to pass through the positions of a plurality of sensors respectively corresponding to a plurality of sensing data determined to satisfy the condition. Unmanned aircraft flight control system.
  5.  前記飛行制御手段は、前記条件を満たしていると判定されたセンシングデータに対応するセンサの位置へ、当該センサの種類に関連付けられた無人航空機を飛行させる
    ことを特徴とする請求項1に記載の無人航空機飛行制御システム。
    2. The flight control unit according to claim 1, wherein the unmanned aircraft associated with the type of the sensor is caused to fly to the position of the sensor corresponding to the sensing data determined to satisfy the condition. Unmanned aircraft flight control system.
  6.  前記飛行制御手段は、前記センサの位置へ飛行させる無人航空機に、前記センサの位置へ到着した後の動作を設定する
    ことを特徴とする請求項1に記載の無人航空機飛行制御システム。
    The unmanned aircraft flight control system according to claim 1, wherein the flight control unit sets an operation after arriving at the position of the sensor to the unmanned aircraft to fly to the position of the sensor.
  7.  センサのセンシングデータを受信する受信ステップと、
     前記センシングデータが所定の条件を満たしているか否かを判定する判定ステップと、
     前記条件を満たしていると判定されたセンシングデータに対応するセンサの位置へ、無人航空機を飛行させる飛行制御ステップと、
    を備えることを特徴とする無人航空機飛行制御方法。
    A receiving step for receiving sensing data of the sensor;
    A determination step of determining whether or not the sensing data satisfies a predetermined condition;
    A flight control step of flying the unmanned aerial vehicle to the position of the sensor corresponding to the sensing data determined to satisfy the condition;
    An unmanned aircraft flight control method comprising:
  8.  無人航空機制御システムに、
     センサのセンシングデータを受信する受信ステップと、
     前記センシングデータが所定の条件を満たしているか否かを判定する判定ステップと、
     前記条件を満たしていると判定されたセンシングデータに対応するセンサの位置へ、無人航空機を飛行させる飛行制御ステップと、
    を実行させるための無人航空機飛行制御プログラム。

     
    In the unmanned aircraft control system,
    A receiving step for receiving sensing data of the sensor;
    A determination step of determining whether or not the sensing data satisfies a predetermined condition;
    A flight control step of flying the unmanned aerial vehicle to the position of the sensor corresponding to the sensing data determined to satisfy the condition;
    An unmanned aircraft flight control program for running.

PCT/JP2016/060337 2016-03-30 2016-03-30 Unmanned aircraft flight control system, method, and program WO2017168620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060337 WO2017168620A1 (en) 2016-03-30 2016-03-30 Unmanned aircraft flight control system, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060337 WO2017168620A1 (en) 2016-03-30 2016-03-30 Unmanned aircraft flight control system, method, and program

Publications (1)

Publication Number Publication Date
WO2017168620A1 true WO2017168620A1 (en) 2017-10-05

Family

ID=59962743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060337 WO2017168620A1 (en) 2016-03-30 2016-03-30 Unmanned aircraft flight control system, method, and program

Country Status (1)

Country Link
WO (1) WO2017168620A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343561A (en) * 2018-08-22 2019-02-15 北京臻迪科技股份有限公司 Operation method for displaying and operating unmanned device on electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283152A (en) * 1998-03-27 1999-10-15 Sharp Corp Remote control system
JP2006231421A (en) * 2005-02-22 2006-09-07 Honda Motor Co Ltd Robot controller, robot control method, robot control program, and mobile robot
JP2008165289A (en) * 2006-12-27 2008-07-17 Alacom Co Ltd Robot system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283152A (en) * 1998-03-27 1999-10-15 Sharp Corp Remote control system
JP2006231421A (en) * 2005-02-22 2006-09-07 Honda Motor Co Ltd Robot controller, robot control method, robot control program, and mobile robot
JP2008165289A (en) * 2006-12-27 2008-07-17 Alacom Co Ltd Robot system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOICHI NAKAJIMA: "Development of Unmanned Aerial Vehicle Systems for Monitoring and Prevention of Bird and Animal Damage and its evaluation", IPSJ SIG NOTES CONSUMER DEVICES & SYSTEMS (CDS) 2015-CDS-014, 24 September 2015 (2015-09-24), pages 1 - 8 *
MASARU YOSHIDA: "Sekaihatsu, Soratobu Bohan Robot o Secom ga Kaihatsu Jiritsu Hiko de Fushinsha o Joku kara Kanshi", NIKKEI MONOZUKURI, 1 February 2013 (2013-02-01), pages 22 - 23 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343561A (en) * 2018-08-22 2019-02-15 北京臻迪科技股份有限公司 Operation method for displaying and operating unmanned device on electronic device
CN109343561B (en) * 2018-08-22 2022-05-13 臻迪科技股份有限公司 Operation method for displaying and operating unmanned device on electronic device

Similar Documents

Publication Publication Date Title
US12007792B2 (en) Backup navigation system for unmanned aerial vehicles
JP7020421B2 (en) Flight controls, unmanned aerial vehicles, flight control methods, and programs
US10101196B2 (en) Device for UAV detection and identification
US10582321B2 (en) Identification of unmanned aerial vehicles based on audio signatures
US20200241571A1 (en) Unmanned aerial vehicle control system, unmanned aerial vehicle control method, and program
US20190147747A1 (en) Remote Control of an Unmanned Aerial Vehicle
JP6495557B2 (en) Drone control system, method and program
US10673520B2 (en) Cellular command, control and application platform for unmanned aerial vehicles
WO2017022058A1 (en) Location management device, location management method, and computer readable recording medium
WO2018171976A1 (en) Monitoring system and method for monitoring an unmanned aerial vehicle
KR102296225B1 (en) Small flying vehicle without camera and moving method thereof
WO2019134713A1 (en) Unmanned aerial vehicle launch methods and systems
JP2017130027A (en) Moving body system and server
JP2017222187A5 (en) Latitude error sharing system
WO2021199449A1 (en) Position calculation method and information processing system
JP2019028712A (en) Guidance method, guidance device, and guidance system of flying body
CN110997488A (en) System and method for dynamically controlling parameters for processing sensor output data
WO2017168620A1 (en) Unmanned aircraft flight control system, method, and program
WO2021070274A1 (en) Processing system, unmanned aerial vehicle, and flight route determination method
JP7157823B2 (en) Information processing equipment
KR102258731B1 (en) System and method for controlling flight sequence of unmanned aerial vehicle
KR101911353B1 (en) Autonomic flight method when gnss signal loss and unmanned aerial vehicle for the same
US20230400850A1 (en) Unmanned aerial vehicle controller, and storage medium
US20200110424A1 (en) Geofencing of unmanned aerial vehicles
JP6600593B2 (en) Mobile system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896840

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.01.2019)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16896840

Country of ref document: EP

Kind code of ref document: A1