[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017167139A1 - 一种上行控制信号传输方法及装置、用户终端、存储介质 - Google Patents

一种上行控制信号传输方法及装置、用户终端、存储介质 Download PDF

Info

Publication number
WO2017167139A1
WO2017167139A1 PCT/CN2017/078212 CN2017078212W WO2017167139A1 WO 2017167139 A1 WO2017167139 A1 WO 2017167139A1 CN 2017078212 W CN2017078212 W CN 2017078212W WO 2017167139 A1 WO2017167139 A1 WO 2017167139A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
symbol
predefined
transmitted
nack
Prior art date
Application number
PCT/CN2017/078212
Other languages
English (en)
French (fr)
Inventor
韩祥辉
夏树强
张雯
石靖
任敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59963483&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017167139(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/089,060 priority Critical patent/US10736130B2/en
Publication of WO2017167139A1 publication Critical patent/WO2017167139A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to an uplink control signal transmission technology, and in particular, to an uplink control signal transmission method and apparatus, a user terminal, and a storage medium.
  • TTI Transmission Time Interval
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • FDD Frequency Division Duplex
  • the time dimension is divided into radio frames of length 10 ms, wherein each radio frame includes 10 subframes, and the length of the TTI is equal to the length of the subframe. 1ms.
  • Each subframe includes two slots, each of which has a length of 0.5 ms.
  • Each downlink time slot contains 7 Orthogonal Frequency Division Multiplexing (OFDM) symbols (6 OFDM symbols under the extended cyclic prefix); each uplink time slot contains 7 single carrier frequency division multiplexing (SC-FDMA (Single Carrier-Frequency Division Multiplexing Access) symbol (6 SC-FDMA symbols under the extended cyclic prefix).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier-Frequency Division Multiplexing Access
  • the air interface delay index of the existing LTE/LTE-A system is about 10 ms, which will no longer meet the demand.
  • An effective solution is to reduce the TTI length, such as the TTI that will now be 1ms in length. By reducing the length to 0.5 ms or even 1-2 OFDM symbols, the minimum scheduling time can be reduced by a factor of two, thereby reducing the single transmission delay by a factor of two.
  • the existing physical uplink control channel PUCCH, Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • ACK acknowledgment command
  • NACK non-acknowledgement
  • SR Scheduling Request
  • an embodiment of the present invention provides an uplink control signal transmission method and apparatus, a user terminal, and a storage medium.
  • a user terminal provided by an embodiment of the present invention includes a processor and a memory; the storage A program or an instruction is stored in the device; the processor performs the following processing by calling the program or the instruction:
  • a storage medium is provided in the embodiment of the present invention.
  • the storage medium stores a computer program.
  • the computer program is called by the processor, the foregoing uplink control signal transmission method is executed.
  • the uplink control information is carried in a scenario in which the TTI length is 2 to 4 symbol lengths; the frequency diversity gain is obtained; so that the non-coherent detection and demodulation complexity of the receiving end is low, and is convenient for the user.
  • the synchronization of the terminal can feed back ACK/NACK and SR transmission when out of synchronization.
  • the technical solution of the embodiment of the invention improves the transmission efficiency of the uplink control information, reduces the data transmission delay, and improves the communication efficiency.
  • FIG. 1 is a schematic flowchart diagram of an uplink control signal transmission method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a user terminal transmitting a 1-bit ACK/NACK by using two predefined sequences of length 4 on a 2-symbol according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a user terminal adopting a predefined sequence SR on a 2 symbol according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a user terminal transmitting a 1-bit ACK/NACK by using two predefined sequences on three symbols according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a user terminal transmitting a 1-bit ACK/NACK by using one predefined sequence on two symbols according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a user terminal transmitting a 1-bit ACK/NACK by using two predefined sequences on four symbols according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a user terminal transmitting a 2-bit ACK/NACK by using four predefined sequences on four symbols according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a user terminal transmitting a special ACK/NACK+SR by using 2 predefined sequences on 2 symbols according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a user terminal transmitting a 2-bit ACK/NACK+SR by using 4 predefined sequences on 2 symbols according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a user terminal transmitting a 1-bit ACK/NACK by using two predefined sequences of length 12 on a 2-symbol according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a user terminal transmitting a 1-bit ACK/NACK on 2 symbols according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of a user terminal transmitting a 1-bit ACK/NACK on 3 symbols according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of a structure of an uplink control signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a structure of a user terminal according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for transmitting an uplink control signal according to an embodiment of the present invention. As shown in FIG. 1 , an uplink control signal transmission method according to an embodiment of the present invention includes the following steps:
  • Step 101 The network side configures a corresponding frequency domain location or a predefined sequence for the user terminal.
  • the network side may configure different frequency domain locations or different predefined sequences for different user terminals.
  • Step 102 The user terminal sends K pre-defined sequences on the M transmission symbols in the transmission time interval to transmit the B-bit uplink control information.
  • M is a positive integer
  • K is an integer
  • B is an integer greater than or equal to 1
  • the K predefined sequences are transmitted on each of the M transmission symbols One
  • the uplink control information in the embodiment of the present invention is mainly an uplink ACK/NACK message, and also includes an SR message.
  • the number of subcarriers included in any one of the frequency domain positions is a multiple of N.
  • the N subcarriers are mapped consecutively or equally spaced to each of the frequency domain locations.
  • the predefined sequence includes, but is not limited to, a predefined sequence is a Zadoff-Chu (ZC) sequence of length N, or a Frank sequence of length N, or a gray of length N A sequence, or a Chu sequence of length N or a machine-selected sequence of length N.
  • ZC Zadoff-Chu
  • the K pre-defined needs to be determined by X predetermined channel resources.
  • X is a positive integer.
  • the channel resource may not be limited to one of the following determinations,
  • Downlink control information DCI dynamic indication ; high-level configuration and DCI joint indication, or implicit indication. Or the downlink control information DCI and the implicit indication joint indication.
  • the predefined sequence transmitted on each symbol is determined by a different predetermined channel resource.
  • the K predefined sequences allocated by the network to the user terminal are obtained by performing different cyclic shifts according to a certain base sequence of the ZC sequence.
  • different inter-cell interference may be used to reduce inter-cell interference.
  • the ZC-based sequence, or different network cells transmit cell-level scrambling when transmitting the uplink control signal.
  • N 4;
  • the user terminal uses the different transmission combinations of K different predefined sequences on M different time domain symbols to represent the uplink control information.
  • the transmission ACK corresponding bit "1" is defined, and the NACK corresponding bit "0" is transmitted.
  • K predefined sequences are transmitted on M symbols, including:
  • the number K of the predefined sequences is an integer of 1 ⁇ K ⁇ M;
  • K 2, for transmitting "1” and transmitting "0", the predefined sequence transmitted on each transmission symbol is different.
  • K 1 when transmitting “1” and transmitting “0”, the frequency domain subcarrier positions mapped by the predefined sequence on the transmission symbol are different.
  • the predefined frequency sequence has the same or different frequency domain positions mapped on different transmission symbols.
  • the number of bits of the ACK or NACK message is 1 or 2.
  • the method when the sending information is a 1-bit ACK or a NACK, the method includes: defining two predefined channel resources, which are respectively represented as a first predetermined channel resource and a second predetermined channel resource.
  • the predetermined sequence transmitted on each symbol is determined by the first predetermined channel resource.
  • the predetermined sequence transmitted on each symbol is determined by the second predetermined channel resource.
  • the method when the sending information is a 2-bit ACK or a NACK, the method includes: defining four predefined channel resources, and transmitting four types of control information combinations (ACK, ACK), (ACK, NACK), (NACK, ACK), (NACK, NACK) one-to-one correspondence with the four predefined channel resources; for one of the four transmission combinations, a pre-definition of all symbols within the transmission time interval
  • the sequences are each uniquely determined by a corresponding one of the predefined channel resources.
  • the transmission information when the transmission information is a 2-bit ACK or a NACK, four predefined channel resources are defined, which are first, second, third, and fourth predetermined channel resources, respectively.
  • the four combinations of control information transmitted include: (ACK, ACK), (ACK, NACK), (NACK, ACK), (NACK, NACK).
  • the predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the first predetermined channel resource; the predetermined sequence transmitted on each symbol of the second frequency domain location is determined by Second predetermined channel resource determination;
  • the predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the second predetermined channel resource; the predetermined sequence transmitted on each symbol of the second frequency domain location is determined by First predetermined channel resource determination;
  • the predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the third predetermined channel resource; the predetermined sequence transmitted on each symbol of the second frequency domain location is determined by Fourth predetermined channel resource determination;
  • the predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the fourth predetermined channel resource; the predetermined sequence transmitted on each symbol of the second frequency domain location is determined by The third predetermined channel resource is determined.
  • the number of transmit antenna ports is 1.
  • the number of transmit antenna ports is a positive integer A
  • the number of predefined channel resources defined is A ⁇ 2 B .
  • the characteristics of the predefined sequence transmitted on each transmitted symbol include at least one of the following:
  • a predetermined channel resource allocated for the transmission control information Channel resources for LTE PUCCH format 1/1a/1b, Is the number of subcarriers within the resource block.
  • the frequency domain positions mapped by the predefined sequence on different transmission symbols are on both sides of the system bandwidth.
  • K predefined sequences are transmitted on M symbols, including:
  • the predefined frequency sequence has the same or different frequency domain positions mapped on different transmission symbols.
  • sending the 1-bit ACK/NACK includes:
  • the first predefined sequence and the second predefined sequence are mapped to two different time domain symbol locations within a transmission time interval.
  • the 1-bit control information is represented by different combinations of different predefined sequences on different time domain symbols. Specific implementations include, but are not limited to, the following combinations:
  • the first symbol When the user terminal sends an ACK message, the first symbol sends a first predefined sequence, and the second symbol sends a second predefined sequence; when the user terminal sends a NACK message, the first symbol sends a second predefined sequence, and the second The symbol sends the first predefined sequence.
  • both symbols send the first predefined sequence; when the user terminal sends the NACK message, both symbols send the second predefined sequence.
  • the first predefined sequence and the second predefined sequence have different frequency domain locations on each time domain symbol, specifically, on both sides of the system bandwidth.
  • two predefined channel resources are defined, which are respectively represented as a first predetermined channel resource and a second predetermined channel resource; when the predefined sequence is in two When the frequency domain locations are transmitted, two frequency domain locations are defined as a first frequency domain location and a second frequency domain location;
  • the predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the first predetermined channel resource; the predetermined sequence transmitted on each symbol of the second frequency domain location is second Determining channel resource determination;
  • the predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the second predetermined channel resource; the predetermined sequence transmitted on each symbol of the second frequency domain location is first The predetermined channel resource is determined.
  • sending the 2-bit ACK/NACK includes:
  • the 4 predefined sequences are mapped to 2 different time domain symbol positions within the transmission time interval.
  • the 2-bit control information is represented by different combinations of different predefined sequences on different time domain symbols. Specific implementations include, but are not limited to, the following combinations:
  • the first symbol When “0,0" is sent, the first symbol sends a first predefined sequence, the second symbol sends a second predefined sequence; when “0,1” is sent, the first symbol sends a second predefined sequence, Two symbols send a first predefined sequence; when “1, 0” is sent, the first symbol sends a third predefined sequence, the second symbol sends a fourth predefined sequence; when "1, 1" is sent, the first The symbols send a fourth predefined sequence, and the second symbol sends a third predefined sequence;
  • both symbols when sending “0, 0”, both symbols send the first predefined sequence; when “0, 1” is sent, both symbols send the second predefined sequence; when “1, 0” is sent, two The symbols all send a third predefined sequence; when "1,1" is sent, both symbols send a fourth predefined sequence.
  • the predefined sequence has different frequency domain locations on each time domain symbol, specifically, on both sides of the system bandwidth.
  • the two predefined sequences are respectively defined as a first predefined sequence and a second predefined sequence.
  • a frequency domain location is configured on the first symbol, which is called a first frequency domain location
  • two subcarrier locations are configured in the frequency domain location, respectively being a first subcarrier location and a second subcarrier.
  • Carrier location A frequency domain location is configured on the second symbol, called a second frequency domain location
  • two subcarrier locations are configured in the frequency domain location, which are a third subcarrier location and a fourth subcarrier location, respectively.
  • the subcarrier positions are equally spaced discrete subcarriers or are consecutive N subcarriers.
  • the first subcarrier position is an even indexed subcarrier position
  • the second subcarrier position is an odd indexed subcarrier position.
  • Mapping the two predefined sequences to The different subcarrier positions of the two different time domain symbol positions within the transmission time interval are represented by different mapping combinations. Specific implementations include, but are not limited to, the following combinations:
  • the first symbol When transmitting “0,0”, the first symbol sends a first predefined sequence and is mapped to a first subcarrier position, the second symbol transmits a second predefined sequence and is mapped to a third subcarrier position; sending “0, 1", the first symbol transmits a first predefined sequence and is mapped to a second subcarrier position, the second symbol transmits a second predefined sequence and is mapped to a fourth subcarrier position; when "1, 0" is transmitted, The first symbol transmits a second predefined sequence and is mapped to a first subcarrier position, the second symbol transmits a first predefined sequence and is mapped to a third subcarrier position; when "1, 1" is transmitted, the first symbol Transmitting a second predefined sequence and mapping to a second subcarrier position, the second symbol transmitting a first predefined sequence and mapping to a fourth subcarrier position.
  • the first frequency domain location and the second frequency domain location are on both sides of the system bandwidth.
  • sending the 1-bit ACK/NACK includes:
  • the 1-bit control information is represented by different transmission combinations on three different time domain symbols using different predefined sequences. Specific implementations include, but are not limited to, the following combinations,
  • the first symbol When the user terminal sends an ACK message, the first symbol sends a first predefined sequence, the second symbol sends a second predefined sequence, and the third symbol sends a first predefined sequence; when the user terminal sends a NACK message, the first The symbol transmits a second predefined sequence, the second symbol transmits a first predefined sequence, and the third symbol transmits a second predefined sequence.
  • the predefined sequence has different frequency domain locations on each time domain symbol. Specifically, the three frequency domain locations are evenly distributed throughout the system bandwidth.
  • the four predefined sequences are respectively defined as a first predefined sequence, a second predefined sequence, a third predefined sequence, and a fourth predefined sequence.
  • sending the 2-bit ACK/NACK includes:
  • the 4 predefined sequences are mapped to 3 different time domain symbol positions within the transmission time interval.
  • the 2-bit control information is represented by different combinations of different predefined sequences on different time domain symbols. Specifically, sending "00”, transmitting "01”, transmitting "10", and transmitting "11” correspond to transmitting different predefined sequences on each transmission symbol. For example, specific implementations include, but are not limited to, the following combinations,
  • the first symbol When “0,0" is sent, the first symbol sends a first predefined sequence, the second symbol sends a fourth predefined sequence, and the third symbol sends a third predefined sequence; when “0,1" is sent, One symbol sends a second predefined sequence, the second symbol sends a first predefined sequence, the third symbol sends a fourth predefined sequence; when "1, 0" is sent, the first symbol sends a third predefined sequence
  • the second symbol sends a second predefined sequence, the third symbol sends a first predefined sequence; when "1, 1" is sent, the first symbol sends a fourth predefined sequence, and the second symbol sends a third pre-defined sequence. Defining a sequence, the third symbol sending a second predefined sequence;
  • the two predefined sequences are respectively defined as a first predefined sequence and a second predefined sequence.
  • a frequency domain location is configured on the first symbol, which is a first, second, and third frequency domain location
  • two subcarrier locations are configured in each frequency domain location.
  • the two predefined sequences are mapped to different subcarrier locations within different frequency domain locations of three different time domain symbols within a transmission time interval, and the two bits of control information are represented by different mapping combinations.
  • the two predefined sequences are defined as a first predefined sequence and a second predefined sequence.
  • sending the 1-bit ACK/NACK includes:
  • the 1-bit control information is represented by different transmission combinations on four different time domain symbols using different predefined sequences.
  • Specific implementations include, but are not limited to, the following combinations, for example,
  • the first symbol sends a first predefined sequence
  • the second symbol sends a second predefined sequence
  • the third symbol sends a first predefined sequence
  • the fourth symbol sends a second predefined sequence.
  • the user terminal sends a NACK message
  • the first symbol sends a second predefined sequence
  • the second symbol sends a first predefined sequence
  • the third symbol sends a second predefined sequence
  • the fourth symbol sends a first predefined sequence.
  • the frequency domain location of the predefined sequence on each time domain symbol is not completely the same, and the frequency domain location of the predefined sequence in each time domain symbol is different, and the four frequency domain locations are different.
  • Uniformly distributed throughout the system bandwidth, or the predefined sequence has the same frequency domain location on the first and second time-domain symbols, and the same frequency domain location on the third and fourth time-domain symbols, but four The symbols are not in the same frequency domain location.
  • the four predefined sequences are respectively defined as a first predefined sequence, a second predefined sequence, a third predefined sequence, and a fourth predefined sequence.
  • sending the 2-bit ACK/NACK includes:
  • the 4 predefined sequences are mapped to 4 different time domain symbol positions within the transmission time interval.
  • the 2-bit control information is represented by different combinations of different predefined sequences on different time domain symbols. Specifically, sending "00”, transmitting "01”, transmitting "10", and transmitting "11” correspond to transmitting different predefined sequences on each transmission symbol. For example, specific implementations include, but are not limited to, the following combinations,
  • the first, second, third, and fourth symbols sequentially send the first, second, third, and fourth pre-defined sequences.
  • first, second, third, and fourth symbols are transmitted.
  • the second, third, fourth, and a predefined sequence are sequentially sent.
  • the first, second, third, and fourth symbols sequentially send the third, fourth, first, second, and predefined sequences, and send "1".
  • 1 first, second, third, The four symbols sequentially send the fourth, one, two, and three predefined sequences.
  • K 1, 2, or 4.
  • the two predefined sequences are respectively defined as an SR first predefined sequence and an SR second predefined sequence.
  • the SR is transmitted separately, one of the two predefined sequences is transmitted on each symbol, and different predefined sequences are transmitted on different symbols.
  • the ACK/NACK is transmitted using the two predefined sequences of the SR.
  • SR and ACK are transmitted simultaneously, SR first pre-defined sequence is transmitted on the first symbol, and SR second is transmitted on the second symbol.
  • a predefined sequence if the SR is transmitted simultaneously with the NACK, the SR second predefined sequence is sent on the first symbol and the SR first predefined sequence is sent on the second symbol.
  • the four predefined sequences are respectively defined as SR first, second, third, and fourth predefined sequences.
  • the SR is transmitted separately, one of the four sequences is transmitted on each symbol, and the transmission sequence is different on each symbol.
  • the ACK/NACK is transmitted using the four predefined sequences of the SR.
  • the first symbol transmits the first predefined sequence of SR
  • the second symbol transmits SR.
  • Two predefined sequences when SR and "0, 1" are simultaneously transmitted, the first symbol transmits the second predefined sequence of SR, and the second symbol sends the first predefined sequence of SR; when SR and "1, 0" are simultaneously transmitted.
  • the first symbol sends the SR third predefined sequence
  • the second symbol sends the SR fourth predefined sequence
  • the first symbol sends the SR fourth predefined sequence.
  • the second symbol sends the SR third predefined sequence;
  • the frequency domain locations of the predefined sequence on each time domain symbol may be the same or not the same.
  • Uniformly distributed throughout the system bandwidth, or the predefined sequence has the same frequency domain location on the first and second time domain symbols, and the same frequency domain location on the third and fourth time domain symbols, and four The symbols are not in the same frequency domain location.
  • the SR predefined sequence is determined by one or two or four predefined channel resources.
  • FIG. 2 is a schematic diagram showing a user terminal transmitting a 1-bit ACK/NACK on two symbols using two predefined sequences; it is assumed that the predefined sequences assigned by the network to the user terminal are ZC 1 (n) and ZC 2 (n), respectively. .
  • the sequence length is 4 and is mapped to four consecutive subcarriers in the frequency domain.
  • a ZC-based sequence is generated using the following formula.
  • ZC 1 (n) and ZC 2 (n) can be obtained by performing different time domain cyclic shifts on the base sequence, respectively.
  • the user terminal when transmitting an ACK message, the user terminal transmits a sequence ZC 1 (n) at symbol 1, and transmits a sequence ZC 2 (n) at symbol 2; when transmitting a NACK message, the user terminal is at symbol 1
  • the sequence ZC 2 (n) is transmitted and the sequence ZC 1 (n) is transmitted at symbol 2.
  • the predefined sequence has different frequency domain locations mapped on the two symbols and is located on both sides of the system bandwidth.
  • the receiving end can judge the transmission of the ACK/NACK according to the non-coherent detection.
  • Figure 3 shows a schematic diagram of a user terminal employing a predefined sequence SR on 2 symbols.
  • the predefined sequence assigned by the network to the user terminal is ZC SR (n), which is configured as the transmission of the SR.
  • the predefined sequence is transmitted on both symbols and the frequency domain locations of the predefined sequences mapped on the two symbols are different and are located on both sides of the system bandwidth.
  • the receiving end can determine whether there is an SR transmission according to the energy detection.
  • FIG. 4 is a schematic diagram showing a user terminal transmitting a 1-bit ACK/NACK on two symbols with two predefined sequences; it is assumed that the predefined sequences allocated by the network to the user terminal are ZC 1 (n) and ZC 2 (n), respectively. .
  • the sequence length is 4 and is mapped to four consecutive subcarriers in the frequency domain.
  • the first symbol transmits ZC 1 (n), the second symbol transmits ZC 2 (n), the third symbol transmits ZC 1 (n);
  • the first The symbol transmits ZC 2 (n), the second symbol transmits ZC 1 (n), and the third symbol transmits ZC 2 (n).
  • the predefined sequence on each symbol is mapped to different frequency domain locations, and the three frequency domain locations are uniformly within the system bandwidth.
  • FIG. 5 shows a schematic diagram of a user terminal transmitting a 1-bit ACK/NACK with 1 predefined sequence on 2 symbols; it is assumed that the predefined sequence assigned by the network to the user terminal is ZC(n).
  • the sequence length is 4 and is mapped to discrete 4 subcarriers in the frequency domain.
  • the network simultaneously configures two different subcarrier locations on the frequency domain of each symbol. The even subcarrier positions and odd subcarrier positions in the figure.
  • the sequence ZC(n) is sent on both symbols.
  • the sequence is mapped on the even subcarriers.
  • the sequence is mapped on the odd subcarriers.
  • the receiving end can judge whether the ACK is sent by performing non-coherent detection on different subcarriers. It is NACK.
  • FIG. 6 shows a schematic diagram of a user terminal transmitting a 1-bit ACK/NACK with 2 predefined sequences on 4 symbols; it is assumed that the predefined sequences assigned by the network to the user terminal are ZC 1 (n) and ZC 2 (n), respectively.
  • the sequence length is 4 and is mapped to four consecutive subcarriers in the frequency domain.
  • the first symbol transmits ZC 1 (n) in the frequency domain position 1, the second symbol transmits ZC 2 (n) in the frequency domain position 2, and the third symbol transmits the ZC in the frequency domain position 3.
  • the fourth symbol transmits ZC 2 (n) in the frequency domain position 4;
  • the first symbol transmits ZC 2 (n) in the frequency domain position 1, and the second symbol is in the frequency Domain location 2 transmits ZC 1 (n), the third symbol transmits ZC 2 (n) at frequency domain location 3, and the fourth symbol transmits ZC 1 (n) at frequency domain location 4.
  • the four frequency domains are evenly spaced within the system bandwidth.
  • the receiving end determines whether the ACK or the NACK is sent by performing non-coherent detection using a corresponding predefined sequence in different frequency domain locations.
  • FIG. 7 is a schematic diagram showing a user terminal transmitting a 2-bit ACK/NACK using 4 predefined sequences on 4 symbols; it is assumed that the predefined sequence allocated by the network to the user terminal is ZC 1 (n), ZC 2 (n), ZC 3 (n) and ZC 4 (n).
  • the sequence length is 4 and is mapped to four consecutive subcarriers in the frequency domain.
  • the first two symbols of the predefined sequence are mapped on the four subcarriers in the frequency domain position 1.
  • the predefined sequence is mapped on the 4 subcarriers of frequency domain position 2 in the last two symbols.
  • the frequency domain location 1 and the frequency domain location 2 are on either side of the system bandwidth.
  • the user terminal transmits "00" message, the first two symbols transmitted in the frequency domain position 1 ZC 1 (n), after the two transmitted symbols in the frequency domain position ZC 1 2 (n); user terminal transmits "01" message, the first two symbols transmitted in the frequency domain position 1 ZC 2 (n), after the two transmitted symbols in the frequency domain position ZC 2 2 (n); when the user terminal transmits "10” message, the first two symbols in the frequency domain 1 transmits position ZC 3 (n), after the two transmitted symbols in the frequency domain ZC 3 position 2 (n); when the user terminal transmits "11” message, the first two symbols transmitted in the frequency domain ZC 4 position 1 (n) The last two symbols send ZC 4 (n) in frequency domain position 2.
  • the receiving end determines the 2-bit ACK/NACK by performing non-coherent detection with a corresponding predefined sequence at different frequency domain locations.
  • FIG. 8 is a schematic diagram showing a user terminal transmitting a 1-bit ACK/NACK+SR using two predefined sequences on 2 symbols; it is assumed that the predefined sequence of the user terminal SR allocated by the network to the user terminal is ZC SR1 (n) and ZC SR2 (n). The sequence length is 4. At this time, the user terminal needs to transmit a 1-bit ACK/NACK at the same time, and the user terminal transmits ZC SR1 (n) and ZC SR2 (n) on two symbols to implement multiplexing of ACK/NACK and SR.
  • the user terminal when the user terminal needs to send the SR and simultaneously sends an ACK message, the user terminal transmits the sequence ZC SR1 (n) at symbol 1, and transmits the sequence ZC SR2 (n) at symbol 2; simultaneously sends a NACK message.
  • the user terminal transmits the sequence ZC SR2 (n) at symbol 1, and the sequence ZC SR1 (n) at symbol 2.
  • the predefined sequence has different frequency domain locations mapped on the two symbols and is located on both sides of the system bandwidth.
  • the receiving end uses ZC SR1 (n) and ZC SR2 (n) to perform energy detection on the corresponding symbol to determine whether to transmit the SR, and to judge the transmission of the ACK/NACK.
  • FIG. 9 is a schematic diagram showing that a user terminal transmits a 2-bit ACK/NACK+SR by using 4 predefined sequences on 2 symbols; it is assumed that the predefined sequence of the user SR allocated by the network to the user is ZCSR1(n), ZC SR2, respectively. (n), ZCSR3(n) and ZC SR4(n). The sequence length is 4. At this time, the user needs to send a 2-bit ACK/NACK at the same time, and the user transmits the predefined sequence of the four SRs on two symbols to implement multiplexing of ACK/NACK and SR.
  • the predefined sequence has different frequency domain locations mapped on the two symbols and is located on both sides of the system bandwidth.
  • the receiving end performs energy detection on the corresponding symbol by using the four predefined sequences to determine whether to send the SR, and judges the transmission of the ACK/NACK.
  • FIG. 10 A schematic diagram of the user terminal transmitting a 1-bit ACK/NACK with two predefined sequences on 2 symbols is given in FIG. 10; it is assumed that the predefined sequences assigned by the network to the user are ZC1(n) and ZC2(n), respectively.
  • the user when transmitting an ACK message, the user transmits the sequence ZC1(n) at symbol 1, and transmits the sequence ZC2(n) at symbol 2; when transmitting the NACK message, the user transmits sequence ZC2 at symbol 1. n), the sequence ZC1(n) is transmitted at symbol 2. Moreover, the predefined sequence maps the same frequency domain position on the two symbols.
  • the receiving end can judge the transmission of the ACK/NACK according to the non-coherent detection.
  • FIG. 11 is a schematic diagram showing a user terminal transmitting a 1-bit ACK/NACK on 2 symbols; the user terminal uses two predefined channel resources. Determine the predefined sequence sent on each symbol. Specifically, when sending an ACK, the predefined sequence on the first symbol consists of Calculated, the predefined sequence cyclic shift amount is in the figure The predefined sequence sent on the second symbol is randomly mapped by the first symbol pre-defined sequence, and the cyclic shift used is in the figure.
  • the predefined sequence on the first symbol consists of Calculated, the predefined sequence cyclic shift amount is in the figure
  • the predefined sequence sent on the second symbol has a first symbol pre-defined sequence for randomization mapping, and the predefined sequence cyclic shift amount is in the figure.
  • n s is the slot index
  • n sl is the index of the two hopping positions
  • l is the symbol index.
  • n PRB is a PRB index
  • each PRB contains 12 subcarriers
  • the predefined sequence length is 12.
  • m is the shortened resource block index.
  • FIG. 12 is a schematic diagram of a user terminal transmitting a 1-bit ACK/NACK on 3 symbols according to an embodiment of the present invention; the user terminal uses two predefined channel resources.
  • n PRB is a PRB index
  • each PRB contains 12 subcarriers
  • the predefined sequence length is 12.
  • m is the shortened resource block index.
  • FIG. 13 is a schematic structural diagram of an uplink control signal transmission apparatus according to an embodiment of the present invention. As shown in FIG. 13, an uplink control signal transmission apparatus according to an embodiment of the present invention includes:
  • the receiving unit 110 is configured to receive, by the network side, a corresponding frequency domain location or a predefined sequence for the user terminal to avoid interference between different user terminals in the network cell, and the network side may configure different frequency domain locations or different for different user terminals. Predefined sequence.
  • the transmitting unit 111 is configured to transmit K pre-defined sequences on the M transmission symbols in the transmission time interval to transmit the B-bit uplink control information.
  • M is a positive integer
  • K is an integer
  • B is an integer greater than or equal to 1
  • the K predefined sequences are transmitted on each of the M transmission symbols One
  • the number of subcarriers included in any one of the frequency domain positions is a multiple of N.
  • the N subcarriers are mapped consecutively or equally spaced to each of the frequency domain locations.
  • the predefined sequence includes: a Zadoff-Chu sequence of length N, or a Frank sequence of length N, or a Gray sequence of length N, or a Chu sequence of length N or a machine-selected sequence of length N;
  • the method further includes:
  • the user terminal uses the transmission combination of K predefined sequences on different time domain symbols in the M transmission symbols to represent the uplink control information.
  • the K predefined sequences are determined by X predetermined channel resources; X is a positive integer;
  • the channel resource is determined by at least one of the following information:
  • Downlink control information DCI dynamic indication ; high layer configuration and DCI joint indication, implicit indication; downlink control information DCI and implicit indication joint indication.
  • the predefined sequence sent on each symbol is determined by a different predetermined channel resource.
  • the uplink control information includes an acknowledgement information ACK and a non-acknowledgement information NACK;
  • the ACK corresponds to the bit "1”
  • the NACK corresponds to the bit "0”
  • the ACK or NACK is respectively indicated by the difference in the predefined sequence transmitted on each of the transmitted symbols.
  • the uplink control information includes an ACK and a NACK
  • the ACK corresponds to the bit "1"
  • the NACK corresponds to the bit "0”.
  • the ACK or NACK is respectively indicated by the difference in the frequency domain subcarrier positions mapped on the transmission symbol in the predefined sequence.
  • the number of bits of the ACK or NACK message is 1 or 2.
  • two predefined channel resources are defined, which are respectively represented as a first predetermined channel resource and a second predetermined channel resource;
  • the predetermined sequence transmitted on each symbol is determined by the first predetermined channel resource
  • the predetermined sequence transmitted on each symbol is determined by the second predetermined channel resource.
  • the transmission information is a 2-bit ACK or a NACK
  • four predefined channel resources are defined, and the four types of control information transmitted include: (ACK, ACK), (ACK, NACK), (NACK, ACK), ( NACK, NACK) is in one-to-one correspondence with the four predefined channel resources.
  • the number of transmit antenna ports is 1.
  • the number of transmit antenna ports is a positive integer A
  • the number of predefined channel resources defined is A ⁇ 2 B .
  • the characteristics of the predefined sequence transmitted on each transmitted symbol include at least one of the following:
  • a predetermined channel resource allocated for the transmission control information Channel resources for LTE PUCCH format 1/1a/1b, Is the number of subcarriers within the resource block.
  • the apparatus further includes:
  • An indication unit (not shown in FIG. 13) is configured to represent the uplink control information using a transmission combination of K predefined sequences on different time domain symbols of the M transmission symbols.
  • the ACK corresponds to the bit "1”
  • the NACK corresponds to the bit "0”
  • K 2
  • the ACK or the NACK is sent, the ACK or the ACK is respectively indicated by the difference of the predefined sequence sent on each transmission symbol. NACK.
  • the frequency domain positions mapped by the predefined sequence on different transmission symbols are the same or not identical.
  • the frequency domain positions of the predefined sequence mapped on different transmission symbols are on both sides of the system bandwidth.
  • the ACK corresponds to the bit "1”
  • the NACK corresponds to the bit "0”
  • K 1
  • the frequency domain subcarriers mapped on the transmission symbol in the predefined sequence are different.
  • the position where the predefined sequence is mapped on the transmission symbol is on both sides of the system bandwidth.
  • the ACK corresponds to the bit “1”
  • the NACK corresponds to the bit “0”
  • the frequency domain locations mapped on different transmission symbols by the predefined sequence are the same or not identical.
  • the two predefined sequences are defined as a first predefined sequence and a second predefined sequence; if the ACK corresponds to the bit “1”, the NACK corresponds to the bit “0”,
  • the first symbol When the ACK message is sent, the first symbol sends the first predefined sequence, the second symbol sends the second predefined sequence; when the NACK message is sent, the first symbol sends the second predefined sequence, and the second symbol sends the first Predefined sequence;
  • both symbols send the first predefined sequence; when the NACK message is sent, both symbols send the second predefined sequence.
  • the first predefined sequence and the second predefined sequence have different frequency domain locations on each time domain symbol.
  • the first predefined sequence and the second predefined sequence are on both sides of the system bandwidth.
  • the four predefined sequences are respectively defined as a first predefined sequence, a second predefined sequence, a third predefined sequence, and a fourth predefined sequence. ;
  • Send 2-bit ACK/NACK including:
  • the 4 predefined sequences are mapped to 2 different time domain symbol positions within a transmission time interval; the 2 bits of control information are represented by different combinations of different predefined sequences on different time domain symbols.
  • the first symbol when “0, 0” is sent, the first symbol sends the first predefined sequence, the second symbol sends the second predefined sequence; when “0, 1” is sent, the first symbol is sent. a second predefined sequence, the second symbol sends a first predefined sequence; when "1, 0” is sent, the first symbol sends a third predefined sequence, and the second symbol sends a fourth predefined sequence; sending "1, 1", the first symbol sends a fourth predefined sequence, and the second symbol sends a third predefined sequence;
  • both symbols when sending “0, 0”, both symbols send the first predefined sequence; when “0, 1” is sent, both symbols send the second predefined sequence; when “1, 0” is sent, two The symbols all send a third predefined sequence; when "1,1" is sent, both symbols send a fourth predefined sequence.
  • the predefined sequence has different frequency domain locations on each time domain symbol.
  • the predefined sequence is on both sides of the system bandwidth.
  • the two predefined sequences are respectively defined as a first predefined sequence and a second predefined sequence
  • Configuring a first frequency domain location on the first symbol configuring two subcarrier locations in the first frequency domain location, respectively a first subcarrier location and a second subcarrier location; on the second symbol
  • the second frequency domain location is configured, and two subcarrier locations are configured in the second frequency domain location, which are a third subcarrier location and a fourth subcarrier location, respectively.
  • the subcarrier positions are equally spaced discrete subcarriers, or are consecutive N subcarriers.
  • the first symbol when “0, 0” is sent, the first symbol sends a first predefined sequence and is mapped to a first subcarrier position, and the second symbol sends a second predefined sequence and is mapped to a third subcarrier.
  • the first symbol when transmitting "0, 1", the first symbol transmits a first predefined sequence and is mapped to a second subcarrier position, and the second symbol transmits a second predefined sequence and is mapped to a fourth subcarrier position; 1,0", the first symbol transmits a second predefined sequence and is mapped to a first subcarrier position, the second symbol transmits a first predefined sequence and is mapped to a third subcarrier position; transmitting "1, 1" The first symbol transmits a second predefined sequence and is mapped to a second subcarrier position, and the second symbol transmits a first predefined sequence and is mapped to a fourth subcarrier position.
  • the first frequency domain location and the second frequency domain location are on both sides of the system bandwidth.
  • the two predefined sequences are defined as a first predefined sequence and a second predefined sequence
  • Sending the 1-bit ACK/NACK includes:
  • the 1-bit control information is represented by different transmission combinations on three different time domain symbols using different predefined sequences.
  • the first symbol when the ACK is sent, the first symbol sends the first predefined sequence, the second symbol sends the second predefined sequence, and the third symbol sends the first predefined sequence.
  • the first symbol transmits a second predefined sequence
  • the second symbol transmits a first predefined sequence
  • the third symbol transmits a second predefined sequence
  • the predefined sequence has different frequency domain locations on each time domain symbol.
  • the predefined sequence is uniformly distributed in the entire system bandwidth in the three frequency domain locations where each time domain symbol is located.
  • the four predefined sequences are respectively defined as a first predefined sequence, a second predefined sequence, a third predefined sequence, and a fourth predefined sequence. ;
  • Sending the 2-bit ACK/NACK includes:
  • the 4 predefined sequences are mapped to 3 different time domain symbol positions within a transmission time interval, and the 2 bits of control information are represented by different combinations of different predefined sequences on different time domain symbols.
  • the first symbol when sending “0, 0”, the first symbol sends a first predefined sequence, the second symbol sends a fourth predefined sequence, and the third symbol sends a third predefined sequence; sending “0” , 1", the first symbol sends a second predefined sequence, the second symbol sends a first predefined sequence, the third symbol sends a fourth predefined sequence; when "1, 0" is sent, the first symbol Sending a third predefined sequence, the second symbol sends a second predefined sequence, the third symbol sends a first predefined sequence; when transmitting "1, 1", the first symbol sends a fourth predefined sequence, and second The symbols send a third predefined sequence and the third symbol sends a second predefined sequence.
  • the two predefined sequences are respectively defined as a first predefined sequence and a second predefined sequence; and a frequency domain position is configured on the first symbol.
  • the first, second, and third frequency domain locations, and two subcarrier positions are configured in each frequency domain location;
  • mapping the 2 predefined sequences to 3 different time domain symbols within the transmission time interval The different subcarrier positions within the same frequency domain location are represented by different mapping combinations.
  • Send ACK/NACK including:
  • the 1-bit control information is represented by different transmission combinations on four different time domain symbols using different predefined sequences.
  • the first symbol when the ACK is sent, the first symbol sends the first predefined sequence, the second symbol sends the second predefined sequence, the third symbol sends the first predefined sequence, and the fourth symbol sends the second predefined symbol.
  • a predefined sequence when a NACK is sent, the first symbol sends a second predefined sequence, the second symbol sends a first predefined sequence, the third symbol sends a second predefined sequence, and the fourth symbol sends a first predefined sequence.
  • the frequency domain location of the predefined sequence on each time domain symbol is not completely the same.
  • the predefined sequence has different frequency domain locations on each time domain symbol, and the four frequency domain locations are uniformly distributed in the entire system bandwidth;
  • the predefined sequence has the same frequency domain location on the first and second time domain symbols, and the same frequency domain location on the third and fourth time domain symbols, but the frequency positions of the four symbols are not all the same.
  • Send ACK/NACK including:
  • the first, second, third, and fourth symbols sequentially send the first, second, third, and fourth pre-defined sequences
  • first and second The three, four, and four symbols sequentially send the second, third, fourth, and a predefined sequence.
  • the first, second, third, and fourth symbols sequentially send the third, fourth, first, second, and pre-sequences. Defining a sequence, when sending "1, 1", the first, second, third, and fourth symbols sequentially send the fourth, first, second, and third predefined sequences.
  • K 1, 2, or 4.
  • the two predefined sequences are respectively defined as an SR first predefined sequence and an SR second predefined sequence.
  • the SR is transmitted separately, one of the two predefined sequences is transmitted on each symbol, and different predefined sequences are transmitted on different symbols.
  • the ACK/NACK is sent by using the two predefined sequences of the SR.
  • the four predefined sequences are respectively defined as SR first, second, third, and fourth predefined sequences.
  • the SR is transmitted separately, one of the four sequences is transmitted on each symbol, and the transmission sequence is different on each symbol.
  • the ACK/NACK is sent by using the four predefined sequences of the SR.
  • the frequency domain locations of the predefined sequence on each time domain symbol may be the same or not the same.
  • the implementation functions of the units in the uplink control signal transmission apparatus shown in FIG. 13 can be understood by referring to the related description of the foregoing uplink control signal transmission method.
  • the functions of the respective units in the uplink control signal transmission apparatus shown in FIG. 13 can be realized by a program running on the processor, or can be realized by a specific logic circuit.
  • FIG. 14 is a schematic structural diagram of a user terminal according to an embodiment of the present invention.
  • a user terminal according to an embodiment of the present invention includes a controller 50 and a memory 52, and an address and control bus 51 is passed between the controller 50 and the memory 52.
  • the controller 52 stores various control programs and applications to control related hardware, complete signal information processing, information input and output, and the like.
  • the controller 50 performs the following processing by calling the control program and the application program: transmitting K pre-defined sequences on the M transmission symbols in the transmission time interval to transmit B-bit uplink control information, where M is a positive integer, K is an integer, and 1 ⁇ K ⁇ 2 B ; B is an integer greater than or equal to 1; one of the K predefined sequences is transmitted on each of the M transmission symbols; the predefined sequence
  • the number of subcarriers included in any one of the frequency domain positions is a multiple of N.
  • the N subcarriers are mapped consecutively or equally spaced to each of the frequency domain locations.
  • the predefined sequence includes: a Zadoff-Chu sequence of length N, or a Frank sequence of length N, or a Gray sequence of length N, or a Chu sequence of length N or a machine-selected sequence of length N;
  • the controller 50 also performs the following processing by calling the control program and the application:
  • the uplink control information is represented by a combination of transmissions of K predefined sequences on different time domain symbols in the M transmission symbols.
  • the K predefined sequences are determined by X predetermined channel resources; X is a positive integer;
  • the channel resource is determined by at least one of the following information:
  • Downlink control information DCI dynamic indication ; high layer configuration and DCI joint indication, implicit indication; downlink control information DCI and implicit indication joint indication.
  • the controller 50 further performs the following processing by calling the control program and the application: when different uplink control information is transmitted, the predefined sequence transmitted on each symbol is determined by a different predetermined channel resource.
  • the uplink control information includes an acknowledgement information ACK and a non-confirmation information NACK.
  • the ACK corresponds to the bit "1”
  • the NACK corresponds to the bit "0”
  • the ACK or NACK is respectively indicated by the difference in the predefined sequence transmitted on each of the transmitted symbols.
  • the uplink control information includes an ACK and a NACK.
  • the ACK corresponds to the bit "1"
  • the NACK corresponds to the bit "0”.
  • the ACK or NACK is respectively indicated by the difference in the frequency domain subcarrier positions mapped on the transmission symbol in the predefined sequence.
  • the number of bits of the ACK or NACK message is 1 or 2.
  • two predefined channel resources are defined, which are respectively represented as a first predetermined channel resource and a second predetermined channel resource;
  • the predetermined sequence transmitted on each symbol is determined by the first predetermined channel resource
  • the predetermined sequence transmitted on each symbol is determined by the second predetermined channel resource.
  • the transmission information is a 2-bit ACK or a NACK
  • four predefined channel resources are defined, and the four types of control information transmitted include: (ACK, ACK), (ACK, NACK), (NACK, ACK), ( NACK, NACK) is in one-to-one correspondence with the four predefined channel resources.
  • the number of transmit antenna ports is 1.
  • the number of transmit antenna ports is a positive integer A
  • the number of predefined channel resources defined is A ⁇ 2 B .
  • the characteristics of the predefined sequence transmitted on each transmitted symbol include at least one of the following:
  • the channel resource includes at least one of the following:
  • a predetermined channel resource allocated for the transmission control information It is a channel resource of LTE PUCCH format 1/1a/1b. Is the number of subcarriers within the resource block.
  • the predefined sequence has the same or partially identical frequency domain locations mapped on different transmission symbols.
  • the frequency domain positions mapped by the predefined sequence on different transmission symbols are on both sides of the system bandwidth.
  • the uplink control information includes an ACK and a NACK
  • the ACK corresponds to the bit "1”
  • the NACK corresponds to the bit "0”
  • the number of the predefined sequence K 1, 2 or 4
  • the predefined sequences are identical or not identical in frequency domain locations mapped on different transmission symbols.
  • the uplink control information includes a scheduling request SR, ACK, and NACK;
  • K 1, 2, or 4.
  • the two predefined sequences are respectively defined as an SR first predefined sequence and an SR second predefined sequence.
  • the SR is transmitted separately, one of the two predefined sequences is transmitted on each symbol, and different predefined sequences are transmitted on different symbols.
  • the ACK/NACK is transmitted by using the predefined sequence of the SR.
  • the four predefined sequences are respectively defined as SR first, second, third, and fourth predefined sequences.
  • the SR is transmitted separately, one of the four sequences is transmitted on each symbol, and the transmission sequence is different on each symbol.
  • the sending information is a 1-bit ACK or a NACK
  • two predefined channel resources are defined, which are respectively represented as a first predetermined channel resource and a second predetermined channel resource; when the predefined sequence is in two
  • the frequency domain locations are transmitted, the two frequency domain locations are defined as a first frequency domain location and a second frequency domain location, respectively.
  • a predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the first predetermined channel resource;
  • a predetermined sequence transmitted on each symbol of the second frequency domain location The columns are each determined by the second predetermined channel resource;
  • the predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the second predetermined channel resource.
  • the predetermined sequence transmitted on each symbol of the second frequency domain location is determined by the first predetermined channel resource.
  • the transmission information when the transmission information is a 2-bit ACK or a NACK, four predefined channel resources are defined, which are first, second, third, and fourth predetermined channel resources, respectively.
  • the four combinations of control information transmitted include: (ACK, ACK), (ACK, NACK), (NACK, ACK), (NACK, NACK).
  • the predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the first predetermined channel resource; the predetermined sequence transmitted on each symbol of the second frequency domain location is determined by Second predetermined channel resource determination;
  • the predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the second predetermined channel resource; the predetermined sequence transmitted on each symbol of the second frequency domain location is determined by First predetermined channel resource determination;
  • the predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the third predetermined channel resource; the predetermined sequence transmitted on each symbol of the second frequency domain location is determined by Fourth predetermined channel resource determination;
  • the predetermined sequence transmitted on each symbol of the first frequency domain location is determined by the fourth predetermined channel resource; the predetermined sequence transmitted on each symbol of the second frequency domain location is determined by The third predetermined channel resource is determined.
  • the embodiment of the invention further describes a storage medium in which a computer program is stored, and when the computer program is called by the processor, the uplink control signal transmission method of the foregoing embodiments is executed.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative, examples
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined, or may be integrated into another system, or some features may be ignored. Or not.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a removable storage device, a read only memory (ROM), a magnetic disk, or an optical disk, and the like, which can store program codes.
  • ROM read only memory
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a mobile storage device, a read only memory (ROM, Read Only)
  • ROM Read Only

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种上行控制信号传输方法及装置、用户终端、存储介质,所述方法包括:用户终端在传输时间间隔内的M个传输符号上发送K个预定义序列来传输B比特的上行控制信息,其中,M为正整数,K为整数,且1≤K≤2B;B为大于等于1的整数;在所述M个传输符号中的每个传输符号上发送所述K个预定义序列之一;所述预定义序列长度为N,且映射在对应传输符号的N个子载波上,其中N=2n,n为正整数。

Description

一种上行控制信号传输方法及装置、用户终端、存储介质 技术领域
本发明涉及上行控制信号传输技术,尤其涉及一种上行控制信号传输方法及装置、用户终端、存储介质。
背景技术
在第三代合作伙伴项目(3GPP,3rd Generation Partnership Project)长期演进(LTE,Long Term Evolution)及高级长期研究(LTE-A,LTE-Advanced)系统中,传输时间间隔(TTI,Transmission Time Interval)是下行和上行传输调度在时域上的基本单位。如在LTE/LTE-A频分双工(FDD,Frequency Division Duplex)系统中,时间维度上被分成长度为10ms的无线电帧,其中每个无线电帧包括10个子帧,TTI长度等于子帧长度为1ms。每个子帧包括两个时隙,每一个时隙的长度为0.5ms。每个下行时隙含有7个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号(扩展循环前缀下为6个OFDM符号);每个上行时隙含有7个单载波频分复用(SC-FDMA,Single Carrier-Frequency Division Multiplexing Access)符号(扩展循环前缀下为6个SC-FDMA符号)。
在3GPP后续演进如第五代(5G)移动通信系统相对LTE/LTE-A系统将支持更高速率(Gbps)、巨量链接(1M/Km2)、超低时延(1ms)、更高的可靠性、百倍的能量效率提升等以支撑新的需求变化。其中,超低时延作为5G技术的关键指标,直接影响着如车联网、工业自动化、远程控制、智能电网等时延受限业务的发展。
然而,现有LTE/LTE-A系统的空口时延指标为10ms左右,将不再满足需求。一种有效的解决方案是降低TTI长度,如将现在1ms长度的TTI 降低为0.5ms甚至1~2个OFDM符号的长度,可以成倍的降低最小调度时间,进而成倍地降低单次传输时延。
当TTI长度降低时,现有物理上行控制信道(PUCCH,Physical Uplink Control Channel)中用于发送确认指令(ACK,Acknowledgement)、非确认指令(NACK,Negative Acknowledgement)消息及调度请求(SR,Scheduling Request)的传输结构将无法直接使用。同时,TTI内符号数降低将导致参考符号(RS,Reference Symbol)开销过大。因此,目前仍未有合适的解决技术方案。
发明内容
为解决上述技术问题,本发明实施例提供了一种上行控制信号传输方法及装置、用户终端、存储介质。
本发明实施例的技术方案如下:
本发明实施例提供的一种上行控制信号传输方法,所述方法包括:
用户终端在传输时间间隔内的M个传输符号上发送K个预定义序列来传输B比特的上行控制信息,其中,M为正整数,K为整数,且1≤K≤2B;B为大于等于1的整数;在所述M个传输符号中的每个传输符号上发送所述K个预定义序列之一;所述预定义序列长度为N,且映射在对应传输符号的N个子载波上,其中N=2n,n为正整数。
本发明实施例提供的一种上行控制信号传输装置,所述装置包括:
传输单元,配置为在传输时间间隔内的M个传输符号上发送K个预定义序列来传输B比特的上行控制信息,其中,M为正整数,K为整数,且1≤K≤2B;B为大于等于1的整数;在所述M个传输符号中的每个传输符号上发送所述K个预定义序列之一;所述预定义序列长度为N,且映射在对应传输符号的N个子载波上,其中N=2n,n为正整数。
本发明实施例提供的一种用户终端,包括处理器和存储器;所述存储 器中存储有程序或指令;所述处理器通过调用所述程序或指令,执行以下处理:
在传输时间间隔内的M个传输符号上发送K个预定义序列来传输B比特的上行控制信息,其中,M为正整数,K为整数,且1≤K≤2B;B为大于等于1的整数;在所述M个传输符号中的每个传输符号上发送所述K个预定义序列之一;所述预定义序列长度为N,且映射在对应传输符号的N个子载波上,其中N=2n,n为正整数。
本发明实施例提供的一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序在被处理器调用时,执行前述的上行控制信号传输方法。
本发明实施例的技术方案中,通过将上行控制信息承载于TTI长度为2~4个符号长度的场景;可获得频率分集增益;从而使接收端非相干检测解调复杂度低,便于与用户终端的同步,可以在失步的时候反馈ACK/NACK及SR的发送。本发明实施例的技术方案提升了上行控制信息的传输效率,降低了数据传输时延,从而提升了通信效率。
附图说明
图1为本发明实施例的上行控制信号传输方法的流程示意图;
图2为本发明实施例的用户终端在2符号上采用长度为4的两个预定义序列发送1比特ACK/NACK的示意图;
图3为本发明实施例的用户终端在2符号上采用一个预定义序列SR的示意图;
图4为本发明实施例的用户终端在3符号上采用2个预定义序列发送1比特ACK/NACK的示意图;
图5为本发明实施例的用户终端在2符号上采用1个预定义序列发送1比特ACK/NACK的示意图;
图6为本发明实施例的用户终端在4符号上采用2个预定义序列发送1比特ACK/NACK的示意图;
图7为本发明实施例的用户终端在4符号上采用4个预定义序列发送2比特ACK/NACK的示意图;
图8为本发明实施例的用户终端在2符号上采用2预定义序列发送1特ACK/NACK+SR的示意图;
图9为本发明实施例的用户终端在2符号上采用4预定义序列发送2特ACK/NACK+SR的示意图;
图10为本发明实施例的用户终端在2符号上采用长度12的两个预定义序列发送1比特ACK/NACK的示意图;
图11本发明实施例的用户终端在2符号上发送1比特ACK/NACK的示意图;
图12本发明实施例的用户终端在3符号上发送1比特ACK/NACK的示意图;
图13为本发明实施例的上行控制信号传输装置的组成结构示意图;
图14为本发明实施例的用户终端的组成结构示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
图1为本发明实施例的上行控制信号传输方法的流程示意图,如图1所示,本发明实施例的上行控制信号传输方法包括以下步骤:
步骤101,网络侧为用户终端配置相应的频域位置或者预定义序列。
为避免网络小区内不同用户终端之间的干扰,网络侧可以为不同用户终端配置不同的频域位置或者不同的预定义序列。
步骤102,用户终端在传输时间间隔内的M个传输符号上发送K个预定义序列来传输B比特的上行控制信息。
其中,M为正整数,K为整数,且1≤K≤2B;B为大于等于1的整数;在所述M个传输符号中的每个传输符号上发送所述K个预定义序列之一;所述预定义序列长度为N,且映射在对应传输符号的N个子载波上,其中N=2n,n为正整数。
本发明实施例的上行控制信息主要是上行ACK/NACK消息,也包括SR消息。
作为一种实现方式,在所述M个传输符号上,至多有M个不同的频域位置,任意一个所述频域位置所含子载波数为N的倍数。
作为一种实现方式,所述N个子载波连续映射或等间隔映射到所述的每个频域位置上。
作为一种实现方式,所述预定义序列的中,包括但不限于:预定义序列为长度为N的Zadoff-Chu(ZC)序列,或者为长度为N的frank序列,或者长度为N的格雷序列,或者长度为N的Chu序列或者为长度为N的机选序列。
所述K个预定义需要由X个预定信道资源确定。X为正整数。所述信道资源可以不限于以下之一确定,
下行控制信息DCI动态指示;高层配置与DCI联合指示,或者隐式指示。或者下行控制信息DCI与隐式指示联合指示。
当发送不同的上行控制信息时,所述每个符号上发送的预定义序列由不同的预定信道资源确定。
作为一种实现方式,网络给用户终端分配的K个预定义序列,根据所述ZC序列的某一基序列进行不同循环移位获得。
作为一种实现方式,为降低小区间干扰不同网络小区之间可使用不同 的ZC基序列,或者不同网络小区发送所述上行控制信号时进行小区级的加扰。
作为一种实现方式,N=4;
用户终端利用K个不同预定义序列在M个不同时域符号上的不同发送组合表示所述上行控制信息。定义发送ACK对应比特“1”,发送NACK对应比特“0”。
特别地,当发送1比特ACK/NACK时,在M个符号上传输K个预定义序列,包括:
预定义序列的个数K为1≤K≤M的整数;
具体地,K=2,对于发送“1”和发送“0”时,在每个传输符号上所发送的预定义序列不同。
具体地,K=1,对于发送“1”和发送“0”时,所述预定义序列在传输符号上映射的频域子载波位置不同。
作为一种实现方式,所述预定义序列在不同传输符号上所映射的频域位置相同或者不完全相同。
所述ACK或NACK消息的比特数为1或2。
本发明实施例中,当所述发送信息为1比特ACK或NACK时,包括,定义两个预定义信道资源,分别表示为第一预定信道资源和第二预定信道资源。
当发送1比特ACK时,每个符号上发送的预定序列均由第一预定信道资源确定。
当发送1比特NACK时,每个符号上发送的预定序列均由第二预定信道资源确定。
本发明实施例中,当所述发送信息为2比特ACK或NACK时,包括,定义4个预定义信道资源,所发送的4种控制信息组合(ACK,ACK), (ACK,NACK),(NACK,ACK),(NACK,NACK)与所述4个预定义信道资源一一对应;对于4种发送组合之一,所述传输时间间隔内的所有符号的预定义序列均由对应的一个预定义信道资源唯一确定。
本发明实施例中,当所述发送信息为2比特ACK或NACK时,定义4个预定义信道资源,分别为第一、第二、第三、第四预定信道资源。所发送的4种控制信息组合包括:(ACK,ACK),(ACK,NACK),(NACK,ACK),(NACK,NACK)。
当发送(ACK,ACK)时,在第一频域位置的每个符号上发送的预定序列均由第一预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第二预定信道资源确定;
当发送(ACK,NACK)时,在第一频域位置的每个符号上发送的预定序列均由第二预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第一预定信道资源确定;
当发送(NACK,ACK)时,在第一频域位置的每个符号上发送的预定序列均由第三预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第四预定信道资源确定;
当发送(ACK,NACK)时,在第一频域位置的每个符号上发送的预定序列均由第四预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第三预定信道资源确定。
发送天线端口数为1。
当发送天线端口数为正整数A时,定义的预定义信道资源的个数为A×2B
对于每次传输,每个传输符号上发送的预定义序列的特征包括以下至少之一:
每个传输符号上发送的预定义序列之间存在小区级随机化或者用户级 随机化;
不同频域位置的符号之间的预定义序列之间存在随机化映射过程。
所述信道资源的特征包括至少以下之一:
Figure PCTCN2017078212-appb-000001
或2时,
Figure PCTCN2017078212-appb-000002
Figure PCTCN2017078212-appb-000003
时,
Figure PCTCN2017078212-appb-000004
或者
Figure PCTCN2017078212-appb-000005
或2或3时,
Figure PCTCN2017078212-appb-000006
其中,
Figure PCTCN2017078212-appb-000007
为所述发送控制信息所分配的预定信道资源,
Figure PCTCN2017078212-appb-000008
为LTE PUCCH格式1/1a/1b的信道资源,
Figure PCTCN2017078212-appb-000009
为资源块内的子载波数目。
具体地,当M小于等于7时,所述预定义序列在不同传输符号上所映射的频域位置在系统带宽的两侧。
特别地,当发送2比特ACK/NACK时,在M个符号上传输K个预定义序列,包括:
预定义序列的个数K=1,2或4。在每个符号上配置一个频域位置,该频域位置内有
Figure PCTCN2017078212-appb-000010
种不同的子载波配置,每种配置都含有N个不同的子载波。
作为一种实现方式,所述预定义序列在不同传输符号上所映射的频域位置相同或者不完全相同。
作为一种实现方式,当K=4时,发送“00”、发送“01”、发送“10”、发送“11”对应在每个传输符号上发送的预定义序列不同。
作为一种实现方式,当K=2时,在每个传输符号上的所述频域位置配置两种子载波位置,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上发送不同的预定义序列,或者预定义序列在传输符号上占用不同的子载波位置。
作为一种实现方式,当K=1时,在每个传输符号上的所述频域位置配置4种子载波位置,发送“00”、发送“01”、发送“10”、发送“11”时对 应在每个传输符号上占用不同的子载波位置。
具体地,当M=2且发送1比特ACK/NACK时,优选N=4,K=2。
作为一种实现方式,将所述两个预定义序列定义为第一预定义序列和第二预定义序列。对应地,发送所述1比特ACK/NACK,包括:
将所述第一预定义序列和第二预定义序列映射到传输时间间隔内两个不同的时域符号位置。利用不同预定义序列在不同时域符号上的不同组合表示所述1比特控制信息。具体实现方式包括但不限于以下组合:
用户终端发送ACK消息时,第一个符号发送第一预定义序列,第二个符号发送第二预定义序列;用户终端发送NACK消息时,第一个符号发送第二预定义序列,第二个符号发送第一预定义序列。
或者,用户终端发送ACK消息时,两个符号均发送第一预定义序列;用户终端发送NACK消息时,两个符号均发送第二预定义序列。
作为一种实现方式,所述第一预定义序列和第二预定义序列在每个时域符号上所在的频域位置不同,具体地,在系统带宽的两侧。
作为一种实现方式,当所述发送信息为1比特ACK或NACK时,定义两个预定义信道资源,分别表示为第一预定信道资源和第二预定信道资源;当所述预定义序列在两个频域位置发送时,定义两个频域位置分别为第一频域位置和第二频域位置;
当发送1比特ACK时,在第一频域位置的每个符号上发送的预定序列均由第一预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第二预定信道资源确定;
当发送1比特NACK时,在第一频域位置的每个符号上发送的预定序列均由第二预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第一预定信道资源确定。
具体地,当M=2且发送2比特ACK/NACK时,优选N=4,K=4或者 N=4,K=2。
当N=4,K=4时,将所述4个预定义序列分别定义为第一预定义序列、第二预定义序列、第三预定义序列、第四预定义序列。对应地,发送所述2比特ACK/NACK,包括:
将所述4个预定义序列映射到传输时间间隔内2个不同的时域符号位置。利用不同预定义序列在不同时域符号上的不同组合表示所述2比特控制信息。具体实现方式包括但不限于以下组合:
发送“0,0”时,第一个符号发送第一预定义序列,第二个符号发送第二预定义序列;发送“0,1”时,第一个符号发送第二预定义序列,第二个符号发送第一预定义序列;发送“1,0”时,第一个符号发送第三预定义序列,第二个符号发送第四预定义序列;发送“1,1”时,第一个符号发送第四预定义序列,第二个符号发送第三预定义序列;
或者,发送“0,0”时,两个符号均发送第一预定义序列;发送“0,1”时,两个符号均发送第二预定义序列;发送“1,0”时,两个符号均发送第三预定义序列;发送“1,1”时,两个符号均发送第四预定义序列。
作为一种实现方式,所述预定义序列在每个时域符号上所在的频域位置不同,具体地,在系统带宽的两侧。
当N=4,K=2时,将所述2个预定义序列分别定义为第一预定义序列、第二预定义序列。作为一种实现方式,在第一个符号上配置一个频域位置,称为第一频域位置,在该频域位置内再配置两种子载波位置,分别为第一子载波位置和第二子载波位置。在第二个符号上配置一个频域位置,称为第二频域位置,在该频域位置内再配置两种子载波位置,分别为第三子载波位置和第四子载波位置。所述子载波位置为等间隔的离散子载波,或者为连续的N个子载波。例如,第一子载波位置为偶数索引的子载波位置,第二子载波位置为奇数索引的子载波位置。将所述2个预定义序列映射到 传输时间间隔内2个不同的时域符号位置的不同子载波位置,利用不同的映射组合表示所述2比特控制信息。具体实现方式包括但不限于以下组合:
发送“0,0”时,第一个符号发送第一预定义序列且映射到第一子载波位置,第二个符号发送第二预定义序列且映射到第三子载波位置;发送“0,1”时,第一个符号发送第一预定义序列且映射到第二子载波位置,第二个符号发送第二预定义序列且映射到第四子载波位置;发送“1,0”时,第一个符号发送第二预定义序列且映射到第一子载波位置,第二个符号发送第一预定义序列且映射到第三子载波位置;发送“1,1”时,第一个符号发送第二预定义序列且映射到第二子载波位置,第二个符号发送第一预定义序列且映射到第四子载波位置。
作为一种实现方式,所述第一频域位置和第二频域位置在系统带宽的两侧。
具体地,当M=3且发送1比特ACK/NACK时,优选N=4,K=2或N=4,K=3。
当N=4,K=2时,将所述两个预定义序列定义为第一预定义序列和第二预定义序列。对应地,发送所述1比特ACK/NACK,包括:
利用不同预定义序列在3个不同时域符号上的不同发送组合表示所述1比特控制信息。具体实现方式包括但不限于以下组合,
用户终端发送ACK消息时,第一个符号发送第一预定义序列,第二个符号发送第二预定义序列,第三个符号发送第一预定义序列;用户终端发送NACK消息时,第一个符号发送第二预定义序列,第二个符号发送第一预定义序列,第三个符号发送第二预定义序列。
作为一种实现方式,所述预定义序列在每个时域符号上所在的频域位置不同,具体地,三个频域位置均匀的分布在整个系统带宽内。
具体地,当M=3且发送2比特ACK/NACK时,优选N=4,K=4。或 者N=4,K=2。
当N=4,K=4时,将所述4个预定义序列分别定义为第一预定义序列、第二预定义序列、第三预定义序列、第四预定义序列。
对应地,发送所述2比特ACK/NACK,包括:
将所述4个预定义序列映射到传输时间间隔内3个不同的时域符号位置。利用不同预定义序列在不同时域符号上的不同组合表示所述2比特控制信息。具体地,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上发送不同的预定义序列。例如,具体实现方式包括但不限于以下组合,
发送“0,0”时,第一个符号发送第一预定义序列,第二个符号发送第四预定义序列,第三个符号发送第三预定义序列;发送“0,1”时,第一个符号发送第二预定义序列,第二个符号发送第一预定义序列,第三个符号发送第四预定义序列;发送“1,0”时,第一个符号发送第三预定义序列,第二个符号发送第二预定义序列,第三个符号发送第一预定义序列;发送“1,1”时,第一个符号发送第四预定义序列,第二个符号发送第三预定义序列,第三个符号发送第二预定义序列;
当N=4,K=2时,将所述2个预定义序列分别定义为第一预定义序列、第二预定义序列。作为一种实现方式,在第一个符号上配置一个频域位置,分别为第一、二、三频域位置,在每个频域位置内再配置两种子载波位置。将所述2个预定义序列映射到传输时间间隔内3个不同时域符号的不同频域位置内的不同子载波位置,利用不同的映射组合表示所述2比特控制信息。
具体地,当M=4且发送1比特ACK/NACK时,优选N=4,K=2。
将所述两个预定义序列定义为第一预定义序列和第二预定义序列。
对应地,发送所述1比特ACK/NACK,包括:
利用不同预定义序列在4个不同时域符号上的不同发送组合表示所述1比特控制信息。具体实现方式包括但不限于以下组合,例如,
用户终端发送ACK消息时,第一个符号发送第一预定义序列,第二个符号发送第二预定义序列,第三个符号发送第一预定义序列,第四个符号发送第二预定义序列;用户终端发送NACK消息时,第一个符号发送第二预定义序列,第二个符号发送第一预定义序列,第三个符号发送第二预定义序列,第四个符号发送第一预定义序列。
作为一种实现方式,所述预定义序列在每个时域符号上所在的频域位置不完全相同,预定义序列在每个时域符号上所在的频域位置均不同,四个频域位置均匀的分布在整个系统带宽内,或者预定义序列在第一、二个时域符号上所在的频域位置相同,在第三、四个时域符号上所在的频域位置相同,但四个符号所在频域位置不全相同。
具体地,当M=4且发送2比特ACK/NACK时,优选N=4,K=4。
当N=4,K=4时,将所述4个预定义序列分别定义为第一预定义序列、第二预定义序列、第三预定义序列、第四预定义序列。
对应地,发送所述2比特ACK/NACK,包括:
将所述4个预定义序列映射到传输时间间隔内4个不同的时域符号位置。利用不同预定义序列在不同时域符号上的不同组合表示所述2比特控制信息。具体地,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上发送不同的预定义序列。例如,具体实现方式包括但不限于以下组合,
发送“0,0”时,第一、二、三、四个符号依次发送第一、二、三、四预定义序列,发送“0,1”时,第一、二、三、四个符号依次发送第二、三、四、一预定义序列,发送“1,0”时,第一、二、三、四个符号依次发送第三、四、一、二、预定义序列,发送“1,1”时,第一、二、三、 四个符号依次发送第四、一、二、三预定义序列,
当用户终端发送SR时,优选K=1,2,或4。
当K=1时,在M个符号上均发送该预定义序列;
当K=2时,将所述2个预定义序列分别定义为SR第一预定义序列、SR第二预定义序列。当单独发送SR时,在每个符号上发送两个预定义序列之一,不同符号上发送不同的预定义序列。特别地,当M=2时,在第一个符号上发送SR第一预定义序列,在第二个符号上发送SR第二预定义序列。
进一步,当SR与ACK/NACK复用时,采用SR的所述两个预定义序列发送ACK/NACK。
特别地,当M=2且SR与1比特ACK/NACK复用时,如果SR与ACK同时发送,在第一个符号上发送SR第一预定义序列,在第二个符号上发送SR第二预定义序列;如果SR与NACK同时发送,在第一个符号上发送SR第二预定义序列,在第二个符号上发送SR第一预定义序列。
当K=4时,将所述4个预定义序列分别定义为SR第一、二、三、四预定义序列。当单独发送SR时,在每个符号上发送所述4个序列之一,每个符号上发送序列不同。
进一步,当SR与ACK/NACK复用时,采用SR的所述4个预定义序列发送ACK/NACK。
特别地,当M=2且SR与2比特ACK/NACK复用时,如果同时发送SR和“0,0”时,第一个符号发送SR第一预定义序列,第二个符号发送SR第二预定义序列;同时发送SR和“0,1”时,第一个符号发送SR第二预定义序列,第二个符号发送SR第一预定义序列;同时发送SR和“1,0”时,第一个符号发送SR第三预定义序列,第二个符号发送SR第四预定义序列;同时发送SR和“1,1”时,第一个符号发送SR第四预定义序 列,第二个符号发送SR第三预定义序列;
作为一种实现方式,所述预定义序列在每个时域符号上所在的频域位置可以相同或者不完全相同。具体地,当M=2时,预定义序列在每个时域符号上所在的频域位置不同,在系统带宽的两侧;当M=3时,预定义序列在每个时域符号上所在的频域位置均不同,三个频域位置均匀的分布在整个系统带宽内;当M=4时,预定义序列在每个时域符号上所在的频域位置均不同,四个频域位置均匀的分布在整个系统带宽内,或者预定义序列在第一、二个时域符号上所在的频域位置相同,在第三、四个时域符号上所在的频域位置相同,且四个符号所在频域位置不全相同。
本发明实施例中,所述SR预定义序列由1个或2个或4个预定义信道资源确定。
以下通过具体示例,进一步阐明本发明实施例技术方案的实质。
实施例1
图2中示出了用户终端在2符号上采用两个预定义序列发送1比特ACK/NACK的示意图;假定网络给用户终端分配的预定义序列分别为ZC1(n)和ZC2(n)。序列长度为4,在频域上映射到连续的4个子载波上。首先采用如下公式产生一个ZC基序列。
Figure PCTCN2017078212-appb-000011
其中,q为基序列索引,ZC1(n)和ZC2(n)可通过分别对该基序列进行不同的时域循环移位获得。
如图2所示,当发送ACK消息时,用户终端在符号1处发送序列ZC1(n),在符号2处发送序列ZC2(n);当发送NACK消息时,用户终端在符号1处发送序列ZC2(n),在符号2处发送序列ZC1(n)。而且预定义序列在两个符号上映射的频域位置不同,且位于系统带宽两侧。
接收端可根据非相干检测判断ACK/NACK的发送。
实施例2
图3示出了用户终端在2符号上采用一个预定义序列SR的示意图。预定义序列长度为N=4,映射到连续的频域子载波上。假定网络给用户终端分配的预定义序列为ZCSR(n),配置为SR的发送。在两个符号上均发送该预定义序列且预定义序列在两个符号上映射的频域位置不同,且位于系统带宽两侧。接收端可根据能量检测判断是否有SR发送。
实施例3
图4中示出了用户终端在3符号上采用2个预定义序列发送1比特ACK/NACK的示意图;假定网络给用户终端分配的预定义序列分别为ZC1(n)和ZC2(n)。序列长度为4,在频域上映射到连续的4个子载波上。
用户终端发送ACK消息时,第一个符号发送ZC1(n),第二个符号发送ZC2(n),第三个符号发送ZC1(n);用户终端发送NACK消息时,第一个符号发送ZC2(n),第二个符号发送ZC1(n),第三个符号发送ZC2(n)。且每个符号上预定义序列映射到不同的频域位置,三个频域位置均匀的分别在系统带宽内。
实施例4
图5示出了用户终端在2符号上采用1个预定义序列发送1比特ACK/NACK的示意图;假定网络给用户终端分配的预定义序列为ZC(n)。序列长度为4,在频域上映射到离散的4个子载波上。网络在每个符号的频域上同时配置两种不同的子载波位置。如图中的偶数子载波位置和奇数子载波位置。
两个符号上均发送序列ZC(n),用户终端发送ACK消息时,序列映射在偶数子载波上,用户终端发送NACK消息时,序列映射在奇数子载波上。
接收端通过在不同子载波上进行非相干检测可以判断发送的是ACK还 是NACK。
实施例5
图6示出了用户终端在4符号上采用2个预定义序列发送1比特ACK/NACK的示意图;假定网络给用户终端分配的预定义序列分别为ZC1(n)和ZC2(n)。序列长度为4,在频域上映射到连续的4个子载波上。
用户终端发送ACK消息时,第一个符号在频域位置1发送ZC1(n),第二个符号在频域位置2发送ZC2(n),第三个符号在频域位置3发送ZC1(n),第四个符号在频域位置4发送ZC2(n);用户终端发送NACK消息时,第一个符号在频域位置1发送ZC2(n),第二个符号在频域位置2发送ZC1(n),第三个符号在频域位置3发送ZC2(n),第四个符号在频域位置4发送ZC1(n)。四个频域位置均匀的分别在系统带宽内。接收端通过在不同频域位置采用对应的预定义序列进行非相干检测判断发送的是ACK还是NACK。
实施例6
图7示出了用户终端在4符号上采用4个预定义序列发送2比特ACK/NACK的示意图;假定网络给用户终端分配的预定义序列分别为ZC1(n)、ZC2(n)、ZC3(n)和ZC4(n)。序列长度为4,在频域上映射到连续的4个子载波上。
预定义序列在前两个符号均映射在频域位置1的4个子载波上。预定义序列在后两个符号均映射在频域位置2的4个子载波上。频域位置1和频域位置2在系统带宽两侧。
具体地,用户终端发送“00”消息时,前两个符号在频域位置1发送ZC1(n),后两个符号在频域位置2发送ZC1(n);用户终端发送“01”消息时,前两个符号在频域位置1发送ZC2(n),后两个符号在频域位置2发送ZC2(n);用户终端发送“10”消息时,前两个符号在频域位置1发送 ZC3(n),后两个符号在频域位置2发送ZC3(n);用户终端发送“11”消息时,前两个符号在频域位置1发送ZC4(n),后两个符号在频域位置2发送ZC4(n)。
接收端通过在不同频域位置采用对应的预定义序列进行非相干检测判断2比特ACK/NACK。
实施例7
图8示出了用户终端在2符号上采用两个预定义序列发送1比特ACK/NACK+SR的示意图;假定网络给用户终端分配的用户终端SR的预定义序列分别为ZCSR1(n)和ZC SR2(n)。序列长度为4。而此时用户终端同时需要发送1比特的ACK/NACK,则用户终端在两个符号上发送ZCSR1(n)和ZC SR2(n)实现ACK/NACK和SR的复用。
如图8所示,当用户终端需要发送SR,且同时发送ACK消息时,用户终端在符号1处发送序列ZCSR1(n),在符号2处发送序列ZC SR2(n);同时发送NACK消息时,用户终端在符号1处发送序列ZC SR2(n),在符号2处发送序列ZCSR1(n)。而且预定义序列在两个符号上映射的频域位置不同,且位于系统带宽两侧。
接收端采用ZCSR1(n)和ZC SR2(n)在对应符号上做能量检测判断是否发送SR,以及判断ACK/NACK的发送。
实施例8
图9中给出了用户终端在2符号上采用4个预定义序列发送2比特ACK/NACK+SR的示意图;假定网络给用户分配的用户SR的预定义序列分别为ZCSR1(n),ZC SR2(n),ZCSR3(n)和ZC SR4(n)。序列长度为4。而此时用户同时需要发送2比特的ACK/NACK,则用户在两个符号上发送所述4个SR的预定义序列实现ACK/NACK和SR的复用。
如图9所示,当用户需要发送SR,且同时发送“00”ACK/NACK消 息时,用户在符号1处发送序列ZCSR1(n),在符号2处发送序列ZC SR2(n);同时发送“01”ACK/NACK消息时,用户在符号1处发送序列ZC SR2(n),在符号2处发送序列ZCSR1(n),同时发送“10”ACK/NACK消息时,用户在符号1处发送序列ZCSR3(n),在符号2处发送序列ZC SR4(n);同时发送“11”ACK/NACK消息时,用户在符号1处发送序列ZC SR4(n),在符号2处发送序列ZCSR3(n)。而且预定义序列在两个符号上映射的频域位置不同,且位于系统带宽两侧。
接收端采用所述四个预定义序列在对应符号上做能量检测判断是否发送SR,以及判断ACK/NACK的发送。
实施例9
图10中给出了用户终端在2符号上采用两个预定义序列发送1比特ACK/NACK的示意图;假定网络给用户分配的预定义序列分别为ZC1(n)和ZC2(n)。序列长度为N=12,采用现有LTE系统中PUCCH所用的机选序列。
如图10所示,当发送ACK消息时,用户在符号1处发送序列ZC1(n),在符号2处发送序列ZC2(n);当发送NACK消息时,用户在符号1处发送序列ZC2(n),在符号2处发送序列ZC1(n)。而且预定义序列在两个符号上映射的频域位置相同。
接收端可根据非相干检测判断ACK/NACK的发送。
实施例10
图11中给出了用户终端在2符号上发送1比特ACK/NACK的示意图;用户终端使用两个预定义的信道资源
Figure PCTCN2017078212-appb-000012
确定每个符号上发送的预定义序列。具体的,当发送ACK时,第一个符号上的预定义序列由
Figure PCTCN2017078212-appb-000013
计算得到,该预定义序列循环移位量为图中的
Figure PCTCN2017078212-appb-000014
第二个符号上发送的预定义序列由第一个符号预定义序列进行随机化映射得 到,所采用的循环移位为图中的
Figure PCTCN2017078212-appb-000015
同理的,当发送NACK时,第一个符号上的预定义序列由
Figure PCTCN2017078212-appb-000016
计算得到,该预定义序列循环移位量为图中的
Figure PCTCN2017078212-appb-000017
第二个符号上发送的预定义序列有第一个符号预定义序列进行随机化映射得到,该预定义序列循环移位量为图中的
Figure PCTCN2017078212-appb-000018
其中ns为时隙索引,nsl为两个跳频位置的索引,l为符号索引。
图中nPRB为PRB索引,每个PRB内含有12个子载波,所述预定义序列长度为12。m为缩短的资源块索引。
图12本发明实施例的用户终端在3符号上发送1比特ACK/NACK的示意图;用户终端使用两个预定义的信道资源
Figure PCTCN2017078212-appb-000019
确定每个符号上发送的预定义序列。具体的,当发送ACK时,在PRB索引为0的频域位置的第一个符号和第二个符号上的预定义序列由
Figure PCTCN2017078212-appb-000020
计算得到,该预定义序列循环移位量为图中的
Figure PCTCN2017078212-appb-000021
在PRB索引为
Figure PCTCN2017078212-appb-000022
的频域位置的第三个符号上发送的预定义序列由
Figure PCTCN2017078212-appb-000023
计算得到,所采用的循环移位为图中的
Figure PCTCN2017078212-appb-000024
同理的,当发送NACK时,在PRB索引为0的频域位置的第一个符号和第二个符号上的预定义序列由
Figure PCTCN2017078212-appb-000025
计算得到,该预定义序列循环移位量为图中的
Figure PCTCN2017078212-appb-000026
在PRB索引为
Figure PCTCN2017078212-appb-000027
的频域位置的第三个符号上发送的预定义序列由
Figure PCTCN2017078212-appb-000028
计算得到,所采用的循环移位为图中的
Figure PCTCN2017078212-appb-000029
其中ns为时隙索引,l为符号索引。
图中nPRB为PRB索引,每个PRB内含有12个子载波,所述预定义序列长度为12。m为缩短的资源块索引。
图13为本发明实施例的上行控制信号传输装置的组成结构示意图,如图13所示,本发明实施例的上行控制信号传输装置包括:
接收单元110,配置为接收网络侧为用户终端配置相应的频域位置或者预定义序列为避免网络小区内不同用户终端之间的干扰,网络侧可以为不同用户终端配置不同的频域位置或者不同的预定义序列。
传输单元111,配置为在传输时间间隔内的M个传输符号上发送K个预定义序列来传输B比特的上行控制信息。
其中,M为正整数,K为整数,且1≤K≤2B;B为大于等于1的整数;在所述M个传输符号中的每个传输符号上发送所述K个预定义序列之一;所述预定义序列长度为N,且映射在对应传输符号的N个子载波上,其中N=2n,n为正整数。
本发明实施例中,在所述M个传输符号上,至多有M个不同的频域位置,任意一个所述频域位置所含子载波数为N的倍数。
所述N个子载波连续映射或等间隔映射到所述的每个频域位置上。
所述预定义序列包括:长度为N的Zadoff-Chu序列,或者为长度为N的frank序列,或者长度为N的格雷序列,或者长度为N的Chu序列或者为长度为N的机选序列;
或者,根据所述序列进行时域循环移位获得的序列。
所述方法还包括:
所述用户终端利用K个预定义序列在M个传输符号中的不同时域符号上的发送组合表示所述上行控制信息。
所述K个预定义序列由X个预定信道资源确定;X为正整数;
所述信道资源由以下信息至少之一确定:
下行控制信息DCI动态指示;高层配置与DCI联合指示,隐式指示;下行控制信息DCI与隐式指示联合指示。
发送不同的上行控制信息时,所述每个符号上发送的预定义序列由不同的预定信道资源确定。
所述上行控制信息包括确认信息ACK、非确认信息NACK;
假设ACK对应比特“1”,NACK对应比特“0”,发送ACK或NACK时,通过在每个传输符号上所发送的预定义序列不同来分别表示ACK或NACK。
所述上行控制信息包括ACK、NACK;
假设ACK对应比特“1”,NACK对应比特“0”,发送ACK或NACK时,通过在所述预定义序列在传输符号上映射的频域子载波位置不同来分别表示ACK或NACK。
所述ACK或NACK消息的比特数为1或2。
当所述发送信息为1比特ACK或NACK时,定义两个预定义信道资源,分别表示为第一预定信道资源和第二预定信道资源;
当发送1比特ACK时,每个符号上发送的预定序列均由第一预定信道资源确定;
当发送1比特NACK时,每个符号上发送的预定序列均由第二预定信道资源确定。
当所述发送信息为2比特ACK或NACK时,定义4个预定义信道资源,所发送的4种控制信息组合包括:(ACK,ACK),(ACK,NACK),(NACK,ACK),(NACK,NACK)与所述4个预定义信道资源一一对应。
发送天线端口数为1。
当发送天线端口数为正整数A时,定义的预定义信道资源的个数为A×2B
对于每次传输,每个传输符号上发送的预定义序列的特征包括以下至少之一:
每个传输符号上发送的预定义序列之间存在小区级随机化或者用户级随机化;
不同频域位置的符号之间的预定义序列之间存在随机化映射过程。
所述信道资源的特征包括至少以下之一:
Figure PCTCN2017078212-appb-000030
或2时,
Figure PCTCN2017078212-appb-000031
Figure PCTCN2017078212-appb-000032
时,
Figure PCTCN2017078212-appb-000033
或者
Figure PCTCN2017078212-appb-000034
或2或3时,
Figure PCTCN2017078212-appb-000035
其中,
Figure PCTCN2017078212-appb-000036
为所述发送控制信息所分配的预定信道资源,
Figure PCTCN2017078212-appb-000037
为LTE PUCCH格式1/1a/1b的信道资源,
Figure PCTCN2017078212-appb-000038
为资源块内的子载波数目。
在图13所示的上行控制信号传输装置的基础上,所述装置还包括:
指示单元(图13中未示出),配置为利用K个预定义序列在M个传输符号中的不同时域符号上的发送组合表示所述上行控制信息。
本发明实施例中,假设ACK对应比特“1”,NACK对应比特“0”,K=2,发送ACK或NACK时,通过在每个传输符号上所发送的预定义序列不同来分别表示ACK或NACK。
本发明实施例中,所述预定义序列在不同传输符号上所映射的频域位置相同或者不完全相同。
当M小于等于7时,所述预定义序列在不同传输符号上所映射的频域位置在系统带宽的两侧。
本发明实施例中,假设ACK对应比特“1”,NACK对应比特“0”,K=1,发送ACK或NACK时,通过在所述预定义序列在传输符号上映射的频域子载波位置不同来分别表示ACK或NACK。
本发明实施例中,所述预定义序列在传输符号上映射的位置在系统带宽的两侧。
本发明实施例中,假设ACK对应比特“1”,NACK对应比特“0”,当发送2比特ACK/NACK,预定义序列的个数K=1,2或4时,
在每个符号上配置一个频域位置,该频域位置内有
Figure PCTCN2017078212-appb-000039
种不同的子载波配置,每种配置都含有N个不同的子载波;
通过所述预定义序列在不同传输符号上所映射的频域位置相同或者不完全相同。
本发明实施例中,当K=4时,发送“00”、发送“01”、发送“10”、发送“11”对应在每个传输符号上发送的预定义序列不同;
当K=2时,在每个传输符号上的所述频域位置配置两种子载波位置,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上发送不同的预定义序列,或者预定义序列在传输符号上占用不同的子载波位置;
当K=1时,在每个传输符号上的所述频域位置配置4种子载波位置,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上占用不同的子载波位置。
本发明实施例中,当M=2且发送1比特ACK/NACK时,N=4,K=2。
本发明实施例中,将所述两个预定义序列定义为第一预定义序列和第二预定义序列;假设ACK对应比特“1”,NACK对应比特“0”,
将所述第一预定义序列和第二预定义序列映射到传输时间间隔内两个不同的时域符号位置;
发送ACK消息时,第一个符号发送第一预定义序列,第二个符号发送第二预定义序列;发送NACK消息时,第一个符号发送第二预定义序列,第二个符号发送第一预定义序列;
或者,发送ACK时,两个符号均发送第一预定义序列;发送NACK消息时,两个符号均发送第二预定义序列。
本发明实施例中,所述第一预定义序列和第二预定义序列在每个时域符号上所在的频域位置不同。
本发明实施例中,所述第一预定义序列和第二预定义序列在系统带宽的两侧。
本发明实施例中,当M=2且发送2比特ACK/NACK时,N=4,K=4,或者N=4,K=2。
本发明实施例中,当N=4,K=4时,将所述4个预定义序列分别定义为第一预定义序列、第二预定义序列、第三预定义序列、第四预定义序列;
发送2比特ACK/NACK,包括:
将所述4个预定义序列映射到传输时间间隔内的2个不同的时域符号位置;利用不同预定义序列在不同时域符号上的不同组合表示所述2比特控制信息。
本发明实施例中,发送“0,0”时,第一个符号发送第一预定义序列,第二个符号发送第二预定义序列;发送“0,1”时,第一个符号发送第二预定义序列,第二个符号发送第一预定义序列;发送“1,0”时,第一个符号发送第三预定义序列,第二个符号发送第四预定义序列;发送“1,1”时,第一个符号发送第四预定义序列,第二个符号发送第三预定义序列;
或者,发送“0,0”时,两个符号均发送第一预定义序列;发送“0,1”时,两个符号均发送第二预定义序列;发送“1,0”时,两个符号均发送第三预定义序列;发送“1,1”时,两个符号均发送第四预定义序列。
本发明实施例中,所述预定义序列在每个时域符号上所在的频域位置不同。
本发明实施例中,所述预定义序列在系统带宽的两侧。
本发明实施例中,当N=4,K=2时,将所述2个预定义序列分别定义为第一预定义序列、第二预定义序列;
在第一个符号上配置第一频域位置;在所述第一频域位置内配置两种子载波位置,分别为第一子载波位置和第二子载波位置;在第二个符号上 配置第二频域位置,在所述第二频域位置内配置两种子载波位置,分别为第三子载波位置和第四子载波位置。
本发明实施例中,所述子载波位置为等间隔的离散子载波,或者为连续的N个子载波。
本发明实施例中,发送“0,0”时,第一个符号发送第一预定义序列且映射到第一子载波位置,第二个符号发送第二预定义序列且映射到第三子载波位置;发送“0,1”时,第一个符号发送第一预定义序列且映射到第二子载波位置,第二个符号发送第二预定义序列且映射到第四子载波位置;发送“1,0”时,第一个符号发送第二预定义序列且映射到第一子载波位置,第二个符号发送第一预定义序列且映射到第三子载波位置;发送“1,1”时,第一个符号发送第二预定义序列且映射到第二子载波位置,第二个符号发送第一预定义序列且映射到第四子载波位置。
本发明实施例中,所述第一频域位置和第二频域位置在系统带宽的两侧。
本发明实施例中,当M=3且发送1比特ACK/NACK时,N=4,K=2或N=4,K=3。
本发明实施例中,当N=4,K=2时,将所述两个预定义序列定义为第一预定义序列和第二预定义序列;
发送所述1比特ACK/NACK,包括:
利用不同预定义序列在3个不同时域符号上的不同发送组合表示所述1比特控制信息。
本发明实施例中,发送ACK时,第一个符号发送第一预定义序列,第二个符号发送第二预定义序列,第三个符号发送第一预定义序列;
发送NACK时,第一个符号发送第二预定义序列,第二个符号发送第一预定义序列,第三个符号发送第二预定义序列。
本发明实施例中,所述预定义序列在每个时域符号上所在的频域位置不同。
本发明实施例中,所述预定义序列在每个时域符号上所在的三个频域位置均匀分布在整个系统带宽内。
本发明实施例中,当M=3且发送2比特ACK/NACK时,N=4,K=4,或者N=4,K=2。
本发明实施例中,当N=4,K=4时,将所述4个预定义序列分别定义为第一预定义序列、第二预定义序列、第三预定义序列、第四预定义序列;
发送所述2比特ACK/NACK,包括:
将所述4个预定义序列映射到传输时间间隔内3个不同的时域符号位置,利用不同预定义序列在不同时域符号上的不同组合表示所述2比特控制信息。
本发明实施例中,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上发送不同的预定义序列。
本发明实施例中,发送“0,0”时,第一个符号发送第一预定义序列,第二个符号发送第四预定义序列,第三个符号发送第三预定义序列;发送“0,1”时,第一个符号发送第二预定义序列,第二个符号发送第一预定义序列,第三个符号发送第四预定义序列;发送“1,0”时,第一个符号发送第三预定义序列,第二个符号发送第二预定义序列,第三个符号发送第一预定义序列;发送“1,1”时,第一个符号发送第四预定义序列,第二个符号发送第三预定义序列,第三个符号发送第二预定义序列。
本发明实施例中,当N=4,K=2时,将所述2个预定义序列分别定义为第一预定义序列、第二预定义序列;在第一个符号上配置一个频域位置,分别为第一、二、三频域位置,在每个频域位置内再配置两种子载波位置;
将所述2个预定义序列映射到传输时间间隔内3个不同时域符号的不 同频域位置内的不同子载波位置,利用不同的映射组合表示所述2比特控制信息。
本发明实施例中,当M=4且发送1比特ACK/NACK时,N=4,K=2;
将所述两个预定义序列定义为第一预定义序列和第二预定义序列;
发送ACK/NACK,包括:
利用不同预定义序列在4个不同时域符号上的不同发送组合表示所述1比特控制信息。
本发明实施例中,发送ACK时,第一个符号发送第一预定义序列,第二个符号发送第二预定义序列,第三个符号发送第一预定义序列,第四个符号发送第二预定义序列;发送NACK时,第一个符号发送第二预定义序列,第二个符号发送第一预定义序列,第三个符号发送第二预定义序列,第四个符号发送第一预定义序列。
本发明实施例中,所述预定义序列在每个时域符号上所在的频域位置不完全相同。
本发明实施例中,所述预定义序列在每个时域符号上所在的频域位置均不同,四个频域位置均匀的分布在整个系统带宽内;
或者预定义序列在第一、二个时域符号上所在的频域位置相同,在第三、四个时域符号上所在的频域位置相同,但四个符号所在频域位置不全相同。
本发明实施例中,当M=4且发送2比特ACK/NACK时,N=4,K=4;
将所述4个预定义序列分别定义为第一预定义序列、第二预定义序列、第三预定义序列、第四预定义序列;
发送ACK/NACK,包括:
将所述4个预定义序列映射到传输时间间隔内4个不同的时域符号位置;利用不同预定义序列在不同时域符号上的不同组合表示所述2比特控 制信息。
本发明实施例中,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上发送不同的预定义序列。
本发明实施例中,发送“0,0”时,第一、二、三、四个符号依次发送第一、二、三、四预定义序列,发送“0,1”时,第一、二、三、四个符号依次发送第二、三、四、一预定义序列,发送“1,0”时,第一、二、三、四个符号依次发送第三、四、一、二、预定义序列,发送“1,1”时,第一、二、三、四个符号依次发送第四、一、二、三预定义序列,
本发明实施例中,当用户终端发送调度请求SR时,K=1,2,或4。以下介绍发送SR时的情况。
本发明实施例中,当K=1时,在M个符号上均发送该预定义序列;
当K=2时,将所述2个预定义序列分别定义为SR第一预定义序列、SR第二预定义序列。当单独发送SR时,在每个符号上发送两个预定义序列之一,不同符号上发送不同的预定义序列。特别地,当M=2时,在第一个符号上发送SR第一预定义序列,在第二个符号上发送SR第二预定义序列。
本发明实施例中,当SR与ACK/NACK复用时,采用SR的所述两个预定义序列发送ACK/NACK。
当M=2且SR与1比特ACK/NACK复用时,如果SR与ACK同时发送,在第一个符号上发送SR第一预定义序列,在第二个符号上发送SR第二预定义序列;如果SR与NACK同时发送,在第一个符号上发送SR第二预定义序列,在第二个符号上发送SR第一预定义序列。
本发明实施例中,当K=4时,将所述4个预定义序列分别定义为SR第一、二、三、四预定义序列。当单独发送SR时,在每个符号上发送所述4个序列之一,每个符号上发送序列不同。
本发明实施例中,当SR与ACK/NACK复用时,采用SR的所述4个预定义序列发送ACK/NACK。
本发明实施例中,当M=2且SR与2比特ACK/NACK复用的情况下,同时发送SR和“0,0”时,第一个符号发送SR第一预定义序列,第二个符号发送SR第二预定义序列;同时发送SR和“0,1”时,第一个符号发送SR第二预定义序列,第二个符号发送SR第一预定义序列;同时发送SR和“1,0”时,第一个符号发送SR第三预定义序列,第二个符号发送SR第四预定义序列;同时发送SR和“1,1”时,第一个符号发送SR第四预定义序列,第二个符号发送SR第三预定义序列。
本发明实施例中,所述预定义序列在每个时域符号上所在的频域位置可以相同或者不完全相同。
本发明实施例中,当M=2时,预定义序列在每个时域符号上所在的频域位置不同,在系统带宽的两侧;当M=3时,预定义序列在每个时域符号上所在的频域位置均不同,三个频域位置均匀的分布在整个系统带宽内;当M=4时,预定义序列在每个时域符号上所在的频域位置均不同,四个频域位置均匀的分布在整个系统带宽内,或者预定义序列在第一、二个时域符号上所在的频域位置相同,在第三、四个时域符号上所在的频域位置相同,且四个符号所在频域位置不全相同。
本领域技术人员应当理解,图13所示的上行控制信号传输装置中的各单元的实现功能可参照前述上行控制信号传输方法的相关描述而理解。图13所示的上行控制信号传输装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图14为本发明实施例的用户终端的组成结构示意图,如图14所示,本发明实施例的用户终端包括控制器50和存储器52,控制器50和存储器52之间通过地址及控制总线51连接;控制器52中存储有各种控制程序和 应用程序,以对相关硬件进行控制,完成信号信息处理和信息输入输出等。所述控制器50通过调用控制程序和应用程序,执行以下处理:在传输时间间隔内的M个传输符号上发送K个预定义序列来传输B比特的上行控制信息,其中,M为正整数,K为整数,且1≤K≤2B;B为大于等于1的整数;在所述M个传输符号中的每个传输符号上发送所述K个预定义序列之一;所述预定义序列长度为N,且映射在对应传输符号的N个子载波上,其中N=2n,n为正整数。
本发明实施例中,在所述M个传输符号上,至多有M个不同的频域位置,任意一个所述频域位置所含子载波数为N的倍数。
所述N个子载波连续映射或等间隔映射到所述的每个频域位置上。
所述预定义序列包括:长度为N的Zadoff-Chu序列,或者为长度为N的frank序列,或者长度为N的格雷序列,或者长度为N的Chu序列或者为长度为N的机选序列;
或者,根据所述序列进行时域循环移位获得的序列。
所述控制器50通过调用控制程序和应用程序,还执行以下处理:
利用K个预定义序列在M个传输符号中的不同时域符号上的发送组合表示所述上行控制信息。
本发明实施例中,所述K个预定义序列由X个预定信道资源确定;X为正整数;
所述信道资源由以下信息至少之一确定:
下行控制信息DCI动态指示;高层配置与DCI联合指示,隐式指示;下行控制信息DCI与隐式指示联合指示。
所述控制器50通过调用控制程序和应用程序,还执行以下处理:当发送不同的上行控制信息时,所述每个符号上发送的预定义序列由不同的预定信道资源确定。
其中,所述上行控制信息包括确认信息ACK、非确认信息NACK;
假设ACK对应比特“1”,NACK对应比特“0”,发送ACK或NACK时,通过在每个传输符号上所发送的预定义序列不同来分别表示ACK或NACK。
其中,所述上行控制信息包括ACK、NACK;
假设ACK对应比特“1”,NACK对应比特“0”,发送ACK或NACK时,通过在所述预定义序列在传输符号上映射的频域子载波位置不同来分别表示ACK或NACK。
所述ACK或NACK消息的比特数为1或2。
当所述发送信息为1比特ACK或NACK时,定义两个预定义信道资源,分别表示为第一预定信道资源和第二预定信道资源;
当发送1比特ACK时,每个符号上发送的预定序列均由第一预定信道资源确定;
当发送1比特NACK时,每个符号上发送的预定序列均由第二预定信道资源确定。
当所述发送信息为2比特ACK或NACK时,定义4个预定义信道资源,所发送的4种控制信息组合包括:(ACK,ACK),(ACK,NACK),(NACK,ACK),(NACK,NACK)与所述4个预定义信道资源一一对应。
发送天线端口数为1。
当发送天线端口数为正整数A时,定义的预定义信道资源的个数为A×2B
对于每次传输,每个传输符号上发送的预定义序列的特征包括以下至少之一:
每个传输符号上发送的预定义序列之间存在小区级随机化或者用户级随机化;
不同频域位置的符号之间的预定义序列之间存在随机化映射过程。
所述信道资源包括至少以下之一:
Figure PCTCN2017078212-appb-000040
或2时,
Figure PCTCN2017078212-appb-000041
Figure PCTCN2017078212-appb-000042
时,
Figure PCTCN2017078212-appb-000043
其中
Figure PCTCN2017078212-appb-000044
为所述发送控制信息所分配的预定信道资源,
Figure PCTCN2017078212-appb-000045
为LTE PUCCH格式1/1a/1b的信道资源。
Figure PCTCN2017078212-appb-000046
为资源块内的子载波数目。
所述预定义序列在不同传输符号上所映射的频域位置相同或者部分相同。
其中,当M小于等于7时,所述预定义序列在不同传输符号上所映射的频域位置在系统带宽的两侧。
所述上行控制信息包括ACK、NACK;
假设ACK对应比特“1”,NACK对应比特“0”,当发送2比特ACK/NACK,预定义序列的个数K=1,2或4时,
在每个符号上配置一个频域位置,该频域位置内有
Figure PCTCN2017078212-appb-000047
种不同的子载波配置,每种配置都含有N个不同的子载波;
所述预定义序列在不同传输符号上所映射的频域位置相同或者不完全相同。
当K=4时,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上发送的预定义序列不同;
当K=2时,在每个传输符号上的所述频域位置配置两种子载波位置,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上发送不同的预定义序列,或者预定义序列在传输符号上占用不同的子载波位置;
当K=1时,在每个传输符号上的所述频域位置配置4种子载波位置, 发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上占用不同的子载波位置。
所述上行控制信息包括调度请求SR、ACK、NACK;
当用户终端发送调度请求SR时,K=1,2,或4。
当K=1时,在M个符号上均发送该预定义序列;
当K=2时,将所述2个预定义序列分别定义为SR第一预定义序列、SR第二预定义序列。当单独发送SR时,在每个符号上发送两个预定义序列之一,不同符号上发送不同的预定义序列。特别地,当M=2时,在第一个符号上发送SR第一预定义序列,在第二个符号上发送SR第二预定义序列。
其中,当SR与ACK/NACK复用时,采用SR的所述预定义序列发送ACK/NACK。
当M=2且SR与1比特ACK/NACK复用时,如果SR与ACK同时发送,在第一个符号上发送SR第一预定义序列,在第二个符号上发送SR第二预定义序列;如果SR与NACK同时发送,在第一个符号上发送SR第二预定义序列,在第二个符号上发送SR第一预定义序列。
当K=4时,将所述4个预定义序列分别定义为SR第一、二、三、四预定义序列。当单独发送SR时,在每个符号上发送所述4个序列之一,每个符号上发送序列不同。
本发明实施例中,当所述发送信息为1比特ACK或NACK时,定义两个预定义信道资源,分别表示为第一预定信道资源和第二预定信道资源;当所述预定义序列在两个频域位置发送时,定义两个频域位置分别为第一频域位置和第二频域位置。
当发送1比特ACK时,在第一频域位置的每个符号上发送的预定序列均由第一预定信道资源确定;在第二频域位置的每个符号上发送的预定序 列均由第二预定信道资源确定;
当发送1比特NACK时,在第一频域位置的每个符号上发送的预定序列均由第二预定信道资源确定。在第二频域位置的每个符号上发送的预定序列均由第一预定信道资源确定。
本发明实施例中,当所述发送信息为2比特ACK或NACK时,定义4个预定义信道资源,分别为第一、第二、第三、第四预定信道资源。所发送的4种控制信息组合包括:(ACK,ACK),(ACK,NACK),(NACK,ACK),(NACK,NACK)。
当发送(ACK,ACK)时,在第一频域位置的每个符号上发送的预定序列均由第一预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第二预定信道资源确定;
当发送(ACK,NACK)时,在第一频域位置的每个符号上发送的预定序列均由第二预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第一预定信道资源确定;
当发送(NACK,ACK)时,在第一频域位置的每个符号上发送的预定序列均由第三预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第四预定信道资源确定;
当发送(ACK,NACK)时,在第一频域位置的每个符号上发送的预定序列均由第四预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第三预定信道资源确定。
本发明实施例还记载了一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序在被处理器调用时,执行前述各实施例的上行控制信号传输方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例 如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read Only  Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种上行控制信号传输方法,所述方法包括:
    用户终端在传输时间间隔内的M个传输符号上发送K个预定义序列来传输B比特的上行控制信息,其中,M为正整数,K为整数,且1≤K≤2B;B为大于等于1的整数;在所述M个传输符号中的每个传输符号上发送所述K个预定义序列之一;所述预定义序列长度为N,且映射在对应传输符号的N个子载波上,其中N=2n,n为正整数。
  2. 根据权利要求1所述的上行控制信号传输方法,其中,
    在所述M个传输符号上,至多有M个不同的频域位置,任意一个所述频域位置所含子载波数为N的倍数。
  3. 根据权利要求2所述的上行控制信号传输方法,其中,所述N个子载波连续映射或等间隔映射到所述的每个频域位置上。
  4. 根据权利要求1所述的上行控制信号传输方法,其中,所述预定义序列包括:长度为N的Zadoff-Chu序列,或者为长度为N的frank序列,或者长度为N的格雷序列,或者长度为N的Chu序列或者为长度为N的机选序列;
    或者,根据所述序列进行时域循环移位获得的序列。
  5. 根据权利要求1至4任一项所述的上行控制信号传输方法,其中,所述方法还包括:
    所述用户终端利用K个预定义序列在M个传输符号中的不同时域符号上的发送组合表示所述上行控制信息。
  6. 根据权利要求5所述的上行控制信号传输方法,所述K个预定义序列由X个预定信道资源确定;X为正整数;
    所述信道资源由以下信息至少之一确定:
    下行控制信息DCI动态指示;高层配置与DCI联合指示,隐式指示; 下行控制信息DCI与隐式指示联合指示。
  7. 根据权利要求1或6所述的上行控制信号传输方法,当发送不同的上行控制信息时,所述每个符号上发送的预定义序列由不同的预定信道资源确定。
  8. 根据权利要求5所述的上行控制信号传输方法,其中,所述上行控制信息包括确认信息ACK、非确认信息NACK;
    假设ACK对应比特“1”,NACK对应比特“0”,发送ACK或NACK时,通过在每个传输符号上所发送的预定义序列不同来分别表示ACK或NACK。
  9. 根据权利要求5所述的上行控制信号传输方法,其中,所述上行控制信息包括ACK、NACK;
    假设ACK对应比特“1”,NACK对应比特“0”,发送ACK或NACK时,通过在所述预定义序列在传输符号上映射的频域子载波位置不同来分别表示ACK或NACK。
  10. 根据权利要求8或9所述的上行控制信号传输方法,所述ACK或NACK消息的比特数为1或2。
  11. 根据权利要求1或6所述的上行控制信号传输方法,当所述发送信息为1比特ACK或NACK时,定义两个预定义信道资源,分别表示为第一预定信道资源和第二预定信道资源;当发送1比特ACK时,每个符号上发送的预定序列均由第一预定信道资源确定;
    当发送1比特NACK时,每个符号上发送的预定序列均由第二预定信道资源确定。
  12. 根据权利要求1、2或6所述的上行控制信号传输方法,当所述发送信息为1比特ACK或NACK时,定义两个预定义信道资源,分别表示为第一预定信道资源和第二预定信道资源;当所述预定义序列在两个频域 位置发送时,定义两个频域位置分别为第一频域位置和第二频域位置;
    当发送1比特ACK时,在第一频域位置的每个符号上发送的预定序列均由第一预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第二预定信道资源确定;
    当发送1比特NACK时,在第一频域位置的每个符号上发送的预定序列均由第二预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第一预定信道资源确定。
  13. 根据权利要求1或6所述的上行控制信号传输方法,当所述发送信息为2比特ACK或NACK时,定义4个预定义信道资源,所发送的4种控制信息组合包括:(ACK,ACK),(ACK,NACK),(NACK,ACK),(NACK,NACK)与所述4个预定义信道资源一一对应,对于4种发送组合之一,所述传输时间间隔内的所有符号的预定义序列均由对应的一个预定义信道资源唯一确定。
  14. 根据权利要求1或2或6所述的上行控制信号传输方法,当所述发送信息为2比特ACK或NACK时,定义4个预定义信道资源,分别为第一、第二、第三、第四预定信道资源。所发送的4种控制信息组合包括:(ACK,ACK),(ACK,NACK),(NACK,ACK),(NACK,NACK)。
    当发送(ACK,ACK)时,在第一频域位置的每个符号上发送的预定序列均由第一预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第二预定信道资源确定;
    当发送(ACK,NACK)时,在第一频域位置的每个符号上发送的预定序列均由第二预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第一预定信道资源确定;
    当发送(NACK,ACK)时,在第一频域位置的每个符号上发送的预定序列均由第三预定信道资源确定;在第二频域位置的每个符号上发送的预 定序列均由第四预定信道资源确定;
    当发送(ACK,NACK)时,在第一频域位置的每个符号上发送的预定序列均由第四预定信道资源确定;在第二频域位置的每个符号上发送的预定序列均由第三预定信道资源确定。
  15. 根据权利要求11或12或13或14所述的上行控制信号传输方法,发送天线端口数为1。
  16. 根据权利要求1或6所述的上行控制信号传输方法,当发送天线端口数为正整数A时,定义的预定义信道资源的个数为A×2B
  17. 根据权利要求或13或14所述的上行控制信号传输方法,对于每次传输,每个传输符号上发送的预定义序列的特征包括以下至少之一:
    每个传输符号上发送的预定义序列之间存在小区级随机化或者用户级随机化;
    不同频域位置的符号之间的预定义序列之间存在随机化映射过程。
  18. 根据权利要求1或6所述的上行控制信号传输方法,所述信道资源的特征包括至少以下之一:
    Figure PCTCN2017078212-appb-100001
    或2时,
    Figure PCTCN2017078212-appb-100002
    Figure PCTCN2017078212-appb-100003
    时,
    Figure PCTCN2017078212-appb-100004
    或者
    Figure PCTCN2017078212-appb-100005
    或2或3时,
    Figure PCTCN2017078212-appb-100006
    其中,
    Figure PCTCN2017078212-appb-100007
    为所述发送控制信息所分配的预定信道资源,
    Figure PCTCN2017078212-appb-100008
    为LTEPUCCH格式1/1a/1b的信道资源,
    Figure PCTCN2017078212-appb-100009
    为资源块内的子载波数目。
  19. 根据权利要求1所述的上行控制信号传输方法,其中,所述预定义序列在不同传输符号上所映射的频域位置相同或者部分相同。
  20. 根据权利要求17所述的上行控制信号传输方法,其中,当M小于等于7时,所述预定义序列在不同传输符号上所映射的频域位置在系统带宽的两侧。
  21. 根据权利要求5所述的上行控制信号传输方法,其中,所述上行控制信息包括ACK、NACK;
    假设ACK对应比特“1”,NACK对应比特“0”,当发送2比特ACK/NACK,预定义序列的个数K=1,2或4时,
    在每个符号上配置一个频域位置,该频域位置内有
    Figure PCTCN2017078212-appb-100010
    种不同的子载波配置,每种配置都含有N个不同的子载波;
    所述预定义序列在不同传输符号上所映射的频域位置相同或者不完全相同。
  22. 根据权利要求19所述的上行控制信号传输方法,其中,当K=4时,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上发送的预定义序列不同;
    当K=2时,在每个传输符号上的所述频域位置配置两种子载波位置,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上发送不同的预定义序列,或者预定义序列在传输符号上占用不同的子载波位置;
    当K=1时,在每个传输符号上的所述频域位置配置4种子载波位置,发送“00”、发送“01”、发送“10”、发送“11”时对应在每个传输符号上占用不同的子载波位置。
  23. 根据权利要求1所述的上行控制信号传输方法,其中,所述上行控制信息包括调度请求SR、ACK、NACK;
    当用户终端发送调度请求SR时,K=1,2,或4。
  24. 根据权利要求23所述的上行控制信号传输方法,其中,当K=1时,在M个符号上均发送该预定义序列;
    当K=2时,将所述2个预定义序列分别定义为SR第一预定义序列、SR第二预定义序列。当单独发送SR时,在每个符号上发送两个预定义序 列之一,不同符号上发送不同的预定义序列。特别地,当M=2时,在第一个符号上发送SR第一预定义序列,在第二个符号上发送SR第二预定义序列。
  25. 根据权利要求1或23所述的上行控制信号传输方法,其中,当SR与ACK/NACK复用时,采用SR的所述预定义序列发送ACK/NACK。
  26. 根据权利要求25所述的上行控制信号传输方法,其中,当M=2且SR与1比特ACK/NACK复用时,如果SR与ACK同时发送,在第一个符号上发送SR第一预定义序列,在第二个符号上发送SR第二预定义序列;如果SR与NACK同时发送,在第一个符号上发送SR第二预定义序列,在第二个符号上发送SR第一预定义序列。
  27. 根据权利要求23所述的上行控制信号传输方法,其中,当K=4时,将所述4个预定义序列分别定义为SR第一、二、三、四预定义序列。当单独发送SR时,在每个符号上发送所述4个序列之一,每个符号上发送序列不同。
  28. 根据权利要求23所述上行控制信号传输方法,所述SR预定义序列由1个或2个或4个预定义信道资源确定。
  29. 一种上行控制信号传输装置,包括:
    传输单元,配置为在传输时间间隔内的M个传输符号上发送K个预定义序列来传输B比特的上行控制信息,其中,M为正整数,K为整数,且1≤K≤2B;B为大于等于1的整数;在所述M个传输符号中的每个传输符号上发送所述K个预定义序列之一;所述预定义序列长度为N,且映射在对应传输符号的N个子载波上,其中N=2n,n为正整数。
  30. 根据权利要求29所述的上行控制信号传输装置,其中,
    在所述M个传输符号上,至多有M个不同的频域位置,任意一个所述频域位置所含子载波数为N的倍数。
  31. 根据权利要求30所述的上行控制信号传输装置,所述N个子载波连续映射或等间隔映射到所述的每个频域位置上。
  32. 根据权利要求29所述的上行控制信号传输装置,所述预定义序列包括:长度为N的Zadoff-Chu序列,或者为长度为N的frank序列,或者长度为N的格雷序列,或者长度为N的Chu序列或者长度为N的机选序列;
    或者,根据所述序列进行时域循环移位获得的序列。
  33. 根据权利要求29至32任一项所述的上行控制信号传输装置,所述装置还包括:
    指示单元,配置为利用K个预定义序列在M个传输符号中的不同时域符号上的发送组合表示所述上行控制信息。
  34. 一种用户终端,所述用户终端包括处理器和存储器;所述存储器中存储有程序或指令;所述处理器通过调用所述程序或指令,执行以下处理:
    在传输时间间隔内的M个传输符号上发送K个预定义序列来传输B比特的上行控制信息,其中,M为正整数,K为整数,且1≤K≤2B;B为大于等于1的整数;在所述M个传输符号中的每个传输符号上发送所述K个预定义序列之一;所述预定义序列长度为N,且映射在对应传输符号的N个子载波上,其中N=2n,n为正整数。
  35. 根据权利要求34所述的用户终端,其中,所述处理器通过调用所述程序或指令,还执行以下处理:
    在所述M个传输符号上,至多有M个不同的频域位置,任意一个所述频域位置所含子载波数为N的倍数。
  36. 根据权利要求34所述的用户终端,其中,所述预定义序列包括:长度为N的Zadoff-Chu序列,或者为长度为N的frank序列,或者长度为N的格雷序列,或者长度为N的Chu序列或者长度为N的机选序列;
    或者,根据所述序列进行时域循环移位获得的序列。
  37. 根据权利要求34至36任一项所述的用户终端,其中,所述处理器通过调用所述程序或指令,还执行以下处理:
    所述用户终端利用K个预定义序列在M个传输符号中的不同时域符号上的发送组合表示所述上行控制信息。
  38. 一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序在被处理器调用时,执行权利要求1至28任一项所述的上行控制信号传输方法。
PCT/CN2017/078212 2016-03-31 2017-03-24 一种上行控制信号传输方法及装置、用户终端、存储介质 WO2017167139A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/089,060 US10736130B2 (en) 2016-03-31 2017-03-24 Method and device for uplink control signal transmission, user terminal, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610206116.X 2016-03-31
CN201610206116.XA CN107295665A (zh) 2016-03-31 2016-03-31 一种上行控制信号传输方法及装置、用户终端

Publications (1)

Publication Number Publication Date
WO2017167139A1 true WO2017167139A1 (zh) 2017-10-05

Family

ID=59963483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078212 WO2017167139A1 (zh) 2016-03-31 2017-03-24 一种上行控制信号传输方法及装置、用户终端、存储介质

Country Status (3)

Country Link
US (1) US10736130B2 (zh)
CN (1) CN107295665A (zh)
WO (1) WO2017167139A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10869221B2 (en) * 2016-10-13 2020-12-15 Ntt Docomo, Inc. User terminal and wireless communication method
US10728073B2 (en) * 2017-10-02 2020-07-28 Qualcomm Incorporated Computer generated sequence design and hypothesis mapping
CN109802820B (zh) * 2017-11-16 2023-11-10 华为技术有限公司 基于序列的信号处理方法及信号处理装置
CN109802784B (zh) * 2017-11-17 2021-04-30 电信科学技术研究院 一种pucch传输方法、移动通信终端及网络侧设备
CN113037429B (zh) * 2019-12-24 2022-08-19 维沃移动通信有限公司 上行控制信息传输方法、终端设备和网络侧设备
WO2021186688A1 (ja) * 2020-03-19 2021-09-23 株式会社Nttドコモ 端末、無線通信方法及び基地局

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369965A (zh) * 2007-08-17 2009-02-18 华为技术有限公司 一种上行控制信道的指示方法及装置
CN101682414A (zh) * 2007-08-08 2010-03-24 Lg电子株式会社 在无线通信系统中发送上行控制信号的方法
CN103248464A (zh) * 2012-02-13 2013-08-14 电信科学技术研究院 上行数据传输方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8228782B2 (en) * 2006-12-22 2012-07-24 Lg Electronics Inc. Sequence generation and transmission method based on time and frequency domain transmission unit
KR100956494B1 (ko) * 2007-06-14 2010-05-07 엘지전자 주식회사 제어신호 전송 방법
CN101227232B (zh) * 2008-02-01 2010-06-09 中兴通讯股份有限公司 下行导频初始位置的映射方法和装置
CN101227233B (zh) * 2008-02-01 2013-01-16 中兴通讯股份有限公司 时分双工系统中物理上行控制信号的发送方法和装置
WO2010018981A2 (ko) * 2008-08-11 2010-02-18 엘지전자주식회사 무선 통신 시스템에서 제어정보 전송 방법 및 장치
WO2010126339A2 (en) * 2009-04-30 2010-11-04 Samsung Electronics Co., Ltd. Multiplexing large payloads of control information from user equipments
US20110205981A1 (en) 2009-08-13 2011-08-25 Changsoo Koo Multiplexing uplink l1/l2 control and data
CN102118782B (zh) 2010-01-05 2014-10-08 中国移动通信集团公司 一种上行传输方法、系统和设备
CN102739597B (zh) * 2011-04-02 2015-02-11 普天信息技术研究院有限公司 一种ack/nack信号的生成方法
CN103427940B (zh) 2012-05-20 2017-09-15 上海贝尔股份有限公司 传输上行控制信息的方法和装置
WO2014112835A1 (ko) * 2013-01-17 2014-07-24 엘지전자 주식회사 무선통신 시스템에서 상향링크 신호 전송 방법 및 장치
US10637701B2 (en) * 2015-06-04 2020-04-28 Electronics And Telecommunications Research Institute Method and apparatus for transmitting physical uplink control channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682414A (zh) * 2007-08-08 2010-03-24 Lg电子株式会社 在无线通信系统中发送上行控制信号的方法
CN101369965A (zh) * 2007-08-17 2009-02-18 华为技术有限公司 一种上行控制信道的指示方法及装置
CN103248464A (zh) * 2012-02-13 2013-08-14 电信科学技术研究院 上行数据传输方法和装置

Also Published As

Publication number Publication date
CN107295665A (zh) 2017-10-24
US20190132859A1 (en) 2019-05-02
US10736130B2 (en) 2020-08-04

Similar Documents

Publication Publication Date Title
RU2490829C2 (ru) Отображение циклического сдвига на индекс канала для назначения ресурсов ack/nack
KR102382605B1 (ko) 통신 시스템에서 전송들의 반복을 위한 자원 할당
US11870584B2 (en) Method and apparatus for grant free based data transmission in wireless communication system
JP6312706B2 (ja) 制御チャネルの伝送、伝送処理方法及び装置
JP2024133124A (ja) 無線通信システムのharq-ackコードブック生成方法及びこれを用いる装置
WO2017167139A1 (zh) 一种上行控制信号传输方法及装置、用户终端、存储介质
CN111082915B (zh) 一种无线通信中的方法和装置
WO2019158013A1 (zh) 信道传输方法和装置、网络设备及计算机可读存储介质
CN107733620B (zh) 一种无线传输中的方法和装置
JP2024099728A (ja) Mu-mimoにおいて協調スケジューリングされるdmrsポートを示すためのシグナリング態様
CN113541868B (zh) 通信系统中的终端、基站及其执行的方法
CN110169000A (zh) 用于上行链路超高可靠低延迟通信的信令、过程、用户设备和基站
US20230189264A1 (en) Method and apparatus for transmitting and receiving signal in wireless communication system
CN104662978A (zh) 资源分配方法及设备
KR20190005988A (ko) 다운링크 송신들의 구성
KR102637565B1 (ko) 사용자 장비들, 기지국들 및 방법들
CN111935835A (zh) 一种配置方法、装置、通信节点及存储介质
CN103875295A (zh) 链接资源分配方法及用户设备、复用传输方法及基站
CN114846889A (zh) 无线通信系统中用于周期性发送和接收数据的方法和装置
CN111585718B (zh) 一种被用于免授予的ue、基站中的方法和设备
US11303391B2 (en) Method and apparatus for transmitting uplink channels in wireless communication system
JP7477094B2 (ja) 通信方法、通信装置、通信システム、コンピュータ可読記憶媒体、コンピュータプログラムおよびチップ
CN107046718B (zh) 配置缩短的pucch的方法和装置
WO2018010586A1 (zh) 一种无线通信中的方法和装置
CN107733621B (zh) 一种无线通信中的方法和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773169

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773169

Country of ref document: EP

Kind code of ref document: A1