[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017163747A1 - 蓄電システム、充放電制御装置、その制御方法、およびプログラム - Google Patents

蓄電システム、充放電制御装置、その制御方法、およびプログラム Download PDF

Info

Publication number
WO2017163747A1
WO2017163747A1 PCT/JP2017/006895 JP2017006895W WO2017163747A1 WO 2017163747 A1 WO2017163747 A1 WO 2017163747A1 JP 2017006895 W JP2017006895 W JP 2017006895W WO 2017163747 A1 WO2017163747 A1 WO 2017163747A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
specific load
storage device
power storage
charge
Prior art date
Application number
PCT/JP2017/006895
Other languages
English (en)
French (fr)
Inventor
英之 長谷川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/086,897 priority Critical patent/US20190103756A1/en
Priority to JP2018507155A priority patent/JPWO2017163747A1/ja
Publication of WO2017163747A1 publication Critical patent/WO2017163747A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a power storage system, a charge / discharge control device, a control method thereof, and a program.
  • Patent Document 1 describes an example of a power storage device interconnected with a commercial power source.
  • the power storage device of Patent Document 1 stores the power of the commercial power supply and discharges the stored power.
  • the voltage and current of the power storage device and the voltage / current of the AC output are measured, and the DC output of the power storage device is such that the ratio of the DC output power and the AC output effective power is substantially maximized from the measured values.
  • the current is controlled.
  • Patent Document 2 discloses a power supply system that performs so-called peak shift operation, in which an output of a solar power generation device is stored in a power storage device during a daytime period and is discharged at night to supply power to a load device. An example is described.
  • the charge / discharge amount of the power storage device is predicted from the demand prediction data of the load device and the power generation output prediction data predicted using the weather prediction data, and power generation is performed based on the predicted value.
  • Stable power supply to the load device is realized by controlling the power generation amount of the device and suppressing the power consumption of the adjustment load device.
  • Patent Document 3 describes an example of a power supply system interconnected with a power system. This system more effectively suppresses fluctuations in output power to the power system side by performing charge / discharge control of the power storage device.
  • Patent Document 4 describes a power supply device that stably charges a secondary battery in a situation where power generated from a solar battery fluctuates due to changes in sunshine intensity or ambient temperature.
  • Patent Document 1 describes a system including a solar power generation system and a power storage device, or a power storage device that stores power from the system (Patent Document 1), but surplus power of an existing solar power generation system.
  • Patent Document 1 a configuration for installing the power storage device later is not described.
  • the installation cost is high, processing for coordinating with the operation of the photovoltaic power generation system is required, the processing and structure are complicated, and the charge / discharge efficiency of the storage battery is increased. There was a possibility of decline.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a power storage system, a charge / discharge control device, a control method thereof, and a program that efficiently use surplus power of a solar power generation system. There is.
  • the first aspect relates to a power storage system.
  • the power storage system according to the first aspect is Power storage means; Control means for controlling charging and discharging of the power storage means; Have The power storage means is connected to an AC power line and can supply power to a specific load without going through the AC power line.
  • the AC power line is connected to a power system, connected to a DC power generator via a DC / AC converter, and a general load is connectable.
  • the control means supplies power to the power storage means when a current flows from the AC power line to the power system.
  • the second aspect relates to a charge / discharge control device.
  • the charge / discharge control device according to the second aspect is A charge / discharge control device for controlling charge / discharge of a power storage device,
  • the power storage device is connected to an AC power line,
  • the AC power line is connected to a power system, is connected to a DC power generator via a DC / AC converter, and a load is connectable.
  • the charge / discharge control device comprises: Obtaining means for obtaining information on the direction of the current of the AC power line; Control means for supplying power to the power storage means when current flows from the AC power line to the power system.
  • a 3rd side is related with the control method of the charging / discharging control apparatus performed by at least 1 computer.
  • the control method of the charge / discharge control device according to the third aspect is as follows: A control method for a charge / discharge control device connected to a power storage device capable of charging electricity generated by a DC power generator, The power storage device is connected to an AC power line, and can supply power to a specific load without passing through the AC power line.
  • the AC power line is connected to a power system, is connected to the DC power generator via a DC / AC converter, and can be connected to a general load.
  • the charge / discharge control device comprises: Supplying power to the power storage device when a current flows from the AC power line to the power system.
  • a program for causing at least one computer to execute the method of the third aspect or a computer-readable recording medium recording such a program. May be.
  • This recording medium includes a non-transitory tangible medium.
  • This computer program includes computer program code that, when executed by a computer, causes the computer to perform its control method on the charge / discharge control device.
  • a plurality of components are formed as a single member, and a single component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, or the like.
  • the plurality of procedures of the method and computer program of the present invention are not limited to being executed at different timings. For this reason, another procedure may occur during the execution of a certain procedure, or some or all of the execution timing of a certain procedure and the execution timing of another procedure may overlap.
  • UPS UninterruptibletPower Supply: Uninterruptible power supply device
  • a power storage system, a charge / discharge control device, a control method thereof, and a program according to a first embodiment of the present invention will be described below.
  • the charge / discharge control apparatus of this embodiment controls charge / discharge of a lithium ion secondary battery.
  • FIG. 1 is a schematic block diagram illustrating a configuration example of a photovoltaic power generation (PV: PhotoVoltaics) system 10.
  • FIG. 2 is a schematic block diagram showing a configuration example of the power storage system 1 according to the embodiment of the present invention.
  • the power storage system 1 in FIG. 2 shows a configuration after the power storage device 40 is added to the AC power line 28 (28a, 28b) side of the existing PV system 10 in FIG.
  • the configuration of parts not related to the essence of the present invention is omitted and is not shown.
  • the existing PV system 10 in FIG. 1 includes a PV panel 12, a PV-PCS (Power Conditioning System) 14, a distribution board 24, and a load 26.
  • PV panel 12 and the PV-PCS 14 are installed outdoors, and the distribution board 24 and the load 26 are installed indoors.
  • the PV-PCS 14 may be installed indoors, or the distribution board 24 and the load 26 may be installed outdoors.
  • the PV panel 12 and the PV-PCS 14 are connected by a DC power line 16 (shown by a broken line).
  • the PV-PCS 14, the distribution board 24, and the power system 22 are connected by an AC power line 28 (shown by a one-dot chain line (28a, 28b)).
  • a load 26 is further connected to the AC power line 28 (28a, 28b) via a distribution board 24.
  • the PV panel 12 includes a plurality of solar cells that receive solar light energy and converts them into electricity, and is protected by tempered glass or acrylic resin.
  • the PV panel 12 is installed on a roof of a residence.
  • the direct current generated by the PV panel 12 is input to the PV-PCS 14 through the direct current power line 16.
  • the PV-PCS 14 has a function of converting a direct current generated by the PV panel 12 into an alternating current generally used in home appliances (load 26).
  • the PV-PCS 14 performs MPPT (Maximum Power Point Tracking) control of the PV panel 12 and also has a function of controlling the operation of the PV panel 12.
  • MPPT Maximum Power Point Tracking
  • the PV-PCS 14 receives an output suppression control signal (hereinafter also referred to as a PV output suppression signal) for the PV panel 12, and suppresses the output of the PV panel 12 according to the control signal.
  • the PV output suppression signal includes, for example, an instruction to suppress the output at a predetermined ratio (%) of the rated output of the PV-PCS 14.
  • the load 26 is at least one of various electric devices such as an air conditioner, a lighting device, a refrigerator, a television, a microwave oven, a dryer, a personal computer, a game machine, a telephone, a water heater, an electric vehicle, and a plug-in hybrid vehicle.
  • various electric devices such as an air conditioner, a lighting device, a refrigerator, a television, a microwave oven, a dryer, a personal computer, a game machine, a telephone, a water heater, an electric vehicle, and a plug-in hybrid vehicle.
  • Electricity is supplied from the electric power system 22 to the distribution board 24 of the customer's house via the power transmission network, and electricity is distributed to each load 26 via the distribution board 24.
  • the electricity generated by the PV panel 12 is input to the PV-PCS 14 via the DC power line 16, converted into an AC current, and output to the AC power line 28a. Then, it can be supplied to the load 26 through the distribution board 24 through the AC power line 28a.
  • the power generated by the PV panel 12 can be consumed by the load 26 of the consumer, and the surplus can be reversely flowed to the power system 22 via the distribution board 24.
  • surplus power generated by the PV panel 12 is charged to the lithium ion secondary battery of the battery system 42 by the power storage device 40 without causing a reverse flow to the power system 22 as much as possible.
  • the power storage system 1 of the present embodiment includes a power storage device 40 and a clamp-type AC current sensor 44 as shown in FIG.
  • the charge / discharge control apparatus 100 of this embodiment controls charge / discharge of the battery system 42 that is added later to the existing PV system 10.
  • the power storage device 40 of this embodiment includes a battery system 42 and a charge / discharge control device 100.
  • the power storage device 40 is electrically connected to an AC power line 28 a between the PV-PCS 14 and the distribution board 24.
  • the electrical storage apparatus 40 in this embodiment shall be installed indoors, it may be installed outdoors.
  • the PV system 10 is described as an example. However, the present invention is not limited to solar power generation, and can be similarly applied to a renewable energy power generation system that outputs other DC power.
  • the battery system 42 includes at least one lithium-ion secondary battery (not shown) (hereinafter also referred to as “storage battery”) and a battery management unit (Battery Management Unit) that manages the lithium ion secondary battery. BMU).
  • the battery system 42 has an electric capacity indicated by a rated capacity (kWh) that can be charged by the system. In the battery system 42, charging / discharging of the storage battery is controlled by the charging / discharging control device 100.
  • the charge / discharge control of the storage battery is performed within a predetermined range with respect to the rated capacity of the storage battery.
  • FIG. 3 is a functional block diagram logically showing the configuration of the charge / discharge control apparatus 100 according to the embodiment of the present invention.
  • the charge / discharge control device 100 according to the present embodiment is a device that controls charge / discharge of the power storage device 40.
  • the power storage device 40 is connected to the AC power line 28 and can be connected to the specific load 27 without using the AC power line 28.
  • the AC power line 28 is connected to the power system 22 and is connected to the DC power line 16 via a DC / AC converter (PV-PCS 14). Further, the AC power line 28 can be connected to the general load 26.
  • PV-PCS 14 DC / AC converter
  • the charging / discharging control device 100 supplies power to the power storage device 40 when the current flows from the AC power line 28 to the power system 22 (at the time of power sale), and the acquisition unit 102 that acquires information about the direction of the current of the AC power line 28. And a control unit 104 for supplying.
  • a load that can be connected to the power storage device 40 without using the AC power line 28 is referred to as a specific load 27, and is connected to the AC power line 28 via the distribution board 24, and power is supplied from the AC power line 28.
  • the loaded load is called a general load 26 to be distinguished.
  • acquisition means that the device itself obtains data or information stored in another device or storage medium (active acquisition), for example, requests or inquires of another device. Receiving data, accessing and reading out other devices and storage media, etc., and inputting data or information output from other devices into the device (passive acquisition), for example, distribution (or , Transmission, push notification, etc.) and / or receiving received data or information. It also includes selecting and acquiring from received data or information, or selecting and receiving distributed data or information.
  • the charge / discharge control device 100 of this embodiment may be connected to a storage device 110 (not shown) so as to be accessible.
  • the storage device 110 may be included in the charge / discharge control device 100 or may be a device external to the charge / discharge control device 100.
  • the storage device 110 may be realized by a memory 84 or a storage 85 of the computer 80 shown in FIG.
  • Acquisition unit 102 acquires the value of current flowing between AC power line 28b and power system 22 and the direction thereof.
  • the acquisition unit 102 attaches the clamp-type AC current sensor (CT: Current Transformer) 44 of FIG. 2 to the AC power line 28 b between the distribution board 24 and the power system 22, and clamp-type AC current
  • CT Current Transformer
  • the sensor 44 measures the current value of the AC power line 28b.
  • the acquisition unit 102 acquires a current value measured by the clamp-type alternating current sensor 44 and acquires information regarding the direction of the current.
  • control unit 104 controls charging / discharging of the power storage device (battery system 42) based on the direction of the current of the AC power line 28b.
  • control unit 104 uses the power generated by the PV panel 12 to store the surplus (surplus power) that is not consumed by the general load 26 and the specific load 27 as a power storage device (storage battery of the battery system 42). Control to charge.
  • the difference (hatched portion) between the power generation amount (shown by a solid line) of the PV panel 12 and the total power consumption (shown by a broken line) of the general load 26 and the specific load 27 is as follows. It becomes the surplus power of the PV panel 12.
  • the control unit 104 may also control discharge of the storage battery. For example, instead of the power supplied from the power system 22 or the PV panel 12 to the specific load 27, the power charged in the storage battery can be discharged from the storage battery and supplied to the specific load 27. Moreover, in this embodiment, the electric power discharged from a storage battery shall not be made to reverse flow into the electric power grid 22, and shall be consumed with the specific load 27 of a consumer.
  • the acquisition unit 102 acquires information related to the direction of the current flowing through the AC power line 28b, and based on the information, the control unit 104 controls charging / discharging of the storage battery, but is not limited thereto. .
  • the control unit 104 controls charging / discharging of the storage battery, but is not limited thereto. .
  • a configuration for performing charge / discharge control of a storage battery under various information or conditions is not excluded. A plurality of the following may be combined within a consistent range.
  • whether or not charging is possible can be determined based on information indicating whether or not there is a surplus in the power generated by the PV panel 12.
  • the conditions for the control unit to determine whether charging is possible are exemplified below.
  • (A1) When the direction of the current of the AC power line 28b is from the distribution board 24 to the power system 22, that is, when a reverse power flow (sold power) to the power system 22 occurs.
  • (A2) When the power generation amount from the PV panel 12 is equal to or greater than the threshold, the surplus exceeding the threshold is charged.
  • A3 The surplus power that is subjected to output suppression control by the PV output suppression signal is charged.
  • whether or not charging is possible is determined based on the direction of the current of the AC power line 28b. Specifically, the storage battery is charged when the direction of the current of the AC power line 28 b is from the distribution board 24 to the power system 22. If it is not the power system 22 from the distribution board 24, it is not charged.
  • the acquisition unit 102 acquires information related to the current direction of the AC power line 28b (between the power system 22 and the distribution board 24).
  • the direction of the current can be specified from the sign of the current value of the AC power line 28b. For example, if the current value when the current flows from the power system 22 in the direction of the distribution board 24 is a positive value, the current value when the current flows from the distribution board 24 in the direction of the power system 22 is a negative value. Become. Since the direction of current flow and the positive / negative of the current value are determined by the installation method of the clamp-type AC current sensor 44, the relationship between the current direction and the positive / negative of the current value is determined according to the installation condition of the clamp-type AC current sensor 44. Set in advance.
  • alternating current since the direction of the current changes with time, when the alternating current is 0 ° ⁇ 90 with respect to the phase of the alternating voltage, that is, alternating current power is output from the power system 22 to the distribution board 24.
  • the current value is assumed to be positive.
  • the AC current is 0 ° ⁇ 90 or more, that is, when AC power is output from the distribution board 24 in the direction of the power system 22, the current value is negative.
  • control unit may control charging / discharging of the storage battery using a combination of at least one of the plurality of conditions (b1) to (b5) exemplified below.
  • (B1) Charging / discharging is performed according to a predetermined first chargeable time zone and second dischargeable time zone of the storage battery. In this configuration, information on the first time zone and the second time zone is stored in the storage device 110 in advance. In the power storage device 40 of the present embodiment, it is assumed that a first time period in which the storage battery can be charged and a second time period in which the storage battery can be discharged are determined in advance. The first time zone is from 6:00 to 18:00, and the second time zone is from 18:00 to 6:00 on the next day.
  • Control unit 104 supplies power discharged from power storage device 40 to specific load 27 in a predetermined second time period. Further, the control unit 104 supplies power supplied from the power system 22 to the specific load 27 except in a predetermined second time zone.
  • the charge / discharge control apparatus 100 has a timepiece (not shown) and acquires time information from the timepiece. Further, the timepiece may not be included in the charge / discharge control device 100 and may be a device external to the charge / discharge control device 100.
  • the acquisition unit 102 may acquire information indicating that the storage battery is fully charged from the BMU of the battery system 42.
  • the acquisition unit 102 may acquire information related to the remaining storage capacity or free capacity of the storage battery from the BMU of the battery system 42.
  • the threshold value is stored in advance in the storage device 110. Each threshold may have a configuration that can be updated from the outside.
  • FIG. 6 is a diagram illustrating an example of a configuration of a computer 80 that realizes the charge / discharge control apparatus 100 of the present embodiment.
  • the computer 80 of the present embodiment includes a CPU (Central Processing Unit) 82, a memory 84, a program 90 that implements the components of the charge / discharge control device 100 loaded in the memory 84, a storage 85 that stores the program 90, an I / O O (Input / Output) 86 and a network connection interface (communication I / F 87).
  • a CPU Central Processing Unit
  • the CPU 82, the memory 84, the storage 85, the I / O 86, and the communication I / F 87 are connected to each other via the bus 89, and the entire charge / discharge control apparatus 100 is controlled by the CPU 82.
  • the method of connecting the CPUs 82 and the like is not limited to bus connection.
  • the memory 84 is a memory such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the storage 85 is a storage device such as a hard disk, an SSD (Solid State Drive), or a memory card.
  • the storage 85 may be a memory such as a RAM or a ROM.
  • the storage 85 may be provided inside the computer 80 or may be provided outside the computer 80 and connected to the computer 80 by wire or wireless as long as the computer 80 is accessible. Alternatively, the computer 80 may be detachably provided.
  • the CPU 82 reads out the program 90 stored in the storage 85 to the memory 84 and executes it, whereby each function of each unit of the charge / discharge control device 100 can be realized.
  • the I / O 86 performs input / output control of data and control signals between the computer 80 and other input / output devices.
  • the other input / output devices include, for example, an input device (not shown) such as a keyboard, a touch panel, a mouse, and a microphone connected to the computer 80, and an output device (not shown) such as a display, a printer, and a speaker, These input / output devices and the interface of the computer 80 are included.
  • the I / O 86 may perform data input / output control with a reading or writing device (not shown) of another recording medium.
  • the communication I / F 87 is a network connection interface for performing communication between the computer 80 and an external device.
  • the communication I / F 87 is not always necessary.
  • the communication I / F 87 may be a network interface for connecting to a wired line or a network interface for connecting to a wireless line.
  • the computer 80 that implements the charge / discharge control device 100 may be connected to the HEMS via the network 3 by the communication I / F 87.
  • Each component of the charge / discharge control apparatus 100 of this embodiment is realized by an arbitrary combination of hardware and software of the computer 80 in FIG. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
  • the functional block diagram showing the charge / discharge control device of each embodiment to be described below shows a block of logical functional units, not a configuration of hardware units.
  • the charge / discharge control apparatus 100 does not exclude a configuration including a plurality of computers 80.
  • the computer program 90 of the present embodiment supplies power to the power storage device 40 when a current flows from the AC power line 28b to the power system 22 (at the time of power sale) to the computer 80 for realizing the charge / discharge control device 100.
  • the procedure to perform is described.
  • the computer program 90 of the present embodiment may be recorded on a recording medium readable by the computer 80.
  • the recording medium is not particularly limited, and various forms can be considered.
  • the program 90 may be loaded from a recording medium into the memory 84 of the computer 80, or may be downloaded to the computer 80 through a network and loaded into the memory 84.
  • the recording medium for recording the computer program 90 includes a medium that can be used by the non-transitory tangible computer 80, and a program code that can be read by the computer 80 is embedded in the medium.
  • the computer 80 is caused to execute the following control method for realizing the charge / discharge control apparatus 100.
  • FIG. 7 is a flowchart showing an example of the operation of the charge / discharge control apparatus 100 of the present embodiment.
  • the control method according to the embodiment of the present invention is a control method of the charge / discharge control device 100, and is a control method executed by the computer 80 that implements the charge / discharge control device 100.
  • the charge / discharge control device 100 acquires information related to the direction of the current of the AC power line 28b (step S101), and current is flowing from the AC power line 28b to the power system 22 (at the time of selling power). ) (YES in step S103), supplying power to the power storage device 40 (step S105).
  • the acquisition unit 102 acquires the value of the current flowing through the AC power line 28b between the distribution board 24 and the power system 22 and the direction of the current from the clamp-type AC current sensor 44 (step S101).
  • the current value is a positive value
  • the current value is It shall be a negative value.
  • control part 104 determines whether the direction of an electric current is toward the electric power grid
  • control unit 104 When the direction of current is from distribution board 24 to power system 22 (YES in step S103), for example, when the current flowing through AC power line 28b is a negative value (less than 0), control unit 104 The storage battery is charged with surplus power derived from the PV panel 12 (step S105). Then, the process ends.
  • the surplus power generated by the PV panel 12 flows directly from the DC power line 16 to the power storage device 40 and is charged to the storage battery of the battery system 42.
  • the battery system flows from the PV panel 12 through the PV-PCS 14 to the power storage device 40 via the AC power line 28a. The battery 42 is charged.
  • each step may be repeatedly executed at a predetermined period during a first time period in which the storage battery can be charged, for example. Moreover, the process of each step may be performed asynchronously.
  • the acquisition unit 102 acquires the current direction of the AC power line 28b, and the control unit 104 causes the current to flow from the AC power line 28b to the power system 22.
  • the power is on (when selling electricity)
  • power is supplied to the storage battery of the battery system 42.
  • the storage battery of the battery system 42 can be efficiently charged with the surplus power of the PV panel 12 with a simple configuration.
  • the power storage system of the present embodiment is assumed to have the same configuration as that of the power storage system 1 of the above-described embodiment of FIG. 2, and will be described below with reference to FIGS.
  • an example of a storage battery charge / discharge control method in the control unit 104 of the above embodiment will be described in detail.
  • control part 104 of the charging / discharging control apparatus 100 of this embodiment according to the direction of the electric current which flows between the distribution board 24 and the electric power grid
  • the control unit 104 supplies power to the power storage device 40 when current is flowing from the AC power line 28b to the power system 22 (at the time of power sale), and from the power system 22 When a current is flowing through the AC power line 28b (at the time of power purchase), power is supplied from the power storage device 40 to the specific load 27.
  • the control unit 104 determines whether the current flowing through the AC power line 28b acquired by the acquisition unit 102 is positive or negative. When the current value is negative (current value ⁇ 0), control unit 104 increases the charging current value by a predetermined value (for example, 1 A) and charges the storage battery. Thereafter, the current value flowing through the AC power line 28b is acquired by the acquisition unit 102, and the determination process is repeated until the current value becomes zero.
  • a predetermined value for example, 1 A
  • the control unit 104 increases the discharge current value by a predetermined value (for example, 1 A) and discharges the storage battery. Thereafter, the current value flowing through the AC power line 28b is acquired by the acquisition unit 102, and the determination process is repeated until the current value becomes zero.
  • a predetermined value for example, 1 A
  • control unit 104 When the current becomes zero, the control unit 104 continues charging and discharging the storage battery with the current value at that time. Then, the current direction between the distribution board 24 and the power system 22 is monitored again.
  • the CPU 82 of the computer 80 in FIG. 6 reads out the program 90 stored in the storage 85 to the memory 84 and executes it, thereby realizing each function of each unit in FIG. 3 of the charge / discharge control device 100. can do.
  • the computer program 90 of the present embodiment is a procedure for acquiring information related to the direction of the current of the AC power line 28b in the computer 80 for realizing the charge / discharge control device 100, and the current flows from the AC power line 28b to the power system 22.
  • Time at the time of power sale
  • a procedure for supplying power to the power storage device 40 a procedure for supplying power from the power storage device 40 to the specific load 27 when a current is flowing from the power system 22 to the AC power line 28b (at the time of power purchase)
  • Is written to execute is a procedure for acquiring information related to the direction of the current of the AC power line 28b in the computer 80 for realizing the charge / discharge control device 100, and the current flows from the AC power line 28b to the power system 22.
  • FIG. 8 is a flowchart showing an example of the operation of the charge / discharge control apparatus 100 of the present embodiment.
  • the control method according to the embodiment of the present invention is a control method of the charge / discharge control device 100, and is a control method executed by the computer 80 that implements the charge / discharge control device 100.
  • the charge / discharge control device 100 acquires information related to the current direction of the AC power line 28b (step S101), determines the current direction of the AC power line 28b (step S103), and the AC power line 28b.
  • step S103 When current flows from the power system 22 to the power system 22 (at the time of power sale) (current value of step S103 ⁇ 0), power is supplied to the power storage device 40 (charging process of step S205). When the power is flowing (at the time of power purchase) (current value> 0 in step S203), power is supplied from the power storage device 40 to the specific load 27 (discharge process in step S207).
  • the acquisition unit 102 acquires the value of the current flowing through the AC power line 28b between the distribution board 24 and the power system 22 and the direction of the current from the clamp-type AC current sensor 44 (step S101).
  • the current value is a positive value
  • the current value is It shall be a negative value.
  • control part 104 acquires the direction and electric current value of the electric current which flow through the alternating current power line 28a between the distribution board 24 and the electric power grid
  • the power generation amount of the PV panel 12 exceeds the total consumption amount of the general load 26 and the specific load 27, and the PV panel 12 This means that surplus power is generated.
  • the power generation amount of the PV panel 12 may be equal to the total consumption amount of the general load 26 and the specific load 27, or surplus power of the PV panel 12 may be generated.
  • the amount of power in the hatched portion where the power generation amount of the PV panel 12 indicated by the solid line in FIG. 4 exceeds the total consumption amount of the general load 26 and the specific load 27 indicated by the broken line is the surplus power. This surplus power is sold.
  • step S203 when the current direction is from the distribution board 24 to the power system 22 (current value ⁇ 0 in step S203), that is, when power sale occurs, the surplus power is not sold to the storage battery. Operates to charge.
  • the charging process routine of FIG. 9 is executed.
  • the power generation amount of the PV panel 12 is less than the total consumption amount of the general load 26 and the specific load 27, and the power It means that there is a shortage and power purchase from the power system 22 is occurring.
  • the power generation amount of the PV panel 12 indicated by the solid line in FIG. 11 is insufficient for the hatched portion where the total consumption amount of the general load 26 and the specific load 27 indicated by the broken line is below.
  • This shortage is purchased from the power system 22.
  • it may discharge from the storage battery of the battery system 42, and may compensate for a shortage.
  • step S203 when the direction of current is from the power system 22 to the distribution board 24 (current value> 0 in step S203), that is, when power purchase occurs, the power shortage is not purchased from the storage battery. Operates to discharge.
  • the discharge processing routine of FIG. 10 is executed.
  • step S205 and step S207 the process returns to step S101.
  • the process of the flowchart in FIG. 8 is repeatedly executed at a predetermined cycle.
  • FIG. 9 is a flowchart illustrating an example of a detailed procedure of the charging process of the charge / discharge control device 100 of the present embodiment.
  • the surplus power generated by the PV panel 12 is charged to the storage battery so that the power sale becomes zero.
  • the acquisition unit 102 acquires a current value and a current direction flowing through the AC power line 28b between the distribution board 24 and the power system 22 (step S311).
  • the control unit 104 determines whether the current value is greater than 0 (positive value), 0, or less than 0 (negative value) (step S313).
  • step S313 when the current value is ⁇ 0, the control unit 104 increases the amount of charge when the surplus power derived from the PV panel 12 is charged to the storage battery of the battery system 42 by a predetermined value (step S315). Then, the storage battery is charged with the set charge amount (step S317). Then, it returns to step S311 and repeats a process.
  • step S313 while the current value ⁇ 0, the charge amount is increased by a predetermined value, and the storage battery is charged. The process is repeated until the current value becomes 0.
  • step S313 the charge amount is set as it is (step S319), and the storage battery is charged with the set charge amount (step S317). . Then, it returns to step S311 and repeats a process.
  • control unit 104 decreases the charge amount when charging the storage battery of the battery system 42 by a predetermined value (Ste S323). Then, the storage battery is charged with the set charge amount (step S317). Then, it returns to step S311 and repeats a process.
  • step S313 the charge amount is set as it is (step S319), and the storage battery is charged with the set charge amount (step S317). . Then, it returns to step S311 and repeats a process.
  • the charging process of FIG. 9 is repeatedly performed so that the power sale becomes 0 while the power sale occurs.
  • the storage battery is charged with the charge amount of the power generation amount of the PV panel 12 so that the power sale to the power system 22 is eliminated. Thereby, the surplus power in the hatched portion in FIG. 4 is charged in the storage battery.
  • surplus power generated by the PV panel 12 flows from the PV panel 12 via the PV-PCS 14 to the power storage device via the AC power line 28a, and is stored in the storage battery of the battery system 42. Charged.
  • FIG. 10 is a flowchart illustrating an example of a detailed procedure of the discharge process of the charge / discharge control device 100 of the present embodiment.
  • power is supplied from the storage battery to the specific load 27 so that power purchase is reduced.
  • the acquisition part 102 acquires the electric current value and direction of an electric current which flow through the alternating current power line 28b between the power distribution boards 24 from the distribution board 24 (step S331). Then, it returns to step S331 and repeats a process.
  • step S333 when the current value is> 0 in step S333, the control unit 104 increases the discharge amount when discharging the insufficient power from the storage battery of the battery system 42 by a predetermined value (step S335). Then, the storage battery is discharged with the set discharge amount (step S337). Then, it returns to step S331 and repeats a process.
  • the total power consumption of the specific load 27 is set as a threshold value, and the discharge amount is increased to the threshold value or less. Therefore, when the discharge amount exceeds the threshold value (YES in step S334), the discharge amount is left as it is, bypassing step S335, and the process proceeds to step S337. If the discharge amount is less than or equal to the threshold (NO in step S334), the process proceeds to step S335.
  • step S337 the storage battery is discharged with the set discharge amount. Then, it returns to step S331 and repeats a process.
  • step S333 when the current value> 0 in step S333, the discharge amount is increased by a predetermined value until the total power consumption amount of the specific load 27 is reached, and the storage battery is discharged. Then, the process is repeated until the current value becomes 0 or the total power consumption amount of the specific load 27.
  • the discharge amount is set as it is (step S339), and the storage battery is changed. The battery is charged with the set charge amount (step S337). Thereafter, the process returns to step S331.
  • a predetermined setting value may be stored in the storage device 110 in advance, or the setting value may be updated as necessary.
  • the structure which can further provide the acquisition part (not shown) which acquires the power consumption of the specific load 27, and can set a threshold value based on an actual measurement value may be sufficient.
  • step S331 When the current value becomes ⁇ 0 due to the current value of the AC power line 28b acquired in step S331, the control unit 104 decreases the discharge amount discharged from the storage battery of the battery system 42 by a predetermined value (step S343). ). And it discharges with the discharge amount set from the storage battery (step S337). Thereafter, the process returns to step S331.
  • the electric discharge process of FIG. 10 is repeatedly performed so that the electric power purchase becomes 0 while the electric power purchase occurs.
  • the power stored in the storage battery as a surplus of the PV panel 12 is supplied from the power storage device 40 to the DC power line 16, and the PV-PCS 14, the AC power line 28 a, and the distribution board 24 are connected. To the specific load 27.
  • the power stored in the storage battery is supplied from the power storage device to the specific load 27 via the distribution board 24.
  • step S205 when power sale is detected in step S203 may be executed only during a first time period in which the storage battery can be charged.
  • step S207 when power purchase is detected in step S203 may be executed only during the second time period during which the storage battery can be discharged.
  • the charging process of FIG. 9 may be performed only during the first time period, and the discharging process of FIG. 10 may be performed only during the second time period. Further, the charging process and the discharging process may be executed asynchronously in separate routines.
  • the control unit 104 charges the storage battery until the current becomes zero. Is increased. Further, when a current flows from the electric power system 22 in the direction of the distribution board 24, the amount of discharge from the storage battery is increased by the control unit 104 until the current becomes zero.
  • the same effects as in the above embodiment can be obtained, and when the power generation amount from the PV panel 12 exceeds the total consumption amount of the general load 26 and the specific load 27, power sales do not occur.
  • the surplus power is charged into the storage battery and the power generation amount from the PV panel 12 is less than the total consumption of the general load 26 and the specific load 27, the shortage is discharged from the storage battery so that no power purchase occurs. be able to.
  • electric power can be efficiently charged and discharged by the power storage system 1.
  • grid connection is not required, and there is an effect that a complicated application procedure necessary for grid connection becomes unnecessary.
  • the DC power generation device may include at least one of a solar power generation facility, a fuel cell, and a private power generation facility that uses fossil energy.
  • surplus power that is subjected to output suppression control by a PV output suppression signal may be charged.
  • the PV-PCS 14 receives the output suppression control signal for the PV panel 12, the PV-PCS 14 may be controlled to be lower than the actual power generation amount of the PV panel 12.
  • the PV output suppression signal includes, for example, an instruction to suppress the output to a predetermined ratio (%) of the rated output of the PV-PCS 14.
  • the amount of power that is suppressed is charged to the storage battery as surplus power.
  • the control unit tries to charge a predetermined amount of the output from the PV panel 12 to the storage battery.
  • a clamp type DC current sensor (not shown) is electrically connected to the DC power line 16 between the connection position of the power storage device 40 and the PV-PCS 14, or between the PV-PCS 14 and the distribution board 24.
  • a clamp type AC current sensor (not shown) is electrically connected to the AC power line 28.
  • an acquisition part acquires the electric current value measured with the sensor.
  • the control unit monitors increase / decrease of the current value. When the current value decreases, it is determined that there is no surplus power. If the current value does not decrease, it is determined that there is surplus power.
  • the storage battery is charged.
  • the acquisition unit acquires the value of meter reading data (power consumption, reverse power flow value) or the like from a smart meter (not shown) or a HEMS (Home Energy Management System) (not shown), etc. Good.
  • the acquisition unit may have a configuration that wirelessly communicates with a smart meter or a HEMS using the communication I / F 87 of FIG. According to this structure, the electric power sold by simple structure can be charged to a storage battery efficiently.
  • Example 1 Examples of the charge / discharge control apparatus 300 of the present invention will be described below.
  • the charge / discharge control apparatus 300 of the present embodiment a specific example of a configuration capable of supplying power by switching the power system 22 and the storage battery (battery system 42) to the specific load 27 that can supply power from the storage battery will be described.
  • FIG. 12 is a schematic block diagram illustrating a configuration example of the charge / discharge control apparatus 300 according to the embodiment of the present invention.
  • the charging / discharging control device 300 includes an acquisition unit 102, a control unit 104, a first switch (shown as “SW1” in the figure) 311, a second switch (shown as “SW2” in the figure) 312, , An AC / DC (AC / DC) converter 321 and a DC / AC (DC / AC) converter 322.
  • the battery system 42 can supply power only to the specific load 27.
  • the AC / DC converter 321 is connected between the AC power line 28 b and the battery system 42.
  • the AC / DC converter 321 converts AC power into DC power.
  • the DC / AC converter 322 is connected between the battery system 42 and the specific load 27.
  • the DC / AC converter 322 converts DC power into AC power.
  • the first switch 311 turns on / off the connection between the AC power line 28 and the battery system 42 via the AC / DC converter 321.
  • the second switch 312 connects the specific load 27 to one of the battery systems 42 via the AC power line 28 a and the DC / AC converter 322.
  • the control unit 104 of the charge / discharge control device 300 When supplying power from the power system 22 to the specific load 27, the control unit 104 of the charge / discharge control device 300 connects the specific load 27 to the AC power line 28a by the second switch 312. In addition, when supplying power from the battery system 42 to the specific load 27, the control unit 104 of the charge / discharge control device 300 connects the specific load 27 to the battery system 42 by the second switch 312. When charging the battery system 42 with the power generated by the DC power generation device (PV panel 12), the AC power line 28 b and the battery system 42 are connected by the first switch 311.
  • the specific load 27 is connected to the AC power line 28a by the second switch 312.
  • the AC power line 28 and the AC / DC converter 321 are connected by the first switch 311, and the battery system 42 is charged. Further, when fully charged, the first switch 311 is not connected to the AC power line 28 and the AC / DC converter 321.
  • the first switch 311 is turned off, and the specific load 27 is connected to the battery system 42 by the second switch 312. When the remaining power storage capacity of the storage battery is less than the first threshold value or the free capacity becomes greater than or equal to the second threshold value, the specific load 27 is connected to the AC power line 28a by the second switch 312.
  • control unit 104 takes into consideration the chargeable time period or the dischargeable time period, the current direction between the power system 22 and the distribution board 24, and the value of the remaining battery level, the first switch 311;
  • the second switch 312, the AC / DC converter 321, and the DC / AC converter 322 are controlled, and charging / discharging of the storage battery is controlled.
  • Example 2 Configuration for switching to UPS mode
  • the charge / discharge control apparatus according to the embodiment of the present invention will be described with reference to a configuration example that can be used by switching between a general UPS (Uninterruptible Power Supply) mode and a storage battery mode.
  • the hardware configuration is the same as that of the first embodiment.
  • the mode switching unit may be provided with a hardware changeover switch or a software setting screen so that the mode can be changed by receiving a user operation.
  • the UPS mode can be set by appropriately connecting the first switch 311 and the second switch 312 in the configuration of the first embodiment. Further, it can be used by a plurality of power feeding methods depending on the connection method. According to this configuration, since most of the structure can be shared with the UPS, it is possible to realize a charge / discharge control device that can efficiently use PV surplus power at low cost.
  • the first embodiment by turning on the first switch and connecting the second switch to the DC / AC converter 322 side, it can be used as a UPS. is there.
  • power can be supplied from the storage battery (battery system 42) to the specific load 27 without a momentary interruption at the time of a power failure, as in the case of a constant inverter power supply method that is a general UPS power supply method.
  • a charge / discharge control device for controlling charge / discharge of a power storage device,
  • the power storage device is connected to an AC power line,
  • the AC power line is connected to a power system, is connected to a DC power generator via a DC / AC converter, and a load is connectable.
  • the charge / discharge control device comprises: Obtaining means for obtaining information on the direction of the current of the AC power line; And a control unit that supplies power to the power storage device when a current flows from the AC power line to the power system.
  • the control means supplies power discharged from the power storage device to the specific load during a predetermined time period.
  • the control means supplies power supplied from the power system to the specific load except during a predetermined time period.
  • the control means causes power to be supplied from the power storage device to the specific load when current flows from the power system to the AC power line. 1.
  • the charge / discharge control apparatus as described in any one. 5).
  • the charge / discharge control device includes a first switch, a second switch, an AC / DC converter, and a DC / AC converter,
  • the power storage device can supply power to a specific load without going through the AC power line
  • the AC / DC converter is connected between the AC power line and the power storage device
  • the DC / AC converter is connected between the power storage device and the specific load
  • the first switch turns on and off the connection between the AC power line and the power storage device via the AC / DC converter
  • the second switch connects the specific load to any of the power storage devices via the AC power line and the DC / AC converter
  • the charge / discharge control device comprises: When supplying power from the power system to the specific load, the specific load is connected to the AC power line by the second switch, When supplying power from the power storage device to the specific load, the specific load is connected to the power storage device by the second switch, When supplying the power generated by the DC power generation device to the power storage device via the AC power line, the AC power line and the power storage device are connected by
  • the DC power generation device includes at least one of a solar power generation facility, a fuel cell, and a private power generation facility that uses fossil energy.
  • the charge / discharge control apparatus as described in any one. 7).
  • the DC power generator is a photovoltaic power generation facility,
  • the DC / AC converter is a PV-PCS (PhotoVoltaics Power Conditioning System).
  • the charge / discharge control apparatus as described in any one.
  • a control method for a charge / discharge control device connected to a power storage device capable of charging electricity generated by a DC power generator The power storage device is connected to an AC power line, and can supply power to a specific load without passing through the AC power line.
  • the AC power line is connected to a power system, is connected to the DC power generator via a DC / AC converter, and can be connected to a general load.
  • the charge / discharge control device comprises: The control method of the charging / discharging control apparatus which supplies electric power to the said electrical storage apparatus, when the electric current is flowing into the said electric power grid
  • the charge / discharge control device comprises: Supplying power discharged from the power storage device to the specific load during a predetermined time period; 8).
  • the charge / discharge control device comprises: Except for a predetermined time period, the power supplied from the power system is supplied to the specific load. 9.
  • the charge / discharge control device comprises: When current flows from the power system to the AC power line, power is supplied from the power storage device to the specific load. 8).
  • the control method of the charging / discharging control apparatus as described in any one.
  • the charge / discharge control device includes a first switch, a second switch, an AC / DC converter, and a DC / AC converter,
  • the power storage device can supply power to a specific load without going through the AC power line
  • the AC / DC converter is connected between the AC power line and the power storage device
  • the DC / AC converter is connected between the power storage device and the specific load
  • the first switch turns on and off the connection between the AC power line and the power storage device via the AC / DC converter
  • the second switch connects the specific load to any of the power storage devices via the AC power line and the DC / AC converter
  • the charge / discharge control device comprises: When supplying power from the power system to the specific load, the specific load is connected to the AC power line by the second switch, When supplying power from the power storage device to the specific load, the specific load is connected to the power storage device by the second switch, When supplying the power generated by the DC power generation device to the power storage device via the AC power line, the AC power line and the power storage device are connected by
  • the DC power generation device includes at least one of a photovoltaic power generation facility, a fuel cell, and a private power generation facility that uses fossil energy.
  • the DC power generator is a photovoltaic power generation facility, 7.
  • the DC / AC converter is a PV-PCS (PhotoVoltaics Power Conditioning System).
  • the control method of the charging / discharging control apparatus as described in any one.
  • a computer program for realizing a charge / discharge control device connected to a power storage device capable of charging electricity generated by a DC power generator The power storage device is connected to an AC power line, and can supply power to a specific load without passing through the AC power line.
  • the AC power line is connected to a power system, is connected to the DC power generator via a DC / AC converter, and can be connected to a general load.
  • the charge / discharge control device includes a first switch, a second switch, an AC / DC converter, and a DC / AC converter
  • the power storage device can supply power to a specific load without going through the AC power line
  • the AC / DC converter is connected between the AC power line and the power storage device
  • the DC / AC converter is connected between the power storage device and the specific load
  • the first switch turns on and off the connection between the AC power line and the power storage device via the AC / DC converter
  • the second switch connects the specific load to any of the power storage devices via the AC power line and the DC / AC converter
  • On the computer When supplying power from the power system to the specific load, a procedure for connecting the specific load to the AC power line by the second switch, When supplying power from the power storage device to the specific load, a procedure of connecting the specific load to the power storage device by the second switch; When supplying the power generated by the DC power generator to the power storage device via the AC power line, a procedure for connecting the AC power line and the power storage device
  • the DC power generation device includes at least one of a solar power generation facility, a fuel cell, and a private power generation facility using fossil energy.
  • the DC power generator is a photovoltaic power generation facility, 15.
  • the DC / AC converter is a PV-PCS (PhotoVoltaics Power Conditioning System).
  • Power storage means Control means for controlling charging and discharging of the power storage means; With The power storage means is connected to an AC power line and can supply power to a specific load without going through the AC power line.
  • the AC power line is connected to a power system, connected to a DC power generator via a DC / AC converter, and a general load is connectable.
  • the control means is a power storage system that supplies power to the power storage means when a current flows from the AC power line to the power system.
  • the control means supplies power discharged from the power storage means to the specific load during a predetermined time period. 22.
  • the control means supplies power supplied from the power system to the specific load except during a predetermined time period. 23.
  • the control means is configured to supply power from the power storage means to the specific load when current flows from the power system to the AC power line. 22. To 24.
  • the electrical storage system as described in any one. 26.
  • the control means includes a first switch, a second switch, an AC / DC converter, and a DC / AC converter,
  • the power storage means can supply power to a specific load without going through the AC power line,
  • the AC / DC converter is connected between the AC power line and the power storage means,
  • the DC / AC converter is connected between the power storage means and the specific load,
  • the first switch turns on and off the connection between the AC power line and the power storage means via the AC / DC converter,
  • the second switch connects the specific load to any of the power storage means via the AC power line and the DC / AC converter,
  • the control means includes When supplying power from the power system to the specific load, the specific load is connected to the AC power line by the second switch, When supplying power from the power storage means to the specific load, the specific load
  • the DC power generation device includes at least one of a solar power generation facility, a fuel cell, and a private power generation facility that uses fossil energy.
  • the DC power generator is a photovoltaic power generation facility, 22.
  • the DC / AC converter is a PV-PCS (PhotoVoltaics Power Conditioning System).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Fuel Cell (AREA)

Abstract

充放電制御装置は、蓄電装置の充放電を制御する装置であって、蓄電装置は、交流電力線に接続しており、かつ、交流電力線を介さずに特定負荷に接続可能であり、交流電力線は電力系統に接続しており、直流/交流変換装置(PV-PCS)を介して直流電力線に接続しており、かつ、一般負荷に接続可能であり、充放電制御装置は、交流電力線の電流の向きに関する情報を取得する取得部と、交流電力線から電力系統に電流が流れているとき、蓄電装置に電力を供給する制御部と、を備える。

Description

蓄電システム、充放電制御装置、その制御方法、およびプログラム
 本発明は、蓄電システム、充放電制御装置、その制御方法、およびプログラムに関する。
 特許文献1には、商用電源と系統連系する蓄電装置の一例が記載されている。特許文献1の蓄電装置は、商用電源の電力を蓄電し、かつ、蓄電した電力を放電する。蓄電装置の放電出力時に、蓄電装置の電圧、電流と交流出力の電圧電流とが計測され、その計測値から直流出力電力と交流出力実効電力の割合が略最大になるように蓄電装置の直流出力電流は制御される。
 特許文献2には、太陽光発電装置の出力を昼間の時間帯は蓄電装置に蓄電し、これを夜間に放電することで負荷装置に電力を供給する、いわゆるピークシフト運用を行う電力供給システムの一例が記載されている。特許文献2の記載のシステムでは、負荷装置の需要予測データと、気象予測データを用いて予測される発電出力予測データから、蓄電装置の充放電量を予測して、予測値に基づいて、発電装置の発電量を制御したり、調整用負荷装置の消費電力を抑制したりすることで、負荷装置への安定的な電力供給を実現している。
 特許文献3には、電力系統と連系する電力供給システムの一例が記載されている。このシステムは、蓄電装置の充放電制御を行うことで、電力系統側への出力電力の変動をより効果的に抑制する。
 特許文献4には、太陽電池から発生する電力が日照強度や周囲温度の変化により変動する状況下で二次電池を安定して充電する電源装置が記載されている。
特開2004-112954号公報 特開2013-176234号公報 国際公開第2011/122669号 特開2005-328662号公報
 上述した特許文献には、太陽光発電システムと蓄電装置を含むシステム、または、系統からの電力を蓄電する蓄電装置(特許文献1)が記載されているが、既存の太陽光発電システムの余剰電力を有効活用するために、蓄電装置を後付けで設置するための構成は記載されていない。
 既存のシステムに蓄電装置を後付けする場合、設置コストが高くなったり、太陽光発電システムの動作と連携をとるための処理が必要となり、処理や構造が複雑になったり、蓄電池の充放電効率が低下する可能性があった。
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、太陽光発電システムの余剰電力を効率よく利用する蓄電システム、充放電制御装置、その制御方法、およびプログラムを提供することにある。
 本発明の各側面では、上述した課題を解決するために、それぞれ以下の構成を採用する。
 第一の側面は、蓄電システムに関する。
 第一の側面に係る蓄電システムは、
 蓄電手段と、
 前記蓄電手段の充放電を制御する制御手段と、
を有し、
 前記蓄電手段は、交流電力線に接続しており、かつ前記交流電力線を介さずに特定負荷に電力を供給可能であり、
 前記交流電力線は、電力系統に接続しており、直流/交流変換装置を介して直流発電装置に接続しており、かつ一般負荷が接続可能であり、
 前記制御手段は、前記交流電力線から前記電力系統に電流が流れているとき、前記蓄電手段に電力を供給する。
 第二の側面は、充放電制御装置に関する。
 第二の側面に係る充放電制御装置は、
 蓄電装置の充放電を制御する充放電制御装置であって、
 前記蓄電装置は、交流電力線に接続しており、
 前記交流電力線は、電力系統に接続しており、直流/交流変換装置を介して直流発電装置に接続しており、かつ負荷が接続可能であり、
 前記充放電制御装置は、
 前記交流電力線の電流の向きに関する情報を取得する取得手段と、
 前記交流電力線から前記電力系統に電流が流れているとき、前記蓄電手段に電力を供給する制御手段と、を有する。
 第三の側面は、少なくとも1つのコンピュータにより実行される充放電制御装置の制御方法に関する。
 第三の側面に係る充放電制御装置の制御方法は、
 直流発電装置が発電する電気を充電可能な蓄電装置に接続される充放電制御装置の制御方法であって、
 前記蓄電装置は、交流電力線に接続しており、かつ前記交流電力線を介さずに特定負荷に電力を供給可能であり、
 前記交流電力線は、電力系統に接続しており、直流/交流変換装置を介して前記直流発電装置に接続しており、かつ一般負荷が接続可能であり、
 前記充放電制御装置が、
 前記交流電力線から前記電力系統に電流が流れているとき、前記蓄電装置に電力を供給する、ことを含む。
 なお、本発明の他の側面としては、上記第三の側面の方法を少なくとも1つのコンピュータに実行させるプログラムであってもよいし、このようなプログラムを記録したコンピュータが読み取り可能な記録媒体であってもよい。この記録媒体は、非一時的な有形の媒体を含む。
 このコンピュータプログラムは、コンピュータにより実行されたとき、コンピュータに、充放電制御装置上で、その制御方法を実施させるコンピュータプログラムコードを含む。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
 また、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。
 また、本発明の方法およびコンピュータプログラムには複数の手順を順番に記載してあるが、その記載の順番は複数の手順を実行する順番を限定するものではない。このため、本発明の方法およびコンピュータプログラムを実施するときには、その複数の手順の順番は内容的に支障のない範囲で変更することができる。
 さらに、本発明の方法およびコンピュータプログラムの複数の手順は個々に相違するタイミングで実行されることに限定されない。このため、ある手順の実行中に他の手順が発生すること、ある手順の実行タイミングと他の手順の実行タイミングとの一部ないし全部が重複していること、等でもよい。
 上記各側面によれば、太陽光発電システムの余剰電力を効率よく利用する蓄電システム、充放電制御装置、その制御方法、およびプログラムを提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
太陽光発電システムの構成例を示す概略ブロック図である。 本発明の実施の形態に係る蓄電システムの構成例を示す概略ブロック図である。 本発明の実施の形態に係る充放電制御装置の構成を論理的に示す機能ブロック図である。 本実施形態の蓄電システムの蓄電池の充放電制御による充電容量の時間推移の一例を示す図である。 本実施形態の蓄電システムの蓄電池の充放電制御を説明するための図である。 本実施形態の充放電制御装置を実現するコンピュータの構成の一例を示す図である。 本実施形態の充放電制御装置の動作の一例を示すフローチャートである。 本実施形態の充放電制御装置の動作の一例を示すフローチャートである。 本実施形態の充放電制御装置の充電時の動作の一例を示すフローチャートである。 本実施形態の充放電制御装置の放電時の動作の一例を示すフローチャートである。 本実施形態の蓄電システムの蓄電池の充放電制御を説明するための図である。 本発明の実施例の充放電制御装置の構成例を示す概略ブロック図である。 本発明の実施例の充放電制御装置をUPS(Uninterruptible Power Supply:無停電電源装置)として利用する際の構成例を示す概略ブロック図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施の形態)
 本発明の第1の実施の形態に係る蓄電システム、充放電制御装置、その制御方法、およびプログラムについて、以下説明する。
 本実施形態の充放電制御装置は、リチウムイオン二次電池の充放電を制御する。
 図1は、太陽光発電(PV:PhotoVoltaics)システム10の構成例を示す概略ブロック図である。
 図2は、本発明の実施の形態に係る蓄電システム1の構成例を示す概略ブロック図である。図2の蓄電システム1は、図1の既存のPVシステム10の交流電力線28(28a、28b)側に蓄電装置40を付加した後の構成を示している。
 本明細書の各図において、本発明の本質に関わらない部分の構成については省略してあり、図示されていない。
 図1の既存のPVシステム10は、PVパネル12と、PV-PCS(Power Conditioning System)14と、分電盤24と、負荷26とを含む。本実施形態では、PVパネル12とPV-PCS14は屋外に設置されており、分電盤24、および負荷26は、屋内に設置されているものとする。上記は一例であり、PV-PCS14が屋内に設置されている構成であってもよいし、分電盤24、および負荷26が屋外に設置されていてもよい。
 PVパネル12とPV-PCS14は、直流電力線16(破線で示す)で接続されている。
 PV-PCS14と、分電盤24と、電力系統22は、交流電力線28(一点鎖線で示す(28a、28b))で接続されている。交流電力線28(28a、28b)には、さらに、分電盤24を介して負荷26が接続されている。
 PVパネル12は、太陽の光エネルギを受けて電気に変換する太陽電池を複数含み、強化ガラスやアクリル樹脂などで保護したもので、たとえば、住居の屋根等に設置される。
 PVパネル12で発電された直流電流は、直流電力線16を通りPV-PCS14に入力される。PV-PCS14は、PVパネル12で発電した直流電流を、家電(負荷26)で一般的に使われる交流電流に変換する機能を有する。また、本実施形態では、PV-PCS14は、PVパネル12のMPPT(Maximum Power Point Tracking:最大電力点追従)制御を行い、また、PVパネル12の動作を制御する機能も有する。たとえば、PV-PCS14は、PVパネル12に対する出力抑制制御信号(以下、PV出力抑制信号とも呼ぶ)を受信し、制御信号に従い、PVパネル12の出力を抑制する。PV出力抑制信号は、たとえば、PV-PCS14の定格出力の所定の割合(%)に出力を抑制する指示が含まれる。
 負荷26は、エアコン、照明機器、冷蔵庫、テレビ、電子レンジ、ドライヤー、パーソナルコンピュータ、ゲーム機、電話機、給湯器、電気自動車、およびプラグインハイブリッド自動車等、様々な電気機器の少なくとも一つであり、特に限定されない。
 電力系統22から需要家宅の分電盤24に、送電ネットワークを介して電気が供給され、分電盤24を介して各負荷26に電気が分配される。
 また、PVパネル12で発電された電気は、直流電力線16を介してPV-PCS14に入力され、交流電流に変換されて交流電力線28aに出力される。そして、交流電力線28aを通り、分電盤24を介して負荷26に供給することができる。
 PVパネル12で発電された電力は、需要家の負荷26で消費する以外に、余剰分を分電盤24を介して電力系統22に逆潮流することもできる。しかし、本実施形態では、PVパネル12で発電された余剰電力は、できるだけ電力系統22に逆潮流させず、蓄電装置40で電池システム42のリチウムイオン二次電池に充電される。
 本実施形態の蓄電システム1は、図2に示すように、蓄電装置40と、クランプ式交流電流センサ44とを含む。
 本実施形態の充放電制御装置100は、既存のPVシステム10に後付けで付加される電池システム42の充放電を制御する。本実施形態の蓄電装置40は、電池システム42と、充放電制御装置100とを含む。蓄電装置40は、PV-PCS14と分電盤24の間の交流電力線28aに電気的に接続される。また、本実施形態における蓄電装置40は、屋内に設置されるものとされているが、屋外に設置されていてもよい。
 なお、本実施形態では、PVシステム10を例として説明しているが、太陽光発電に限定されるものではなく、他の直流電力を出力する再生可能エネルギ発電のシステムにも同様に適用できる。
 電池システム42は、図示されない、少なくとも一つのリチウムイオン二次電池(lithium-ion rechargeable battery)(以下、「蓄電池」とも呼ぶ)と、リチウムイオン二次電池を管理するバッテリマネジメントユニット(Battery Management Unit:BMU)とを含む。電池システム42は、定格容量(kWh)で示される、システムが充電可能な電気容量を有する。電池システム42は、充放電制御装置100により蓄電池の充放電が制御される。
 また、本実施形態では、詳細な説明は省略するが、蓄電池の充放電制御においては、蓄蓄電池の定格容量に対する所定の範囲内で充放電制御が行われるものとする。
 図3は、本発明の実施の形態に係る充放電制御装置100の構成を論理的に示す機能ブロック図である。以下、本実施形態の充放電制御装置100の構成について、図2および図3を用いて説明する。
 本実施形態の充放電制御装置100は、蓄電装置40の充放電を制御する装置である。蓄電装置40は、交流電力線28に接続しており、かつ、交流電力線28を介さずに特定負荷27に接続可能である。交流電力線28は電力系統22に接続しており、直流/交流変換装置(PV-PCS14)を介して直流電力線16に接続している。さらに、交流電力線28は、一般負荷26に接続可能である。
 充放電制御装置100は、交流電力線28の電流の向きに関する情報を取得する取得部102と、交流電力線28から電力系統22に電流が流れているとき(売電時)、蓄電装置40に電力を供給する制御部104と、を備える。
 以下、本明細書では、交流電力線28を介さずに蓄電装置40と接続可能な負荷を特定負荷27と呼び、交流電力線28に分電盤24を介して接続され、交流電力線28から電力が供給される負荷を一般負荷26と呼んで区別するものとする。
 本明細書において、「取得」とは、自装置が他の装置や記憶媒体に格納されているデータまたは情報を取りに行くこと(能動的な取得)、たとえば、他の装置にリクエストまたは問い合わせして受信すること、他の装置や記憶媒体にアクセスして読み出すこと等、および、自装置に他の装置から出力されるデータまたは情報を入力すること(受動的な取得)、たとえば、配信(または、送信、プッシュ通知等)されるデータまたは情報を受信すること等、の少なくともいずれか一方を含む。また、受信したデータまたは情報の中から選択して取得すること、または、配信されたデータまたは情報を選択して受信することも含む。
 さらに、本実施形態の充放電制御装置100は、図示されない記憶装置110にアクセス可能に接続されてもよい。記憶装置110は、充放電制御装置100に含まれてもよいし、充放電制御装置100の外部の装置であってもよい。本実施形態では、記憶装置110は、後述する図6のコンピュータ80のメモリ84またはストレージ85により実現されてよい。
 以下、図3の充放電制御装置100の各構成要素について、詳細に説明する。
 取得部102は、交流電力線28bと電力系統22の間を流れる電流値およびその向きを取得する。図2の例では、取得部102は、たとえば、図2のクランプ式交流電流センサ(CT:Current Transformer)44を、分電盤24と電力系統22間の交流電力線28bに取り付け、クランプ式交流電流センサ44により交流電力線28bの電流値を計測する。取得部102は、このクランプ式交流電流センサ44により計測される電流値を取得し、その電流の向きに関する情報を取得する。
 上述したように、制御部104は、交流電力線28bの電流の向きに基づいて、蓄電装置(電池システム42)の充放電を制御する。
 詳細には、制御部104は、PVパネル12で発電された電力のうち、一般負荷26と特定負荷27によって消費されずに残る余剰分(余剰電力)を、蓄電装置(電池システム42の蓄電池)に充電するように制御する。
 図4に示すように、PVパネル12の時間毎の発電量(実線で示す)と、一般負荷26と特定負荷27の合計の電力消費量(破線で示す)との差分(ハッチング部)が、PVパネル12の余剰電力となる。
 また、制御部104は、蓄電池の放電の制御も行ってもよい。
 たとえば、電力系統22またはPVパネル12から特定負荷27に供給される電力の代わりに、蓄電池に充電された電力を蓄電池から放電して特定負荷27に供給することができる。
 また、本実施形態では、蓄電池から放電される電力は、電力系統22には逆潮流させないものとし、需要家の特定負荷27で消費するものとする。
 本実施形態では、取得部102は、交流電力線28bを流れる電流の向きに関する情報を取得し、その情報を基に、制御部104が蓄電池の充放電を制御する構成としているが、これに限定されない。以下に示すように、様々な情報または条件で、蓄電池の充放電制御を行う構成も排除されない。以下は、矛盾のない範囲で複数を組み合わせてもよい。
 本発明では、充電可否の判定は、PVパネル12が発電した電力に余剰があるか否かを示す情報に基づいて行うことができる。
 制御部が充電可否を判定する条件は以下に例示される。
(a1)交流電力線28bの電流の向きが分電盤24から電力系統22のとき、すなわち、電力系統22への逆潮流(売電)が発生する場合に充電する。
(a2)PVパネル12からの発電量が閾値以上の場合に、閾値を超える余剰分を充電する。
(a3)PV出力抑制信号により出力抑制制御されている余剰電力を充電する。
 上記(a1)では、交流電力線28bの電流の向きに基づいて、充電可否を判定する。
 具体的には、交流電力線28bの電流の向きが、分電盤24から電力系統22のときに蓄電池に充電する。分電盤24から電力系統22でない場合は充電しない。
 この構成は、本実施形態の構成である。取得部102は、交流電力線28bの電流の向き(電力系統22と分電盤24の間)に関する情報を取得する。交流電力線28bの電流値の正負の符号から電流の向きを特定できる。たとえば、電力系統22から分電盤24の向きに電流が流れる場合の電流値を正の値とすると、分電盤24から電力系統22の向きに電流が流れる場合の電流値は負の値となる。クランプ式交流電流センサ44の設置方法により電流の流れる向きと電流値の正負は定まるので、判定条件をクランプ式交流電流センサ44の設置状態に合わせて、電流の向きと電流値の正負の関係は予め設定しておく。
 ここで、交流の場合、電流の向きが時間とともに変化するため、交流電圧の位相に対して交流電流が0度±90の時、すなわち交流電力が電力系統22から分電盤24の方向に出力している場合を電流値が正とする。一方、交流電流が0度±90以上の時、すなわち、交流電力が分電盤24から電力系統22の方向に出力している場合を電流値が負とする。
 さらに、制御部は、以下に例示される(b1)~(b5)の複数の条件のうち、少なくともいずれかを組み合わせて用いて蓄電池の充放電の制御を行ってもよい。
(b1)予め定められている蓄電池の充電可能な第1時間帯と放電可能な第2時間帯に従い、充放電する。
 この構成では、第1時間帯と第2時間帯の情報を記憶装置110に予め記憶する。
 本実施形態の蓄電装置40は、蓄電池に充電可能な第1時間帯と放電可能な第2時間帯が予め定められているものとする。第1時間帯は、6時~18時であり、第2時間帯は18時~翌日の6時とする。
 制御部104は、予め定められた第2時間帯に、蓄電装置40から放電された電力を特定負荷27に供給する。
 また、制御部104は、予め定められた第2時間帯以外は、電力系統22から供給される電力を特定負荷27に供給する。
 また、充放電制御装置100は、図示されない時計を有し、時計から時刻情報を取得するものとする。また、時計は充放電制御装置100に含まれなくてもよく、充放電制御装置100の外部の装置であってもよい。
 図5に示すように、実線で示されるPVパネル12の発電量が、破線で示される一般負荷26と特定負荷27の合計の消費電力量を上回っている場合であっても、第2時間帯における余剰電力(図中、ハッチングで示される)は蓄電池に充電されない。
(b2)蓄電池が満充電の場合は、充電しない。
 この構成では、取得部102は、電池システム42のBMUから蓄電池が満充電であることを示す情報を取得してよい。
(b3)蓄電池に、蓄電容量の所定の割合(%)以上、充電されたら充電を停止する。
 この構成では、蓄電池の蓄電容量の所定の割合(%)を記憶装置110に予め記憶する。
(b4)電力系統22における買電または売電の状況に応じて、蓄電池の充放電を制御する。
 この構成については、後述する実施形態で詳細に説明する。
(b5)蓄電池の蓄電残容量が第1の閾値未満、または、空き容量が第2の閾値以上になったら、蓄電池の放電を停止する。
 この構成では、取得部102は、電池システム42のBMUから蓄電池の蓄電残容量、または、空き容量に関する情報を取得してよい。また、閾値を記憶装置110に予め記憶する。各閾値は、外部から更新できる構成を有してもよい。
 図6は、本実施形態の充放電制御装置100を実現するコンピュータ80の構成の一例を示す図である。
 本実施形態のコンピュータ80は、CPU(Central Processing Unit)82、メモリ84、メモリ84にロードされた充放電制御装置100の構成要素を実現するプログラム90、そのプログラム90を格納するストレージ85、I/O(Input/Output)86、およびネットワーク接続用インタフェース(通信I/F87)を備える。
 CPU82、メモリ84、ストレージ85、I/O86、通信I/F87は、バス89を介して互いに接続され、CPU82により充放電制御装置100全体が制御される。ただし、CPU82などを互いに接続する方法は、バス接続に限定されない。
 メモリ84は、RAM(Random Access Memory)やROM(Read Only Memory)などのメモリである。ストレージ85は、ハードディスク、SSD(Solid State Drive)、またはメモリカードなどの記憶装置である。
 ストレージ85は、RAMやROMなどのメモリであってもよい。ストレージ85は、コンピュータ80の内部に設けられてもよいし、コンピュータ80がアクセス可能であれば、コンピュータ80の外部に設けられ、コンピュータ80と有線または無線で接続されてもよい。あるいは、コンピュータ80に着脱可能に設けられてもよい。
 CPU82が、ストレージ85に記憶されるプログラム90をメモリ84に読み出して実行することにより、充放電制御装置100の各ユニットの各機能を実現することができる。
 I/O86は、コンピュータ80と他の入出力装置間のデータおよび制御信号の入出力制御を行う。他の入出力装置とは、たとえば、コンピュータ80に接続されるキーボード、タッチパネル、マウス、およびマイクロフォン等の入力装置(不図示)と、ディスプレイ、プリンタ、およびスピーカ等の出力装置(不図示)と、これらの入出力装置とコンピュータ80のインタフェースとを含む。さらに、I/O86は、他の記録媒体の読み取りまたは書き込み装置(不図示)とのデータの入出力制御を行ってもよい。
 通信I/F87は、コンピュータ80と外部の装置との通信を行うためのネットワーク接続用インタフェースである。通信I/F87は、必ずしも必要ない。通信I/F87は、有線回線と接続するためのネットワークインタフェースでもよいし、無線回線と接続するためのネットワークインタフェースでもよい。たとえば、充放電制御装置100を実現するコンピュータ80は、通信I/F87によりネットワーク3を介してHEMSと接続されてもよい。
 本実施形態の充放電制御装置100の各構成要素は、図6のコンピュータ80のハードウェアとソフトウェアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。以下説明する各実施形態の充放電制御装置を示す機能ブロック図は、ハードウェア単位の構成ではなく、論理的な機能単位のブロックを示している。
 また、充放電制御装置100は、複数のコンピュータ80からなる構成も排除されない。
 本実施形態のコンピュータプログラム90は、充放電制御装置100を実現させるためのコンピュータ80に、交流電力線28bから電力系統22に電流が流れているとき(売電時)、蓄電装置40に電力を供給する手順、を実行させるように記述されている。
 本実施形態のコンピュータプログラム90は、コンピュータ80で読み取り可能な記録媒体に記録されてもよい。記録媒体は特に限定されず、様々な形態のものが考えられる。また、プログラム90は、記録媒体からコンピュータ80のメモリ84にロードされてもよいし、ネットワークを通じてコンピュータ80にダウンロードされ、メモリ84にロードされてもよい。
 コンピュータプログラム90を記録する記録媒体は、非一時的な有形のコンピュータ80が使用可能な媒体を含み、その媒体に、コンピュータ80が読み取り可能なプログラムコードが埋め込まれる。コンピュータプログラム90が、コンピュータ80上で実行されたとき、コンピュータ80に、充放電制御装置100を実現する以下の制御方法を実行させる。
 このように構成された本実施形態の充放電制御装置100の制御方法について、以下説明する。
 図7は、本実施形態の充放電制御装置100の動作の一例を示すフローチャートである。
 本発明の実施の形態に係る制御方法は、充放電制御装置100の制御方法であり、充放電制御装置100を実現するコンピュータ80により実行される制御方法である。
 本実施形態の制御方法は、充放電制御装置100が、交流電力線28bの電流の向きに関する情報を取得し(ステップS101)、交流電力線28bから電力系統22に電流が流れているとき(売電時)(ステップS103のYES)、蓄電装置40に電力を供給する(ステップS105)、ことを含む。
 以下、より詳細に説明する。
 まず、取得部102が、クランプ式交流電流センサ44から分電盤24と電力系統22の間の交流電力線28bを流れる電流値および電流の向きを取得する(ステップS101)。ここでは、電力系統22から分電盤24の方向に電流が流れている場合は電流値は正の値となり、分電盤24から電力系統22の方向に電流が流れている場合は電流値は負の値となるものとする。
 そして、制御部104が、電流の向きが、分電盤24から電力系統22に向かっているか否かを判定する(ステップS103)。たとえば、ステップS101で取得部102が取得した電流値が負の値か否かで判定できる。
 電流の向きが、分電盤24から電力系統22の場合(ステップS103のYES)、たとえば、交流電力線28bを流れる電流が負の値(0未満)の場合、制御部104は、電池システム42の蓄電池にPVパネル12由来の余剰分の電力を充電する(ステップS105)。そして、処理を終了する。
 このとき、PVパネル12で発電された電力の余剰分は、直流電力線16から蓄電装置40に直接流れて、電池システム42の蓄電池に充電される。後述する実施形態のように、交流電力線28aに蓄電装置40を接続する構成の場合には、PVパネル12からPV-PCS14を経由して交流電力線28aを介して蓄電装置40に流れて、電池システム42の蓄電池に充電される。
 また、電流の向きが、分電盤24から電力系統22ではない場合(ステップS103のNO)、たとえば、交流電力線28bを流れる電流が正の値(0以上)の場合の処理については、後述する実施形態で説明することとし、ここでは説明を省略する。また、充電処理の停止条件についても、後述する実施形態で説明するので、ここでは説明を省略する。
 図7のフローチャートの処理は、たとえば、蓄電池を充電可能な第1時間帯の間、所定の周期で繰り返し実行されてよい。また、各ステップの処理は、非同期に行われてもよい。
 以上説明したように、本実施形態の充放電制御装置100において、取得部102により、交流電力線28bの電流の向きが取得され、制御部104により、交流電力線28bから電力系統22に電流が流れているとき(売電時)、電池システム42の蓄電池に電力が供給される。
 このように、本実施形態の充放電制御装置100によれば、簡単な構成で、PVパネル12の余剰電力を効率よく電池システム42の蓄電池を充電できる。
 また、本実施形態では、蓄電池の電力は特定負荷のみに供給するため、電力系統22への逆潮流はない。たとえば、電力系統22と連系する場合、系統連系の申請が必要となり、手間がかかる。しかしながら、本実施形態の蓄電システム1によれば、系統連系を行わなくてもよくなり、系統連系に必要な煩雑な申請手続きが不要となる。
(第2の実施の形態)
 次に、本発明の第2の実施の形態に係る蓄電システムについて、以下説明する。
 本実施形態の蓄電システムは、図2の上記実施形態の蓄電システム1と同様な構成を有するものとし、以下、図2および図3を用いて説明する。
 本実施形態では、上記実施形態の制御部104における蓄電池の充放電制御方法の一例について詳細に説明する。
 本実施形態の充放電制御装置100の制御部104において、分電盤24と電力系統22の間を流れる電流の向きに応じて、蓄電池への充放電を制御する。
 以下に具体的な制御方法について説明する。
 本実施形態の充放電制御装置100において、制御部104は、交流電力線28bから電力系統22に電流が流れているとき(売電時)、蓄電装置40に電力を供給するとともに、電力系統22から交流電力線28bに電流が流れているとき(買電時)、蓄電装置40から特定負荷27に電力を供給させる。
 以下に具体例を説明する。
 ここでは、取得部102により取得される交流電力線28bを流れる電流は、分電盤24から電力系統22の向きに流れている場合、負の値をとり、電力系統22から分電盤24の向きに流れている場合、正の値をとるものとする。
 制御部104は、取得部102が取得した交流電力線28bを流れる電流の正負を判定する。電流値が負(電流値<0)の場合、制御部104は、充電電流値を所定値分(たとえば、1A)増加させ、蓄電池を充電させる。その後、取得部102により交流電力線28bを流れる電流値を取得し、電流値が0になるまで、判定処理を繰り返す。
 また、電流値が正(電流値>0)の場合、制御部104は、放電電流値を所定値分(たとえば、1A)増加させ、蓄電池から放電させる。その後、取得部102により交流電力線28bを流れる電流値を取得し、電流値が0になるまで、判定処理を繰り返す。
 そして、電流が0になったら、制御部104は、その時の電流値で蓄電池の充放電を続ける。そして、再び、分電盤24と電力系統22間の電流の向きを監視する。
 本実施形態においても、図6のコンピュータ80のCPU82が、ストレージ85に記憶されるプログラム90をメモリ84に読み出して実行することにより、充放電制御装置100の図3の各ユニットの各機能を実現することができる。
 本実施形態のコンピュータプログラム90は、充放電制御装置100を実現させるためのコンピュータ80に、交流電力線28bの電流の向きに関する情報を取得する手順、交流電力線28bから電力系統22に電流が流れているとき(売電時)、蓄電装置40に電力を供給する手順、電力系統22から交流電力線28bに電流が流れているとき(買電時)、蓄電装置40から特定負荷27に電力を供給させる手順、を実行させるように記述されている。
 本実施形態の充放電制御装置100の制御方法について、以下、図8~図10を用いて説明する。
 図8は、本実施形態の充放電制御装置100の動作の一例を示すフローチャートである。
 本発明の実施の形態に係る制御方法は、充放電制御装置100の制御方法であり、充放電制御装置100を実現するコンピュータ80により実行される制御方法である。
 本実施形態の制御方法は、充放電制御装置100が、交流電力線28bの電流の向きに関する情報を取得し(ステップS101)、交流電力線28bの電流の向きを判定し(ステップS103)、交流電力線28bから電力系統22に電流が流れているとき(売電時)(ステップS103の電流値<0)、蓄電装置40に電力を供給し(ステップS205の充電処理)電力系統22から交流電力線28bに電流が流れているとき(買電時)(ステップS203の電流値>0)、蓄電装置40から特定負荷27に電力を供給させる(ステップS207の放電処理)、ことを含む。
 以下、より詳細に説明する。
 まず、取得部102が、クランプ式交流電流センサ44から分電盤24と電力系統22の間の交流電力線28bを流れる電流値および電流の向きを取得する(ステップS101)。ここでは、電力系統22から分電盤24の方向に電流が流れている場合は電流値は正の値となり、分電盤24から電力系統22の方向に電流が流れている場合は電流値は負の値となるものとする。
 そして、制御部104が、分電盤24と電力系統22の間の交流電力線28aを流れる電流の向きと電流値を取得する(ステップS101)。そして、電流の向きを判定かる(ステップS203)。たとえば、ステップS101で取得部102が取得した電流値の正負で電流の向きが判定できる。本実施形態では、電流値が0以下(0か負の値)か、0より大きい(正の値)かを判別する。
 電流の向きが、分電盤24から電力系統22の場合(ステップS203の電流値<0)、PVパネル12の発電量が一般負荷26と特定負荷27の合計の消費量を上回り、PVパネル12の余剰電力が生じていることを意味する。また、ステップS203の電流値=0の場合、PVパネル12の発電量が一般負荷26と特定負荷27の合計の消費量と同等、またはPVパネル12の余剰電力が生じている可能性があることを意味する。
 たとえば、図4の実線で示すPVパネル12の発電量が、破線で示す一般負荷26と特定負荷27の合計の消費量を上回っているハッチング部分の電力量が余剰電力である。この余剰電力は売電される。
 本実施形態では、電流の向きが、分電盤24から電力系統22の場合(ステップS203の電流値<0)、つまり、売電が生じる場合に、その余剰電力を売電せずに蓄電池に充電するように動作する。ここでは、図9の充電処理ルーチンを実行する。
 また、電流の向きが、電力系統22から分電盤24の場合(ステップS203の電流値>0)、PVパネル12の発電量が一般負荷26と特定負荷27の合計の消費量を下回り、電力不足が発生し、電力系統22からの買電が生じていることを意味する。
 たとえば、図11の実線で示すPVパネル12の発電量が、破線で示す一般負荷26と特定負荷27の合計の消費量を下回っているハッチング部分の電力量が不足分である。この不足分は電力系統22から買電される。または、放電可能時間帯であれば、電池システム42の蓄電池から放電して、不足分を補ってもよい。
 本実施形態では、電流の向きが、電力系統22から分電盤24の場合(ステップS203の電流値>0)、つまり、買電が生じる場合に、電力不足分を買電せずに蓄電池から放電するように動作する。ここでは、図10の放電処理ルーチンを実行する。
 ステップS205およびステップS207の後、ステップS101に戻る。図8のフローチャートの処理は、所定の周期で繰り返し実行される。
 次に図8のステップS205の充電処理について以下詳細に説明する。
 図9は、本実施形態の充放電制御装置100の充電処理の詳細な手順の一例を示すフローチャートである。本処理では、売電が0になるようにPVパネル12が発電した余剰電力を蓄電池に充電する。
 まず、取得部102が、分電盤24から電力系統22の間の交流電力線28bを流れる電流値および電流の向きを取得する(ステップS311)。そして、制御部104が、電流値が0より大きい(正の値)か、0か、0未満(負の値)かを判定する(ステップS313)。
 ステップS313で、電流値が<0の場合、制御部104は、電池システム42の蓄電池にPVパネル12由来の余剰分の電力を充電するときの充電量を所定値分増加させる(ステップS315)。そして、蓄電池を設定された充電量で充電する(ステップS317)。その後、ステップS311に戻り、処理を繰り返す。
 したがって、ステップS313で電流値<0の間は、充電量が所定値分ずつ増加され、蓄電池に充電される。
 そして、電流値が0になるまで繰り返され、ステップS313で電流値=0になったとき、充電量をそのままに設定し(ステップS319)、蓄電池を設定された充電量で充電する(ステップS317)。その後、ステップS311に戻り、処理を繰り返す。
 そして、ステップS311で取得された交流電力線28bの電流値により、電流値が>0になった場合、制御部104は、電池システム42の蓄電池に充電するときの充電量を所定値分減少させる(ステップS323)。そして、蓄電池を設定された充電量で充電する(ステップS317)。その後、ステップS311に戻り、処理を繰り返す。
 そして、電流値が0になるまで繰り返され、ステップS313で電流値=0になったとき、充電量をそのままに設定し(ステップS319)、蓄電池を設定された充電量で充電する(ステップS317)。その後、ステップS311に戻り、処理を繰り返す。
 このように、本実施形態では、売電が発生している間、売電が0になるように、図9の充電処理を繰り返し行う。
 このように、充電処理中は、電力系統22への売電がなくなるように、PVパネル12の発電量のうち充電量分を蓄電池に充電する。これにより、図4のハッチング部分の余剰電力が蓄電池に充電される。
 図2の蓄電システム1では、PVパネル12で発電された電力の余剰分が、PVパネル12からPV-PCS14を経由して交流電力線28aを介して蓄電装置に流れて、電池システム42の蓄電池に充電される。
 次に図8のステップS207の放電処理について以下詳細に説明する。
 図10は、本実施形態の充放電制御装置100の放電処理の詳細な手順の一例を示すフローチャートである。本処理では、買電が減るように蓄電池から電力を特定負荷27に供給する。
 まず、取得部102が、分電盤24から電力系統22の間の交流電力線28bを流れる電流値および電流の向きを取得する(ステップS331)。その後、ステップS331に戻り、処理を繰り返す。
 したがって、ステップS333で電流値が>0の場合、制御部104は、電池システム42の蓄電池から不足電力分の電力を放電するときの放電量を所定値分増加させる(ステップS335)。そして、蓄電池を設定された放電量で放電する(ステップS337)。その後、ステップS331に戻り、処理を繰り返す。
 ここで、特定負荷27の総消費電力量を閾値とし、閾値以下まで放電量は増加させる。そこで、放電量が閾値を超える場合(ステップS334のYES)、放電量はそのままの値としてステップS335をバイパスしてステップS337に進む。また、放電量が閾値以下の場合(ステップS334のNO)、ステップS335に進む。
 そして、蓄電池を設定された放電量で放電する(ステップS337)。その後、ステップS331に戻り、処理を繰り返す。
 したがって、ステップS333で電流値>0の間は、放電量が所定値分ずつ特定負荷27の総消費電力量になるまで増加され、蓄電池から放電される。
 そして、電流値が0になるまでまたは特定負荷27の総消費電力量になるまで繰り返され、ステップS333で電流値=0になったとき、放電量をそのままに設定し(ステップS339)、蓄電池を設定された充電量で充電する(ステップS337)。その後、ステップS331に戻る。
 閾値は所定の設定値を予め記憶装置110に記憶しておいてもよいし、設定値は必要に応じて更新できてもよい。また、特定負荷27の消費電力量を取得する取得部(不図示)をさらに設け、実測値を元に閾値を設定できる構成でもよい。
 そして、ステップS331で取得された交流電力線28bの電流値により、電流値が<0になった場合、制御部104は、電池システム42の蓄電池から放電する放電量を所定値分減少させる(ステップS343)。そして、蓄電池から設定された放電量で放電する(ステップS337)。その後、ステップS331に戻る。
 そして、電流値が0になるまで繰り返され、放電量=0になった場合(ステップS341のNO)、とき、放電量をそのままに設定し(ステップS339)、蓄電池を設定された放電量で放電する(ステップS337)。その後、ステップS331に戻る。
 このように、本実施形態では、買電が発生している間、買電が0になるように、図10の放電処理を繰り返し行う。
 このように、放電処理中は、電力系統22への買電がなくなるように、または、特定負荷27の総消費電力量までの電力を、特定負荷27に蓄電池から放電する。これにより、図11のハッチング部分の不足電力が蓄電池から放電され、特定負荷27に供給される。
 図2の蓄電システム1では、PVパネル12の余剰分として蓄電池に蓄電されていた電力が、蓄電装置40から直流電力線16に供給されて、PV-PCS14、交流電力線28a、および分電盤24を介して特定負荷27に供給される。
 他の実施形態において、交流電力線28aに蓄電装置40を接続する構成の場合には、蓄電池に蓄電されていた電力が蓄電装置から分電盤24を介して特定負荷27に供給される。
 図8のフローチャートの各ステップの処理は、非同期に行われてもよい。たとえば、ステップS203で売電が検出された場合のステップS205の処理は、蓄電池を充電可能な第1時間帯の間のみ実行されてよい。一方、ステップS203で買電が検出された場合のステップS207の処理は、蓄電池を放電可能な第2時間帯の間のみ実行されてよい。
 あるいは、第1時間帯の間のみ、図9の充電処理を行い、第2時間帯の間のみ、図10の放電処理を行ってもよい。また、充電時の処理と放電時の処理は、別ルーチンで非同期に実行されてもよい。
 以上説明したように、本実施形態の蓄電システム1において、分電盤24から電力系統22の向きに電流が流れているとき、制御部104により、その電流が0になるまで蓄電池への充電量が増加される。また、電力系統22から分電盤24の向きに電流が流れているとき、制御部104により、その電流が0になるまで蓄電池からの放電量が増加される。
 この構成によれば、上記実施形態と同様な効果を奏するとともに、PVパネル12からの発電量が一般負荷26と特定負荷27の合計の消費量を上回った場合には、売電が生じないように余剰電力を蓄電池に充電し、PVパネル12からの発電量が一般負荷26と特定負荷27の合計の消費量を下回った場合には、買電が生じないように不足分を蓄電池から放電させることができる。
 このように、本実施形態によれば、蓄電システム1により電力を効率よく充放電することができる。さらに、本実施形態の蓄電システム1では、系統連系を行わなくてもよくなり、系統連系に必要な煩雑な申請手続きが不要となるといった効果もある。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 たとえば、上記実施形態では、直流発電装置は、太陽光発電設備であり、変換装置は、PV-PCS(PhotoVoltaics Power Conditioning System:太陽光発電パワーコンディショナ)である例について説明した。
 直流発電装置は、太陽光発電設備、燃料電池、および化石エネルギを利用する自家発電設備の少なくともいずれか一つを含んでよい。
(PV出力抑制余剰電力の充電)
 さらに、他の実施形態において、PV出力抑制信号により出力抑制制御されている余剰電力を充電してもよい。
 PV-PCS14がPVパネル12に対する出力抑制制御信号を受信している場合、PV-PCS14により実際のPVパネル12の発電可能な電力量より低く抑制制御されている可能性がある。
 ここで、PV出力抑制信号は、たとえば、PV-PCS14の定格出力の所定の割合(%)に出力を抑制するよう指示を含む。
 本発明では、抑制されている分の電力も余剰電力として蓄電池に充電する。
 制御部は、PVパネル12からの出力のうち所定量を蓄電池に充電してみる。このとき、蓄電装置40の接続位置とPV-PCS14の間の直流電力線16にクランプ式直流電流センサ(不図示)を電気的に接続するか、あるいは、PV-PCS14と分電盤24の間の交流電力線28にクランプ式交流電流センサ(不図示)を電気的に接続する。そして、取得部は、センサで計測された電流値を取得する。制御部は、電流値の増減を監視する。電流値が減った場合、余剰電力がないと判断する。電流値が減らない場合、余剰電力があると判断する。
 この構成によれば、PV出力抑制されている余剰電力を充電できるので、PVパネル12により発電された電力を無駄なく効率的に充電できる。
(売電分の充電)
 さらに、他の実施形態において、電力系統22への逆潮流(売電)が発生する場合、蓄電池に充電する。
 この構成では、取得部は、需要家のスマートメータ(不図示)またはHEMS(Home Energy Management System)(不図示)等から検針データの値(消費電力量、逆潮流値)等を取得してもよい。この実施形態では、取得部は、図6の通信I/F87を用いてスマートメータやHEMSと無線通信する構成を有してよい。
 この構成によれば、簡単な構成で売電される電力を蓄電池に効率よく充電することができる。
(実施例1)
 本発明の充放電制御装置300の実施例について、以下に説明する。
 本実施例の充放電制御装置300では、蓄電池から電力が供給可能な特定負荷27に、電力系統22と蓄電池(電池システム42)を切り替えて電力を供給可能な構成の具体例について説明する。
 図12は、本発明の実施例に係る充放電制御装置300の構成例を示す概略ブロック図である。
 充放電制御装置300は、取得部102と、制御部104と、さらに、第1スイッチ(図中、「SW1」と示す)311と、第2スイッチ(図中、「SW2」と示す)312と、AC/DC(交流/直流)コンバータ321と、DC/AC(直流/交流)コンバータ322と、を有する。
 電池システム42は、特定負荷27のみに電力を供給可能である。
 AC/DCコンバータ321は、交流電力線28bと電池システム42の間に接続されている。AC/DCコンバータ321は、交流電力を直流電力に変換する。
 DC/ACコンバータ322は、電池システム42と特定負荷27の間に接続されている。DC/ACコンバータ322は、直流電力を交流電力に変換する。
 第1スイッチ311は、交流電力線28とAC/DCコンバータ321を介した電池システム42との接続をオンオフする。
 第2スイッチ312は、特定負荷27を、交流電力線28a、およびDC/ACコンバータ322を介して電池システム42のいずれかに接続する。
 充放電制御装置300の制御部104は、特定負荷27に電力系統22から電力を供給する場合は、第2スイッチ312により特定負荷27を交流電力線28aに接続する。
 また、充放電制御装置300の制御部104は、特定負荷27に電池システム42から電力を供給する場合は、第2スイッチ312により特定負荷27を電池システム42に接続する。
 直流発電装置(PVパネル12)が発電した電力を、電池システム42に充電する場合は、第1スイッチ311により交流電力線28bと電池システム42を接続する。
 第1時間帯の間、第2スイッチ312により特定負荷27を交流電力線28aに接続する。分電盤24から電力系統22の向きに電流が流れているとき(売電)、もしくは、電流がゼロの時、第1スイッチ311により交流電力線28とAC/DCコンバータ321を接続し、電池システム42を充電する。また、満充電の場合は、第1スイッチ311を交流電力線28とAC/DCコンバータ321に接続しない。
 第2時間帯の間、第1スイッチ311をオフし、第2スイッチ312により特定負荷27を電池システム42に接続する。蓄電池の蓄電残容量が第1の閾値未満、または、空き容量が第2の閾値以上になったら、第2スイッチ312により特定負荷27を交流電力線28aに接続する。
 このように、制御部104により、充電可能時間帯または放電可能時間帯、および電力系統22と分電盤24間の電流の向き、および電池残量の値を考慮して、第1スイッチ311、第2スイッチ312、AC/DCコンバータ321と、DC/ACコンバータ322と、を制御し、蓄電池の充放電が制御される。
(実施例2:UPSモードとの切り替え構成)
 本発明の実施の形態の充放電制御装置は、一般的なUPS(Uninterruptible Power Supply:無停電電源装置)モードと蓄電池モードとを切り替えて利用できる構成例を説明する。
 ハードウェアの要部構成は、上記実施例1と同様とする。
 モード切り替え手段は、ハードウェアの切り替えスイッチを設けてもよいし、ソフトウェアの設定画面を設け、ユーザ操作を受け付けてモード変更可能な構成としてもよい。
 この構成では、上記実施例1の構成において、第1スイッチ311および第2スイッチ312を適切に接続することにより、UPSモードに設定することができる。さらに、接続仕方によって、複数の給電方式によって利用することが可能となる。
 この構成によれば、UPSと構造の大部分を共通化できるため、低コストでPV余剰電力を効率よく利用できる充放電制御装置を実現できる。
 たとえば、上記実施例1の構成において、図13に示すように、第1スイッチをオンし、第2スイッチをDC/ACコンバータ322側に接続しておくことで、UPSとして利用することも可能である。この場合は、一般的なUPSの給電方式である常時インバータ給電方式と同様に、停電時に瞬断を伴うことなく蓄電池(電池システム42)から特定負荷27に電力を供給することが可能になる。
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 なお、本発明において利用者に関する情報を取得、利用する場合は、これを適法に行うものとする。
 以下、参考形態の例を付記する。
1. 蓄電装置の充放電を制御する充放電制御装置であって、
 前記蓄電装置は、交流電力線に接続しており、
 前記交流電力線は、電力系統に接続しており、直流/交流変換装置を介して直流発電装置に接続しており、かつ負荷が接続可能であり、
 前記充放電制御装置は、
 前記交流電力線の電流の向きに関する情報を取得する取得手段と、
 前記交流電力線から前記電力系統に電流が流れているとき、前記蓄電装置に電力を供給する制御手段と、を備える充放電制御装置。
2. 前記制御手段は、予め定められた時間帯に、前記蓄電装置から放電された電力を前記特定負荷に供給する、
1.に記載の充放電制御装置。
3. 前記制御手段は、予め定められた時間帯以外は、前記電力系統から供給される電力を前記特定負荷に供給する、
2.に記載の充放電制御装置。
4. 前記制御手段は、前記電力系統から前記交流電力線に電流が流れているとき、前記蓄電装置から前記特定負荷に電力を供給させる、
1.から3.いずれか一つに記載の充放電制御装置。
5. 前記充放電制御装置は、第1スイッチ、第2スイッチ、AC/DCコンバータおよびDC/ACコンバータを有し、
 前記蓄電装置は、前記交流電力線を介さずに特定負荷に電力を供給可能であり、
 前記AC/DCコンバータは、前記交流電力線と前記蓄電装置の間に接続されており、
 前記DC/ACコンバータは、前記蓄電装置と前記特定負荷の間に接続されており、
 前記第1スイッチは、前記交流電力線と前記AC/DCコンバータを介した前記蓄電装置との接続をオンオフし、
 前記第2スイッチは、前記特定負荷を、前記交流電力線、および前記DC/ACコンバータを介して前記蓄電装置のいずれかに接続し、
 前記充放電制御装置が、
  前記特定負荷に前記電力系統から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記交流電力線に接続し、
  前記特定負荷に前記蓄電装置から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記蓄電装置に接続し、
  前記蓄電装置に、前記直流発電装置が発電した電力を、前記交流電力線を介して供給する場合は、前記第1スイッチにより前記交流電力線と前記蓄電装置を接続する、
1.から4.いずれか一つに記載の充放電制御装置。
6. 前記直流発電装置は、太陽光発電設備、燃料電池、および化石エネルギを利用する自家発電設備の少なくともいずれか一つを含む、1.から5.いずれか一つに記載の充放電制御装置。
7. 前記直流発電装置は、太陽光発電設備であり、
 前記直流/交流変換装置は、PV-PCS(PhotoVoltaics Power Conditioning System:太陽光発電パワーコンディショナ)である、1.から6.いずれか一つに記載の充放電制御装置。
8. 直流発電装置が発電する電気を充電可能な蓄電装置に接続される充放電制御装置の制御方法であって、
 前記蓄電装置は、交流電力線に接続しており、かつ前記交流電力線を介さずに特定負荷に電力を供給可能であり、
 前記交流電力線は、電力系統に接続しており、直流/交流変換装置を介して前記直流発電装置に接続しており、かつ一般負荷が接続可能であり、
 前記充放電制御装置が、
 前記交流電力線から前記電力系統に電流が流れているとき、前記蓄電装置に電力を供給する充放電制御装置の制御方法。
9. 前記充放電制御装置が、
 予め定められた時間帯に、前記蓄電装置から放電された電力を前記特定負荷に供給する、
8.に記載の充放電制御装置の制御方法。
10. 前記充放電制御装置が、
 予め定められた時間帯以外は、前記電力系統から供給される電力を前記特定負荷に供給する、
9.に記載の充放電制御装置の制御方法。
11. 前記充放電制御装置が、
 前記電力系統から前記交流電力線に電流が流れているとき、前記蓄電装置から前記特定負荷に電力を供給させる、
8.から10.いずれか一つに記載の充放電制御装置の制御方法。
12. 前記充放電制御装置は、第1スイッチ、第2スイッチ、AC/DCコンバータおよびDC/ACコンバータを有し、
 前記蓄電装置は、前記交流電力線を介さずに特定負荷に電力を供給可能であり、
 前記AC/DCコンバータは、前記交流電力線と前記蓄電装置の間に接続されており、
 前記DC/ACコンバータは、前記蓄電装置と前記特定負荷の間に接続されており、
 前記第1スイッチは、前記交流電力線と前記AC/DCコンバータを介した前記蓄電装置との接続をオンオフし、
 前記第2スイッチは、前記特定負荷を、前記交流電力線、および前記DC/ACコンバータを介して前記蓄電装置のいずれかに接続し、
 前記充放電制御装置が、
  前記特定負荷に前記電力系統から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記交流電力線に接続し、
  前記特定負荷に前記蓄電装置から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記蓄電装置に接続し、
  前記蓄電装置に、前記直流発電装置が発電した電力を、前記交流電力線を介して供給する場合は、前記第1スイッチにより前記交流電力線と前記蓄電装置を接続する、
8.から11.いずれか一つに記載の充放電制御装置の制御方法。
13. 前記直流発電装置は、太陽光発電設備、燃料電池、および化石エネルギを利用する自家発電設備の少なくともいずれか一つを含む、8.から12.いずれか一つに記載の充放電制御装置の制御方法。
14. 前記直流発電装置は、太陽光発電設備であり、
 前記直流/交流変換装置は、PV-PCS(PhotoVoltaics Power Conditioning System:太陽光発電パワーコンディショナ)である、8.から13.いずれか一つに記載の充放電制御装置の制御方法。
15. 直流発電装置が発電する電気を充電可能な蓄電装置に接続される充放電制御装置を実現するコンピュータのプログラムであって、
 前記蓄電装置は、交流電力線に接続しており、かつ前記交流電力線を介さずに特定負荷に電力を供給可能であり、
 前記交流電力線は、電力系統に接続しており、直流/交流変換装置を介して前記直流発電装置に接続しており、かつ一般負荷が接続可能であり、
 コンピュータに、
 前記交流電力線から前記電力系統に電流が流れているとき、前記蓄電装置に電力を供給する手順を実行させるためのプログラム。
16. 予め定められた時間帯に、前記蓄電装置から放電された電力を前記特定負荷に供給する手順をコンピュータに実行させるための、15.に記載のプログラム。
17. 予め定められた時間帯以外は、前記電力系統から供給される電力を前記特定負荷に供給する手順をコンピュータに実行させるための、16.に記載のプログラム。
18. 前記電力系統から前記交流電力線に電流が流れているとき、前記蓄電装置から前記特定負荷に電力を供給させる手順をコンピュータに実行させるための、15.から17.いずれか一つに記載のプログラム。
19. 前記充放電制御装置は、第1スイッチ、第2スイッチ、AC/DCコンバータおよびDC/ACコンバータを有し、
 前記蓄電装置は、前記交流電力線を介さずに特定負荷に電力を供給可能であり、
 前記AC/DCコンバータは、前記交流電力線と前記蓄電装置の間に接続されており、
 前記DC/ACコンバータは、前記蓄電装置と前記特定負荷の間に接続されており、
 前記第1スイッチは、前記交流電力線と前記AC/DCコンバータを介した前記蓄電装置との接続をオンオフし、
 前記第2スイッチは、前記特定負荷を、前記交流電力線、および前記DC/ACコンバータを介して前記蓄電装置のいずれかに接続し、
 コンピュータに、
  前記特定負荷に前記電力系統から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記交流電力線に接続する手順、
  前記特定負荷に前記蓄電装置から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記蓄電装置に接続する手順、
  前記蓄電装置に、前記直流発電装置が発電した電力を、前記交流電力線を介して供給する場合は、前記第1スイッチにより前記交流電力線と前記蓄電装置を接続する手順、を実行させるための、
15.から18.いずれか一つに記載のプログラム。
20. 前記直流発電装置は、太陽光発電設備、燃料電池、および化石エネルギを利用する自家発電設備の少なくともいずれか一つを含む、15.から19.いずれか一つに記載のプログラム。
21. 前記直流発電装置は、太陽光発電設備であり、
 前記直流/交流変換装置は、PV-PCS(PhotoVoltaics Power Conditioning System:太陽光発電パワーコンディショナ)である、15.から20.いずれか一つに記載のプログラム。
22. 蓄電手段と、
 前記蓄電手段の充放電を制御する制御手段と、
を備え、
 前記蓄電手段は、交流電力線に接続しており、かつ前記交流電力線を介さずに特定負荷に電力を供給可能であり、
 前記交流電力線は、電力系統に接続しており、直流/交流変換装置を介して直流発電装置に接続しており、かつ一般負荷が接続可能であり、
 前記制御手段は、前記交流電力線から前記電力系統に電流が流れているとき、前記蓄電手段に電力を供給する蓄電システム。
23. 前記制御手段は、予め定められた時間帯に、前記蓄電手段から放電された電力を前記特定負荷に供給する、
22.に記載の蓄電システム。
24. 前記制御手段は、予め定められた時間帯以外は、前記電力系統から供給される電力を前記特定負荷に供給する、
23.に記載の蓄電システム。
25. 前記制御手段は、前記電力系統から前記交流電力線に電流が流れているとき、前記蓄電手段から前記特定負荷に電力を供給させる、
22.から24.いずれか一つに記載の蓄電システム。
26. 前記制御手段は、第1スイッチ、第2スイッチ、AC/DCコンバータおよびDC/ACコンバータを有し、
 前記蓄電手段は、前記交流電力線を介さずに特定負荷に電力を供給可能であり、
 前記AC/DCコンバータは、前記交流電力線と前記蓄電手段の間に接続されており、
 前記DC/ACコンバータは、前記蓄電手段と前記特定負荷の間に接続されており、
 前記第1スイッチは、前記交流電力線と前記AC/DCコンバータを介した前記蓄電手段との接続をオンオフし、
 前記第2スイッチは、前記特定負荷を、前記交流電力線、および前記DC/ACコンバータを介して前記蓄電手段のいずれかに接続し、
 前記制御手段は、
  前記特定負荷に前記電力系統から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記交流電力線に接続し、
  前記特定負荷に前記蓄電手段から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記蓄電手段に接続し、
  前記蓄電手段に、前記直流発電装置が発電した電力を、前記交流電力線を介して供給する場合は、前記第1スイッチにより前記交流電力線と前記蓄電手段を接続する、
22.から25.いずれか一つに記載の蓄電システム。
27. 前記直流発電装置は、太陽光発電設備、燃料電池、および化石エネルギを利用する自家発電設備の少なくともいずれか一つを含む、22.から26.いずれか一つに記載の蓄電システム。
28. 前記直流発電装置は、太陽光発電設備であり、
 前記直流/交流変換装置は、PV-PCS(PhotoVoltaics Power Conditioning System:太陽光発電パワーコンディショナ)である、22.から27.いずれか一つに記載の蓄電システム。
 この出願は、2016年3月23日に出願された日本出願特願2016-059286号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (28)

  1.  蓄電手段と、
     前記蓄電手段の充放電を制御する制御手段と、
    を備え、
     前記蓄電手段は、交流電力線に接続しており、かつ前記交流電力線を介さずに特定負荷に電力を供給可能であり、
     前記交流電力線は、電力系統に接続しており、直流/交流変換装置を介して直流発電装置に接続しており、かつ一般負荷が接続可能であり、
     前記制御手段は、前記交流電力線から前記電力系統に電流が流れているとき、前記蓄電手段に電力を供給する蓄電システム。
  2.  前記制御手段は、予め定められた時間帯に、前記蓄電手段から放電された電力を前記特定負荷に供給する、
    請求項1に記載の蓄電システム。
  3.  前記制御手段は、予め定められた時間帯以外は、前記電力系統から供給される電力を前記特定負荷に供給する、
    請求項2に記載の蓄電システム。
  4.  前記制御手段は、前記電力系統から前記交流電力線に電流が流れているとき、前記蓄電手段から前記特定負荷に電力を供給させる、
    請求項1から3いずれか一項に記載の蓄電システム。
  5.  前記制御手段は、第1スイッチ、第2スイッチ、AC/DCコンバータおよびDC/ACコンバータを有し、
     前記蓄電手段は、前記交流電力線を介さずに特定負荷に電力を供給可能であり、
     前記AC/DCコンバータは、前記交流電力線と前記蓄電手段の間に接続されており、
     前記DC/ACコンバータは、前記蓄電手段と前記特定負荷の間に接続されており、
     前記第1スイッチは、前記交流電力線と前記AC/DCコンバータを介した前記蓄電手段との接続をオンオフし、
     前記第2スイッチは、前記特定負荷を、前記交流電力線、および前記DC/ACコンバータを介して前記蓄電手段のいずれかに接続し、
     前記制御手段は、
      前記特定負荷に前記電力系統から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記交流電力線に接続し、
      前記特定負荷に前記蓄電手段から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記蓄電手段に接続し、
      前記蓄電手段に、前記直流発電装置が発電した電力を、前記交流電力線を介して供給する場合は、前記第1スイッチにより前記交流電力線と前記蓄電手段を接続する、
    請求項1から4いずれか一項に記載の蓄電システム。
  6.  前記直流発電装置は、太陽光発電設備、燃料電池、および化石エネルギを利用する自家発電設備の少なくともいずれか一つを含む、請求項1から5いずれか一項に記載の蓄電システム。
  7.  前記直流発電装置は、太陽光発電設備であり、
     前記直流/交流変換装置は、PV-PCS(PhotoVoltaics Power Conditioning System:太陽光発電パワーコンディショナ)である、請求項1から6いずれか一項に記載の蓄電システム。
  8.  蓄電装置の充放電を制御する充放電制御装置であって、
     前記蓄電装置は、交流電力線に接続しており、
     前記交流電力線は、電力系統に接続しており、直流/交流変換装置を介して直流発電装置に接続しており、かつ負荷が接続可能であり、
     前記充放電制御装置は、
     前記交流電力線の電流の向きに関する情報を取得する取得手段と、
     前記交流電力線から前記電力系統に電流が流れているとき、前記蓄電装置に電力を供給する制御手段と、を備える充放電制御装置。
  9.  前記制御手段は、予め定められた時間帯に、前記蓄電装置から放電された電力を前記特定負荷に供給する、
    請求項8に記載の充放電制御装置。
  10.  前記制御手段は、予め定められた時間帯以外は、前記電力系統から供給される電力を前記特定負荷に供給する、
    請求項9に記載の充放電制御装置。
  11.  前記制御手段は、前記電力系統から前記交流電力線に電流が流れているとき、前記蓄電装置から前記特定負荷に電力を供給させる、
    請求項8から10いずれか一項に記載の充放電制御装置。
  12.  前記充放電制御装置は、第1スイッチ、第2スイッチ、AC/DCコンバータおよびDC/ACコンバータを有し、
     前記蓄電装置は、前記交流電力線を介さずに特定負荷に電力を供給可能であり、
     前記AC/DCコンバータは、前記交流電力線と前記蓄電装置の間に接続されており、
     前記DC/ACコンバータは、前記蓄電装置と前記特定負荷の間に接続されており、
     前記第1スイッチは、前記交流電力線と前記AC/DCコンバータを介した前記蓄電装置との接続をオンオフし、
     前記第2スイッチは、前記特定負荷を、前記交流電力線、および前記DC/ACコンバータを介して前記蓄電装置のいずれかに接続し、
     前記充放電制御装置が、
      前記特定負荷に前記電力系統から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記交流電力線に接続し、
      前記特定負荷に前記蓄電装置から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記蓄電装置に接続し、
      前記蓄電装置に、前記直流発電装置が発電した電力を、前記交流電力線を介して供給する場合は、前記第1スイッチにより前記交流電力線と前記蓄電装置を接続する、
    請求項8から11いずれか一項に記載の充放電制御装置。
  13.  前記直流発電装置は、太陽光発電設備、燃料電池、および化石エネルギを利用する自家発電設備の少なくともいずれか一つを含む、請求項8から12いずれか一項に記載の充放電制御装置。
  14.  前記直流発電装置は、太陽光発電設備であり、
     前記直流/交流変換装置は、PV-PCS(PhotoVoltaics Power Conditioning System:太陽光発電パワーコンディショナ)である、請求項8から13いずれか一項に記載の充放電制御装置。
  15.  直流発電装置が発電する電気を充電可能な蓄電装置に接続される充放電制御装置の制御方法であって、
     前記蓄電装置は、交流電力線に接続しており、かつ前記交流電力線を介さずに特定負荷に電力を供給可能であり、
     前記交流電力線は、電力系統に接続しており、直流/交流変換装置を介して前記直流発電装置に接続しており、かつ一般負荷が接続可能であり、
     前記充放電制御装置が、
     前記交流電力線から前記電力系統に電流が流れているとき、前記蓄電装置に電力を供給する充放電制御装置の制御方法。
  16.  前記充放電制御装置が、
     予め定められた時間帯に、前記蓄電装置から放電された電力を前記特定負荷に供給する、
    請求項15に記載の充放電制御装置の制御方法。
  17.  前記充放電制御装置が、
     予め定められた時間帯以外は、前記電力系統から供給される電力を前記特定負荷に供給する、
    請求項16に記載の充放電制御装置の制御方法。
  18.  前記充放電制御装置が、
     前記電力系統から前記交流電力線に電流が流れているとき、前記蓄電装置から前記特定負荷に電力を供給させる、
    請求項15から17いずれか一項に記載の充放電制御装置の制御方法。
  19.  前記充放電制御装置は、第1スイッチ、第2スイッチ、AC/DCコンバータおよびDC/ACコンバータを有し、
     前記蓄電装置は、前記交流電力線を介さずに特定負荷に電力を供給可能であり、
     前記AC/DCコンバータは、前記交流電力線と前記蓄電装置の間に接続されており、
     前記DC/ACコンバータは、前記蓄電装置と前記特定負荷の間に接続されており、
     前記第1スイッチは、前記交流電力線と前記AC/DCコンバータを介した前記蓄電装置との接続をオンオフし、
     前記第2スイッチは、前記特定負荷を、前記交流電力線、および前記DC/ACコンバータを介して前記蓄電装置のいずれかに接続し、
     前記充放電制御装置が、
      前記特定負荷に前記電力系統から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記交流電力線に接続し、
      前記特定負荷に前記蓄電装置から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記蓄電装置に接続し、
      前記蓄電装置に、前記直流発電装置が発電した電力を、前記交流電力線を介して供給する場合は、前記第1スイッチにより前記交流電力線と前記蓄電装置を接続する、
    請求項15から18いずれか一項に記載の充放電制御装置の制御方法。
  20.  前記直流発電装置は、太陽光発電設備、燃料電池、および化石エネルギを利用する自家発電設備の少なくともいずれか一つを含む、請求項15から19いずれか一項に記載の充放電制御装置の制御方法。
  21.  前記直流発電装置は、太陽光発電設備であり、
     前記直流/交流変換装置は、PV-PCS(PhotoVoltaics Power Conditioning System:太陽光発電パワーコンディショナ)である、請求項15から20いずれか一項に記載の充放電制御装置の制御方法。
  22.  直流発電装置が発電する電気を充電可能な蓄電装置に接続される充放電制御装置を実現するコンピュータのプログラムであって、
     前記蓄電装置は、交流電力線に接続しており、かつ前記交流電力線を介さずに特定負荷に電力を供給可能であり、
     前記交流電力線は、電力系統に接続しており、直流/交流変換装置を介して前記直流発電装置に接続しており、かつ一般負荷が接続可能であり、
     コンピュータに、
     前記交流電力線から前記電力系統に電流が流れているとき、前記蓄電装置に電力を供給する手順を実行させるためのプログラム。 
  23.  予め定められた時間帯に、前記蓄電装置から放電された電力を前記特定負荷に供給する手順をコンピュータに実行させるための、請求項22に記載のプログラム。
  24.  予め定められた時間帯以外は、前記電力系統から供給される電力を前記特定負荷に供給する手順をコンピュータに実行させるための、請求項23に記載のプログラム。
  25.  前記電力系統から前記交流電力線に電流が流れているとき、前記蓄電装置から前記特定負荷に電力を供給させる手順をコンピュータに実行させるための、請求項22から24いずれか一項に記載のプログラム。
  26.  前記充放電制御装置は、第1スイッチ、第2スイッチ、AC/DCコンバータおよびDC/ACコンバータを有し、
     前記蓄電装置は、前記交流電力線を介さずに特定負荷に電力を供給可能であり、
     前記AC/DCコンバータは、前記交流電力線と前記蓄電装置の間に接続されており、
     前記DC/ACコンバータは、前記蓄電装置と前記特定負荷の間に接続されており、
     前記第1スイッチは、前記交流電力線と前記AC/DCコンバータを介した前記蓄電装置との接続をオンオフし、
     前記第2スイッチは、前記特定負荷を、前記交流電力線、および前記DC/ACコンバータを介して前記蓄電装置のいずれかに接続し、
     コンピュータに、
      前記特定負荷に前記電力系統から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記交流電力線に接続する手順、
      前記特定負荷に前記蓄電装置から電力を供給する場合は、前記第2スイッチにより前記特定負荷を前記蓄電装置に接続する手順、
      前記蓄電装置に、前記直流発電装置が発電した電力を、前記交流電力線を介して供給する場合は、前記第1スイッチにより前記交流電力線と前記蓄電装置を接続する手順、を実行させるための、
    請求項22から25いずれか一項に記載のプログラム。
  27.  前記直流発電装置は、太陽光発電設備、燃料電池、および化石エネルギを利用する自家発電設備の少なくともいずれか一つを含む、請求項22から26いずれか一項に記載のプログラム。
  28.  前記直流発電装置は、太陽光発電設備であり、
     前記直流/交流変換装置は、PV-PCS(PhotoVoltaics Power Conditioning System:太陽光発電パワーコンディショナ)である、請求項22から27いずれか一項に記載のプログラム。
PCT/JP2017/006895 2016-03-23 2017-02-23 蓄電システム、充放電制御装置、その制御方法、およびプログラム WO2017163747A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/086,897 US20190103756A1 (en) 2016-03-23 2017-02-23 Power storage system, apparatus and method for controlling charge and discharge, and program
JP2018507155A JPWO2017163747A1 (ja) 2016-03-23 2017-02-23 蓄電システム、充放電制御装置、その制御方法、およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-059286 2016-03-23
JP2016059286 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017163747A1 true WO2017163747A1 (ja) 2017-09-28

Family

ID=59901230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006895 WO2017163747A1 (ja) 2016-03-23 2017-02-23 蓄電システム、充放電制御装置、その制御方法、およびプログラム

Country Status (3)

Country Link
US (1) US20190103756A1 (ja)
JP (1) JPWO2017163747A1 (ja)
WO (1) WO2017163747A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118170A (ja) * 2017-12-26 2019-07-18 パナソニックIpマネジメント株式会社 電力制御装置、電力制御方法、プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115603430B (zh) * 2022-11-16 2023-03-31 浙江动一新能源动力科技股份有限公司 一种便携式电能存储系统及其功率调节方法
US20240302447A1 (en) * 2023-03-06 2024-09-12 Eaton Intelligent Power Limited Estimating remaining life of a capacitor in a power converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028735A (ja) * 2005-07-13 2007-02-01 Toshiba Corp 分散電源システム及び方法
WO2011074561A1 (ja) * 2009-12-14 2011-06-23 三洋電機株式会社 充放電システム
JP2014039352A (ja) * 2012-08-10 2014-02-27 Kyocera Corp エネルギー管理装置、エネルギー管理システムおよびエネルギー管理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028735A (ja) * 2005-07-13 2007-02-01 Toshiba Corp 分散電源システム及び方法
WO2011074561A1 (ja) * 2009-12-14 2011-06-23 三洋電機株式会社 充放電システム
JP2014039352A (ja) * 2012-08-10 2014-02-27 Kyocera Corp エネルギー管理装置、エネルギー管理システムおよびエネルギー管理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118170A (ja) * 2017-12-26 2019-07-18 パナソニックIpマネジメント株式会社 電力制御装置、電力制御方法、プログラム
EP3734788A4 (en) * 2017-12-26 2020-11-04 Panasonic Intellectual Property Management Co., Ltd. POWER CONTROL DEVICE, POWER CONTROL PROCESS AND PROGRAM

Also Published As

Publication number Publication date
JPWO2017163747A1 (ja) 2019-01-31
US20190103756A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP5807201B2 (ja) 電力制御装置
JP6156919B2 (ja) 蓄電池システム、蓄電池制御装置及び蓄電池システムの制御方法
JP4845062B2 (ja) 電力運用システム、電力運用方法および太陽光発電装置
US20190067989A1 (en) Uninterruptible power supply system and method
JP6430775B2 (ja) 蓄電池装置
JP6426922B2 (ja) 電力システム、御装置及び充放電制御方法
JP5944269B2 (ja) 電力供給システム
JP5796189B2 (ja) 電力供給システム
JP2013172514A (ja) 電力貯蔵型の発電システム
WO2017163747A1 (ja) 蓄電システム、充放電制御装置、その制御方法、およびプログラム
JP5841279B2 (ja) 電力充電供給装置
JP6753469B2 (ja) 蓄電装置及び電源システム
JP2019193317A (ja) 蓄電システム、充放電制御装置、その制御方法、およびプログラム
JP2017175785A (ja) 蓄電システム、充放電制御装置、その制御方法、およびプログラム
JP6037678B2 (ja) 蓄電池充放電制御装置及び蓄電池充放電制御システム
JP7426278B2 (ja) 電力供給システム
WO2020162461A1 (ja) 電力制御システムおよび電力制御方法
JP6478032B2 (ja) 制御装置およびそれを利用した配電システム
US11211808B2 (en) Photovoltaic apparatus
JP2012060829A (ja) 電力供給システム、及び電力供給方法
JP2017046428A (ja) 電力融通システム
CN113839404A (zh) 一种近零能耗建筑自我用电最大化优化方法及系统
US20180233910A1 (en) Energy management device, energy management method, and energy management program
WO2017163748A1 (ja) 充放電制御装置、その制御方法、およびプログラム
JP6523120B2 (ja) 電力供給システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507155

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769793

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769793

Country of ref document: EP

Kind code of ref document: A1