[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017154975A1 - 半導体発光装置 - Google Patents

半導体発光装置 Download PDF

Info

Publication number
WO2017154975A1
WO2017154975A1 PCT/JP2017/009216 JP2017009216W WO2017154975A1 WO 2017154975 A1 WO2017154975 A1 WO 2017154975A1 JP 2017009216 W JP2017009216 W JP 2017009216W WO 2017154975 A1 WO2017154975 A1 WO 2017154975A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
light emitting
film
emitting device
Prior art date
Application number
PCT/JP2017/009216
Other languages
English (en)
French (fr)
Inventor
英之 富澤
小島 章弘
美代子 島田
陽介 秋元
古山 英人
杉崎 吉昭
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201780016038.XA priority Critical patent/CN109155351A/zh
Priority to US16/082,860 priority patent/US10553758B2/en
Priority to JP2018504554A priority patent/JPWO2017154975A1/ja
Priority to EP17763315.3A priority patent/EP3428979A4/en
Publication of WO2017154975A1 publication Critical patent/WO2017154975A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • Embodiments relate to a semiconductor light emitting device.
  • a semiconductor light emitting device having a structure in which a p-side electrode and an n-side electrode are formed on one side of a semiconductor layer including a light emitting layer
  • light of the light emitting layer can be reflected by the electrode and can be extracted from the other side.
  • Patent No. 5414579 gazette
  • Embodiments provide semiconductor light emitting devices with high light extraction efficiency.
  • the semiconductor light emitting device includes the semiconductor layer, the first electrode, the second electrode, the insulating film, the first wiring portion, and the second wiring portion.
  • the semiconductor layer has a first surface, a second surface provided on the opposite side of the first surface, and a second surface provided with a step difference with respect to the second surface and a second surface provided on the opposite side of the first surface. It has three sides.
  • the semiconductor layer includes a light emitting layer between the first surface and the third surface.
  • the first electrode is in contact with the second surface.
  • the second electrode is provided in the surface of the third surface.
  • the second electrode includes a contact portion in contact with the third surface and an end portion not in contact with the third surface, and includes silver.
  • the insulating film is provided between the end of the second electrode and the third surface.
  • the first wiring portion is connected to the first electrode.
  • the second wiring portion is connected to the second electrode.
  • FIG. 1 A and (b) is a model top view of the one part element of the semiconductor light-emitting device of embodiment.
  • (A) is sectional drawing corresponding to the B-B 'cross section in FIG. 1 (a)
  • (b) is sectional drawing corresponding to the C-C' cross section in FIG. 1 (a).
  • 5 (a) to 5 (c) are schematic cross-sectional views showing a method of manufacturing the semiconductor light emitting device of the embodiment.
  • 6 (a) to 6 (c) are schematic cross-sectional views showing a method of manufacturing the semiconductor light emitting device of the embodiment.
  • FIGS. 7 (a) to 7 (c) are schematic cross-sectional views showing a method of manufacturing the semiconductor light emitting device of the embodiment.
  • 8 (a) and 8 (b) are schematic cross-sectional views showing a method of manufacturing the semiconductor light emitting device of the embodiment.
  • FIGS. 9A and 9B are schematic cross-sectional views showing a method of manufacturing the semiconductor light emitting device of the embodiment.
  • FIGS. FIG. 7 is a schematic cross-sectional view showing the method of manufacturing the semiconductor light emitting device of the embodiment.
  • FIGS. 11A and 11B are schematic plan views of some elements of the semiconductor light emitting device of the embodiment.
  • FIG. 7 is a schematic cross-sectional view showing the method of manufacturing the semiconductor light emitting device of the embodiment.
  • FIGS. 1A and 1B are schematic plan views of some elements of the semiconductor light emitting device of the embodiment.
  • directions orthogonal to each other are taken as an X direction and a Y direction.
  • FIG. 2 is a cross-sectional view corresponding to the cross section AA 'in FIG. 1 (a).
  • FIG. 3A is a cross-sectional view corresponding to the BB ′ cross-section in FIG. 1A.
  • FIG. 3B is a cross-sectional view corresponding to the CC ′ cross-section in FIG. 1A.
  • FIG. 4 is an enlarged cross-sectional view of a portion A in FIG.
  • the semiconductor light emitting device of the embodiment includes a support 100, a phosphor layer 80, and a semiconductor layer 15 provided between the support 100 and the phosphor layer 80.
  • the semiconductor layer 15 has a first semiconductor layer 11, a second semiconductor layer 12, and a light emitting layer 13 provided between the first semiconductor layer 11 and the second semiconductor layer 12.
  • the semiconductor layer 15 contains, for example, gallium nitride.
  • the first semiconductor layer 11 includes, for example, a base buffer layer and an n-type GaN layer.
  • the second semiconductor layer 12 includes, for example, a p-type GaN layer.
  • the light emitting layer 13 has, for example, a multiple quantum well (MQW) structure.
  • the emission peak wavelength of the light emitting layer 13 is, for example, not less than 360 nm and not more than 650 nm.
  • the first semiconductor layer 11 has a first surface 15 a and a second surface 15 b provided on the opposite side of the first surface 15 a.
  • the first surface 15a has a plurality of minute irregularities.
  • the opposite side of the first surface 15 a in the first semiconductor layer 11 is processed into a concavo-convex shape.
  • the second surface 15 b is provided in the recess.
  • the light emitting layer 13 and the second semiconductor layer 12 are provided on the convex portion.
  • the light emitting layer 13 and the second semiconductor layer 12 are not provided in the recess of the first semiconductor layer 11.
  • the second semiconductor layer 12 forms a step with respect to the second surface 15 b of the first semiconductor layer 11 and has a third surface 15 c provided on the opposite side of the first surface 15 a.
  • the light emitting layer 13 is provided between the first surface 15 a and the third surface 15 c.
  • An n-side electrode 40 is provided on the second surface 15 b of the first semiconductor layer 11 as a first electrode.
  • a p-side electrode 30 is provided on the third surface 15 c of the second semiconductor layer 12 as a second electrode.
  • FIG. 1A shows an example of a planar layout of the n-side electrode 40 and the p-side electrode 30.
  • two n-side electrodes 40 are disposed to sandwich the p-side electrode 30 in the X direction.
  • the n-side electrode 40 is a line pattern extending in the Y direction.
  • a contact portion 40 a is provided at one end of the n-side electrode 40 in the longitudinal direction (Y direction).
  • the width in the X direction of the contact portion 40a is wider than the width in the X direction of the portion extending in a line shape.
  • the area of the third surface 15c which is a stacked region of the light emitting layer 13, is larger than the area of the second surface 15b where the light emitting layer 13 is not stacked.
  • the contact area between the p-side electrode 30 and the third surface 15 c is larger than the contact area between the n-side electrode 40 and the second surface 15 b.
  • a current is supplied to the light emitting layer 13 through the p-side electrode 30 and the n-side electrode 40, and the light emitting layer 13 emits light. Then, light emitted from the light emitting layer 13 is incident on the phosphor layer 80 from the side of the first surface (rough surface) 15 a of the first semiconductor layer 11.
  • the phosphor layer 80 includes a plurality of particulate phosphors 81.
  • the phosphor 81 is excited by the emitted light of the light emitting layer 13 and emits light of a wavelength different from that of the emitted light.
  • the plurality of phosphors 81 are dispersed in the transparent layer (binder layer) 82.
  • the transparent layer 82 transmits the emitted light of the light emitting layer 13 and the emitted light of the phosphor 81.
  • transmission is not limited to 100% transmission, and includes the case of absorbing part of light.
  • the n-side electrode 40 has an aluminum (Al) film 41 and a pad electrode 42.
  • the aluminum film 41 is in contact with the second surface 15 b of the first semiconductor layer 11.
  • the aluminum film 41 functions as a contact electrode which reduces the contact resistance with the second surface 15 b containing, for example, n-type GaN.
  • the aluminum film 41 also functions as a reflective film that reflects the light emitted from the light emitting layer 13.
  • the pad electrode 42 covers the surface of the aluminum film 41 opposite to the surface in contact with the second surface 15 b.
  • the pad electrode 42 contains, for example, at least one of titanium (Ti), platinum (Pt), gold (Au), and nickel (Ni).
  • the p-side electrode 30 has a silver (Ag) film 31 and a pad electrode 32.
  • the silver film 31 functions as a contact electrode that reduces the contact resistance with the third surface 15 c containing, for example, p-type GaN.
  • the silver film 31 also functions as a reflective film that reflects the light emitted from the light emitting layer 13.
  • the pad electrode 32 covers the surface of the silver film 31 opposite to the surface in contact with the third surface 15 c.
  • the pad electrode 32 covers the end face of the silver film 31.
  • the pad electrode 32 prevents the diffusion of silver.
  • the pad electrode 32 also prevents sulfurization and oxidation of the silver film 31.
  • the pad electrode 32 contains, for example, at least one of titanium (Ti), platinum (Pt), gold (Au), and nickel (Ni).
  • the silver film 31 has a contact portion 31a in contact with the third surface 15c and an end portion 31b.
  • the end 31 b is provided in the vicinity of the edge along the outline (edge) of the p-side electrode 30 shown in FIG.
  • the end 31 b of the silver film 31 is not in contact with the third surface 15 c.
  • An insulating film 61 is provided between the end 31 b and the third surface 15 c.
  • the end portion 31 b is provided so as to run on the insulating film 61 and is opposed to the third surface 15 c with the insulating film 61 interposed therebetween.
  • the contact area between the contact portion 31a of the silver film 31 and the third surface 15c is larger than the contact area between the insulating film 61 and the third surface 15c.
  • the p-side electrode 30 is provided in the surface of the third surface 15 c.
  • the p-side electrode 30 is not provided on the side surface 15 e, the second surface 15 b, and the side surface 15 d of the semiconductor layer 15 shown in FIG. 4.
  • the end of the p-side electrode 30 may slightly extend beyond the end of the third surface 15c to such an extent that it does not cover the side surface 15e due to process variations. Also in such a case, it can be included in the expression that the p-side electrode 30 is provided in the plane of the third surface 15 c.
  • the side surface 15e is continuous with the third surface 15c and the second surface 15b.
  • the side surface 15 e is a side surface of a convex portion including the stacked portion of the second semiconductor layer 12 and the light emitting layer 13 in the semiconductor layer 15.
  • the side surface 15d is a side surface of the first semiconductor layer 11, and is continuous with the first surface 15a and the second surface 15b.
  • An insulating film 61 is provided on the side surface 15e.
  • the insulating film 61 is also provided on the second surface 15 b between the side surface 15 e and the n-side electrode 40.
  • An insulating film 62b is provided on the side surface 15d.
  • the p-side electrode 30 and the n-side electrode 40 are covered with an insulating film 62a.
  • a support 100 is provided on the third surface 15 c side of the semiconductor layer 15.
  • the light emitting element including the semiconductor layer 15, the p-side electrode 30 and the n-side electrode 40 is supported by a support 100.
  • the support 100 includes an n-side wiring portion (first wiring portion) 21, a p-side wiring portion (second wiring portion) 24, and a resin layer (insulating layer) 70.
  • the n-side interconnection portion 21 has an n-side interconnection layer 22 and an n-side metal pillar 23.
  • the p-side interconnection portion 24 has a p-side interconnection layer 25 and a p-side metal pillar 26.
  • FIG. 1B shows an example of a planar layout of the n-side interconnection layer 22, the n-side metal pillar 23, the p-side interconnection layer 25, and the p-side metal pillar 26.
  • the p-side interconnection layer 25 and the n-side interconnection layer 22 are provided on the insulating film 62 a and are separated in the Y direction.
  • the p-side interconnection layer 25 is electrically connected to the p-side electrode 30 via a plurality of vias 25a penetrating the insulating film 62a.
  • the n-side interconnection layer 22 is electrically connected to the contact portion 40 a of the n-side electrode 40 through the via 22 a penetrating the insulating film 62 a.
  • a metal film 51 p continuous with the p-side interconnection layer 25 and a metal film 51 n continuous with the n-side interconnection layer 22 are provided on the side of the semiconductor layer 15.
  • the metal film 51p and the metal film 51n cover the side surface 15d of the semiconductor layer 15 via the insulating film 62b.
  • the metal film 51p and the metal film 51n are separated in the Y direction shown in FIG. 1 (b).
  • the metal film 51p is an insulating film 61 between the p-side electrode 30 and the n-side electrode 40, an insulating film 62a covering the n-side electrode 40, and an insulating film 62b covering the side surface 15d. Provided along the
  • the metal film 51n covers the insulating film 61 between the p-side electrode 30 and the n-side electrode 40, the insulating film 62a covering the n-side electrode 40, and the side surface 15d. It is provided along the insulating film 62b.
  • the p-side interconnection layer 25, the n-side interconnection layer 22, the metal film 51p, and the metal film 51n include, for example, a copper film.
  • the p-side interconnection layer 25, the n-side interconnection layer 22, the metal film 51p, and the metal film 51n are simultaneously formed on the base metal film 52 shown in FIG.
  • the underlying metal film 52 includes an aluminum film, a titanium film, and a copper film, which are stacked in order from the insulating films 61, 62a, 62b.
  • the p-side interconnection layer 25, the n-side interconnection layer 22, the metal film 51p, and the metal film 51n are deposited on the copper film of the base metal film 52 by plating.
  • the titanium film of the base metal film 52 is excellent in wettability to both the aluminum film and the copper film, and functions as an adhesion layer.
  • light emitted from the light emitting layer 13 and traveling toward the third surface 15 c can be reflected by the silver film 31 and directed toward the phosphor layer 80.
  • the silver film 31 has a reflectance higher than that of titanium and aluminum with respect to light emitted from the light emitting layer 13, for example, light having an emission peak wavelength of 360 nm or more and 650 nm or less.
  • the silver film 31 having such a high reflectance spreads to the end of the third surface 15c, and a silver reflective surface having the same area as the area of the third surface 15c is obtained. This enhances the light extraction efficiency from the phosphor layer 80 side.
  • the n-side electrode 40 includes an aluminum film 41, and the base metal film 52 also includes an aluminum film.
  • Aluminum has higher reflectance than titanium and copper, for example, for light having an emission peak wavelength of 360 nm or more and 650 nm or less.
  • the current tends to concentrate near the end of the p-side electrode close to the n-side electrode.
  • the bias of the current distribution leads to the bias of the light emission intensity distribution, which may lead to the reduction of the efficiency, the heat dissipation, and the life.
  • the insulating film 61 is provided between the end 31b of the silver film 31 of the p-side electrode 30 and the third surface 15c, and the p-side electrode 30 is formed on the third surface 15c. Not connected. A current does not flow directly between the end 31 b and the semiconductor layer 15 in the stacking direction of the p-side electrode 30 and the semiconductor layer 15.
  • a p-side metal pillar 26 is provided in the p-side interconnection layer 25, and an n-side metal pillar 23 is provided in the n-side interconnection layer 22.
  • the resin layer 70 is provided on the side surface of the p-side wiring portion 24 and the side surface of the n-side wiring portion 21.
  • the resin layer 70 is provided between the p-side metal pillar 26 and the n-side metal pillar 23 so as to be in contact with the side surface of the p-side metal pillar 26 and the side surface of the n-side metal pillar 23.
  • the resin layer 70 is provided around the p-side metal pillar 26 and the n-side metal pillar 23 and covers the side surface of the p-side metal pillar 26 and the side surface of the n-side metal pillar 23.
  • the resin layer 70 is provided between the p-side interconnection layer 25 and the n-side interconnection layer 22.
  • the resin layer 70 is also provided on the side of the semiconductor layer 15 and covers the metal film 51 n and the metal film 51 p.
  • a portion of the phosphor layer 80 is provided on the resin layer 70 lateral to the semiconductor layer 15 via the insulating film 62 b and the insulating film 71.
  • the end (end face) 26a of the p-side metal pillar 26 is exposed from the resin layer 70 and functions as a p-side external terminal 26a connectable to an external circuit such as a mounting substrate.
  • An end (end face) 23a of the n-side metal pillar 23 is exposed from the resin layer 70 and functions as an n-side external terminal 23a connectable to an external circuit such as a mounting substrate.
  • the p-side external terminal 26a and the n-side external terminal 23a are joined to the pads of the mounting substrate via, for example, solder.
  • the p-side external terminal 26a and the n-side external terminal 23a are arranged separately in the Y direction.
  • the p-side external terminal 26a is formed, for example, in a rectangular shape, and the n-side external terminal 23a is formed in a shape in which two corners of a rectangle having the same size as the rectangular of the p-side external terminal 26a are cut away. This makes it possible to determine the polarity of the external terminal.
  • the n-side external terminal 23a may be formed into a rectangular shape, and the p-side external terminal 26a may be formed by cutting out the corners of the rectangular.
  • the distance between the p-side external terminal 26 a and the n-side external terminal 23 a is wider than the distance between the p-side interconnection layer 25 and the n-side interconnection layer 22.
  • the distance between the p-side external terminal 26 a and the n-side external terminal 23 a is made larger than the spread of the solder at the time of mounting. Thereby, a short circuit between the p-side external terminal 26a and the n-side external terminal 23a through the solder can be prevented.
  • the distance between the p-side interconnection layer 25 and the n-side interconnection layer 22 can be narrowed to the process limit. Therefore, the area of the p-side interconnection layer 25 and the contact area between the p-side interconnection layer 25 and the p-side metal pillar 26 can be enlarged. Therefore, the heat dissipation of the light emitting layer 13 through the p-side electrode 30, the p-side interconnection layer 25, and the p-side metal pillar 26 can be promoted.
  • the thickness of the p-side metal pillar 26 (the thickness in the direction connecting the p-side external terminal 26 a and the semiconductor layer 15) is thicker than the thickness of the p-side interconnection layer 25.
  • the thickness of the n-side metal pillar 23 (the thickness in the direction connecting the n-side external terminal 23 a and the semiconductor layer 15) is thicker than the thickness of the n-side interconnection layer 22.
  • the thickness of each of the p-side metal pillar 26, the n-side metal pillar 23, and the resin layer 70 is thicker than that of the semiconductor layer 15.
  • the thickness of the support 100 including the p-side interconnection layer 25, the n-side interconnection layer 22, the p-side metal pillar 26, the n-side metal pillar 23, and the resin layer 70 is the semiconductor layer 15, the p-side electrode 30, and the n-side It is thicker than the thickness of the light emitting element (LED chip) including the electrode 40.
  • the semiconductor layer 15 is formed on the substrate by epitaxial growth.
  • the substrate is removed after forming the support 100. No substrate remains on the first surface 15 a side of the semiconductor layer 15.
  • the semiconductor layer 15 is supported not by a rigid plate-like substrate but by a support 100 made of a composite of metal pillars 26 and 23 and a resin layer 70.
  • copper As a material of the p side wiring part 24 and the n side wiring part 21, copper, gold
  • the resin layer 70 reinforces the p-side metal pillar 26 and the n-side metal pillar 23.
  • the resin layer 70 desirably has the same or similar coefficient of thermal expansion as the mounting substrate.
  • a resin layer 70 for example, a resin mainly containing an epoxy resin, a resin mainly containing a silicone resin, and a resin mainly containing a fluorine resin can be mentioned.
  • a resin serving as a base in the resin layer 70 contains a light absorbing agent, a light reflecting agent, a light scattering agent, and the like, and the resin layer 70 has a light shielding property or a reflection property to the light of the light emitting layer 13.
  • a resin layer 70 suppresses light leakage from the side surface and the mounting surface side of the support 100.
  • the semiconductor layer 15 Due to the thermal cycle during mounting of the semiconductor light emitting device, stress is applied to the semiconductor layer 15 due to solder or the like for joining the p-side external terminal 26 a and the n-side external terminal 23 a to the pads of the mounting substrate.
  • the p-side metal pillar 26, the n-side metal pillar 23, and the resin layer 70 absorb and relieve the stress.
  • the resin layer 70 that is softer than the semiconductor layer 15 as a part of the support 100, the stress relaxation effect can be enhanced.
  • the removal of the substrate used for forming (growing) the semiconductor layer 15 reduces the height of the semiconductor light emitting device.
  • minute unevenness can be formed on the first surface 15a from which the substrate in the semiconductor layer 15 is removed, so that the light extraction efficiency can be improved.
  • fine irregularities are formed by wet etching using an alkaline solution, and a rough surface 15 a is formed on the light extraction side of the semiconductor layer 15.
  • the rough surface 15a reduces the total reflection component to improve the light extraction efficiency.
  • a phosphor layer 80 is formed on the first surface (rough surface) 15a via the insulating film 71.
  • the insulating film 71 functions as an adhesion layer that enhances the adhesion between the semiconductor layer 15 and the phosphor layer 80, and is, for example, a silicon oxide film or a silicon nitride film.
  • the insulating film 71 is formed conformally along the minute unevenness of the first surface (rough surface) 15a. Also on the upper surface of the insulating film 71, fine asperities reflecting the fine asperities of the first surface (rough surface) 15a are formed.
  • the phosphor layer 80 is not formed on the side of the semiconductor layer 15, the side of the support 100, and the mounting surface.
  • the side surface of the phosphor layer 80 and the side surface of the support 100 are aligned.
  • the semiconductor light emitting device of such an embodiment is a very small size semiconductor light emitting device having a chip size package structure.
  • the phosphor layer 80 is not wastefully formed on the mounting surface side where light is not extracted to the outside, and cost can be reduced.
  • the heat of the light emitting layer 13 can be dissipated to the mounting substrate side through the p-side interconnection layer 25, the n-side interconnection layer 22 and the thick metal pillars 26 and 23 spreading on the opposite side of the first surface 15 a. It is excellent in heat dissipation though it is present.
  • a phosphor layer is formed to cover the entire chip.
  • the resin is underfilled between the bumps.
  • the resin layer 70 having a function different from that of the phosphor layer 80 is provided around the p-side metal pillar 26 and the n-side metal pillar 23 before mounting.
  • the mounting side can be provided with characteristics suitable for stress relaxation.
  • the resin layer 70 is already provided on the mounting surface side, the underfill after mounting becomes unnecessary.
  • the resin layer 70 can be densely filled with a filler such as silica particles and adjusted to a suitable hardness as a support.
  • the light emitted from the light emitting layer 13 to the first surface 15a side is incident on the phosphor layer 80, and a part of the light excites the phosphor 81, and the light of the light emitting layer 13 and the light of the phosphor 81 are mixed.
  • white light is artificially obtained as light.
  • FIG. 5 (a) to FIG. 10 represent the cross section of a part in the wafer state, and correspond to the cross section shown in FIG. 3 (a).
  • the first semiconductor layer 11, the light emitting layer 13 and the second semiconductor layer 12 are epitaxially grown in order on the main surface of the substrate 10 by metal organic chemical vapor deposition (MOCVD). Be done.
  • MOCVD metal organic chemical vapor deposition
  • the surface on the substrate 10 side is a first surface 15 a.
  • the substrate 10 is, for example, a silicon substrate. Alternatively, the substrate 10 may be a sapphire substrate.
  • the semiconductor layer 15 is, for example, a nitride semiconductor layer containing gallium nitride (GaN).
  • a part of the light emitting layer 13 and a part of the second semiconductor layer 12 are removed as shown in FIG. 5B, for example, by a reactive ion etching (RIE) method.
  • RIE reactive ion etching
  • the second surface 15 b of the first semiconductor layer 11 is exposed at the portion where the light emitting layer 13 and the second semiconductor layer 12 are removed.
  • the portion remaining in the convex shape has an upper surface (third surface) 15 c and a side surface 15 e.
  • the insulating film 61 is formed on the second surface 15b, the third surface 15c, and the side surface 15e.
  • the insulating film 61 is formed conformally along the second surface 15 b, the third surface 15 c, and the side surface 15 e.
  • a silicon oxide film or a silicon nitride film is formed by a chemical vapor deposition (CVD) method.
  • Part of the insulating film 61 is removed by wet etching, for example, and an opening 61 a is formed in the insulating film 61 as shown in FIG. 6A.
  • the third surface 15c is exposed to the opening 61a.
  • the area of the opening 61a is smaller than the area of the third surface 15c.
  • the vicinity of the edge of the third surface 15c is not exposed, and the insulating film 61 is left near the edge of the third surface 15c.
  • the silver film 31 of the p-side electrode is formed by, for example, a vapor deposition method.
  • the end 31 b of the silver film 31 runs on the insulating film 61 left near the edge of the third surface 15 c.
  • the edge of the end 31 b is in the plane of the third surface 15 c.
  • the pad electrode 32 is formed on the silver film 31 by, for example, a vapor deposition method.
  • the pad electrode 32 covers the upper surface of the silver film 31 and the edge of the end 31 b.
  • the edge of the pad electrode 32 is in the plane of the third surface 15c.
  • a part of the insulating film 61 on the second surface 15b is removed by, for example, a wet etching method. As shown in FIG. 7A, a part of the second surface 15b is exposed. The side surface 15 e and the corner portion between the side surface 15 e and the second surface 15 b are covered with the insulating film 61.
  • the aluminum film 41 of the n-side electrode 40 and the pad electrode 42 are sequentially formed on the second surface 15b.
  • the n-side electrode 40 is formed by, for example, a vapor deposition method. As shown in FIG. 12, the n-side electrode 40 may run on the insulating film 61 on the second surface 15b.
  • a groove 91 is formed in the semiconductor layer 15 by, eg, RIE.
  • the groove 91 penetrates a portion of the first semiconductor layer 11 where the light emitting layer 13 and the second semiconductor layer 12 are not stacked, and reaches the substrate 10.
  • the grooves 91 are formed, for example, in a lattice shape, and the plurality of semiconductor layers 15 are separated by the grooves 91 on the substrate 10.
  • the over-etching progresses slightly with respect to the substrate 10, and the bottom of the groove 91 recedes from the first surface 15a.
  • the p-side electrode 30 and the n-side electrode 40 are covered with an insulating film 62 as shown in FIG.
  • the insulating film 62 is also formed on the side surface and the bottom of the groove 91, and the side surface 15 d of the semiconductor layer 15 is covered with the insulating film 62.
  • a silicon oxide film is formed as the insulating film 62 by the CVD method.
  • an opening for connecting to the via 25a shown in FIG. 2 and an opening for connecting to the via 22a shown in FIG. 3B are formed in the insulating film 62 by wet etching, for example. Further, at the time of this wet etching, a part of the insulating film 62 formed on the bottom of the groove 91 is also removed.
  • a metal film constituting the wiring portions 24 and 21 and the metal films 51p and 51n is formed by a plating method, and a resin layer 70 covering the metal films is further formed.
  • the substrate 10 is removed while the semiconductor layer 15 is supported by the support 100 including the wiring portions 24 and 21 and the resin layer 70.
  • the substrate 10 which is a silicon substrate is removed by wet etching or dry etching.
  • the substrate 10 is a sapphire substrate, it can be removed by a laser lift-off method.
  • the semiconductor layer 15 epitaxially grown on the substrate 10 may contain a large internal stress.
  • the p-side metal pillar 26, the n-side metal pillar 23, and the resin layer 70 are softer than, for example, the semiconductor layer 15 of a GaN-based material. Therefore, even if the internal stress at the time of epitaxial growth is released at a stretch at the time of peeling of the substrate 10, the p-side metal pillar 26, the n-side metal pillar 23, and the resin layer 70 absorb the stress. Therefore, damage to the semiconductor layer 15 in the process of removing the substrate 10 can be avoided.
  • the substrate 10 is removed, and as shown in FIG. 9A, the first surface 15a of the semiconductor layer 15 is exposed.
  • the upper surface of the insulating film 62b provided on the side of the semiconductor layer 15 and the upper surface of the resin layer 70 are located at the bottom of the groove 91 described above.
  • the first surface 15 a recedes downward from the upper surface of the insulating film 62 b and the upper surface of the resin layer 70.
  • the phosphor layer 80 is formed on the first surface 15a via the insulating film (adhesion layer) 71.
  • the phosphor layer 80 is also formed on the side region of the semiconductor layer 15 via the insulating film 71.
  • the surface (the lower surface in FIG. 10) of the resin layer 70 is ground to expose the p-side metal pillar 26 and the n-side metal pillar 23 from the resin layer 70.
  • the wafer is diced in the region where the above-mentioned groove 91 is formed.
  • the phosphor layer 80, the insulating film 71, and the resin layer 70 are cut. These are cut by, for example, a dicing blade or a laser beam.
  • the wafer is singulated as a semiconductor light emitting device including at least one semiconductor layer 15.
  • the semiconductor light emitting device may have a single chip structure including one semiconductor layer 15 or a multi chip structure including a plurality of semiconductor layers 15.
  • the support 100 and the phosphor layer 80 are cut, so that the side surface of the phosphor layer 80 and the side surface of the support 100 (the side surface of the resin layer 70) are aligned. Form the side surface of the singulated semiconductor light emitting device. Therefore, coupled with the absence of the substrate 10, it is possible to provide a small semiconductor light emitting device of a chip size package structure.
  • the silver film 31 having high reflectance be extended to the end of the third surface 15c.
  • the end of the opening 61a is made to coincide with the end of the third surface 15c in the process of forming the opening 61a in the insulating film 61 shown in FIG. It is conceivable. However, this process control can be difficult. If the opening 61a spreads to the second surface 15b side due to process variations, there is a concern that a short circuit between the p-side electrode 30 and the first semiconductor layer 11 or a short circuit between the p-side electrode 30 and the n-side electrode 40.
  • the silver film 31 is formed to run on the insulating film 61 while suppressing the expansion of the opening 61 a so that a part of the insulating film 61 remains near the edge of the third surface 15 c.
  • the area of the silver film 31 is increased.
  • FIG. 11A is a schematic plan view showing another example of the planar layout of the p-side electrode 30 and the n-side electrode 40.
  • FIG. 11B is a schematic plan view showing an example of a planar layout of the p-side wiring portion 24 and the n-side wiring portion 21 in the electrode layout of FIG. 11A.
  • the planar shape of the semiconductor light emitting device is a square.
  • the n-side electrode 40 continuously surrounds the periphery of the p-side electrode 30. At two opposing side portions of the n-side electrode 40, contact portions 40a that protrude toward the p-side electrode 30 are provided. Furthermore, the contact portion 40b of the n-side electrode 40 is also provided in the central portion of the chip. The p-side electrode 30 continuously surrounds the periphery of the contact portion 40b.
  • the end close to the n-side contact portion 40b at the center of the chip also has a structure facing the third surface 15c via the insulating film 61 as in the above embodiment. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

半導体層は、第1面と、前記第1面の反対側に設けられた第2面と、前記第2面に対して段差を形成して前記第1面の反対側に設けられた第3面とをもつ。前記半導体層は前記第1面と前記第3面との間に発光層を含む。第1電極は前記第2面に接している。第2電極は前記第3面の面内に設けられている。前記第2電極は、前記第3面に接するコンタクト部と、前記第3面に接しない端部とを有し、銀を含む。絶縁膜は、前記第2電極の前記端部と、前記第3面との間に設けられている。高い光取り出し効率の半導体発光装置が提供される。

Description

半導体発光装置
 実施形態は、半導体発光装置に関する。
 発光層を含む半導体層における一方の面側にp側電極とn側電極が形成された構造の半導体発光装置では、発光層の光を電極で反射させて、他方の面側から取り出すことができる。この場合、前記一方の面側に、高い光反射率をもつ電極が広い面積で広がっていることが望ましい。
特許第5414579号公報
 実施形態は、高い光取り出し効率の半導体発光装置を提供する。
 実施形態によれば、半導体発光装置は、半導体層と、第1電極と、第2電極と、絶縁膜と、第1配線部と、第2配線部と、を備えている。前記半導体層は、第1面と、前記第1面の反対側に設けられた第2面と、前記第2面に対して段差を形成して前記第1面の反対側に設けられた第3面とをもつ。前記半導体層は、前記第1面と前記第3面との間に発光層を含む。前記第1電極は、前記第2面に接している。前記第2電極は、前記第3面の面内に設けられている。前記第2電極は、前記第3面に接するコンタクト部と、前記第3面に接しない端部とを有し、銀を含む。前記絶縁膜は、前記第2電極の前記端部と、前記第3面との間に設けられている。前記第1配線部は、前記第1電極に接続されている。前記第2配線部は、前記第2電極に接続されている。
(a)及び(b)は、実施形態の半導体発光装置の一部の要素の模式平面図。 図1(a)におけるA-A’断面に対応する断面図。 (a)は図1(a)におけるB-B’断面に対応する断面図であり、(b)は図1(a)におけるC-C’断面に対応する断面図。 図3(b)におけるA部の拡大断面図。 図5(a)~(c)は、実施形態の半導体発光装置の製造方法を示す模式断面図。 図6(a)~(c)は、実施形態の半導体発光装置の製造方法を示す模式断面図。 図7(a)~(c)は、実施形態の半導体発光装置の製造方法を示す模式断面図。 図8(a)及び(b)は、実施形態の半導体発光装置の製造方法を示す模式断面図。 図9(a)及び(b)は、実施形態の半導体発光装置の製造方法を示す模式断面図。 実施形態の半導体発光装置の製造方法を示す模式断面図。 図11(a)及び(b)は、実施形態の半導体発光装置の一部の要素の模式平面図。 実施形態の半導体発光装置の製造方法を示す模式断面図。
 以下、図面を参照し、実施形態について説明する。なお、各図面中、同じ要素には同じ符号を付している。
 図1(a)及び(b)は、実施形態の半導体発光装置の一部の要素の模式平面図である。図1(a)及び(b)において、相互に直交する方向をX方向およびY方向とする。
 図2は、図1(a)におけるA-A’断面に対応する断面図である。
 図3(a)は、図1(a)におけるB-B’断面に対応する断面図である。
 図3(b)は、図1(a)におけるC-C’断面に対応する断面図である。
 図4は、図3(b)におけるA部の拡大断面図である。
 図2に示すように、実施形態の半導体発光装置は、支持体100と、蛍光体層80と、支持体100と蛍光体層80との間に設けられた半導体層15とを有する。
 半導体層15は、第1半導体層11と、第2半導体層12と、第1半導体層11と第2半導体層12との間に設けられた発光層13と、を有する。
 半導体層15は、例えば、窒化ガリウムを含む。第1半導体層11は、例えば、下地バッファ層、n型GaN層を含む。第2半導体層12は、例えば、p型GaN層を含む。
 発光層13は、例えば、multiple quantum well(MQW)構造をもつ。発光層13の発光ピーク波長は、例えば、360nm以上650nm以下である。
 第1半導体層11は、第1面15aと、第1面15aの反対側に設けられた第2面15bをもつ。第1面15aは複数の微小凹凸をもつ。第1半導体層11における第1面15aの反対側は凹凸形状に加工される。その凹部に第2面15bが設けられている。凸部に、発光層13と第2半導体層12が設けられている。第1半導体層11の凹部には、発光層13および第2半導体層12が設けられていない。
 第2半導体層12は、第1半導体層11の第2面15bに対して段差を形成して、第1面15aの反対側に設けられた第3面15cをもつ。発光層13は、第1面15aと第3面15cとの間に設けられている。
 第1半導体層11の第2面15bに第1電極としてn側電極40が設けられている。第2半導体層12の第3面15cに第2電極としてp側電極30が設けられている。
 図1(a)は、n側電極40とp側電極30の平面レイアウトの一例を示す。例えば、2本のn側電極40が、p側電極30をX方向に挟んで配置されている。n側電極40は、Y方向に延びるラインパターンである。
 n側電極40の長手方向(Y方向)の一方の端部に、コンタクト部40aが設けられている。コンタクト部40aのX方向の幅は、ライン状に延びる部分のX方向の幅よりも広い。
 発光層13の積層領域である第3面15cの面積は、発光層13が積層されていない第2面15bの面積よりも広い。p側電極30と第3面15cとのコンタクト面積は、n側電極40と第2面15bとのコンタクト面積よりも広い。
 p側電極30とn側電極40を通じて発光層13に電流が供給され、発光層13は発光する。そして、発光層13から放射される光は、第1半導体層11の第1面(粗面)15a側から蛍光体層80に入射する。
 蛍光体層80は、複数の粒子状の蛍光体81を含む。蛍光体81は、発光層13の放射光により励起され、その放射光とは異なる波長の光を放射する。複数の蛍光体81は、透明層(バインダー層)82中に分散されている。透明層82は、発光層13の放射光および蛍光体81の放射光を透過する。ここで「透過」とは、透過率が100%であることに限らず、光の一部を吸収する場合も含む。
 図3(a)、図3(b)、および図4に示すように、n側電極40は、アルミニウム(Al)膜41と、パッド電極42とを有する。
 アルミニウム膜41は、第1半導体層11の第2面15bに接している。アルミニウム膜41は、例えばn型GaNを含む第2面15bとのコンタクト抵抗を低減するコンタクト電極として機能する。また、アルミニウム膜41は、発光層13から放射された光を反射させる反射膜としても機能する。
 パッド電極42は、アルミニウム膜41における、第2面15bに接する面の反対側の面を覆っている。パッド電極42は、例えば、チタン(Ti)、プラチナ(Pt)、金(Au)、およびニッケル(Ni)の少なくともいずれかを含む。
 p側電極30は、銀(Ag)膜31と、パッド電極32とを有する。
 銀膜31は、例えばp型GaNを含む第3面15cとのコンタクト抵抗を低減するコンタクト電極として機能する。また、銀膜31は、発光層13から放射された光を反射させる反射膜としても機能する。
 パッド電極32は、銀膜31における、第3面15cに接する面の反対側の面を覆っている。また、パッド電極32は、銀膜31の端面を覆っている。パッド電極32は、銀の拡散を防止する。また、パッド電極32は、銀膜31の硫化および酸化を防ぐ。
 パッド電極32は、例えば、チタン(Ti)、プラチナ(Pt)、金(Au)、およびニッケル(Ni)の少なくともいずれかを含む。
 銀膜31は、第3面15cに接するコンタクト部31aと、端部31bとを有する。端部31bは、図1(a)に示すp側電極30の輪郭線(エッジ)に沿って、そのエッジ付近に設けられている。
 銀膜31の端部31bは第3面15cに接していない。端部31bと第3面15cとの間に、絶縁膜61が設けられている。端部31bは、絶縁膜61に乗り上がるように設けられ、絶縁膜61を挟んで第3面15cに対向している。
 銀膜31のコンタクト部31aと第3面15cとのコンタクト面積は、絶縁膜61と第3面15cとのコンタクト面積よりも広い。
 p側電極30は、第3面15cの面内に設けられている。p側電極30は、半導体層15の図4に示す側面15e、第2面15b、および側面15dには設けられていない。
 p側電極30の端は、プロセス上のばらつきにより、側面15eにかからない程度に、第3面15cの端から多少はみ出す場合もあり得る。このような場合も、p側電極30は第3面15cの面内に設けられているという表現に含めることができる。
 側面15eは、第3面15cおよび第2面15bに連続している。側面15eは、半導体層15における第2半導体層12および発光層13の積層部を含む凸状の部分の側面である。
 側面15dは、第1半導体層11の側面であり、第1面15aおよび第2面15bに連続している。
 側面15eには絶縁膜61が設けられている。絶縁膜61は、側面15eとn側電極40との間の第2面15bにも設けられている。
 側面15dには絶縁膜62bが設けられている。p側電極30およびn側電極40は、絶縁膜62aで覆われている。
 半導体層15の第3面15c側に、支持体100が設けられている。半導体層15、p側電極30およびn側電極40を含む発光素子は、支持体100によって支持されている。
 支持体100は、n側配線部(第1配線部)21と、p側配線部(第2配線部)24と、樹脂層(絶縁層)70とを有する。
 n側配線部21は、n側配線層22と、n側金属ピラー23とを有する。p側配線部24は、p側配線層25と、p側金属ピラー26とを有する。
 図1(b)は、n側配線層22、n側金属ピラー23、p側配線層25、およびp側金属ピラー26の平面レイアウトの一例を示す。
 p側配線層25とn側配線層22は、絶縁膜62a上に設けられ、Y方向に離間している。
 p側配線層25は、絶縁膜62aを貫通する複数のビア25aを介してp側電極30と電気的に接続されている。n側配線層22は、絶縁膜62aを貫通するビア22aを介して、n側電極40のコンタクト部40aと電気的に接続されている。
 図2に示すように、半導体層15の側方には、p側配線層25と連続した金属膜51pと、n側配線層22と連続した金属膜51nが設けられている。金属膜51pおよび金属膜51nは、半導体層15の側面15dを絶縁膜62bを介して覆っている。金属膜51pと金属膜51nは、図1(b)に示すY方向に分離している。
 図3(a)に示すように、金属膜51pは、p側電極30とn側電極40との間の絶縁膜61、n側電極40を覆う絶縁膜62a、および側面15dを覆う絶縁膜62bに沿って設けられている。
 図3(b)および図4に示すように、金属膜51nは、p側電極30とn側電極40との間の絶縁膜61、n側電極40を覆う絶縁膜62a、および側面15dを覆う絶縁膜62bに沿って設けられている。
 p側配線層25、n側配線層22、金属膜51p、および金属膜51nは、例えば銅膜を含む。p側配線層25、n側配線層22、金属膜51p、および金属膜51nは、図4に示す下地金属膜52上に同時に形成される。
 下地金属膜52は、絶縁膜61、62a、62b側から順に積層された、アルミニウム膜と、チタン膜と、銅膜とを有する。
 下地金属膜52の銅膜上に、めっきで、p側配線層25、n側配線層22、金属膜51p、および金属膜51nが析出される。下地金属膜52のチタン膜は、アルミニウム膜および銅膜の両方に対するぬれ性に優れ、密着層として機能する。
 実施形態によれば、図4に示すように、発光層13から放射され第3面15c側に向かう光を、銀膜31で反射させて蛍光体層80側に向かわせることができる。銀膜31は、発光層13が発光する光、例えば360nm以上650nm以下の発光ピーク波長をもつ光に対して、チタンおよびアルミニウムよりも高い反射率をもつ。そのような高反射率の銀膜31が第3面15cの端まで広がっており、第3面15cの面積と同じ面積の銀の反射面が得られる。これは、蛍光体層80側からの光の取り出し効率を高める。
 n側電極40はアルミニウム膜41を含み、下地金属膜52もアルミニウム膜を含む。アルミニウムは、例えば360nm以上650nm以下の発光ピーク波長をもつ光に対して、チタンおよび銅よりも高い反射率をもつ。
 したがって、半導体層15の側面15e、第2面15b、および側面15dから出てくる光をアルミニウム膜で反射させて、蛍光体層80側に向かわせることができる。これも蛍光体層80側からの光の取り出し効率を高める。
 一般に、n側電極との距離が近いp側電極の端付近では電流が集中する傾向がある。電流分布の偏りは、発光強度分布の偏りにつながり、効率、放熱性、寿命の低下につながり得る。
 これに対して、実施形態によれば、p側電極30の銀膜31の端部31bと第3面15cとの間には絶縁膜61が設けられ、p側電極30は第3面15cに接していない。端部31bと半導体層15との間では、p側電極30と半導体層15との積層方向に直接電流が流れない。
 このため、p側電極30の端付近における電流集中を緩和でき、発光強度分布の均一化を図れる。これは、発光効率および信頼性を向上させる。
 図2に示すように、p側配線層25にはp側金属ピラー26が設けられ、n側配線層22にはn側金属ピラー23が設けられている。
 p側配線層25およびp側金属ピラー26を含むp側配線部24と、n側配線層22およびn側金属ピラー23を含むn側配線部21との間には、絶縁層として樹脂層70が設けられている。樹脂層70は、p側配線部24の側面およびn側配線部21の側面に設けられている。
 樹脂層70は、p側金属ピラー26の側面とn側金属ピラー23の側面に接するように、p側金属ピラー26とn側金属ピラー23との間に設けられている。樹脂層70は、p側金属ピラー26の周囲およびn側金属ピラー23の周囲に設けられ、p側金属ピラー26の側面およびn側金属ピラー23の側面を覆っている。樹脂層70は、p側配線層25とn側配線層22との間に設けられている。
 また、樹脂層70は、半導体層15の側方にも設けられ、金属膜51nおよび金属膜51pを覆っている。
 蛍光体層80の一部は、半導体層15の側方の樹脂層70上に、絶縁膜62bおよび絶縁膜71を介して設けられている。
 p側金属ピラー26の端部(端面)26aは、樹脂層70から露出し、実装基板等の外部回路と接続可能なp側外部端子26aとして機能する。n側金属ピラー23の端部(端面)23aは、樹脂層70から露出し、実装基板等の外部回路と接続可能なn側外部端子23aとして機能する。p側外部端子26aおよびn側外部端子23aは、例えばはんだを介して、実装基板のパッドに接合される。
 図1(b)に示すように、p側外部端子26aとn側外部端子23aは、Y方向に離間して並んでいる。p側外部端子26aは例えば矩形状に形成され、n側外部端子23aは、p側外部端子26aの矩形と同じサイズの矩形における2つの角を切り欠いた形状に形成されている。これは、外部端子の極性判別を可能にする。n側外部端子23aを矩形状にし、p側外部端子26aを矩形の角を切り欠いた形状にしてもよい。
 p側外部端子26aとn側外部端子23aとの間隔は、p側配線層25とn側配線層22との間隔よりも広い。p側外部端子26aとn側外部端子23aとの間隔は、実装時のはんだの広がりよりも大きくする。これにより、はんだを通じた、p側外部端子26aとn側外部端子23aとの間の短絡を防ぐことができる。
 これに対し、p側配線層25とn側配線層22との間隔は、プロセス上の限界まで狭くすることができる。このため、p側配線層25の面積、およびp側配線層25とp側金属ピラー26との接触面積の拡大を図れる。そのため、p側電極30、p側配線層25、およびp側金属ピラー26を通じた、発光層13の熱の放散を促進できる。
 p側金属ピラー26の厚さ(p側外部端子26aと半導体層15とを結ぶ方向の厚さ)は、p側配線層25の厚さよりも厚い。n側金属ピラー23の厚さ(n側外部端子23aと半導体層15とを結ぶ方向の厚さ)は、n側配線層22の厚さよりも厚い。p側金属ピラー26、n側金属ピラー23、および樹脂層70のそれぞれの厚さは、半導体層15よりも厚い。
 p側配線層25、n側配線層22、p側金属ピラー26、n側金属ピラー23、および樹脂層70を含む支持体100の厚さは、半導体層15、p側電極30、およびn側電極40を含む発光素子(LEDチップ)の厚さよりも厚い。
 半導体層15は、基板上にエピタキシャル成長法により形成される。その基板は支持体100を形成した後に除去される。半導体層15の第1面15a側に基板が残らない。半導体層15は、剛直な板状の基板にではなく、金属ピラー26、23と樹脂層70との複合体からなる支持体100によって支持されている。
 p側配線部24およびn側配線部21の材料として、例えば、銅、金、ニッケル、銀などを用いることができる。これらのうち、銅を用いると、良好な熱伝導性、高いマイグレーション耐性および絶縁材料に対する密着性を向上させることができる。
 樹脂層70は、p側金属ピラー26およびn側金属ピラー23を補強する。樹脂層70は、実装基板と熱膨張率が同じ、もしくは近いものを用いるのが望ましい。そのような樹脂層70として、例えば、エポキシ樹脂を主に含む樹脂、シリコーン樹脂を主に含む樹脂、フッ素樹脂を主に含む樹脂を挙げることができる。
 また、樹脂層70におけるベースとなる樹脂に光吸収剤、光反射剤、光散乱剤などが含まれ、樹脂層70は発光層13の光に対して遮光性または反射性を有する。このような樹脂層70は、支持体100の側面および実装面側からの光漏れを抑制する。
 半導体発光装置の実装時の熱サイクルにより、p側外部端子26aおよびn側外部端子23aを実装基板のパッドに接合させるはんだ等に起因する応力が半導体層15に加わる。p側金属ピラー26、n側金属ピラー23、および樹脂層70は、その応力を吸収し緩和する。特に、半導体層15よりも柔軟な樹脂層70を支持体100の一部として用いることで、応力緩和効果を高めることができる。
 半導体層15の形成(成長)に用いた基板の除去は、半導体発光装置を低背化する。また、半導体層15における基板が除去された第1面15aに微小凹凸を形成することができ、光取り出し効率の向上を図れる。例えば、アルカリ系溶液を使ったウェットエッチングにより微小凹凸が形成され、半導体層15の光取り出し側に粗面15aが形成される。粗面15aは、全反射成分を減らして、光取り出し効率を向上させる。
 第1面(粗面)15a上に絶縁膜71を介して蛍光体層80が形成される。絶縁膜71は、半導体層15と蛍光体層80との密着性を高める密着層として機能し、例えば、シリコン酸化膜、シリコン窒化膜である。
 絶縁膜71は、第1面(粗面)15aの微小凹凸に沿ってコンフォーマルに形成される。絶縁膜71の上面にも、第1面(粗面)15aの微小凹凸を反映した微小凹凸が形成される。
 蛍光体層80は、半導体層15の側方、支持体100の側面、および実装面側にまわりこんで形成されない。蛍光体層80の側面と、支持体100の側面(樹脂層70の側面)とが揃っている。このような実施形態の半導体発光装置は、チップサイズパッケージ構造の非常に小型の半導体発光装置である。
 光を外部に取り出さない実装面側には蛍光体層80が無駄に形成されず、コスト低減が図れる。第1面15aの反対側に広がるp側配線層25、n側配線層22、および厚い金属ピラー26、23を介して、発光層13の熱を実装基板側に放散させることができ、小型でありながらも放熱性に優れている。
 一般的なフリップチップ実装では、LEDチップを実装基板にバンプなどを介して実装した後に、チップ全体を覆うように蛍光体層が形成される。あるいは、バンプ間に樹脂がアンダーフィルされる。
 これに対して実施形態によれば、実装前の状態で、p側金属ピラー26の周囲およびn側金属ピラー23の周囲には、蛍光体層80とは発揮する機能が異なる樹脂層70が設けられ、実装面側に応力緩和に適した特性を与えることができる。また、実装面側にすでに樹脂層70が設けられているため、実装後のアンダーフィルが不要となる。
 第1面15a側には、光取り出し効率、色変換効率、配光特性などを優先した設計の光学層が設けられ、実装面側には、実装時の応力緩和や、基板に代わる支持体としての特性を優先した層が設けられる。例えば、樹脂層70には、シリカ粒子などのフィラーを高密度充填し、支持体として適切な硬さに調整することができる。
 発光層13から第1面15a側に放射された光は蛍光体層80に入射し、一部の光は蛍光体81を励起し、発光層13の光と、蛍光体81の光との混合光として例えば白色光が擬似的に得られる。
 ここで、第1面15a上に基板があると、蛍光体層80に入射せずに、基板の側面から外部に漏れる光が生じる。すなわち、基板の側面から発光層13の光の色みの強い光が漏れ、蛍光体層80を上面から見た場合に、外縁側に青色光のリングが見える現象など、色割れや色ムラの原因になり得る。
 これに対して、実施形態によれば、第1面15aと蛍光体層80との間には基板がないため、基板側面から発光層13の光の色みが強い光が漏れることによる色割れや色ムラを防ぐことができる。
 次に、図5(a)~図10を参照して、実施形態の半導体発光装置の製造方法について説明する。
 図5(a)~図10に示す断面は、ウェーハ状態における一部分の断面を表し、図3(a)に示す断面に対応する。
 図5(a)に示すように、例えば、metal organic chemical vapor deposition(MOCVD)法により、基板10の主面上に、第1半導体層11、発光層13、および第2半導体層12が順にエピタキシャル成長される。
 第1半導体層11、発光層13、および第2半導体層12を含む半導体層15において、基板10側の面が第1面15aである。
 基板10は、例えばシリコン基板である。または、基板10はサファイア基板であってもよい。半導体層15は、例えば、窒化ガリウム(GaN)を含む窒化物半導体層である。
 発光層13の一部および第2半導体層12の一部は、例えばreactive ion etching(RIE)法により、図5(b)に示すように除去される。
 発光層13および第2半導体層12が除去された部分に、第1半導体層11の第2面15bが露出する。凸状に残った部分は、上面(第3面)15cと、側面15eをもつ。
 第2面15b、第3面15c、および側面15eには、図5(c)に示すように、絶縁膜61が形成される。絶縁膜61は、第2面15b、第3面15c、および側面15eに沿ってコンフォーマルに形成される。
 絶縁膜61として、例えば、シリコン酸化膜またはシリコン窒化膜が、chemical vapor deposition(CVD)法で形成される。
 絶縁膜61の一部は例えばウェットエッチング法で除去され、図6(a)に示すように、絶縁膜61に開口61aが形成される。開口61aに、第3面15cが露出する。
 開口61aの面積は第3面15cの面積よりも小さい。第3面15cのエッジ付近は露出されず、第3面15cのエッジ付近に絶縁膜61が残される。
 開口61aに露出する第3面15c上には、図6(b)に示すように、p側電極の銀膜31が例えば蒸着法で形成される。銀膜31の端部31bは、第3面15cのエッジ付近に残された絶縁膜61上に乗り上げる。その端部31bのエッジは、第3面15cの面内に収まっている。
 次に、図6(c)に示すように、銀膜31上にパッド電極32を例えば蒸着法で形成する。パッド電極32は、銀膜31の上面および端部31bのエッジを覆う。パッド電極32のエッジは、第3面15cの面内に収まっている。
 次に、第2面15b上の絶縁膜61の一部を例えばウェットエッチング法により除去する。図7(a)に示すように、第2面15bの一部が露出する。側面15e、およびその側面15eと第2面15bとのコーナー部は絶縁膜61で覆われている。
 次に、図7(b)に示すように、第2面15b上に、n側電極40のアルミニウム膜41およびパッド電極42を順に形成する。n側電極40は、例えば蒸着法で形成される。図12に示すように、n側電極40は、第2面15b上の絶縁膜61の上に乗り上げてもよい。
 次に、図7(c)に示すように、例えばRIE法で半導体層15に溝91を形成する。溝91は、第1半導体層11における、発光層13および第2半導体層12が積層されていない部分を貫通し、基板10に達する。溝91は例えば格子状に形成され、基板10上で複数の半導体層15が溝91によって分離される。
 溝91を形成するRIEのとき、基板10に対して少しオーバーエッチングが進み、溝91の底は第1面15aよりも後退する。
 p側電極30およびn側電極40は、図8(a)に示すように、絶縁膜62で覆われる。絶縁膜62は、溝91の側面および底にも形成され、半導体層15の側面15dは絶縁膜62で覆われる。絶縁膜62として、例えばシリコン酸化膜がCVD法で形成される。
 この後、例えばウェットエッチング法で、絶縁膜62に、図2に示すビア25aと接続するための開口、および図3(b)に示すビア22aと接続するための開口が形成される。また、このウェットエッチングのとき、溝91の底に形成された絶縁膜62の一部も除去される。
 この後、図8(b)に示すように、配線部24、21および金属膜51p、51nを構成する金属膜がめっき法で形成され、さらにそれら金属膜を覆う樹脂層70が形成される。
 そして、半導体層15が、配線部24、21および樹脂層70を含む支持体100で支えられた状態で、基板10を除去する。
 例えば、シリコン基板である基板10が、ウェットエッチングまたはドライエッチングにより除去される。あるいは、基板10がサファイア基板の場合には、レーザーリフトオフ法により除去することができる。
 基板10上にエピタキシャル成長された半導体層15は、大きな内部応力を含む場合がある。p側金属ピラー26、n側金属ピラー23、および樹脂層70は、例えばGaN系材料の半導体層15に比べて柔軟な材料である。したがって、エピタキシャル成長時の内部応力が基板10の剥離時に一気に開放されたとしても、p側金属ピラー26、n側金属ピラー23、および樹脂層70は、その応力を吸収する。このため、基板10を除去する過程における半導体層15の破損を回避することができる。
 基板10が除去され、図9(a)に示すように、半導体層15の第1面15aが露出する。半導体層15の側方に設けられた絶縁膜62bの上面および樹脂層70の上面は、前述した溝91の底に位置していた。その絶縁膜62bの上面および樹脂層70の上面よりも第1面15aは下方に後退している。
 露出した第1面15aには、図9(b)に示すように、微小凹凸が形成される。その後、図10に示すように、第1面15a上に、絶縁膜(密着層)71を介して蛍光体層80が形成される。蛍光体層80は、半導体層15の側方の領域の上にも、絶縁膜71を介して形成される。
 蛍光体層80を形成した後、樹脂層70の表面(図10における下面)が研削され、p側金属ピラー26およびn側金属ピラー23が樹脂層70から露出する。
 そして、前述の溝91が形成された領域でウェーハをダイシングする。蛍光体層80、絶縁膜71、および樹脂層70が切断される。これらは、例えば、ダイシングブレード、またはレーザ光により切断される。
 ウェーハは、少なくとも1つの半導体層15を含む半導体発光装置として個片化される。半導体発光装置は、ひとつの半導体層15を含むシングルチップ構造でも良いし、複数の半導体層15を含むマルチチップ構造であっても良い。
 個片化される前の前述した各工程は、ウェーハ状態で一括して行われるため、個片化された個々のデバイスごとに、配線層の形成、ピラーの形成、樹脂層によるパッケージング、および蛍光体層の形成を行う必要がなく、大幅なコストの低減が可能になる。
 ウェーハ状態で、支持体100および蛍光体層80を形成した後に、それらが切断されるため、蛍光体層80の側面と、支持体100の側面(樹脂層70の側面)とは揃い、それら側面が個片化された半導体発光装置の側面を形成する。したがって、基板10がないこともあいまって、チップサイズパッケージ構造の小型の半導体発光装置を提供することができる。
 高い反射率をもつ銀膜31は、第3面15cの端まで広がっていることが望ましい。銀膜31を第3面15cの全面に形成するため、図6(a)に示す絶縁膜61に開口61aを形成するプロセスのときに、開口61aの端を第3面15cの端に一致させることが考えられる。しかし、このプロセス制御は難しい場合がある。プロセスばらつきにより、開口61aが第2面15b側まで広がってしまうと、p側電極30と第1半導体層11との短絡や、p側電極30とn側電極40との短絡が懸念される。
 そこで、実施形態によれば、絶縁膜61の一部が第3面15cのエッジ付近に残るようにして開口61aの拡大を抑えつつ、銀膜31を絶縁膜61の上に乗り上げるように形成して銀膜31の面積の拡大を実現している。
 図11(a)は、p側電極30とn側電極40の平面レイアウトの他の例を示す模式平面図である。
 図11(b)は、図11(a)の電極レイアウトにおける、p側配線部24とn側配線部21の平面レイアウト例を示す模式平面図である。
 図11(a)および図11(b)に示す例では、半導体発光装置の平面形状は正方形である。n側電極40は、p側電極30の周囲を連続して囲んでいる。n側電極40における対向する2辺部に、p側電極30側に突出したコンタクト部40aが設けられている。さらに、チップ中央部にもn側電極40のコンタクト部40bが設けられている。そのコンタクト部40bの周囲をp側電極30が連続して囲んでいる。
 図11(a)に示すp側電極30において、チップ中央のn側コンタクト部40bに近い端部も、上記実施形態のように、絶縁膜61を介して第3面15cに対向する構造にすることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (11)

  1.  第1面と、前記第1面の反対側に設けられた第2面と、前記第2面に対して段差を形成して前記第1面の反対側に設けられた第3面とをもつ半導体層であって、前記第1面と前記第3面との間に発光層を含む半導体層と、
     前記第2面に接する第1電極と、
     前記第3面の面内に設けられた第2電極であって、前記第3面に接するコンタクト部と、前記第3面に接しない端部とを有し、銀を含む第2電極と、
     前記第2電極の前記端部と、前記第3面との間に設けられた絶縁膜と、
     前記第1電極に接続された第1配線部と、
     前記第2電極に接続された第2配線部と、
     を備えた半導体発光装置。
  2.  前記第2電極は、前記半導体層における前記第2面と前記第3面との間に形成された側面には設けられていない請求項1記載の半導体発光装置。
  3.  前記絶縁膜と前記第3面とのコンタクト面積は、前記第2電極の前記コンタクト部と前記第3面とのコンタクト面積よりも小さい請求項1記載の半導体発光装置。
  4.  前記第2電極は、前記第3面に接する銀膜を有し、
     前記銀膜の端部は、前記絶縁膜を介して、前記第3面に対向している請求項1記載の半導体発光装置。
  5.  前記第2電極は、前記銀膜を覆うパッド電極をさらに有する請求項4記載の半導体発光装置。
  6.  前記第1電極は、前記第2面に接するアルミニウム膜を有する請求項1記載の半導体発光装置。
  7.  前記第1電極と前記第2電極との間で前記半導体層に対向して設けられた第1金属膜をさらに備えた請求項1記載の半導体発光装置。
  8.  前記第1金属膜は、アルミニウム膜を有する請求項7記載の半導体発光装置。
  9.  前記半導体層の側方に設けられた第2金属膜をさらに備えた請求項1記載の半導体発光装置。
  10.  前記第2金属膜は、アルミニウム膜を有する請求項9記載の半導体発光装置。
  11.  前記第1面側に設けられた蛍光体層をさらに備えた請求項1記載の半導体発光装置。
PCT/JP2017/009216 2016-03-08 2017-03-08 半導体発光装置 WO2017154975A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780016038.XA CN109155351A (zh) 2016-03-08 2017-03-08 半导体发光装置
US16/082,860 US10553758B2 (en) 2016-03-08 2017-03-08 Semiconductor light emitting device
JP2018504554A JPWO2017154975A1 (ja) 2016-03-08 2017-03-08 半導体発光装置
EP17763315.3A EP3428979A4 (en) 2016-03-08 2017-03-08 LIGHT-EMITTING SEMICONDUCTOR ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016044411 2016-03-08
JP2016-044411 2016-03-08

Publications (1)

Publication Number Publication Date
WO2017154975A1 true WO2017154975A1 (ja) 2017-09-14

Family

ID=59790528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009216 WO2017154975A1 (ja) 2016-03-08 2017-03-08 半導体発光装置

Country Status (5)

Country Link
US (1) US10553758B2 (ja)
EP (1) EP3428979A4 (ja)
JP (1) JPWO2017154975A1 (ja)
CN (1) CN109155351A (ja)
WO (1) WO2017154975A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165033A (zh) * 2018-02-16 2019-08-23 日亚化学工业株式会社 发光元件及发光装置
JP2020065037A (ja) * 2018-02-16 2020-04-23 日亜化学工業株式会社 発光素子および発光装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI660524B (zh) * 2018-07-17 2019-05-21 友達光電股份有限公司 發光裝置及其製造方法
CN112259668B (zh) * 2019-07-22 2023-09-05 群创光电股份有限公司 发光装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081469A (ja) * 2003-07-16 2009-04-16 Panasonic Corp 半導体発光装置とこれを備えるモジュール
JP2009164423A (ja) * 2008-01-08 2009-07-23 Nichia Corp 発光素子
JP2013016875A (ja) * 2008-09-30 2013-01-24 Seoul Opto Devices Co Ltd 発光装置
JP2013123008A (ja) * 2011-12-12 2013-06-20 Toshiba Corp 半導体発光装置
JP2014154727A (ja) * 2013-02-08 2014-08-25 Toshiba Corp 半導体発光素子
US20150155442A1 (en) * 2013-11-29 2015-06-04 Epistar Corporation Light-emitting device
WO2015146069A1 (ja) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 発光ダイオード素子
JP2015195332A (ja) * 2014-03-27 2015-11-05 株式会社東芝 半導体発光装置及びその製造方法
JP2015198123A (ja) * 2014-03-31 2015-11-09 ウシオ電機株式会社 半導体発光素子、発光デバイス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008263B2 (ja) * 2005-03-02 2012-08-22 日亜化学工業株式会社 半導体発光素子
JP5414579B2 (ja) 2009-11-19 2014-02-12 株式会社東芝 半導体発光装置
JP5343040B2 (ja) * 2010-06-07 2013-11-13 株式会社東芝 半導体発光装置
JP5845134B2 (ja) * 2012-04-27 2016-01-20 株式会社東芝 波長変換体および半導体発光装置
JP5319820B2 (ja) * 2012-04-27 2013-10-16 株式会社東芝 半導体発光ダイオード素子及び半導体発光装置
JP6239311B2 (ja) * 2012-08-20 2017-11-29 エルジー イノテック カンパニー リミテッド 発光素子
JP6182050B2 (ja) * 2013-10-28 2017-08-16 株式会社東芝 半導体発光装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081469A (ja) * 2003-07-16 2009-04-16 Panasonic Corp 半導体発光装置とこれを備えるモジュール
JP2009164423A (ja) * 2008-01-08 2009-07-23 Nichia Corp 発光素子
JP2013016875A (ja) * 2008-09-30 2013-01-24 Seoul Opto Devices Co Ltd 発光装置
JP2013123008A (ja) * 2011-12-12 2013-06-20 Toshiba Corp 半導体発光装置
JP2014154727A (ja) * 2013-02-08 2014-08-25 Toshiba Corp 半導体発光素子
US20150155442A1 (en) * 2013-11-29 2015-06-04 Epistar Corporation Light-emitting device
JP2015195332A (ja) * 2014-03-27 2015-11-05 株式会社東芝 半導体発光装置及びその製造方法
WO2015146069A1 (ja) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 発光ダイオード素子
JP2015198123A (ja) * 2014-03-31 2015-11-09 ウシオ電機株式会社 半導体発光素子、発光デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428979A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165033A (zh) * 2018-02-16 2019-08-23 日亚化学工业株式会社 发光元件及发光装置
JP2020065037A (ja) * 2018-02-16 2020-04-23 日亜化学工業株式会社 発光素子および発光装置
US10644203B2 (en) 2018-02-16 2020-05-05 Nichia Corporation Light emitting element and light emitting device
US10923632B2 (en) 2018-02-16 2021-02-16 Nichia Corporation Light emitting element and light emitting device
US11393954B2 (en) 2018-02-16 2022-07-19 Nichia Corporation Light emitting element and light emitting device

Also Published As

Publication number Publication date
JPWO2017154975A1 (ja) 2019-01-24
CN109155351A (zh) 2019-01-04
US10553758B2 (en) 2020-02-04
US20190097085A1 (en) 2019-03-28
EP3428979A1 (en) 2019-01-16
EP3428979A4 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6545981B2 (ja) 半導体発光装置
JP6045999B2 (ja) 半導体発光装置及びその製造方法
JP6106120B2 (ja) 半導体発光装置
JP6182050B2 (ja) 半導体発光装置
US9202992B2 (en) Semiconductor light emitting device having a fluorescent substance layer
JP6185415B2 (ja) 半導体発光装置
JP2014160736A (ja) 半導体発光装置及び発光装置
JP2015088524A (ja) 半導体発光装置
JP2014157991A (ja) 半導体発光装置及びその製造方法
JP2016171188A (ja) 半導体発光装置とその製造方法
WO2017154975A1 (ja) 半導体発光装置
US20150280084A1 (en) Semiconductor light emitting device and method of manufacturing same
JP2004289182A (ja) 半導体発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504554

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763315

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763315

Country of ref document: EP

Effective date: 20181008

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763315

Country of ref document: EP

Kind code of ref document: A1