[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017159657A1 - Novel compound and semiconductor material containing same - Google Patents

Novel compound and semiconductor material containing same Download PDF

Info

Publication number
WO2017159657A1
WO2017159657A1 PCT/JP2017/010129 JP2017010129W WO2017159657A1 WO 2017159657 A1 WO2017159657 A1 WO 2017159657A1 JP 2017010129 W JP2017010129 W JP 2017010129W WO 2017159657 A1 WO2017159657 A1 WO 2017159657A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
transistor
alkyl group
substituted
Prior art date
Application number
PCT/JP2017/010129
Other languages
French (fr)
Japanese (ja)
Inventor
翔 稲垣
亜弥 石塚
餌取 秀樹
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2017550785A priority Critical patent/JP6494788B2/en
Publication of WO2017159657A1 publication Critical patent/WO2017159657A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/008Dyes containing a substituent, which contains a silicium atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/78Other dyes in which the anthracene nucleus is condensed with one or more carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/001Pyrene dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/004Diketopyrrolopyrrole dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions

Definitions

  • the present invention relates to a novel compound and a semiconductor material containing it.
  • Transistors using amorphous silicon or polycrystalline silicon as a semiconductor material are widely used as switching elements in liquid crystal display devices and organic EL display devices.
  • these transistors using silicon have a high temperature heat treatment process in their manufacture, they cannot be developed for next-generation flexible display devices using a plastic substrate due to heat resistance problems.
  • an organic transistor using an organic compound as a semiconductor material instead of silicon hereinafter, a semiconductor material using an organic compound may be referred to as an organic semiconductor material has been proposed. Yes.
  • Organic semiconductor materials are plastics with poor heat resistance because they can be formed into inks at low temperatures by coating methods or printing methods (hereinafter, coating methods and printing methods are sometimes referred to as wet film forming methods). It can be applied to a substrate, and is expected to be applied to a flexible display device, and further to a flexible electronic device (for example, an electronic tag or a sensor that is light and flexible).
  • organic semiconductors initially have low mobility (one of the indicators for semiconductor characteristics, the unit is cm 2 / Vs) compared to silicon semiconductors, resulting in poor transistor response speed and practical use. There was a problem that it was difficult to make it. However, in recent years, organic semiconductor materials that provide mobility exceeding the mobility of amorphous silicon have been developed in response to this problem.
  • Non-Patent Document 1 includes 2,6-bis (arylethynyl) benzo [1,2-b: 4,5-b ′] dithiophene (hereinafter referred to as benzo [1,2-b: 4,5-b '] Dithiophene is abbreviated as TBT.)
  • TBT 2,6-bis (arylethynyl) benzo [1,2-b: 4,5-b ′] dithiophene
  • TBT 2,6-bis (arylethynyl) benzo [1,2-b: 4,5-b ′] dithiophene
  • Non-Patent Document 2 describes a compound having a 2,6-diphenyl TBT skeleton, and describes that the mobility of a transistor using this compound is on the order of 10 ⁇ 2 cm 2 / Vs. However, these compounds have a low solubility in organic solvents.
  • Patent Document 1 describes a compound having a 2,6-alkynyl TBT skeleton, and discloses an ethynyl group substituted with a C2-C32 aliphatic hydrocarbon group as an alkynyl group.
  • the compound according to the present invention Is not described, and the mobility of a transistor using these compounds is described as an order of 10 ⁇ 2 cm 2 / Vs.
  • Patent Document 2 discloses a compound represented by the general formula “side chain-aromatic unit-aromatic unit”, but does not describe a compound according to the present invention.
  • Patent Document 3 discloses a compound represented by the general formula “side chain-aromatic unit-acetylene bond-aromatic unit”, but does not describe a compound according to the present invention.
  • JP 2008-2558592 A International Publication No. 2012-121393 International Publication No. 2015-137304
  • an object of the present invention is to provide a semiconductor material that provides a semiconductor element that exhibits high mobility by a wet film formation method, and further to provide a compound that provides the semiconductor material.
  • a TBT derivative having a substituent having a specific structure gives a semiconductor element that exhibits high mobility by a wet film-forming method, thereby completing the present invention. It came to do.
  • the present invention includes the following items. 1.
  • the compound represented by General formula (1) Compound (1-1), Compound (1-2), Compound (1-3), Compound (1-4), Compound (1-5), Compound (1-6), Compound (1-7) , Compound (1-8), Compound (1-9), Compound (1-10), Compound (1-11), Compound (1-12), Compound (1-13), Compound (1-14), Compound (1-15), Compound (1-16), Compound (1-17), Compound (1-18), Compound (1-19), Compound (1-20), Compound (1-21), Compound (1-22), Compound (1-23), Compound (1-24), Compound (1-25), Compound (1-26), Compound (1-27), Compound (1-28), Compound ( 1-29), Compound (1-30), Compound (1-31), Compound (1-32), Compound (1-33), Compound (1-34) Compound (1-35), Compound (1-36), Compound (1-37), Compound (1-38), Compound (1-39), Compound (1-40), Compound (1-41), Compound (1-42), Compound (1-43)
  • Ar represents an heteroaromatic group optionally having a good aromatic hydrocarbon group or a substituent a substituent
  • R 1 is 1 carbon atom number of hydrogen atoms or acyclic ⁇ 20 alkyl groups (wherein —CH 2 — in the alkyl group is such that —O—, —R′C ⁇ CR′—, —CO—, —so that oxygen atoms, sulfur atoms and nitrogen atoms are not directly bonded to each other, OCO—, —COO—, —S—, —SO 2 —, —SO—, —NH—, —NR′— or —C ⁇ C— may be substituted, and the hydrogen atom in the alkyl group may be halogeno A group, a nitrile group or an aromatic group (wherein R ′ represents an acyclic or cyclic alkyl group having 1 to 20 carbon atoms), and n is 0 or 1 is represented.)
  • a semiconductor element that exhibits high mobility by a wet film formation method can be provided.
  • BGTC bottom gate top contact
  • the compound of the present invention is a TBT derivative represented by the general formula (1).
  • Ar represents an aromatic hydrocarbon group which may have a substituent or a heteroaromatic group which may have a substituent
  • R 1 represents a hydrogen atom or an acyclic carbon atom having 1 to 20 alkyl groups
  • —CH 2 — in the alkyl group is such that —O—, —R′C ⁇ CR′—, —CO—, —so that oxygen atoms, sulfur atoms and nitrogen atoms are not directly bonded to each other, OCO -, - COO -, - S -, - SO 2 -, - SO -, - NH -, - NR'- or -C ⁇ C-
  • R ′ represents an acyclic or cyclic alkyl group having 1 to 20 carbon atoms
  • n is 0 or 1 is represented.
  • Ar is not particularly limited as long as it is an aromatic hydrocarbon group that may have a substituent or a heteroaromatic group that may have a substituent.
  • Pyrrolyl group and substituted pyrrolyl group imidazolyl group and substituted imidazolyl group, pyrazolyl group and substituted pyrazolyl group, triazolyl group and substituted triazolyl group, tetrazolyl group and substituted tetrazolyl group, A furyl group and a substituted furyl group, a thienyl group and a substituted thienyl group, An oxazolyl group and a substituted oxazolyl group, a thiazolyl group and a substituted thiazolyl group, an oxadiazolyl group and a substituted oxadiazolyl group, a thiadiazolyl group and a substituted thiadiazolyl group,
  • Carbazolyl group and substituted carbazolyl group monovalent group derived from dibenzofuran and monovalent group derived from dibenzofuran having substituent, monovalent group derived from dibenzothiophene and derived from dibenzothiophene having substituent
  • a quinolinyl group and a substituted quinolinyl group an isoquinolinyl group and a substituted isoquinolinyl group, a benzoquinolinyl group and a substituted benzoquinolinyl group, Monovalent group derived from bithiophene and monovalent group derived from bithiophene having substituent, monovalent group derived from terthiophene and monovalent group derived from terthiophene having substituent, derived from quarterthiophene
  • a monocyclic or polycyclic heteroaromatic group such as a monovalent group derived from a monovalent group and a substituted quarterthiophene having a substituent; And so on.
  • the substituent for Ar is not particularly limited as long as it is a commonly used substituent as a substituent for an aromatic compound.
  • a hydrogen atom in the alkyl group may be substituted by a halogeno group, a nitrile group or an aromatic group (wherein R ′ represents an acyclic or cyclic alkyl group having 1 to 20 carbon atoms).
  • the substituent for Ar is preferably a hydrogen atom or an acyclic or cyclic alkyl group having 1 to 20 carbon atoms from the viewpoint of developing high mobility, and is preferably a hydrogen atom or non-cyclic group having 1 to 20 carbon atoms.
  • a cyclic alkyl group is more preferable, and a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms is more preferable.
  • Ar is preferably a group represented by the general formula (2) from the viewpoint of expressing high mobility in the aromatic group,
  • X 21 to X 25 represent a hydrogen atom or an acyclic or cyclic alkyl group having 1 to 20 carbon atoms, and * represents a bond as a monovalent substituent.
  • the group represented by the general formula (3) is more preferable.
  • X 31 , X 32 , X 34 , and X 35 represent a hydrogen atom
  • X 33 represents a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms
  • * represents a monovalent substituent. Represents the bond hand.
  • R 1 represents a hydrogen atom or an acyclic alkyl group having 1 to 20 carbon atoms (in order to prevent —CH 2 — in the alkyl group from being directly bonded to an oxygen atom, a sulfur atom and a nitrogen atom, respectively).
  • R′C ⁇ CR′— —CO—, —OCO—, —COO—, —S—, —SO 2 —, —SO—, —NH—, —NR′— or —C ⁇ C—.
  • the hydrogen atom in the alkyl group may be substituted with a halogeno group, a nitrile group or an aromatic group (provided that R ′ is an acyclic or cyclic group having 1 to 20 carbon atoms) Represents an alkyl group.).
  • an acyclic alkyl group having 1 to 20 carbon atoms (in order that —CH 2 — in the alkyl group is not directly bonded to an oxygen atom, a sulfur atom and a nitrogen atom, R′C ⁇ CR′—, —CO—, —OCO—, —COO—, —S—, —SO 2 —, —SO—, —NH—, —NR′— or C ⁇ C— substituted
  • the hydrogen atom in the alkyl group may be substituted with an aromatic group, a halogeno group, or a nitrile group (provided that R ′ represents an acyclic or cyclic alkyl group having 1 to 20 carbon atoms).
  • A-1) a linear or branched alkyl group having 1 to 20 carbon atoms
  • A-2) an alkoxy group having 1 to 19 carbon atoms
  • (A-3) 2 carbon atoms To 19 alkoxyalkyl groups, (A-4) alkenyl groups having 2 to 20 carbon atoms, and (A-5) carbon atoms.
  • alkanoyloxy groups (A-9) alkylsulfanyl groups having 1 to 19 carbon atoms, (A-10) alkylsulfanylalkyl groups having 2 to 19 carbon atoms, and (A-11) 1 to 19 carbon atoms.
  • A-12 an alkylsulfonylalkyl group having 2 to 19 carbon atoms
  • A-13 an alkylsulfinyl group having 1 to 19 carbon atoms
  • A-14 an alkylsulfonyl group having 2 to 19 carbon atoms.
  • Alkylsulfinylalkyl group (A-15) alkylamino group having 1 to 19 carbon atoms, (A-16) alkylaminoalkyl group having 2 to 19 carbon atoms, and (A-17) carbon An alkynyl group having 2 to 20 atoms.
  • (A-1) a straight chain or branched chain having 1 to 20 carbon atoms
  • An alkyl group (A-2) an alkoxy group having 1 to 19 carbon atoms, (A-3) an alkoxyalkyl group having 2 to 19 carbon atoms, (A-4) an alkenyl group having 2 to 20 carbon atoms, ( A-9) an alkylsulfanyl group having 1 to 19 carbon atoms, (A-10) an alkylsulfanylalkyl group having 2 to 19 carbon atoms, or (A-17) an alkynyl group having 2 to 20 carbon atoms, In order to obtain a compound with higher mobility, (A-1) a linear alkyl group having 1 to 20 carbon atoms is more preferred.
  • the linear alkyl group having 1 to 20 carbon atoms is preferably a linear alkyl group having 3 to 12 carbon atoms from the viewpoint of developing high mobility, and has 6 to 10 carbon atoms.
  • a straight chain alkyl group is more preferred.
  • (A-1) examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl.
  • n-decyl group n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-eicosyl group
  • Linear alkyl groups such as groups; Etc. can be mentioned.
  • the compound represented by General formula (4) is preferable from a viewpoint of improving a mobility.
  • R 41 and R 42 which may be the same or different and represent a hydrogen atom or a straight-chain alkyl group having a carbon number of 1 ⁇ 20, n represents 0 or 1.
  • the compound represented by General formula (5) is preferable from a viewpoint of improving a mobility and improving the solubility to a solvent.
  • R 51 and R 52 may be the same or different and each represents a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms.
  • the compound represented by General formula (6) is preferable from a viewpoint of further improving the solubility to a solvent.
  • R 61 and R 62 may be the same or different and each represents a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms, provided that both R 61 and R 62 are hydrogen atoms. except for.)
  • Specific compounds of the present invention can include the following compounds, but the compounds of the present invention are not limited thereto.
  • Ar is a phenyl group
  • R 1 is an alkyl group having 1 to 20 carbon atoms
  • n is 0 is shown below.
  • R 1 is an alkyl group having 1 to 20 carbon atoms, and n is 1 is shown below.
  • Method for producing the compound of the present invention The manufacturing method of the compound of this invention is demonstrated.
  • the method for producing the compound of the present invention is not particularly limited as long as it is a method capable of obtaining the compound of the present invention.
  • the compound of the present invention can be produced by combining known and commonly used synthetic reactions.
  • the manufacturing method of the compound of this invention is demonstrated using a manufacturing scheme (S1) type
  • the production scheme (S1) is an example of a method for producing the compound represented by the general formula (1) when n is 0.
  • unsubstituted TBT is lithiated and then boronated by the action of a boronic ester (first stage).
  • the aryl bromide (Ar—Br) is reacted with Suzuki Miyaura coupling to form Ar (second stage).
  • the target compound Ar-TBT-R 1 is obtained by acting alkyl bromide (R 1 -Br) (third stage).
  • the manufacturing method of the compound of this invention is demonstrated using a manufacturing scheme (S2) type
  • the production scheme (S2) is an example of a method for producing the compound represented by the general formula (1) when n is 1.
  • an unsubstituted TBT is lithiated and then iodinated by the action of iodine (first stage).
  • a Sonogashira coupling reaction with arylacetylene (Ar—C ⁇ C—H) is performed to form an arylacetylene (second stage).
  • the target compound Ar—C ⁇ C-TBT-R 1 is obtained by reacting with alkyl bromide (R 1 -Br) or alkyl iodide (R 1 -I) (3 steps Eye).
  • the semiconductor material of the present invention will be described.
  • the compound of the present invention can be used as a semiconductor material for semiconductor devices.
  • the form of the semiconductor material of the present invention is not particularly limited as long as it is a form that can be used for the production of a semiconductor element.
  • Single crystal, polycrystal, powder, amorphous film, polycrystalline film, single crystal film, thin film Solid forms such as; liquid forms such as solutions, dispersions, coating liquids, and inks; and the like.
  • a coating liquid or an ink is preferable.
  • the semiconductor material of the present invention may contain a material other than the compound of the present invention as long as the provided semiconductor element exhibits desired semiconductor characteristics.
  • the ink of the present invention is a material for forming a semiconductor film containing the compound of the present invention by a wet film-forming method, and further is a semiconductor layer containing the compound of the present invention. It is a material for forming a semiconductor layer included in a semiconductor element by a wet film formation method, and by extension, a material for providing the semiconductor element of the present invention by a wet film formation method.
  • the ink of the present invention contains a solvent capable of dissolving or dispersing the compound of the present invention.
  • a solvent is not particularly limited as long as it can dissolve or disperse the compound of the present invention.
  • Ester solvents such as ethyl acetate, normal propyl acetate, isopropyl acetate, propylene glycol monomethyl ether acetate (PGMAc), 3-methoxy-3-methyl-butyl acetate, ethoxyethyl propionate (EEP), propylene carbonate;
  • Methanol ethanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-butanol, 3-methoxy-3-methyl-1-butanol, 1,3-butanediol, 1-pentanol, 4- Alcohol solvents such as methyl-2-pentanol, 1-hexanol, cyclohexanol, industrial higher alcohols (eg, Diadol Series (trade name, manufactured by Mitsubishi Chemical));
  • Hydrocarbon solvents such as pentane, n-hexane, hexane, cyclohexane, methylcyclohexane, n-octane, n-decane, toluene, xylene; Chlorinated solvents such as dichloromethane and chloroform;
  • Ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, 2-hexanone, 2-heptanone, 3-heptanone, acetophenone, propiophenone, butyrophenone, cyclohexanone;
  • Aprotic polar solvents such as N, N-dimethylformamide, dimethyl sulfoxide, diethylformamide, N-methyl-2-pyrrolidone; Etc.
  • the solvent used for the ink of the present invention may be one type or two or more types.
  • the ink of the present invention may contain a semiconductor material other than the compound of the present invention as other components depending on the application.
  • a semiconductor material include an electron donating material, an electron accepting material, an electron transporting material, a hole transporting material, a light emitting material, and a light absorbing material.
  • the ink of the present invention may contain a polymer compound, a resin, a constitutional component, a surfactant, a release agent, and the like as other components. These components are added as necessary to impart printability and film-forming properties (film-forming ability) to the ink of the present invention.
  • the resin that can be contained in the ink of the present invention is not particularly limited as long as it is a known and commonly used insulating resin.
  • the resin contained in the ink of the present invention may be one type or two or more types.
  • the concentration of the resin in the ink is not particularly limited as long as the semiconductor element using the ink of the present invention exhibits desired semiconductor characteristics, and is usually in the range of 1 to 10% by mass. The range is preferably 3 to 7% by mass.
  • the constitutional component that can be contained in the ink of the present invention is not particularly limited as long as it is a known and commonly used electrically insulating inorganic fine particle or a known and commonly used electrically insulating pigment.
  • Aerosil series (trade name, manufactured by Evonik), Silicia, silo hobic, silo pure, silo page, silo pure, silo sphere, silo mask, silwell, fuji balloon (above, trade name, manufactured by Fuji Silysia), PMA-ST, IPA-ST (above, trade name, Nissan Chemical) Made),
  • Inorganic fine particles such as NANOBIC3600 series and NANOBIC3800 series (above, trade name, manufactured by BYK Chemie); Pigments such as EXCEDIC BLUE0565, EXCEDIC RED0759, EXCEDIC YELLOW 0599, EXCEDIC GREEN0358, EXCEDIC YELLOW0648 (above, trade name: manufactured by
  • the constitutional component contained in the ink of the present invention may be one type or two or more types.
  • the concentration of the constitutional component in the ink is not particularly limited as long as the semiconductor element using the ink of the present invention exhibits desired semiconductor characteristics, and is usually 0 to 20% by mass of the active component. It is preferable that it is the range of these.
  • the surfactant that can be contained in the ink of the present invention is not particularly limited as long as it is a known and commonly used electrically insulating surfactant.
  • Examples thereof include hydrocarbon surfactants, silicone surfactants, and fluorine surfactants.
  • fluorine-based surfactants having a linear perfluoroalkyl group with a chain length of C6 or more for example, Megafac F-482, Megafac F-470 (R-08), Megafac F-472SF, Mega Fuck R-30, Mega Fuck F-484, Mega Fuck F-486, Mega Fuck F-172D, Mega Fuck F178RM (above, trade name, manufactured by DIC) are preferable.
  • the surfactant contained in the ink of the present invention may be one type or two or more types.
  • the concentration of the surfactant in the ink is not particularly limited as long as the semiconductor element using the ink of the present invention exhibits desired semiconductor characteristics, and is usually 0.01 to The range is preferably 5.00% by mass, and more preferably 0.05 to 1.00% by mass in terms of active ingredients.
  • the release agent that can be contained in the ink of the present invention is not particularly limited as long as it is a known and commonly used electrically insulating silicone compound.
  • dimethyl silicone oil, dimethyl silicone rubber, silicone resin, organic Examples thereof include modified silicone oil, methylphenyl silicone oil, long-chain alkyl-modified silicone oil, a mixture of a fluorine compound and a silicone polymer, and fluorine-modified silicone.
  • the Granol series (trade name, manufactured by Kyoeisha) and the KF-96L series (trade name, manufactured by Shin-Etsu Chemical) are preferable from the viewpoint of releasability and compatibility with the resin.
  • the release agent contained in the ink of the present invention may be one type or two or more types.
  • concentration of the release agent in the ink is not particularly limited as long as the semiconductor element using the ink of the present invention exhibits desired semiconductor characteristics.
  • the range is preferably from 0 to 5.0% by mass, and more preferably from 0.0 to 3.0% by mass with respect to the active ingredient.
  • the ink of the present invention can contain a leveling agent, a dispersant, an antifoaming agent, and the like as optional components.
  • the concentration of the compound of the present invention in the ink is not particularly limited as long as the semiconductor element using the ink of the present invention exhibits desired semiconductor characteristics, and is usually 0.01 to 20.00.
  • the range is preferably in the range of mass%, more preferably in the range of 0.05 to 10.00 mass%, and still more preferably in the range of 0.10 to 10.00 mass%.
  • the semiconductor element of the present invention is not particularly limited as long as it is a semiconductor element having a semiconductor layer using the compound of the present invention.
  • Conversion element Field effect transistor, electrostatic induction transistor, bipolar transistor, thin film transistor, etc .; Organic EL element, light emitting transistor, etc .; Memory; Temperature sensor, chemical sensor, gas sensor, humidity sensor, radiation sensor, bio Sensors such as sensors, blood sensors, immune sensors, artificial retinas, taste sensors, and pressure sensors; logic circuit units such as inverters, ring oscillators, and RFIDs;
  • a transistor is a semiconductor element having a gate electrode, a gate insulating layer, a source electrode, a drain electrode, and a semiconductor layer as essential elements, and is classified into various structures depending on the arrangement of each electrode and each layer.
  • the structure of the transistor of the present invention is not particularly limited as long as the compound of the present invention is contained as a semiconductor layer.
  • SIT electrostatic induction transistor
  • the substrate material is not particularly limited as long as it can be processed into a plate shape, a sheet shape, a film shape, etc. silicon; Inorganic glass such as quartz glass, soda glass, borosilicate glass, alkali-free glass; Cellulose acetate propionate (CAP), cellulose triacetate (TAC), polyarylate (PAR), polyimide, polyethylene (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherimide (PEI), polyether Resins and polymer compounds such as ether ketone (PEEK), polyether sulfone (PES), polypropylene (PP), polycarbonate (PC), polycycloolefin, polyphenylene sulfide (PPS), polymethyl methacrylate (PMMA); Etc.
  • Inorganic glass such as quartz glass, soda glass, borosilicate glass, alkali-free glass
  • CAP Cellulose acetate propionate
  • TAC Cellulose a
  • an inorganic substrate such as a glass plate or a silicon wafer is preferable, and from the viewpoint of obtaining a flexible transistor, a glass sheet, a resin sheet, a plastic film, or the like is used.
  • a resin sheet or a plastic film is more preferable from the viewpoint of reducing weight and improving portability and impact resistance.
  • the material for the gate electrode, the source electrode, and the drain electrode is not particularly limited as long as it is a conductive material, and examples thereof include an inorganic conductive material and an organic conductive material.
  • inorganic conductive materials include lithium, beryllium, carbon, sodium, magnesium, aluminum, silicon, potassium, calcium, scandium, titanium, chromium, manganese, iron, nickel, copper, zinc, gallium, zirconium, niobium, Molybdenum, silver, tin, antimony, hafnium, tungsten, platinum, gold, graphite, glassy carbon, tin oxide, tin-doped indium oxide (ITO), fluorine-doped zinc oxide, sodium-potassium alloy, molybdenum-tantalum alloy, aluminum-aluminum oxide Mixture, silver-silver oxide mixture, magnesium-aluminum mixture, magnesium-indium mixture, magnesium-silver mixture, magnesium-copper mixture, lithium-aluminum mixture, dope silicon , Mention may be made of carbon paste, silver ink, silver paste, copper ink, a copper paste, nano silver, nano copper.
  • examples of the organic conductive material include conductive polyaniline, conductive polyaniline derivative, conductive polypyrrole, conductive polypyrrole derivative, conductive polythiophene, conductive polythiophene derivative, polyethylenedioxythiophene and polystyrenesulfonic acid complex (PEDOT-PSS) and other known and commonly used conductive polymers whose electrical conductivity has been improved by doping; Charge transfer complexes such as tetrathiafulvalene-tetracyanoquinodimethane complex; And so on.
  • PEDOT-PSS polystyrenesulfonic acid complex
  • Each electrode may be made of one type of conductive material or may be made of two or more types of conductive material. In the case of two or more types, they may be mixed and used. Further, the same conductive material may be used for the gate electrode, the source electrode, and the drain electrode, and different conductive materials may be used for the respective electrodes.
  • the thickness of the electrode is appropriately determined within a range in which a desired electrical conductivity can be achieved, depending on the type of conductive material used to form the electrode, and is usually in the range of 1 nm to 1 ⁇ m. Preferably, it is in the range of 10 nm to 200 nm, more preferably in the range of 20 nm to 100 nm.
  • the shape of the source electrode and the drain electrode is not particularly limited as long as the source electrode and the drain electrode are formed so as to oppose each other with a substantially constant interval (this interval corresponds to the channel length (L)).
  • the channel length (L) is usually preferably in the range of 0.1 ⁇ m to 1 mm, more preferably in the range of 0.5 ⁇ m to 200 ⁇ m, and still more preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • Examples of the electrode forming method include known and commonly used methods as described in "Basics of Materials Science No. 6 Basics of Organic Transistors (Aldrich)", and a desired shape (pattern) and a desired It is not particularly limited as long as it can form a thick electrode, for example, First, a conductive film is formed once in a wide range by using a wet film formation method or a dry film formation method (once the conductive film is solid (entirely formed)), and then a resist is formed on the “solid conductive film”. A pattern is formed by photolithography or printing, and then etched; Patterning the “solid conductive film” by laser ablation or the like; A direct patterning method using a dry film formation method through a mask; Direct patterning using printing methods; Etc.
  • Examples of the dry film forming method include chemical vapor deposition (CVD) methods such as plasma CVD, thermal CVD, and laser CVD; physical vapor deposition (PVD) such as vacuum deposition, sputtering, and ion plating;
  • the Examples of the wet film forming method include an electrolytic plating method, an immersion plating method, an electroless plating method, a sol-gel method, an organometallic decomposition (MOD) method, a coating method, and a printing method.
  • a metal mask method, a lift-off method, and the like are used as a method through the mask.
  • an ESD (Electro Spray Deposition) method As the coating method, an ESD (Electro Spray Deposition) method, an ESDUS (Evaporative Spray Deposition Ultra-dilution Solution) method, and an air draping method.
  • Method air knife coating method, edge casting method, impregnation coating method, kiss coating method, cast coating method, squeeze coating method, spin coating method, slit coating method, electrostatic coating method, electrostatic spray coating method, die coating method, ultrasonic spraying method Coating method, supercritical spray coating method, dispensing method, dip coating method, doctor blade coating method, transfer roll coating method, drop cast method, bar coating method, blade coating method , Reverse coat method, roll coat method, wire bar coat method, etc.
  • inkjet printing method offset printing method, capillary pen printing method, gravure printing method, gravure offset printing method, screen printing method, dispensing method, letterpress printing method, letterpress reverse printing method, drop cast method, flexographic printing Method, lithographic printing method, microcontact printing method and the like.
  • a method using a wet film forming method that eliminates the need for a vacuum environment is preferable, and among the wet film forming methods, a method using a printing method with fewer steps is more preferable.
  • the gate insulating layer has a function of electrically insulating the gate electrode and the source electrode, the gate electrode and the drain electrode, and the gate electrode and the semiconductor layer. Therefore, the material of the gate insulating layer is not particularly limited as long as it is an electrically insulating material.
  • cyanoethyl pullulan cellulose acetate propionate (CAP), cellulose triacetate (TAC), polyarylate (PAR) ), Polyimide, polyester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherimide (PEI), polyetheretherketone (PEEK), polyethersulfone (PES), polyvinylidene chloride (PVDC), polychlorinated Vinyl (PVC), polycarbonate (PC), polycycloolefin, polystyrene and polystyrene derivatives, polytetrafluoroethylene (PTFE), polyparaxylylene derivatives (eg, Parylene series) Trade name)), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), polyphenylene sulfide (PPS), polymethyl methacrylate (PMMA), acrylic resin, amorphous fluororesin (for example, Cytop series (trade name, manufactured by Asahi Glass
  • the gate insulating layer may be made of one type of insulating material or may be made of two or more types of insulating material. Further, it may contain a reaction (polymerization) initiator, a crosslinking agent, a crosslinking auxiliary agent and the like. When it consists of two or more types of insulating materials, each insulating material may be simply mixed and the covalent bond may be formed between insulating materials. Furthermore, when a reaction (polymerization) initiator, a crosslinking agent, and a crosslinking auxiliary agent are included, these materials and the insulating material may be simply mixed, and a covalent bond is formed between these materials. Also good.
  • the thickness of the gate insulating layer is appropriately determined within a range in which a desired insulating property can be achieved, depending on the type of insulating material used for forming the gate insulating layer, and is usually 10 nm to 5 ⁇ m. It is preferable that it is the range of these.
  • a method for forming the gate insulating layer is particularly limited as long as a film (layer) that can electrically insulate between the gate electrode and the source electrode, between the gate electrode and the drain electrode, and between the gate electrode and the semiconductor layer can be formed.
  • a film (layer) that can electrically insulate between the gate electrode and the source electrode, between the gate electrode and the drain electrode, and between the gate electrode and the semiconductor layer can be formed.
  • publicly known dry film forming methods and wet film forming methods can be mentioned.
  • Examples of the dry film forming method include chemical vapor deposition (CVD) methods such as a plasma CVD method, a thermal CVD method, and a laser CVD method; Physical vapor deposition (PVD) methods such as vacuum deposition, sputtering, and ion plating;
  • Examples of the wet film forming method include an electrolytic plating method, an immersion plating method, an electroless plating method, a sol-gel method, an organometallic decomposition (MOD) method, a coating method, and a printing method.
  • Examples of the coating method include an ESD (Electro Spray Deposition) method, an ESDUS (Evaporative Spray Deposition ultra-dilute Solution) method, an air doctor coating method, an air knife coating method, an edge casting method, an impregnation coating method, Coating method, squeeze coating method, spin coating method, slit coating method, electrostatic coating method, electrostatic spray coating method, die coating method, ultrasonic spray coating method, supercritical spray coating method, dispensing method, dip coating method, doctor Blade coating method, transfer roll coating method, drop cast method, bar coating method, blade coating method, reverse coating method, roll coating method, wire bar coating method, etc.
  • ESD Electro Spray Deposition
  • ESDUS Electro Spray Deposition ultra-dilute Solution
  • an air doctor coating method an air knife coating method, an edge casting method, an impregnation coating method, Coating method, squeeze coating method, spin coating method, slit coating method, electrostatic coating method, electrostatic spray coating method, die coating method, ultrasonic spray coating method, supercritical spray coating method, dis
  • inkjet printing method offset printing method, capillary pen printing method, gravure printing method, gravure offset printing method, screen printing method, dispensing method, letterpress printing method, letterpress reverse printing method, drop cast method, flexographic printing Method, lithographic printing method, microcontact printing method and the like.
  • a method using a wet film forming method that does not require a vacuum facility is preferable. If patterning is required, patterning can be performed by the same method as described in the section “Electrodes”.
  • a semiconductor layer which is a component of the transistor of the present invention will be described.
  • a feature of the transistor of the present invention resides in that the compound of the present invention is contained in a semiconductor layer which is a constituent element thereof.
  • the semiconductor layer which is a constituent element of the transistor of the present invention may contain a material other than the compound of the present invention as long as desired semiconductor characteristics can be exhibited. Examples of such materials include other semiconductor materials, polymer compounds and resins, constitutional components, surfactants, release agents and the like described in the section “(Ink of the present invention)”.
  • the thickness of the semiconductor layer is appropriately determined within a range in which desired semiconductor characteristics can be achieved, depending on the type of semiconductor material used to form the semiconductor layer, and is usually in the range of 0.5 nm to 1 ⁇ m.
  • the range is from 5 nm to 500 nm, and more preferably from 10 nm to 300 nm.
  • the method for forming the semiconductor layer is not particularly limited as long as it can form the semiconductor layer so as to cover at least the channel region (the region sandwiched between the source electrode and the drain electrode).
  • Conventional dry film forming methods and wet film forming methods can be exemplified.
  • CVD Chemical vapor deposition
  • PVD Physical vapor deposition
  • ESD Electro Spray Deposition
  • ESDUS Evaporative Spray Deposition Ultra-dilution Solution
  • air doctor coat method air knife coat method, edge cast method, impregnation coat method, spin coat method, spin coat method, spin coat method Coating method, slit coating method, electrostatic coating method, electrostatic spray coating method, die coating method, ultrasonic spray coating method, supercritical spray coating method, dispensing method, dip coating method, doctor blade coating method, transfer roll coating method Coating methods such as drop casting, bar coating, blade coating, reverse coating, roll coating, and wire bar coating
  • Inkjet printing method offset printing method, capillary pen printing method, gravure printing method, gravure offset printing method, screen printing method,
  • a method using a wet film forming method is preferable from the viewpoint of reducing the manufacturing cost and lowering the manufacturing process.
  • annealing may be performed after the film is formed as described above for the purpose of increasing the crystallinity of the semiconductor material and improving the semiconductor characteristics.
  • the annealing temperature is preferably in the range of 50 to 200 ° C, more preferably in the range of 70 to 200 ° C, and the annealing time is preferably in the range of 10 minutes to 12 hours, and is preferably in the range of 1 hour to 10 hours. A time range is more preferable, and a range of 30 minutes to 10 hours is more preferable.
  • Applications of the transistor of the present invention include a switching element of a pixel constituting a display device, a signal driver circuit of a pixel constituting the display device, a memory circuit, a sensor circuit, an inverter, a ring oscillator, an RFID, and the like.
  • Examples of the display device include a liquid crystal display device, a dispersion type liquid crystal display device, an electrophoretic display device, a particle rotation display device, an electrochromic display device, an organic EL display device, and electronic paper.
  • Example 1 Method for Producing Compound (101)> A method for producing compound (101) will be described.
  • the compound (101) is a compound corresponding to the case where Ar is a phenyl group, R 1 is a decyl group, and n is 0 in the compound represented by the general formula (1).
  • the compound (102) is a compound corresponding to the compound represented by the general formula (1), in which Ar is a phenyl group, R 1 is a hydrogen atom, and n is 1.
  • Example 1 ⁇ Evaluation Method for Mobility of Transistor Using Compound (102)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (102) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • the compound (103) is a compound corresponding to the compound represented by the general formula (1) when Ar is a 4-propylphenyl group, R 1 is a hydrogen atom, and n is 1.
  • Example 2 compound (103) was obtained in the same manner as in Example 2, except that 1-ethynyl-4-propylbenzene was used instead of ethynylbenzene.
  • Example 2 ⁇ Evaluation of Solubility of Compound (103)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (103) was used instead of the compound (102). The results are shown in Table 2.
  • Example 1 ⁇ Evaluation Method of Mobility of Transistor Using Compound (103)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (103) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • Example 4 ⁇ Method for Producing Compound (104)> A method for producing the compound (104) will be described.
  • the compound (104) is a compound corresponding to the compound represented by the general formula (1) when Ar is a 4-pentylphenyl group, R 1 is a hydrogen atom, and n is 1.
  • Example 2 compound (104) was obtained in the same manner as in Example 2, except that 1-ethynyl-4-pentylbenzene was used instead of ethynylbenzene.
  • Example 2 ⁇ Evaluation of Solubility of Compound (104)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (104) was used instead of the compound (102). The results are shown in Table 2.
  • Example 1 ⁇ Evaluation Method for Mobility of Transistor Using Compound (104)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (104) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • the compound (105) is a compound corresponding to the compound represented by the general formula (1) in which Ar is a 4-octylphenyl group, R 1 is a hydrogen atom, and n is 1.
  • Example 2 compound (105) was obtained in the same manner as in Example 2, except that 1-ethynyl-4-octylbenzene was used instead of ethynylbenzene.
  • Example 2 ⁇ Evaluation of Solubility of Compound (105)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (105) was used instead of the compound (102). The results are shown in Table 2.
  • Example 1 ⁇ Evaluation Method for Mobility of Transistor Using Compound (105)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (105) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • the compound (106) is a compound corresponding to the compound represented by the general formula (1) when Ar is a phenyl group, R 1 is a hexyl group, and n is 1.
  • a method for synthesizing the compound (106) will be described. Under an argon atmosphere, 20 mL of dry tetrahydrofuran was added to 0.20 g (0.69 mmol) of the compound (102), and the mixture was cooled to ⁇ 78 ° C. To the reaction solution, 0.90 mL (1.4 mmol) of a 1.6 mol / L hexane solution of n-butyllithium was slowly added dropwise. The reaction was warmed to room temperature and stirred for an additional hour. The reaction solution was cooled to ⁇ 78 ° C., 0.40 mL (2.8 mmol) of 1-bromohexane was slowly added, and then the mixture was warmed to room temperature and stirred for 10 hours.
  • Example 2 ⁇ Evaluation of Solubility of Compound (106)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (106) was used instead of the compound (102). The results are shown in Table 2.
  • Example 1 ⁇ Evaluation Method for Mobility of Transistor Using Compound (106)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (106) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • the compound (107) is a compound corresponding to the compound represented by the general formula (1) when Ar is a phenyl group, R 1 is a decyl group, and n is 1.
  • Example 6 compound (107) was obtained in the same manner as in Example 6, except that 1-bromodecane was used instead of 1-bromohexane.
  • Example 2 ⁇ Evaluation of Solubility of Compound (107)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (107) was used instead of the compound (102). The results are shown in Table 2.
  • a transistor was produced in the same manner as in Example 1 except that the compound (107) was used instead of the compound (101).
  • Example 1 ⁇ Evaluation Method of Mobility of Transistor Using Compound (107)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (107) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • the compound (108) is a compound corresponding to the compound represented by the general formula (1) when Ar is a phenyl group, R 1 is a heptyl group, and n is 1.
  • Example 6 Compound (108) was obtained in the same manner as in Example 6, except that 1-iodoheptane was used instead of 1-bromohexane.
  • Example 2 ⁇ Evaluation of Solubility of Compound (108)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (108) was used instead of the compound (102). The results are shown in Table 2.
  • Example 1 ⁇ Evaluation Method for Mobility of Transistor Using Compound (108)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (108) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • Example 9 A method for producing compound (109) will be described.
  • the compound (109) is a compound corresponding to the compound represented by the general formula (1) when Ar is a phenyl group, R 1 is an octyl group, and n is 1.
  • Example 6 compound (109) was obtained in the same manner as in Example 6, except that 1-iodooctane was used instead of 1-bromohexane.
  • Example 2 ⁇ Evaluation of Solubility of Compound (109)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (109) was used instead of the compound (102). The results are shown in Table 2.
  • Example 1 ⁇ Evaluation Method for Mobility of Transistor Using Compound (109)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (109) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • the compound (110) is a compound corresponding to the case where Ar is a phenyl group, R 1 is a nonyl group, and n is 1 in the compound represented by the general formula (1).
  • Example 6 compound (110) was obtained in the same manner as in Example 6, except that 1-iodononane was used instead of 1-bromohexane.
  • Example 2 ⁇ Evaluation of Solubility of Compound (110)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (110) was used instead of the compound (102). The results are shown in Table 2.
  • Example 1 ⁇ Evaluation Method for Mobility of Transistor Using Compound (110)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (110) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • Example 2 ⁇ Evaluation of Solubility of Compound (C101)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (C101) was used instead of the compound (102). The results are shown in Table 2.
  • Example 1 ⁇ Evaluation Method of Mobility of Transistor Using Compound (C101)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (C101) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • Example 2 ⁇ Evaluation of Solubility of Compound (C102)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (C102) was used instead of the compound (102). The results are shown in Table 2.
  • Example 1 ⁇ Evaluation Method of Mobility of Transistor Using Compound (C102)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (C102) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • Example 2 ⁇ Evaluation of Solubility of Compound (C103)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (C103) was used instead of the compound (102). The results are shown in Table 2.
  • Example 2 ⁇ Evaluation of Solubility of Compound (C104)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (C104) was used instead of the compound (102). The results are shown in Table 2.
  • Example 2 ⁇ Evaluation of Solubility of Compound (C105)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (C105) was used instead of the compound (102). The results are shown in Table 2.
  • Example 2 ⁇ Evaluation of Solubility of Compound (C106)>
  • the solubility was evaluated in the same manner as in Example 2 except that the compound (C106) was used instead of the compound (102). The results are shown in Table 2.
  • Example 1 ⁇ Evaluation Method of Mobility of Transistor Using Compound (C106)>
  • the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (C106) was used instead of the transistor using the compound (101). The results are shown in Table 1.
  • a transistor having a semiconductor layer formed by a wet film-forming method using the compound of the present invention exhibits a high mobility of 0.5 cm 2 / Vs or more, and further, from compounds (102) to (110) Is used, a high mobility of 1 cm 2 / Vs or higher is exhibited.
  • the mobility of the transistor using the compound of the comparative example (a compound having a TBT skeleton similar to the compound of the present invention (Non-patent Document 1, etc.)) is low.
  • the compound of the present invention exhibits a high solvent solubility of 0.1 wt% or higher even at room temperature. Showing gender.
  • the compound of the comparative example one having a bis (arylethynyl) group in the TBT skeleton (Non-patent Document 1) and the TBT in the compound of the present invention having other polycyclic aromatics (Patent Document 3) ) Is inferior in solvent solubility of less than 0.1 wt% (the higher the solubility, the higher the suitability for ink and the industrial advantage).
  • the compound of the present invention achieves both high semiconductor characteristics and high solubility by introducing an appropriate substituent at an appropriate substituent position with respect to the TBT skeleton. It can be used as a semiconductor that can be manufactured by the method, and can be used for a semiconductor element using the semiconductor as a semiconductor layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

The present invention provides a semiconductor material with which a semiconductor element exhibiting high mobility can be provided by means of a wet deposition method, and a compound with which said semiconductor material can be provided. Provided is a compound represented by general formula (1) (in the formula, Ar represents an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group, R1 represents a hydrogen atom or an acyclic C1-20 alkyl group (-CH2- in the alkyl group may be substituted by -O-, -R´C=CR´-, -CO-, -OCO-, -COO-, -S-, -SO2-, -SO-, -NH-, -NR´-, or -C≡C- so that an oxygen atom, sulfur atom, and nitrogen atom do not bond directly to each other, and the hydrogen atom in the alkyl group may be substituted by a halogeno group, a nitrile group, or an aromatic group (R´ represents a C1-20 acyclic or cyclic alkyl group.).), and n represents 0 or 1.).

Description

新規化合物およびそれを含有する半導体材料Novel compound and semiconductor material containing the same
本発明は、新規化合物およびそれを含有する半導体材料に関する。 The present invention relates to a novel compound and a semiconductor material containing it.
アモルファスシリコンや多結晶シリコンを半導体材料として用いてなるトランジスタが、液晶表示装置や有機EL表示装置などのスイッチング素子として広く用いられている。しかし、これらシリコンを用いるトランジスタは、その製造において、高温熱処理プロセスを有することから、プラスチック基板を用いることになる次世代型フレキシブル表示装置には耐熱性の問題から展開できない。こういった課題を解決するために、シリコンに代えて有機化合物を半導体材料(以下、有機化合物を用いてなる半導体材料を有機半導体材料ということがある。)として用いてなる有機トランジスタが提案されている。 Transistors using amorphous silicon or polycrystalline silicon as a semiconductor material are widely used as switching elements in liquid crystal display devices and organic EL display devices. However, since these transistors using silicon have a high temperature heat treatment process in their manufacture, they cannot be developed for next-generation flexible display devices using a plastic substrate due to heat resistance problems. In order to solve these problems, an organic transistor using an organic compound as a semiconductor material instead of silicon (hereinafter, a semiconductor material using an organic compound may be referred to as an organic semiconductor material) has been proposed. Yes.
有機半導体材料は、インク化することで、塗布法または印刷法(以下、塗布法や印刷法などを湿式成膜法ということがある。)にて、低温成膜できるため、耐熱性の乏しいプラスチック基板に適応でき、フレキシブル表示装置への応用が、さらには、フレキシブル電子装置(例えば、軽量フレキシブル化した電子タグやセンサなど)への応用が期待されている。一方、有機半導体には、当初、移動度(半導体特性を表す指標の一つで、単位はcm/Vsである。)がシリコン半導体と比べて低く、その結果、トランジスタ応答速度に劣り、実用化は難しい、といった課題があった。しかし、この課題に対して、近年、アモルファスシリコンの移動度を凌駕する移動度を与える有機半導体材料が開発されている。 Organic semiconductor materials are plastics with poor heat resistance because they can be formed into inks at low temperatures by coating methods or printing methods (hereinafter, coating methods and printing methods are sometimes referred to as wet film forming methods). It can be applied to a substrate, and is expected to be applied to a flexible display device, and further to a flexible electronic device (for example, an electronic tag or a sensor that is light and flexible). On the other hand, organic semiconductors initially have low mobility (one of the indicators for semiconductor characteristics, the unit is cm 2 / Vs) compared to silicon semiconductors, resulting in poor transistor response speed and practical use. There was a problem that it was difficult to make it. However, in recent years, organic semiconductor materials that provide mobility exceeding the mobility of amorphous silicon have been developed in response to this problem.
例えば、非特許文献1には、2,6-ビス(アリールエチニル)ベンゾ[1,2-b:4,5-b’]ジチオフェン(以下、ベンゾ[1,2-b:4,5-b’]ジチオフェンをTBTと略する。)骨格を有する化合物が記載されており、これらの化合物を用いてなるトランジスタの移動度は1.2cm/Vsに達することが記載されている(湿式成膜法ではなく真空成膜法にて半導体層を形成)。このようにTBT誘導体は高半導体特性を有するという観点で高いポテンシャルを有するが、一方で、非特許文献1に記載の化合物については、溶媒への溶解性が低いことが課題となっている(溶媒への溶解性が低いと湿式成膜法に供することが難しい。)。 For example, Non-Patent Document 1 includes 2,6-bis (arylethynyl) benzo [1,2-b: 4,5-b ′] dithiophene (hereinafter referred to as benzo [1,2-b: 4,5-b '] Dithiophene is abbreviated as TBT.) Compounds having a skeleton are described, and it is described that the mobility of a transistor using these compounds reaches 1.2 cm 2 / Vs (wet film formation). The semiconductor layer is formed by vacuum deposition instead of the method). As described above, the TBT derivative has high potential from the viewpoint of having high semiconductor characteristics. On the other hand, the compound described in Non-Patent Document 1 has a problem of low solubility in a solvent (solvent) It is difficult to use it for the wet film-forming method when the solubility in is low.
非特許文献2には、2,6-ジフェニルTBT骨格を有する化合物が記載されており、この化合物を用いてなるトランジスタの移動度は10-2cm/Vsのオーダーと記載されている。しかし、これらの化合物について、有機溶媒への溶解性が低いことが課題となっている。 Non-Patent Document 2 describes a compound having a 2,6-diphenyl TBT skeleton, and describes that the mobility of a transistor using this compound is on the order of 10 −2 cm 2 / Vs. However, these compounds have a low solubility in organic solvents.
特許文献1には、2,6-アルキニルTBT骨格を有する化合物が記載されており、アルキニル基としてC2-C32脂肪族炭化水素基の置換したエチニル基が開示されているが、本発明にかかわる化合物は記載されておらず、これらの化合物を用いてなるトランジスタの移動度は10-2cm/Vsのオーダーと記載されている。 Patent Document 1 describes a compound having a 2,6-alkynyl TBT skeleton, and discloses an ethynyl group substituted with a C2-C32 aliphatic hydrocarbon group as an alkynyl group. The compound according to the present invention Is not described, and the mobility of a transistor using these compounds is described as an order of 10 −2 cm 2 / Vs.
特許文献2には、一般式で「側鎖-芳香族ユニット-芳香族ユニット」で表される化合物が開示されているが、本発明にかかわる化合物は記載されていない。 Patent Document 2 discloses a compound represented by the general formula “side chain-aromatic unit-aromatic unit”, but does not describe a compound according to the present invention.
特許文献3には、一般式で「側鎖-芳香族ユニット-アセチレン結合-芳香族ユニット」で表される化合物が開示されているが、本発明にかかわる化合物は記載されていない。 Patent Document 3 discloses a compound represented by the general formula “side chain-aromatic unit-acetylene bond-aromatic unit”, but does not describe a compound according to the present invention.
特開2008-258592号JP 2008-2558592 A 国際公開第2012-121393号International Publication No. 2012-121393 国際公開第2015-137304号International Publication No. 2015-137304
前記したとおり、有機半導体材料の特徴は、トランジスタなどの半導体素子を湿式成膜法により与えうるところにある。したがって、本発明の課題は、湿式成膜法により高い移動度を発現する半導体素子を与える半導体材料を提供することにあり、さらには、該半導体材料を与える化合物を提供することにある。 As described above, the characteristic of the organic semiconductor material is that a semiconductor element such as a transistor can be provided by a wet film formation method. Therefore, an object of the present invention is to provide a semiconductor material that provides a semiconductor element that exhibits high mobility by a wet film formation method, and further to provide a compound that provides the semiconductor material.
本発明者は前記課題を克服すべく、鋭意検討を重ね、特定構造の置換基を有するTBT誘導体が、湿式成膜法により高い移動度を発現する半導体素子を与えることを見出し、本発明を完成するに至った。 In order to overcome the above problems, the present inventor has intensively studied and found that a TBT derivative having a substituent having a specific structure gives a semiconductor element that exhibits high mobility by a wet film-forming method, thereby completing the present invention. It came to do.
 即ち、本発明は以下の項目から構成される。
1.一般式(1)で表される化合物。ただし、化合物(1-1)、化合物(1-2)、化合物(1-3)、化合物(1-4)、化合物(1-5)、化合物(1-6)、化合物(1-7)、化合物(1-8)、化合物(1-9)、化合物(1-10)、化合物(1-11)、化合物(1-12)、化合物(1-13)、化合物(1-14)、化合物(1-15)、化合物(1-16)、化合物(1-17)、化合物(1-18)、化合物(1-19)、化合物(1-20)、化合物(1-21)、化合物(1-22)、化合物(1-23)、化合物(1-24)、化合物(1-25)、化合物(1-26)、化合物(1-27)、化合物(1-28)、化合物(1-29)、化合物(1-30)、化合物(1-31)、化合物(1-32)、化合物(1-33)、化合物(1-34)、化合物(1-35)、化合物(1-36)、化合物(1-37)、化合物(1-38)、化合物(1-39)、化合物(1-40)、化合物(1-41)、化合物(1-42)、化合物(1-43)、化合物(1-44)、化合物(1-45)、化合物(1-46)、化合物(1-47)、化合物(1-48)、化合物(1-49)、化合物(1-50)、化合物(1-51)、化合物(1-52)、化合物(1-53)、化合物(1-54)、化合物(1-55)、化合物(1-56)、化合物(1-57)、化合物(1-58)、化合物(1-59)、化合物(1-60)、および化合物(1-61)を除く。
That is, the present invention includes the following items.
1. The compound represented by General formula (1). However, Compound (1-1), Compound (1-2), Compound (1-3), Compound (1-4), Compound (1-5), Compound (1-6), Compound (1-7) , Compound (1-8), Compound (1-9), Compound (1-10), Compound (1-11), Compound (1-12), Compound (1-13), Compound (1-14), Compound (1-15), Compound (1-16), Compound (1-17), Compound (1-18), Compound (1-19), Compound (1-20), Compound (1-21), Compound (1-22), Compound (1-23), Compound (1-24), Compound (1-25), Compound (1-26), Compound (1-27), Compound (1-28), Compound ( 1-29), Compound (1-30), Compound (1-31), Compound (1-32), Compound (1-33), Compound (1-34) Compound (1-35), Compound (1-36), Compound (1-37), Compound (1-38), Compound (1-39), Compound (1-40), Compound (1-41), Compound (1-42), Compound (1-43), Compound (1-44), Compound (1-45), Compound (1-46), Compound (1-47), Compound (1-48), Compound (1-49), Compound (1-50), Compound (1-51), Compound (1-52), Compound (1-53), Compound (1-54), Compound (1-55), Compound ( 1-56), Compound (1-57), Compound (1-58), Compound (1-59), Compound (1-60), and Compound (1-61) are excluded.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、Arは置換基を有してもよい芳香族炭化水素基または置換基を有してもよい複素芳香族基を表し、Rは水素原子または非環式の炭素原子数1~20のアルキル基(該アルキル基中の-CH-が、酸素原子、硫黄原子および窒素原子がおのおの直接結合しないように、-O-、-R´C=CR´-、-CO-、-OCO-、-COO-、-S-、-SO-、-SO-、-NH-、-NR´-または-C≡C-で置換されてよく、該アルキル基中の水素原子は、ハロゲノ基、ニトリル基または芳香族基によって置換されていてもよい(ただし、R´は炭素原子数1~20の非環式または環式のアルキル基を表す。)。)を表し、nは0または1を表す。) (In the formula, Ar represents an heteroaromatic group optionally having a good aromatic hydrocarbon group or a substituent a substituent, R 1 is 1 carbon atom number of hydrogen atoms or acyclic ~ 20 alkyl groups (wherein —CH 2 — in the alkyl group is such that —O—, —R′C═CR′—, —CO—, —so that oxygen atoms, sulfur atoms and nitrogen atoms are not directly bonded to each other, OCO—, —COO—, —S—, —SO 2 —, —SO—, —NH—, —NR′— or —C≡C— may be substituted, and the hydrogen atom in the alkyl group may be halogeno A group, a nitrile group or an aromatic group (wherein R ′ represents an acyclic or cyclic alkyl group having 1 to 20 carbon atoms), and n is 0 or 1 is represented.)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
2.1.に記載の化合物を含有する半導体材料。
3.1.に記載の化合物を含有するインク。
4.1.に記載の化合物を含有する半導体膜。
5.1.に記載の化合物を含有する半導体層を有する半導体素子。
6.1.に記載の化合物を含有する半導体層を有するトランジスタ。
2.1. A semiconductor material containing the compound described in 1.
3.1. An ink containing the compound described in 1.
4.1. A semiconductor film containing the compound described in 1.
5.1. A semiconductor element having a semiconductor layer containing the compound described in 1.
6.1. A transistor having a semiconductor layer containing the compound described in 1.
本発明によって、湿式成膜法により高い移動度を発現する半導体素子を提供することができる。 According to the present invention, a semiconductor element that exhibits high mobility by a wet film formation method can be provided.
ボトムゲートトップコンタクト(BGTC)型トランジスタの概念断面図である。It is a conceptual sectional view of a bottom gate top contact (BGTC) type transistor.
(本発明の化合物)
以下、本発明の化合物について説明する。
本発明の化合物は、一般式(1)で表されるTBT誘導体である。
(Compound of the present invention)
Hereinafter, the compound of the present invention will be described.
The compound of the present invention is a TBT derivative represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式中、Arは置換基を有してもよい芳香族炭化水素基または置換基を有してもよい複素芳香族基を表し、Rは水素原子または非環式の炭素原子数1~20のアルキル基(該アルキル基中の-CH-が、酸素原子、硫黄原子および窒素原子がおのおの直接結合しないように、-O-、-R´C=CR´-、-CO-、-OCO-、-COO-、-S-、-SO-、-SO-、-NH-、-NR´-または-C≡C-で置換されてよく、該アルキル基中の水素原子は、ハロゲノ基、ニトリル基または芳香族基によって置換されていてもよい(ただし、R´は炭素原子数1~20の非環式または環式のアルキル基を表す。)。)を表し、nは0または1を表す。) (Wherein Ar represents an aromatic hydrocarbon group which may have a substituent or a heteroaromatic group which may have a substituent, and R 1 represents a hydrogen atom or an acyclic carbon atom having 1 to 20 alkyl groups (wherein —CH 2 — in the alkyl group is such that —O—, —R′C═CR′—, —CO—, —so that oxygen atoms, sulfur atoms and nitrogen atoms are not directly bonded to each other, OCO -, - COO -, - S -, - SO 2 -, - SO -, - NH -, - NR'- or -C≡C- may be substituted with a hydrogen atom in the alkyl group, halogeno A group, a nitrile group or an aromatic group (wherein R ′ represents an acyclic or cyclic alkyl group having 1 to 20 carbon atoms), and n is 0 or 1 is represented.)
一般式(1)で表される化合物のArについて説明する。
Arとしては、置換基を有してもよい芳香族炭化水素基または置換基を有してもよい複素芳香族基であれば、特に限定されるものではなく、例えば、
フェニル基および置換基を有するフェニル基、ナフチル基および置換基を有するナフチル基、アズレニル基および置換基を有するアズレニル基、アントラセニル基および置換基を有するアントラセニル基、フェナントリル基および置換基を有するフェナントリル基、アセナフチレニル基および置換基を有するアセナフチレニル基、アセナフテニル基および置換基を有するアセナフテニル基、フルオレニル基および置換基を有するフルオレニル基、ナフタセニル基および置換基を有するナフタセニル基、ピレニル基および置換基を有するピレニル基、クリセニル基および置換基を有するクリセニル基、ペリレニル基および置換基を有するペリレニル基、ビフェニルから誘導される一価基および置換基を有するビフェニルから誘導される一価基、p-ターフェニルから誘導される一価基および置換基を有するp-ターフェニルから誘導される一価基、p-クォーターフェニルから誘導される一価基および置換基を有するp-クォーターフェニルから誘導される一価基等の単環または多環芳香族炭化水素基;
Ar of the compound represented by the general formula (1) will be described.
Ar is not particularly limited as long as it is an aromatic hydrocarbon group that may have a substituent or a heteroaromatic group that may have a substituent.
Phenyl group and substituted phenyl group, naphthyl group and substituted naphthyl group, azulenyl group and substituted azulenyl group, anthracenyl group and substituted anthracenyl group, phenanthryl group and substituted phenanthryl group, An acenaphthylenyl group and a substituted acenaphthylenyl group, an acenaphthenyl group and a substituted acenaphthenyl group, a fluorenyl group and a substituted fluorenyl group, a naphthacenyl group and a substituted naphthaenyl group, a pyrenyl group and a substituted pyrenyl group, A chrycenyl group and a chrycenyl group having a substituent, a perylenyl group and a perylenyl group having a substituent, a monovalent group derived from biphenyl and a monovalent group derived from biphenyl having a substituent, A monovalent group derived from terphenyl and a monovalent group derived from p-terphenyl having a substituent, a monovalent group derived from p-quaterphenyl and a p-quaterphenyl having a substituent Monocyclic or polycyclic aromatic hydrocarbon groups such as monovalent groups;
ピロリル基および置換基を有するピロリル基、イミダゾリル基および置換基を有するイミダゾリル基、ピラゾリル基および置換基を有するピラゾリル基、トリアゾリル基および置換基を有するトリアゾリル基、テトラゾリル基および置換基を有するテトラゾリル基、
フリル基および置換基を有するフリル基、チエニル基および置換基を有するチエニル基、
オキサゾリル基および置換基を有するオキサゾリル基、チアゾリル基および置換基を有するチアゾリル基、オキサジアゾリル基および置換基を有するオキサジアゾリル基、チアジアゾリル基および置換基を有するチアジアゾリル基、
Pyrrolyl group and substituted pyrrolyl group, imidazolyl group and substituted imidazolyl group, pyrazolyl group and substituted pyrazolyl group, triazolyl group and substituted triazolyl group, tetrazolyl group and substituted tetrazolyl group,
A furyl group and a substituted furyl group, a thienyl group and a substituted thienyl group,
An oxazolyl group and a substituted oxazolyl group, a thiazolyl group and a substituted thiazolyl group, an oxadiazolyl group and a substituted oxadiazolyl group, a thiadiazolyl group and a substituted thiadiazolyl group,
ピロロチアゾリル基および置換基を有するピロロチアゾリル基、チエノチエニル基および置換基を有するチエノチエニル基、
インドリル基および置換基を有するインドリル基、インドリニル基および置換基を有するインドリニル基、インドリジニル基および置換基を有するインドリジニル基、ピロロピリダジニル基および置換基を有するピロロピリダジニル基、ベンゾトリアゾリル基および置換基を有するベンゾトリアゾリル基、ベンゾフリル基および置換基を有するベンゾフリル基、ベンゾチエニル基および置換基を有するベンゾチエニル基、ベンゾオキサゾリル基および置換基を有するベンゾオキサゾリル基、
A pyrrolothiazolyl group having a pyrrolothiazolyl group and a substituent, a thienothienyl group having a substituent, and a thienothienyl group having a substituent,
Indolyl group and substituted indolyl group, indolinyl group and substituted indolinyl group, indolizinyl group and substituted indolinyl group, pyrrolopyridazinyl group and substituted pyrrolopyridazinyl group, benzotria Benzotriazolyl group having zolyl group and substituent, benzofuryl group and benzofuryl group having substituent, benzothienyl group and benzothienyl group having substituent, benzoxazolyl group and benzoxazolyl having substituent Group,
カルバゾリル基および置換基を有するカルバゾリル基、ジベンゾフランから誘導される一価基および置換基を有するジベンゾフランから誘導される一価基、ジベンゾチオフェンから誘導される一価基および置換基を有するジベンゾチオフェンから誘導される一価基、
ピリジル基および置換基を有するピリジル基、ピリダジニル基および置換基を有するピリダジニル基、ピリミジニル基および置換基を有するピリミジニル基、ピラジニル基および置換基を有するピラジニル基、
Carbazolyl group and substituted carbazolyl group, monovalent group derived from dibenzofuran and monovalent group derived from dibenzofuran having substituent, monovalent group derived from dibenzothiophene and derived from dibenzothiophene having substituent A monovalent group,
Pyridyl group and substituted pyridyl group, pyridazinyl group and substituted pyridazinyl group, pyrimidinyl group and substituted pyrimidinyl group, pyrazinyl group and substituted pyrazinyl group,
キノリニル基および置換基を有するキノリニル基、イソキノリニル基および置換基を有するイソキノリニル基、ベンゾキノリニル基および置換基を有するベンゾキノリニル基、
ビチオフェンから誘導される一価基および置換基を有するビチオフェンから誘導される一価基、ターチオフェンから誘導される一価基および置換基を有するターチオフェンから誘導される一価基、クォーターチオフェンから誘導される一価基および置換基を有するクォーターチオフェンから誘導される一価基等の単環または多環複素芳香族基;
などを挙げることができる。
A quinolinyl group and a substituted quinolinyl group, an isoquinolinyl group and a substituted isoquinolinyl group, a benzoquinolinyl group and a substituted benzoquinolinyl group,
Monovalent group derived from bithiophene and monovalent group derived from bithiophene having substituent, monovalent group derived from terthiophene and monovalent group derived from terthiophene having substituent, derived from quarterthiophene A monocyclic or polycyclic heteroaromatic group such as a monovalent group derived from a monovalent group and a substituted quarterthiophene having a substituent;
And so on.
前記Arの置換基としては、芳香族化合物の置換基として公知慣用の置換基であれば特に限定されるものではなく、例えば、
水素原子、ハロゲノ基、ニトロ基、ニトリル基、
非環式または環式の炭素原子数1~20のアルキル基(該アルキル基中の-CH-が、酸素原子、硫黄原子および窒素原子がおのおの直接結合しないように、-O-、-R´C=CR´-、-CO-、-OCO-、-COO-、-S-、-SO-、-SO-、-NH-、-NR´-または-C≡C-で置換されてよく、該アルキル基中の水素原子は、ハロゲノ基、ニトリル基または芳香族基によって置換されていてもよい(ただし、R´は炭素原子数1~20の非環式または環式のアルキル基を表す。)。)、
芳香族基(該芳香族基は、ハロゲノ基、ニトロ基、ニトリル基、非環式または環式の炭素原子数1~20のアルキル基、芳香族基で置換されていてもよく、該アルキル基中の-CH-が、酸素原子、硫黄原子および窒素原子がおのおの直接結合しないように、-O-、-CR´´=CR´´-、-CO-、-OCO-、-COO-、-S-、-SO-、-SO-、-NH-、-NR´´-または-C≡C-で置換されてよく、該アルキル基中の水素原子は、ハロゲノ基、ニトリル基または芳香族基によって置換されていてもよい(ただし、R´´は炭素原子数1~20の非環式または環式のアルキル基を表す。)。)
等を挙げることができる。
The substituent for Ar is not particularly limited as long as it is a commonly used substituent as a substituent for an aromatic compound.
Hydrogen atom, halogeno group, nitro group, nitrile group,
An acyclic or cyclic alkyl group having 1 to 20 carbon atoms (in order to prevent —CH 2 — in the alkyl group from being directly bonded to an oxygen atom, a sulfur atom and a nitrogen atom, respectively) ′ C═CR′—, —CO—, —OCO—, —COO—, —S—, —SO 2 —, —SO—, —NH—, —NR′— or —C≡C— In general, a hydrogen atom in the alkyl group may be substituted by a halogeno group, a nitrile group or an aromatic group (wherein R ′ represents an acyclic or cyclic alkyl group having 1 to 20 carbon atoms). To express.).),
An aromatic group (the aromatic group may be substituted with a halogeno group, a nitro group, a nitrile group, an acyclic or cyclic alkyl group having 1 to 20 carbon atoms, an aromatic group, —CH 2 — in which —O—, —CR ″ = CR ″ —, —CO—, —OCO—, —COO—, so that oxygen atom, sulfur atom and nitrogen atom are not directly bonded to each other, —S—, —SO 2 —, —SO—, —NH—, —NR ″ — or —C≡C— may be substituted, and the hydrogen atom in the alkyl group may be a halogeno group, a nitrile group or an aromatic group. It may be substituted with a group (wherein R ″ represents an acyclic or cyclic alkyl group having 1 to 20 carbon atoms).
Etc.
Arの置換基としては、高い移動度を発現させるという観点から、水素原子または非環式もしくは環式の炭素原子数1~20のアルキル基が好ましく、水素原子または炭素原子数1~20の非環式のアルキル基がより好ましく、水素原子または炭素原子数1~20の直鎖アルキル基がさらに好ましい。 The substituent for Ar is preferably a hydrogen atom or an acyclic or cyclic alkyl group having 1 to 20 carbon atoms from the viewpoint of developing high mobility, and is preferably a hydrogen atom or non-cyclic group having 1 to 20 carbon atoms. A cyclic alkyl group is more preferable, and a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms is more preferable.
Arとしては、前記芳香族基中、高い移動度を発現させるという観点から、一般式(2)で表される基が好ましく、 Ar is preferably a group represented by the general formula (2) from the viewpoint of expressing high mobility in the aromatic group,
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中、X21~X25は水素原子または非環式もしくは環式の炭素原子数1~20のアルキル基を表し、*は一価の置換基としての結合手を表す。) (Wherein X 21 to X 25 represent a hydrogen atom or an acyclic or cyclic alkyl group having 1 to 20 carbon atoms, and * represents a bond as a monovalent substituent.)
一般式(3)で表される基がより好ましい。 The group represented by the general formula (3) is more preferable.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(式中、X31、X32、X34、およびX35は水素原子を表し、X33は水素原子または炭素原子数1~20の直鎖アルキル基を表し、*は一価の置換基としての結合手を表す。) (Wherein X 31 , X 32 , X 34 , and X 35 represent a hydrogen atom, X 33 represents a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms, and * represents a monovalent substituent. Represents the bond hand.)
次に、一般式(1)で表される化合物のRについて説明する。
は水素原子または非環式の炭素原子数1~20のアルキル基(該アルキル基中の-CH-が、酸素原子、硫黄原子および窒素原子がおのおの直接結合しないように、-O-、-R´C=CR´-、-CO-、-OCO-、-COO-、-S-、-SO-、-SO-、-NH-、-NR´-または-C≡C-で置換されてよく、該アルキル基中の水素原子は、ハロゲノ基、ニトリル基または芳香族基によって置換されていてもよい(ただし、R´は炭素原子数1~20の非環式または環式のアルキル基を表す。)。)である。
Next, R 1 of the compound represented by the general formula (1) will be described.
R 1 represents a hydrogen atom or an acyclic alkyl group having 1 to 20 carbon atoms (in order to prevent —CH 2 — in the alkyl group from being directly bonded to an oxygen atom, a sulfur atom and a nitrogen atom, respectively). , —R′C═CR′—, —CO—, —OCO—, —COO—, —S—, —SO 2 —, —SO—, —NH—, —NR′— or —C≡C—. The hydrogen atom in the alkyl group may be substituted with a halogeno group, a nitrile group or an aromatic group (provided that R ′ is an acyclic or cyclic group having 1 to 20 carbon atoms) Represents an alkyl group.).
 具体的に、非環式の炭素原子数1~20のアルキル基(該アルキル基中の-CH-が、酸素原子、硫黄原子および窒素原子が各々直接結合しないように、-O-、-R’C=CR’-、-CO-、-OCO-、-COO-、-S-、-SO-、-SO-、-NH-、-NR’-またはC≡C-で置換されてよく、該アルキル基中の水素原子は、芳香族基、ハロゲノ基、またはニトリル基によって置換されていてもよい(但し、R’は炭素原子数1~20の非環式または環式アルキル基を表す。)。)は、(A-1)炭素原子数1~20の直鎖または分岐アルキル基、(A-2)炭素原子数1~19のアルコキシ基、(A-3)炭素原子数2~19のアルコキシアルキル基、(A-4)炭素原子数2~20のアルケニル基、(A-5)炭素原子数2~20のアルカノイル基、(A-6)炭素原子数3~20のアルカノイルアルキル基、(A-7)炭素原子数2~20のアルコキシカルボニル基、(A-8)炭素原子数2~20のアルカノイルオキシ基、(A-9)炭素原子数1~19のアルキルスルファニル基、(A-10)炭素原子数2~19のアルキルスルファニルアルキル基、(A-11)炭素原子数1~19のアルキルスルホニル基、(A-12)炭素原子数2~19のアルキルスルホニルアルキル基、(A-13)炭素原子数1~19のアルキルスルフィニル基、(A-14)炭素原子数2~19のアルキルスルフィニルアルキル基、(A-15)炭素原子数1~19のアルキルアミノ基、(A-16)炭素原子数2~19のアルキルアミノアルキル基、(A-17)炭素原子数2~20のアルキニル基である。 Specifically, an acyclic alkyl group having 1 to 20 carbon atoms (in order that —CH 2 — in the alkyl group is not directly bonded to an oxygen atom, a sulfur atom and a nitrogen atom, R′C═CR′—, —CO—, —OCO—, —COO—, —S—, —SO 2 —, —SO—, —NH—, —NR′— or C≡C— substituted The hydrogen atom in the alkyl group may be substituted with an aromatic group, a halogeno group, or a nitrile group (provided that R ′ represents an acyclic or cyclic alkyl group having 1 to 20 carbon atoms). And (A-1) a linear or branched alkyl group having 1 to 20 carbon atoms, (A-2) an alkoxy group having 1 to 19 carbon atoms, and (A-3) 2 carbon atoms. To 19 alkoxyalkyl groups, (A-4) alkenyl groups having 2 to 20 carbon atoms, and (A-5) carbon atoms. An alkanoyl group having 2 to 20 carbon atoms, (A-6) an alkanoylalkyl group having 3 to 20 carbon atoms, (A-7) an alkoxycarbonyl group having 2 to 20 carbon atoms, and (A-8) 2 to 2 carbon atoms. 20 alkanoyloxy groups, (A-9) alkylsulfanyl groups having 1 to 19 carbon atoms, (A-10) alkylsulfanylalkyl groups having 2 to 19 carbon atoms, and (A-11) 1 to 19 carbon atoms. (A-12) an alkylsulfonylalkyl group having 2 to 19 carbon atoms, (A-13) an alkylsulfinyl group having 1 to 19 carbon atoms, and (A-14) an alkylsulfonyl group having 2 to 19 carbon atoms. Alkylsulfinylalkyl group, (A-15) alkylamino group having 1 to 19 carbon atoms, (A-16) alkylaminoalkyl group having 2 to 19 carbon atoms, and (A-17) carbon An alkynyl group having 2 to 20 atoms.
 前記(A-1)~(A-17)の中で、本発明の化合物の成膜性と移動度を向上させる観点からは、(A-1)炭素原子数1~20の直鎖または分岐アルキル基、(A-2)炭素原子数1~19のアルコキシ基、(A-3)炭素原子数2~19のアルコキシアルキル基、(A-4)炭素原子数2~20のアルケニル基、(A-9)炭素原子数1~19のアルキルスルファニル基、(A-10)炭素原子数2~19のアルキルスルファニルアルキル基、または(A-17)炭素原子数2~20のアルキニル基が好ましく、
更に高い移動度の化合物を得るためには、(A-1)炭素原子数1~20の直鎖アルキル基がより好ましい。
Among the above (A-1) to (A-17), from the viewpoint of improving the film formability and mobility of the compound of the present invention, (A-1) a straight chain or branched chain having 1 to 20 carbon atoms An alkyl group, (A-2) an alkoxy group having 1 to 19 carbon atoms, (A-3) an alkoxyalkyl group having 2 to 19 carbon atoms, (A-4) an alkenyl group having 2 to 20 carbon atoms, ( A-9) an alkylsulfanyl group having 1 to 19 carbon atoms, (A-10) an alkylsulfanylalkyl group having 2 to 19 carbon atoms, or (A-17) an alkynyl group having 2 to 20 carbon atoms,
In order to obtain a compound with higher mobility, (A-1) a linear alkyl group having 1 to 20 carbon atoms is more preferred.
(A-1)炭素原子数1~20の直鎖アルキル基としては、高い移動度を発現させるという観点から、炭素原子数3~12の直鎖アルキル基が好ましく、炭素原子数6~10の直鎖アルキル基がより好ましい。 (A-1) The linear alkyl group having 1 to 20 carbon atoms is preferably a linear alkyl group having 3 to 12 carbon atoms from the viewpoint of developing high mobility, and has 6 to 10 carbon atoms. A straight chain alkyl group is more preferred.
(A-1)の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-エイコシル基等の直鎖アルキル基;
等を挙げることが出来る。
Specific examples of (A-1) include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl. Group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-eicosyl group Linear alkyl groups such as groups;
Etc. can be mentioned.
一般式(1)で表される化合物について、移動度を向上させる観点からは、一般式(4)で表される化合物が好ましい。 About the compound represented by General formula (1), the compound represented by General formula (4) is preferable from a viewpoint of improving a mobility.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(R41およびR42は、同一であっても異なっていてもよく、水素原子または炭素原子数1~20の直鎖アルキル基を表し、nは0または1を表す。) (R 41 and R 42, which may be the same or different and represent a hydrogen atom or a straight-chain alkyl group having a carbon number of 1 ~ 20, n represents 0 or 1.)
一般式(1)で表される化合物について、移動度を向上させ、溶媒への溶解度を向上させる観点からは、一般式(5)で表される化合物が好ましい。 About the compound represented by General formula (1), the compound represented by General formula (5) is preferable from a viewpoint of improving a mobility and improving the solubility to a solvent.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(R51およびR52は、同一であっても異なっていてもよく、水素原子または炭素原子数1~20の直鎖アルキル基を表す。) (R 51 and R 52 may be the same or different and each represents a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms.)
一般式(5)で表される化合物について、溶媒への溶解度をさらに向上させる観点からは、一般式(6)で表される化合物が好ましい。 About the compound represented by General formula (5), the compound represented by General formula (6) is preferable from a viewpoint of further improving the solubility to a solvent.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(R61およびR62は、同一であっても異なっていてもよく、水素原子または炭素原子数1~20の直鎖アルキル基を表す。ただし、R61、R62両方が水素原子である場合を除く。) (R 61 and R 62 may be the same or different and each represents a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms, provided that both R 61 and R 62 are hydrogen atoms. except for.)
本発明の具体的な化合物として、以下の化合物を挙げることができるが、本発明の化合物はこれらに限定されるものではない。
本発明の具体的な化合物として、Arがフェニル基、Rが炭素原子数1~20のアルキル基、nが0の場合を以下に示す。
Specific compounds of the present invention can include the following compounds, but the compounds of the present invention are not limited thereto.
As specific compounds of the present invention, the case where Ar is a phenyl group, R 1 is an alkyl group having 1 to 20 carbon atoms, and n is 0 is shown below.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
本発明の具体的な化合物として、Arがフェニル基、Rが炭素原子数1~20のアルキル基、nが1の場合を以下に示す。 As specific compounds of the present invention, the case where Ar is a phenyl group, R 1 is an alkyl group having 1 to 20 carbon atoms, and n is 1 is shown below.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
本発明の具体的な化合物として、Arが4-アルキルフェニル基、Rが水素原子、nが1の場合を以下に示す。 As specific compounds of the present invention, the case where Ar is a 4-alkylphenyl group, R 1 is a hydrogen atom and n is 1 is shown below.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(本発明の化合物の製造方法)
本発明の化合物の製造方法について説明する。
本発明の化合物の製造方法としては、本発明の化合物を得ることができる方法であれば特に限定されるものではない。以下に示すとおり、本発明の化合物は、公知慣用の合成反応を組み合わせて製造することができる。
(Method for producing the compound of the present invention)
The manufacturing method of the compound of this invention is demonstrated.
The method for producing the compound of the present invention is not particularly limited as long as it is a method capable of obtaining the compound of the present invention. As shown below, the compound of the present invention can be produced by combining known and commonly used synthetic reactions.
製造スキーム(S1)式を用いて、本発明の化合物の製造方法について説明する。なお、製造スキーム(S1)は、nが0である場合の一般式(1)で表される化合物の製造方法の一例である。 The manufacturing method of the compound of this invention is demonstrated using a manufacturing scheme (S1) type | formula. The production scheme (S1) is an example of a method for producing the compound represented by the general formula (1) when n is 0.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式中、ArおよびRは一般式(1)のArおよびRと同義である。) (In the formula, Ar and R 1 have the same meanings as Ar and R 1 in the general formula (1).)
まず、無置換のTBTを、リチオ化したのちボロン酸エステルを作用させてボロン酸化(1段階目)する。次に、臭化アリール(Ar-Br)と鈴木宮浦カップリング反応させ、Ar化する(2段階目)。最後に、リチオ化したのち臭化アルキル(R-Br)を作用することで、目的の化合物Ar-TBT-Rとする(3段階目)。 First, unsubstituted TBT is lithiated and then boronated by the action of a boronic ester (first stage). Next, the aryl bromide (Ar—Br) is reacted with Suzuki Miyaura coupling to form Ar (second stage). Finally, after lithiation, the target compound Ar-TBT-R 1 is obtained by acting alkyl bromide (R 1 -Br) (third stage).
製造スキーム(S2)式を用いて、本発明の化合物の製造方法について説明する。なお、製造スキーム(S2)は、nが1である場合の一般式(1)で表される化合物の製造方法の一例である。 The manufacturing method of the compound of this invention is demonstrated using a manufacturing scheme (S2) type | formula. The production scheme (S2) is an example of a method for producing the compound represented by the general formula (1) when n is 1.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(式中、ArおよびRは一般式(1)のArおよびRと同義である。) (In the formula, Ar and R 1 have the same meanings as Ar and R 1 in the general formula (1).)
まず、無置換のTBTを、リチオ化したのちヨウ素を作用させてヨウ素化(1段階目)する。次に、アリールアセチレン(Ar-C≡C-H)と薗頭カップリング反応させ、アリールアセチレン化する(2段階目)。最後に、リチオ化したのち臭化アルキル(R-Br)またはヨウ化アルキル(R-I)を作用することで、目的の化合物Ar-C≡C-TBT-Rとする(3段階目)。 First, an unsubstituted TBT is lithiated and then iodinated by the action of iodine (first stage). Next, a Sonogashira coupling reaction with arylacetylene (Ar—C≡C—H) is performed to form an arylacetylene (second stage). Finally, after lithiation, the target compound Ar—C≡C-TBT-R 1 is obtained by reacting with alkyl bromide (R 1 -Br) or alkyl iodide (R 1 -I) (3 steps Eye).
(本発明の半導体材料)
本発明の半導体材料について説明する。
本発明の化合物は、半導体素子を用途とした、半導体材料として使用することができる。本発明の半導体材料の形態としては、半導体素子の製造に供しうる形態であれば特に限定されるものではなく、単結晶、多結晶、粉末、非晶膜、多結晶膜、単結晶膜、薄膜等の固体形態;溶液、分散液、塗布液、インク等の液体形態;などを挙げることができる。中でも、有機半導体材料の特徴が、湿式成膜法によって半導体素子を与えうるところにあることを鑑みれば、塗布液またはインクであることが好ましい。
なお、本発明の半導体材料は、供された半導体素子が所望の半導体特性を呈する範囲内で、本発明の化合物以外の材料を含有していてもよい。
(Semiconductor material of the present invention)
The semiconductor material of the present invention will be described.
The compound of the present invention can be used as a semiconductor material for semiconductor devices. The form of the semiconductor material of the present invention is not particularly limited as long as it is a form that can be used for the production of a semiconductor element. Single crystal, polycrystal, powder, amorphous film, polycrystalline film, single crystal film, thin film Solid forms such as; liquid forms such as solutions, dispersions, coating liquids, and inks; and the like. Among them, in view of the feature of the organic semiconductor material that a semiconductor element can be provided by a wet film forming method, a coating liquid or an ink is preferable.
The semiconductor material of the present invention may contain a material other than the compound of the present invention as long as the provided semiconductor element exhibits desired semiconductor characteristics.
(本発明のインク)
本発明のインクについて説明する。
本発明のインクとは、本発明の化合物を含有する半導体膜を、湿式成膜法によって形成するための材料であり、さらには、本発明の化合物を含有する半導体層であって、本発明の半導体素子が有する半導体層を、湿式成膜法によって形成するための材料であり、ひいては、本発明の半導体素子を湿式成膜法によって与える材料である。
(Ink of the present invention)
The ink of the present invention will be described.
The ink of the present invention is a material for forming a semiconductor film containing the compound of the present invention by a wet film-forming method, and further is a semiconductor layer containing the compound of the present invention. It is a material for forming a semiconductor layer included in a semiconductor element by a wet film formation method, and by extension, a material for providing the semiconductor element of the present invention by a wet film formation method.
本発明のインクは、本発明の化合物以外に、本発明の化合物を溶解または分散せしめることができる溶媒を含有している。
そのような溶媒としては、本発明の化合物を溶解または分散せしめることができれば特に限定されるものではなく、例えば、
酢酸エチル、酢酸ノルマルプロピル、酢酸イソプロピル、プロピレングリコールモノメチルエーテルアセテート(PGMAc)、3-メトキシ-3-メチル-ブチルアセテート、エトキシエチルプロピオネート(EEP)、プロピレンカーボネート等のエステル系溶媒;
In addition to the compound of the present invention, the ink of the present invention contains a solvent capable of dissolving or dispersing the compound of the present invention.
Such a solvent is not particularly limited as long as it can dissolve or disperse the compound of the present invention.
Ester solvents such as ethyl acetate, normal propyl acetate, isopropyl acetate, propylene glycol monomethyl ether acetate (PGMAc), 3-methoxy-3-methyl-butyl acetate, ethoxyethyl propionate (EEP), propylene carbonate;
メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-ブタノール、3-メトキシ-3-メチル-1-ブタノール、1,3-ブタンジオール、1-ペンタノール、4-メチル-2-ペンタノール、1-ヘキサノール、シクロヘキサノール、工業用高級アルコール(例えば、ダイヤドールシリーズ(商品名、三菱化学製))等のアルコール系溶媒; Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-butanol, 3-methoxy-3-methyl-1-butanol, 1,3-butanediol, 1-pentanol, 4- Alcohol solvents such as methyl-2-pentanol, 1-hexanol, cyclohexanol, industrial higher alcohols (eg, Diadol Series (trade name, manufactured by Mitsubishi Chemical));
ペンタン、n-ヘキサン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、n-オクタン、n-デカン、トルエン、キシレン等の炭化水素系溶媒;
ジクロロメタン、クロロホルムなどの塩素系溶媒;
Hydrocarbon solvents such as pentane, n-hexane, hexane, cyclohexane, methylcyclohexane, n-octane, n-decane, toluene, xylene;
Chlorinated solvents such as dichloromethane and chloroform;
ベンゼン、トルエン、クメン、n-プロピルベンゼン、n-ブチルベンゼン、n-ペンチルベンゼン、o-キシレン、m-キシレン、p-キシレン、p-シメン、1,4-ジエチルベンゼン、メシチレン、1,3,5-トリエチルベンゼン、アニソール、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、2,5-ジメチルアニソール、1,3-ジメトキシベンゼン、3,5-ジメトキシトルエン、2,4-ジメチルアニソール、フェネトール、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、クロロベンゼン、o-ジクロロベンゼン、トリクロロベンゼン、テトラリン、1,5-ジメチルテトラリン、1-メチルナフタレン、工業用芳香族系溶媒(例えば、ソルベッソ100、ソルベッソ150など(商品名、エクソンモービル製))等の芳香族系溶媒; Benzene, toluene, cumene, n-propylbenzene, n-butylbenzene, n-pentylbenzene, o-xylene, m-xylene, p-xylene, p-cymene, 1,4-diethylbenzene, mesitylene, 1,3,5 -Triethylbenzene, anisole, 2-methylanisole, 3-methylanisole, 4-methylanisole, 2,5-dimethylanisole, 1,3-dimethoxybenzene, 3,5-dimethoxytoluene, 2,4-dimethylanisole, phenetole Methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, chlorobenzene, o-dichlorobenzene, trichlorobenzene, tetralin, 1,5-dimethyltetralin, 1-methylnaphthalene, industrial aromatic solvents (for example, Solvesso 100, Solvesso 15 Etc. (trade name, manufactured by Exxon Mobil)) aromatic such solvents;
テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、エチレングリコールジエチルエーテル(モノグライム)、ジグライム、トリグライム、エチレングリコールモノメチルエーテル(セロソルブ)、エチルセロソルブ、プロピオセロソルブ、ブチロセロソルブ、フェニルセロソルブ、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールプロピルエーテル、ジエチレングリコールブチルエーテル、ベンジルエチルエーテル、エチルフェニルエーテル、ジフェニルエーテル、メチル-t-ブチルエーテル、シクロペンチルメチルエーテル、シクロヘキシルメチルエーテルベンゾ二トリルプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールターシャリーブチルエーテル、ジプロピレングリコールモノメチルエーテル、エチレングリコールブチルエーテル、エチレングリコールエチルエーテル、エチレングリコールメチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールエチルエーテル等のエーテル系溶剤; Tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, ethylene glycol diethyl ether (monoglyme), diglyme, triglyme, ethylene glycol monomethyl ether (cellosolve), ethyl cellosolve, propiocellosolve, butyrocellosolve, phenylcellosolve, diethylene glycol methyl ether, diethylene glycol ethyl ether , Diethylene glycol propyl ether, diethylene glycol butyl ether, benzyl ethyl ether, ethyl phenyl ether, diphenyl ether, methyl-t-butyl ether, cyclopentyl methyl ether, cyclohexyl methyl ether benzonitryl propylene glycol monomethyl ether, propylene glycol monoethyl ether, pro Glycol monopropyl ether, propylene glycol tertiary butyl ether, dipropylene glycol monomethyl ether, ethylene glycol butyl ether, ethylene glycol ethyl ether, ethylene glycol methyl ether, diethylene glycol butyl ether, ether solvents such as diethylene glycol ethyl ether;
アセトン、メチルエチルケトン、シクロヘキサノン、2-ヘキサノン、2-ヘプタノン、3-ヘプタノン、アセトフェノン、プロピオフェノン、ブチロフェノン、シクロヘキサノン等のケトン系溶媒; Ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, 2-hexanone, 2-heptanone, 3-heptanone, acetophenone, propiophenone, butyrophenone, cyclohexanone;
N,N-ジメチルホルムアミド、ジメチルスルホキシド、ジエチルホルムアミド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒;
等を挙げることできる。
なお、本発明のインクに用いられる溶媒は、1種類であってもよく、2種類以上であってもよい。
Aprotic polar solvents such as N, N-dimethylformamide, dimethyl sulfoxide, diethylformamide, N-methyl-2-pyrrolidone;
Etc.
In addition, the solvent used for the ink of the present invention may be one type or two or more types.
本発明のインクは、その他の成分として、用途に応じて、本発明の化合物以外の半導体材料を含有していてもよい。そのような半導体材料としては、電子供与性材料、電子受容性材料、電子輸送性材料、正孔輸送性材料、発光材料、光吸収材料等を挙げることができる。    The ink of the present invention may contain a semiconductor material other than the compound of the present invention as other components depending on the application. Examples of such a semiconductor material include an electron donating material, an electron accepting material, an electron transporting material, a hole transporting material, a light emitting material, and a light absorbing material. *
また、本発明のインクは、その他の成分として、高分子化合物や樹脂、体質成分、界面活性剤、離型剤等を含有していてもよい。これらの成分は、本発明のインクに、印刷適性および造膜性(膜形成能)を付与するために、必要に応じて加えられる。 In addition, the ink of the present invention may contain a polymer compound, a resin, a constitutional component, a surfactant, a release agent, and the like as other components. These components are added as necessary to impart printability and film-forming properties (film-forming ability) to the ink of the present invention.
本発明のインクに含有しうる樹脂としては、公知慣用の絶縁性樹脂であれば特に限定されるものではなく、例えば、
シアノエチルプルラン、セルロースアセテートプロピオネート(CAP)、セルローストリアセテート(TAC)、ポリアリレート(PAR)、ポリイミド、ポリエステル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルスルホン(PES)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、ポリカーボネート(PC)、ポリシクロオレフィン、ポリスチレンおよびポリスチレン誘導体、ポリテトラフルオロエチレン(PTFE)、ポリパラキシリレン誘導体(例えば、パリレンシリーズ(商標名))、ポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、ポリフェニレンスルフィド(PPS)、ポリメチルメタクリレート(PMMA)、アクリル樹脂、アモルファスフッ素樹脂(例えば、サイトップシリーズ(商品名、旭硝子製))、アルキド樹脂、ウレタン樹脂、エポキシ樹脂、電子線硬化性樹脂(例えば、電子線硬化性アクリル系樹脂や電子線硬化性メタアクリル系樹脂)、フェノキシ樹脂、フェノール樹脂、フッ素樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリビニルフェノール樹脂、メラミン樹脂、UV硬化性樹脂(例えば、UV硬化性アクリル系樹脂やUV硬化性メタアクリル系樹脂)等の高分子化合物を挙げることができる。
なお、本発明のインクに含有される樹脂は、1種類であってもよく、2種類以上であってもよい。
該樹脂のインク中の濃度は、本発明のインクを用いてなる半導体素子が所望の半導体特性を呈する範囲内であれば特に限定されるものではなく、通常、1~10質量%の範囲であることが好ましく、3~7質量%の範囲であることがより好ましい。
The resin that can be contained in the ink of the present invention is not particularly limited as long as it is a known and commonly used insulating resin.
Cyanoethyl pullulan, cellulose acetate propionate (CAP), cellulose triacetate (TAC), polyarylate (PAR), polyimide, polyester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherimide (PEI), polyether Ether ketone (PEEK), polyether sulfone (PES), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), polycarbonate (PC), polycycloolefin, polystyrene and polystyrene derivatives, polytetrafluoroethylene (PTFE), poly Paraxylylene derivatives (for example, Parylene series (trade name)), polyvinyl alcohol (PVA), polyvinylphenol (PVP), polyphenylene sulfi (PPS), polymethyl methacrylate (PMMA), acrylic resin, amorphous fluororesin (for example, Cytop series (trade name, manufactured by Asahi Glass)), alkyd resin, urethane resin, epoxy resin, electron beam curable resin (for example, electron Line curable acrylic resin and electron beam curable methacrylic resin), phenoxy resin, phenol resin, fluorine resin, unsaturated polyester resin, polyimide resin, polyvinyl phenol resin, melamine resin, UV curable resin (for example, UV curable resin) And high molecular compounds such as curable acrylic resins and UV-curable methacrylic resins).
The resin contained in the ink of the present invention may be one type or two or more types.
The concentration of the resin in the ink is not particularly limited as long as the semiconductor element using the ink of the present invention exhibits desired semiconductor characteristics, and is usually in the range of 1 to 10% by mass. The range is preferably 3 to 7% by mass.
本発明のインクに含有しうる体質成分としては、公知慣用の電気的絶縁性の無機系微粒子や公知慣用の電気的絶縁性の顔料であれば特に限定されるものではなく、例えば、
アエロジルシリーズ(商品名、エボニック製)、
サイリシア、サイロホービック、サイロピュート、サイロページ、サイロピュア、サイロスフェア、サイロマスク、シルウェル、フジバルーン(以上、商品名、富士シリシア製)、PMA-ST、IPA-ST(以上、商品名、日産化学製)、
NANOBIC3600シリーズ、NANOBIC3800シリーズ(以上、商品名、ビックケミー製)等の無機系微粒子;
EXCEDIC BLUE0565、EXCEDIC RED0759、EXCEDIC YELLOW 0599、EXCEDIC GREEN0358、EXCEDIC YELLOW0648(以上、商品名 DIC製)等の顔料;
などを挙げることができる。
なお、本発明のインクに含有される体質成分は、1種類であってもよく、2種類以上であってもよい。
該体質成分のインク中の濃度は、本発明のインクを用いてなる半導体素子が所望の半導体特性を呈する範囲内であれば特に限定されるものではなく、通常、有効成分で0~20質量%の範囲であることが好ましい。
The constitutional component that can be contained in the ink of the present invention is not particularly limited as long as it is a known and commonly used electrically insulating inorganic fine particle or a known and commonly used electrically insulating pigment. For example,
Aerosil series (trade name, manufactured by Evonik),
Silicia, silo hobic, silo pure, silo page, silo pure, silo sphere, silo mask, silwell, fuji balloon (above, trade name, manufactured by Fuji Silysia), PMA-ST, IPA-ST (above, trade name, Nissan Chemical) Made),
Inorganic fine particles such as NANOBIC3600 series and NANOBIC3800 series (above, trade name, manufactured by BYK Chemie);
Pigments such as EXCEDIC BLUE0565, EXCEDIC RED0759, EXCEDIC YELLOW 0599, EXCEDIC GREEN0358, EXCEDIC YELLOW0648 (above, trade name: manufactured by DIC);
And so on.
The constitutional component contained in the ink of the present invention may be one type or two or more types.
The concentration of the constitutional component in the ink is not particularly limited as long as the semiconductor element using the ink of the present invention exhibits desired semiconductor characteristics, and is usually 0 to 20% by mass of the active component. It is preferable that it is the range of these.
本発明のインクに含有しうる界面活性剤としては、公知慣用の電気的絶縁性の界面活性剤であれば特に限定されるものではなく、例えば、
炭化水素系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤等を挙げることができる。中でも、鎖長がC6以上の直鎖状のパーフルオロアルキル基を有するフッ素系界面活性剤(例えば、メガファックF-482、メガファックF-470(R-08)、メガファックF-472SF、メガファックR-30、メガファックF-484、メガファックF-486、メガファックF-172D、メガファックF178RM(以上、商品名、DIC製))が好ましい。
なお、本発明のインクに含有される界面活性剤は、1種類であってもよく、2種類以上であってもよい。
該界面活性剤のインク中の濃度は、本発明のインクを用いてなる半導体素子が所望の半導体特性を呈する範囲内であれば特に限定されるものではなく、通常、有効成分で0.01~5.00質量%の範囲であることが好ましく、有効成分で0.05~1.00質量%の範囲であることがより好ましい。
The surfactant that can be contained in the ink of the present invention is not particularly limited as long as it is a known and commonly used electrically insulating surfactant. For example,
Examples thereof include hydrocarbon surfactants, silicone surfactants, and fluorine surfactants. Among them, fluorine-based surfactants having a linear perfluoroalkyl group with a chain length of C6 or more (for example, Megafac F-482, Megafac F-470 (R-08), Megafac F-472SF, Mega Fuck R-30, Mega Fuck F-484, Mega Fuck F-486, Mega Fuck F-172D, Mega Fuck F178RM (above, trade name, manufactured by DIC)) are preferable.
In addition, the surfactant contained in the ink of the present invention may be one type or two or more types.
The concentration of the surfactant in the ink is not particularly limited as long as the semiconductor element using the ink of the present invention exhibits desired semiconductor characteristics, and is usually 0.01 to The range is preferably 5.00% by mass, and more preferably 0.05 to 1.00% by mass in terms of active ingredients.
本発明のインクに含有しうる離型剤としては、公知慣用の電気的絶縁性のシリコーン系化合物であれば特に限定されるものではなく、例えば、ジメチルシリコーンオイル、ジメチルシリコーンゴム、シリコーンレジン、有機変性シリコーンオイル、メチルフェニルシリコーンオイル、長鎖アルキル変性シリコーンオイル、フッ素化合物とシリコーンポリマーの混合物、フッ素変性シリコーン等を挙げることができる。中でも、グラノールシリーズ(商品名、共栄社製)、KF-96Lシリーズ(商品名、信越化学製)が、離型性や前記樹脂との相溶性の観点から好ましい。
なお、本発明のインクに含有される離型剤は、1種類であってもよく、2種類以上であってもよい。
また、該離型剤のインク中の濃度は、本発明のインクを用いてなる半導体素子が所望の半導体特性を呈する範囲内であれば特に限定されるものではなく、通常、有効成分で0.0~5.0質量%の範囲であることが好ましく、有効成分で0.0~3.0質量%の範囲であることがより好ましい。
The release agent that can be contained in the ink of the present invention is not particularly limited as long as it is a known and commonly used electrically insulating silicone compound. For example, dimethyl silicone oil, dimethyl silicone rubber, silicone resin, organic Examples thereof include modified silicone oil, methylphenyl silicone oil, long-chain alkyl-modified silicone oil, a mixture of a fluorine compound and a silicone polymer, and fluorine-modified silicone. Of these, the Granol series (trade name, manufactured by Kyoeisha) and the KF-96L series (trade name, manufactured by Shin-Etsu Chemical) are preferable from the viewpoint of releasability and compatibility with the resin.
In addition, the release agent contained in the ink of the present invention may be one type or two or more types.
The concentration of the release agent in the ink is not particularly limited as long as the semiconductor element using the ink of the present invention exhibits desired semiconductor characteristics. The range is preferably from 0 to 5.0% by mass, and more preferably from 0.0 to 3.0% by mass with respect to the active ingredient.
また、本発明のインクは、その他に、任意の成分として、レベリング剤、分散剤、消泡剤等を適時含有することができる。 In addition, the ink of the present invention can contain a leveling agent, a dispersant, an antifoaming agent, and the like as optional components.
本発明の化合物のインク中の濃度は、本発明のインクを用いてなる半導体素子が所望の半導体特性を呈する範囲内であれば特に限定されるものではなく、通常、0.01~20.00質量%の範囲であることが好まく、0.05~10.00質量%の範囲であることがより好まく、0.10~10.00質量%の範囲であることがさらに好ましい。 The concentration of the compound of the present invention in the ink is not particularly limited as long as the semiconductor element using the ink of the present invention exhibits desired semiconductor characteristics, and is usually 0.01 to 20.00. The range is preferably in the range of mass%, more preferably in the range of 0.05 to 10.00 mass%, and still more preferably in the range of 0.10 to 10.00 mass%.
(本発明の半導体素子)
本発明の半導体素子について説明する。
本発明の半導体素子としては、本発明の化合物を用いてなる半導体層を有する半導体素子であれば特に限定されるものではなく、例えば、ダイオード;サイリスタ;フォトダイオード、太陽電池、受光素子等の光電変換素子;電界効果型トランジスタ、静電誘導型トランジスタ、バイポーラトランジスタ、薄膜トランジスタ等のトランジスタ;有機EL素子、発光トランジスタなどの発光素子;メモリ;温度センサ、化学センサ、ガスセンサ、湿度センサ、放射線センサ、バイオセンサ、血液センサ、免疫センサ、人工網膜、味覚センサ、圧力センサ等のセンサ;インバータ、リングオシレータ、RFID等のロジック回路ユニット;等を挙げることができる。
(Semiconductor element of the present invention)
The semiconductor element of the present invention will be described.
The semiconductor element of the present invention is not particularly limited as long as it is a semiconductor element having a semiconductor layer using the compound of the present invention. For example, diodes; thyristors; photodiodes, solar cells, light receiving elements, etc. Conversion element: Field effect transistor, electrostatic induction transistor, bipolar transistor, thin film transistor, etc .; Organic EL element, light emitting transistor, etc .; Memory; Temperature sensor, chemical sensor, gas sensor, humidity sensor, radiation sensor, bio Sensors such as sensors, blood sensors, immune sensors, artificial retinas, taste sensors, and pressure sensors; logic circuit units such as inverters, ring oscillators, and RFIDs;
(本発明のトランジスタ)
本発明のトランジスタについて説明する。
トランジスタは、ゲート電極、ゲート絶縁層、ソース電極、ドレイン電極、半導体層を必須要素として有する半導体素子であり、各電極や各層の配置の仕方によってさまざまな構造に分類される。
(Transistor of the present invention)
The transistor of the present invention will be described.
A transistor is a semiconductor element having a gate electrode, a gate insulating layer, a source electrode, a drain electrode, and a semiconductor layer as essential elements, and is classified into various structures depending on the arrangement of each electrode and each layer.
本発明のトランジスタの構造としては、本発明の化合物を半導体層として含有すれば特に限定されるものではなく、例えば、ボトムゲートボトムコンタクト(以下、BGBCと略する)型トランジスタ、ボトムゲートトップコンタクト(以下、BGTCと略する)型トランジスタ、トップゲートボトムコンタクト(以下、TGBCと略する)型トランジスタ、トップゲートトップコンタクト(以下、TGTCと略する)型トランジスタ、メタルベース有機トランジスタ(以下、MBOTと略する)、静電誘導トランジスタ(以下、SITと略する)等を挙げることができる。 The structure of the transistor of the present invention is not particularly limited as long as the compound of the present invention is contained as a semiconductor layer. For example, a bottom gate bottom contact (hereinafter abbreviated as BGBC) type transistor, bottom gate top contact ( Hereinafter, BGTC type transistor, top gate bottom contact (hereinafter abbreviated as TGBC) type transistor, top gate top contact (hereinafter abbreviated as TGTC) type transistor, metal base organic transistor (hereinafter abbreviated as MBOT). And an electrostatic induction transistor (hereinafter abbreviated as SIT).
次に、本発明のトランジスタの構成要素である基板について説明する。
基板材料としては、板状、シート状、フィルム状等に加工できるものであれば特に限定されるものではなく、例えば、
シリコン;
石英ガラス、ソーダガラス、ホウケイ酸ガラス、無アルカリガラス等の無機系ガラス;
セルロースアセテートプロピオネート(CAP)、セルローストリアセテート(TAC)、ポリアリレート(PAR)、ポリイミド、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルスルホン(PES)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリシクロオレフィン、ポリフェニレンスルフィド(PPS)、ポリメチルメタクリレート(PMMA)等の樹脂や高分子化合物;
等を挙げることができる。
Next, a substrate that is a component of the transistor of the present invention will be described.
The substrate material is not particularly limited as long as it can be processed into a plate shape, a sheet shape, a film shape, etc.
silicon;
Inorganic glass such as quartz glass, soda glass, borosilicate glass, alkali-free glass;
Cellulose acetate propionate (CAP), cellulose triacetate (TAC), polyarylate (PAR), polyimide, polyethylene (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherimide (PEI), polyether Resins and polymer compounds such as ether ketone (PEEK), polyether sulfone (PES), polypropylene (PP), polycarbonate (PC), polycycloolefin, polyphenylene sulfide (PPS), polymethyl methacrylate (PMMA);
Etc.
中でも、トランジスタの生産性を向上させるという観点からは、ガラス製の板やシリコンウエハ等無機系基板が好ましく、フレキシブルなトランジスタを得るという観点からは、ガラス製シート、樹脂製シート、プラスチックフィルム等が好ましく、フレキシブル性に加え、軽量化を図り、可搬性および耐衝撃性を高めるという観点からは、樹脂製シートやプラスチックフィルムがより好ましい。 Among them, from the viewpoint of improving the productivity of the transistor, an inorganic substrate such as a glass plate or a silicon wafer is preferable, and from the viewpoint of obtaining a flexible transistor, a glass sheet, a resin sheet, a plastic film, or the like is used. Preferably, in addition to flexibility, a resin sheet or a plastic film is more preferable from the viewpoint of reducing weight and improving portability and impact resistance.
次に、本発明のトランジスタの構成要素である電極について説明する。
ゲート電極、ソース電極、およびドレイン電極の材料としては、導電性材料であれば特に限定されるものではなく、無機系導電性材料や有機系導電性材料などを挙げることができる。
Next, an electrode which is a component of the transistor of the present invention will be described.
The material for the gate electrode, the source electrode, and the drain electrode is not particularly limited as long as it is a conductive material, and examples thereof include an inorganic conductive material and an organic conductive material.
無機系導電性材料としては、例えば、リチウム、ベリリウム、炭素、ナトリウム、マグネシウム、アルミニウム、シリコン、カリウム、カルシウム、スカンジウム、チタン、クロム、マンガン、鉄、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、銀、スズ、アンチモン、ハフニウム、タングステン、白金、金、グラファイト、グラッシーカーボン、酸化スズ、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化亜鉛、ナトリウム-カリウム合金、モリブデン-タンタル合金、アルミニウム-酸化アルミニウム混合物、銀-酸化銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、マグネシウム-銀混合物、マグネシウム-銅混合物、リチウム-アルミニウム混合物、ドープシリコン、カーボンペースト、銀インク、銀ペースト、銅インク、銅ペースト、ナノ銀、ナノ銅等を挙げることができる。
一方、有機系導電性材料としては、例えば、導電性ポリアニリン、導電性ポリアニリン誘導体、導電性ポリピロール、導電性ポリピロール誘導体、導電性ポリチオフェン、導電性ポリチオフェン誘導体、ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体(PEDOT-PSS)等のドーピングで電気伝導率を向上させた公知慣用の導電性高分子;
テトラチアフルバレン-テトラシアノキノジメタン錯体などの電荷移動錯体;
などを挙げることができる。
Examples of inorganic conductive materials include lithium, beryllium, carbon, sodium, magnesium, aluminum, silicon, potassium, calcium, scandium, titanium, chromium, manganese, iron, nickel, copper, zinc, gallium, zirconium, niobium, Molybdenum, silver, tin, antimony, hafnium, tungsten, platinum, gold, graphite, glassy carbon, tin oxide, tin-doped indium oxide (ITO), fluorine-doped zinc oxide, sodium-potassium alloy, molybdenum-tantalum alloy, aluminum-aluminum oxide Mixture, silver-silver oxide mixture, magnesium-aluminum mixture, magnesium-indium mixture, magnesium-silver mixture, magnesium-copper mixture, lithium-aluminum mixture, dope silicon , Mention may be made of carbon paste, silver ink, silver paste, copper ink, a copper paste, nano silver, nano copper.
On the other hand, examples of the organic conductive material include conductive polyaniline, conductive polyaniline derivative, conductive polypyrrole, conductive polypyrrole derivative, conductive polythiophene, conductive polythiophene derivative, polyethylenedioxythiophene and polystyrenesulfonic acid complex ( PEDOT-PSS) and other known and commonly used conductive polymers whose electrical conductivity has been improved by doping;
Charge transfer complexes such as tetrathiafulvalene-tetracyanoquinodimethane complex;
And so on.
なお、各電極は、1種類の導電性材料からなるものであってもよく、2種類以上の導電性材料からなるものであってもよい。2種類以上の場合、混合して用いてもよく、積層して用いてもよい。また、ゲート電極、ソース電極およびドレイン電極において、同一の導電性材料が用いられていてもよく、それぞれの電極において異なる導電性材料が用いられていてもよい。 Each electrode may be made of one type of conductive material or may be made of two or more types of conductive material. In the case of two or more types, they may be mixed and used. Further, the same conductive material may be used for the gate electrode, the source electrode, and the drain electrode, and different conductive materials may be used for the respective electrodes.
電極の厚みは、該電極を形成するために用いられる導電性材料の種類に応じて、所望の電気伝導率を達成できる範囲内で適宜決定されるものであり、通常、1nm~1μmの範囲であることが好ましく、10nm~200nmの範囲であることがより好ましく、20nm~100nmの範囲であることがさらに好ましい。 The thickness of the electrode is appropriately determined within a range in which a desired electrical conductivity can be achieved, depending on the type of conductive material used to form the electrode, and is usually in the range of 1 nm to 1 μm. Preferably, it is in the range of 10 nm to 200 nm, more preferably in the range of 20 nm to 100 nm.
ソース電極およびドレイン電極の形状は、互いに、実質一定の間隔(この間隔がチャネル長(L)に相当する。)を持って対抗するように形成されていれば、特に限定されるものではない。 The shape of the source electrode and the drain electrode is not particularly limited as long as the source electrode and the drain electrode are formed so as to oppose each other with a substantially constant interval (this interval corresponds to the channel length (L)).
チャネル長(L)は、通常、0.1μm~1mmの範囲であることが好ましく、0.5μm~200μmの範囲であることがより好ましく、1μm~100μmの範囲であることがさらに好ましい。 The channel length (L) is usually preferably in the range of 0.1 μm to 1 mm, more preferably in the range of 0.5 μm to 200 μm, and still more preferably in the range of 1 μm to 100 μm.
電極の形成方法としては、「材料科学の基礎第6号有機トランジスタの基礎(アルドリッチ社)」に記載されているような公知慣用の方法を挙げることができ、所望の形状(パターン)および所望の厚みの電極を形成することができる方法であれば、特に限定されるものではなく、例えば、
まず、湿式成膜法または乾式成膜法を用いて、いったん広い範囲に導電膜を形成し(いったん、導電膜をべた(全面)形成し)、次に、該「べた導電膜」上にレジストを、フォトリソグラフィーまたは印刷法によりパターン形成し、しかるのち、エッチングする方法;
前記「べた導電膜」をレーザーアブレーションなどでパターン化する方法;
マスクを介した乾式成膜法にて、ダイレクトにパターン化する方法;
印刷法を用いてダイレクトにパターン化する方法;
等を挙げることができる。
Examples of the electrode forming method include known and commonly used methods as described in "Basics of Materials Science No. 6 Basics of Organic Transistors (Aldrich)", and a desired shape (pattern) and a desired It is not particularly limited as long as it can form a thick electrode, for example,
First, a conductive film is formed once in a wide range by using a wet film formation method or a dry film formation method (once the conductive film is solid (entirely formed)), and then a resist is formed on the “solid conductive film”. A pattern is formed by photolithography or printing, and then etched;
Patterning the “solid conductive film” by laser ablation or the like;
A direct patterning method using a dry film formation method through a mask;
Direct patterning using printing methods;
Etc.
乾式成膜法としては、例えば、プラズマCVD法、熱CVD法、レーザーCVD法等の化学蒸着(CVD)法;真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着(PVD)法;などを、
湿式成膜法としては、例えば、電解メッキ法、浸漬メッキ法、無電解メッキ法、ゾルゲル法、有機金属分解(MOD)法、塗布法、印刷法等を挙げることができる。
なお、前記マスクを介した方法としては、金属マスク法とリフトオフ法などを、前記塗布法としては、ESD(Electro Spray Deposition)法、ESDUS(Evaporative Spray Deposition from Ultra-dilute Solution)法、エアドクターコート法、エアナイフコート法、エッジキャスト法、含浸コート法、キスコート法、キャストコート法、スクイズコート法、スピンコート法、スリットコート法、静電コート法、静電スプレイコート法、ダイコート法、超音波スプレイコート法、超臨界スプレイコート法、ディスペンス法等、ディップコート法、ドクターブレードコート法、トランスファーロールコート法、ドロップキャスト法、バーコート法、ブレードコート法、リバースコート法、ロールコート法、ワイヤーバーコート法等を、
前記印刷法としては、インクジェット印刷法、オフセット印刷法、キャピラリーペン印刷法、グラビア印刷法、グラビアオフセット印刷法、スクリーン印刷法、ディスペンス法、凸版印刷法、凸版反転印刷法、ドロップキャスト法、フレキソ印刷法、平版印刷法、マイクロコンタクト印刷法等を挙げることができる。
Examples of the dry film forming method include chemical vapor deposition (CVD) methods such as plasma CVD, thermal CVD, and laser CVD; physical vapor deposition (PVD) such as vacuum deposition, sputtering, and ion plating; The
Examples of the wet film forming method include an electrolytic plating method, an immersion plating method, an electroless plating method, a sol-gel method, an organometallic decomposition (MOD) method, a coating method, and a printing method.
In addition, as a method through the mask, a metal mask method, a lift-off method, and the like are used. As the coating method, an ESD (Electro Spray Deposition) method, an ESDUS (Evaporative Spray Deposition Ultra-dilution Solution) method, and an air draping method. Method, air knife coating method, edge casting method, impregnation coating method, kiss coating method, cast coating method, squeeze coating method, spin coating method, slit coating method, electrostatic coating method, electrostatic spray coating method, die coating method, ultrasonic spraying method Coating method, supercritical spray coating method, dispensing method, dip coating method, doctor blade coating method, transfer roll coating method, drop cast method, bar coating method, blade coating method , Reverse coat method, roll coat method, wire bar coat method, etc.
As the printing method, inkjet printing method, offset printing method, capillary pen printing method, gravure printing method, gravure offset printing method, screen printing method, dispensing method, letterpress printing method, letterpress reverse printing method, drop cast method, flexographic printing Method, lithographic printing method, microcontact printing method and the like.
中でも、製造コスト低減の観点から、真空環境が不要となる、湿式成膜法を用いる方法が好まく、湿式成膜法の中、工程数が少ない、印刷法を用いる方法がより好ましい。 Among these, from the viewpoint of reducing the manufacturing cost, a method using a wet film forming method that eliminates the need for a vacuum environment is preferable, and among the wet film forming methods, a method using a printing method with fewer steps is more preferable.
次に、本発明のトランジスタの構成要素であるゲート絶縁層について説明する。
ゲート絶縁層は、ゲート電極とソース電極、ゲート電極とドレイン電極、ゲート電極と半導体層を電気的に絶縁する機能を有するものである。したがって、ゲート絶縁層の材料としては、電気的絶縁性材料であれば特に限定されるものではなく、例えば、シアノエチルプルラン、セルロースアセテートプロピオネート(CAP)、セルローストリアセテート(TAC)、ポリアリレート(PAR)、ポリイミド、ポリエステル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルスルホン(PES)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、ポリカーボネート(PC)、ポリシクロオレフィン、ポリスチレンおよびポリスチレン誘導体、ポリテトラフルオロエチレン(PTFE)、ポリパラキシリレン誘導体(例えば、パリレンシリーズ(商標名))、ポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、ポリフェニレンスルフィド(PPS)、ポリメチルメタクリレート(PMMA)、アクリル樹脂、アモルファスフッ素樹脂(例えば、サイトップシリーズ(商品名、旭硝子製))、アルキド樹脂、ウレタン樹脂、エポキシ樹脂、電子線硬化性樹脂(例えば、電子線硬化性アクリル系樹脂や電子線硬化性メタクリル系樹脂)、フェノール樹脂、ポリイミド樹脂、ポリビニルフェノール樹脂、フェノキシ樹脂、フェノール樹脂、フッ素樹脂、不飽和ポリエステル樹脂、メラミン樹脂、UV硬化性樹脂(例えば、UV硬化性アクリル系樹脂やUV硬化性メタクリル系樹脂)等の高分子化合物;
Al、SiO、BaSr(1-x)TiO、BaTiZr(1-x)等の無機物;
などを挙げることができる。
Next, a gate insulating layer which is a component of the transistor of the present invention will be described.
The gate insulating layer has a function of electrically insulating the gate electrode and the source electrode, the gate electrode and the drain electrode, and the gate electrode and the semiconductor layer. Therefore, the material of the gate insulating layer is not particularly limited as long as it is an electrically insulating material. For example, cyanoethyl pullulan, cellulose acetate propionate (CAP), cellulose triacetate (TAC), polyarylate (PAR) ), Polyimide, polyester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherimide (PEI), polyetheretherketone (PEEK), polyethersulfone (PES), polyvinylidene chloride (PVDC), polychlorinated Vinyl (PVC), polycarbonate (PC), polycycloolefin, polystyrene and polystyrene derivatives, polytetrafluoroethylene (PTFE), polyparaxylylene derivatives (eg, Parylene series) Trade name)), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), polyphenylene sulfide (PPS), polymethyl methacrylate (PMMA), acrylic resin, amorphous fluororesin (for example, Cytop series (trade name, manufactured by Asahi Glass)) , Alkyd resin, urethane resin, epoxy resin, electron beam curable resin (for example, electron beam curable acrylic resin or electron beam curable methacrylic resin), phenol resin, polyimide resin, polyvinyl phenol resin, phenoxy resin, phenol resin , Polymer compounds such as fluorine resin, unsaturated polyester resin, melamine resin, UV curable resin (for example, UV curable acrylic resin and UV curable methacrylic resin);
Inorganic substances such as Al 2 O 3 , SiO 2 , Ba x Sr (1-x) TiO 3 , BaTi x Zr (1-x) O 3 ;
And so on.
なお、ゲート絶縁層は、1種類の絶縁性材料からなるものであってもよく、2種類以上の絶縁性材料からなるものであってもよい。また、反応(重合)開始剤、架橋剤、架橋補助剤等を含んでいてもよい。
2種類以上の絶縁性材料からなる場合、各絶縁性材料は単純に混合されていてもよく、絶縁性材料間で共有結合が形成されていてもよい。さらに、反応(重合)開始剤、架橋剤、架橋補助剤を含んでいる場合、これらの材料と絶縁性材料は単純に混合されていてもよく、これらの材料間で共有結合が形成されていてもよい。
ゲート絶縁層の厚みは、該ゲート絶縁層を形成するために用いられる絶縁性材料の種類に応じて、所望の絶縁性を達成できる範囲内で適宜決定されるものであり、通常、10nm~5μmの範囲であることが好ましい。
Note that the gate insulating layer may be made of one type of insulating material or may be made of two or more types of insulating material. Further, it may contain a reaction (polymerization) initiator, a crosslinking agent, a crosslinking auxiliary agent and the like.
When it consists of two or more types of insulating materials, each insulating material may be simply mixed and the covalent bond may be formed between insulating materials. Furthermore, when a reaction (polymerization) initiator, a crosslinking agent, and a crosslinking auxiliary agent are included, these materials and the insulating material may be simply mixed, and a covalent bond is formed between these materials. Also good.
The thickness of the gate insulating layer is appropriately determined within a range in which a desired insulating property can be achieved, depending on the type of insulating material used for forming the gate insulating layer, and is usually 10 nm to 5 μm. It is preferable that it is the range of these.
ゲート絶縁層の形成方法としては、ゲート電極とソース電極間、ゲート電極とドレイン電極間、およびゲート電極と半導体層間を電気的に絶縁できる膜(層)を形成することができれば特に限定されるものではなく、例えば、公知慣用の乾式成膜法および湿式成膜法を挙げることができる。 A method for forming the gate insulating layer is particularly limited as long as a film (layer) that can electrically insulate between the gate electrode and the source electrode, between the gate electrode and the drain electrode, and between the gate electrode and the semiconductor layer can be formed. Instead, for example, publicly known dry film forming methods and wet film forming methods can be mentioned.
乾式成膜法としては、例えば、プラズマCVD法、熱CVD法、レーザーCVD法等の化学蒸着(CVD)法;
真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着(PVD)法;などを、
湿式成膜法としては、例えば、電解メッキ法、浸漬メッキ法、無電解メッキ法、ゾルゲル法、有機金属分解(MOD)法、塗布法、印刷法等を挙げることができる。
なお、前記塗布法としては、ESD(Electro Spray Deposition)法、ESDUS(Evaporative Spray Deposition from Ultra-dilute Solution)法、エアドクターコート法、エアナイフコート法、エッジキャスト法、含浸コート法、キスコート法、キャストコート法、スクイズコート法、スピンコート法、スリットコート法、静電コート法、静電スプレイコート法、ダイコート法、超音波スプレイコート法、超臨界スプレイコート法、ディスペンス法等、ディップコート法、ドクターブレードコート法、トランスファーロールコート法、ドロップキャスト法、バーコート法、ブレードコート法、リバースコート法、ロールコート法、ワイヤーバーコート法等を、
前記印刷法としては、インクジェット印刷法、オフセット印刷法、キャピラリーペン印刷法、グラビア印刷法、グラビアオフセット印刷法、スクリーン印刷法、ディスペンス法、凸版印刷法、凸版反転印刷法、ドロップキャスト法、フレキソ印刷法、平版印刷法、マイクロコンタクト印刷法等を挙げることができる。
Examples of the dry film forming method include chemical vapor deposition (CVD) methods such as a plasma CVD method, a thermal CVD method, and a laser CVD method;
Physical vapor deposition (PVD) methods such as vacuum deposition, sputtering, and ion plating;
Examples of the wet film forming method include an electrolytic plating method, an immersion plating method, an electroless plating method, a sol-gel method, an organometallic decomposition (MOD) method, a coating method, and a printing method.
Examples of the coating method include an ESD (Electro Spray Deposition) method, an ESDUS (Evaporative Spray Deposition ultra-dilute Solution) method, an air doctor coating method, an air knife coating method, an edge casting method, an impregnation coating method, Coating method, squeeze coating method, spin coating method, slit coating method, electrostatic coating method, electrostatic spray coating method, die coating method, ultrasonic spray coating method, supercritical spray coating method, dispensing method, dip coating method, doctor Blade coating method, transfer roll coating method, drop cast method, bar coating method, blade coating method, reverse coating method, roll coating method, wire bar coating method, etc.
As the printing method, inkjet printing method, offset printing method, capillary pen printing method, gravure printing method, gravure offset printing method, screen printing method, dispensing method, letterpress printing method, letterpress reverse printing method, drop cast method, flexographic printing Method, lithographic printing method, microcontact printing method and the like.
中でも、製造コスト低減の観点からは、真空設備が不要となる、湿式成膜法を用いる方法が好ましい。
なお、パターン化が必要な場合、「電極」の項において説明した内容と同様の方法にてパターン化することができる。
Among these, from the viewpoint of reducing manufacturing costs, a method using a wet film forming method that does not require a vacuum facility is preferable.
If patterning is required, patterning can be performed by the same method as described in the section “Electrodes”.
本発明のトランジスタの構成要素である半導体層について説明する。
本発明のトランジスタの特徴は、その構成要素である半導体層に、本発明の化合物を含有することにある。なお、本発明のトランジスタの構成要素である半導体層は、所望の半導体特性を呈することができれば、本発明の化合物以外の材料を含有していてもよい。そのような材料としては、「(本発明のインク)」の項目で説明した、その他の半導体材料、高分子化合物や樹脂、体質成分、界面活性剤、離型剤等を挙げることができる。
A semiconductor layer which is a component of the transistor of the present invention will be described.
A feature of the transistor of the present invention resides in that the compound of the present invention is contained in a semiconductor layer which is a constituent element thereof. Note that the semiconductor layer which is a constituent element of the transistor of the present invention may contain a material other than the compound of the present invention as long as desired semiconductor characteristics can be exhibited. Examples of such materials include other semiconductor materials, polymer compounds and resins, constitutional components, surfactants, release agents and the like described in the section “(Ink of the present invention)”.
半導体層の厚みは、半導体層を形成するために用いられる半導体材料の種類に応じて、所望の半導体特性を達成できる範囲内で適宜決定されるものであり、通常、0.5nm~1μmの範囲であることが好ましく、5nm~500nmの範囲であることがより好ましく、10nm~300nmの範囲であることがさらに好ましい。 The thickness of the semiconductor layer is appropriately determined within a range in which desired semiconductor characteristics can be achieved, depending on the type of semiconductor material used to form the semiconductor layer, and is usually in the range of 0.5 nm to 1 μm. Preferably, the range is from 5 nm to 500 nm, and more preferably from 10 nm to 300 nm.
半導体層の形成方法としては、少なくともチャネル領域(ソース電極とドレイン電極で挟まれた領域)を覆うように半導体層を形成することができる方法であれば特に限定されるものではなく、例えば、公知慣用の乾式成膜法および湿式成膜法を挙げることができる。 The method for forming the semiconductor layer is not particularly limited as long as it can form the semiconductor layer so as to cover at least the channel region (the region sandwiched between the source electrode and the drain electrode). Conventional dry film forming methods and wet film forming methods can be exemplified.
乾式成膜法としては、例えば、
プラズマCVD法、熱CVD法、レーザーCVD法等の化学蒸着(CVD)法;
真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着(PVD)法;
湿式成膜法としては、例えば、
ESD(Electro Spray Deposition)法、ESDUS(Evaporative Spray Deposition from Ultra-dilute Solution)法、エアドクターコート法、エアナイフコート法、エッジキャスト法、含浸コート法、キスコート法、キャストコート法、スクイズコート法、スピンコート法、スリットコート法、静電コート法、静電スプレイコート法、ダイコート法、超音波スプレイコート法、超臨界スプレイコート法、ディスペンス法等、ディップコート法、ドクターブレードコート法、トランスファーロールコート法、ドロップキャスト法、バーコート法、ブレードコート法、リバースコート法、ロールコート法、ワイヤーバーコート法等の塗布法;
インクジェット印刷法、オフセット印刷法、キャピラリーペン印刷法、グラビア印刷法、グラビアオフセット印刷法、スクリーン印刷法、ディスペンス法、凸版印刷法、凸版反転印刷法、ドロップキャスト法、フレキソ印刷法、平版印刷法、マイクロコンタクト印刷法等の印刷法;
等を挙げることができる。
As a dry film forming method, for example,
Chemical vapor deposition (CVD) methods such as plasma CVD, thermal CVD, and laser CVD;
Physical vapor deposition (PVD) methods such as vacuum deposition, sputtering and ion plating;
As a wet film formation method, for example,
ESD (Electro Spray Deposition) method, ESDUS (Evaporative Spray Deposition Ultra-dilution Solution) method, air doctor coat method, air knife coat method, edge cast method, impregnation coat method, spin coat method, spin coat method, spin coat method Coating method, slit coating method, electrostatic coating method, electrostatic spray coating method, die coating method, ultrasonic spray coating method, supercritical spray coating method, dispensing method, dip coating method, doctor blade coating method, transfer roll coating method Coating methods such as drop casting, bar coating, blade coating, reverse coating, roll coating, and wire bar coating;
Inkjet printing method, offset printing method, capillary pen printing method, gravure printing method, gravure offset printing method, screen printing method, dispensing method, letterpress printing method, letterpress reverse printing method, drop cast method, flexographic printing method, planographic printing method, Printing method such as micro contact printing method;
Etc.
中でも、製造コストの低減および製造プロセスの低温化の観点から、湿式成膜法を用いる方法が好ましい。 Among these, a method using a wet film forming method is preferable from the viewpoint of reducing the manufacturing cost and lowering the manufacturing process.
また、半導体層の形成に当たっては、半導体材料の結晶性を高め半導体特性の向上を図ることを目的に、必要に応じて、前記のようにして成膜したのちにアニーリングを実施してもよい。アニーリングの温度は50~200℃の範囲であることが好ましく、70~200℃の範囲であることがより好ましく、アニーリングの時間は10分~12時間の範囲であることが好ましく、1時間~10時間の範囲であることがより好ましく、30分~10時間の範囲であることがさらに好ましい。 In forming the semiconductor layer, annealing may be performed after the film is formed as described above for the purpose of increasing the crystallinity of the semiconductor material and improving the semiconductor characteristics. The annealing temperature is preferably in the range of 50 to 200 ° C, more preferably in the range of 70 to 200 ° C, and the annealing time is preferably in the range of 10 minutes to 12 hours, and is preferably in the range of 1 hour to 10 hours. A time range is more preferable, and a range of 30 minutes to 10 hours is more preferable.
本発明のトランジスタの用途としては、表示装置を構成する画素のスイッチング素子、表示装置を構成する画素の信号ドライバ回路、メモリ回路、センサ回路、インバータ、リングオシレータ、RFID等を挙げることができる。
前記表示装置のとしては、液晶表示装置、分散型液晶表示装置、電気泳動表示装置、粒子回転表示装置、エレクトロクロミック表示装置、有機EL表示装置、電子ペーパー等を挙げることができる。
Applications of the transistor of the present invention include a switching element of a pixel constituting a display device, a signal driver circuit of a pixel constituting the display device, a memory circuit, a sensor circuit, an inverter, a ring oscillator, an RFID, and the like.
Examples of the display device include a liquid crystal display device, a dispersion type liquid crystal display device, an electrophoretic display device, a particle rotation display device, an electrochromic display device, an organic EL display device, and electronic paper.
本発明を実施例でさらに詳細に説明する。 The invention is explained in more detail in the examples.
(実施例1)
〈化合物(101)の製造方法〉
化合物(101)の製造方法について説明する。なお、化合物(101)は、一般式(1)で表される化合物において、Arがフェニル基、Rがデシル基、nが0である場合に相当する化合物である。
Example 1
<Method for Producing Compound (101)>
A method for producing compound (101) will be described. The compound (101) is a compound corresponding to the case where Ar is a phenyl group, R 1 is a decyl group, and n is 0 in the compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
製造スキームを(S101)に示す。 The production scheme is shown in (S101).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
まず、化合物(101-1)の合成方法について説明する。
アルゴン雰囲気下、TBT3.3g(17mmol)に乾燥テトラヒドロフラン55mLを加え、-78℃に冷却した。反応液へn-ブチルリチウムの1.6mol/Lヘキサン溶液12mL(19mmol)をゆっくり滴下した。反応液を室温に昇温し、さらに1時間撹拌した。反応液を-78℃に冷却し、2‐イソプロポキシ‐4,4,5,5‐テトラメチル‐1,3,2‐ジオキサボロラン3.9mL(19mmol)をゆっくり加えたのち、室温に昇温し、16時間撹拌した。反応液に水を加えて反応を停止した後、溶媒を留去した。酢酸エチルを加え、水洗した後、硫酸マグネシウムで有機相を乾燥、溶媒を留去した。得られた粗製物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で分離精製することで、化合物(101-1)3.4g(収率、62%)を得た。
First, a synthesis method of the compound (101-1) will be described.
Under an argon atmosphere, 55 mL of dry tetrahydrofuran was added to 3.3 g (17 mmol) of TBT, and the mixture was cooled to −78 ° C. To the reaction solution, 12 mL (19 mmol) of a 1.6 mol / L hexane solution of n-butyllithium was slowly added dropwise. The reaction was warmed to room temperature and stirred for an additional hour. The reaction solution was cooled to -78 ° C, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.9 mL, 19 mmol) was slowly added, and the temperature was raised to room temperature. And stirred for 16 hours. Water was added to the reaction solution to stop the reaction, and then the solvent was distilled off. After adding ethyl acetate and washing with water, the organic phase was dried over magnesium sulfate and the solvent was distilled off. The obtained crude product was separated and purified by silica gel column chromatography (hexane / ethyl acetate) to obtain 3.4 g (yield, 62%) of compound (101-1).
次に化合物(101-2)の合成方法について説明する。
アルゴン雰囲気下、化合物(101-1)1.04g(3.3mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)0.18g(0.16mmol)、炭酸カリウム2.2g(16mmol)に乾燥トルエン13mL、乾燥N,N-ジメチルホルムアミド3mLを加え室温で撹拌した。反応液へブロモベンゼン0.75g(4.7mmol)を滴下した後、100℃で1時間撹拌した。反応液にクロロホルムを加え、水洗したのち、硫酸マグネシウムで有機相を乾燥、溶媒を留去した。得られた粗製物をヘキサンに分散させたのち、ろ過することで、化合物(101-2)0.57g(収率、64%)を得た。
Next, a synthesis method of the compound (101-2) will be described.
Under an argon atmosphere, 1.04 g (3.3 mmol) of the compound (101-1), 0.18 g (0.16 mmol) of tetrakis (triphenylphosphine) palladium (0), 2.2 g (16 mmol) of potassium carbonate and 13 mL of dry toluene Then, 3 mL of dry N, N-dimethylformamide was added and stirred at room temperature. To the reaction solution, 0.75 g (4.7 mmol) of bromobenzene was added dropwise, followed by stirring at 100 ° C. for 1 hour. Chloroform was added to the reaction solution, washed with water, the organic phase was dried over magnesium sulfate, and the solvent was distilled off. The obtained crude product was dispersed in hexane and filtered to obtain 0.57 g (yield, 64%) of compound (101-2).
最後に、化合物(101)の合成方法について説明する。
アルゴン雰囲気下、化合物(101-2)0.23g(0.86mmol)に乾燥テトラヒドロフラン19mLを加え、-78℃に冷却した。反応液へn-ブチルリチウムの1.6mol/Lヘキサン溶液1.1mL(1.9mmol)をゆっくり滴下した。反応液を室温に昇温し、さらに1時間撹拌した。反応液を-78℃に冷却し、1-ブロモデカン0.39mL(1.9mmol)をゆっくり加えたのち、室温に昇温し、16時間撹拌した。反応液に水を加えて反応を停止したのち、溶媒を留去した。クロロホルムを加え、水洗したのち、硫酸マグネシウムで有機相を乾燥、溶媒を留去した。得られた粗製物をシリカゲルカラムクロマトグラフィー(シクロヘキサン)で分離精製することで、化合物(101)76mg(収率、22%)を得た。
Finally, a method for synthesizing the compound (101) will be described.
Under an argon atmosphere, 19 mL of dry tetrahydrofuran was added to 0.23 g (0.86 mmol) of the compound (101-2), and the mixture was cooled to −78 ° C. To the reaction solution, 1.1 mL (1.9 mmol) of a 1.6 mol / L hexane solution of n-butyllithium was slowly added dropwise. The reaction was warmed to room temperature and stirred for an additional hour. The reaction solution was cooled to −78 ° C., 0.39 mL (1.9 mmol) of 1-bromodecane was slowly added, the temperature was raised to room temperature, and the mixture was stirred for 16 hours. After adding water to the reaction solution to stop the reaction, the solvent was distilled off. After adding chloroform and washing with water, the organic phase was dried over magnesium sulfate and the solvent was distilled off. The obtained crude product was separated and purified by silica gel column chromatography (cyclohexane) to obtain 76 mg (yield, 22%) of compound (101).
H NMR(300MHz,CDCl):δ8.14(s,1H),δ8.08(s,1H),δ7.51(d,J=6.9Hz,2H),δ7.47-7.41(m,3H),δ7.01(s,1H),δ2.92(t,J=7.5Hz,2H),δ1.79-1.75(m,2H),δ1.45-1.20(m,14H),δ0.88(t,J=7.8Hz,3H)。 1 H NMR (300 MHz, CDCl 3 ): δ 8.14 (s, 1H), δ 8.08 (s, 1H), δ 7.51 (d, J = 6.9 Hz, 2H), δ 7.47-7.41. (M, 3H), δ 7.01 (s, 1H), δ 2.92 (t, J = 7.5 Hz, 2H), δ 1.79-1.75 (m, 2H), δ 1.45-1.20 (M, 14H), δ 0.88 (t, J = 7.8 Hz, 3H).
〈化合物(101)を用いてなるトランジスタの製造方法〉
熱酸化膜付ヘビードープp型シリコンウエハ(熱酸化膜(SiO)の厚さ:300nm)を、中性洗剤、超純水、イソプロピルアルコール(以下、IPAと略する。)、アセトン、IPAの順に超音波洗浄に供した。
次に、化合物(101)をp-キシレンに対して0.4質量%加えて80℃下にてよく攪拌したのち、このものを、前記洗浄シリコンウエハ上にスピンコートした(スピンコート条件:3000rpm、30秒)。
最後に、化合物(101)を前記のようにしてコートしたシリコンウエハ上に、真空蒸着法(2×10-6Torr)にて、金属マスクを介して、金をパターン蒸着することにより、ソース・ドレイン電極を形成した(チャネル長:チャネル幅=75μm:3000μm)。
<Method for Producing Transistor Using Compound (101)>
A heavy-doped p-type silicon wafer with thermal oxide film (thickness of thermal oxide film (SiO 2 ): 300 nm) is neutral detergent, ultrapure water, isopropyl alcohol (hereinafter abbreviated as IPA), acetone, and IPA in this order. The sample was subjected to ultrasonic cleaning.
Next, after adding 0.4% by mass of compound (101) to p-xylene and stirring well at 80 ° C., this was spin-coated on the washed silicon wafer (spin coating condition: 3000 rpm). , 30 seconds).
Finally, gold is pattern deposited on the silicon wafer coated with the compound (101) as described above by a vacuum deposition method (2 × 10 −6 Torr) through a metal mask. A drain electrode was formed (channel length: channel width = 75 μm: 3000 μm).
〈化合物(101)を用いてなるトランジスタの移動度の評価方法〉
前記のようにして製造したトランジスタの移動度は、ソース電極を接地し、ドレイン電極に-80Vを印加した状態で、ゲート電極に電圧(V)をスイープ印加(+40Vから-60V)しながら、ドレイン電極に流れる電流(I)を測定し、
√I-Vの傾きから、式(Eq.101)を用いて求めた。単位はcm/Vsである。
<Evaluation Method for Mobility of Transistor Using Compound (101)>
The mobility of the transistor manufactured as described above is that the source electrode is grounded and −80 V is applied to the drain electrode, and the voltage (V g ) is swept (+40 V to −60 V) to the gate electrode. Measure the current (I d ) flowing through the drain electrode,
From the slope of √I d −V g , it was determined using the equation (Eq. 101). The unit is cm 2 / Vs.
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
(式中、Wはチャネル幅、Lはチャネル長、μは移動度、Cはゲート絶縁層の単位面積当たりの電気容量、Vは閾値電圧を表す。)
結果を表1に示した。
(Wherein, W is the channel width, L is the channel length, μ is the mobility, C is the capacitance per unit area of the gate insulating layer, and V T is the threshold voltage.)
The results are shown in Table 1.
(実施例2)
〈化合物(102)の製造方法〉
化合物(102)の製造方法について説明する。なお、化合物(102)は、一般式(1)で表される化合物において、Arがフェニル基、Rが水素原子、nが1である場合に相当する化合物である。
(Example 2)
<Method for Producing Compound (102)>
A method for producing compound (102) will be described. The compound (102) is a compound corresponding to the compound represented by the general formula (1), in which Ar is a phenyl group, R 1 is a hydrogen atom, and n is 1.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
製造スキームを(S102)に示す。 The production scheme is shown in (S102).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
まず、化合物(102-1)の合成方法について説明する。
アルゴン雰囲気下、TBT7.7g(40mmol)にテトラヒドロフラン140mLを加え、-78℃に冷却した。反応液へn-ブチルリチウムの1.6mol/Lヘキサン溶液30mL(47mmol)をゆっくり滴下した。反応液を室温に昇温し、さらに1時間撹拌した。反応液を-78℃に冷却し、よう素12g(47mmol)ゆっくり加えたのち、室温に昇温し、16時間撹拌した。反応液に水を加えて反応を停止した後、溶媒を留去した。得られた粗製物をメタノールで洗浄した後、アセトンに分散させた。不溶物をろ過し、ろ液を留去することで化合物(102-1)6.6g(収率、52%)を得た。
First, a method for synthesizing the compound (102-1) will be described.
Under argon atmosphere, 140 mL of tetrahydrofuran was added to 7.7 g (40 mmol) of TBT, and the mixture was cooled to −78 ° C. To the reaction solution, 30 mL (47 mmol) of a 1.6 mol / L hexane solution of n-butyllithium was slowly added dropwise. The reaction was warmed to room temperature and stirred for an additional hour. The reaction solution was cooled to −78 ° C., 12 g (47 mmol) of iodine was slowly added, the temperature was raised to room temperature, and the mixture was stirred for 16 hours. Water was added to the reaction solution to stop the reaction, and then the solvent was distilled off. The obtained crude product was washed with methanol and then dispersed in acetone. Insoluble matter was filtered off, and the filtrate was distilled off to obtain 6.6 g of compound (102-1) (yield, 52%).
次に化合物(102)の合成方法について説明する。
アルゴン雰囲気下、化合物(102-1)1.0g(3.2mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)0.14g(0.19mmol)、ヨウ化銅(I)0.074g(0.39mmol)に乾燥テトラヒドロフラン80mLを加え室温で撹拌した。反応液へエチニルベンゼン0.70mL(6.4mmol)を滴下した後、室温で2時間撹拌した。反応液にクロロホルムを加え、水洗したのち、硫酸マグネシウムで有機相を乾燥、溶媒を留去した。得られた粗製物をヘキサンに分散させたのち、シリカゲルカラムクロマトグラフィー(シクロヘキサン)で分離精製することで化合物(102)0.31g(収率、34%)を得た。
Next, the synthesis method of a compound (102) is demonstrated.
Under an argon atmosphere, 1.0 g (3.2 mmol) of compound (102-1), 0.14 g (0.19 mmol) of dichlorobis (triphenylphosphine) palladium (II), 0.074 g (0. 39 mmol) was added 80 mL of dry tetrahydrofuran and stirred at room temperature. To the reaction solution, 0.70 mL (6.4 mmol) of ethynylbenzene was added dropwise, followed by stirring at room temperature for 2 hours. Chloroform was added to the reaction solution, washed with water, the organic phase was dried over magnesium sulfate, and the solvent was distilled off. The obtained crude product was dispersed in hexane and separated and purified by silica gel column chromatography (cyclohexane) to obtain 0.31 g (yield, 34%) of Compound (102).
H NMR(400MHz,CDCl):δ8.26(s,1H),δ8.21(s,1H),δ7.58-7.54(m,3H),δ7.49(d,J=5.2Hz,1H),δ7.39-7.35(m,4H)。 1 H NMR (400MHz, CDCl 3 ): δ8.26 (s, 1H), δ8.21 (s, 1H), δ7.58-7.54 (m, 3H), δ7.49 (d, J = 5 .2 Hz, 1H), δ 7.39-7.35 (m, 4H).
〈化合物(102)の溶解度の評価〉
 室温(25℃)において、実施例2で得た化合物(102)へ、目視で完全に溶解するまでp-キシレンを加えて、溶解度を評価した。結果を表2に示す。 
<Evaluation of Solubility of Compound (102)>
At room temperature (25 ° C.), p-xylene was added to the compound (102) obtained in Example 2 until it was completely dissolved visually to evaluate the solubility. The results are shown in Table 2.
〈化合物(102)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(102)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (102)>
A transistor was produced in the same manner as in Example 1 except that the compound (102) was used instead of the compound (101).
〈化合物(102)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに、化合物(102)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。 
<Evaluation Method for Mobility of Transistor Using Compound (102)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (102) was used instead of the transistor using the compound (101). The results are shown in Table 1.
(実施例3)
〈化合物(103)の製造方法〉
化合物(103)の製造方法について説明する。なお、化合物(103)は、一般式(1)で表される化合物において、Arが4-プロピルフェニル基、Rが水素原子、nが1である場合に相当する化合物である。
(Example 3)
<Method for Producing Compound (103)>
A method for producing compound (103) will be described. The compound (103) is a compound corresponding to the compound represented by the general formula (1) when Ar is a 4-propylphenyl group, R 1 is a hydrogen atom, and n is 1.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
実施例2において、エチニルベンゼンの代わりに、1-エチニル-4-プロピルベンゼンを用いた以外は実施例2と同様にして、化合物(103)を得た。 In Example 2, compound (103) was obtained in the same manner as in Example 2, except that 1-ethynyl-4-propylbenzene was used instead of ethynylbenzene.
H NMR(400MHz,CDCl):δ8.23(s,1H),δ8.19(s,1H),δ7.50-7.45(m,4H),δ7.34(d,J=5.2Hz,1H),δ7.17(d,J=8.0Hz,1H),δ2.59(t,J=7.6Hz,2H),δ1.67-1.60(m,2H),δ0.93(t,J=7.4Hz,3H)。 1 H NMR (400 MHz, CDCl 3 ): δ 8.23 (s, 1H), δ 8.19 (s, 1H), δ 7.50-7.45 (m, 4H), δ 7.34 (d, J = 5 .2 Hz, 1 H), δ 7.17 (d, J = 8.0 Hz, 1 H), δ 2.59 (t, J = 7.6 Hz, 2 H), δ 1.67-1.60 (m, 2 H), δ 0 .93 (t, J = 7.4 Hz, 3H).
〈化合物(103)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(103)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (103)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (103) was used instead of the compound (102). The results are shown in Table 2.
〈化合物(103)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(103)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (103)>
A transistor was manufactured in the same manner as in Example 1, except that the compound (103) was used instead of the compound (101).
〈化合物(103)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに化合物(103)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。
<Evaluation Method of Mobility of Transistor Using Compound (103)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (103) was used instead of the transistor using the compound (101). The results are shown in Table 1.
(実施例4)
〈化合物(104)の製造方法〉
化合物(104)の製造方法について説明する。なお、化合物(104)は、一般式(1)で表される化合物において、Arが4-ペンチルフェニル基、Rが水素原子、nが1である場合に相当する化合物である。
(Example 4)
<Method for Producing Compound (104)>
A method for producing the compound (104) will be described. Note that the compound (104) is a compound corresponding to the compound represented by the general formula (1) when Ar is a 4-pentylphenyl group, R 1 is a hydrogen atom, and n is 1.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
実施例2において、エチニルベンゼンの代わりに、1-エチニル-4-ペンチルベンゼンを用いた以外は実施例2と同様にして、化合物(104)を得た。 In Example 2, compound (104) was obtained in the same manner as in Example 2, except that 1-ethynyl-4-pentylbenzene was used instead of ethynylbenzene.
H NMR(300MHz,CDCl):δ8.25(s,1H),δ8.20(s,1H),δ7.51-7.46(m,4H),δ7.35(d,J=6.3Hz,1H),δ7.18(d,J=8.1Hz,1H),δ2.64(t,J=6.6Hz,2H),δ1.67-1.57(m,2H),δ1.35-1.30(m,4H),δ0.90(t,J=7.0Hz,3H)。 1 H NMR (300 MHz, CDCl 3 ): δ 8.25 (s, 1H), δ 8.20 (s, 1H), δ 7.51-7.46 (m, 4H), δ 7.35 (d, J = 6 .3 Hz, 1 H), δ 7.18 (d, J = 8.1 Hz, 1 H), δ 2.64 (t, J = 6.6 Hz, 2 H), δ 1.67-1.57 (m, 2 H), δ 1 .35-1.30 (m, 4H), δ 0.90 (t, J = 7.0 Hz, 3H).
〈化合物(104)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(104)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (104)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (104) was used instead of the compound (102). The results are shown in Table 2.
〈化合物(104)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(104)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (104)>
A transistor was produced in the same manner as in Example 1 except that the compound (104) was used instead of the compound (101).
〈化合物(104)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに化合物(104)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。
<Evaluation Method for Mobility of Transistor Using Compound (104)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (104) was used instead of the transistor using the compound (101). The results are shown in Table 1.
(実施例5)
〈化合物(105)の製造方法〉
化合物(105)の製造方法について説明する。なお、化合物(105)は、一般式(1)で表される化合物において、Arが4-オクチルフェニル基、Rが水素原子、nが1である場合に相当する化合物である。
(Example 5)
<Method for Producing Compound (105)>
A method for producing compound (105) will be described. The compound (105) is a compound corresponding to the compound represented by the general formula (1) in which Ar is a 4-octylphenyl group, R 1 is a hydrogen atom, and n is 1.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
実施例2において、エチニルベンゼンの代わりに、1-エチニル-4-オクチルベンゼンを用いた以外は実施例2と同様にして、化合物(105)を得た。 In Example 2, compound (105) was obtained in the same manner as in Example 2, except that 1-ethynyl-4-octylbenzene was used instead of ethynylbenzene.
H NMR(400MHz,CDCl):δ8.25(s,1H),δ8.20(s,1H),δ7.51-7.47(m,4H),δ7.35(d,J=5.6Hz,1H),δ7.18(d,J=8.4Hz,1H),δ2.63(t,J=6.8Hz,2H),δ1.62-1.60(m,2H),δ1.31-1.27(m,10H),δ0.88(t,J=6.6Hz,3H)。 1 H NMR (400 MHz, CDCl 3 ): δ 8.25 (s, 1H), δ 8.20 (s, 1H), δ 7.51-7.47 (m, 4H), δ 7.35 (d, J = 5 .6 Hz, 1 H), δ 7.18 (d, J = 8.4 Hz, 1 H), δ 2.63 (t, J = 6.8 Hz, 2 H), δ 1.62-1.60 (m, 2 H), δ 1 .31-1.27 (m, 10H), δ 0.88 (t, J = 6.6 Hz, 3H).
〈化合物(105)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(105)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (105)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (105) was used instead of the compound (102). The results are shown in Table 2.
〈化合物(105)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(105)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (105)>
A transistor was produced in the same manner as in Example 1 except that the compound (105) was used instead of the compound (101).
〈化合物(105)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに化合物(105)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。
<Evaluation Method for Mobility of Transistor Using Compound (105)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (105) was used instead of the transistor using the compound (101). The results are shown in Table 1.
(実施例6)
〈化合物(106)の製造方法〉
化合物(106)の製造方法について説明する。なお、化合物(106)は、一般式(1)で表される化合物において、Arがフェニル基、Rがヘキシル基、nが1である場合に相当する化合物である。
(Example 6)
<Method for Producing Compound (106)>
A method for producing compound (106) will be described. The compound (106) is a compound corresponding to the compound represented by the general formula (1) when Ar is a phenyl group, R 1 is a hexyl group, and n is 1.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
製造スキームを(S103)に示す。 The production scheme is shown in (S103).
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
化合物(106)の合成方法について説明する。
アルゴン雰囲気下、化合物(102)0.20g(0.69mmol)に乾燥テトラヒドロフラン20mLを加え、-78℃に冷却した。反応液へn-ブチルリチウムの1.6mol/Lヘキサン溶液0.90mL(1.4mmol)をゆっくり滴下した。反応液を室温に昇温し、さらに1時間撹拌した。反応液を-78℃に冷却し、1-ブロモヘキサン0.40mL(2.8mmol)をゆっくり加えたのち、室温に昇温し、10時間撹拌した。反応液に水を加えて反応を停止した後、溶媒を留去した。クロロホルムを加え、水洗した後、硫酸マグネシウムで有機相を乾燥、溶媒を留去した。得られた粗製物をシリカゲルカラムクロマトグラフィー(シクロヘキサン)で分離精製することで、化合物(106)67mg(収率、26%)を得た。
A method for synthesizing the compound (106) will be described.
Under an argon atmosphere, 20 mL of dry tetrahydrofuran was added to 0.20 g (0.69 mmol) of the compound (102), and the mixture was cooled to −78 ° C. To the reaction solution, 0.90 mL (1.4 mmol) of a 1.6 mol / L hexane solution of n-butyllithium was slowly added dropwise. The reaction was warmed to room temperature and stirred for an additional hour. The reaction solution was cooled to −78 ° C., 0.40 mL (2.8 mmol) of 1-bromohexane was slowly added, and then the mixture was warmed to room temperature and stirred for 10 hours. Water was added to the reaction solution to stop the reaction, and then the solvent was distilled off. After adding chloroform and washing with water, the organic phase was dried over magnesium sulfate and the solvent was distilled off. The obtained crude product was separated and purified by silica gel column chromatography (cyclohexane) to obtain 67 mg (yield, 26%) of compound (106).
H NMR(400MHz,CDCl):δ8.13(s,1H),δ8.03(s,1H),δ7.57-7.55(m,2H),δ7.51(s,1H),δ7.38-7.36(m,3H),δ7.01(s,1H),δ2.92(t,J=7.2Hz,2H),δ1.80-1.74(m,2H),δ1.44-1.39(m,2H),δ1.34-1.30(m,2H),δ0.90(t,J=7.0Hz,3H)。 1 H NMR (400 MHz, CDCl 3 ): δ 8.13 (s, 1H), δ 8.03 (s, 1H), δ 7.57-7.55 (m, 2H), δ 7.51 (s, 1H), δ 7.38-7.36 (m, 3H), δ 7.01 (s, 1H), δ 2.92 (t, J = 7.2 Hz, 2H), δ 1.80-1.74 (m, 2H), δ1.44-1.39 (m, 2H), δ1.34-1.30 (m, 2H), δ0.90 (t, J = 7.0 Hz, 3H).
〈化合物(106)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(106)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (106)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (106) was used instead of the compound (102). The results are shown in Table 2.
〈化合物(106)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(106)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (106)>
A transistor was manufactured in the same manner as in Example 1 except that the compound (106) was used instead of the compound (101).
〈化合物(106)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに、化合物(106)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。
<Evaluation Method for Mobility of Transistor Using Compound (106)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (106) was used instead of the transistor using the compound (101). The results are shown in Table 1.
(実施例7)
〈化合物(107)の製造方法〉
化合物(107)の製造方法について説明する。なお、化合物(107)は、一般式(1)で表される化合物において、Arがフェニル基、Rがデシル基、nが1である場合に相当する化合物である。
(Example 7)
<Method for Producing Compound (107)>
A method for producing compound (107) will be described. The compound (107) is a compound corresponding to the compound represented by the general formula (1) when Ar is a phenyl group, R 1 is a decyl group, and n is 1.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
実施例6において、1-ブロモヘキサンの代わりに、1-ブロモデカンを用いた以外は実施例6と同様にして、化合物(107)を得た。 In Example 6, compound (107) was obtained in the same manner as in Example 6, except that 1-bromodecane was used instead of 1-bromohexane.
H NMR(400MHz,CDCl):δ8.13(s,1H),δ8.03(s,1H),δ7.57-7.55(m,2H),δ7.50(s,1H),δ7.39-7.36(m,3H),δ7.01(s,1H),δ2.91(t,J=7.2Hz,2H),δ1.82-1.73(m,2H),δ1.41-1.27(m,14H),δ0.88(t,J=7.0Hz,3H)。 1 H NMR (400 MHz, CDCl 3 ): δ 8.13 (s, 1H), δ 8.03 (s, 1H), δ 7.57-7.55 (m, 2H), δ 7.50 (s, 1H), δ 7.39-7.36 (m, 3H), δ 7.01 (s, 1H), δ 2.91 (t, J = 7.2 Hz, 2H), δ 1.82-1.73 (m, 2H), δ1.41-1.27 (m, 14H), δ0.88 (t, J = 7.0 Hz, 3H).
〈化合物(107)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(107)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (107)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (107) was used instead of the compound (102). The results are shown in Table 2.
〈化合物(107)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(107)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (107)>
A transistor was produced in the same manner as in Example 1 except that the compound (107) was used instead of the compound (101).
〈化合物(107)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに化合物(107)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。
<Evaluation Method of Mobility of Transistor Using Compound (107)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (107) was used instead of the transistor using the compound (101). The results are shown in Table 1.
(実施例8)
〈化合物(108)の製造方法〉
化合物(108)の製造方法について説明する。なお、化合物(108)は、一般式(1)で表される化合物において、Arがフェニル基、Rがヘプチル基、nが1である場合に相当する化合物である。
(Example 8)
<Method for Producing Compound (108)>
A method for producing compound (108) will be described. The compound (108) is a compound corresponding to the compound represented by the general formula (1) when Ar is a phenyl group, R 1 is a heptyl group, and n is 1.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
実施例6において、1-ブロモヘキサンの代わりに、1-ヨードヘプタンを用いた以外は実施例6と同様にして、化合物(108)を得た。 In Example 6, Compound (108) was obtained in the same manner as in Example 6, except that 1-iodoheptane was used instead of 1-bromohexane.
H NMR(400MHz,CDCl):δ8.13(s,1H),δ8.04(s,1H),δ7.57-7.55(m,2H),δ7.51(s,1H),δ7.40-7.36(m,3H),δ7.01(s,1H),δ2.92(t,J=7.4Hz,2H),δ1.81-1.71(m,2H),δ1.45-1.26(m,8H),δ0.89(t,J=6.6Hz,3H)。 1 H NMR (400 MHz, CDCl 3 ): δ 8.13 (s, 1H), δ 8.04 (s, 1H), δ 7.57-7.55 (m, 2H), δ 7.51 (s, 1H), δ 7.40-7.36 (m, 3H), δ 7.01 (s, 1H), δ 2.92 (t, J = 7.4 Hz, 2H), δ 1.81-1.71 (m, 2H), δ1.45-1.26 (m, 8H), δ0.89 (t, J = 6.6 Hz, 3H).
〈化合物(108)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(108)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (108)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (108) was used instead of the compound (102). The results are shown in Table 2.
〈化合物(108)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(108)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (108)>
A transistor was produced in the same manner as in Example 1 except that the compound (108) was used instead of the compound (101).
〈化合物(108)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに化合物(108)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。
<Evaluation Method for Mobility of Transistor Using Compound (108)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (108) was used instead of the transistor using the compound (101). The results are shown in Table 1.
(実施例9)
〈化合物(109)の製造方法〉
化合物(109)の製造方法について説明する。なお、化合物(109)は、一般式(1)で表される化合物において、Arがフェニル基、Rがオクチル基、nが1である場合に相当する化合物である。
Example 9
<Method for Producing Compound (109)>
A method for producing compound (109) will be described. The compound (109) is a compound corresponding to the compound represented by the general formula (1) when Ar is a phenyl group, R 1 is an octyl group, and n is 1.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
実施例6において、1-ブロモヘキサンの代わりに、1-ヨードオクタンを用いた以外は実施例6と同様にして、化合物(109)を得た。 In Example 6, compound (109) was obtained in the same manner as in Example 6, except that 1-iodooctane was used instead of 1-bromohexane.
H NMR(400MHz,CDCl):δ8.13(s,1H),δ8.04(s,1H),δ7.58-7.55(m,2H),δ7.51(s,1H),δ7.39-7.36(m,3H),δ7.01(s,1H),δ2.92(t,J=7.4Hz,2H),δ1.81-1.72(m,2H),δ1.45-1.23(m,10H),δ0.88(t,J=6.8Hz,3H)。 1 H NMR (400 MHz, CDCl 3 ): δ 8.13 (s, 1H), δ 8.04 (s, 1H), δ 7.58-7.55 (m, 2H), δ 7.51 (s, 1H), δ 7.39-7.36 (m, 3H), δ 7.01 (s, 1H), δ 2.92 (t, J = 7.4 Hz, 2H), δ 1.81-1.72 (m, 2H), δ1.45-1.23 (m, 10H), δ0.88 (t, J = 6.8 Hz, 3H).
〈化合物(109)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(109)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (109)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (109) was used instead of the compound (102). The results are shown in Table 2.
〈化合物(109)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(109)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (109)>
A transistor was manufactured in the same manner as in Example 1 except that the compound (109) was used instead of the compound (101).
〈化合物(109)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに化合物(109)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。
<Evaluation Method for Mobility of Transistor Using Compound (109)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (109) was used instead of the transistor using the compound (101). The results are shown in Table 1.
(実施例10)
〈化合物(110)の製造方法〉
化合物(110)の製造方法について説明する。なお、化合物(110)は、一般式(1)で表される化合物において、Arがフェニル基、Rがノニル基、nが1である場合に相当する化合物である。
(Example 10)
<Method for Producing Compound (110)>
A method for producing compound (110) will be described. The compound (110) is a compound corresponding to the case where Ar is a phenyl group, R 1 is a nonyl group, and n is 1 in the compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
実施例6において、1-ブロモヘキサンの代わりに、1-ヨードノナンを用いた以外は実施例6と同様にして、化合物(110)を得た。 In Example 6, compound (110) was obtained in the same manner as in Example 6, except that 1-iodononane was used instead of 1-bromohexane.
H NMR(400MHz,CDCl):δ8.11(s,1H),δ8.02(s,1H),δ7.56-7.52(m,2H),δ7.49(s,1H),δ7.39-7.34(m,3H),δ6.99(s,1H),δ2.89(t,J=7.6Hz,2H),δ1.78-1.71(m,2H),δ1.43-1.20(m,12H),δ0.87(t,J=7.0Hz,3H)。 1 H NMR (400 MHz, CDCl 3 ): δ 8.11 (s, 1H), δ 8.02 (s, 1H), δ 7.56-7.52 (m, 2H), δ 7.49 (s, 1H), δ 7.39-7.34 (m, 3H), δ 6.99 (s, 1H), δ 2.89 (t, J = 7.6 Hz, 2H), δ 1.78-1.71 (m, 2H), δ1.43-1.20 (m, 12H), δ0.87 (t, J = 7.0 Hz, 3H).
〈化合物(110)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(110)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (110)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (110) was used instead of the compound (102). The results are shown in Table 2.
〈化合物(110)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(110)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (110)>
A transistor was produced in the same manner as in Example 1 except that the compound (110) was used instead of the compound (101).
〈化合物(110)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに化合物(110)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。
<Evaluation Method for Mobility of Transistor Using Compound (110)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (110) was used instead of the transistor using the compound (101). The results are shown in Table 1.
(比較例1)
〈化合物(C101)の製造方法〉
化合物(C101)は非特許文献1に記載の合成方法に従って製造した。
(Comparative Example 1)
<Method for Producing Compound (C101)>
Compound (C101) was produced according to the synthesis method described in Non-Patent Document 1.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
H NMR(400MHz,CDCl):δ8.13(s,2H),δ7.50-7.47(m,6H),δ7.19(d,J=8.4Hz,4H),δ2.62(t,J=7.8Hz,4H),δ1.67-1.65(m,4H),0.95(t,J=7.0Hz,6H)。 1 H NMR (400 MHz, CDCl 3 ): δ 8.13 (s, 2H), δ 7.50-7.47 (m, 6H), δ 7.19 (d, J = 8.4 Hz, 4H), δ 2.62. (T, J = 7.8 Hz, 4H), δ 1.67-1.65 (m, 4H), 0.95 (t, J = 7.0 Hz, 6H).
〈化合物(C101)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(C101)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (C101)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (C101) was used instead of the compound (102). The results are shown in Table 2.
〈化合物(C101)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(C101)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (C101)>
A transistor was produced in the same manner as in Example 1 except that the compound (C101) was used instead of the compound (101).
〈化合物(C101)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに化合物(C101)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。
<Evaluation Method of Mobility of Transistor Using Compound (C101)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (C101) was used instead of the transistor using the compound (101). The results are shown in Table 1.
(比較例2)
〈化合物(C102)の製造方法〉
化合物(C102)は非特許文献1に記載の合成方法に従って製造した。
(Comparative Example 2)
<Method for Producing Compound (C102)>
Compound (C102) was produced according to the synthesis method described in Non-Patent Document 1.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
H NMR(400MHz,CDCl):δ8.14(s,2H),δ7.50-7.47(m,6H),δ7.19(d,J=8.0Hz,4H),δ2.63(t,J=7.8Hz,4H),δ1.63(m,4H),δ1.34(m,8H),0.90(t,J=6.6Hz,6H)。 1 H NMR (400 MHz, CDCl 3 ): δ 8.14 (s, 2H), δ 7.50-7.47 (m, 6H), δ 7.19 (d, J = 8.0 Hz, 4H), δ 2.63 (T, J = 7.8 Hz, 4H), δ1.63 (m, 4H), δ1.34 (m, 8H), 0.90 (t, J = 6.6 Hz, 6H).
〈化合物(C102)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(C102)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (C102)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (C102) was used instead of the compound (102). The results are shown in Table 2.
〈化合物(C102)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(C102)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (C102)>
A transistor was manufactured in the same manner as in Example 1 except that the compound (C102) was used instead of the compound (101).
〈化合物(C102)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに化合物(C102)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。
<Evaluation Method of Mobility of Transistor Using Compound (C102)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (C102) was used instead of the transistor using the compound (101). The results are shown in Table 1.
(比較例3)
〈化合物(C103)の製造方法〉
化合物(C103)は特許文献3に記載の合成方法に従って製造した。
(Comparative Example 3)
<Method for Producing Compound (C103)>
Compound (C103) was produced according to the synthesis method described in Patent Document 3.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
〈化合物(C103)の溶解度の評価〉
 実施例2おいて、化合物(102)の代わりに化合物(C103)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (C103)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (C103) was used instead of the compound (102). The results are shown in Table 2.
(比較例4)
〈化合物(C104)の製造方法〉
化合物(C104)は特許文献3に記載の合成方法に従って製造した。
(Comparative Example 4)
<Method for Producing Compound (C104)>
Compound (C104) was produced according to the synthesis method described in Patent Document 3.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
〈化合物(C104)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(C104)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (C104)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (C104) was used instead of the compound (102). The results are shown in Table 2.
(比較例5)
〈化合物(C105)の製造方法〉
化合物(C105)は特許文献3に記載の合成方法に従って製造した。
(Comparative Example 5)
<Method for Producing Compound (C105)>
Compound (C105) was produced according to the synthesis method described in Patent Document 3.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
〈化合物(C105)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(C105)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (C105)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (C105) was used instead of the compound (102). The results are shown in Table 2.
(比較例6)
〈化合物(C106)の製造方法〉
化合物(C106)は非特許文献1に記載の合成方法に従って製造した。
(Comparative Example 6)
<Method for Producing Compound (C106)>
Compound (C106) was produced according to the synthesis method described in Non-Patent Document 1.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
〈化合物(C106)の溶解度の評価〉
 実施例2において、化合物(102)の代わりに化合物(C106)を用いた以外は実施例2と同様にして、溶解度を評価した。結果を表2に示す。
<Evaluation of Solubility of Compound (C106)>
In Example 2, the solubility was evaluated in the same manner as in Example 2 except that the compound (C106) was used instead of the compound (102). The results are shown in Table 2.
〈化合物(C106)を用いてなるトランジスタの製造方法〉
実施例1において、化合物(101)の代わりに化合物(C106)を用いた以外は実施例1と同様にして、トランジスタを製造した。
<Method for Producing Transistor Using Compound (C106)>
A transistor was manufactured in the same manner as in Example 1 except that the compound (C106) was used instead of the compound (101).
〈化合物(C106)を用いてなるトランジスタの移動度の評価方法〉
実施例1において、化合物(101)を用いてなるトランジスタの代わりに化合物(C106)を用いてなるトランジスタを用いた以外は実施例1と同様にして、トランジスタの移動度を評価した。結果を表1に示す。
<Evaluation Method of Mobility of Transistor Using Compound (C106)>
In Example 1, the mobility of the transistor was evaluated in the same manner as in Example 1 except that the transistor using the compound (C106) was used instead of the transistor using the compound (101). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
 
Figure JPOXMLDOC01-appb-T000061
 
表1より、本発明の化合物を用いてなる湿式成膜法によって形成された半導体層を有するトランジスタは0.5cm/Vs以上という高い移動度を示し、さらに、化合物(102)から(110)を用いた場合には、1cm/Vs以上という高い移動度を示す。これに対して、比較例の化合物(本発明の化合物と同じくTBT骨格を有する化合物(非特許文献1等))を用いてなるトランジスタの移動度は低い。 From Table 1, a transistor having a semiconductor layer formed by a wet film-forming method using the compound of the present invention exhibits a high mobility of 0.5 cm 2 / Vs or more, and further, from compounds (102) to (110) Is used, a high mobility of 1 cm 2 / Vs or higher is exhibited. On the other hand, the mobility of the transistor using the compound of the comparative example (a compound having a TBT skeleton similar to the compound of the present invention (Non-patent Document 1, etc.)) is low.
表2より明らかなように、本発明の化合物は、室温においても0.1wt%以上という高い溶媒溶解性を示し、さらに、化合物(103)から(110)については、1wt%以上という高い溶媒溶解性を示す。これに対して、比較例の化合物(TBT骨格にビス(アリールエチニル)基をもつもの(非特許文献1)および本発明の化合物におけるTBTを他の多環芳香族としたもの(特許文献3))は、溶媒溶解性が0.1wt%未満と劣る(溶解度が高いほどインクへの適正が高く産業上優位)。 As is clear from Table 2, the compound of the present invention exhibits a high solvent solubility of 0.1 wt% or higher even at room temperature. Showing gender. In contrast, the compound of the comparative example (one having a bis (arylethynyl) group in the TBT skeleton (Non-patent Document 1) and the TBT in the compound of the present invention having other polycyclic aromatics (Patent Document 3) ) Is inferior in solvent solubility of less than 0.1 wt% (the higher the solubility, the higher the suitability for ink and the industrial advantage).
本発明の化合物は、TBT骨格に対して、適正な置換基位置に適正な置換基を導入したことで、高い半導体特性と高い溶解度を両立実現したものであり、このため実用性ある湿式成膜法で製造できる半導体としての利用が可能であり、該半導体を半導体層として用いてなる半導体素子への利用が可能である。 The compound of the present invention achieves both high semiconductor characteristics and high solubility by introducing an appropriate substituent at an appropriate substituent position with respect to the TBT skeleton. It can be used as a semiconductor that can be manufactured by the method, and can be used for a semiconductor element using the semiconductor as a semiconductor layer.
1.基板
2.ゲート電極
3.ゲート絶縁層
4.半導体層
5.ソース電極
6.ドレイン電極
1. Substrate 2. 2. Gate electrode 3. Gate insulating layer 4. Semiconductor layer Source electrode 6. Drain electrode

Claims (6)

  1.  一般式(1)で表される化合物。ただし、化合物(1-1)、化合物(1-2)、化合物(1-3)、化合物(1-4)、化合物(1-5)、化合物(1-6)、化合物(1-7)、化合物(1-8)、化合物(1-9)、化合物(1-10)、化合物(1-11)、化合物(1-12)、化合物(1-13)、化合物(1-14)、化合物(1-15)、化合物(1-16)、化合物(1-17)、化合物(1-18)、化合物(1-19)、化合物(1-20)、化合物(1-21)、化合物(1-22)、化合物(1-23)、化合物(1-24)、化合物(1-25)、化合物(1-26)、化合物(1-27)、化合物(1-28)、化合物(1-29)、化合物(1-30)、化合物(1-31)、化合物(1-32)、化合物(1-33)、化合物(1-34)、化合物(1-35)、化合物(1-36)、化合物(1-37)、化合物(1-38)、化合物(1-39)、化合物(1-40)、化合物(1-41)、化合物(1-42)、化合物(1-43)、化合物(1-44)、化合物(1-45)、化合物(1-46)、化合物(1-47)、化合物(1-48)、化合物(1-49)、化合物(1-50)、化合物(1-51)、化合物(1-52)、化合物(1-53)、化合物(1-54)、化合物(1-55)、化合物(1-56)、化合物(1-57)、化合物(1-58)、化合物(1-59)、化合物(1-60)、および化合物(1-61)を除く。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは置換基を有してもよい芳香族炭化水素基または置換基を有してもよい複素芳香族基を表し、Rは水素原子または非環式の炭素原子数1~20のアルキル基(該アルキル基中の-CH-が、酸素原子、硫黄原子および窒素原子がおのおの直接結合しないように、-O-、-R´C=CR´-、-CO-、-OCO-、-COO-、-S-、-SO-、-SO-、-NH-、-NR´-または-C≡C-で置換されてよく、該アルキル基中の水素原子は、ハロゲノ基、ニトリル基または芳香族基によって置換されていてもよい(ただし、R´は炭素原子数1~20の非環式または環式のアルキル基を表す。)。)を表し、nは0または1を表す。)

    Figure JPOXMLDOC01-appb-C000002




















    Figure JPOXMLDOC01-appb-C000003
















    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005














    Figure JPOXMLDOC01-appb-C000006








    Figure JPOXMLDOC01-appb-C000007








    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010






    Figure JPOXMLDOC01-appb-C000011







    Figure JPOXMLDOC01-appb-C000012





    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    The compound represented by General formula (1). However, Compound (1-1), Compound (1-2), Compound (1-3), Compound (1-4), Compound (1-5), Compound (1-6), Compound (1-7) , Compound (1-8), Compound (1-9), Compound (1-10), Compound (1-11), Compound (1-12), Compound (1-13), Compound (1-14), Compound (1-15), Compound (1-16), Compound (1-17), Compound (1-18), Compound (1-19), Compound (1-20), Compound (1-21), Compound (1-22), Compound (1-23), Compound (1-24), Compound (1-25), Compound (1-26), Compound (1-27), Compound (1-28), Compound ( 1-29), Compound (1-30), Compound (1-31), Compound (1-32), Compound (1-33), Compound (1-34) Compound (1-35), Compound (1-36), Compound (1-37), Compound (1-38), Compound (1-39), Compound (1-40), Compound (1-41), Compound (1-42), Compound (1-43), Compound (1-44), Compound (1-45), Compound (1-46), Compound (1-47), Compound (1-48), Compound (1-49), Compound (1-50), Compound (1-51), Compound (1-52), Compound (1-53), Compound (1-54), Compound (1-55), Compound ( 1-56), Compound (1-57), Compound (1-58), Compound (1-59), Compound (1-60), and Compound (1-61) are excluded.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, Ar represents an heteroaromatic group optionally having a good aromatic hydrocarbon group or a substituent a substituent, R 1 is 1 carbon atom number of hydrogen atoms or acyclic ~ 20 alkyl groups (wherein —CH 2 — in the alkyl group is such that —O—, —R′C═CR′—, —CO—, —so that oxygen atoms, sulfur atoms and nitrogen atoms are not directly bonded to each other, OCO—, —COO—, —S—, —SO 2 —, —SO—, —NH—, —NR′— or —C≡C— may be substituted, and the hydrogen atom in the alkyl group may be halogeno A group, a nitrile group or an aromatic group (wherein R ′ represents an acyclic or cyclic alkyl group having 1 to 20 carbon atoms), and n is 0 or 1 is represented.)

    Figure JPOXMLDOC01-appb-C000002




















    Figure JPOXMLDOC01-appb-C000003
















    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005














    Figure JPOXMLDOC01-appb-C000006








    Figure JPOXMLDOC01-appb-C000007








    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010






    Figure JPOXMLDOC01-appb-C000011







    Figure JPOXMLDOC01-appb-C000012





    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
  2.  請求項1に記載の化合物を含有する半導体材料。 A semiconductor material containing the compound according to claim 1.
  3.  請求項1に記載の化合物を含有するインク。 An ink containing the compound according to claim 1.
  4.  請求項1に記載の化合物を含有する半導体膜。 A semiconductor film containing the compound according to claim 1.
  5.  請求項1に記載の化合物を含有する半導体層を有する半導体素子。 A semiconductor element having a semiconductor layer containing the compound according to claim 1.
  6.  請求項1に記載の化合物を含有する半導体層を有するトランジスタ。 A transistor having a semiconductor layer containing the compound according to claim 1.
PCT/JP2017/010129 2016-03-18 2017-03-14 Novel compound and semiconductor material containing same WO2017159657A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017550785A JP6494788B2 (en) 2016-03-18 2017-03-14 Novel compound and semiconductor material containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-055405 2016-03-18
JP2016055405 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159657A1 true WO2017159657A1 (en) 2017-09-21

Family

ID=59852344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010129 WO2017159657A1 (en) 2016-03-18 2017-03-14 Novel compound and semiconductor material containing same

Country Status (3)

Country Link
JP (1) JP6494788B2 (en)
TW (1) TW201802096A (en)
WO (1) WO2017159657A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024044910A1 (en) * 2022-08-29 2024-03-07 Institute Of Physics, Chinese Academy Of Sciences Photosensitive ring oscillator, preparation method, and artificial retina thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340786A (en) * 1997-06-09 1998-12-22 Toyo Ink Mfg Co Ltd Organic electroluminecent element material and organic electroluminescent element using it
WO2011036866A1 (en) * 2009-09-25 2011-03-31 出光興産株式会社 Organic thin-film transistor
KR20110085784A (en) * 2010-01-21 2011-07-27 (주)씨에스엘쏠라 Organic light emitting compound and organic light emitting device comprising the same
WO2012107488A2 (en) * 2011-02-08 2012-08-16 Universita' Degli Studi Di Milano Metal-free photosensitizers
WO2013098726A1 (en) * 2011-12-28 2013-07-04 Eni S.P.A. Benzodithiophene derivatives and their use as photoluminescent compounds
CN103472116A (en) * 2013-08-29 2013-12-25 中国科学院化学研究所 Ultrathin film field effect transistor sensor and application thereof
WO2014113485A1 (en) * 2013-01-15 2014-07-24 Intermune, Inc. Lysophosphatidic acid receptor antagonists
WO2014157005A1 (en) * 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye
WO2015137304A1 (en) * 2014-03-12 2015-09-17 Dic株式会社 Compound, organic semiconductor material containing same, organic semiconductor ink, and organic transistor
JP2015179706A (en) * 2014-03-19 2015-10-08 東洋インキScホールディングス株式会社 Organic thin film solar cell element material and use thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340786A (en) * 1997-06-09 1998-12-22 Toyo Ink Mfg Co Ltd Organic electroluminecent element material and organic electroluminescent element using it
WO2011036866A1 (en) * 2009-09-25 2011-03-31 出光興産株式会社 Organic thin-film transistor
KR20110085784A (en) * 2010-01-21 2011-07-27 (주)씨에스엘쏠라 Organic light emitting compound and organic light emitting device comprising the same
WO2012107488A2 (en) * 2011-02-08 2012-08-16 Universita' Degli Studi Di Milano Metal-free photosensitizers
WO2013098726A1 (en) * 2011-12-28 2013-07-04 Eni S.P.A. Benzodithiophene derivatives and their use as photoluminescent compounds
US20140371463A1 (en) * 2011-12-28 2014-12-18 Eni S.P.A. Benzodithiophene derivatives and their use as photoluminescent compounds
WO2014113485A1 (en) * 2013-01-15 2014-07-24 Intermune, Inc. Lysophosphatidic acid receptor antagonists
WO2014157005A1 (en) * 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye
CN103472116A (en) * 2013-08-29 2013-12-25 中国科学院化学研究所 Ultrathin film field effect transistor sensor and application thereof
WO2015137304A1 (en) * 2014-03-12 2015-09-17 Dic株式会社 Compound, organic semiconductor material containing same, organic semiconductor ink, and organic transistor
JP2015179706A (en) * 2014-03-19 2015-10-08 東洋インキScホールディングス株式会社 Organic thin film solar cell element material and use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIBI, SHAMSA ET AL.: "The ratio and topology effects of benzodithiophene donor- benzooxadiazole acceptor fragments on the optoelectronic properties of donor molecules toward solar cell materials", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 17, no. 12, 2015, pages 7986 - 7999, XP055421597 *
MENG, QING ET AL.: "Development of organic field-effect properties by introducing aryl- acetylene into benzodithiophene", JOURNAL OF MATERIALS CHEMISTRY, vol. 20, no. 48, 2010, pages 10931 - 10935, XP055421592 *
XIONG, YU ET AL.: "Syntheses and properties of n-conjugated oligomers containing furan-fused and thiophene-fused aromatic units", TETRAHEDRON, vol. 71, no. 5, 2015, pages 852 - 856, XP029126969 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024044910A1 (en) * 2022-08-29 2024-03-07 Institute Of Physics, Chinese Academy Of Sciences Photosensitive ring oscillator, preparation method, and artificial retina thereof

Also Published As

Publication number Publication date
TW201802096A (en) 2018-01-16
JP6494788B2 (en) 2019-04-03
JPWO2017159657A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
KR101741568B1 (en) Benzothienobenzothiophene derivative, organic semiconductor material, and organic transistor
US9133211B2 (en) Dithienobenzodithiophene semiconductive material and electronic device using the same
TW201641503A (en) Organic compound, organic semiconductor material, organic thin film and manufacturing method therefor, organic semiconductor composition, and organic semiconductor device
JP6656508B2 (en) Benzothienobenzothiophene derivative, organic semiconductor material, and organic transistor
JP6573979B2 (en) Organic thin film transistor and manufacturing method thereof, organic thin film transistor material, organic thin film transistor composition, compound, and organic semiconductor film
TW201843230A (en) Organic semiconductor composition, organic thin film and organic thin film transistor
US8598299B2 (en) Semiconductor composition
JP6494788B2 (en) Novel compound and semiconductor material containing the same
KR101900510B1 (en) Isothioindigo-based polymers
JP6281669B1 (en) Novel compound and semiconductor material containing the same
KR101751548B1 (en) Dithioketopyrrolopyrrole-based polymers
JP2018177639A (en) Novel compound and semiconductor material containing the same
JP6778367B2 (en) New compounds and semiconductor materials containing them
JP6656506B2 (en) Benzothienobenzothiophene derivative, organic semiconductor material, and organic transistor
JP6897083B2 (en) Organic compounds and semiconductor materials containing them
JP2018052926A (en) Condensed polycyclic aromatic compound and use therefor
JP6526585B2 (en) Fused polycyclic aromatic compound and use thereof
KR102002650B1 (en) Dithioisoindigo-based polymers
JP2021044546A (en) Organic semiconductor material and organic thin film transistor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017550785

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766656

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766656

Country of ref document: EP

Kind code of ref document: A1