[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017158782A1 - ヒートポンプ給湯機 - Google Patents

ヒートポンプ給湯機 Download PDF

Info

Publication number
WO2017158782A1
WO2017158782A1 PCT/JP2016/058439 JP2016058439W WO2017158782A1 WO 2017158782 A1 WO2017158782 A1 WO 2017158782A1 JP 2016058439 W JP2016058439 W JP 2016058439W WO 2017158782 A1 WO2017158782 A1 WO 2017158782A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat exchanger
sensor
value
refrigerant
Prior art date
Application number
PCT/JP2016/058439
Other languages
English (en)
French (fr)
Inventor
謙作 畑中
徹 小出
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16894400.7A priority Critical patent/EP3431896B1/en
Priority to PCT/JP2016/058439 priority patent/WO2017158782A1/ja
Priority to JP2018505157A priority patent/JP6537703B2/ja
Publication of WO2017158782A1 publication Critical patent/WO2017158782A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • F24H15/232Temperature of the refrigerant in heat pump cycles at the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser

Definitions

  • the present invention relates to a heat pump water heater having a refrigerant circuit and a hot water supply circuit using carbon dioxide as a refrigerant and exchanging heat between water flowing through the hot water supply circuit and carbon dioxide flowing through the refrigerant circuit.
  • Carbon dioxide is a type of refrigerant circulating in the refrigerant circuit. Carbon dioxide has a merit that it is nonflammable and has a low global warming potential, but has a characteristic that the pressure in the refrigerant circuit is higher than that of hydrocarbon refrigerant.
  • the temperature difference between the refrigerant discharge refrigerant temperature and the tapping temperature is such that the COP (Coefficient ⁇ of ⁇ Performance) is maximized.
  • the control adopted in Patent Document 1 cannot be applied to a heat pump water heater using carbon dioxide.
  • the present invention has been made against the background of the above-described problems, and provides a heat pump water heater using carbon dioxide as a refrigerant that can suppress a rise in high pressure and perform a stable hot water supply operation. .
  • the heat pump water heater of the present invention has a refrigerant circuit and a hot water supply circuit in which carbon dioxide circulates, and a heat pump in which water flowing through the hot water supply circuit and the carbon dioxide flowing through the refrigerant circuit exchange heat with a first heat exchanger.
  • the refrigerant circuit includes a compressor, a refrigerant flow path of the first heat exchanger, an expansion valve, and a second heat exchanger, and the hot water supply circuit includes the first heat exchanger.
  • the heat pump water heater has a water flow path and a tank, and the heat pump water heater detects the temperature of the carbon dioxide discharged from the compressor, and the temperature of water flowing into the water flow path of the first heat exchanger And a third sensor for detecting the temperature of water flowing out of the water flow path of the first heat exchanger, and the expansion valve has a difference between the first value and the target value.
  • the opening degree is set to decrease, and the first value is the third value.
  • the target value is a second temperature that is lower than the first temperature when the detection value of the second sensor is the first temperature. This is a smaller value than the case of.
  • a stable hot water supply operation can be performed while suppressing an increase in the high pressure of the refrigerant discharged from the compressor.
  • FIG. 1 is a circuit configuration diagram of a heat pump water heater according to Embodiment 1.
  • FIG. 3 is a functional block diagram of the heat pump water heater according to Embodiment 1.
  • FIG. 3 is a flowchart relating to control of a refrigerant circuit of the heat pump water heater according to the first embodiment. It is an example of the relationship figure of the water inlet temperature of the heat pump water heater which concerns on Embodiment 1, and target temperature difference. It is another example of the relationship figure of the water inlet temperature of the heat pump water heater which concerns on Embodiment 1, and target temperature difference.
  • 6 is a configuration diagram of an accumulator according to Embodiment 2.
  • FIG. It is a functional block diagram of the heat pump water heater according to the second embodiment.
  • FIG. 1 is a circuit configuration diagram of the heat pump water heater according to the first embodiment.
  • the heat pump water heater 100 includes a refrigerant circuit 10 in which carbon dioxide as a refrigerant circulates, and a hot water supply circuit 20.
  • the refrigerant circuit 10 and the hot water supply circuit 20 are thermally connected in the first heat exchanger 12 which is a water refrigerant heat exchanger, and the refrigerant circulating in the refrigerant circuit 10 and the water circulating in the hot water supply circuit 20 are first connected.
  • 1 Heat exchange is performed by the heat exchanger 12.
  • the refrigerant circuit 10 includes a compressor 11 that compresses and discharges the refrigerant, a refrigerant flow path 12a of the first heat exchanger 12 through which the refrigerant discharged from the compressor 11 passes, an expansion valve 13 that decompresses the refrigerant,
  • the second heat exchanger 14 is configured to be annularly connected by the refrigerant pipe 18 in this order.
  • the compressor 11 is driven by a driving device including, for example, an inverter-controlled DC brushless motor, and has a function of making the pressure and temperature of refrigerant discharged from the compressor 11 variable.
  • the expansion valve 13 has a structure in which the opening degree of the valve can be adjusted, and has a function of changing the decompression state of the refrigerant passing therethrough.
  • an accumulator 15 which is a container for storing excess refrigerant, is connected to the downstream side of the second heat exchanger 14 and the upstream side of the compressor 11.
  • the second heat exchanger 14 is an air heat exchanger that performs heat exchange between the refrigerant circulating in the refrigerant circuit 10 and the outside air.
  • a blower 16 that blows outside air to the second heat exchanger 14 is installed around the second heat exchanger 14.
  • the discharge part of the compressor 11 is provided with a first sensor 17 that is a temperature sensor that detects the temperature of the refrigerant discharged from the compressor 11.
  • the 1st sensor 17 is a temperature sensor which detects the temperature of a refrigerant directly or indirectly via piping.
  • the hot water supply circuit 20 is configured by connecting a tank 21 for storing water and a water flow path 12 b of the first heat exchanger 12 by a water circulation pipe 25.
  • the water circulation pipe 25 is provided with a pump 22 for sending water, and the water is circulated in the hot water supply circuit 20 by operating the pump 22.
  • One end of the water circulation pipe 25 is connected to the lower part of the tank 21, and the other end of the water circulation pipe 25 is connected to the upper part of the tank 21, so that the relatively low temperature water in the lower part of the tank 21 is subjected to the first heat exchange.
  • the tank 12 is heated and flows into the tank 21 from the upper part of the tank 21.
  • a water supply pipe 26 different from the water circulation pipe 25 is connected to the lower part of the tank 21, and water from the water supply source is stored in the tank 21 through the water supply pipe 26.
  • a hot water supply pipe 27 different from the water circulation pipe 25 is connected to the upper part of the tank 21, and relatively high-temperature water in the upper part of the tank 21 is supplied to, for example, a bathtub.
  • the piping structure which concerns on the water supply to the tank 21 and the tapping from the tank 21 is an example, and this invention is not limited by these piping structures.
  • a third sensor 24 that is a temperature sensor that detects the temperature of water flowing out of the first heat exchanger 12 is provided at the outlet of the water flow path 12 b of the first heat exchanger 12.
  • Water inlet temperature T wi detected by the second sensor 23 is a temperature of the water before being heated in the first heat exchanger 12, the water outlet temperature T wo detected by the third sensor 24, the first The temperature of the water after being heated by the heat exchanger 12.
  • a 2nd sensor and a 3rd sensor are temperature sensors which detect the temperature of water directly or indirectly through piping.
  • the heat pump water heater 100 includes an outside air temperature detection device 28 that is a temperature sensor.
  • the outside air temperature detection device 28 is installed in a place where the outside air temperature around the heat pump water heater 100 can be measured.
  • FIG. 2 is a functional block diagram of the heat pump water heater according to the first embodiment.
  • the heat pump water heater 100 includes a control device 30 that performs overall control, and the control device 30 includes a memory 31.
  • the control device 30 receives the output of the first sensor 17, the second sensor 23, the third sensor 24, and the outside air temperature detection device 28, information from the operating means operated by the user, and the like.
  • the control device 30 controls the operation of these actuators by issuing commands to the compressor 11, the expansion valve 13, the blower 16, and the pump 22 based on these input information.
  • the control device 30 controls the operating state of the compressor 11 so as to adjust the pressure and temperature of the refrigerant to be discharged by controlling the frequency of the drive device of the compressor 11.
  • the control device 30 controls the opening degree of the expansion valve 13 so that the refrigerant reaches the target decompression state in the expansion valve 13.
  • the control device 30 controls the operating states of the blower 16 and the pump 22.
  • the control device 30 is configured by dedicated hardware or a CPU (also referred to as a central processing unit, a central processing device, a processing device, an arithmetic device, a microprocessor, a microcomputer, or a processor) that executes a program stored in the memory 31.
  • a CPU also referred to as a central processing unit, a central processing device, a processing device, an arithmetic device, a microprocessor, a microcomputer, or a processor
  • control device 30 When the control device 30 is dedicated hardware, the control device 30 may be, for example, a single circuit, a composite circuit, an ASIC (application specific integrated circuit), an FPGA (field-programmable gate array), or a combination thereof. Applicable. Each functional unit realized by the control device 30 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • each function executed by the control device 30 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in the memory 31.
  • the CPU implements each function of the control device 30 by reading and executing the program stored in the memory 31.
  • the memory 31 is, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
  • control device 30 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • control of the respective actuators is illustrated as being controlled by the control device 30, but the control device 30 does not necessarily have to be physically configured as illustrated. That is, the specific form of distribution and integration of the control device 30 is not limited to the illustrated one, and all or a part thereof is functionally or physically distributed in arbitrary units according to various loads or usage conditions. Alternatively, they can be integrated.
  • the outline of the hot water supply operation of the heat pump water heater 100 will be described.
  • the frequency-controlled compressor 11 When the frequency-controlled compressor 11 is operated, the compressed refrigerant is discharged from the compressor 11.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant flow path 12a of the first heat exchanger 12.
  • the pump 22 is driven, and the water in the tank 21 flows into the water flow path 12 b of the first heat exchanger 12 through the water circulation pipe 25 by the action of the pump 22.
  • the high-temperature and high-pressure refrigerant passing through the refrigerant flow path 12a and the water passing through the water flow path 12b are heat-exchanged in the first heat exchanger 12, and the refrigerant whose temperature has decreased and the high-temperature water whose temperature has increased respectively.
  • the high-temperature water whose temperature has risen in the first heat exchanger 12 flows into the tank 21 through the water circulation pipe 25.
  • the refrigerant whose temperature has decreased due to heat exchange with water in the first heat exchanger 12 flows into the expansion valve 13.
  • the refrigerant flowing into the expansion valve 13 is depressurized to a state corresponding to the opening degree of the expansion valve 13, and becomes a low-pressure refrigerant and flows into the second heat exchanger 14.
  • the refrigerant flowing into the second heat exchanger 14 exchanges heat with the outside air in the process of passing through the second heat exchanger 14, and the temperature rises.
  • the operation state of the blower 16 is controlled in order to obtain a desired heat exchange amount between the outside air and the refrigerant.
  • the refrigerant whose temperature has risen due to heat exchange with the outside air in the second heat exchanger 14 is sucked into the compressor 11 via the accumulator 15.
  • the control device 30 monitors the high-pressure side refrigerant pressure output from the first sensor 17, and temporarily stops the hot water supply operation when the high-pressure side refrigerant pressure exceeds the upper limit value determined at the time of design. It
  • FIG. 3 is a flowchart relating to the control of the refrigerant circuit of the heat pump water heater according to the first embodiment.
  • the control device 30 determines the drive frequency of the compressor 11 and operates the compressor 11 at the determined drive frequency. Specifically, the control device 30 determines the drive frequency of the compressor 11 based on the outside air temperature T a output from the outside air temperature detector 28 and the water inlet temperature T wi output from the second sensor 23. To do. If the outside air temperature T a is lower than is higher, the driving frequency of the compressor 11 is set high. Further, when the water inlet temperature Twi is low, the drive frequency of the compressor 11 is determined to be higher than when the water inlet temperature Twi is high. For example, previously obtained by test etc.
  • correspondence table between a combination and the driving frequency of the compressor 11 with the outside air temperature T a and the water inlet temperature T wi stores the correspondence table in the memory 31, the controller 30 memory
  • the drive frequency can be determined based on the correspondence table stored in 31. Instead of determining the driving frequency based on such a correspondence table, the control unit 30 applies a predetermined operation expression the detected outside air temperature T a and the water inlet temperature T wi, the drive frequency May be determined.
  • T _t is a target value of the temperature difference between the discharged refrigerant temperature T ro and the target water outlet temperature T wo_t.
  • the target water outlet temperature Two_t is set based on a predetermined temperature of water stored in the tank 21. Discharged refrigerant temperature T ro, as the temperature of the water heated by the refrigerant in the first heat exchanger 12 becomes equal to the target water outlet temperature T Wo_t, as higher temperatures only margin allowance with respect to the target water outlet temperature T Wo_t Is set.
  • the value for the margin is the target temperature difference ⁇ T_t .
  • Target temperature difference [Delta] T _t the value corresponding to the target water outlet temperature T Wo_t is set. For example, it can be stored in advance in the memory 31 a correspondence table between the target water outlet temperature T Wo_t and the target temperature difference [Delta] T _t.
  • the control device 30 corrects the target temperature difference ⁇ T_t set in step S2. Specifically, when the water inlet temperature T wi output from the second sensor 23 is the first temperature V 1 , the control device 30 is the second temperature V 2 (where V 1 > V). 2) than, so that the target temperature difference [Delta] T _t is a small value, it corrects the target temperature difference [Delta] T _t. That is, even in the target water outlet temperature T Wo_t the same, depending on the water inlet temperature T wi with different target temperature difference [Delta] T _t, than when the water inlet temperature T wi is large is small, the target temperature difference Let ⁇ T_t be a small value.
  • FIG. 4 is an example of a relationship diagram between the water inlet temperature and the target temperature difference of the heat pump water heater according to the first embodiment. 4, as the larger the water inlet temperature T wi target temperature difference [Delta] T _t decreases, shows an example of varying the correction value of the target temperature difference [Delta] T _t stepwise.
  • the threshold value of the water inlet temperature T wi advance one determined, when the water inlet temperature T wi exceeds the threshold value, subtracting a predetermined correction value from the target temperature difference [Delta] T _t
  • the target temperature difference ⁇ T_t may be corrected.
  • FIG. 5 is another example of a relationship diagram between the water inlet temperature and the target temperature difference of the heat pump water heater according to the first embodiment.
  • the correction of the target temperature difference [Delta] T _t in addition to the water inlet temperature T wi, may be adjusted to the correction value in accordance with the ambient temperature T a.
  • the higher the ambient temperature T a is less heat radiation amount of water in the hot water supply circuit 20. Therefore, when the outside air temperature T a is greater by reducing the target temperature difference [Delta] T _t, it is possible to obtain a desired water outlet temperature T wo.
  • the control device 30 determines that the temperature difference ⁇ T between the discharged refrigerant temperature T ro detected by the first sensor 17 and the water outlet temperature T wo detected by the third sensor 24 becomes the target temperature difference ⁇ T_t corrected in step S3.
  • the opening degree of the expansion valve 13 is controlled so as to approach.
  • Step S4 the pump 22 operates to allow water from the lower portion of the tank 21 to pass through the water flow path 12b of the first heat exchanger 12, and in the process, the water is heated by the refrigerant and heated.
  • the water is returned from the upper part of the tank 21 into the tank 21. In this way, the hot water boiled in the tank 21 is stored.
  • the rotation speed of the pump 22 is controlled so that the output value of the third sensor 24 becomes the target water outlet temperature Two_t . Since the opening degree of the expansion valve 13 is controlled so that the target temperature difference ⁇ T_t is obtained in step S4, that is, the heating capacity in the heat pump cycle is maintained constant, the water speed is adjusted by adjusting the rotation speed of the pump 22. The outlet temperature Two can be ensured.
  • step S5 The control device 30 continuously performs the process of step S4 until the boiling is completed.
  • the controller 30 determines that the boiling is completed and ends the operation.
  • the opening degree of the expansion valve 13 is controlled so that the difference between the temperature difference ⁇ T between the discharge refrigerant temperature Tro and the water outlet temperature Two and the target temperature difference ⁇ T_t becomes small. Is done.
  • the value of the target temperature difference ⁇ T_t is set to be smaller when the water inlet temperature T wi is the first temperature than when the second temperature is smaller than the first temperature. Is done. For this reason, when the water inlet temperature T wi is high, the opening degree of the expansion valve 13 is controlled so that the degree of superheat of carbon dioxide, which is a refrigerant, is lower than when the water inlet temperature T wi is low. The amount of liquid refrigerant increases.
  • the control device 30 temporarily stops the hot water supply operation when the refrigerant pressure on the high pressure side exceeds the upper limit value determined at the time of design, but according to the present embodiment, an excessive increase in the refrigerant pressure is suppressed.
  • the first value of the present invention corresponds to the temperature difference ⁇ T in the present embodiment.
  • Embodiment 2 a modified example of the first embodiment will be described.
  • the control of the minimum value of the target temperature difference [Delta] T _t corrected explain.
  • the present embodiment is realized by adding a configuration to the first embodiment, and the following description will focus on differences from the first embodiment.
  • FIG. 6 is a configuration diagram of the accumulator according to the second embodiment.
  • the piping of the refrigerant circuit 10 is inserted in the upper part and the lower part of the accumulator 15, respectively, the refrigerant flows into the accumulator 15 from the upper pipe, and the gas refrigerant flows out from the lower pipe. It is a configuration. As shown in FIG. 1, the refrigerant flowing out of the accumulator 15 is sucked into the compressor 11.
  • the accumulator 15 is provided with a liquid level gauge 19 for detecting the liquid level of the liquid refrigerant in the accumulator 15.
  • the liquid level gauge 19 is not particularly limited in its specific configuration as long as it has a function of detecting the liquid level of the liquid refrigerant.
  • any type such as a magnet float type, a capacitance type, and an ultrasonic type may be used. Can be used.
  • FIG. 7 is a functional block diagram of the heat pump water heater according to the second embodiment. As shown in FIG. 7, the liquid level gauge 19 is communicably connected to the control device 30, and an output from the liquid level gauge 19 is input to the control device 30.
  • Operation control regarding the heating capability of water in the refrigerant circuit 10 of the heat pump water heater 100 is performed in the same manner as that shown in FIG. That is, the target temperature difference [Delta] T _t between the discharge refrigerant temperature Tro and the target water outlet temperature T Wo_t is corrected based on the water inlet temperature T wi. Then, the temperature difference [Delta] T between the detected discharge refrigerant temperature T ro water outlet temperature T wo is, so that the target temperature difference [Delta] T _t the corrected opening degree of the expansion valve 13 is controlled.
  • the threshold liquid level in the accumulator 15 by the level gauge 19 Is detected, the downward correction of the target temperature difference ⁇ T_t is not performed. That is, when the level gauge 19 detects a threshold value, the control device 30 maintains the current value of the target temperature difference ⁇ T_t at a current value or a value larger than the current value regardless of the detected value of the water inlet temperature T wi. To do.
  • the control device 30 performs the correction to decrease the target temperature difference ⁇ T_t as the water inlet temperature T wi is higher.
  • the increase in the pressure of the refrigerant discharged from the compressor 11 can be suppressed.
  • the control device 30 does not perform correction for reducing the target temperature difference ⁇ T_t, and therefore, it is possible to prevent an insufficient amount of refrigerant circulating in the refrigerant circuit 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

二酸化炭素が循環する冷媒回路と給湯回路とを有し、前記給湯回路を流れる水と前記冷媒回路を流れる前記二酸化炭素とが第1熱交換器で熱交換するヒートポンプ給湯機であって、前記冷媒回路は、圧縮機、前記第1熱交換器の冷媒流路、膨張弁、及び第2熱交換器を有し、前記給湯回路は、前記第1熱交換器の水流路及びタンクを有し、前記ヒートポンプ給湯機は、前記圧縮機から吐出される前記二酸化炭素の温度を検出する第1センサと、前記第1熱交換器の前記水流路に流入する水の温度を検出する第2センサと、前記第1熱交換器の前記水流路から流出した水の温度を検出する第3センサとを備え、前記膨張弁は、第1の値と目標値との差が減るように開度が設定され、前記第1の値は、前記第3センサの検出値と前記第1センサの検出値との差であり、前記目標値は、前記第2センサの検出値が第1温度である場合には、前記第1温度よりも小さい第2温度である場合よりも、小さい値である。

Description

ヒートポンプ給湯機
 本発明は、二酸化炭素を冷媒とする冷媒回路と給湯回路とを有し、給湯回路を流れる水と冷媒回路を流れる二酸化炭素とが熱交換するヒートポンプ給湯機に関する。
 従来、HC(炭化水素)系冷媒を用いる冷媒回路と給湯回路とを備えたヒートポンプ給湯機において、圧縮機からの吐出温度と給湯用熱交換器からの出湯温度との温度差が、COP(Coefficient of Performance:成績係数)が最大となるような目標値になるように、膨張弁の開度を制御する技術が提案されている(たとえば、特許文献1参照)。
特開2012-233626号公報(請求項1、第9頁)
 冷媒回路を循環する冷媒の一種として、二酸化炭素がある。二酸化炭素は、不燃性で地球温暖化係数が低いといったメリットがある一方で、炭化水素系冷媒と比較して冷媒回路内での圧力が高いという特性がある。上記特許文献1には、炭化水素系冷媒を用いるヒートポンプ給湯機において、圧縮機の吐出冷媒温度と出湯温度との温度差が、COP(Coefficient of Performance:成績係数)が最大となるような目標値になるように膨張弁の開度を制御する旨の記載があるが、特許文献1で採用されている制御を、二酸化炭素を用いるヒートポンプ給湯機に適用することはできなかった。というのは、上述のように二酸化炭素は冷媒回路内での圧力が高いため、COPが最大となるように吐出冷媒温度と出湯温度との目標温度差を決定すると、高圧圧力が設計圧力を超えることがあり、そうなるとヒートポンプ運転を継続できなくなって給湯が停止されてしまうためである。また、二酸化炭素によって加熱される水の温度が高温である場合には、二酸化炭素の高圧が上昇しやすいという特性もあり、高圧の管理は重要である。このため、二酸化炭素を用いるヒートポンプ給湯機において、高圧の上昇を抑制して安定した給湯運転を行うことのできる技術が望まれていた。
 本発明は、上述のような課題を背景としてなされたものであり、高圧の上昇を抑制して安定した給湯運転を行うことのできる二酸化炭素を冷媒として用いたヒートポンプ給湯機を提供するものである。
 本発明のヒートポンプ給湯機は、二酸化炭素が循環する冷媒回路と給湯回路とを有し、前記給湯回路を流れる水と前記冷媒回路を流れる前記二酸化炭素とが第1熱交換器で熱交換するヒートポンプ給湯機であって、前記冷媒回路は、圧縮機、前記第1熱交換器の冷媒流路、膨張弁、及び第2熱交換器を有し、前記給湯回路は、前記第1熱交換器の水流路及びタンクを有し、前記ヒートポンプ給湯機は、前記圧縮機から吐出される前記二酸化炭素の温度を検出する第1センサと、前記第1熱交換器の前記水流路に流入する水の温度を検出する第2センサと、前記第1熱交換器の前記水流路から流出した水の温度を検出する第3センサとを備え、前記膨張弁は、第1の値と目標値との差が減るように開度が設定され、前記第1の値は、前記第3センサの検出値と前記第1センサの検出値との差であり、前記目標値は、前記第2センサの検出値が第1温度である場合には、前記第1温度よりも小さい第2温度である場合よりも、小さい値であるものである。
 本発明によれば、二酸化炭素を冷媒として用いる冷媒回路を備えたヒートポンプ給湯機において、圧縮機から吐出される冷媒の高圧の上昇を抑制して安定した給湯運転を行うことができる。
実施の形態1に係るヒートポンプ給湯機の回路構成図である。 実施の形態1に係るヒートポンプ給湯機の機能ブロック図である。 実施の形態1に係るヒートポンプ給湯機の冷媒回路の制御に係るフローチャートである。 実施の形態1に係るヒートポンプ給湯機の水入口温度と目標温度差との関係図の一例である。 実施の形態1に係るヒートポンプ給湯機の水入口温度と目標温度差との関係図の他の例である。 実施の形態2に係るアキュムレータの構成図である。 実施の形態2に係るヒートポンプ給湯機の機能ブロック図である。
 本発明の実施の形態に係るヒートポンプ給湯機について図面を参照して説明する。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。
実施の形態1.
 図1は、実施の形態1に係るヒートポンプ給湯機の回路構成図である。ヒートポンプ給湯機100は、冷媒としての二酸化炭素が循環する冷媒回路10と、給湯回路20とを備える。冷媒回路10と給湯回路20とは、水冷媒熱交換器である第1熱交換器12において熱的に接続されていて、冷媒回路10を循環する冷媒と給湯回路20を循環する水とが第1熱交換器12で熱交換する。
 冷媒回路10は、冷媒を圧縮して吐出する圧縮機11と、圧縮機11から吐出された冷媒が通過する第1熱交換器12の冷媒流路12aと、冷媒を減圧する膨張弁13と、第2熱交換器14とが、この順番で冷媒配管18によって環状に接続されて構成されている。圧縮機11は、例えばインバータ制御式のDCブラシレスモータ等を備えた駆動装置により駆動され、圧縮機11から吐出する冷媒の圧力及び温度を可変とする機能を有している。膨張弁13は、弁の開度が調整可能な構造であり、通過する冷媒の減圧状態を可変とする機能を有している。また、本実施の形態では、第2熱交換器14の下流側であって圧縮機11の上流側に、余剰冷媒を溜める容器であるアキュムレータ15が接続されている。第2熱交換器14は、冷媒回路10を循環する冷媒と外気とで熱交換を行う空気熱交換器である。第2熱交換器14に外気を送風する送風機16が第2熱交換器14の周囲に設置されている。
 圧縮機11の吐出部には、圧縮機11から吐出される冷媒の温度を検出する温度センサである第1センサ17が設けられている。第1センサ17は、冷媒の温度を、直接的に、あるいは配管を介して間接的に検出する温度センサである。
 給湯回路20は、水を溜めるタンク21と、第1熱交換器12の水流路12bとが、水循環用配管25で接続されて構成されている。水循環用配管25には、水を送出するポンプ22が設置されており、ポンプ22が動作することで給湯回路20内を水が循環する。水循環用配管25の一端はタンク21の下部に接続され、水循環用配管25の他端はタンク21の上部に接続されており、タンク21内の下部の比較的低温の水が、第1熱交換器12で加熱されてタンク21の上部からタンク21内に流入する構成になっている。
 タンク21の下部には、水循環用配管25とは別の給水配管26が接続されており、この給水配管26を介して給水源からの水がタンク21内に溜められる。タンク21の上部には、水循環用配管25とは別の出湯配管27が接続されており、タンク21内の上部の比較的高温の水が、例えば浴槽等に供給される。なお、タンク21への給水及びタンク21からの出湯に係る配管構成は一例であり、これらの配管構成によって本発明は限定されない。
 第1熱交換器12の水流路12bの入口には、第1熱交換器12に流入する水の温度を検出する温度センサである第2センサ23が設けられている。また、第1熱交換器12の水流路12bの出口には、第1熱交換器12から流出する水の温度を検出する温度センサである第3センサ24が設けられている。第2センサ23で検出される水入口温度Twiが、第1熱交換器12で加熱される前の水の温度であり、第3センサ24で検出される水出口温度Twoが、第1熱交換器12で加熱された後の水の温度である。第2センサ及び第3センサは、水の温度を、直接的にあるいは配管を介して間接的に検出する温度センサである。
 また、ヒートポンプ給湯機100は、温度センサである外気温度検出装置28を備える。外気温度検出装置28は、ヒートポンプ給湯機100の周囲の外気温度を計測することができる場所に設置されている。
 図2は、実施の形態1に係るヒートポンプ給湯機の機能ブロック図である。ヒートポンプ給湯機100は、全体の制御を司る制御装置30を備え、制御装置30はメモリ31を備える。制御装置30には、第1センサ17、第2センサ23、第3センサ24、及び外気温度検出装置28の出力、並びに使用者が操作する操作手段からの情報等が入力される。制御装置30は、これらの入力情報に基づいて、圧縮機11、膨張弁13、送風機16、及びポンプ22に対して指令を出すことにより、これらアクチュエータの動作を制御する。具体的には、制御装置30は、圧縮機11の駆動装置の周波数を制御することにより、吐出する冷媒の圧力及び温度を調整するように圧縮機11の動作状態を制御する。また、制御装置30は、膨張弁13において冷媒が目的の減圧状態になるように、膨張弁13の開度を制御する。また、制御装置30は、送風機16及びポンプ22の動作状態を制御する。
 制御装置30は、専用のハードウェア、またはメモリ31に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。
 制御装置30が専用のハードウェアである場合、制御装置30は、例えば、単一回路、複合回路、ASIC(application specific integrated circuit)、FPGA(field-programmable gate array)、またはこれらを組み合わせたものが該当する。制御装置30が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。
 制御装置30がCPUの場合、制御装置30が実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリ31に格納される。CPUは、メモリ31に格納されたプログラムを読み出して実行することにより、制御装置30の各機能を実現する。ここで、メモリ31は、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。
 なお、制御装置30の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。また、図2では各アクチュエータの制御を制御装置30が統括して行うものとして示しているが、制御装置30は必ずしも物理的に図示のように構成されていることを要しない。すなわち、制御装置30の分散及び統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散又は統合して構成することができる。
 ヒートポンプ給湯機100の給湯運転の概要を説明する。周波数制御される圧縮機11が動作すると、圧縮された冷媒が圧縮機11から吐出される。圧縮機11から吐出された高温高圧の冷媒は、第1熱交換器12の冷媒流路12aに流入する。一方、給湯回路20においてはポンプ22が駆動され、ポンプ22の作用によってタンク21内の水が水循環用配管25を通って第1熱交換器12の水流路12bに流入する。冷媒流路12aを通過する高温高圧の冷媒と、水流路12bを通過する水とは、第1熱交換器12において熱交換し、温度が低下した冷媒と温度が上昇した高温水とが、それぞれ第1熱交換器12から流出する。第1熱交換器12で温度上昇した高温水は、水循環用配管25を通ってタンク21内に流入する。
 第1熱交換器12において水と熱交換して温度が低下した冷媒は、膨張弁13に流入する。膨張弁13に流入した冷媒は、膨張弁13の開度に応じた状態に減圧され、低圧の冷媒となって第2熱交換器14に流入する。第2熱交換器14に流入した冷媒は、第2熱交換器14を通過する過程において外気と熱交換して温度が上昇する。送風機16は、外気と冷媒との所望の熱交換量を得るために動作状態が制御されている。第2熱交換器14において外気と熱交換して温度が上昇した冷媒は、アキュムレータ15を介して圧縮機11に吸入される。制御装置30は、第1センサ17から出力される高圧側の冷媒圧力を監視しており、高圧側の冷媒圧力が設計時に定められた上限値を超えると、給湯運転を一時的に停止するように構成されている。
 次に、ヒートポンプ給湯機100の給湯運転における、冷媒回路10の運転制御の詳細を説明する。図3は、実施の形態1に係るヒートポンプ給湯機の冷媒回路の制御に係るフローチャートである。
(S1)
 制御装置30は、圧縮機11の駆動周波数を決定し、決定した駆動周波数で圧縮機11を動作させる。具体的には、制御装置30は、外気温度検出装置28から出力される外気温度T、及び第2センサ23から出力される水入口温度Twiに基づいて、圧縮機11の駆動周波数を決定する。外気温度Tが低い場合には高い場合に比べて、圧縮機11の駆動周波数は高く設定される。また、水入口温度Twiが低い場合には高い場合に比べて、圧縮機11の駆動周波数は高く決定される。例えば、外気温度Tと水入口温度Twiとの組み合わせと圧縮機11の駆動周波数との対応表を予め試験等により求め、その対応表をメモリ31に記憶しておき、制御装置30はメモリ31に記憶された対応表に基づいて駆動周波数を決定することができる。そのような対応表に基づいて駆動周波数を決定することに代えて、制御装置30は、検出された外気温度Tと水入口温度Twiを予め定められた演算式に適用して、駆動周波数を決定してもよい。
(S2)
 制御装置30は、吐出冷媒温度Troと目標水出口温度Two_tとの温度差の目標値である目標温度差ΔT_tを設定する。ここで、目標水出口温度Two_tは、予め定められたタンク21に溜める水の温度に基づいて設定されている。吐出冷媒温度Troは、第1熱交換器12において冷媒によって加熱される水の温度が目標水出口温度Two_tになるように、目標水出口温度Two_tに対して余裕代分だけ高い温度として設定される。その余裕代分の値が、目標温度差ΔT_tである。ステップS2において目標温度差ΔT_tは、目標水出口温度Two_tに応じた値が設定される。例えば、目標水出口温度Two_tと目標温度差ΔT_tとの対応表を予めメモリ31に記憶しておくことができる。
(S3)
 制御装置30は、ステップS2で設定した目標温度差ΔT_tを補正する。具体的には、制御装置30は、第2センサ23から出力される水入口温度Twiが第1温度Vである場合には、第2温度Vである場合(ただし、V>V)よりも、目標温度差ΔT_tが小さな値になるように、目標温度差ΔT_tを補正する。すなわち、目標水出口温度Two_tが同じであっても、水入口温度Twiに応じて目標温度差ΔT_tを異ならせ、水入口温度Twiが大きい場合には小さい場合よりも、目標温度差ΔT_tを小さな値とする。
 図4は、実施の形態1に係るヒートポンプ給湯機の水入口温度と目標温度差との関係図の一例である。図4は、水入口温度Twiが大きいほど目標温度差ΔT_tが小さくなるように、目標温度差ΔT_tの補正値を段階的に異ならせる例を示している。図4に示した例のほか、水入口温度Twiの閾値を予め一つ決めておき、水入口温度Twiが閾値を超えた場合に、目標温度差ΔT_tから予め定めた補正値を減じることで目標温度差ΔT_tを補正するようにしてもよい。
 図5は、実施の形態1に係るヒートポンプ給湯機の水入口温度と目標温度差との関係図の他の例である。図5に示すように、目標温度差ΔT_tの補正においては、水入口温度Twiに加え、外気温度Tに応じて補正値を調整するようにしてもよい。具体的には、外気温度Tが高い場合(T=β℃)には、低い場合(T=α℃)に比べて目標温度差ΔT_tを小さくする。外気温度Tが高いほど、給湯回路20における水の放熱量が少ない。このため、外気温度Tが高い場合には目標温度差ΔT_tを小さくしても、所望の水出口温度Twoを得ることができる。
(S4)
 制御装置30は、第1センサ17で検出される吐出冷媒温度Troと第3センサ24で検出される水出口温度Twoとの温度差ΔTが、ステップS3で補正した目標温度差ΔT_tに近づくように、膨張弁13の開度を制御する。
 ステップS4の運転を実行している間、ポンプ22が動作してタンク21の下部からの水が第1熱交換器12の水流路12bを通過し、その過程で冷媒により水が加熱され、加熱された水がタンク21の上部からタンク21内に戻される。このようにして、タンク21内に沸き上げられた高温水が溜められる。ポンプ22の回転数は、第3センサ24の出力値が目標水出口温度Two_tとなるように制御される。ステップS4において目標温度差ΔT_tが得られるように膨張弁13の開度が制御されているため、すなわちヒートポンプサイクルにおける加熱能力が一定に維持されているため、ポンプ22の回転数の調整によって水出口温度Twoを確保することができる。
(S5)
 制御装置30は、沸き上げ完了までステップS4の処理を継続的に行い、タンク21内に目標温度の湯が定められた量だけ溜まると、沸き上げ完了と判断して運転を終了する。
 以上のように本実施の形態によれば、吐出冷媒温度Troと水出口温度Twoとの温度差ΔTと目標温度差ΔT_tとの差が小さくなるように膨張弁13の開度が制御される。そして、目標温度差ΔT_tの値は、水入口温度Twiが第1温度である場合には、第1温度よりも小さな値である第2温度の場合よりも、小さな値になるように設定される。このため、水入口温度Twiが大きい場合には、小さい場合に比べて、冷媒である二酸化炭素の過熱度が低くなるように膨張弁13の開度が制御され、これによってアキュムレータ15内に溜まる液冷媒量が増加する。アキュムレータ15内の液冷媒の量が増加することにより、圧縮機11から吐出される冷媒の高圧上昇が抑制される。上述のように制御装置30は、高圧側の冷媒圧力が設計時に定められた上限値を超えると給湯運転を一時的に停止するが、本実施の形態によれば冷媒の過度な高圧上昇が抑制されるので、安定的に給湯運転を継続することができ、信頼性の高いヒートポンプ給湯機100を得ることができる。なお、本願発明の第1の値は、本実施の形態では温度差ΔTに相当する。
実施の形態2.
 本実施の形態では、前述の実施の形態1の変形例を説明する。前述の実施の形態1では、水入口温度Twiに基づいて目標温度差ΔT_tを補正することを説明したが、本実施の形態では、補正後の目標温度差ΔT_tの最小値の制御について説明する。本実施の形態は、実施の形態1に構成を追加することで実現するものであり、以下では実施の形態1との相違点を中心に説明する。
 図6は、実施の形態2に係るアキュムレータの構成図である。図6に示すように、アキュムレータ15の上部と下部には、それぞれ冷媒回路10の配管が挿入されており、上部の配管からアキュムレータ15内に冷媒が流入し、下部の配管からガス冷媒が流出する構成である。図1で示したように、アキュムレータ15から流出した冷媒は圧縮機11に吸入される。
 アキュムレータ15には、アキュムレータ15内の液冷媒の液面を検出する液面計19が設けられている。液面計19は、液冷媒の液面を検出する機能を有するものであれば、その具体的構成は特に限定されず、たとえばマグネットフロート式、静電容量式、超音波式などの任意のものを用いることができる。
 図7は、実施の形態2に係るヒートポンプ給湯機の機能ブロック図である。図7に示すように、液面計19は制御装置30に対して通信可能に接続されており、液面計19からの出力が制御装置30に入力される。
 ヒートポンプ給湯機100の冷媒回路10における水の加熱能力に関する運転制御は、実施の形態1において図3に示したのと同様に行われる。すなわち、吐出冷媒温度Troと目標水出口温度Two_tとの目標温度差ΔT_tが、水入口温度Twiに基づいて補正される。そして、検出された吐出冷媒温度Troと水出口温度Twoとの温度差ΔTが、補正後の目標温度差ΔT_tになるように、膨張弁13の開度が制御される。
 ここで本実施の形態においても、目標温度差ΔT_tの値は、水入口温度Twiが高いほど小さな値になるように補正されるが、液面計19によってアキュムレータ15内の液面が閾値を超えたことが検出された場合には、目標温度差ΔT_tの下方補正は行われない。すなわち、液面計19が閾値を検出した場合、制御装置30は、水入口温度Twiの検出値にかかわらず、目標温度差ΔT_tの値を現状維持する、もしくは現在値よりも大きい値にする。
 このように本実施の形態では、アキュムレータ15内の液冷媒量が閾値に到達するまでは、制御装置30は、水入口温度Twiが高いほど目標温度差ΔT_tを小さくする補正を行うので、実施の形態1と同様に圧縮機11から吐出される冷媒の高圧上昇を抑制することができる。また、アキュムレータ15内の液冷媒量が閾値を超えると、制御装置30は目標温度差ΔT_tを小さくする補正を行わないので、冷媒回路10内を循環する冷媒量の不足を防ぐことができる。
 10 冷媒回路、11 圧縮機、12 第1熱交換器、12a 冷媒流路、12b 水流路、13 膨張弁、14 第2熱交換器、15 アキュムレータ、16 送風機、17 第1センサ、18 冷媒配管、19 液面計、20 給湯回路、21 タンク、22 ポンプ、23 第2センサ、24 第3センサ、25 水循環用配管、26 給水配管、27 出湯配管、28 外気温度検出装置、30 制御装置、31 メモリ、100 ヒートポンプ給湯機。

Claims (3)

  1.  二酸化炭素が循環する冷媒回路と給湯回路とを有し、前記給湯回路を流れる水と前記冷媒回路を流れる前記二酸化炭素とが第1熱交換器で熱交換するヒートポンプ給湯機であって、
     前記冷媒回路は、圧縮機、前記第1熱交換器の冷媒流路、膨張弁、及び第2熱交換器を有し、
     前記給湯回路は、前記第1熱交換器の水流路及びタンクを有し、
     前記ヒートポンプ給湯機は、
     前記圧縮機から吐出される前記二酸化炭素の温度を検出する第1センサと、
     前記第1熱交換器の前記水流路に流入する水の温度を検出する第2センサと、
     前記第1熱交換器の前記水流路から流出した水の温度を検出する第3センサとを備え、
     前記膨張弁は、第1の値と目標値との差が減るように開度が設定され、前記第1の値は、前記第3センサの検出値と前記第1センサの検出値との差であり、前記目標値は、前記第2センサの検出値が第1温度である場合には、前記第1温度よりも小さい第2温度である場合よりも、小さい値である
     ヒートポンプ給湯機。
  2.  前記目標値は、外気温度が高い場合には低い場合に比べて、小さな値である
     請求項1記載のヒートポンプ給湯機。
  3.  前記冷媒回路の前記第2熱交換器の下流側かつ前記圧縮機の上流側に設けられたアキュムレータと、
     前記アキュムレータ内の二酸化炭素の液面を検出する液面計と、
     前記目標値を、前記第2センサの検出値が大きい場合は小さい場合に比べて、小さな値となるように補正する制御装置とを備え、
     前記制御装置は、前記液面計の検出値が閾値を超えた状態では、前記第2センサの検出値にかかわらず、前記目標値を小さな値とする補正を行わない
     請求項1または請求項2に記載のヒートポンプ給湯機。
PCT/JP2016/058439 2016-03-17 2016-03-17 ヒートポンプ給湯機 WO2017158782A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16894400.7A EP3431896B1 (en) 2016-03-17 2016-03-17 Heat pump hot water supplier
PCT/JP2016/058439 WO2017158782A1 (ja) 2016-03-17 2016-03-17 ヒートポンプ給湯機
JP2018505157A JP6537703B2 (ja) 2016-03-17 2016-03-17 ヒートポンプ給湯機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058439 WO2017158782A1 (ja) 2016-03-17 2016-03-17 ヒートポンプ給湯機

Publications (1)

Publication Number Publication Date
WO2017158782A1 true WO2017158782A1 (ja) 2017-09-21

Family

ID=59851159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058439 WO2017158782A1 (ja) 2016-03-17 2016-03-17 ヒートポンプ給湯機

Country Status (3)

Country Link
EP (1) EP3431896B1 (ja)
JP (1) JP6537703B2 (ja)
WO (1) WO2017158782A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108800562A (zh) * 2018-06-20 2018-11-13 青岛海信日立空调系统有限公司 热水热泵系统的制热控制方法、装置及系统
CN109826781A (zh) * 2018-12-28 2019-05-31 合肥通用机械研究院有限公司 具备跨/亚临界测试功能的二氧化碳压缩机性能试验系统
CN113325028A (zh) * 2021-06-07 2021-08-31 中国核动力研究设计院 自然循环系统不稳定流动的沸腾临界实验装置及控制方法
CN113483385A (zh) * 2021-07-02 2021-10-08 青岛海信日立空调系统有限公司 一种空气源热泵机组
WO2023273291A1 (zh) * 2021-06-28 2023-01-05 珠海格力电器股份有限公司 压缩系统的控制方法、装置及空气能热泵热水器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147608A (ja) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2005188923A (ja) * 2005-02-10 2005-07-14 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2012112568A (ja) * 2010-11-24 2012-06-14 Mitsubishi Electric Corp ヒートポンプ式給湯機
JP2012233626A (ja) 2011-04-28 2012-11-29 Noritz Corp ヒートポンプ給湯機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO890076D0 (no) * 1989-01-09 1989-01-09 Sinvent As Luftkondisjonering.
JP3227651B2 (ja) * 1998-11-18 2001-11-12 株式会社デンソー 給湯器
DE10246004B4 (de) * 2001-10-03 2017-05-18 Denso Corporation Überkritisches Kühlkreislaufsystem und dieses verwendender Warmwasserbereiter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147608A (ja) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2005188923A (ja) * 2005-02-10 2005-07-14 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2012112568A (ja) * 2010-11-24 2012-06-14 Mitsubishi Electric Corp ヒートポンプ式給湯機
JP2012233626A (ja) 2011-04-28 2012-11-29 Noritz Corp ヒートポンプ給湯機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108800562A (zh) * 2018-06-20 2018-11-13 青岛海信日立空调系统有限公司 热水热泵系统的制热控制方法、装置及系统
CN109826781A (zh) * 2018-12-28 2019-05-31 合肥通用机械研究院有限公司 具备跨/亚临界测试功能的二氧化碳压缩机性能试验系统
CN113325028A (zh) * 2021-06-07 2021-08-31 中国核动力研究设计院 自然循环系统不稳定流动的沸腾临界实验装置及控制方法
CN113325028B (zh) * 2021-06-07 2022-05-24 中国核动力研究设计院 自然循环系统不稳定流动的沸腾临界实验装置及控制方法
WO2023273291A1 (zh) * 2021-06-28 2023-01-05 珠海格力电器股份有限公司 压缩系统的控制方法、装置及空气能热泵热水器
CN113483385A (zh) * 2021-07-02 2021-10-08 青岛海信日立空调系统有限公司 一种空气源热泵机组

Also Published As

Publication number Publication date
EP3431896A4 (en) 2019-03-27
EP3431896B1 (en) 2019-11-06
JPWO2017158782A1 (ja) 2018-09-27
EP3431896A1 (en) 2019-01-23
JP6537703B2 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2017158782A1 (ja) ヒートポンプ給湯機
WO2009107261A1 (ja) ヒートポンプ式給湯機
KR102189464B1 (ko) 난방 시스템
KR101805334B1 (ko) 열원 장치
JP2007327725A (ja) ヒートポンプ式給湯機
EP2857761B1 (en) Water heater
EP1777471A1 (en) Heat pump-type hot-water supply device
EP2784402B1 (en) Heat pump water heater
WO2015198424A1 (ja) ヒートポンプ装置
JP2014043962A (ja) ヒートポンプ給湯機
EP2594867A2 (en) Refrigeration cycle apparatus and hot water producing apparatus
JP6399113B2 (ja) 熱供給システム
JP2007327727A (ja) ヒートポンプ給湯機
JP5861577B2 (ja) 給湯装置
CN109073273B (zh) 热水供给系统
KR102382516B1 (ko) 온수기 및 이의 제어 방법
JP2016061553A (ja) 暖房システム
JP6394813B2 (ja) 冷凍サイクルシステム
EP3502585B1 (en) Heat pump system
JP2021165609A (ja) ヒートポンプ式給湯機
JP6421880B2 (ja) 熱媒体循環システム
JP6217867B2 (ja) 流体循環システム
JP6208633B2 (ja) ヒートポンプ式給湯機
JP2009287816A (ja) 貯湯式給湯装置
JP2007147108A (ja) 貯湯式給湯装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505157

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016894400

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016894400

Country of ref document: EP

Effective date: 20181017

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894400

Country of ref document: EP

Kind code of ref document: A1