[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017163659A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2017163659A1
WO2017163659A1 PCT/JP2017/005040 JP2017005040W WO2017163659A1 WO 2017163659 A1 WO2017163659 A1 WO 2017163659A1 JP 2017005040 W JP2017005040 W JP 2017005040W WO 2017163659 A1 WO2017163659 A1 WO 2017163659A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
temperature
heated
air conditioner
engine
Prior art date
Application number
PCT/JP2017/005040
Other languages
English (en)
French (fr)
Inventor
健太朗 黒田
圭俊 野田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017163659A1 publication Critical patent/WO2017163659A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow

Definitions

  • the present disclosure relates to a vehicle air conditioner.
  • high-temperature engine coolant flows into the heater core, heat is exchanged between the coolant and air, and warmed air is supplied to the vehicle interior. Therefore, many hot water heaters that heat the passenger compartment are used.
  • Patent Document 1 discloses a vehicle air conditioner that is based on an existing hot water heater and has a configuration in which a coolant is heated using a heat pump.
  • the vehicle air conditioner according to the present disclosure has the following configuration. That is, a compressor that compresses the refrigerant, a condenser that exchanges heat between the high-temperature and high-pressure refrigerant and the coolant sent from the engine cooling unit, the coolant heated by the heat exchange, and the air sent into the passenger compartment A first heating object that exchanges heat with the evaporator, and an evaporator that exchanges heat between the coolant introduced into the engine cooling unit and the low-temperature and low-pressure refrigerant. And a coolant passage for flowing the heated coolant to the first heating target, and a coolant passage for flowing the heated coolant to the second heating target different from the first heating target. An opening / closing unit that opens and closes each coolant passage, and a control unit that controls the opening / closing unit so as to switch an inflow destination through which the heated coolant flows from the second heating object to the first heating object at a predetermined timing. .
  • the heat of the coolant can be used effectively when heating a plurality of heating targets.
  • FIG. It is a figure which shows schematically the structure of the coolant circuit which concerns on the modification 1.
  • FIG. It is a figure which shows the coolant circuit before switching. It is a figure which shows the coolant circuit after switching. It is a figure which shows roughly the cooling fluid circuit before the switching of the heating object which concerns on the modification 2.
  • FIG. It is a figure which shows the coolant circuit after switching.
  • the heat pump of Patent Document 1 includes a compressor that changes the temperature of the refrigerant to high temperature and pressure, and a condenser that heats the cooling liquid by performing heat exchange between the high temperature and pressure refrigerant and the cooling liquid. Thereby, the temperature of the coolant flowing into the heater core becomes higher, and the heating performance can be improved as compared with the existing one.
  • the automatic transmission of the vehicle is provided with a torque converter that transmits the engine-side force to the transmission side via an ATF (Automatic Transmission-Fluid).
  • ATF may be referred to as AT oil or ATF oil.
  • the torque converter is provided with a lock-up mechanism that directly connects the engine-side and transmission-side rotating shafts (hereinafter referred to as lock-up) according to, for example, the engine load and the transmission output shaft rotational speed.
  • lock-up a lock-up mechanism that directly connects the engine-side and transmission-side rotating shafts
  • the torque converter does not enter control such as lock-up because the viscous resistance is high when the temperature of the ATF is low. Therefore, the engine speed is controlled to increase until the temperature of the ATF rises, resulting in a reduction in fuel consumption. .
  • the present disclosure is to provide a vehicle air conditioner that can effectively use the heat of the coolant when heating a plurality of heating objects.
  • FIG. 1A and FIG. 1B are explanatory diagrams showing the flow of coolant and refrigerant in the vehicle air conditioner 1 according to the embodiment of the present disclosure.
  • FIG. 2A is a diagram schematically showing the configuration of the coolant circuit. In FIG. 1A and FIG. 1B, only the piping through which the coolant flows is shown among the piping through which the refrigerant flows and the cooling fluid piping, and the piping through which the cooling fluid does not flow is omitted. In FIG. 2A, the refrigerant circuit is omitted.
  • a vehicle air conditioner 1 that is mounted on a vehicle having an engine (an internal combustion engine) as a heat generating component and performs air conditioning in the passenger compartment will be described.
  • the vehicle air conditioner 1 of the present embodiment operates by switching to a plurality of operation modes.
  • the vehicle air conditioner 1 includes a component unit 10, a compressor (compressor) 38, an engine cooling unit 40, a heater core 44, an evaporator 48, an expansion valve 37, a check, as shown in FIGS. 1A and 2A.
  • the heater core 44 and the evaporator 48 are disposed in an intake passage of an HVAC (Heating, Ventilation, and Air Conditioning) 70.
  • the HVAC 70 is provided with a fan F1 through which intake air flows.
  • the constituent unit 10 includes an evaporator 11, a condenser 12, a first on-off valve 13, a second on-off valve 14, and an expansion valve 16.
  • the opening / closing part 90 has opening / closing valves 91, 92, 93.
  • the compressor 38 is driven by engine power or electricity, compresses the sucked refrigerant, and discharges the refrigerant at a high temperature and high pressure.
  • the high-temperature and high-pressure refrigerant is sent to the condenser 12.
  • the low-pressure refrigerant is sucked from the evaporator 11 or the evaporator 48 of the constituent unit 10 into the compressor 38 via the junction pipe.
  • the engine cooling unit 40 has a pump and releases heat from the engine to the coolant.
  • the pump transfers the coolant.
  • the direction in which the coolant is transferred is indicated by arrows in FIGS. 1A and 1B.
  • the engine cooling unit 40 may be provided with a radiator that releases heat to the outside air.
  • the cooling liquid is an antifreeze liquid such as LLC (Long Life Coolant) and is a liquid for carrying heat.
  • the heater core 44 is a device that exchanges heat between the coolant and air, and is disposed in the intake passage of the HVAC 70 that supplies air into the passenger compartment.
  • the heater core 44 is supplied with a heated coolant, and releases heat to the air supplied to the passenger compartment during the heating operation.
  • the heater core 44 adjusts the amount of air supplied into the passenger compartment by the opening of the door 44a.
  • the door 44a is opened and closed by electrical control.
  • the heater core 44 corresponds to the first heating target of the present disclosure.
  • the ATF oil cooler 80 is a cooling device that appropriately maintains the temperature of the ATF accommodated in an automatic transmission (not shown).
  • the ATF oil cooler 80 corresponds to the second heating target of the present disclosure.
  • the heating target refers to a target that is heated directly or indirectly by the heat of the coolant sent from the condenser 12.
  • the coolant inlet of the ATF oil cooler 80 is communicated with the coolant outlet of the engine cooling unit 40 via the condenser 12 or not. Further, the coolant outlet of the ATF oil cooler 80 is communicated with the coolant inlet of the engine cooling unit 40 through a pipe.
  • the automatic transmission is provided with a torque converter (not shown) for transmitting the engine side force to the mission side via the ATF.
  • the torque converter has a lockup mechanism (not shown) that directly connects the rotation shafts on the engine side and the mission side.
  • the evaporator 48 is a device that exchanges heat between the low-temperature and low-pressure refrigerant and the air, and is disposed in the intake passage of the HVAC 70.
  • the evaporator 48 is supplied with a low-temperature and low-pressure refrigerant during cooling operation, dehumidifying operation, and temperature control operation to cool the air supplied to the passenger compartment.
  • the expansion valve 37 expands the high-temperature and high-pressure refrigerant and discharges the low-temperature and low-pressure refrigerant to the evaporator 48.
  • the constituent unit 10 includes an evaporator 11, a condenser 12, a first on-off valve 13, a second on-off valve 14, and an expansion valve 16.
  • the evaporator 11 has a passage through which a low-temperature and low-pressure refrigerant flows and a passage through which a cooling liquid flows, and performs heat exchange between the refrigerant and the cooling liquid.
  • the evaporator 11 is introduced with a low-temperature and low-pressure refrigerant from the expansion valve 16 in a predetermined operation mode, and heat is transferred from the coolant to the refrigerant when the refrigerant evaporates. Thereby, the evaporator 11 vaporizes the low-temperature and low-pressure refrigerant.
  • the coolant inlet of the evaporator 11 is communicated with the heater core 44 via a pipe, and the coolant outlet of the evaporator 11 is communicated with the engine cooling unit 40 via a pipe.
  • the refrigerant inlet of the evaporator 11 communicates with the expansion valve 16 via a pipe, and the refrigerant outlet of the evaporator 11 communicates with a pipe that joins the inlet of the compressor 38.
  • the condenser 12 has a passage through which a high-temperature and high-pressure refrigerant flows and a passage through which a cooling liquid flows, and performs heat exchange between the refrigerant and the cooling liquid.
  • a high-temperature and high-pressure refrigerant is sent from the compressor 38 to the condenser 12 in a predetermined operation mode, and heat is transferred from the refrigerant to the coolant when the refrigerant condenses.
  • the cooling liquid inlet of the condenser 12 communicates with the engine cooling section 40 via the opening / closing section 90, and the cooling liquid delivery port of the condenser 12 passes through the opening / closing section 90.
  • the refrigerant inlet of the condenser 12 communicates with the discharge port of the compressor 38 via a pipe, and the refrigerant outlet of the condenser 12 communicates with the expansion valve 16.
  • the coolant circuit has an evaporator 11, a condenser 12, an engine cooling unit 40, a heater core 44, an ATF oil cooler 80, an opening / closing unit 90, and a coolant pipe connecting them. .
  • the opening / closing part 90 has opening / closing valves 91 to 93 for opening / closing the respective coolant passages.
  • the on-off valves 91 to 93 are, for example, three-way electromagnetic valves.
  • the coolant passage refers to a passage (pipe) that connects the two, for example, between the coolant outlet of the engine cooling unit 40 and the coolant inlet of the condenser 12.
  • the on-off valve 91 is a coolant passage between the coolant outlet of the engine cooling unit 40 and the coolant inlet of the heater core 44 or the coolant outlet of the engine cooling unit 40 and the condenser 12. When one of the coolant passages between the coolant inlet and the coolant inlet is opened, the other coolant passage is closed.
  • the on-off valve 92 is connected to the coolant passage between the coolant delivery port of the engine cooling unit 40 and the coolant introduction port of the ATF oil cooler 80 or the coolant delivery port of the engine cooling unit 40 and the condenser 12. When one of the coolant channels between the coolant inlet and the other coolant channel is opened, the other coolant channel is closed.
  • the on-off valve 93 is a coolant passage between the coolant outlet of the condenser 12 and the coolant inlet of the heater core 44, or the coolant outlet of the condenser 12 and the cooling of the ATF oil cooler 80. When the coolant passage between the liquid inlet and the liquid inlet is opened, the other coolant passage is closed.
  • the air conditioning automatic control unit 51 controls the on-off valves 91 to 93 so as to switch the coolant passage through which the coolant flows based on the ATF temperature and lockup information.
  • the first on-off valve 13 and the second on-off valve 14 are valves for switching the opening and closing of the refrigerant pipe, for example, by electrical control, and are, for example, electromagnetic valves.
  • the first on-off valve 13 opens and closes the refrigerant passage between the branch portion of the refrigerant passage on the outlet side of the condenser 12 and the refrigerant inlet of the evaporator 48.
  • the second on-off valve 14 opens and closes the refrigerant passage between the branch portion of the refrigerant passage on the outlet side of the condenser 12 and the refrigerant inlet of the expansion valve 16.
  • the expansion valve 16 expands the high-pressure refrigerant and discharges the low-temperature and low-pressure refrigerant to the evaporator 11.
  • the check valve 15 is provided between the compressor 38 and the evaporator 48, and prevents a reverse flow of the refrigerant in an operation mode in which the refrigerant does not flow through the refrigerant passage between the branch portion and the refrigerant inlet of the evaporator 48. It is a valve.
  • FIG. 3 is a block diagram illustrating a control configuration of the vehicle air conditioner 1 according to the embodiment of the present disclosure.
  • the vehicle air conditioner 1 includes an air conditioning automatic control unit 51, an HVAC control unit 71, a heat pump heating control unit 52, and a heat pump heating switch 55 as a control system configuration.
  • the air conditioning automatic control unit 51 includes a microcomputer, an I / O (Input / Output), a program memory that stores a control program, a working memory, and the like, and the microcomputer performs automatic control of air conditioning according to the control program. .
  • the air conditioning automatic control unit 51 receives user setting information, environment information, and drive control information.
  • the user setting information is information on air conditioning set by the user via, for example, an operation panel of an instrument panel.
  • the user setting information includes, for example, A / C (Air-Conditioner) switch information for instructing the operation of the heat pump mainly for cooling or dehumidification, setting temperature information, setting air flow rate information, and the like.
  • a / C Air-Conditioner
  • Environmental information is information obtained from various sensors provided in the vehicle or the vehicle air conditioner 1.
  • the environmental information includes, for example, ATF temperature information, outside air temperature information, vehicle interior temperature information, and door 44a opening information.
  • the drive control information is information for controlling various devices mounted on the vehicle, and is information obtained from a control unit (not shown) that controls them.
  • the drive control information includes, for example, lockup information indicating whether or not the torque converter is locked up, engine start information, and the like.
  • the air conditioning automatic control unit 51 performs control for starting the compressor 38.
  • the air conditioning automatic control unit 51 sends a command (air conditioning control signal such as door control) to the HVAC control unit 71 to open / close the door 44a of the heater core 44, and open / close each door of the HVAC 70, and the fan F1.
  • a command air conditioning control signal such as door control
  • the HVAC control unit 71 is configured to comprehensively control each drive unit of the HVAC 70 based on a command from the air conditioning automatic control unit 51.
  • the air conditioning automatic control unit 51 also includes communication means capable of transmitting and receiving predetermined information to and from the heat pump heating control unit 52.
  • This communication means may be a serial bus or CAN (Controller Area Network), or may be a communication means via a dedicated signal line.
  • the heat pump heating control unit 52 can be composed of a microcomputer or a sequencer.
  • the heat pump heating control unit 52 performs opening / closing control of the first opening / closing valve 13 and the second opening / closing valve 14, and mainly performs switching control of the heat pump heating mode.
  • Information for determining whether or not the heat pump heating mode is necessary is input to the heat pump heating control unit 52.
  • this information is switch information (heat pump heating activation signal) indicating ON / OFF of the heat pump heating switch 55.
  • the heat pump heating switch 55 is an operation switch that can be operated by the user. When the user turns on the heat pump heating switch 55 and a heat pump heating activation signal is input, the heat pump heating control unit 52 can determine that the transition to the heat pump heating mode is necessary.
  • the heat pump heating control unit 52 receives outside air temperature information, vehicle interior temperature information, environment information, vehicle interior temperature setting information, and the like as information for determining whether or not the heat pump heating mode is necessary. . Further, information for determining whether or not the heat pump heating mode is necessary includes state information of the vehicle air conditioner 1 such as opening information of the door 44a. In addition, it is not necessary to input all these information, and only some information may be input. Based on these pieces of information, the heat pump heating control unit 52 may detect that heat such as engine exhaust heat is insufficient for heating and determine that the transition to the heat pump heating mode is necessary. it can.
  • the heat pump heating control unit 52 includes communication means capable of transmitting / receiving predetermined information to / from the air conditioning automatic control unit 51.
  • the communication line is not particularly limited, but is connected to the heat pump heating control unit 52 via a connector CN1 (corresponding to a connection unit).
  • At least A / C switch information (corresponding to air conditioning switch information) is sent from the latter to the former, and a compressor activation request signal is sent from the former to the latter. Is done.
  • the A / C switch information is, for example, on / off information of an A / C switch provided in the operation unit of the instrument panel.
  • the A / C switch is an operation switch that the user instructs to start the compressor 38 mainly for cooling or dehumidification.
  • the compressor activation request signal is a signal for requesting activation of the compressor 38. With this signal, the heat pump heating control unit 52 can activate the compressor 38 even when the A / C switch is off.
  • the heat pump heating control unit 52 determines whether the compressor 38 is driven based on the information from the air conditioning automatic control unit 51. A request signal is sent to the air conditioning automatic control unit 51.
  • the air conditioning automatic control unit 51 drives the compressor 38 by a compressor activation request signal even when the A / C switch is off. Furthermore, the heat pump heating control unit 52 performs opening / closing control of the first opening / closing valve 13 and the second opening / closing valve 14 to perform control for shifting to the heat pump heating mode.
  • the information communicated between the air conditioning automatic control unit 51 and the heat pump heating control unit 52 includes information indicating the current operation mode of the vehicle air conditioner 1, opening information of each door of the HVAC 70, and the like. May be.
  • the air conditioning automatic control unit 51 controls the opening / closing unit 90 so as to switch the coolant passage at a predetermined timing in the heat pump heating mode.
  • switching the coolant passage corresponds to switching the heating target.
  • 1A and 2B show the vehicle air conditioner 1 and the coolant circuit before switching the heating object
  • FIGS. 1B and 2C show the vehicle air conditioner 1 and the coolant circuit after the heating object switching, respectively. .
  • the air conditioning automatic control unit 51 controls the coolant outlet and the heater core 44 of the engine cooling unit 40.
  • the coolant passage between the coolant inlet and the coolant inlet is opened, and the coolant passage between the coolant outlet of the engine cooling unit 40 and the coolant inlet of the condenser 12 is opened and closed.
  • the valve 91 is controlled.
  • the air conditioning automatic control unit 51 closes the coolant passage between the coolant outlet of the engine cooling unit 40 and the coolant inlet of the ATF oil cooler 80, and the coolant of the engine cooling unit 40
  • the on-off valve 92 is controlled so as to open the coolant passage between the delivery port and the coolant inlet of the condenser 12.
  • the air conditioning automatic control unit 51 closes the coolant passage between the coolant outlet of the condenser 12 and the coolant inlet of the heater core 44 and also supplies the coolant outlet of the condenser 12.
  • the on-off valve 93 is controlled to open the coolant passage between the ATF oil cooler 80 and the coolant inlet (see FIGS. 1A and 2B).
  • the air conditioning automatic control unit 51 controls the on-off valves 91 to 93 so as to switch the respective coolant passages, so that the heated coolant from the condenser 12 flows to the ATF oil cooler 80. Thereby, heat exchange is performed between the coolant and the ATF, and the temperature of the ATF increases.
  • the air conditioning automatic control unit 51 is configured to supply the coolant of the engine cooling unit 40 and the coolant of the heater core 44.
  • the on-off valve 91 is closed so that the coolant passage between the coolant inlet and the inlet of the engine 12 is closed and the coolant passage between the coolant outlet of the engine cooling unit 40 and the coolant inlet of the condenser 12 is opened.
  • the air conditioning automatic control unit 51 opens a coolant passage between the coolant delivery port of the engine cooling unit 40 and the coolant introduction port of the ATF oil cooler 80, and also supplies the coolant of the engine cooling unit 40.
  • the on-off valve 92 is controlled so as to close the coolant passage between the delivery port and the coolant inlet of the condenser 12.
  • the air conditioning automatic control unit 51 opens a coolant passage between the coolant outlet of the condenser 12 and the coolant inlet of the heater core 44, and also supplies the coolant outlet of the condenser 12.
  • the on-off valve 93 is controlled so as to close the coolant passage between the ATF oil cooler 80 and the coolant inlet (see FIGS. 1B and 2C).
  • the air conditioning automatic control unit 51 controls the on-off valves 91 to 93 so as to switch the respective coolant passages, whereby the heated coolant from the condenser 12 flows to the heater core 44. As a result, heat is exchanged between the coolant and air, and the air supplied to the passenger compartment is warmed.
  • the vehicle air conditioner 1 operates by being switched to several operation modes such as a heat pump heating mode, a hot water heating mode, a temperature control mode, and a cooling mode.
  • the heat pump heating mode is a mode in which the vehicle interior is heated by operating the heat pump.
  • the hot water heating mode is a mode in which the passenger compartment is heated without operating the heat pump.
  • the cooling mode is a mode in which the passenger compartment is cooled by the action of the heat pump.
  • the temperature adjustment mode is a mode in which the temperature and humidity of the air are adjusted by appropriately combining air cooling and dehumidification with a low-temperature refrigerant and air heating with a high-temperature coolant.
  • the heat pump heating mode and the cooling mode will be described as representative examples.
  • FIG. 4 is a flowchart showing the heating target switching process. It is assumed that the operation mode has been shifted to the heat pump heating mode.
  • This process starts when the engine is started.
  • the air conditioning automatic control unit 51 When the air conditioning automatic control unit 51 receives engine start information, the air conditioning automatic control unit 51 switches the coolant to the coolant passage through which the coolant flows, so that the heated coolant from the condenser 12 is transferred to the ATF oil cooler 80 (second heating target).
  • the opening / closing part 90 is controlled to flow (step S12). Thereby, heat exchange is performed between the coolant and the ATF, and the temperature of the ATF increases.
  • the air conditioning automatic control unit 51 determines whether or not the lock-up is performed, and further determines whether or not the ATF temperature K exceeds a predetermined value (step S14).
  • step S14 NO
  • the air conditioning automatic control unit 51 does not switch the respective coolant passages (step S16). . That is, the object to be heated remains the ATF oil cooler 80. As a result, the heat exchange between the coolant and the ATF is continued, and the temperature of the ATF increases.
  • step S14 when the lock-up occurs or the temperature K of the ATF exceeds a predetermined value (step S14: YES), the air conditioning automatic control unit 51 switches to the coolant passage through which the coolant flows, thereby causing the condenser 12 to switch.
  • the opening / closing part 90 is controlled so that the heated coolant from the flow to the heater core 44 (first heating target) (step S18). That is, the heating target is switched to the heater core 44. As a result, heat is exchanged between the coolant and air, and the air sent into the passenger compartment is warmed.
  • step S14 is executed again. That is, the air conditioning automatic control unit 51 determines whether or not the lock-up is performed, and further determines whether or not the ATF temperature K exceeds a predetermined value.
  • the first on-off valve 13 is closed and the second on-off valve 14 is switched to open in the configuration of FIGS. 1A and 1B. Further, the door 44a of the heater core 44 is opened (for example, fully opened).
  • the compressor 38 when the compressor 38 is further operated, the refrigerant flows in the order of the condenser 12, the expansion valve 16, and the evaporator 11, and further circulates in the above order by returning to the compressor 38.
  • the refrigerant compressed by the compressor 38 dissipates heat to the coolant in the condenser 12 and condenses.
  • the condensed refrigerant is expanded by the expansion valve 16 to become a low-temperature and low-pressure refrigerant, and is sent to the evaporator 11.
  • the low-temperature and low-pressure refrigerant is vaporized by absorbing heat from the coolant in the evaporator 11.
  • the vaporized low-pressure refrigerant is sucked into the compressor 38 and compressed.
  • the coolant flows in the order of the engine cooling unit 40, the condenser 12, the heater core 44, and the evaporator 11, and further returns to the engine cooling unit 40 to circulate in the above order.
  • the coolant that has absorbed heat from the engine by the engine cooling unit 40 is further heated by the condenser 12 and sent to the heater core 44.
  • the coolant that has reached a high temperature can sufficiently heat the intake air that is sent into the passenger compartment by the heater core 44.
  • the coolant that has passed through the heater core 44 has a higher temperature than the outside air, and the evaporator 11 can dissipate heat to the refrigerant to vaporize the refrigerant.
  • the coolant cooled by the evaporator 11 can be sent to the engine cooling unit 40 to sufficiently cool the engine.
  • the vehicle interior can be sufficiently heated.
  • the first on-off valve 13 is switched to open and the second on-off valve 14 is switched to close. Further, the door 44a of the heater core 44 is fully closed. Further, when the compressor 38 is operated, the refrigerant flows through the condenser 12 in the order of the expansion valve 37 and the evaporator 48, and returns to the compressor 38 to circulate in the order described above.
  • the refrigerant compressed by the compressor 38 dissipates heat to the air in the condenser 12 and condenses.
  • the condensed refrigerant is expanded by the expansion valve 37 to become a low-temperature and low-pressure refrigerant and is sent to the evaporator 48.
  • the low-temperature and low-pressure refrigerant cools and evaporates the intake air sent into the passenger compartment by the evaporator 48.
  • the vaporized low-pressure refrigerant is sucked into the compressor 38 and compressed.
  • the coolant flows through the engine cooling unit 40, the condenser 12, the heater core 44, and the evaporator 11.
  • the heat dissipation of the cooling liquid is mainly performed by the radiator of the engine cooling unit 40.
  • the refrigerant is vaporized by the evaporator 48 to cool the intake air sent to the vehicle interior. Thereby, the vehicle interior can be cooled.
  • the air conditioning automatic control unit 51 receives the engine start information and controls the opening / closing unit 90 so that the coolant flows to the ATF oil cooler 80.
  • the air conditioning automatic control unit 51 controls the opening / closing unit 90 so that the coolant flows into the heater core 44 when the temperature of the ATF exceeds a predetermined value. As a result, heat is exchanged between the coolant and air, and the air supplied to the passenger compartment is warmed.
  • the piping between the coolant outlet of the ATF oil cooler 80 and the coolant inlet of the engine cooling unit 40 is switched before the heating target is switched. Since the cooling fluid passage connected by is configured, the temperature drop of the cooling fluid in the cooling fluid passage is small, and accordingly, the temperature of the cooling fluid introduced from the engine cooling section 40 to the ATF oil cooler 80 becomes high. The temperature can be raised in a relatively short time. Thereby, since the viscous resistance of ATF rapidly decreases, the effect of reducing fuel consumption increases.
  • FIG. 5A is a configuration diagram showing the vehicle air conditioner 1 according to the first modification.
  • FIG. 5B is a diagram illustrating the vehicle air conditioner 1 after switching. Note that, after switching the heating target, the vehicle air conditioner 1 shown in FIG. 5B has the same configuration of the coolant passage as the vehicle air conditioner 1 shown in FIG. To do.
  • the coolant passage is formed by directly connecting the coolant outlet of the ATF oil cooler 80 and the coolant inlet of the engine cooling section 40 with a pipe.
  • the coolant outlet of the heater core 44 and the coolant inlet of the engine cooling unit 40 are indirectly connected through the evaporator 11.
  • the coolant outlet of the ATF oil cooler 80 and the coolant inlet of the engine cooling unit 40 are indirectly connected via the evaporator 11,
  • the coolant outlet of the oil cooler 80 and the coolant inlet of the engine cooling unit 40 are directly connected by piping.
  • the coolant circuit having the on-off valves 91 to 93 is shown.
  • the coolant circuit has an on-off valve in addition to the on-off valves 91 to 93. 94-96.
  • the on-off valve 94 is provided with a coolant passage between the coolant outlet of the heater core 44 and the inlet of the engine cooling section return pipe 87 or the coolant of the heater core 44.
  • the other coolant passage is closed.
  • the on-off valve 95 is a coolant passage between the coolant outlet of the ATF oil cooler 80 and the inlet of the engine cooling unit return pipe 88, or the coolant outlet of the ATF oil cooler 80 and the cooling of the evaporator 11. When one of the coolant passages between the fluid inlet and the liquid inlet is opened, the other coolant passage is closed (see FIG. 6B).
  • the on-off valve 96 is connected to the coolant passage between the coolant outlet of the evaporator 11 and the inlet of the engine cooling unit return pipe 87 or between the coolant outlet of the evaporator 11 and the engine cooling unit return pipe 88. When one of the coolant passages between the inlet and the inlet is opened, the other coolant passage is closed.
  • the air conditioning automatic control unit 51 opens and closes the coolant passage through which the coolant flows, as described in the above embodiment.
  • the on-off valves 91 to 93 are controlled (see FIG. 2B).
  • the air conditioning automatic control unit 51 opens a coolant passage between the coolant outlet of the heater core 44 and the inlet of the engine cooling unit return pipe 87 and evaporates the coolant outlet of the heater core 44 and evaporates.
  • the on-off valve 94 is controlled so as to close the coolant passage between the coolant introduction port of the vessel 11.
  • the air conditioning automatic control unit 51 closes the coolant passage between the coolant outlet of the ATF oil cooler 80 and the inlet of the engine cooling unit return pipe 88 and also supplies the coolant of the ATF oil cooler 80. And the on-off valve 95 is controlled so as to open the coolant passage between the coolant and the coolant inlet of the evaporator 11.
  • the air conditioning automatic control unit 51 closes the coolant passage between the coolant outlet of the evaporator 11 and the inlet of the engine cooling unit return pipe 87 and also supplies the coolant outlet of the evaporator 11 and the engine.
  • the on-off valve 96 is controlled so as to open the coolant passage between the inlet of the cooling section return pipe 88 (see FIG. 6B).
  • the air conditioning automatic control unit 51 opens and closes to open and close the respective coolant passages as described in the above embodiment.
  • the valves 91 to 93 are controlled (see FIG. 2C).
  • the air conditioning automatic control unit 51 closes the coolant passage between the coolant outlet of the heater core 44 and the inlet of the engine cooling unit return pipe 87 and evaporates the coolant outlet of the heater core 44 and evaporates.
  • the on-off valve 94 is controlled so as to open a coolant passage between the coolant introduction port of the vessel 11.
  • the air conditioning automatic control unit 51 opens a coolant passage between the coolant outlet of the ATF oil cooler 80 and the inlet of the engine cooling unit return pipe 88 and also supplies the coolant of the ATF oil cooler 80. And the on-off valve 95 is controlled so as to close the coolant passage between the coolant and the coolant inlet of the evaporator 11.
  • the air conditioning automatic control unit 51 opens a coolant passage between the coolant outlet of the evaporator 11 and the inlet of the engine cooling unit return pipe 87, and also supplies the coolant outlet of the evaporator 11 and the engine.
  • the on-off valve 96 is controlled so as to close the coolant passage between the inlet of the cooling section return pipe 88 (see FIG. 6C).
  • the coolant flows into the ATF oil cooler 80 and the ATF temperature exceeds a predetermined value, as in the above embodiment.
  • the coolant flows to the heater core 44.
  • the temperature of the ATF rises in a short time, the viscous resistance is rapidly lowered, and the fuel consumption can be prevented from being lowered.
  • heat exchange is performed between the coolant and air, and the air supplied to the passenger compartment is warmed.
  • ATF is shown as the second heating target.
  • the present disclosure is not limited thereto, and examples of the second heating target include coolant in the engine cooling unit, engine oil, It may be a battery, an inverter, or a motor.
  • the air conditioning automatic control unit 51 controls the opening / closing unit 90 to switch from the second heating target to the first heating target when the temperature of the second heating target exceeds a predetermined value.
  • the coolant heated by the condenser 12 is introduced into the engine cooling unit 40 to warm the coolant in the engine cooling unit 40. Thereafter, the coolant is introduced into the condenser 12, heated again by the condenser 12, and returned to the engine cooling unit 40. As a result, the coolant circulates.
  • the circulating coolant can raise the temperature of the coolant in the engine cooling unit 40 in a short time.
  • the coolant circuit when the second heating target is a battery is configured by replacing the ATF oil cooler 80 in FIG. 1A with a battery. Thereby, for example, even when the battery is at a low temperature when the engine is started, the battery can be raised to an appropriate temperature in a short time.
  • the air conditioning automatic control unit 51 controls the opening / closing unit 90 to switch from the second heating target to the first heating target when the temperature of the coolant introduced into the first heating target satisfies a predetermined condition. Good.
  • FIG. 7A is a diagram illustrating a coolant circuit before switching of a heating target.
  • FIG. 7B is a diagram illustrating the coolant circuit after switching of the heating target.
  • a portion through which the coolant does not pass is shown in white, and a portion through which the coolant passes is shown in black.
  • the on-off valves 91 to 96 configure the coolant circuit before switching to connect the engine cooling unit 40, the condenser 12, the ATF oil cooler 80, and the evaporator 11, while the coolant after switching
  • the circuit was configured to connect the engine cooling unit 40, the condenser 12, the heater core 44, and the evaporator 11. That is, the coolant circuit according to the first modification is configured so that the coolant heated by the condenser 12 is sent to the ATF oil cooler 80 or the heater core 44 and then returned to the engine cooling unit 40 via the evaporator 11. did.
  • the coolant circuit according to the modified example 2 sends the coolant heated by the condenser 12 to the ATF oil cooler 80 or the heater core 44 and then does not go through the evaporator 11.
  • the engine cooling unit 40 is configured to be returned.
  • the coolant circuit from the engine cooling section 40 has a branch section and on-off valves 97-99.
  • the branch section divides the coolant from the engine cooling section 40 into an evaporator 11 and a condenser 12.
  • the on-off valve 97 opens and closes a pipe connecting the coolant outlet of the condenser 12 and the coolant inlet of the ATF oil cooler 80.
  • the on-off valve 98 opens and closes a pipe connecting the coolant outlet of the condenser 12 and the coolant inlet of the heater core 44.
  • the on-off valve 99 opens and closes a pipe connecting the coolant outlet of the engine cooling unit 40 and the coolant inlet of the heater core 44.
  • the coolant circuit of the second modification includes a circuit for sending the coolant divided at the branching portion to the evaporator 11 and then returning it to the engine cooling unit 40, and the coolant divided at the branch portion from the condenser 12 to the on-off valve 97. And a circuit for returning to the engine cooling unit 40 after being sent to the ATF oil cooler. Then, the coolant divided at the branch portion is sent from the condenser 12 to the heater core 44 via the on-off valve 98 and then returned to the engine cooling portion 40, and the coolant from the engine cooling portion 40 is passed through the on-off valve 99. And a circuit for returning to the engine cooling unit 40 after being sent to the heater core 44.
  • the on-off valve 97 and the on-off valve 99 are closed, and the on-off valve 98 is opened.
  • the coolant divided at the branch portion is sent from the condenser 12 to the heater core 44 via the on-off valve 98 and then returned to the engine cooling portion 40.
  • the other coolant divided by the branch portion passes through the evaporator 11 and is returned to the engine cooling portion 40.
  • heating object was switched based on the state (temperature, lockup) of 2nd heating object
  • this indication is not restricted to this
  • the air-conditioning automatic control part 51 is an engine starting.
  • the opening / closing unit 90 may be controlled to switch the heating target.
  • the timing for switching the heating target may be determined based on a combination of the state of the second heating target and the elapsed time.
  • a heating object is made into 3 or more, for example, the state of each heating object Based on the above, each heating object may be switched one after another.
  • the present disclosure is suitably used for a vehicle air conditioner that is required to effectively use the heat of the coolant when heating a plurality of heating targets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • General Details Of Gearings (AREA)

Abstract

複数の加熱対象を加熱する際に冷却液の熱を有効に利用することができる車両用空調装置を提供する。車両用空調装置は、冷媒を圧縮するコンプレッサと、高温高圧の冷媒とエンジン冷却部から送出された冷却液との間で熱交換を行う凝縮器と、熱交換で加熱された冷却液と車室内へ送られる空気との間で熱交換を行う第1加熱対象と、エンジン冷却部に導入される冷却液と低温低圧の冷媒との間で熱交換を行う蒸発器と、を具備する。そして、加熱された冷却液を、第1加熱対象に流すための冷却液通路と、加熱された冷却液を、第1加熱対象とは別の第2加熱対象に流すための冷却液通路と、各冷却液通路を開閉する開閉部と、加熱された冷却液を流す流入先を第2加熱対象から第1加熱対象に所定のタイミングで切り替えるように開閉部を制御する制御部と、を備える。

Description

車両用空調装置
 本開示は、車両用空調装置に関する。
 従来の車両用の暖房装置として、高温になったエンジン冷却水(冷却液)をヒーターコアに流入させ、冷却液と空気との間で熱交換を行い、暖められた空気を車室内に供給することで、車室内を暖房する温水式ヒータが多く採用されている。
 例えば、特許文献1には、既存の温水式ヒータを基本としつつ、ヒートポンプを利用して冷却液を加熱する構成を付加した車両用空調装置が開示されている。
特開平10-76837号公報
 本開示に係る車両用空調装置は、以下の構成を具備する。すなわち、冷媒を圧縮するコンプレッサと、高温高圧の冷媒とエンジン冷却部から送出された冷却液との間で熱交換を行う凝縮器と、熱交換で加熱された冷却液と車室内へ送られる空気との間で熱交換を行う第1加熱対象と、エンジン冷却部に導入される冷却液と低温低圧の冷媒との間で熱交換を行う蒸発器と、を具備する。そして、加熱された冷却液を、第1加熱対象に流すための冷却液通路と、加熱された冷却液を、前記第1加熱対象とは別の第2加熱対象に流すための冷却液通路と、各冷却液通路を開閉する開閉部と、加熱された冷却液を流す流入先を第2加熱対象から第1加熱対象に所定のタイミングで切り替えるように開閉部を制御する制御部と、を備える。
 本開示によれば、複数の加熱対象を加熱する際に冷却液の熱を有効に利用することができる。
本開示の実施の形態に係る車両用空調装置における冷却水および冷媒の流れを示す説明図である。 切り替え後の冷却水の流れを示す図である。 冷却液回路の構成を概略的に示す図である。 切り替え前の冷却液回路を示す図である。 切り替え後の冷却液回路を示す図である。 本開示の実施の形態の車両用空調装置の制御構成を示すブロック図である。 加熱対象の切替処理を示すフロー図である。 変形例1に係る車両用空調装置における冷却水および冷媒の流れを示す構成図である。 切り替え後の冷却水の流れを示す図である。 変形例1に係る冷却液回路の構成を概略的に示す図である。 切り替え前の冷却液回路を示す図である。 切り替え後の冷却液回路を示す図である。 変形例2に係る加熱対象の切り替え前の冷却液回路を概略的に示す図である。 切り替え後の冷却液回路を示す図である。
 本開示の実施の形態の説明に先立ち、従来の車両用空調装置における問題点を簡単に説明する。特許文献1のヒートポンプは、冷媒を高温高圧にするコンプレッサと、高温高圧にされた冷媒と冷却液との間で熱交換を行うことで、冷却液を加熱する凝縮器とを有する。これにより、ヒーターコアに流入する冷却液の温度がより高温となり、既存のものより暖房性能を向上させることが可能となる。
 ところで、例えば、車両のオートマチックトランスミッションには、エンジン側の力をATF(Automatic Transmission Fluid)を介してミッション側に伝えるトルクコンバータが設けられている。なお、ATFを、ATオイルまたはATFオイルという場合がある。
 トルクコンバータには、例えばエンジンの負荷やトランスミッションアウトプットシャフト回転数に応じて、エンジン側とミッション側の回転軸を直結した状態(以下、ロックアップと称する)にするロックアップ機構が設けられている。
 なお、トルクコンバータは、ATFの温度が低いと粘性抵抗が高いためにロックアップ等の制御に入れず、そのため、ATFの温度が上がるまでエンジン回転数を上げる制御をしており、燃費が低下する。
 燃費の低下を抑えるためには、ATFの温度を上げる必要がある。
 つまり、ヒーターコアの他にも、ATFのように、温度を上げる必要がある加熱対象が存在している。
 本開示は、複数の加熱対象を加熱する際に冷却液の熱を有効に利用することが可能な車両用空調装置を提供することである。
 以下、本開示の実施の形態について、図面を参照しながら説明する。
 図1Aおよび図1Bは、本開示の実施の形態に係る車両用空調装置1における冷却液および冷媒の流れを示す説明図である。図2Aは、冷却液回路の構成を概略的に示す図である。なお、図1Aおよび図1Bでは、冷媒が流れている配管および冷却液配管のうち冷却液が流れている配管のみを示し、冷却液が流れていない配管を省略して示す。また、図2Aでは冷媒回路を省略して示す。
 本実施の形態では、発熱部品としてのエンジン(内燃機関)を有する車両に搭載されて、車室内の空気調整を行う車両用空調装置1について説明する。
 本実施の形態の車両用空調装置1は、複数の運転モードに切り換えられて動作する。このために、車両用空調装置1は、図1Aおよび図2Aに示すように、構成ユニット10、コンプレッサ(圧縮機)38、エンジン冷却部40、ヒーターコア44、エバポレータ48、膨張弁37、逆止弁15、ATFオイルクーラー80、開閉部90、および、これらの間を結ぶ冷却液の配管および冷媒配管等を有する。ヒーターコア44と、エバポレータ48とは、HVAC(Heating, Ventilation, and Air Conditioning)70の吸気通路内に配置される。HVAC70には、吸気を流すファンF1が設けられている。
 構成ユニット10は、蒸発器11と、凝縮器12と、第1開閉弁13と、第2開閉弁14と、膨張弁16とを有する。また、開閉部90は、開閉弁91,92,93を有する。
 コンプレッサ38は、エンジンの動力または電気により駆動して、吸入した冷媒を圧縮して、高温高圧となった冷媒を吐出する。高温高圧の冷媒は、凝縮器12に送られる。低圧の冷媒は、構成ユニット10の蒸発器11、又は、エバポレータ48から合流管を介してコンプレッサ38へ吸入される。
 エンジン冷却部40は、ポンプを有し、エンジンから熱を冷却液に放出させる。ポンプは冷却液を移送する。冷却液の移送方向を図1Aおよび図1Bに矢印で示す。なお、エンジン冷却部40には、熱を外気に放出するラジエータが備えられていてもよい。
 冷却液は、例えば、LLC(Long Life Coolant)などの不凍液であり、熱を運ぶための液体である。
 ヒーターコア44は、冷却液と空気との間で熱交換を行う機器であり、車室内へ空気を供給するHVAC70の吸気通路内に配置される。ヒーターコア44には、加熱された冷却液が供給され、暖房運転時に車室内へ供給される空気に熱を放出する。ヒーターコア44は、ドア44aの開度により車室内に供給する空気の量を調整する。ドア44aは電気的な制御で開閉する。ヒーターコア44が本開示の第1加熱対象に対応する。
 ATFオイルクーラー80は、オートマチックトランスミッション(図示略)に収容されたATFの温度を適正に保つ冷却装置である。ATFオイルクーラー80が本開示の第2加熱対象に対応する。なお、ここで、加熱対象とは、凝縮器12から送出された冷却液の熱によって直接的または間接的に加熱される対象をいう。
 ATFオイルクーラー80の冷却液の導入口は、凝縮器12を介して又は介さずに、エンジン冷却部40の冷却液の送出口に連通されている。また、ATFオイルクーラー80の冷却液の送出口は、配管を介してエンジン冷却部40の冷却液の導入口に連通されている。
 オートマチックトランスミッションには、ATFを介してエンジン側の力をミッション側に伝えるためのトルクコンバータ(図示略)が設けられている。トルクコンバータは、エンジン側とミッション側の回転軸を直結するロックアップ機構(図示略)を有している。
 エバポレータ48は、低温低圧の冷媒と、空気との間で熱交換を行う機器であり、HVAC70の吸気通路内に配置される。エバポレータ48には、冷房運転時、除湿運転時、また温調運転時に低温低圧の冷媒が流され、車室内へ供給される空気を冷却する。
 膨張弁37は、高温高圧の冷媒を膨張させ、低温低圧になった冷媒をエバポレータ48に吐出する。
 構成ユニット10は、蒸発器11と、凝縮器12と、第1開閉弁13と、第2開閉弁14と、膨張弁16とを有する。
 蒸発器11は、冷温低圧の冷媒を流す通路と、冷却液を流す通路とを有し、冷媒と冷却液との間で熱交換を行う。蒸発器11には、所定の運転モードのときに、膨張弁16から低温低圧の冷媒が導入されて、冷媒が蒸発する際に冷却液から冷媒へ熱が移動する。これにより、蒸発器11は、低温低圧の冷媒を気化させる。
 蒸発器11の冷却液の導入口は、配管を介してヒーターコア44に連通され、蒸発器11の冷却液の送出口は、配管を介してエンジン冷却部40に連通されている。蒸発器11の冷媒の導入口は、配管を介して膨張弁16に連通され、蒸発器11の冷媒の送出口は、コンプレッサ38の吸入口へ合流する配管に連通されている。
 凝縮器12は、高温高圧の冷媒を流す通路と、冷却液を流す通路とを有し、冷媒と冷却液との間で熱交換を行う。凝縮器12には、所定の運転モードのときに、コンプレッサ38から高温高圧の冷媒が送られて、冷媒が凝縮する際に冷媒から冷却液へ熱が移動する。
 図1Aおよび図2Aに示すように、凝縮器12の冷却液の導入口は、開閉部90を介してエンジン冷却部40に連通され、凝縮器12の冷却液の送出口は、開閉部90を介してヒーターコア44およびATFオイルクーラー80のいずれかに選択的に連通される。凝縮器12の冷媒の導入口は、配管を介してコンプレッサ38の吐出口へ連通され、凝縮器12の冷媒の送出口は、膨張弁16に連通されている。
 図2Aに示すように、冷却液回路は、蒸発器11、凝縮器12、エンジン冷却部40、ヒーターコア44、ATFオイルクーラー80、開閉部90、およびこれらの間を結ぶ冷却液の配管を有する。
 開閉部90は、それぞれの冷却液通路を開閉する開閉弁91~93を有する。開閉弁91~93は、例えば3方向電磁弁である。ここで、冷却液通路とは、例えばエンジン冷却部40の冷却液の送出口と凝縮器12の冷却液の導入口との間のように、二者間を結ぶ通路(配管)をいう。
 開閉弁91は、エンジン冷却部40の冷却液の送出口とヒーターコア44の冷却液の導入口との間の冷却液通路、または、エンジン冷却部40の冷却液の送出口と凝縮器12の冷却液の導入口との間の冷却液通路の一方を開いたとき、他方の冷却液通路を閉塞するように構成されている。
 開閉弁92は、エンジン冷却部40の冷却液の送出口とATFオイルクーラー80の冷却液の導入口との間の冷却液通路、または、エンジン冷却部40の冷却液の送出口と凝縮器12の冷却液の導入口との間の冷却液通路の一方を開いたとき、他方の冷却液通路を閉塞するように構成されている。
 開閉弁93は、凝縮器12の冷却液の送出口とヒーターコア44の冷却液の導入口との間の冷却液通路、または、凝縮器12の冷却液の送出口とATFオイルクーラー80の冷却液の導入口との間の冷却液通路を開放したとき、他方の冷却液通路を閉塞するように構成されている。
 空調自動制御部51(図3参照)は、ATFの温度およびロックアップ情報に基づいて、冷却液が流れる冷却液通路を切り替えるように開閉弁91~93を制御する。
 図1Aおよび図2Aに示すように、第1開閉弁13および第2開閉弁14は、例えば電気的な制御により、冷媒配管の開閉を切り替える弁であり、例えば電磁弁である。第1開閉弁13は、凝縮器12の送出口側の冷媒通路の分岐部と、エバポレータ48の冷媒導入口との間の冷媒通路を開閉する。第2開閉弁14は、凝縮器12送出口側の冷媒通路の分岐部と、膨張弁16の冷媒導入口と間の冷媒通路を開閉する。
 膨張弁16は、高圧の冷媒を膨張させ、低温低圧になった冷媒を蒸発器11に吐出する。
 逆止弁15は、コンプレッサ38とエバポレータ48との間に設けられ、上記分岐部とエバポレータ48の冷媒導入口との間の冷媒通路に冷媒が流れない運転モードのときに、冷媒の逆流を防ぐ弁である。
 図3は、本開示の実施の形態の車両用空調装置1の制御構成を示すブロック図である。
 車両用空調装置1は、制御系の構成として、空調自動制御部51と、HVAC制御部71と、ヒートポンプ暖房制御部52と、ヒートポンプ暖房スイッチ55とを備えている。
 空調自動制御部51は、マイクロコンピュータ、I/O(Input/Output)、制御プログラムを格納したプログラムメモリ、作業用のメモリ等を備え、マイクロコンピュータが制御プログラムに従って空調の自動制御を行う構成である。
 空調自動制御部51には、ユーザー設定情報と環境情報と駆動制御情報とが入力される。
 ユーザー設定情報は、例えばインパネ(Instrument Panel)の操作部を介してユーザーにより設定される空調に関する情報である。ユーザー設定情報には、例えば、主に冷房又は除湿のためにヒートポンプの作動を指示するためのA/C(Air Conditioner)スイッチ情報、設定温度情報、設定送風量情報などが含まれる。
 環境情報は、車両又は車両用空調装置1に設けられた各種センサから得られる情報である。環境情報には、例えば、ATFの温度情報、外気温度情報、車室内温度情報、ドア44aの開度情報などが含まれる。
 駆動制御情報は、車載された各種装置を制御するための情報であって、それらを制御する制御部(図示略)から得られる情報である。駆動制御情報には、例えば、トルクコンバータがロックアップであるか否かを示すロックアップ情報、エンジンの始動情報などが含まれる。
 また、空調自動制御部51は、コンプレッサ38を起動する制御を行う。
 さらに、空調自動制御部51は、HVAC制御部71へ指令(ドア制御などの空調制御信号)を送って、ヒーターコア44のドア44aの開閉、その他、HVAC70の各ドアの開閉、および、ファンF1の駆動等の各制御を行う。HVAC制御部71は、空調自動制御部51からの指令に基づき、HVAC70の各駆動部の制御を統括的に行う構成である。
 空調自動制御部51は、また、ヒートポンプ暖房制御部52との間で所定の情報を送受信可能な通信手段を備えている。この通信手段は、シリアルバスやCAN(Controller Area Network)であってもよいし、専用の信号線を介した通信手段であってもよい。
 ヒートポンプ暖房制御部52は、マイクロコンピュータまたはシーケンサーから構成することができる。ヒートポンプ暖房制御部52は、第1開閉弁13と第2開閉弁14との開閉制御を行って、主に、ヒートポンプ式暖房モードの切換制御を行う。
 ヒートポンプ暖房制御部52には、ヒートポンプ式暖房モードの要否を判別するための情報が入力される。具体的には、この情報は、ヒートポンプ暖房スイッチ55のオン・オフを示すスイッチ情報(ヒートポンプ暖房起動信号)である。ヒートポンプ暖房スイッチ55は、ユーザーが操作可能な操作スイッチである。ヒートポンプ暖房制御部52は、ユーザーがヒートポンプ暖房スイッチ55をオン操作してヒートポンプ暖房起動信号が入力された場合に、ヒートポンプ式暖房モードへの移行が必要であると判別することができる。
 ヒートポンプ暖房制御部52には、ヒートポンプ式暖房モードの要否を判別するための情報として、外気温度情報、車室内温度情報、および、環境情報、並びに、車室内温度の設定情報などが入力される。また、ヒートポンプ式暖房モードの要否を判別するための情報として、ドア44aの開度情報など車両用空調装置1の状態情報が含まれる。なお、これら全ての情報が入力される必要はなく、幾つかの情報のみが入力されてもよい。これらの情報に基づいて、ヒートポンプ暖房制御部52は、暖房用にエンジン排熱等の熱が不足していることを検知して、ヒートポンプ式暖房モードへの移行が必要であると判別することができる。
 ヒートポンプ暖房制御部52は、空調自動制御部51との間で所定の情報を送受信可能な通信手段を備えている。通信線は、特に制限されないが、コネクタCN1(接続部に相当)を介してヒートポンプ暖房制御部52に接続される。
 ヒートポンプ暖房制御部52と空調自動制御部51との間の通信では、少なくとも、後者から前者へA/Cスイッチ情報(空調スイッチ情報に相当)が送られ、前者から後者へコンプレッサ起動要求信号が送信される。
 A/Cスイッチ情報は、例えばインパネの操作部に設けられたA/Cスイッチのオン・オフ情報である。A/Cスイッチは、主に冷房又は除湿のためにユーザーがコンプレッサ38の起動を指示する操作スイッチである。
 コンプレッサ起動要求信号は、コンプレッサ38の起動を要求する信号であり、この信号により、A/Cスイッチがオフであっても、ヒートポンプ暖房制御部52からコンプレッサ38を起動することが可能となる。
 ヒートポンプ暖房制御部52は、ヒートポンプ式暖房モードへの移行が必要であると判別した場合、空調自動制御部51からの情報により、コンプレッサ38が駆動しているか判別し、駆動していなければコンプレッサ起動要求信号を空調自動制御部51へ送る。空調自動制御部51は、A/Cスイッチがオフであっても、コンプレッサ起動要求信号により、コンプレッサ38を駆動させる。さらに、ヒートポンプ暖房制御部52は、第1開閉弁13および第2開閉弁14の開閉制御を行って、ヒートポンプ式暖房モードへ移行する制御を行う。
 なお、空調自動制御部51とヒートポンプ暖房制御部52とで通信される情報には、現在の車両用空調装置1の運転モードを示す情報、および、HVAC70の各ドアの開度情報等が含まれてもよい。
 さらに、空調自動制御部51は、ヒートポンプ式暖房モードにおいて、所定のタイミングで冷却液通路を切り替えるように開閉部90の制御を行う。ここで、冷却液通路の切り替えることは、加熱対象を切り替えることに相当する。また、加熱対象の切り替え前の車両用空調装置1および冷却液回路を図1Aおよび図2Bにそれぞれ示し、加熱対象の切り替え後の車両用空調装置1および冷却液回路を図1Bおよび図2Cに示す。
 空調自動制御部51は、ヒートポンプ式暖房モードにおいて、ATFの温度が所定値を超えておらず、かつ、トルクコンバータがロックアップでない場合、エンジン冷却部40の冷却液の送出口とヒーターコア44の冷却液の導入口との間の冷却液通路を開放すると共に、エンジン冷却部40の冷却液の送出口と凝縮器12の冷却液の導入口との間の冷却液通路を閉塞するように開閉弁91を制御する。
 さらに、空調自動制御部51は、エンジン冷却部40の冷却液の送出口とATFオイルクーラー80の冷却液の導入口との間の冷却液通路を閉塞すると共に、エンジン冷却部40の冷却液の送出口と凝縮器12の冷却液の導入口との間の冷却液通路を開放するように開閉弁92を制御する。
 さらに、空調自動制御部51は、凝縮器12の冷却液の送出口とヒーターコア44の冷却液の導入口との間の冷却液通路を閉塞すると共に、凝縮器12の冷却液の送出口とATFオイルクーラー80の冷却液の導入口との間の冷却液通路を開放するように開閉弁93を制御する(図1A、図2B参照)。
 以上のように、空調自動制御部51がそれぞれの冷却液通路を切り替えるように開閉弁91~93を制御することで、凝縮器12からの加熱された冷却液がATFオイルクーラー80に流れる。これにより、冷却液とATFとで熱交換が行われ、ATFの温度が上昇する。
 空調自動制御部51は、ヒートポンプ式暖房モードにおいて、ATFの温度が所定値を超え、または、トルクコンバータがロックアップである場合、エンジン冷却部40の冷却液の送出口とヒーターコア44の冷却液の導入口との間の冷却液通路を閉塞すると共に、エンジン冷却部40の冷却液の送出口と凝縮器12の冷却液の導入口との間の冷却液通路を開放するように開閉弁91を制御する。
 さらに、空調自動制御部51は、エンジン冷却部40の冷却液の送出口とATFオイルクーラー80の冷却液の導入口との間の冷却液通路を開放すると共に、エンジン冷却部40の冷却液の送出口と凝縮器12の冷却液の導入口との間の冷却液通路を閉塞するように開閉弁92を制御する。
 さらに、空調自動制御部51は、凝縮器12の冷却液の送出口とヒーターコア44の冷却液の導入口との間の冷却液通路を開放すると共に、凝縮器12の冷却液の送出口とATFオイルクーラー80の冷却液の導入口との間の冷却液通路を閉塞するように開閉弁93を制御する(図1Bおよび図2C参照)。
 以上のように、空調自動制御部51がそれぞれの冷却液通路を切り替えるように開閉弁91~93を制御することで、凝縮器12からの加熱された冷却液がヒーターコア44に流れる。これにより、冷却液と空気とで熱交換が行われ、車室内に供給される空気が暖められる。
 次に、車両用空調装置1の動作について説明する。
 車両用空調装置1は、ヒートポンプ式暖房モード、温水式暖房モード、温調モード、および、冷房モードなど、いくつかの動作モードに切り換えられて動作する。ヒートポンプ式暖房モードは、ヒートポンプを作動させて車室内を暖房するモードである。温水式暖房モードは、ヒートポンプを作動させずに車室内を暖房するモードである。冷房モードはヒートポンプの作用により車室内を冷房するモードである。温調モードは、低温冷媒による空気の冷却および除湿と、高温の冷却液による空気の加熱とを適宜組み合わせて、空気の温度および湿度の調整を行うモードである。以下では、ヒートポンプ式暖房モードおよび冷房モードを代表例として説明する。
 以下に、ヒートポンプ式暖房モードにおける加熱対象の切替について図4を参照して説明する。図4は、加熱対象の切替処理を示すフロー図である。なお、運転モードは、ヒートポンプ式暖房モードに移行されているものとする。
 本処理は、エンジンの始動時に開始される。
 空調自動制御部51は、エンジンの始動情報を受けた場合、冷却液が流れる冷却液通路に切り替えることによって、凝縮器12からの加熱された冷却液がATFオイルクーラー80(第2加熱対象)に流れるように開閉部90を制御する(ステップS12)。これにより、冷却液とATFとで熱交換が行われ、ATFの温度が上昇する。
 次に、空調自動制御部51は、ロックアップであるか否かを判断し、さらに、ATFの温度Kが所定値を超えているか否かを判断する(ステップS14)。
 そして、トルクコンバータがロックアップでなく、かつ、ATFの温度Kが所定値を超えていない場合(ステップS14:NO)、空調自動制御部51は、それぞれの冷却液通路を切り替えない(ステップS16)。つまり、加熱対象はATFオイルクーラー80のままである。これにより、冷却液とATFとの熱交換が継続され、ATFの温度が上昇する。
 一方、ロックアップであるか、または、ATFの温度Kが所定値を超えた場合(ステップS14:YES)、空調自動制御部51は、冷却液が流れる冷却液通路に切り替えることによって、凝縮器12からの加熱された冷却液がヒーターコア44(第1加熱対象)に流れるように開閉部90を制御する(ステップS18)。つまり、加熱対象がヒーターコア44に切り替えられる。これにより、冷却液と空気とで熱交換が行われ、車室内に送られる空気が暖められる。
 ステップS16の処理後、および、ステップS18の処理後にステップS14の処理が再度実行される。すなわち、空調自動制御部51はロックアップであるか否かを判断し、さらに、ATFの温度Kが所定値を超えているか否かを判断する。
 ここで、図1Bおよび図2Cを用いて、加熱対象がヒーターコア44に切り替えられた後のヒートポンプ式暖房モードの動作を説明する。
 ヒートポンプ式暖房モードでは、図1Aおよび図1Bの構成において、第1開閉弁13が閉、第2開閉弁14が開に切り換えられる。また、ヒーターコア44のドア44aは開かれる(例えば全開)。
 ヒートポンプ式暖房モードでは、さらに、コンプレッサ38が作動することで、冷媒は、凝縮器12、膨張弁16、蒸発器11の順に流れ、さらに、コンプレッサ38に戻ることにより、上記の順に循環する。
 コンプレッサ38により圧縮された冷媒は、凝縮器12にて冷却液へ放熱して凝縮する。凝縮した冷媒は、膨張弁16により膨張して低温低圧冷媒となり、蒸発器11に送られる。低温低圧冷媒は、蒸発器11にて冷却液から熱を吸収して気化する。気化した低圧冷媒は、コンプレッサ38に吸引されて圧縮される。
 冷却液は、エンジン冷却部40、凝縮器12、ヒーターコア44、および、蒸発器11の順に流れ、さらに、エンジン冷却部40に戻ることにより、上記の順に循環する。
 ここで、エンジン冷却部40でエンジンから熱を吸収した冷却液は、さらに凝縮器12で加熱されてヒーターコア44に送られる。高温になった冷却液は、ヒーターコア44で車室内へ送られる吸気を十分に加熱することができる。
 ヒーターコア44を通過した冷却液は、外気より温度が高く、蒸発器11にて冷媒に放熱を行って冷媒を気化させることができる。蒸発器11にて冷却された冷却液は、エンジン冷却部40へ送られてエンジンを十分に冷却することができる。
 以上のヒートポンプ式暖房モードの動作により、車室内の十分な暖房を行うことができる。
 次に、冷房モードの動作を説明する。
 冷房モードでは、第1開閉弁13が開、第2開閉弁14が閉に切り換えられる。また、ヒーターコア44のドア44aは、全閉される。さらに、コンプレッサ38が作動することで、冷媒は、凝縮器12に、膨張弁37、および、エバポレータ48の順に流れ、コンプレッサ38に戻ることにより、上記の順に循環する。
 コンプレッサ38により圧縮された冷媒は、凝縮器12にて空気へ放熱して凝縮する。凝縮された冷媒は、膨張弁37により膨張して低温低圧冷媒となり、エバポレータ48へ送られる。低温低圧冷媒は、エバポレータ48にて、車室内へ送られる吸気を冷却して気化する。気化した低圧冷媒は、コンプレッサ38に吸引されて圧縮される。
 冷却液は、エンジン冷却部40、凝縮器12、ヒーターコア44、および、蒸発器11を流れる。冷却液は、蒸発器11、凝縮器12、および、ヒーターコア44を通過する際、冷媒又は空気との間でほとんど熱交換されない。冷却液の放熱は、主に、エンジン冷却部40のラジエータで行われる。上記するように、冷媒がエバポレータ48にて気化することにより、車室内へ送られる吸気を冷却する。これにより、車室内の冷房を行うことができる。
 上記実施の形態に係る車両用空調装置1によれば、空調自動制御部51はエンジンの始動情報を受けて、冷却液がATFオイルクーラー80に流れるように開閉部90を制御する。これにより、エンジン始動後、ATFの温度が短時間で上昇するため、粘性抵抗が急速に低下し、粘性抵抗による燃費の低下を抑えることができる。そして、空調自動制御部51はATFの温度が所定値を超えた場合、冷却液がヒーターコア44に流れるように開閉部90を制御する。これにより、冷却液と空気とで熱交換が行われ、車室内に供給される空気が暖められる。
 なお、上記実施の形態に係る車両用空調装置1によれば、加熱対象の切り替え前において、ATFオイルクーラー80の冷却液の送出口とエンジン冷却部40の冷却液の導入口との間を配管で結ぶ冷却液通路を構成したので、冷却液通路における冷却液の温度低下が小さく、その分、エンジン冷却部40からATFオイルクーラー80に導入される冷却液の温度が高くなることから、ATFの温度を比較的短時間で上昇させることができる。これにより、ATFの粘性抵抗が急速に減少するため、燃費低減の効果が上がる。
 (変形例1)
 次に、車両用空調装置1の変形例1について説明する。
 図5Aは、変形例1に係る車両用空調装置1を示す構成図である。図5Bは、切り替え後の車両用空調装置1を示す図である。なお、加熱対象の切り替え後において、図5Bに示す車両用空調装置1は、図1Bに示す車両用空調装置1と同じ冷却液通路の構成を有するため、切り替え後の冷却液通路の説明を省略する。
 上記実施の形態では、加熱対象の切り替え前において、ATFオイルクーラー80の冷却液の送出口とエンジン冷却部40の冷却液の導入口との間を配管で直結する冷却液通路を構成し、さらに、ヒーターコア44の冷却液の送出口とエンジン冷却部40の冷却液の導入口との間を蒸発器11を介して間接的に結ぶ構成とした。
 これに対して、変形例1は、ATFオイルクーラー80の冷却液の送出口とエンジン冷却部40の冷却液の導入口との間を、蒸発器11を介して間接的に結び、さらに、ATFオイルクーラー80の冷却液の送出口とエンジン冷却部40の冷却液の導入口との間を、配管で直結するように構成する。
 次に、変形例1に係る冷却液回路について図6A~図6Cを参照して説明する。
 上記実施の形態では、開閉弁91~93を有する冷却液回路を示したが、本変形例1では、図6Aに示すように、冷却液回路は、開閉弁91~93に加えて、開閉弁94~96を有する。
 図6Bおよび図6Cに示すように、開閉弁94は、ヒーターコア44の冷却液の送出口とエンジン冷却部戻り配管87の入口との間の冷却液通路、または、ヒーターコア44の冷却液の送出口と蒸発器11の冷却液の導入口との間の冷却液通路の一方を開いたとき、他方の冷却液通路を閉塞するように構成されている。
 開閉弁95は、ATFオイルクーラー80の冷却液の送出口とエンジン冷却部戻り配管88の入口との間の冷却液通路、または、ATFオイルクーラー80の冷却液の送出口と蒸発器11の冷却液の導入口との間の冷却液通路の一方を開いたとき、他方の冷却液通路を閉塞するように構成されている(図6B参照)。
 開閉弁96は、蒸発器11の冷却液の送出口とエンジン冷却部戻り配管87の入口との間の冷却液通路、または、蒸発器11の冷却液の送出口とエンジン冷却部戻り配管88の入口との間の冷却液通路の一方を開いたとき、他方の冷却液通路を閉塞するように構成されている。
 空調自動制御部51は、ATFの温度が所定値を超えておらず、かつ、トルクコンバータがロックアップでない場合、上記実施の形態で説明したように、冷却液が流れる冷却液通路を開閉するように開閉弁91~93を制御する(図2B参照)。
 また、空調自動制御部51は、ヒーターコア44の冷却液の送出口とエンジン冷却部戻り配管87の入口との間の冷却液通路を開放すると共に、ヒーターコア44の冷却液の送出口と蒸発器11の冷却液の導入口との間の冷却液通路を閉塞するように開閉弁94を制御する。
 また、空調自動制御部51は、ATFオイルクーラー80の冷却液の送出口とエンジン冷却部戻り配管88の入口との間の冷却液通路を閉塞すると共に、ATFオイルクーラー80の冷却液の送出口と蒸発器11の冷却液の導入口との間の冷却液通路を開放するように開閉弁95を制御する。
 さらに、空調自動制御部51は、蒸発器11の冷却液の送出口とエンジン冷却部戻り配管87の入口との間の冷却液通路を閉塞すると共に、蒸発器11の冷却液の送出口とエンジン冷却部戻り配管88の入口との間の冷却液通路を開放するように開閉弁96を制御する(図6B参照)。
 一方、空調自動制御部51は、ATFの温度が所定値を超え、または、トルクコンバータがロックアップである場合、上記実施の形態で説明したように、それぞれの冷却液通路を開閉するように開閉弁91~93を制御する(図2C参照)。
 また、空調自動制御部51は、ヒーターコア44の冷却液の送出口とエンジン冷却部戻り配管87の入口との間の冷却液通路を閉塞すると共に、ヒーターコア44の冷却液の送出口と蒸発器11の冷却液の導入口との間の冷却液通路を開放するように開閉弁94を制御する。
 また、空調自動制御部51は、ATFオイルクーラー80の冷却液の送出口とエンジン冷却部戻り配管88の入口との間の冷却液通路を開放すると共に、ATFオイルクーラー80の冷却液の送出口と蒸発器11の冷却液の導入口との間の冷却液通路を閉塞するように開閉弁95を制御する。
 さらに、空調自動制御部51は、蒸発器11の冷却液の送出口とエンジン冷却部戻り配管87の入口との間の冷却液通路を開放すると共に、蒸発器11の冷却液の送出口とエンジン冷却部戻り配管88の入口との間の冷却液通路を閉塞するように開閉弁96を制御する(図6C参照)。
 上記の変形例1に係る車両用空調装置1によれば、上記実施の形態と同様に、エンジンの始動時に、冷却液がATFオイルクーラー80に流れ、ATFの温度が所定値を超えた場合に、冷却液がヒーターコア44に流れる。これにより、エンジン始動後、ATFの温度が短時間で上昇し、粘性抵抗が急速な低下し、燃費の低下を抑えることができる。ATFの温度が所定値を超えるように十分に加熱された後、冷却液と空気とで熱交換が行われ、車室内に供給される空気が暖められる。
 なお、上記実施の形態および変形例1では、第2加熱対象としてATFを示したが、本開示はこれに限らず、例えば、第2加熱対象としては、エンジン冷却部内の冷却液、エンジンオイル、電池、インバーター、または、モーターであってもよい。
 この場合も空調自動制御部51は、第2加熱対象の温度が所定値を超えた場合、第2加熱対象から第1加熱対象に切り替えるように開閉部90を制御する。
 第2加熱対象が冷却液やエンジンオイルである場合において、例えば、凝縮器12で加熱された冷却液はエンジン冷却部40に導入され、エンジン冷却部40内の冷却液を暖める。その後、冷却液は凝縮器12に導入され、凝縮器12で再び加熱され、エンジン冷却部40に戻る。これにより冷却液は循環する。循環する冷却液により、エンジン冷却部40内の冷却液の温度を短時間で上昇させることができる。
 なお、第2加熱対象が電池である場合における冷却液回路は、図1AにおけるATFオイルクーラー80を電池に代えることにより構成される。これにより、例えば、電池がエンジン始動時に低温であっても、短時間で電池を適正な温度に上昇させることができる。
 また、上記実施の形態では、ATFの温度が所定値を超えた場合、または、ロックアップである場合、第2加熱対象から第1加熱対象に切り替えるようにしたが、本開示は、これに限らず、空調自動制御部51は、第1加熱対象に導入される冷却液の温度が所定条件を満たした場合、第2加熱対象から第1加熱対象に切り替えるように開閉部90を制御してもよい。
 次に、変形例2に係れる冷却液回路について図7Aおよび図7Bを参照して説明する。図7Aは加熱対象の切り替え前の冷却液回路を示す図である。図7Bは加熱対象の切り替え後の冷却液回路を示す図である。なお、冷却液回路において冷却液が通らない部分を白抜きで示し、冷却液が通る部分を黒の塗りつぶしで示す。
 上記変形例1では、開閉弁91~96により、切り替え前の冷却液回路をエンジン冷却部40、凝縮器12、ATFオイルクーラー80および蒸発器11を結ぶように構成する一方、切り替え後の冷却液回路をエンジン冷却部40、凝縮器12、ヒーターコア44および蒸発器11を結ぶように構成した。つまり、上記変形例1の冷却液回路は、凝縮器12で加熱した冷却液を、ATFオイルクーラー80またはヒーターコア44に送り、その後、蒸発器11を介してエンジン冷却部40に戻すように構成した。
 これに対し、変形例2の冷却液回路は、図7Aに示すように、凝縮器12で加熱した冷却液を、ATFオイルクーラー80またはヒーターコア44に送り、その後、蒸発器11を介さずにエンジン冷却部40に戻すように構成する。
 図7Aに示すように、エンジン冷却部40からの冷却液回路は、分岐部、開閉弁97~99を有する。
 分岐部は、エンジン冷却部40からの冷却液を蒸発器11と凝縮器12とに分ける。開閉弁97は凝縮器12の冷却液の送出口とATFオイルクーラー80の冷却液の導入口との間を結ぶ配管を開閉する。開閉弁98は凝縮器12の冷却液の送出口とヒーターコア44の冷却液の導入口との間を結ぶ配管を開閉する。開閉弁99は、エンジン冷却部40の冷却液の送出口とヒーターコア44の冷却液の導入口との間を結ぶ配管を開閉する。
 本変形例2の冷却液回路は、分岐部で分けた冷却液を蒸発器11に送出した後にエンジン冷却部40に戻す回路と、分岐部で分けた冷却液を凝縮器12から開閉弁97を介してATFオイルクーラーに送出した後にエンジン冷却部40に戻す回路と、を有する。そして、分岐部で分けた冷却液を凝縮器12から開閉弁98を介してヒーターコア44に送出した後にエンジン冷却部40に戻す回路と、エンジン冷却部40からの冷却液を開閉弁99を介してヒーターコア44に送出した後にエンジン冷却部40に戻す回路とを有する。
 変形例2では、図7Aに示す加熱対象の切り替え前において、開閉弁97および開閉弁99が開かれ、開閉弁98が閉じられる。これにより、分岐部で分けた冷却液は、凝縮器12から開閉弁97を介してATFオイルクーラー80に送出された後に、分岐部で分かれて蒸発器11に送出された冷却液と合流してエンジン冷却部40に戻される。また、エンジン冷却部40からの冷却液は、開閉弁99を介してヒーターコア44に送出された後にエンジン冷却部40に戻される。
 これに対し、図7Bに示す加熱対象の切り替え後において、開閉弁97および開閉弁99が閉じられ、開閉弁98が開かれる。これにより、分岐部で分けた冷却液は、凝縮器12から開閉弁98を介してヒーターコア44に送出された後にエンジン冷却部40に戻される。また、分岐部で分けた他方の冷却液は蒸発器11を通り、エンジン冷却部40に戻される。
 また、上記実施の形態では、第2加熱対象の状態(温度、ロックアップ)に基づいて、加熱対象を切り替えたが、本開示はこれに限らず、例えば、空調自動制御部51は、エンジン始動情報を受けたときからの経過時間が所定時間を超えた場合、加熱対象を切り替えるように開閉部90を制御するようにしてもよい。さらに、加熱対象を切り替えるタイミングは、第2加熱対象の状態と、経過時間との組み合わせに基づいて定められてもよい。
 さらに、上記実施の形態では、加熱対象を2つにし、それらを切り替えるように構成を示したが、本開示はこれに限らず、例えば、加熱対象を3以上にし、例えば、各加熱対象の状態に基づいて各加熱対象を次々に切り替えるように構成してもよい。
 その他、上記実施の形態は、何れも本開示の実施をするにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本開示は、複数の加熱対象を加熱する際に冷却液の熱を有効に利用することが要求される車両用空調装置に好適に利用される。
 1 車両用空調装置
 11 蒸発器
 12 凝縮器
 16 膨張弁
 37 膨張弁
 38 コンプレッサ
 40 エンジン冷却部
 44 ヒーターコア
 44a ドア
 48 エバポレータ
 51 空調自動制御部
 52 ヒートポンプ暖房制御部
 80 ATFオイルクーラー
 90 開閉部

Claims (6)

  1.  冷媒を圧縮するコンプレッサと、
     高温高圧の冷媒とエンジン冷却部から送出された冷却液との間で熱交換を行う凝縮器と、
     前記熱交換で加熱された冷却液と車室内へ送られる空気との間で熱交換を行う第1加熱対象と、
     前記エンジン冷却部に導入される冷却液と低温低圧の冷媒との間で熱交換を行う蒸発器と、
    を具備し、
     前記加熱された冷却液を、前記第1加熱対象に流すための冷却液通路と、
     前記加熱された冷却液を、前記第1加熱対象とは別の第2加熱対象に流すための冷却液通路と、
     前記各冷却液通路を開閉する開閉部と、
     前記加熱された冷却液を流す流入先を前記第2加熱対象から前記第1加熱対象に所定のタイミングで切り替えるように前記開閉部を制御する制御部と、
     を備える、車両用空調装置。
  2.  前記第2加熱対象は、オートマチックトランスミッションのオイルである、請求項1に記載の車両用空調装置。
  3.  前記所定のタイミングは、前記オイルの温度が所定値を超えたとき、および、前記オートマチックトランスミッションにおけるトルクコンバータがロックアップされたときの少なくとも一方のときである、請求項2に記載の車両用空調装置。
  4.  前記第2加熱対象は、前記エンジンの冷却液、エンジンオイル、電池、インバーター、および、モーターのうちの少なくとも一つであり、
     前記所定のタイミングは、前記冷却液、前記エンジンオイル、前記電池、前記インバーター、および、前記モーターのうちの少なくとも一つの温度が所定値を超えたときである、請求項1に記載の車両用空調装置。
  5.  前記所定のタイミングは、前記第1加熱対象に導入される前記冷却液の温度が所定条件を満たすときである、請求項4に記載の車両用空調装置。
  6.  前記所定のタイミングは、前記エンジンの始動時からの経過時間が所定時間を超えたときである、請求項1に記載の車両用空調装置。
PCT/JP2017/005040 2016-03-25 2017-02-13 車両用空調装置 WO2017163659A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-062530 2016-03-25
JP2016062530A JP2017171247A (ja) 2016-03-25 2016-03-25 車両用空調装置

Publications (1)

Publication Number Publication Date
WO2017163659A1 true WO2017163659A1 (ja) 2017-09-28

Family

ID=59901139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005040 WO2017163659A1 (ja) 2016-03-25 2017-02-13 車両用空調装置

Country Status (2)

Country Link
JP (1) JP2017171247A (ja)
WO (1) WO2017163659A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102080391B1 (ko) * 2018-04-27 2020-02-21 (주)마이텍 디젤 오일 냉각방법
CN109269152B (zh) * 2018-08-22 2020-12-29 冷王(上海)实业有限公司 压缩机换热装置和车辆
JP7313188B2 (ja) * 2019-05-15 2023-07-24 株式会社Subaru 電動車両の温調装置
JP7297560B2 (ja) * 2019-06-28 2023-06-26 ダイハツ工業株式会社 ユニット暖機システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255347A (ja) * 1993-03-03 1994-09-13 Nippondenso Co Ltd 車両用空調装置
JPH11208250A (ja) * 1998-01-29 1999-08-03 Honda Motor Co Ltd 車両の室内暖房装置
JP2002352867A (ja) * 2001-05-28 2002-12-06 Honda Motor Co Ltd 電気自動車のバッテリ温度制御装置
JP2013010507A (ja) * 2012-10-18 2013-01-17 Toyota Motor Corp 車両の制御装置
WO2015011918A1 (ja) * 2013-07-26 2015-01-29 パナソニックIpマネジメント株式会社 車両用空調装置
JP2016026130A (ja) * 2009-05-18 2016-02-12 ジェンサーム インコーポレイテッドGentherm Incorporated 熱電素子を有する温度制御システム
JP2016141337A (ja) * 2015-02-04 2016-08-08 トヨタ自動車株式会社 車両の熱管理システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255347A (ja) * 1993-03-03 1994-09-13 Nippondenso Co Ltd 車両用空調装置
JPH11208250A (ja) * 1998-01-29 1999-08-03 Honda Motor Co Ltd 車両の室内暖房装置
JP2002352867A (ja) * 2001-05-28 2002-12-06 Honda Motor Co Ltd 電気自動車のバッテリ温度制御装置
JP2016026130A (ja) * 2009-05-18 2016-02-12 ジェンサーム インコーポレイテッドGentherm Incorporated 熱電素子を有する温度制御システム
JP2013010507A (ja) * 2012-10-18 2013-01-17 Toyota Motor Corp 車両の制御装置
WO2015011918A1 (ja) * 2013-07-26 2015-01-29 パナソニックIpマネジメント株式会社 車両用空調装置
JP2016141337A (ja) * 2015-02-04 2016-08-08 トヨタ自動車株式会社 車両の熱管理システム

Also Published As

Publication number Publication date
JP2017171247A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
EP4122726A1 (en) Heat pump system for vehicle
CN110385965B (zh) 车辆的热管理系统
JP7172815B2 (ja) 車載温調装置
JP6108322B2 (ja) 車両用空調装置
JP7115452B2 (ja) 冷却システム
US20090183697A1 (en) Exhaust heat recovery system
JP2008308080A (ja) 自動車の吸放熱システムおよびその制御方法
JP6387532B2 (ja) 車両用空調装置およびその構成ユニット
US20210387506A1 (en) In-vehicle temperature control system
JP7415683B2 (ja) 車載温調システム
US10611212B2 (en) Air conditioner for vehicle
WO2017163659A1 (ja) 車両用空調装置
CN110949087A (zh) 车辆以及车辆的热泵系统和方法
JP7543980B2 (ja) 車載温調システム
JP2015209090A (ja) 車両用空調装置
CN116141922A (zh) 用于控制车辆hvac系统的方法
WO2020045030A1 (ja) 複合弁及びそれを用いた車両用空気調和装置
WO2024190353A1 (ja) 作業機用空調装置
WO2023228645A1 (ja) 車両用空調装置
JP2020034178A (ja) 複合弁及びそれを用いた車両用空気調和装置
JP7494139B2 (ja) 車両用空調装置
JP2024130831A (ja) 作業機用空調装置
JP2023183719A (ja) 車両用空調装置
JP2023085089A (ja) 車載温調装置
JP2024001657A (ja) 車両用空調装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769706

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769706

Country of ref document: EP

Kind code of ref document: A1