WO2017159080A1 - Industrial furnace - Google Patents
Industrial furnace Download PDFInfo
- Publication number
- WO2017159080A1 WO2017159080A1 PCT/JP2017/003322 JP2017003322W WO2017159080A1 WO 2017159080 A1 WO2017159080 A1 WO 2017159080A1 JP 2017003322 W JP2017003322 W JP 2017003322W WO 2017159080 A1 WO2017159080 A1 WO 2017159080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- combustion
- exhaust gas
- gas
- industrial furnace
- fuel gas
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C6/00—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
- F23C6/04—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L15/00—Heating of air supplied for combustion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Definitions
- the present invention relates to an industrial furnace which supplies a fuel gas and combustion air to a combustion burner, burns the fuel gas in the furnace by the combustion burner, and discharges the combustion exhaust gas from the furnace through the exhaust pipe. It is a thing.
- NOx nitrogen oxides harmful to the combustion exhaust gas
- combustion exhaust gas is prevented from being discharged to the outside through the exhaust pipe in the state where unburned component gas such as CO gas or hydrocarbon gas (HC) is contained. is there.
- a fuel gas and air for combustion are supplied to a combustion burner to heat the object to be heated, and the fuel gas is contained in the furnace by the combustion burner.
- the combustion exhaust gas from the inside of the furnace is discharged through the exhaust pipe.
- Patent Document 1 the combustion exhaust gas from a radiant tube burner is purified using a nitrogen oxide reduction catalyst, and the air ratio ⁇ (the actual amount of air) to the obtained NOx purification gas It has been proposed that after combustion air is added so that (theoretical air amount) becomes 1.0 or more, an oxidation catalyst is further used to oxidize and remove unburned components.
- Patent Document 1 a first exhaust gas processing unit containing a nitrogen oxide reduction catalyst and a second exhaust gas processing unit containing an oxidation catalyst are provided. It is necessary to supply air between the exhaust gas processing unit and the second exhaust gas processing unit, and there is a problem that the apparatus becomes complicated and becomes large.
- patent document 2 was limited in the kind and operating condition of a furnace to be used, and it was difficult to use it under various conditions in various furnaces.
- the fuel gas and the combustion air are supplied to the combustion burner, the fuel gas is burned in the furnace by the combustion burner, and the combustion exhaust gas is discharged from the furnace through the exhaust pipe. It is an object of the present invention to solve the above-mentioned problems in an industrial furnace.
- the fuel gas is supplied to the combustion burner with the fuel gas and the combustion air, and after the fuel gas is burned in the furnace by the combustion burner, the combustion exhaust gas is discharged from the furnace into the exhaust pipe.
- the exhaust gases Prevents exhaust gases from being emitted outside when the exhaust gases contain harmful NOx and unburned gases such as CO gas and hydrocarbon (HC) gas.
- the fuel gas and the combustion air are supplied to the combustion burner, and the fuel gas is burned in the furnace by the combustion burner,
- the exhaust pipe is provided with an exhaust gas processing unit in which a three-way catalyst is accommodated.
- NOx contained in the combustion exhaust gas is reduced by the unburned component gas contained in the combustion exhaust gas by the three-way catalyst contained in the exhaust gas processing unit.
- the air ratio ⁇ of the combustion air is made 1.0 or less by reducing the amount of the combustion air to the fuel gas, NOx generated at the time of combustion
- the amount of NOx decreases and the NOx contained in the combustion exhaust gas decreases, and the NOx contained in the combustion exhaust gas is sufficiently reduced by the three-way catalyst by the unburned component gas contained in the combustion exhaust gas.
- the fuel gas for guiding a part of the fuel gas supplied to the combustion burner to a position upstream of the exhaust gas processing unit provided in the exhaust pipe in the exhaust gas discharge direction Preferably, a guideway and control means for controlling the amount of fuel gas guided through the fuel gas guideway are provided.
- the amount of fuel gas guided through the fuel gas guide path is controlled in accordance with the amount of nitrogen oxide contained in the combustion exhaust gas.
- the fuel gas is supplied to the combustion burner with the amount of the combustion air relative to the fuel gas increased.
- the above-mentioned control is carried out before the above-mentioned exhaust gas is led to the exhaust gas processing unit containing the three-way catalyst through the exhaust pipe.
- a proper amount of fuel gas is supplied through the fuel gas guiding path by means. In this way, the combustion exhaust gas containing a large amount of NOx and the appropriate amount of fuel gas are brought together to the exhaust gas treatment unit, and the NOx in the combustion exhaust gas is sufficiently reduced by the action of the three-way catalyst. Will be discharged.
- a post-combustion device is provided to burn the In this way, even if unburned component gas remains in the combustion exhaust gas processed in the exhaust gas processing unit, the unburned component gas is burned by the post-combustion device and oxidized to CO 2 or H 2 O. As a result, the unburned component gas is prevented from being discharged.
- heat exchange means for heating the combustion air by the heat of the combustion exhaust gas is provided, and the combustion air heated by the heat exchange means is supplied to the combustion burner. It is preferable to In this way, the heat of the combustion exhaust gas can be effectively used to perform efficient combustion.
- the fuel gas and the combustion air are supplied to the combustion burner, the fuel gas is burned in the furnace, and the combustion exhaust gas is discharged from the furnace through the exhaust pipe.
- an exhaust gas processing unit containing a three-way catalyst is provided in the exhaust pipe, and the above-mentioned combustion exhaust gas is led to the above-mentioned exhaust gas processing unit, and harmful NOx in the combustion exhaust gas, or CO gas or hydrocarbon (HC) The unburned component gas consisting of gas was properly treated.
- the exhaust gas processing unit when the fuel gas is mixed with the combustion air and burned in the furnace, NOx and unburned component gas in the combustion exhaust gas are provided in the exhaust pipe, the exhaust gas processing unit The exhaust gas can be properly discharged to the outside through the exhaust pipe in a safe state where the combustion exhaust gas is properly treated and NOx and unburned component gas are not contained in the combustion exhaust gas.
- a combustion burner 12 is provided on the furnace wall 11 of the furnace 10, and the combustion burner 12 is provided with hydrocarbons (through fuel gas supply pipe 21) HC)
- a fuel gas such as a gas is supplied and at the same time a combustion air is supplied through a combustion air supply pipe 22, and the fuel gas and the combustion air are mixed in the combustion burner 12 to make the fuel gas in the furnace 10. I am trying to burn it.
- an exhaust pipe 13 for discharging the combustion exhaust gas after burning the fuel gas in the furnace 10 in this manner from the inside of the furnace 10 is provided, and the exhaust gas processing unit 23 in which the three-way catalyst is accommodated in the exhaust pipe 13 is provided.
- the combustion exhaust gas after combustion in the furnace 10 is introduced to the exhaust gas processing unit 23 through the exhaust pipe 13 so that the three-way catalyst accommodated in the exhaust gas processing unit 23 processes the combustion exhaust gas. .
- the fuel gas and the combustion air are supplied to the combustion burner 12 through the fuel gas supply pipe 21 and the combustion air supply pipe 22, NOx generated during the combustion can be obtained.
- the amount of combustion air to the fuel gas is reduced, for example, the air ratio ⁇ of the combustion air is set to 1.0 or less so that the fuel gas is burned in the combustion burner 12. Do.
- combustion is performed more than the exhaust gas processing unit 23 provided in the exhaust pipe 13
- a post-combustion device 24 is provided at a position downstream of the exhaust gas discharge direction, and a post-combustion fuel gas from the post-combustion fuel gas supply pipe 24a and a post-combustion air are provided to the post-combustion device 24 if necessary.
- the post combustion air is supplied from the supply pipe 24b.
- the unburned component gas remaining in the combustion exhaust gas discharged from the exhaust gas processing unit 23 is burned in the post-combustion device 24 and the unburned component gas is CO 2 gas And H 2 O are oxidized and discharged.
- the unburned component gas is The combustion device 24 burns and is processed, and the unburned component gas can be reliably prevented from being discharged.
- the post-combustion device 24 is used to burn the unburned component gas remaining in the combustion exhaust gas with a flame, but the post-combustion device 24 is not limited to such a device, such as electric heating
- the unburned component gas remaining in the combustion exhaust gas can also be burned by
- the heat exchange unit (heat exchange means) 25a for heating the combustion air by the heat of the combustion exhaust gas is provided in the exhaust pipe 13 for guiding the combustion exhaust gas from the inside of the furnace 10 to the exhaust gas processing unit 23.
- the heat exchange section 25a is provided with a combustion air guide pipe 25b for guiding the combustion air, and the heating air supply pipe 25c for supplying the combustion air heated in the heat exchange section 25a to the combustion burner 12 Is provided.
- the combustion air is guided to the heat exchange unit 25a through the combustion air guide pipe 25b, and the heat exchange unit 25a burns the heat by the heat of the combustion exhaust gas.
- the heating air is heated, and thus heated combustion air is supplied to the combustion burner 12 through the heating / combustion air supply pipe 25c, and the combustion air and fuel gas thus heated are burned.
- the fuel gas is burned in the furnace 10 by mixing at 12.
- the heat exchange unit 25a is provided in the exhaust pipe 13. However, the heat exchange unit 25a may be provided outside the exhaust pipe 13.
- the fuel gas supplied to the combustion burner 12 through the fuel gas supply pipe 21 is A fuel gas guiding passage 26 for guiding a part of the exhaust gas processing unit 23 provided in the exhaust pipe 13 to a position upstream of the exhaust gas in the discharge direction, and the fuel gas guiding passage 26 burns in the exhaust gas processing unit 23
- a control valve (control means) 26a is provided to control the amount of fuel gas supplied to the exhaust pipe 13 at a position upstream of the exhaust gas discharge direction.
- the fuel gas guide passage is controlled by the control valve 26 a in correspondence to the amount of NOx contained in the combustion exhaust gas after being burned in the combustion burner 12.
- the amount of fuel gas supplied to the exhaust pipe 13 at a position upstream of the exhaust gas processing unit 23 in the discharge direction of exhaust gas from the exhaust gas processing unit 23 is controlled.
- the air ratio of the combustion air is increased.
- the amount of combustion air to fuel gas is increased such that ⁇ exceeds 1.0 and the fuel gas is burned in the above-described combustion burner 12, the fuel gas is burned by a sufficient amount of combustion air.
- unburned component gas such as CO gas and hydrocarbon (HC) gas in the combustion exhaust gas decreases, a large amount of NOx is generated at the time of combustion, and a large amount of the NOx is contained in the combustion exhaust gas.
- the control valve 26a causes the fuel gas guide passage 26 to flow upstream of the exhaust gas processing portion 23 in the exhaust gas discharge direction.
- the amount of fuel gas guided to the exhaust pipe 13 at the position is controlled to supply an appropriate amount of fuel gas to a position upstream of the exhaust gas processing unit 23 in the exhaust gas discharge direction, and a large amount of NOx is contained. It is made to guide to the exhaust gas processing part 23 which accommodated the three-way catalyst together with the combustion exhaust gas.
- a post-combustion device 24 is provided in the exhaust pipe 13 at a position downstream of the exhaust gas processing unit 23 in the exhaust gas discharge direction.
- the heat exchange unit 25a for heating the combustion air by the heat of the combustion exhaust gas is provided, and the combustion air to be heated is guided to the heat exchange unit 25a.
- a combustion air guide pipe 25b is provided, and a heating combustion air supply pipe 25c for supplying the combustion air heated in the heat exchange section 25a to the combustion burner 12 is provided.
- the combustion air is guided to the heat exchange unit 25a through the combustion air guide pipe 25b, and this thermal In the exchange section 25a, the combustion air is heated by the heat of the combustion exhaust gas, and the heated combustion air is supplied to the combustion burner 12 through the heating / combustion air supply pipe 25c to heat the combustion burner 12 Air and fuel gas are mixed in the combustion burner 12 so that the fuel gas is burned in the furnace 10.
- the heat of the combustion exhaust gas can be effectively used, and the exhaust gas from the furnace 10 can be used.
- the temperature of the combustion exhaust gas led to the processing unit 23 decreases, and the temperature of the combustion exhaust gas is prevented from exceeding the temperature range where the three-way catalyst contained in the exhaust gas processing unit 23 is used.
- the catalyst can properly treat the exhaust gas for combustion.
- the amount of fuel gas guided through the fuel gas guide path 26 is increased, which is required to reduce NOx in the combustion exhaust gas to N 2.
- the exhaust gas processing unit 23 discharges the combustion exhaust gas in which the unburned component gas remains.
- the unburned component gas remaining in the combustion exhaust gas discharged from the exhaust gas processing unit 23 is burned in the post-combustion device 24, The gas can be oxidized to CO 2 gas or H 2 O and discharged.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Chimneys And Flues (AREA)
- Air Supply (AREA)
- Combustion Of Fluid Fuel (AREA)
Abstract
An industrial furnace that supplies a fuel gas and combustion air to a combustion burner, uses the combustion burner to combust the fuel gas inside a furnace, and discharges combusted combustion exhaust gas from inside the furnace through an exhaust pipe. An exhaust gas processing part that houses a three-way catalyst is provided to the exhaust pipe.
Description
本発明は、燃焼バーナーに燃料ガスと燃焼用空気とを供給し、前記の燃焼バーナーにより燃料ガスを炉内において燃焼させ、燃焼後の燃焼排ガスを、炉内から排気管を通して排出させる工業炉に関するものである。特に、前記のように燃焼バーナーに燃料ガスと燃焼用空気とを供給して、燃焼バーナーにより燃料ガスを炉内において燃焼させるにあたり、燃焼排ガス中に有害な窒素酸化物(以下、NOxという。)や、またCOガスや炭化水素ガス(HC)等の未燃成分ガスが含まれた状態で、燃焼排ガスが排気管を通して外部に排出されるのを防止するようにした点に特徴を有するものである。
The present invention relates to an industrial furnace which supplies a fuel gas and combustion air to a combustion burner, burns the fuel gas in the furnace by the combustion burner, and discharges the combustion exhaust gas from the furnace through the exhaust pipe. It is a thing. In particular, as described above, when the fuel gas and the combustion air are supplied to the combustion burner and the fuel gas is burned in the furnace by the combustion burner, nitrogen oxides harmful to the combustion exhaust gas (hereinafter referred to as NOx). In addition, it is characterized in that combustion exhaust gas is prevented from being discharged to the outside through the exhaust pipe in the state where unburned component gas such as CO gas or hydrocarbon gas (HC) is contained. is there.
従来から、加熱炉や熱処理炉等の工業炉においては、被加熱物を加熱させるにあたり、一般に、燃焼バーナーに燃料ガスと燃焼用空気とを供給して、前記の燃焼バーナーにより燃料ガスを炉内において燃焼させ、燃焼後の燃焼排ガスを、炉内から排気管を通して排出させるようにしている。
Conventionally, in industrial furnaces such as heating furnaces and heat treatment furnaces, in general, a fuel gas and air for combustion are supplied to a combustion burner to heat the object to be heated, and the fuel gas is contained in the furnace by the combustion burner. The combustion exhaust gas from the inside of the furnace is discharged through the exhaust pipe.
ここで、このような工業炉において、前記のように燃焼バーナーに燃料ガスと燃焼用空気とを供給して、燃料ガスを炉内において燃焼させるにあたり、燃焼効率を高めるために、燃料ガスに対する燃焼用空気の量を多くして燃焼を行うと、燃焼時にNOxが多く発生し、NOxを多く含む燃焼排ガスが炉内から排気管を通して外部に排出されて、環境を大きく害するという問題があった。特に、近年においては、燃焼排ガス中におけるNOxを大幅に低減させることが要望されている。
Here, in such an industrial furnace, in order to supply the fuel gas and the combustion air to the combustion burner as described above and burn the fuel gas in the furnace, the combustion with respect to the fuel gas is performed to enhance the combustion efficiency. If the amount of air is increased to perform combustion, a large amount of NOx is generated at the time of combustion, and the combustion exhaust gas containing a large amount of NOx is discharged from the inside of the furnace to the outside through the exhaust pipe, resulting in a serious environmental damage. In particular, in recent years, there has been a demand to significantly reduce NOx in combustion exhaust gas.
一方、NOxが燃焼排ガスに含まれるのを抑制するために、燃料ガスに対する燃焼用空気の量を少なくして燃焼を行うと、燃焼効率が低下すると共に、燃焼排ガス中にCOガスや炭化水素(HC)ガス等の未燃成分ガスが多く残り、この未燃成分ガスが炉内から排気管を通して外部に排出されて、安全性や環境の点において問題があった。
On the other hand, if combustion is performed while reducing the amount of combustion air to fuel gas in order to suppress NOx from being contained in the combustion exhaust gas, the combustion efficiency decreases, and CO gas or hydrocarbons in the combustion exhaust gas ( HC) A large amount of unburned component gas such as gas remains, and the unburned component gas is discharged from the inside of the furnace through the exhaust pipe to the outside, which causes problems in terms of safety and environment.
そして、近年においては、特許文献1に示されるように、ラジアントチューブバーナーからの燃焼排ガスを、窒素酸化物還元触媒を用いて浄化し、得られたNOx浄化ガスに空気比μ(実際の空気量/理論空気量)が1.0以上となるように燃焼用空気を添加した後、更に酸化触媒を用いて未燃成分を酸化除去させるようにしたものが提案されている。
And, in recent years, as shown in Patent Document 1, the combustion exhaust gas from a radiant tube burner is purified using a nitrogen oxide reduction catalyst, and the air ratio μ (the actual amount of air) to the obtained NOx purification gas It has been proposed that after combustion air is added so that (theoretical air amount) becomes 1.0 or more, an oxidation catalyst is further used to oxidize and remove unburned components.
ここで、特許文献1に示されるものにおいては、窒素酸化物還元触媒を収容させた第1の排ガス処理部と、酸化触媒を収容させた第2の排ガス処理部とを設けると共に、この第1の排ガス処理部と第2の排ガス処理部との間に空気を供給させることが必要になり、装置が複雑になって大型化する等の問題があった。
Here, in the case shown in Patent Document 1, a first exhaust gas processing unit containing a nitrogen oxide reduction catalyst and a second exhaust gas processing unit containing an oxidation catalyst are provided. It is necessary to supply air between the exhaust gas processing unit and the second exhaust gas processing unit, and there is a problem that the apparatus becomes complicated and becomes large.
また、排ガス処理の一つとしては、三元触媒によって、安全、環境、人体などに悪影響なCO、HC、NOxを酸化・還元し、H2O、CO2、N2に変化させて浄化するものが知られており、例えば、特許文献2に示されるように、蓄熱層を有する交番燃焼バーナーにおいて、各バーナー部の蓄熱層に三元触媒層を設け、三元触媒層の活性条件に合わせるように、炉内空気比を0.98~1.02に調整して燃焼させるようにしたものも提案されている。
In addition, as one of the exhaust gas treatment, CO, HC, and NOx which are harmful to safety, environment, human body, etc. are oxidized / reduced by three-way catalyst, converted to H 2 O, CO 2 , N 2 and purified For example, as shown in Patent Document 2, in an alternating combustion burner having a heat storage layer, a three-way catalyst layer is provided in the heat storage layer of each burner section to match the activation conditions of the three-way catalyst layer. Thus, there has also been proposed one in which the air ratio in the furnace is adjusted to 0.98 to 1.02 for combustion.
しかし、特許文献2に示されるものは、使用する炉の種類や使用条件が限定されており、様々な炉において様々な条件の下で使用することは困難であった。
However, what was shown by patent document 2 was limited in the kind and operating condition of a furnace to be used, and it was difficult to use it under various conditions in various furnaces.
本発明は、燃焼バーナーに燃料ガスと燃焼用空気とを供給し、前記の燃焼バーナーにより燃料ガスを炉内で燃焼させ、燃焼後の燃焼排ガスを、炉内から排気管を通して排出させるようにした工業炉における前記のような問題を解決することを課題とするものである。
According to the present invention, the fuel gas and the combustion air are supplied to the combustion burner, the fuel gas is burned in the furnace by the combustion burner, and the combustion exhaust gas is discharged from the furnace through the exhaust pipe. It is an object of the present invention to solve the above-mentioned problems in an industrial furnace.
すなわち、本発明における工業炉においては、燃料ガスを燃焼バーナーに燃料ガスと燃焼用空気とを供給して、燃料ガスを燃焼バーナーにより炉内において燃焼させた後、燃焼排ガスを炉内から排気管を通して排出させるにあたり、燃焼排ガス中に有害なNOxや、またCOガスや炭化水素(HC)ガス等の未燃成分ガスが含まれた状態で、燃焼排ガスが外部に排出されるのを適切に防止することを課題とするものである。
That is, in the industrial furnace according to the present invention, the fuel gas is supplied to the combustion burner with the fuel gas and the combustion air, and after the fuel gas is burned in the furnace by the combustion burner, the combustion exhaust gas is discharged from the furnace into the exhaust pipe. Prevents exhaust gases from being emitted outside when the exhaust gases contain harmful NOx and unburned gases such as CO gas and hydrocarbon (HC) gas. To be a subject.
本発明に係る工業炉においては、前記のような課題を解決するため、燃焼バーナーに燃料ガスと燃焼用空気とを供給し、前記の燃焼バーナーにより燃料ガスを炉内において燃焼させ、燃焼後の燃焼排ガスを、炉内から排気管を通して排出させる工業炉において、前記の排気管に、三元触媒を収容させた排ガス処理部を設けるようにした。
In the industrial furnace according to the present invention, in order to solve the problems as described above, the fuel gas and the combustion air are supplied to the combustion burner, and the fuel gas is burned in the furnace by the combustion burner, In an industrial furnace in which combustion exhaust gas is discharged from the inside of the furnace through an exhaust pipe, the exhaust pipe is provided with an exhaust gas processing unit in which a three-way catalyst is accommodated.
そして、前記の工業炉においては、前記の排ガス処理部に収容させた三元触媒により、燃焼排ガスに含まれるNOxを燃焼排ガスに含まれる未燃成分ガスによって還元させるようにする。この場合、燃焼バーナーに燃料ガスと燃焼用空気とを供給するにあたり、燃料ガスに対する燃焼用空気の量を少なくして燃焼用空気の空気比μを1.0以下にすると、燃焼時に発生するNOxの量が少なくなって燃焼排ガスに含まれるNOxが減少し、更に燃焼排ガスに含まれるNOxが前記の三元触媒により燃焼排ガスに含まれる未燃成分ガスによって十分に還元されるようになる。
In the industrial furnace, NOx contained in the combustion exhaust gas is reduced by the unburned component gas contained in the combustion exhaust gas by the three-way catalyst contained in the exhaust gas processing unit. In this case, when supplying the fuel gas and the combustion air to the combustion burner, if the air ratio μ of the combustion air is made 1.0 or less by reducing the amount of the combustion air to the fuel gas, NOx generated at the time of combustion Thus, the amount of NOx decreases and the NOx contained in the combustion exhaust gas decreases, and the NOx contained in the combustion exhaust gas is sufficiently reduced by the three-way catalyst by the unburned component gas contained in the combustion exhaust gas.
また、本発明に係る工業炉においては、前記の燃焼バーナーに供給する燃料ガスの一部を、前記の排気管に設けた排ガス処理部よりも燃焼排ガスの排出方向上流側の位置に導く燃料ガス案内路と、この燃料ガス案内路を通して案内する燃料ガスの量を制御する制御手段とを設けることが好ましい。
Further, in the industrial furnace according to the present invention, the fuel gas for guiding a part of the fuel gas supplied to the combustion burner to a position upstream of the exhaust gas processing unit provided in the exhaust pipe in the exhaust gas discharge direction. Preferably, a guideway and control means for controlling the amount of fuel gas guided through the fuel gas guideway are provided.
ここで、前記の制御手段においては、前記の燃焼排ガスに含まれる窒素酸化物の量に対応させて、燃料ガス案内路を通して案内する燃料ガスの量を制御させるようにする。
Here, in the control means, the amount of fuel gas guided through the fuel gas guide path is controlled in accordance with the amount of nitrogen oxide contained in the combustion exhaust gas.
そして、前記のように燃焼バーナーに燃料ガスと燃焼用空気とを供給するにあたり、燃焼効率を高めるために、燃料ガスに対する燃焼用空気の量が多くなった状態で、燃料ガスを前記の燃焼バーナーにより燃焼させた結果、燃焼排ガス中にNOxが多く含まれるようになった場合には、前記の燃焼排ガスが排気管を通して三元触媒を収容させた排ガス処理部に導かれる前に、前記の制御手段により燃料ガス案内路を通して適当量の燃料ガスを供給させるようにする。このようにすると、NOxが多く含まれる燃焼排ガスと適当量の燃料ガスとが一緒になって排ガス処理部に導かれ、前記の三元触媒の作用によって、燃焼排ガス中におけるNOxが十分に還元されて排出されるようになる。
Then, when supplying the fuel gas and the combustion air to the combustion burner as described above, in order to increase the combustion efficiency, the fuel gas is supplied to the combustion burner with the amount of the combustion air relative to the fuel gas increased. As a result of the combustion, when the exhaust gas contains a large amount of NOx, the above-mentioned control is carried out before the above-mentioned exhaust gas is led to the exhaust gas processing unit containing the three-way catalyst through the exhaust pipe. A proper amount of fuel gas is supplied through the fuel gas guiding path by means. In this way, the combustion exhaust gas containing a large amount of NOx and the appropriate amount of fuel gas are brought together to the exhaust gas treatment unit, and the NOx in the combustion exhaust gas is sufficiently reduced by the action of the three-way catalyst. Will be discharged.
また、本発明に係る前記の工業炉においては、排気管に設けた排ガス処理部よりも燃焼排ガスの排出方向下流側の位置に、排ガス処理部から排出される燃焼排ガスに含まれる未燃成分ガスを燃焼させる後燃焼装置を設けることが好ましい。このようにすると、排ガス処理部において処理された燃焼排ガス中に未燃成分ガスが残っていても、この未燃成分ガスが前記の後燃焼装置により燃焼されてCO2やH2Oに酸化され、未燃成分ガスが排出されるのが防止されるようになる。
In the industrial furnace according to the present invention, the unburned component gas contained in the combustion exhaust gas discharged from the exhaust gas processing unit at a position downstream of the exhaust gas processing unit provided in the exhaust pipe in the discharge direction of the combustion exhaust gas. Preferably, a post-combustion device is provided to burn the In this way, even if unburned component gas remains in the combustion exhaust gas processed in the exhaust gas processing unit, the unburned component gas is burned by the post-combustion device and oxidized to CO 2 or H 2 O. As a result, the unburned component gas is prevented from being discharged.
また、本発明に係る工業炉においては、前記の燃焼排ガスの熱によって燃焼用空気を加熱させる熱交換手段を設け、この熱交換手段によって加熱された燃焼用空気を前記の燃焼バーナーに供給させるようにすることが好ましい。このようにすると、燃焼排ガスの熱を有効に利用して、効率のよい燃焼を行うことができるようになる。
In the industrial furnace according to the present invention, heat exchange means for heating the combustion air by the heat of the combustion exhaust gas is provided, and the combustion air heated by the heat exchange means is supplied to the combustion burner. It is preferable to In this way, the heat of the combustion exhaust gas can be effectively used to perform efficient combustion.
本発明における工業炉においては、燃焼バーナーに燃料ガスと燃焼用空気とを供給し、燃料ガスを炉内で燃焼させて、燃焼後の燃焼排ガスを炉内から排気管を通して排出させるにあたり、前記のように排気管に三元触媒を収容させた排ガス処理部を設け、前記の燃焼排ガスを前記の排ガス処理部に導いて、燃焼排ガス中における有害なNOxや、またCOガスや炭化水素(HC)ガスからなる未燃成分ガスを適切に処理するようにした。
In the industrial furnace according to the present invention, the fuel gas and the combustion air are supplied to the combustion burner, the fuel gas is burned in the furnace, and the combustion exhaust gas is discharged from the furnace through the exhaust pipe. Thus, an exhaust gas processing unit containing a three-way catalyst is provided in the exhaust pipe, and the above-mentioned combustion exhaust gas is led to the above-mentioned exhaust gas processing unit, and harmful NOx in the combustion exhaust gas, or CO gas or hydrocarbon (HC) The unburned component gas consisting of gas was properly treated.
この結果、本発明における工業炉においては、燃料ガスを燃焼用空気と混合させて炉内において燃焼させた場合に、燃焼排ガス中におけるNOxや未燃成分ガスが、排気管に設けた排ガス処理部において適切に処理され、燃焼排ガス中にNOxや未燃成分ガスが含まれない安全な状態で、燃焼排ガスを排気管を通して外部に適切に排出できるようになる。
As a result, in the industrial furnace according to the present invention, when the fuel gas is mixed with the combustion air and burned in the furnace, NOx and unburned component gas in the combustion exhaust gas are provided in the exhaust pipe, the exhaust gas processing unit The exhaust gas can be properly discharged to the outside through the exhaust pipe in a safe state where the combustion exhaust gas is properly treated and NOx and unburned component gas are not contained in the combustion exhaust gas.
以下、本発明の実施形態に係る工業炉を添付図面に基づいて具体的に説明する。なお、本発明に係る工業炉は、下記の実施形態に示したものに限定されず、発明の要旨を変更しない範囲において、適宜変更して実施できるものである。
Hereinafter, an industrial furnace concerning an embodiment of the present invention is concretely explained based on an accompanying drawing. In addition, the industrial furnace which concerns on this invention is not limited to what was shown to the following embodiment, In the range which does not change the summary of invention, it can change suitably and can implement.
ここで、第1の実施形態に係る工業炉においては、図1に示すように、炉10の炉壁11に燃焼バーナー12を設け、この燃焼バーナー12に、燃料ガス供給管21を通して炭化水素(HC)ガス等の燃料ガスを供給すると共に、燃焼用空気供給管22を通して燃焼用空気を供給し、この燃焼バーナー12において燃料ガスと燃焼用空気とを混合させて、燃料ガスを炉10内で燃焼させるようにしている。
Here, in the industrial furnace according to the first embodiment, as shown in FIG. 1, a combustion burner 12 is provided on the furnace wall 11 of the furnace 10, and the combustion burner 12 is provided with hydrocarbons (through fuel gas supply pipe 21) HC) A fuel gas such as a gas is supplied and at the same time a combustion air is supplied through a combustion air supply pipe 22, and the fuel gas and the combustion air are mixed in the combustion burner 12 to make the fuel gas in the furnace 10. I am trying to burn it.
また、このように燃料ガスを炉10内で燃焼させた後の燃焼排ガスを、炉10内から排出させる排気管13を設け、この排気管13に三元触媒を収容させた排ガス処理部23を設け、炉10内で燃焼させた後の燃焼排ガスを、前記の排気管13を通してこの排ガス処理部23に導き、排ガス処理部23に収容された三元触媒によって燃焼排ガスを処理するようにしている。
Further, an exhaust pipe 13 for discharging the combustion exhaust gas after burning the fuel gas in the furnace 10 in this manner from the inside of the furnace 10 is provided, and the exhaust gas processing unit 23 in which the three-way catalyst is accommodated in the exhaust pipe 13 is provided. The combustion exhaust gas after combustion in the furnace 10 is introduced to the exhaust gas processing unit 23 through the exhaust pipe 13 so that the three-way catalyst accommodated in the exhaust gas processing unit 23 processes the combustion exhaust gas. .
ここで、この実施形態に係る工業炉において、前記の燃料ガス供給管21と燃焼用空気供給管22とを通して燃焼バーナー12に燃料ガスと燃焼用空気とを供給するにあたり、燃焼時に発生するNOxの量を少なくするためには、燃料ガスに対する燃焼用空気の量を少なくし、例えば、燃焼用空気の空気比μを1.0以下して、前記の燃焼バーナー12において燃料ガスを燃焼させるようにする。
Here, in the industrial furnace according to this embodiment, when the fuel gas and the combustion air are supplied to the combustion burner 12 through the fuel gas supply pipe 21 and the combustion air supply pipe 22, NOx generated during the combustion can be obtained. In order to reduce the amount, the amount of combustion air to the fuel gas is reduced, for example, the air ratio μ of the combustion air is set to 1.0 or less so that the fuel gas is burned in the combustion burner 12. Do.
このように燃料ガスに対する燃焼用空気の量を少なくして燃焼させると、燃焼排ガスに含まれるNOxが減少すると共に、この燃焼排ガス中にCOガスや炭化水素(HC)ガス等の未燃成分ガスが残るようになる。
When the amount of combustion air relative to the fuel gas is reduced as described above, NOx contained in the combustion exhaust gas is reduced, and unburned component gas such as CO gas or hydrocarbon (HC) gas is contained in the combustion exhaust gas. Will remain.
そして、このようにNOxと未燃成分ガスとが残った燃焼排ガスを、炉10内から前記の排気管13を通して排ガス処理部23に導くと、この排ガス処理部23に収容された三元触媒により、燃焼排ガスに残ったNOxと未燃成分ガスとが反応して、NOxがN2に還元されると共に、未燃成分ガスがCO2やH2Oに酸化された状態で排出されるようになる。
Then, when the combustion exhaust gas in which the NOx and the unburned component gas remain in this way is led from the inside of the furnace 10 to the exhaust gas processing unit 23 through the exhaust pipe 13, the three-way catalyst accommodated in the exhaust gas processing unit 23 As the NOx remaining in the combustion exhaust gas reacts with the unburned component gas, NOx is reduced to N 2 , and the unburned component gas is discharged in the state oxidized to CO 2 or H 2 O Become.
ここで、このようにNOxと未燃成分ガスとが残った燃焼排ガスを排ガス処理部23に収容された三元触媒によって処理するにあたり、燃料ガスに対する燃焼用空気の量がさらに少なくなって、燃焼排ガス中における未燃成分ガスが多くなり、排ガス処理部23に収容された三元触媒によって十分に処理されず、排ガス処理部23から未燃成分ガスが残った燃焼排ガスが排出されるおそれがある。
Here, when treating the combustion exhaust gas in which the NOx and the unburned component gas remain in this way with the three-way catalyst contained in the exhaust gas processing unit 23, the amount of combustion air for the fuel gas is further reduced The amount of unburned component gas in the exhaust gas increases, and there is a risk that exhaust gas from which the unburned component gas remains may be discharged from the exhaust gas processing unit 23 without being sufficiently treated by the three-way catalyst contained in the exhaust gas processing unit 23 .
このため、第2の実施形態に係る工業炉においては、図2に示すように、前記の第1の実施形態に係る工業炉において、排気管13に設けた前記の排ガス処理部23よりも燃焼排ガスの排出方向下流側の位置に後燃焼装置24を設け、この後燃焼装置24に対して、必要に応じて、後燃焼用燃料ガス供給管24aから後燃焼用燃料ガスと、後燃焼用空気供給管24bから後燃焼用空気とを供給するようにしている。
Therefore, in the industrial furnace according to the second embodiment, as shown in FIG. 2, in the industrial furnace according to the first embodiment, combustion is performed more than the exhaust gas processing unit 23 provided in the exhaust pipe 13 A post-combustion device 24 is provided at a position downstream of the exhaust gas discharge direction, and a post-combustion fuel gas from the post-combustion fuel gas supply pipe 24a and a post-combustion air are provided to the post-combustion device 24 if necessary. The post combustion air is supplied from the supply pipe 24b.
そして、この第2の実施形態における工業炉においては、排ガス処理部23から排出された燃焼排ガスに残った未燃成分ガスを前記の後燃焼装置24において燃焼させ、未燃成分ガスをCO2ガスやH2Oに酸化させて排出させるようにしている。
Then, in the industrial furnace according to the second embodiment, the unburned component gas remaining in the combustion exhaust gas discharged from the exhaust gas processing unit 23 is burned in the post-combustion device 24 and the unburned component gas is CO 2 gas And H 2 O are oxidized and discharged.
このため、前記の排ガス処理部23において未燃成分ガスが十分に処理されずに、未燃成分ガスが残った燃焼排ガスが排ガス処理部23から排出されたとしても、この未燃成分ガスが後燃焼装置24において燃焼されて処理されるようになり、未燃成分ガスが排出されるのを確実に防止できるようになる。なお、この実施形態においては、燃焼排ガスに残った未燃成分ガスを火炎によって燃焼させる後燃焼装置24を用いるようにしたが、後燃焼装置24はこのようなものに限定されず、電気加熱等によって燃焼排ガスに残った未燃成分ガスを燃焼させることもできる。
Therefore, even if the combustion exhaust gas containing the unburned component gas is discharged from the exhaust gas processing unit 23 without sufficiently processing the unburned component gas in the exhaust gas processing unit 23, the unburned component gas is The combustion device 24 burns and is processed, and the unburned component gas can be reliably prevented from being discharged. In this embodiment, the post-combustion device 24 is used to burn the unburned component gas remaining in the combustion exhaust gas with a flame, but the post-combustion device 24 is not limited to such a device, such as electric heating The unburned component gas remaining in the combustion exhaust gas can also be burned by
次に、第3の実施形態に係る工業炉においては、図3に示すように、前記の第1の実施形態に係る工業炉において、燃焼バーナー12に燃焼用空気を供給する燃焼用空気供給管22に代えて、炉10内からの燃焼排ガスを排ガス処理部23に導く前記の排気管13内に、燃焼用排ガスの熱によって燃焼用空気を加熱させる熱交換部(熱交換手段)25aを設け、この熱交換部25aに燃焼用空気を案内する燃焼用空気案内管25bを設けると共に、前記の熱交換部25aにおいて加熱された燃焼用空気を燃焼バーナー12に供給する加熱燃焼用空気供給管25cを設けている。
Next, in the industrial furnace according to the third embodiment, as shown in FIG. 3, in the industrial furnace according to the first embodiment, a combustion air supply pipe for supplying combustion air to the combustion burner 12 In place of 22, the heat exchange unit (heat exchange means) 25a for heating the combustion air by the heat of the combustion exhaust gas is provided in the exhaust pipe 13 for guiding the combustion exhaust gas from the inside of the furnace 10 to the exhaust gas processing unit 23. The heat exchange section 25a is provided with a combustion air guide pipe 25b for guiding the combustion air, and the heating air supply pipe 25c for supplying the combustion air heated in the heat exchange section 25a to the combustion burner 12 Is provided.
そして、この第3の実施形態に係る工業炉においては、前記のように燃焼用空気案内管25bを通して燃焼用空気を熱交換部25aに導き、この熱交換部25aにおいて燃焼用排ガスの熱によって燃焼用空気を加熱させ、このように加熱された燃焼用空気を、前記の加熱燃焼用空気供給管25cを通して燃焼バーナー12に供給し、このように加熱された燃焼用空気と燃料ガスとを燃焼バーナー12において混合させて、燃料ガスを炉10内で燃焼させるようにしている。
Then, in the industrial furnace according to the third embodiment, as described above, the combustion air is guided to the heat exchange unit 25a through the combustion air guide pipe 25b, and the heat exchange unit 25a burns the heat by the heat of the combustion exhaust gas. The heating air is heated, and thus heated combustion air is supplied to the combustion burner 12 through the heating / combustion air supply pipe 25c, and the combustion air and fuel gas thus heated are burned. The fuel gas is burned in the furnace 10 by mixing at 12.
このようにすると、燃料ガスを燃焼用空気と混合させて燃焼させる際に、燃焼用排ガスの熱を有効に利用することができるようになる。また、このように熱交換部25aにおいて燃焼用排ガスと燃焼用空気との間で熱交換を行うことにより、炉10内から排気管13を通して前記の排ガス処理部23に導かれる燃焼用排ガスの温度が低下し、燃焼用排ガスの温度が、排ガス処理部23に収容させた三元触媒を使用する温度領域を超えた温度になるのが防止され、三元触媒によって燃焼用排ガスを適切に処理できるようになる。なお、この実施形態においては、熱交換部25aを排気管13内に設けるようにしたが、熱交換部25aを排気管13の外部に設けるようにすることも可能である。
In this way, when the fuel gas is mixed with the combustion air and burned, the heat of the combustion exhaust gas can be effectively used. Further, by performing heat exchange between the combustion exhaust gas and the combustion air in the heat exchange unit 25a in this manner, the temperature of the combustion exhaust gas led to the exhaust gas processing unit 23 from inside the furnace 10 through the exhaust pipe 13 Is reduced, and the temperature of the combustion exhaust gas is prevented from reaching a temperature exceeding the temperature range in which the three-way catalyst contained in the exhaust gas processing unit 23 is used, and the three-way catalyst can properly treat the combustion exhaust gas. It will be. In the present embodiment, the heat exchange unit 25a is provided in the exhaust pipe 13. However, the heat exchange unit 25a may be provided outside the exhaust pipe 13.
次に、第4の実施形態に係る工業炉においては、図4に示すように、前記の第1の実施形態に係る工業炉において、燃料ガス供給管21を通して燃焼バーナー12に供給する燃料ガスの一部を、前記の排気管13に設けた排ガス処理部23よりも燃焼排ガスの排出方向上流側の位置に導く燃料ガス案内路26と、この燃料ガス案内路26を通して排ガス処理部23よりも燃焼排ガスの排出方向上流側の位置における排気管13に供給する燃料ガスの量を制御する制御弁(制御手段)26aとを設けている。
Next, in the industrial furnace according to the fourth embodiment, as shown in FIG. 4, in the industrial furnace according to the first embodiment, the fuel gas supplied to the combustion burner 12 through the fuel gas supply pipe 21 is A fuel gas guiding passage 26 for guiding a part of the exhaust gas processing unit 23 provided in the exhaust pipe 13 to a position upstream of the exhaust gas in the discharge direction, and the fuel gas guiding passage 26 burns in the exhaust gas processing unit 23 A control valve (control means) 26a is provided to control the amount of fuel gas supplied to the exhaust pipe 13 at a position upstream of the exhaust gas discharge direction.
そして、この第4の実施形態に係る工業炉においては、前記の燃焼バーナー12において燃焼された後の燃焼排ガスに含まれるNOxの量に対応させて、前記の制御弁26aにより、燃料ガス案内路26を通して排ガス処理部23よりも燃焼排ガスの排出方向上流側の位置における排気管13に供給する燃料ガスの量を制御するようにしている。
In the industrial furnace according to the fourth embodiment, the fuel gas guide passage is controlled by the control valve 26 a in correspondence to the amount of NOx contained in the combustion exhaust gas after being burned in the combustion burner 12. The amount of fuel gas supplied to the exhaust pipe 13 at a position upstream of the exhaust gas processing unit 23 in the discharge direction of exhaust gas from the exhaust gas processing unit 23 is controlled.
ここで、前記の燃料ガス供給管21と燃焼用空気供給管22とを通して燃焼バーナー12に供給する燃料ガスと燃焼用空気とを供給するにあたり、燃焼効率を高めるために、燃焼用空気の空気比μが1.0を超えるように、燃料ガスに対する燃焼用空気の量を多くして、燃料ガスを前記の燃焼バーナー12において燃焼させた場合、十分な量の燃焼用空気によって燃料ガスが燃焼され、燃焼排ガス中におけるCOガスや炭化水素(HC)ガス等の未燃成分ガスが減少する一方、燃焼時にNOxが多く発生して、燃焼排ガス中にNOxが多く含まれるようになる。
Here, in order to increase the combustion efficiency in supplying the fuel gas and the combustion air supplied to the combustion burner 12 through the fuel gas supply pipe 21 and the combustion air supply pipe 22, the air ratio of the combustion air is increased. When the amount of combustion air to fuel gas is increased such that μ exceeds 1.0 and the fuel gas is burned in the above-described combustion burner 12, the fuel gas is burned by a sufficient amount of combustion air. While unburned component gas such as CO gas and hydrocarbon (HC) gas in the combustion exhaust gas decreases, a large amount of NOx is generated at the time of combustion, and a large amount of the NOx is contained in the combustion exhaust gas.
そして、このように燃焼排ガス中にNOxが多く含まれるようになった場合には、前記の制御弁26aにより、前記の燃料ガス案内路26を通して排ガス処理部23よりも燃焼排ガスの排出方向上流側の位置における排気管13に案内する燃料ガスの量を制御して、適当量の燃料ガスを排ガス処理部23よりも燃焼排ガスの排出方向上流側の位置に供給し、前記のNOxが多く含まれる燃焼排ガスと一緒にして、三元触媒を収容させた排ガス処理部23に導くようにする。このようにすると、排ガス処理部23に収容された三元触媒の作用によって、燃焼排ガス中におけるNOxが燃料ガスとが反応して、NOxがN2に還元されると共に、燃料ガスがCO2やH2Oに酸化された状態で排出されるようになる。
When the combustion exhaust gas contains a large amount of NOx, the control valve 26a causes the fuel gas guide passage 26 to flow upstream of the exhaust gas processing portion 23 in the exhaust gas discharge direction. The amount of fuel gas guided to the exhaust pipe 13 at the position is controlled to supply an appropriate amount of fuel gas to a position upstream of the exhaust gas processing unit 23 in the exhaust gas discharge direction, and a large amount of NOx is contained. It is made to guide to the exhaust gas processing part 23 which accommodated the three-way catalyst together with the combustion exhaust gas. In this way, by the action of the three-way catalyst housed in the exhaust gas treatment unit 23, and NOx in the combustion exhaust gas reacts with the fuel gas, the NOx is reduced to N 2, the fuel gas is CO 2 Ya It will be discharged in the state oxidized to H 2 O.
次に、第5の実施形態に係る工業炉においては、図5に示すように、前記の第4の実施形態に係る工業炉において、前記の第2の実施形態に係る工業炉に示すように、前記の排ガス処理部23よりも燃焼排ガスの排出方向下流側の位置における排気管13に後燃焼装置24を設けると共に、前記の第3の実施形態に係る工業炉に示すように、炉10内からの燃焼排ガスを排ガス処理部23に導く排気管13内に、燃焼用排ガスの熱によって燃焼用空気を加熱させる熱交換部25aを設け、この熱交換部25aに加熱させる燃焼用空気を案内する燃焼用空気案内管25bを設けると共に、前記の熱交換部25aにおいて加熱された燃焼用空気を燃焼バーナー12に供給する加熱燃焼用空気供給管25cを設けている。
Next, in the industrial furnace according to the fifth embodiment, as shown in FIG. 5, in the industrial furnace according to the fourth embodiment, as shown in the industrial furnace according to the second embodiment In the furnace 10, as shown in the industrial furnace according to the third embodiment, a post-combustion device 24 is provided in the exhaust pipe 13 at a position downstream of the exhaust gas processing unit 23 in the exhaust gas discharge direction. In the exhaust pipe 13 for introducing the combustion exhaust gas from the exhaust gas into the exhaust gas processing unit 23, the heat exchange unit 25a for heating the combustion air by the heat of the combustion exhaust gas is provided, and the combustion air to be heated is guided to the heat exchange unit 25a. A combustion air guide pipe 25b is provided, and a heating combustion air supply pipe 25c for supplying the combustion air heated in the heat exchange section 25a to the combustion burner 12 is provided.
そして、この第5の実施形態に係る工業炉においては、前記の第3の実施形態に係る工業炉と同様に、燃焼用空気案内管25bを通して燃焼用空気を熱交換部25aに導き、この熱交換部25aにおいて燃焼用排ガスの熱によって燃焼用空気を加熱させ、このように加熱された燃焼用空気を、前記の加熱燃焼用空気供給管25cを通して燃焼バーナー12に供給し、加熱された燃焼用空気と燃料ガスとを燃焼バーナー12において混合させて、燃料ガスを炉10内で燃焼させるようにする。
Then, in the industrial furnace according to the fifth embodiment, as in the industrial furnace according to the third embodiment, the combustion air is guided to the heat exchange unit 25a through the combustion air guide pipe 25b, and this thermal In the exchange section 25a, the combustion air is heated by the heat of the combustion exhaust gas, and the heated combustion air is supplied to the combustion burner 12 through the heating / combustion air supply pipe 25c to heat the combustion burner 12 Air and fuel gas are mixed in the combustion burner 12 so that the fuel gas is burned in the furnace 10.
このようにすると、前記のように燃料ガスを燃焼用空気と燃料ガスとを混合させて燃焼させる際に、燃焼用排ガスの熱を有効に利用することができるようになると共に、炉10から排ガス処理部23に導かれる燃焼用排ガスの温度が低下し、燃焼用排ガスの温度が、排ガス処理部23に収容させた三元触媒を使用する温度領域を超えた温度なるのが防止され、三元触媒によって燃焼用排ガスを適切に処理できるようになる。
In this way, when the fuel gas is mixed with combustion air and fuel gas and burned as described above, the heat of the combustion exhaust gas can be effectively used, and the exhaust gas from the furnace 10 can be used. The temperature of the combustion exhaust gas led to the processing unit 23 decreases, and the temperature of the combustion exhaust gas is prevented from exceeding the temperature range where the three-way catalyst contained in the exhaust gas processing unit 23 is used. The catalyst can properly treat the exhaust gas for combustion.
また、この第5の実施形態に係る工業炉において、前記の燃料ガス案内路26を通して案内される燃料ガスの量が多くなって、燃焼排ガス中におけるNOxをN2に還元させるのに必要とされる量よりも多くの燃料ガスが排ガス処理部23に導かれるようになると、排ガス処理部23から未燃成分ガスが残った燃焼排ガスが排出されるようになる。このような場合には、前記の第2の実施形態における工業炉と同様に、排ガス処理部23から排出された燃焼排ガスに残った未燃成分ガスを後燃焼装置24において燃焼させ、未燃成分ガスをCO2ガスやH2Oに酸化させて排出させるようにすることができる。
Further, in the industrial furnace according to the fifth embodiment, the amount of fuel gas guided through the fuel gas guide path 26 is increased, which is required to reduce NOx in the combustion exhaust gas to N 2. When a larger amount of fuel gas is introduced to the exhaust gas processing unit 23, the exhaust gas processing unit 23 discharges the combustion exhaust gas in which the unburned component gas remains. In such a case, as in the industrial furnace according to the second embodiment, the unburned component gas remaining in the combustion exhaust gas discharged from the exhaust gas processing unit 23 is burned in the post-combustion device 24, The gas can be oxidized to CO 2 gas or H 2 O and discharged.
10 :炉
11 :炉壁
12 :燃焼バーナー
13 :排気管
21 :燃料ガス供給管
22 :燃焼用空気供給管
23 :排ガス処理部
24 :後燃焼装置
24a :後燃焼用燃料ガス供給管
24b :後燃焼用空気供給管
25a :熱交換部(熱交換手段)
25b :燃焼用空気案内管
25c :加熱燃焼用空気供給管
26 :燃料ガス案内路
26a :制御弁(制御手段)
μ :空気比 10: furnace 11: furnace wall 12: combustion burner 13: exhaust pipe 21: fuel gas supply pipe 22: combustion air supply pipe 23: exhaust gas processing unit 24: postcombustion device 24a: fuel gas supply pipe 24b for post combustion: rear Combustion air supply pipe 25a: Heat exchange unit (heat exchange means)
25b: combustionair guide pipe 25c: heating combustion air supply pipe 26: fuel gas guide path 26a: control valve (control means)
μ: Air ratio
11 :炉壁
12 :燃焼バーナー
13 :排気管
21 :燃料ガス供給管
22 :燃焼用空気供給管
23 :排ガス処理部
24 :後燃焼装置
24a :後燃焼用燃料ガス供給管
24b :後燃焼用空気供給管
25a :熱交換部(熱交換手段)
25b :燃焼用空気案内管
25c :加熱燃焼用空気供給管
26 :燃料ガス案内路
26a :制御弁(制御手段)
μ :空気比 10: furnace 11: furnace wall 12: combustion burner 13: exhaust pipe 21: fuel gas supply pipe 22: combustion air supply pipe 23: exhaust gas processing unit 24: post
25b: combustion
μ: Air ratio
Claims (6)
- 燃焼バーナーに燃料ガスと燃焼用空気とを供給し、前記の燃焼バーナーにより燃料ガスを炉内において燃焼させ、燃焼後の燃焼排ガスを、炉内から排気管を通して排出させる工業炉において、前記の排気管に、三元触媒を収容させた排ガス処理部を設けたことを特徴とする工業炉。 In the industrial furnace, the fuel gas and the combustion air are supplied to the combustion burner, the fuel gas is burned in the furnace by the combustion burner, and the combustion exhaust gas is discharged from the furnace through the exhaust pipe. An industrial furnace characterized in that an exhaust gas processing unit containing a three-way catalyst is provided in a pipe.
- 請求項1に記載の工業炉において、前記の排ガス処理部に収容させた三元触媒により、燃焼排ガスに含まれる窒素酸化物を燃焼排ガスに含まれる未燃成分ガスによって還元させることを特徴とする工業炉。 The industrial furnace according to claim 1, wherein the three-way catalyst contained in the exhaust gas processing unit reduces nitrogen oxides contained in the combustion exhaust gas with unburned component gas contained in the combustion exhaust gas. Industrial furnace.
- 請求項1に記載の工業炉において、前記の燃焼バーナーに供給する燃料ガスの一部を、前記の排気管に設けた排ガス処理部よりも燃焼排ガスの排出方向上流側の位置に導く燃料ガス案内路と、この燃料ガス案内路を通して案内する燃料ガスの量を制御する制御手段とを設けたことを特徴とする工業炉。 The industrial furnace according to claim 1, wherein the fuel gas guide for guiding a part of the fuel gas supplied to the combustion burner to a position upstream of the exhaust gas processing unit provided in the exhaust pipe in the exhaust gas discharge direction. An industrial furnace provided with a passage and control means for controlling the amount of fuel gas guided through the fuel gas guide passage.
- 請求項3に記載の工業炉において、前記の燃焼排ガスに含まれる窒素酸化物の量に対応させて、前記の制御手段により燃料ガス案内路を通して排気管に案内する燃料ガスの量を制御することを特徴とする工業炉。 The industrial furnace according to claim 3, wherein the control means controls the amount of fuel gas guided to the exhaust pipe through the fuel gas guide path in accordance with the amount of nitrogen oxides contained in the combustion exhaust gas. An industrial furnace characterized by
- 請求項1~請求項4の何れか1項に記載の工業炉において、前記の排気管に設けた排ガス処理部よりも燃焼排ガスの排出方向下流側の位置に、排ガス処理部から排出される燃焼排ガスに含まれる未燃成分ガスを燃焼させる後燃焼装置を設けたことを特徴とする工業炉。 The industrial furnace according to any one of claims 1 to 4, wherein the combustion exhausted from the exhaust gas processing unit at a position downstream of the exhaust gas processing unit provided in the exhaust pipe in the exhaust gas discharge direction. An industrial furnace provided with a post-combustion device for burning unburned component gas contained in exhaust gas.
- 請求項1~請求項5の何れか1項に記載の工業炉において、前記の燃焼排ガスの熱によって燃焼用空気を加熱させる熱交換手段を設け、この熱交換手段によって加熱された燃焼用空気を前記の燃焼バーナーに供給させることを特徴とする工業炉。 The industrial furnace according to any one of claims 1 to 5, further comprising: heat exchange means for heating the combustion air by the heat of the combustion exhaust gas, and the combustion air heated by the heat exchange means is An industrial furnace characterized by being fed to the above-mentioned combustion burner.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016051224A JP6525909B2 (en) | 2016-03-15 | 2016-03-15 | Industrial furnace |
JP2016-051224 | 2016-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017159080A1 true WO2017159080A1 (en) | 2017-09-21 |
Family
ID=59852213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/003322 WO2017159080A1 (en) | 2016-03-15 | 2017-01-31 | Industrial furnace |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6525909B2 (en) |
TW (1) | TWI686570B (en) |
WO (1) | WO2017159080A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023176186A (en) | 2022-05-31 | 2023-12-13 | 中外炉工業株式会社 | Industrial furnace exhaust system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05200251A (en) * | 1991-08-29 | 1993-08-10 | Osaka Gas Co Ltd | Combustion method of natural gas and combustor for natural gas |
JPH07133905A (en) * | 1993-11-10 | 1995-05-23 | Tokyo Gas Co Ltd | Low-nitrogen oxide generation alternating burning method |
US5500194A (en) * | 1994-05-04 | 1996-03-19 | Petrocon Technologies, Inc. | Hybrid low NOx process for destruction of bound nitrogen compounds |
US5626086A (en) * | 1993-10-12 | 1997-05-06 | Nce Concepts, Ltd. | Method and apparatus for controlling a waste disposal system |
JP2000130706A (en) * | 1998-10-26 | 2000-05-12 | Mitsubishi Heavy Ind Ltd | Method for reducing oxygen from exhaust gas of boiler |
JP2001106506A (en) * | 1999-10-06 | 2001-04-17 | Mitsubishi Electric Corp | Combustion device for reformer |
JP2003275543A (en) * | 2002-03-22 | 2003-09-30 | Japan Steel Works Ltd:The | Method for treating exhaust gas of waste incineration furnace |
JP2008114115A (en) * | 2006-11-01 | 2008-05-22 | Miura Co Ltd | Harmful substance reduction system |
WO2015052772A1 (en) * | 2013-10-08 | 2015-04-16 | 株式会社岩本 | Incinerator and incinerator equipment |
JP2015530551A (en) * | 2012-07-13 | 2015-10-15 | アルストム テクノロジー リミテッドALSTOM Technology Ltd | Gas turbine power plant with flue gas recirculation and catalytic converter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE505202T1 (en) | 1996-02-08 | 2011-04-15 | Cancer Advances Inc | IMMUNOLOGICAL METHODS FOR TREATING GASTROINTESTINAL CANCER |
CN103868066A (en) * | 2014-03-20 | 2014-06-18 | 北京科技大学 | Multi-stage combustion radiant tube heating device |
-
2016
- 2016-03-15 JP JP2016051224A patent/JP6525909B2/en active Active
-
2017
- 2017-01-31 WO PCT/JP2017/003322 patent/WO2017159080A1/en active Application Filing
- 2017-02-16 TW TW106105055A patent/TWI686570B/en active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05200251A (en) * | 1991-08-29 | 1993-08-10 | Osaka Gas Co Ltd | Combustion method of natural gas and combustor for natural gas |
US5626086A (en) * | 1993-10-12 | 1997-05-06 | Nce Concepts, Ltd. | Method and apparatus for controlling a waste disposal system |
JPH07133905A (en) * | 1993-11-10 | 1995-05-23 | Tokyo Gas Co Ltd | Low-nitrogen oxide generation alternating burning method |
US5500194A (en) * | 1994-05-04 | 1996-03-19 | Petrocon Technologies, Inc. | Hybrid low NOx process for destruction of bound nitrogen compounds |
JP2000130706A (en) * | 1998-10-26 | 2000-05-12 | Mitsubishi Heavy Ind Ltd | Method for reducing oxygen from exhaust gas of boiler |
JP2001106506A (en) * | 1999-10-06 | 2001-04-17 | Mitsubishi Electric Corp | Combustion device for reformer |
JP2003275543A (en) * | 2002-03-22 | 2003-09-30 | Japan Steel Works Ltd:The | Method for treating exhaust gas of waste incineration furnace |
JP2008114115A (en) * | 2006-11-01 | 2008-05-22 | Miura Co Ltd | Harmful substance reduction system |
JP2015530551A (en) * | 2012-07-13 | 2015-10-15 | アルストム テクノロジー リミテッドALSTOM Technology Ltd | Gas turbine power plant with flue gas recirculation and catalytic converter |
WO2015052772A1 (en) * | 2013-10-08 | 2015-04-16 | 株式会社岩本 | Incinerator and incinerator equipment |
Also Published As
Publication number | Publication date |
---|---|
TWI686570B (en) | 2020-03-01 |
TW201734365A (en) | 2017-10-01 |
JP6525909B2 (en) | 2019-06-05 |
JP2017166732A (en) | 2017-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6525908B2 (en) | Radiant tube burner equipment | |
JP6521905B2 (en) | Radiant tube burner unit and industrial furnace | |
WO2008143074A1 (en) | Dust coal boiler, dust coal combustion method, dust coal fuel thermal power generation system, and waste gas purification system for dust coal boiler | |
US11441774B2 (en) | Method for operating flue gas purification system | |
JP6521908B2 (en) | Industrial furnace | |
WO2017159080A1 (en) | Industrial furnace | |
JP6125055B1 (en) | Combustion treatment equipment | |
JPH07133905A (en) | Low-nitrogen oxide generation alternating burning method | |
JP2005016854A (en) | Oxygen combustion burner and furnace having the same and its operating method | |
JP6526076B2 (en) | Heat storage type combustion equipment | |
JP2014048020A (en) | Continuous type heating furnace | |
JP7408255B2 (en) | Heat treatment method for heating furnace, continuous heating furnace and batch heating furnace | |
JP2020085282A (en) | Industrial furnace and combustion control method for industrial furnace | |
JP2023176186A (en) | Industrial furnace exhaust system | |
JP5404533B2 (en) | Combustion control method of heat storage combustion type heat treatment furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17766088 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17766088 Country of ref document: EP Kind code of ref document: A1 |