WO2017154826A1 - Stand, solar cell module, and solar cell system - Google Patents
Stand, solar cell module, and solar cell system Download PDFInfo
- Publication number
- WO2017154826A1 WO2017154826A1 PCT/JP2017/008740 JP2017008740W WO2017154826A1 WO 2017154826 A1 WO2017154826 A1 WO 2017154826A1 JP 2017008740 W JP2017008740 W JP 2017008740W WO 2017154826 A1 WO2017154826 A1 WO 2017154826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- cell panel
- contact member
- contact
- panel
- Prior art date
Links
- 239000000463 material Substances 0.000 claims description 18
- 230000002093 peripheral effect Effects 0.000 claims description 18
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims 2
- 238000004873 anchoring Methods 0.000 abstract 6
- 238000007789 sealing Methods 0.000 description 11
- 238000005452 bending Methods 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 4
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
- H02S20/20—Supporting structures directly fixed to an immovable object
- H02S20/22—Supporting structures directly fixed to an immovable object specially adapted for buildings
- H02S20/23—Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a gantry, a solar cell module, a solar cell system, and more particularly to a gantry, a solar cell module, and a solar cell system including a solar cell panel.
- a frame is arranged on each side of the solar cell module, and the frame is installed on a roof base plate or the like.
- a snow load may act from the surface side of the solar cell module toward the back surface, and the solar cell module may be damaged.
- the center part on the back surface side of the solar cell module is supported by an elastic member that is compressible and deformable provided between the solar cell module and the roof (see, for example, Patent Document 1).
- Elasticity of an elastic body generally deteriorates with time. Furthermore, since the place where the solar cell module is installed is likely to become high temperature due to the influence of direct sunlight, the elasticity of the elastic body is likely to further deteriorate. When the deteriorated elastic body is periodically replaced, it cannot be said that damage due to bending of the solar cell panel is easily prevented. Therefore, it is required to easily prevent damage due to the bending of the solar cell panel.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for easily preventing damage caused by bending of a solar cell panel.
- a frame according to an aspect of the present invention is a frame for installing a solar cell module in which a frame is arranged on a peripheral portion of a solar cell panel including an upper surface and a lower surface facing opposite to each other.
- the solar cell module includes a plurality of fixing portions that fix each of the opposed frames, and a contact member that is disposed between the plurality of fixing portions. In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from at least one of the plurality of fixing portions to the lower surface of the solar cell panel.
- This solar cell module includes a solar cell panel including an upper surface and a lower surface facing in opposite directions, a frame disposed on a peripheral edge of the solar cell panel, and a contact member attached to the lower surface of the solar cell panel. In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from the lower end of the frame to the lower surface of the solar cell panel.
- the solar cell system includes a solar cell module in which a frame is disposed on a peripheral portion of a solar cell panel including an upper surface and a lower surface facing opposite to each other, and a plurality of fixing portions that fix each of the opposed frames in the solar cell module. And a gantry including.
- the gantry includes a contact member disposed between the plurality of fixing portions. In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from at least one of the plurality of fixing portions to the lower surface of the solar cell panel.
- Still another embodiment of the present invention is also a solar cell system.
- the solar cell system includes a solar cell module in which a frame is disposed on a peripheral portion of a solar cell panel including an upper surface and a lower surface facing opposite to each other, and a plurality of fixing portions that fix each of the opposed frames in the solar cell module. And a gantry including.
- the solar cell module further includes a contact member attached to the lower surface of the solar cell panel. In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from at least one of the plurality of fixing portions to the lower surface of the solar cell panel.
- FIGS. 5A and 5B are cross-sectional views showing the configuration of the solar cell system of FIG. It is a top view which shows the structure of the solar cell module of FIG. It is a top view which shows another structure of the solar cell module of FIG.
- FIGS. 8A and 8B are cross-sectional views showing still another configuration of the solar cell module of FIG. It is a top view which shows the structure of the solar cell module of FIG. It is a top view which shows another structure of the solar cell module of FIG.
- Example 1 of this invention is related with the mount for installing a solar cell module.
- a plurality of mounts extending from the roof ridge toward the eave are arranged side by side on the roof, and the solar cell module is installed on the mount.
- a frame is arranged at the peripheral edge of the solar cell panel in the solar cell module, and the frame is fixed to the gantry.
- the solar cell panel bends in the direction of the roof, the solar cell panel may be damaged due to the solar cell panel coming into contact with the mount.
- the gantry according to the present embodiment is configured as follows.
- the solar cell panel includes a portion having relatively high resistance to contact and a portion having low resistance.
- An example of a portion having relatively low resistance to contact is an inter-cell wiring material for connecting a plurality of solar cells in a solar cell panel.
- portions other than the inter-cell wiring member in the solar cell panel have a relatively high resistance to contact. Then, when a solar cell panel bends, the member for contact is arrange
- FIG. 1 is a perspective view showing a configuration of a solar cell system 500 according to Embodiment 1 of the present invention.
- a gantry 200 collectively called a first gantry 200 a and a second gantry 200 b is disposed on a roof 300, and the solar cell module 100 is installed on the gantry 200.
- the solar cell module 100 includes a first short frame 20a, a second short frame 20b, which are collectively referred to as a short frame 20, a first long frame 22a, a second long frame 22b, which are collectively referred to as a long frame 22, and a solar cell panel 30.
- the first mount 200a includes a first contact member 210a
- the second mount 200b includes a second contact member 210b.
- the first contact member 210 a and the second contact member 210 b are collectively referred to as the contact member 210.
- an orthogonal coordinate system consisting of an x-axis, a y-axis, and a z-axis is defined.
- the x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100.
- the z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100.
- the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow.
- the main plane arranged on the positive side of the z axis is the light receiving surface, and the z axis
- the main plane arranged on the negative direction side is the back surface.
- the positive direction side of the z-axis is referred to as “light-receiving surface side”
- the negative direction side of the z-axis is referred to as “back surface side”.
- the negative direction side of the y axis corresponds to the “eave side”
- the positive direction side of the y axis corresponds to the “ridge side”.
- the plurality of mounts 200 have a quadrangular prism shape extending in the y-axis direction, and are fixed to the roof 300 while being arranged in the x-axis direction. Since a well-known technique should just be used in order to fix each mount frame 200 to the roof 300, description is abbreviate
- the gantry 200 is made of metal, for example.
- the solar cell module 100 is installed on the gantry 200. A configuration for installing the solar cell module 100 will be described later.
- the gantry 200 is provided with a contact member 210, and the configuration of the contact member 210 will also be described later.
- the solar cell panel 30 has a rectangular shape that is longer in the x-axis direction than in the y-axis direction, including a light receiving surface and a back surface that are opposite to each other in the z-axis direction.
- the light receiving surface may be referred to as the upper surface
- the back surface may be referred to as the lower surface.
- Short frames 20 extending in the y-axis direction are disposed at both ends in the x-axis direction of the solar cell panel 30, and long frames 22 extending in the x-axis direction are disposed at both ends in the y-axis direction of the solar cell panel 30. .
- the arrangement of the short frame 20 and the arrangement of the long frame 22 may be reversed.
- the adjacent short frame 20 and the long frame 22 are connected to each other, so that the two short frames 20 and the two long frames 22 are arranged in a frame shape so as to surround the peripheral edge portion 32 of the solar cell panel 30.
- the long frame 22 is longer than the short frame 20 in accordance with the shape of the solar cell panel 30. Since the short frame 20 and the long frame 22 are formed by extrusion molding, they have a cross section of the same shape in a direction crossing the extending direction.
- the short frame 20 and the long frame 22 are comprised, for example with aluminum or aluminum alloy.
- a terminal box (not shown) is attached to the back surface of the solar cell panel 30.
- One end of each of the two cables is connected to the terminal box, and a connector is connected to the other end of each of the two cables.
- the terminal box, cable, and connector are electrically connected to the solar cell panel 30 and take out electric power from the solar cell panel.
- the solar cell module 100 includes the solar cell panel 30 to which the short frame 20, the long frame 22, the terminal box, the cable, and the connector are attached.
- the description of the terminal box, the cable, and the connector is omitted.
- FIGS. 2A to 2B are also used to describe the configuration of the solar cell module 100 and the gantry 200 in more detail.
- 2A and 2B are cross-sectional views along the y-axis showing the configuration of the solar cell system 500, and are cross-sectional views taken along the line A-A 'of FIG. 2A, the solar cell panel 30 has a shape that is longer in the y-axis direction than the z-axis direction, with the light-receiving surface facing the positive direction side of the z-axis and the back surface facing the negative direction side of the z-axis. Arranged. Further, each of the positive side end of the y axis of the solar cell panel 30 and the negative side end of the y axis corresponds to a part of the peripheral portion 32 in the xy plane of the solar cell panel 30.
- the first long frame 22a and the second long frame 22b are opposed frames in the solar cell module 100, and are configured in the same manner although they are bilaterally symmetric.
- the 1st long frame 22a is arrange
- the peripheral part 32 of the positive direction side of the y-axis of the solar cell panel 30 is engage
- the second long frame 22b is disposed on the negative direction side of the y axis of the solar cell panel 30, and the peripheral portion 32 on the negative direction side of the y axis of the solar cell panel 30 is fitted into the second long frame 22b. It is.
- the solar cell panel 30 is fixed to the long frame 22 with a butyl sealant or a silicone adhesive.
- the first long frame 22a and the second long frame 22b are formed in a substantially rectangular cross section from the portion into which the solar cell panel 30 is fitted toward the negative direction of the z axis.
- the first long frame 22a has a flange 40 that protrudes in the positive direction of the y axis at the negative side end, that is, the lower end of the z axis.
- the second long frame 22b has a flange 40 that protrudes in the negative direction of the y-axis at the end in the negative direction of the z-axis.
- the flange 40 protrudes from the lower end of the long frame 22 in the opposite direction to the solar cell panel 30.
- the first mount 200a extends in the y-axis direction.
- a first long frame 22a and a second long frame 22b are disposed on the surface of the first gantry 200a on the positive side of the z axis.
- the first mount 200a includes a first ridge-side fixing portion 204a on the positive side of the y-axis with respect to the flange 40 of the first long frame 22a.
- the first ridge-side fixing portion 204a is a hole for fixing the first long frame 22a, and is formed so that the flange nut 44 can be coupled thereto.
- the flange 40 of the first long frame 22a is pressed from the positive side of the z axis to the negative side by the presser 42 and the flange nut 44, whereby the first long frame 22a is fixed to the first base 200a.
- the first mount 200a includes a first eaves-side fixing portion 202a on the negative direction side of the y-axis with respect to the flange 40 of the second long frame 22b.
- the first eave-side fixing portion 202a is formed so that the flange nut 44 can be coupled, and fixes the second long frame 22b to the first gantry 200a.
- the third long frame 22c is disposed on the positive side of the first long frame 22a in the y-axis direction.
- the third long frame 22c is a frame in another solar cell module 100 disposed on the positive direction side of the y-axis of the solar cell module 100 described so far.
- the above-described presser 42 and flange nut 44 press the flange 40 of the third long frame 22c together with the flange 40 of the first long frame 22a.
- the first base 200a is provided with a first eaves side fixing portion 202a
- the second base 200b is provided with a second eaves side fixing portion 202b.
- the first eaves side fixing part 202a and the second eaves side fixing part 202b are collectively referred to as the eaves side fixing part 202.
- FIG. 1 does not show the first ridge side fixing portion 204a and the second ridge side fixing portion 204b, but the first gantry side fixing portion 204a is provided on the first gantry 200a, and the second ridge side 200b is provided with the second ridge.
- a side fixing portion 204b is provided.
- the first building side fixing unit 204a and the second building side fixing unit 204b are collectively referred to as the building side fixing unit 204.
- the eaves-side fixing unit 202 and the ridge-side fixing unit 204 have the same configuration, and may be collectively referred to simply as “fixing unit”.
- the configuration of the eaves side fixing portion 202 and the ridge side fixing portion 204 is not limited to the configuration in which the flange 40 is pressed by the presser 42 and the flange nut 44 as shown in FIG. Techniques may be used.
- the first contact member 210a is arranged to face.
- the first contact member 210a is made of metal, for example.
- the thickness of the first contact member 210a in the z-axis direction is indicated as “A”.
- the distance in the z-axis direction from the eaves side fixing unit 202 or the ridge side fixing unit 204 to the back surface of the solar cell panel 30 is indicated as “B”.
- A” ⁇ “B”.
- FIG. 2B shows a solar cell in the solar cell module 100 shown in FIG. 2A so that the central portion of the solar cell panel 30 in the y-axis direction moves to the negative direction side of the z-axis.
- FIG. 2B shows a solar cell in the solar cell module 100 shown in FIG. 2A so that the central portion of the solar cell panel 30 in the y-axis direction moves to the negative direction side of the z-axis.
- a part of the solar cell panel 30 is in contact with the first contact member 210a.
- portions other than a part of the solar cell panel 30 do not contact the first contact member 210a. A part of such a solar cell panel 30 will be further described with reference to FIG.
- FIG. 3 is a plan view showing the configuration of the solar cell module 100, which shows the configuration when the solar cell module 100 is viewed from the light receiving surface side.
- the solar cell module 100 includes the short frame 20, the long frame 22, and the solar cell panel 30.
- the solar battery panel 30 includes the eleventh solar battery cells 10aa,..., The 46th solar battery cell 10df, the inter-cell wiring member 14, the inter-group wiring member 16, and the group end wiring member, which are collectively referred to as the solar battery cell 10. 18 is included.
- the gantry 200 is disposed on the negative side of the z-axis of the solar cell module 100.
- Each of the plurality of solar cells 10 absorbs incident light and generates photovoltaic power.
- the solar cell 10 generates an electromotive force from the light absorbed on the light receiving surface and also generates a photoelectromotive force from the light absorbed on the back surface.
- the solar battery cell 10 is made of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
- the structure of the solar battery cell 10 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked.
- the solar battery cell 10 has a quadrangular shape in the xy plane, but may have another shape, for example, an octagonal shape.
- a plurality of finger electrodes extending in the y-axis direction parallel to each other and a plurality extending in the x-axis direction so as to be orthogonal to the plurality of finger electrodes are provided on the light receiving surface and the back surface of each solar cell 10.
- Bus bar electrodes The bus bar electrode connects each of the plurality of finger electrodes.
- the plurality of solar cells 10 are arranged in a matrix on the xy plane.
- six solar cells 10 are arranged in the x-axis direction.
- the six solar cells 10 arranged side by side in the x-axis direction are connected in series by the inter-cell wiring material 14 to form one solar cell group 12.
- the solar cell group 12 can also be said to be a string.
- the first solar cell group 12a is formed by connecting the eleventh solar cell 10aa, the twelfth solar cell 10ab, ..., the sixteenth solar cell 10af.
- the second solar cell group 12b to the fourth solar cell group 12d are formed in the same manner.
- the four solar cell groups 12 are arranged in parallel in the y-axis direction.
- the number of the photovoltaic cells 10 arranged in the x-axis direction is larger than the number of the photovoltaic cells 10 arranged in the y-axis direction.
- the number of solar battery cells 10 included in the solar battery group 12 is not limited to “6”, and the number of solar battery groups 12 is not limited to “4”.
- the inter-cell wiring member 14 connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 10 and the bus bar electrode on the other back surface side.
- three inter-cell wiring members 14 for connecting adjacent eleventh solar cells 10aa and twelfth solar cells 10ab are the bus bar electrodes on the back side of the eleventh solar cells 10aa and the twelfth solar cells.
- the bus bar electrode on the light receiving surface side of 10ab is electrically connected.
- Resin is used for connection between the inter-cell wiring member 14 and the bus bar electrode. This resin may be either conductive or non-conductive.
- the inter-cell wiring member 14 and the bus bar electrode are in direct contact with each other, and the inter-cell wiring member 14 and the bus bar electrode are mechanically connected to each other by a resin provided around the inter-cell wiring member 14 and the bus bar electrode. . Also, solder may be used instead of resin.
- the inter-group wiring member 16 extends in the y-axis direction and electrically connects two solar cell groups 12 adjacent to each other.
- the sixteenth solar cell 10af located at the positive end of the first solar cell group 12a on the x-axis and the twenty-sixth solar cell 10bf located at the positive end of the second solar cell group 12b on the x-axis. are electrically connected by the inter-group wiring member 16.
- the second solar cell group 12b and the third solar cell group 12c are electrically connected by the inter-group wiring member 16 on the negative direction side of the x axis
- the third solar cell group 12c and the fourth solar cell group. 12d is electrically connected by the inter-group wiring member 16 on the positive direction side of the x-axis.
- the plurality of solar cell groups 12 are connected in series by the inter-group wiring member 16.
- the inter-group wiring member 16 is not connected to the eleventh solar cell 10aa at the end in the negative x-axis direction of the first solar cell group 12a, and the group end wiring member 18 is connected instead.
- a lead-out wiring material (not shown) is connected to the group end wiring material 18.
- the extraction wiring material is a wiring material for extracting the electric power generated in the plurality of solar cells 10 to the outside of the solar cell module 100.
- the group end wiring member 18 is also connected to the forty-first solar cell 10da at the negative end on the x-axis side of the fourth solar cell group 12d.
- the first contact member 210a is surrounded by the 21st solar cell 10ba, the 22nd solar cell 10bb, the 31st solar cell 10ca, and the 32nd solar cell 10cb. It is arranged at a position corresponding to the portion.
- This portion is a portion that contacts the first contact member 210a when the solar cell panel 30 is bent in the direction of the main frame 200, that is, in the negative direction of the z-axis. Further, it can be said that this portion is a portion where the inter-cell wiring member 14 is avoided in the solar battery panel 30. Further, it can be said that this portion is a portion where the inter-group wiring member 16 is avoided in the solar cell panel 30.
- the portion avoiding them is a portion having relatively high resistance to contact. That is, when the solar cell panel 30 is bent, the first contact member 210a is disposed at a position where the first contact member 210a can contact a portion of the back surface of the solar cell panel 30 that is relatively resistant to contact.
- a translucent substrate is disposed on the light receiving surface side of the solar cell panel 30, and a back sheet as a back surface protection member is disposed on the back surface side.
- the sealing member is arrange
- a glass substrate, a translucent plastic, etc. are used for a translucent substrate
- a back film is a resin film such as PET (polyethylene terephthalate), and a laminated film having a structure in which an Al foil is sandwiched between resin films.
- a thermoplastic resin such as a resin film such as polyolefin, EVA (ethylene vinyl acetate), PVB (polyvinyl butyral), or polyimide is used.
- the contact member 210 is disposed on the gantry 200 for installing the solar cell module 100, even if the solar cell panel 30 is bent toward the gantry 200, the solar cell panel 30 is in contact with the solar cell panel 30.
- the working member 210 can be brought into contact.
- the solar cell panel 30 and the contact member 210 are contacted, contact of parts other than the part which contacts the contact member 210 in the solar cell panel 30 can be prevented.
- the thickness of the contact member 210 is greater than the distance from at least one of the eaves side fixing portion 202 and the ridge side fixing portion 204 to the lower surface of the solar cell panel 30. Because it is small, it can prevent normal contact.
- metal can be used for the contact member 210. Moreover, since a metal is used for the contact member 210, deterioration of the contact member 210 can be suppressed. In addition, since the deterioration of the contact member 210 is suppressed, periodic replacement of the contact member 210 can be eliminated. In addition, since the contact member 210 is disposed on the gantry 200, the configuration of the solar cell module 100 can be eliminated. In addition, since the contact member 210 is merely disposed on the gantry 200, damage due to the bending of the solar cell panel 30 can be easily prevented.
- the contact member 210 is disposed on the back surface of the solar cell panel 30 at a position where it can come into contact with a portion having relatively high resistance to contact. , It is possible to prevent contact of a portion having relatively low resistance to contact. Moreover, in the solar cell panel 30, since the contact member 210 is disposed at a position where it can come into contact with a portion avoiding the inter-cell wiring member 14, contact with the inter-cell wiring member 14 can be prevented. Further, in the solar cell panel 30, the contact member 210 is disposed at a position where it can come into contact with a portion that avoids the inter-group wiring member 16, so that contact with the inter-group wiring member 16 can be prevented.
- the outline of this example is as follows.
- the gantry 200 according to an aspect of the present invention is a gantry 200 for installing the solar cell module 100 in which the long frame 22 is disposed on the peripheral edge portion 32 of the solar cell panel 30 including an upper surface and a lower surface facing each other.
- the solar cell module 100 is arranged between the plurality of eaves-side fixing portions 202 and the ridge-side fixing portion 204 that fix each of the opposed long frames 22, and between the plurality of eaves-side fixing portions 202 and the ridge-side fixing portion 204.
- the contact member 210 is provided.
- the thickness of the contact member 210 is smaller than the distance from at least one of the plurality of eaves side fixing portions 202 and the ridge side fixing portion 204 to the lower surface of the solar cell panel 30. .
- the contact member 210 is disposed at a position where it can contact a portion of the lower surface of the solar cell panel 30 that is relatively resistant to contact. Also good.
- the contact member 210 may be disposed at a position in the solar battery panel 30 that can contact a portion that avoids the inter-cell wiring member 14 for connecting the solar battery cells 10.
- the contact member 210 may be disposed at a position in the solar battery panel 30 that can contact a portion avoiding the inter-group wiring member 16 for connecting the strings of the solar battery cells 10.
- This solar cell system 500 includes a solar cell module 100 in which a long frame 22 is disposed at a peripheral edge portion 32 of a solar cell panel 30 including an upper surface and a lower surface that are opposite to each other, and a long frame 22 that faces the solar cell module 100.
- the gantry 200 includes a plurality of eaves-side fixing portions 202 and a contact member 210 disposed between the ridge-side fixing portions 204.
- the thickness of the contact member 210 is smaller than the distance from at least one of the plurality of eaves side fixing portions 202 and the ridge side fixing portion 204 to the lower surface of the solar cell panel 30. .
- Example 2 is related with the solar cell module installed in a mount. Similarly to Example 1, when the solar cell panel is bent in the direction of the roof, the solar cell panel may be damaged by contacting the gantry. In order to prevent damage to the solar cell panel, in Example 1, a contact member is disposed on the gantry. On the other hand, in Example 2, the contact member is attached to the back surface of the solar cell panel 30. Here, it demonstrates centering on the difference with Example 1. FIG.
- FIG. 4 is a perspective view showing a configuration of a solar cell system 500 according to Embodiment 2 of the present invention. Although this is shown in the same manner as FIG. 1, the gantry 200 does not include the contact member 210, and the solar cell panel 30 includes the contact member 34. A contact member 34 is attached to the back surface of the solar cell panel 30.
- the contact member 34 has a rectangular shape in which the x-axis direction is longer than the y-axis direction on the lower surface of the solar cell panel 30. It can be said that the shape of the contact member 34 is long in the direction in which the plurality of mounts 200 are arranged.
- FIGS. 5A to 5B are also used to describe the configuration of the solar cell module 100 and the gantry 200 in more detail.
- FIGS. 5A and 5B are cross-sectional views along the y-axis showing the configuration of the solar cell system 500, and are cross-sectional views taken along the line B-B ′ of FIG.
- the contact member 34 is disposed on the back side of the solar cell panel 30 so as to face the gantry 200.
- the contact member 34 is made of, for example, metal.
- the thickness of the contact member 34 in the z-axis direction is indicated as “C”.
- the distance in the z-axis direction from the eaves side fixing part 202 or the ridge side fixing part 204 to the back surface of the solar cell panel 30 is indicated as “D”. This corresponds to the distance in the z-axis direction from the lower end of the long frame 22 to the back surface of the solar cell panel 30.
- FIG. 5B shows a solar cell in the solar cell module 100 shown in FIG. 5A such that the central portion in the y-axis direction of the solar cell panel 30 moves to the negative direction side of the z-axis.
- FIG. 5B shows a solar cell in the solar cell module 100 shown in FIG. 5A such that the central portion in the y-axis direction of the solar cell panel 30 moves to the negative direction side of the z-axis.
- It is sectional drawing which shows a structure when the panel 30 bends.
- the contact member 34 in the solar cell panel 30 contacts the first mount 200a.
- parts other than the contact member 34 in the solar cell panel 30 do not contact the first mount 200a. The position where the contact member 34 in the solar cell panel 30 is arranged will be further described with reference to FIG.
- FIG. 6 is a plan view showing the configuration of the solar cell module 100. This is shown in the same manner as FIG. 3, but the gantry 200 does not include the contact member 210, and the solar cell panel 30 includes the contact member 34.
- the contact member 34 is attached to a portion sandwiched between the second solar cell group 12b and the third solar cell group 12c. This part is a part which contacts the 1st mount 200a, when the solar cell panel 30 bends in the direction of the main mount 200, ie, the negative direction of the z-axis. Further, it can be said that this portion is a portion where the inter-cell wiring member 14 is avoided in the solar battery panel 30.
- this portion is a portion where the inter-group wiring member 16 is avoided in the solar cell panel 30.
- the inter-cell wiring member 14 and the inter-group wiring member 16 are liable to be damaged by contact. Therefore, a portion avoiding these is a portion having relatively high resistance to contact. That is, the contact member 34 is attached to a portion of the back surface of the solar cell panel 30 that is relatively resistant to contact when the solar cell panel 30 is bent.
- FIG. 7 is a plan view showing another configuration of the solar cell module 100, and is shown in the same manner as FIG.
- the portion where the inter-cell wiring member 14 is disposed is a portion having a relatively high resistance to contact.
- the first contact member 34a is attached so as to overlap the inter-cell wiring member 14 in the central portion in the y-axis direction of the second solar cell group 12b.
- the second contact member 34b is attached so as to overlap the inter-cell wiring member 14 at the center portion in the y-axis direction of the third solar cell group 12c.
- FIGS. 8A to 8B are cross-sectional views showing the configuration of the solar cell module 100.
- FIG. FIG. 8A shows a configuration for shortening the length of the inter-cell wiring member 14.
- the solar battery panel 30 includes a twenty-second solar battery cell 10bb, a twenty-third solar battery cell 10bc, an inter-cell wiring member 14, a first protective member 50, a first sealing member 52, a second sealing member 54, and a second protective member. 56 and bus bar electrodes 58.
- the first sealing member 52 and the second protective member 56 correspond to the above-described translucent substrate and back sheet, respectively.
- a bus bar electrode 58 is disposed on the back surface of the solar battery cell 10. In the configuration so far, the bus bar electrode 58 is disposed only by omitting the illustration of the bus bar electrode 58.
- the inter-cell wiring member 14 disposed on the light receiving surface of the solar battery cell 10 extends in the direction of the back surface of the adjacent solar battery cell 10 and is connected to the bus bar electrode 58 of the adjacent solar battery cell 10 by solder or conductive resin.
- the inter-cell wiring member 14 is connected to the entire surface of the bus bar electrode 58, but here, the inter-cell wiring member 14 is connected only to a part of the adhesion region 60 of the bus bar electrode 58. .
- attaching the wiring material 14 between cells and the bus-bar electrode 58 becomes small, the tolerance by contact can become low. Therefore, the contact member 34 is attached so as to consider the adhesion region 60.
- FIG. 8B is a cross-sectional view showing another configuration in which the inter-cell wiring material 14 similar to that in FIG. 8A is used.
- a bus bar electrode 58 is disposed on the back surface of the twenty-second solar battery cell 10bb, and a wiring member 62 and an inter-cell wiring member 14 are sequentially disposed on the negative side of the z-axis of the bus bar electrode 58.
- the inter-cell wiring member 14 is connected only to the adhesion region 60 from the negative direction side of the z-axis.
- solder or conductive resin is used to connect the bus bar electrode 58 and the wiring member 62, and solder is used to connect the wiring member 62 and the inter-cell wiring member 14.
- the bus-bar electrode 58 is arrange
- FIG. 9 is a plan view showing still another configuration of the solar cell module 100, and is shown in the same manner as FIG. FIG. 8A corresponds to a cross-sectional view taken along the line C-C ′ of FIG.
- the adhesion region 60 in each solar battery cell 10 is indicated by hatching.
- Each contact member 34 has a rectangular shape that is longer in the y-axis direction than in the x-axis direction, and is disposed on the back surface of the solar battery panel 30 so as to penetrate the central portion of each solar battery cell 10. That is, each contact member 34 is attached to a portion avoiding the adhesion region 60.
- FIG. 10 is a plan view showing still another configuration of the solar cell module 100, which shows a configuration when the solar cell module 100 is viewed from the back side.
- the solar cell module 100 here includes a back electrode type solar cell 10. Since the back electrode type solar battery cell 10 is a known technique, the description thereof is omitted here.
- each photovoltaic cell 10 is connected by the wiring material 70.
- Each contact member 34 has a rectangular shape that is longer in the y-axis direction than in the x-axis direction, and is disposed on the back surface of the solar battery panel 30 so as to penetrate the central portion of each solar battery cell 10. That is, each contact member 34 is attached to a portion avoiding the wiring member 70.
- the contact member 34 and the gantry 200 are brought into contact with each other even when the solar cell panel 30 is bent toward the gantry 200. Can do. Further, since the contact member 34 and the gantry 200 are brought into contact with each other, contact of portions other than the contact member 34 in the solar cell panel 30 can be prevented. Further, in the direction from the back surface of the solar cell panel 30 to the light receiving surface, the thickness of the contact member 34 is larger than the distance from at least one of the eaves side fixing portion 202 and the ridge side fixing portion 204 to the lower surface of the solar cell panel 30. Because it is small, it can prevent normal contact.
- metal can be used for the contact member 34.
- a metal is used for the contact member 34, deterioration of the contact member 34 can be suppressed. Further, since the deterioration of the contact member 34 is suppressed, it is possible to eliminate periodic replacement of the contact member 34. Further, since the solar cell panel 30 is simply attached to the contact member 34, damage due to the bending of the solar cell panel 30 can be easily prevented.
- the contact member 34 is attached to a portion of the back surface of the solar cell panel 30 where the contact resistance is relatively high. Therefore, it is possible to prevent contact with a low part.
- the contact member 34 is attached to a portion of the solar battery panel 30 that avoids the inter-cell wiring member 14
- contact with the inter-cell wiring member 14 can be prevented.
- the contact member 34 is attached to a portion of the solar cell panel 30 that avoids the inter-group wiring member 16
- the contact member 34 has a rectangular shape in which one direction is longer than the other direction, contact between the solar cell panel 30 and the gantry 200 can be prevented even if the interval between the gantry 200 changes.
- Yet another embodiment of the present invention is a solar cell module 100.
- the solar cell module 100 is attached to a solar cell panel 30 including an upper surface and a lower surface facing opposite to each other, a long frame 22 disposed on a peripheral edge 32 of the solar cell panel 30, and a lower surface of the solar cell panel 30.
- a contact member 34 In the direction from the lower surface to the upper surface of the solar cell panel 30, the thickness of the contact member 34 is smaller than the distance from the lower end of the long frame 22 to the lower surface of the solar cell panel 30.
- the contact member 34 may be attached to a portion of the lower surface of the solar cell panel 30 that is relatively resistant to contact.
- the contact member 34 may be attached to a portion of the solar battery panel 30 that avoids the inter-cell wiring member 14 for connecting the solar battery cells 10.
- the contact member 34 may be attached to a portion of the solar battery panel 30 that avoids the inter-group wiring member 16 for connecting the strings of the solar battery cells 10.
- the contact member 34 may have a rectangular shape in which one direction is longer than another direction on the lower surface of the solar cell panel 30.
- Still another embodiment of the present invention is also a solar cell system 500.
- This solar cell system 500 includes a solar cell module 100 in which a long frame 22 is disposed at a peripheral edge portion 32 of a solar cell panel 30 including an upper surface and a lower surface that are opposite to each other, and a long frame 22 that faces the solar cell module 100.
- the solar cell module 100 further includes a contact member 34 attached to the lower surface of the solar cell panel 30.
- the thickness of the contact member 34 is smaller than the distance from at least one of the plurality of eaves side fixing portions 202 and the ridge side fixing portion 204 to the lower surface of the solar cell panel 30. .
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
- Photovoltaic Devices (AREA)
Abstract
A solar cell module 100 in which a long frame 22 is disposed on the periphery 32 of a solar cell panel 30 that comprises a top face and a bottom face facing away from each other is installed on a stand 200. An eaves-side anchoring unit 202 and a ridge-side anchoring unit 204 anchor each of opposing long frames 22 in the solar cell panel 30. A contact member 210 is disposed between the eaves-side anchoring unit 202 and the ridge-side anchoring unit 204. The thickness of the contact member 210 in the direction from the bottom face to the top face of the solar cell panel 30 is less than the distance from at least one of the eaves-side anchoring unit 202 and the ridge-side anchoring unit 204 to the bottom face of the solar cell panel 30.
Description
本発明は、架台、太陽電池モジュール、太陽電池システム、特に太陽電池パネルが含まれる架台、太陽電池モジュール、太陽電池システムに関する。
The present invention relates to a gantry, a solar cell module, a solar cell system, and more particularly to a gantry, a solar cell module, and a solar cell system including a solar cell panel.
太陽電池モジュールの各辺には、枠体が配置されるとともに、枠体が屋根の野地板等に設置される。このような太陽電池モジュールの表面に積雪した場合、太陽電池モジュールの表面側から裏面に向かって積雪荷重が作用し、太陽電池モジュールが破損する場合がある。そのために、例えば、太陽電池モジュールの裏面側中央部が、太陽電池モジュールと屋根上の間に設けられた圧縮変形可能な弾性部材で支持される(例えば、特許文献1参照)。
A frame is arranged on each side of the solar cell module, and the frame is installed on a roof base plate or the like. When snow accumulates on the surface of such a solar cell module, a snow load may act from the surface side of the solar cell module toward the back surface, and the solar cell module may be damaged. For this purpose, for example, the center part on the back surface side of the solar cell module is supported by an elastic member that is compressible and deformable provided between the solar cell module and the roof (see, for example, Patent Document 1).
弾性体は、一般的に時間の経過とともに弾性が劣化する。さらに、太陽電池モジュールが設置される場所は、直射日光の影響で高温になりやすいので、弾性体の弾性がさらに劣化しやすい。劣化した弾性体を定期的に交換する場合、太陽電池パネルの撓みによる損傷を簡易に防止するとはいえない。そのため、太陽電池パネルの撓みによる損傷を簡易に防止することが求められる。
Elasticity of an elastic body generally deteriorates with time. Furthermore, since the place where the solar cell module is installed is likely to become high temperature due to the influence of direct sunlight, the elasticity of the elastic body is likely to further deteriorate. When the deteriorated elastic body is periodically replaced, it cannot be said that damage due to bending of the solar cell panel is easily prevented. Therefore, it is required to easily prevent damage due to the bending of the solar cell panel.
本発明はこうした状況に鑑みなされたものであり、その目的は、太陽電池パネルの撓みによる損傷を簡易に防止する技術を提供することにある。
The present invention has been made in view of such circumstances, and an object thereof is to provide a technique for easily preventing damage caused by bending of a solar cell panel.
上記課題を解決するために、本発明のある態様の架台は、互いに反対を向いた上面と下面とを含む太陽電池パネルの周縁部にフレームが配置される太陽電池モジュールを設置するための架台であって、太陽電池モジュールにおいて対向したフレームのそれぞれを固定する複数の固定部と、複数の固定部の間に配置される接触用部材とを備える。太陽電池パネルの下面から上面への方向において、接触用部材の厚みは、複数の固定部の少なくとも一方から太陽電池パネルの下面までの距離よりも小さい。
In order to solve the above-described problems, a frame according to an aspect of the present invention is a frame for installing a solar cell module in which a frame is arranged on a peripheral portion of a solar cell panel including an upper surface and a lower surface facing opposite to each other. In addition, the solar cell module includes a plurality of fixing portions that fix each of the opposed frames, and a contact member that is disposed between the plurality of fixing portions. In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from at least one of the plurality of fixing portions to the lower surface of the solar cell panel.
本発明の別の態様は、太陽電池モジュールである。この太陽電池モジュールは、互いに反対を向いた上面と下面とを含む太陽電池パネルと、太陽電池パネルの周縁部に配置されるフレームと、太陽電池パネルの下面に取りつけられる接触用部材とを備える。太陽電池パネルの下面から上面への方向において、接触用部材の厚みは、フレームの下端から太陽電池パネルの下面までの距離よりも小さい。
Another aspect of the present invention is a solar cell module. This solar cell module includes a solar cell panel including an upper surface and a lower surface facing in opposite directions, a frame disposed on a peripheral edge of the solar cell panel, and a contact member attached to the lower surface of the solar cell panel. In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from the lower end of the frame to the lower surface of the solar cell panel.
本発明のさらに別の態様は、太陽電池システムである。この太陽電池システムは、互いに反対を向いた上面と下面とを含む太陽電池パネルの周縁部にフレームが配置される太陽電池モジュールと、太陽電池モジュールにおいて対向したフレームのそれぞれを固定する複数の固定部を含む架台とを備える。架台は、複数の固定部の間に配置される接触用部材とを備える。太陽電池パネルの下面から上面への方向において、接触用部材の厚みは、複数の固定部の少なくとも一方から太陽電池パネルの下面までの距離よりも小さい。
Still another aspect of the present invention is a solar cell system. The solar cell system includes a solar cell module in which a frame is disposed on a peripheral portion of a solar cell panel including an upper surface and a lower surface facing opposite to each other, and a plurality of fixing portions that fix each of the opposed frames in the solar cell module. And a gantry including. The gantry includes a contact member disposed between the plurality of fixing portions. In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from at least one of the plurality of fixing portions to the lower surface of the solar cell panel.
本発明のさらに別の態様もまた、太陽電池システムである。この太陽電池システムは、互いに反対を向いた上面と下面とを含む太陽電池パネルの周縁部にフレームが配置される太陽電池モジュールと、太陽電池モジュールにおいて対向したフレームのそれぞれを固定する複数の固定部を含む架台とを備える。太陽電池モジュールは、太陽電池パネルの下面に取りつけられる接触用部材をさらに備える。太陽電池パネルの下面から上面への方向において、接触用部材の厚みは、複数の固定部の少なくとも一方から太陽電池パネルの下面までの距離よりも小さい。
Still another embodiment of the present invention is also a solar cell system. The solar cell system includes a solar cell module in which a frame is disposed on a peripheral portion of a solar cell panel including an upper surface and a lower surface facing opposite to each other, and a plurality of fixing portions that fix each of the opposed frames in the solar cell module. And a gantry including. The solar cell module further includes a contact member attached to the lower surface of the solar cell panel. In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from at least one of the plurality of fixing portions to the lower surface of the solar cell panel.
本発明によれば、太陽電池パネルの撓みによる損傷を簡易に防止できる。
According to the present invention, damage due to bending of the solar cell panel can be easily prevented.
(実施例1)
本発明を具体的に説明する前に、概要を述べる。本発明の実施例1は、太陽電池モジュールを設置するための架台に関する。太陽電池モジュールを屋根に設置する場合、屋根の棟から軒に向かって延びる複数の架台が並んで屋根上に配置され、架台上に太陽電池モジュールが設置される。太陽電池モジュールにおける太陽電池パネルの周縁部にはフレームが配置されており、フレームが架台に固定される。太陽電池パネルが屋根の方向に撓んだ場合、太陽電池パネルが架台に接触することによって、太陽電池パネルが損傷するおそれがある。太陽電池パネルの撓みによる損傷を簡易に防止するために、本実施例に係る架台は次のように構成される。 Example 1
Before describing the present invention in detail, an outline will be described. Example 1 of this invention is related with the mount for installing a solar cell module. When the solar cell module is installed on the roof, a plurality of mounts extending from the roof ridge toward the eave are arranged side by side on the roof, and the solar cell module is installed on the mount. A frame is arranged at the peripheral edge of the solar cell panel in the solar cell module, and the frame is fixed to the gantry. When the solar cell panel bends in the direction of the roof, the solar cell panel may be damaged due to the solar cell panel coming into contact with the mount. In order to easily prevent damage due to the bending of the solar cell panel, the gantry according to the present embodiment is configured as follows.
本発明を具体的に説明する前に、概要を述べる。本発明の実施例1は、太陽電池モジュールを設置するための架台に関する。太陽電池モジュールを屋根に設置する場合、屋根の棟から軒に向かって延びる複数の架台が並んで屋根上に配置され、架台上に太陽電池モジュールが設置される。太陽電池モジュールにおける太陽電池パネルの周縁部にはフレームが配置されており、フレームが架台に固定される。太陽電池パネルが屋根の方向に撓んだ場合、太陽電池パネルが架台に接触することによって、太陽電池パネルが損傷するおそれがある。太陽電池パネルの撓みによる損傷を簡易に防止するために、本実施例に係る架台は次のように構成される。 Example 1
Before describing the present invention in detail, an outline will be described. Example 1 of this invention is related with the mount for installing a solar cell module. When the solar cell module is installed on the roof, a plurality of mounts extending from the roof ridge toward the eave are arranged side by side on the roof, and the solar cell module is installed on the mount. A frame is arranged at the peripheral edge of the solar cell panel in the solar cell module, and the frame is fixed to the gantry. When the solar cell panel bends in the direction of the roof, the solar cell panel may be damaged due to the solar cell panel coming into contact with the mount. In order to easily prevent damage due to the bending of the solar cell panel, the gantry according to the present embodiment is configured as follows.
太陽電池パネルには、接触に対する耐性が相対的に高い部分と低い部分とが含まれる。接触に対する耐性が相対的に低い部分の一例は、太陽電池パネルにおいて複数の太陽電池セルの間を接続するためのセル間配線材である。一方、太陽電池パネルにおいてセル間配線材以外の部分は、接触に対する耐性が相対的に高い。そこで、太陽電池パネルが撓んだ場合に、接触に対する耐性が相対的に高い部分に接触しうる架台中の位置に、接触用部材が配置される。このような構成により、太陽電池パネルが撓んでいない場合、太陽電池パネルと接触用部材は接触していないが、太陽電池パネルが撓んだ場合、太陽電池パネルと接触用部材が接触する。その際、接触に対する耐性が相対的に高い部分が接触用部材に接触するので、太陽電池パネルの撓みによる損傷が簡易に防止される。また、このような構成であるため、接触用部材は金属により作成可能であるので、接触用部材の経年劣化の影響が低減される。なお、以下の説明において、「平行」、「直交」は、完全な平行、直交だけではなく、誤差の範囲で平行、直交からずれている場合も含むものとする。また、「略」は、おおよその範囲で同一であるという意味である。
The solar cell panel includes a portion having relatively high resistance to contact and a portion having low resistance. An example of a portion having relatively low resistance to contact is an inter-cell wiring material for connecting a plurality of solar cells in a solar cell panel. On the other hand, portions other than the inter-cell wiring member in the solar cell panel have a relatively high resistance to contact. Then, when a solar cell panel bends, the member for contact is arrange | positioned in the position in the mount frame which can contact the part with the comparatively high tolerance with respect to a contact. With such a configuration, when the solar cell panel is not bent, the solar cell panel and the contact member are not in contact, but when the solar cell panel is bent, the solar cell panel and the contact member are in contact. In that case, since the part with comparatively high tolerance with respect to a contact contacts the member for contact, the damage by the bending of a solar cell panel is prevented easily. Moreover, since it is such a structure, since the member for a contact can be produced with a metal, the influence of aged deterioration of the member for a contact is reduced. In the following description, “parallel” and “orthogonal” include not only perfect parallel and orthogonal, but also include cases in which deviation from parallel or orthogonal is within the range of error. Further, “substantially” means that they are the same in an approximate range.
図1は、本発明の実施例1に係る太陽電池システム500の構成を示す斜視図である。太陽電池システム500において、第1架台200a、第2架台200bと総称される架台200が屋根300に配置され、架台200には、太陽電池モジュール100が設置される。太陽電池モジュール100は、短フレーム20と総称される第1短フレーム20a、第2短フレーム20b、長フレーム22と総称される第1長フレーム22a、第2長フレーム22b、太陽電池パネル30を含む。また、第1架台200aは第1接触用部材210aを含み、第2架台200bは第2接触用部材210bを含む。ここで、第1接触用部材210a、第2接触用部材210bは、接触用部材210と総称される。
FIG. 1 is a perspective view showing a configuration of a solar cell system 500 according to Embodiment 1 of the present invention. In the solar cell system 500, a gantry 200 collectively called a first gantry 200 a and a second gantry 200 b is disposed on a roof 300, and the solar cell module 100 is installed on the gantry 200. The solar cell module 100 includes a first short frame 20a, a second short frame 20b, which are collectively referred to as a short frame 20, a first long frame 22a, a second long frame 22b, which are collectively referred to as a long frame 22, and a solar cell panel 30. . The first mount 200a includes a first contact member 210a, and the second mount 200b includes a second contact member 210b. Here, the first contact member 210 a and the second contact member 210 b are collectively referred to as the contact member 210.
図1に示すように、x軸、y軸、z軸からなる直交座標系が規定される。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。太陽電池モジュール100を形成する2つの主表面であって、かつx-y平面に平行な2つの主表面のうち、z軸の正方向側に配置される主平面が受光面であり、z軸の負方向側に配置される主平面が裏面である。以下では、z軸の正方向側を「受光面側」とよび、z軸の負方向側を「裏面側」とよぶ。さらに、x-y平面は屋根300に沿っているので、y軸の負方向側が「軒側」に相当し、y軸の正方向側が「棟側」に相当する。
As shown in FIG. 1, an orthogonal coordinate system consisting of an x-axis, a y-axis, and a z-axis is defined. The x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100. The z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100. Further, the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow. Of the two main surfaces forming the solar cell module 100 and parallel to the xy plane, the main plane arranged on the positive side of the z axis is the light receiving surface, and the z axis The main plane arranged on the negative direction side is the back surface. Hereinafter, the positive direction side of the z-axis is referred to as “light-receiving surface side”, and the negative direction side of the z-axis is referred to as “back surface side”. Furthermore, since the xy plane is along the roof 300, the negative direction side of the y axis corresponds to the “eave side”, and the positive direction side of the y axis corresponds to the “ridge side”.
複数の架台200は、y軸方向に延びる四角柱形状を有し、x軸方向に並べられながら屋根300に固定される。各架台200を屋根300に固定するためには公知の技術が使用されればよいので、ここでは説明を省略する。架台200は、例えば、金属により形成される。架台200には、太陽電池モジュール100が設置される。太陽電池モジュール100を設置するための構成は後述する。また、架台200には、接触用部材210が備えられるが、接触用部材210の構成も後述する。
The plurality of mounts 200 have a quadrangular prism shape extending in the y-axis direction, and are fixed to the roof 300 while being arranged in the x-axis direction. Since a well-known technique should just be used in order to fix each mount frame 200 to the roof 300, description is abbreviate | omitted here. The gantry 200 is made of metal, for example. The solar cell module 100 is installed on the gantry 200. A configuration for installing the solar cell module 100 will be described later. The gantry 200 is provided with a contact member 210, and the configuration of the contact member 210 will also be described later.
太陽電池パネル30は、z軸方向に互いに反対を向いた受光面と裏面を含みながら、y軸方向よりもx軸方向に長い矩形状を有する。ここで、受光面が上面とよばれ、裏面が下面とよばれることもある。太陽電池パネル30のx軸方向の両端には、y軸方向に延びる短フレーム20が配置され、太陽電池パネル30のy軸方向の両端には、x軸方向に延びる長フレーム22が配置される。短フレーム20の配置と長フレーム22の配置は逆でもよい。隣接した短フレーム20と長フレーム22は互いに連結されることによって、2つの短フレーム20と2つの長フレーム22は、太陽電池パネル30の周縁部32を囲むような枠形状に配置される。ここで、長フレーム22は、太陽電池パネル30の形状に合わせて短フレーム20よりも長い。短フレーム20と長フレーム22は、押出成形によって形成されるので、延びる方向を横切る方向において同一形状の断面を有する。また、短フレーム20と長フレーム22は、太陽電池パネル30を保護するために、例えば、アルミニウム、あるいはアルミニウム合金で構成される。
The solar cell panel 30 has a rectangular shape that is longer in the x-axis direction than in the y-axis direction, including a light receiving surface and a back surface that are opposite to each other in the z-axis direction. Here, the light receiving surface may be referred to as the upper surface, and the back surface may be referred to as the lower surface. Short frames 20 extending in the y-axis direction are disposed at both ends in the x-axis direction of the solar cell panel 30, and long frames 22 extending in the x-axis direction are disposed at both ends in the y-axis direction of the solar cell panel 30. . The arrangement of the short frame 20 and the arrangement of the long frame 22 may be reversed. The adjacent short frame 20 and the long frame 22 are connected to each other, so that the two short frames 20 and the two long frames 22 are arranged in a frame shape so as to surround the peripheral edge portion 32 of the solar cell panel 30. Here, the long frame 22 is longer than the short frame 20 in accordance with the shape of the solar cell panel 30. Since the short frame 20 and the long frame 22 are formed by extrusion molding, they have a cross section of the same shape in a direction crossing the extending direction. Moreover, in order to protect the solar cell panel 30, the short frame 20 and the long frame 22 are comprised, for example with aluminum or aluminum alloy.
なお、太陽電池パネル30の裏面には、図示しない端子ボックスが取りつけられる。また、2本のケーブルのそれぞれの一端側は、端子ボックスに接続され、2本のケーブルのそれぞれの他端側には、コネクタが接続される。端子ボックス、ケーブル、コネクタは、太陽電池パネル30に電気的に接続され、太陽電池パネルから電力を取り出す。太陽電池パネル30に短フレーム20、長フレーム22、端子ボックス、ケーブル、コネクタを取りつけたものが、太陽電池モジュール100であるが、以下では、端子ボックス、ケーブル、コネクタの説明を省略する。
A terminal box (not shown) is attached to the back surface of the solar cell panel 30. One end of each of the two cables is connected to the terminal box, and a connector is connected to the other end of each of the two cables. The terminal box, cable, and connector are electrically connected to the solar cell panel 30 and take out electric power from the solar cell panel. The solar cell module 100 includes the solar cell panel 30 to which the short frame 20, the long frame 22, the terminal box, the cable, and the connector are attached. Hereinafter, the description of the terminal box, the cable, and the connector is omitted.
ここでは、太陽電池モジュール100、架台200の構成をさらに詳細に説明するために、図2(a)-(b)も使用する。図2(a)-(b)は、太陽電池システム500の構成を示すy軸に沿った断面図であり、図1のA-A’断面図である。図2(a)において、太陽電池パネル30は、z軸方向よりもy軸方向に長い形状を有し、z軸の正方向側に受光面を向け、z軸の負方向側に裏面を向けて配置される。また、太陽電池パネル30のy軸の正方向側端と、y軸の負方向側端のそれぞれが、太陽電池パネル30のx-y平面における周縁部32の一部に相当する。
Here, FIGS. 2A to 2B are also used to describe the configuration of the solar cell module 100 and the gantry 200 in more detail. 2A and 2B are cross-sectional views along the y-axis showing the configuration of the solar cell system 500, and are cross-sectional views taken along the line A-A 'of FIG. 2A, the solar cell panel 30 has a shape that is longer in the y-axis direction than the z-axis direction, with the light-receiving surface facing the positive direction side of the z-axis and the back surface facing the negative direction side of the z-axis. Arranged. Further, each of the positive side end of the y axis of the solar cell panel 30 and the negative side end of the y axis corresponds to a part of the peripheral portion 32 in the xy plane of the solar cell panel 30.
第1長フレーム22aと第2長フレーム22bとは、太陽電池モジュール100において対向したフレームであり、左右対称ではあるが同様に構成される。第1長フレーム22aは太陽電池パネル30のy軸の正方向側に配置されており、第1長フレーム22aには、太陽電池パネル30のy軸の正方向側の周縁部32が嵌め込まれる。また、第2長フレーム22bは太陽電池パネル30のy軸の負方向側に配置されており、第2長フレーム22bには、太陽電池パネル30のy軸の負方向側の周縁部32が嵌め込まれる。なお、太陽電池パネル30は、ブチル系の封止材またはシリコーン系の接着剤などによって長フレーム22に固定される。
The first long frame 22a and the second long frame 22b are opposed frames in the solar cell module 100, and are configured in the same manner although they are bilaterally symmetric. The 1st long frame 22a is arrange | positioned at the positive direction side of the y-axis of the solar cell panel 30, The peripheral part 32 of the positive direction side of the y-axis of the solar cell panel 30 is engage | inserted by the 1st long frame 22a. The second long frame 22b is disposed on the negative direction side of the y axis of the solar cell panel 30, and the peripheral portion 32 on the negative direction side of the y axis of the solar cell panel 30 is fitted into the second long frame 22b. It is. The solar cell panel 30 is fixed to the long frame 22 with a butyl sealant or a silicone adhesive.
第1長フレーム22aと第2長フレーム22bは、太陽電池パネル30を嵌め込んだ部分からz軸の負方向に向かって、略矩形状の断面に形成される。また、第1長フレーム22aは、z軸の負方向側端、つまり下端において、y軸の正方向に突出したフランジ40を有する。一方、第2長フレーム22bは、z軸の負方向側端において、y軸の負方向に突出したフランジ40を有する。このように、フランジ40は、長フレーム22の下端から、太陽電池パネル30とは反対向きに突出する。
The first long frame 22a and the second long frame 22b are formed in a substantially rectangular cross section from the portion into which the solar cell panel 30 is fitted toward the negative direction of the z axis. The first long frame 22a has a flange 40 that protrudes in the positive direction of the y axis at the negative side end, that is, the lower end of the z axis. On the other hand, the second long frame 22b has a flange 40 that protrudes in the negative direction of the y-axis at the end in the negative direction of the z-axis. Thus, the flange 40 protrudes from the lower end of the long frame 22 in the opposite direction to the solar cell panel 30.
図2(a)において第1架台200aは、y軸方向に伸びる。第1架台200aのz軸の正方向側の面には、第1長フレーム22aと第2長フレーム22bが配置される。また、第1架台200aは、第1長フレーム22aのフランジ40よりもy軸の正方向側に第1棟側固定部204aを備える。第1棟側固定部204aは、第1長フレーム22aを固定するための穴部であり、フランジナット44を結合可能に形成される。第1長フレーム22aのフランジ40が、押え具42およびフランジナット44によって、z軸の正方向側から負方向側に押さえつけられることによって、第1長フレーム22aは第1架台200aに固定される。また、第1架台200aは、第2長フレーム22bのフランジ40よりもy軸の負方向側に第1軒側固定部202aを備える。第1軒側固定部202aも、第1棟側固定部204aと同様に、フランジナット44を結合可能に形成されており、第2長フレーム22bを第1架台200aに固定する。
2A, the first mount 200a extends in the y-axis direction. A first long frame 22a and a second long frame 22b are disposed on the surface of the first gantry 200a on the positive side of the z axis. The first mount 200a includes a first ridge-side fixing portion 204a on the positive side of the y-axis with respect to the flange 40 of the first long frame 22a. The first ridge-side fixing portion 204a is a hole for fixing the first long frame 22a, and is formed so that the flange nut 44 can be coupled thereto. The flange 40 of the first long frame 22a is pressed from the positive side of the z axis to the negative side by the presser 42 and the flange nut 44, whereby the first long frame 22a is fixed to the first base 200a. In addition, the first mount 200a includes a first eaves-side fixing portion 202a on the negative direction side of the y-axis with respect to the flange 40 of the second long frame 22b. Similarly to the first ridge-side fixing portion 204a, the first eave-side fixing portion 202a is formed so that the flange nut 44 can be coupled, and fixes the second long frame 22b to the first gantry 200a.
なお、第1長フレーム22aのy軸の正方向側には、第3長フレーム22cが配置される。第3長フレーム22cは、これまで説明した太陽電池モジュール100のy軸の正方向側に配置される別の太陽電池モジュール100におけるフレームである。前述の押え具42、フランジナット44は、第1長フレーム22aのフランジ40とともに、第3長フレーム22cのフランジ40も押さえつける。第2長フレーム22bのy軸の負方向側に配置される第4長フレーム22dも同様である。
Note that the third long frame 22c is disposed on the positive side of the first long frame 22a in the y-axis direction. The third long frame 22c is a frame in another solar cell module 100 disposed on the positive direction side of the y-axis of the solar cell module 100 described so far. The above-described presser 42 and flange nut 44 press the flange 40 of the third long frame 22c together with the flange 40 of the first long frame 22a. The same applies to the fourth long frame 22d arranged on the negative direction side of the y-axis of the second long frame 22b.
図1に示すように、第1架台200aに第1軒側固定部202aが備えられ、第2架台200bに第2軒側固定部202bが備えられる。第1軒側固定部202a、第2軒側固定部202bは軒側固定部202と総称される。図1には第1棟側固定部204a、第2棟側固定部204bが示されていないが、第1架台200aに第1棟側固定部204aが備えられ、第2架台200bに第2棟側固定部204bが備えられる。第1棟側固定部204a、第2棟側固定部204bは、棟側固定部204と総称される。さらに、軒側固定部202、棟側固定部204は、同様の構成を有しており、単に「固定部」と総称されてもよい。ここで、軒側固定部202、棟側固定部204の構成は、図2(a)に示されるような押え具42、フランジナット44によってフランジ40を押さえつけるような構成に限定されず、公知の技術が使用されてもよい。
As shown in FIG. 1, the first base 200a is provided with a first eaves side fixing portion 202a, and the second base 200b is provided with a second eaves side fixing portion 202b. The first eaves side fixing part 202a and the second eaves side fixing part 202b are collectively referred to as the eaves side fixing part 202. FIG. 1 does not show the first ridge side fixing portion 204a and the second ridge side fixing portion 204b, but the first gantry side fixing portion 204a is provided on the first gantry 200a, and the second ridge side 200b is provided with the second ridge. A side fixing portion 204b is provided. The first building side fixing unit 204a and the second building side fixing unit 204b are collectively referred to as the building side fixing unit 204. Furthermore, the eaves-side fixing unit 202 and the ridge-side fixing unit 204 have the same configuration, and may be collectively referred to simply as “fixing unit”. Here, the configuration of the eaves side fixing portion 202 and the ridge side fixing portion 204 is not limited to the configuration in which the flange 40 is pressed by the presser 42 and the flange nut 44 as shown in FIG. Techniques may be used.
図2(a)に示すように、第1軒側固定部202aと第1棟側固定部204aとの間において、第1架台200aのz軸の正方向側の面から、太陽電池パネル30に向かうように第1接触用部材210aが配置される。第1接触用部材210aは、例えば金属により形成される。また、第1接触用部材210aのz軸方向の厚みは、「A」と示される。一方、軒側固定部202あるいは棟側固定部204から太陽電池パネル30の裏面までのz軸方向の距離は、「B」と示される。ここでは、図示のごとく、「A」<「B」となっている。
As shown to Fig.2 (a), from the surface of the positive direction side of the z-axis of the 1st mount 200a between the 1st eaves side fixing | fixed part 202a and the 1st building side fixing | fixed part 204a, it is to the solar cell panel 30. The first contact member 210a is arranged to face. The first contact member 210a is made of metal, for example. The thickness of the first contact member 210a in the z-axis direction is indicated as “A”. On the other hand, the distance in the z-axis direction from the eaves side fixing unit 202 or the ridge side fixing unit 204 to the back surface of the solar cell panel 30 is indicated as “B”. Here, as illustrated, “A” <“B”.
図2(b)は、図2(a)のように示した太陽電池モジュール100において、太陽電池パネル30のy軸方向の中央部分が、z軸の負方向側に移動するように、太陽電池パネル30が撓んだ場合の構成を示す断面図である。このような場合、太陽電池パネル30の一部が、第1接触用部材210aに接触する。一方、太陽電池パネル30の一部以外の部分は、第1接触用部材210aに接触しない。このような太陽電池パネル30の一部について、図3を使用してさらに説明する。
FIG. 2B shows a solar cell in the solar cell module 100 shown in FIG. 2A so that the central portion of the solar cell panel 30 in the y-axis direction moves to the negative direction side of the z-axis. It is sectional drawing which shows a structure when the panel 30 bends. In such a case, a part of the solar cell panel 30 is in contact with the first contact member 210a. On the other hand, portions other than a part of the solar cell panel 30 do not contact the first contact member 210a. A part of such a solar cell panel 30 will be further described with reference to FIG.
図3は、太陽電池モジュール100の構成を示す平面図であり、これは太陽電池モジュール100を受光面側から見た場合の構成を示す。太陽電池モジュール100は、前述のごとく、短フレーム20、長フレーム22、太陽電池パネル30を含む。また、太陽電池パネル30は、太陽電池セル10と総称される第11太陽電池セル10aa、・・・、第46太陽電池セル10df、セル間配線材14、群間配線材16、群端配線材18を含む。さらに、太陽電池モジュール100のz軸の負方向側には、架台200が配置される。
FIG. 3 is a plan view showing the configuration of the solar cell module 100, which shows the configuration when the solar cell module 100 is viewed from the light receiving surface side. As described above, the solar cell module 100 includes the short frame 20, the long frame 22, and the solar cell panel 30. In addition, the solar battery panel 30 includes the eleventh solar battery cells 10aa,..., The 46th solar battery cell 10df, the inter-cell wiring member 14, the inter-group wiring member 16, and the group end wiring member, which are collectively referred to as the solar battery cell 10. 18 is included. Further, the gantry 200 is disposed on the negative side of the z-axis of the solar cell module 100.
複数の太陽電池セル10のそれぞれは、入射する光を吸収して光起電力を発生する。特に、太陽電池セル10は、受光面において吸収した光から起電力を発生するとともに、裏面において吸収した光からも光起電力を発生する。太陽電池セル10は、例えば、結晶系シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル10の構造は、特に限定されないが、ここでは、一例として、結晶シリコンとアモルファスシリコンとが積層されているとする。また、太陽電池セル10は、x-y平面において、四角形の形状を有するが、その他の形状、例えば、八角形の形状を有してもよい。ここでは省略しているが、各太陽電池セル10の受光面および裏面には、互いに平行にy軸方向に延びる複数のフィンガー電極と、複数のフィンガー電極に直交するようにx軸方向に延びる複数のバスバー電極とが備えられる。バスバー電極は、複数のフィンガー電極のそれぞれを接続する。
Each of the plurality of solar cells 10 absorbs incident light and generates photovoltaic power. In particular, the solar cell 10 generates an electromotive force from the light absorbed on the light receiving surface and also generates a photoelectromotive force from the light absorbed on the back surface. The solar battery cell 10 is made of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP). The structure of the solar battery cell 10 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked. The solar battery cell 10 has a quadrangular shape in the xy plane, but may have another shape, for example, an octagonal shape. Although omitted here, a plurality of finger electrodes extending in the y-axis direction parallel to each other and a plurality extending in the x-axis direction so as to be orthogonal to the plurality of finger electrodes are provided on the light receiving surface and the back surface of each solar cell 10. Bus bar electrodes. The bus bar electrode connects each of the plurality of finger electrodes.
複数の太陽電池セル10は、x-y平面上にマトリックス状に配列される。ここでは、x軸方向に6つの太陽電池セル10が並べられる。x軸方向に並んで配置される6つの太陽電池セル10は、セル間配線材14によって直列に接続され、1つの太陽電池群12が形成される。太陽電池群12は、ストリングともいえる。例えば、第11太陽電池セル10aa、第12太陽電池セル10ab、・・・、第16太陽電池セル10afが接続されることによって、第1太陽電池群12aが形成される。また、第2太陽電池群12bから第4太陽電池群12dも同様に形成される。その結果、4つの太陽電池群12がy軸方向に平行に並べられる。このように、x軸方向に並べられる太陽電池セル10の数は、y軸方向に並べられる太陽電池セル10の数よりも多い。なお、太陽電池群12に含まれる太陽電池セル10の数は「6」に限定されず、太陽電池群12の数は「4」に限定されない。
The plurality of solar cells 10 are arranged in a matrix on the xy plane. Here, six solar cells 10 are arranged in the x-axis direction. The six solar cells 10 arranged side by side in the x-axis direction are connected in series by the inter-cell wiring material 14 to form one solar cell group 12. The solar cell group 12 can also be said to be a string. For example, the first solar cell group 12a is formed by connecting the eleventh solar cell 10aa, the twelfth solar cell 10ab, ..., the sixteenth solar cell 10af. The second solar cell group 12b to the fourth solar cell group 12d are formed in the same manner. As a result, the four solar cell groups 12 are arranged in parallel in the y-axis direction. Thus, the number of the photovoltaic cells 10 arranged in the x-axis direction is larger than the number of the photovoltaic cells 10 arranged in the y-axis direction. The number of solar battery cells 10 included in the solar battery group 12 is not limited to “6”, and the number of solar battery groups 12 is not limited to “4”.
太陽電池群12を形成するために、セル間配線材14は、隣接した太陽電池セル10のうちの一方の受光面側のバスバー電極と、他方の裏面側のバスバー電極とを接続する。例えば、隣接した第11太陽電池セル10aaと第12太陽電池セル10abとを接続するための3つのセル間配線材14は、第11太陽電池セル10aaの裏面側のバスバー電極と第12太陽電池セル10abの受光面側のバスバー電極とを電気的に接続する。セル間配線材14とバスバー電極の接続には樹脂が使用される。この樹脂は導電性、非導電性いずれでもよい。後者の場合はセル間配線材14とバスバー電極とが直接接触し、その周囲に設けられた樹脂によってセル間配線材14とバスバー電極とが機械的に接続されることで電気的に接続される。また、樹脂ではなく半田でもよい。
In order to form the solar cell group 12, the inter-cell wiring member 14 connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 10 and the bus bar electrode on the other back surface side. For example, three inter-cell wiring members 14 for connecting adjacent eleventh solar cells 10aa and twelfth solar cells 10ab are the bus bar electrodes on the back side of the eleventh solar cells 10aa and the twelfth solar cells. The bus bar electrode on the light receiving surface side of 10ab is electrically connected. Resin is used for connection between the inter-cell wiring member 14 and the bus bar electrode. This resin may be either conductive or non-conductive. In the latter case, the inter-cell wiring member 14 and the bus bar electrode are in direct contact with each other, and the inter-cell wiring member 14 and the bus bar electrode are mechanically connected to each other by a resin provided around the inter-cell wiring member 14 and the bus bar electrode. . Also, solder may be used instead of resin.
群間配線材16は、y軸方向に延びて、互いに隣接する2つの太陽電池群12を電気的に接続する。例えば、第1太陽電池群12aのx軸の正方向側端に位置する第16太陽電池セル10afと、第2太陽電池群12bのx軸の正方向側端に位置する第26太陽電池セル10bfは、群間配線材16によって電気的に接続される。さらに、第2太陽電池群12bと第3太陽電池群12cは、x軸の負方向側において群間配線材16によって電気的に接続されるとともに、第3太陽電池群12cと第4太陽電池群12dは、x軸の正方向側において群間配線材16によって電気的に接続される。その結果、複数の太陽電池群12は、群間配線材16によって直列に接続される。
The inter-group wiring member 16 extends in the y-axis direction and electrically connects two solar cell groups 12 adjacent to each other. For example, the sixteenth solar cell 10af located at the positive end of the first solar cell group 12a on the x-axis and the twenty-sixth solar cell 10bf located at the positive end of the second solar cell group 12b on the x-axis. Are electrically connected by the inter-group wiring member 16. Further, the second solar cell group 12b and the third solar cell group 12c are electrically connected by the inter-group wiring member 16 on the negative direction side of the x axis, and the third solar cell group 12c and the fourth solar cell group. 12d is electrically connected by the inter-group wiring member 16 on the positive direction side of the x-axis. As a result, the plurality of solar cell groups 12 are connected in series by the inter-group wiring member 16.
第1太陽電池群12aのx軸の負方向側端における第11太陽電池セル10aaには、群間配線材16が接続されておらず、その代わりに群端配線材18が接続される。群端配線材18には、図示しない取出し配線材が接続される。取出し配線材は、複数の太陽電池セル10において発電した電力を太陽電池モジュール100外に取り出すための配線材である。なお、群端配線材18は、第4太陽電池群12dのx軸の負方向側端における第41太陽電池セル10daにも接続される。
The inter-group wiring member 16 is not connected to the eleventh solar cell 10aa at the end in the negative x-axis direction of the first solar cell group 12a, and the group end wiring member 18 is connected instead. A lead-out wiring material (not shown) is connected to the group end wiring material 18. The extraction wiring material is a wiring material for extracting the electric power generated in the plurality of solar cells 10 to the outside of the solar cell module 100. The group end wiring member 18 is also connected to the forty-first solar cell 10da at the negative end on the x-axis side of the fourth solar cell group 12d.
このような構成の太陽電池パネル30に対して、第1接触用部材210aは、第21太陽電池セル10ba、第22太陽電池セル10bb、第31太陽電池セル10ca、第32太陽電池セル10cbによって囲まれた部分に対応した位置に配置される。この部分は、太陽電池パネル30が本架台200の方向、つまりz軸の負方向に撓んだ場合に、第1接触用部材210aに接触する部分である。また、この部分は、太陽電池パネル30においてセル間配線材14を避けた部分であるといえる。さらに、この部分は、太陽電池パネル30において群間配線材16を避けた部分であるともいえる。一般的に、セル間配線材14および群間配線材16は、接触により損傷しやすいので、これらを避けた部分は、接触に対する耐性が相対的に高い部分である。つまり、第1接触用部材210aは、太陽電池パネル30が撓んだ場合に、太陽電池パネル30の裏面のうち、接触に対する耐性が相対的に高い部分に接触可能な位置に配置される。
With respect to the solar cell panel 30 having such a configuration, the first contact member 210a is surrounded by the 21st solar cell 10ba, the 22nd solar cell 10bb, the 31st solar cell 10ca, and the 32nd solar cell 10cb. It is arranged at a position corresponding to the portion. This portion is a portion that contacts the first contact member 210a when the solar cell panel 30 is bent in the direction of the main frame 200, that is, in the negative direction of the z-axis. Further, it can be said that this portion is a portion where the inter-cell wiring member 14 is avoided in the solar battery panel 30. Further, it can be said that this portion is a portion where the inter-group wiring member 16 is avoided in the solar cell panel 30. In general, since the inter-cell wiring member 14 and the inter-group wiring member 16 are easily damaged by contact, the portion avoiding them is a portion having relatively high resistance to contact. That is, when the solar cell panel 30 is bent, the first contact member 210a is disposed at a position where the first contact member 210a can contact a portion of the back surface of the solar cell panel 30 that is relatively resistant to contact.
以下では、図3のように示された太陽電池パネル30のz軸方向の構成、つまり厚さ方向の構成を説明する。太陽電池パネル30の受光面側には透光性基板が配置され、裏面側には裏面保護部材であるバックシートが配置される。また、透光性基板とバックシートとの間には、封止部材が配置されており、封止部材によって複数の太陽電池セル10が封止されている。例えば、透光性基板には、ガラス基板、透光性プラスチック等が使用され、バックシートには、PET(ポリエチレンテレフタラート)等の樹脂フィルム、Al箔を樹脂フィルムで挟んだ構造を有する積層フィルムが使用される。また、封止部材には、ポリオレフィン、EVA(エチレンビニルアセテート)、PVB(ポリビニルブチラール)、ポリイミド等の樹脂フィルムのような熱可塑性樹脂が使用される。
Hereinafter, the configuration in the z-axis direction of the solar cell panel 30 shown in FIG. 3, that is, the configuration in the thickness direction will be described. A translucent substrate is disposed on the light receiving surface side of the solar cell panel 30, and a back sheet as a back surface protection member is disposed on the back surface side. Moreover, the sealing member is arrange | positioned between the translucent board | substrate and the back sheet, and the several photovoltaic cell 10 is sealed with the sealing member. For example, a glass substrate, a translucent plastic, etc. are used for a translucent substrate, a back film is a resin film such as PET (polyethylene terephthalate), and a laminated film having a structure in which an Al foil is sandwiched between resin films. Is used. For the sealing member, a thermoplastic resin such as a resin film such as polyolefin, EVA (ethylene vinyl acetate), PVB (polyvinyl butyral), or polyimide is used.
本発明の実施例によれば、太陽電池モジュール100を設置するための架台200に接触用部材210を配置させるので、太陽電池パネル30が架台200の方に撓んでも、太陽電池パネル30と接触用部材210とを接触させることができる。また、太陽電池パネル30と接触用部材210とが接触されるので、太陽電池パネル30において接触用部材210に接触する部分以外の部分の接触を防止できる。また、太陽電池パネル30の裏面から受光面への方向において、接触用部材210の厚みは、軒側固定部202と棟側固定部204の少なくとも一方から太陽電池パネル30の下面までの距離よりも小さいので、通常時の接触を防止できる。
According to the embodiment of the present invention, since the contact member 210 is disposed on the gantry 200 for installing the solar cell module 100, even if the solar cell panel 30 is bent toward the gantry 200, the solar cell panel 30 is in contact with the solar cell panel 30. The working member 210 can be brought into contact. Moreover, since the solar cell panel 30 and the contact member 210 are contacted, contact of parts other than the part which contacts the contact member 210 in the solar cell panel 30 can be prevented. Further, in the direction from the back surface of the solar cell panel 30 to the light receiving surface, the thickness of the contact member 210 is greater than the distance from at least one of the eaves side fixing portion 202 and the ridge side fixing portion 204 to the lower surface of the solar cell panel 30. Because it is small, it can prevent normal contact.
また、通常の接触が防止されるので、接触用部材210に金属を使用できる。また、接触用部材210に金属が使用されるので、接触用部材210の劣化を抑制できる。また、接触用部材210の劣化が抑制されるので、接触用部材210の定期的な交換を不要にできる。また、接触用部材210は架台200に配置されるので、太陽電池モジュール100の構成の変更を不要にできる。また、接触用部材210を架台200に配置するだけなので、太陽電池パネル30の撓みによる損傷を簡易に防止できる。
Further, since normal contact is prevented, metal can be used for the contact member 210. Moreover, since a metal is used for the contact member 210, deterioration of the contact member 210 can be suppressed. In addition, since the deterioration of the contact member 210 is suppressed, periodic replacement of the contact member 210 can be eliminated. In addition, since the contact member 210 is disposed on the gantry 200, the configuration of the solar cell module 100 can be eliminated. In addition, since the contact member 210 is merely disposed on the gantry 200, damage due to the bending of the solar cell panel 30 can be easily prevented.
また、太陽電池パネル30が架台200の方向に撓んだ場合に、太陽電池パネル30の裏面において、接触に対する耐性が相対的に高い部分に接触可能な位置に接触用部材210が配置されるので、接触に対する耐性が相対的に低い部分の接触を防止できる。また、太陽電池パネル30において、セル間配線材14を避けた部分に接触可能な位置に接触用部材210が配置されるので、セル間配線材14での接触を防止できる。また、太陽電池パネル30において、群間配線材16を避けた部分に接触可能な位置に接触用部材210が配置されるので、群間配線材16での接触を防止できる。
In addition, when the solar cell panel 30 is bent in the direction of the gantry 200, the contact member 210 is disposed on the back surface of the solar cell panel 30 at a position where it can come into contact with a portion having relatively high resistance to contact. , It is possible to prevent contact of a portion having relatively low resistance to contact. Moreover, in the solar cell panel 30, since the contact member 210 is disposed at a position where it can come into contact with a portion avoiding the inter-cell wiring member 14, contact with the inter-cell wiring member 14 can be prevented. Further, in the solar cell panel 30, the contact member 210 is disposed at a position where it can come into contact with a portion that avoids the inter-group wiring member 16, so that contact with the inter-group wiring member 16 can be prevented.
本実施例の概要は、次の通りである。本発明のある態様の架台200は、互いに反対を向いた上面と下面とを含む太陽電池パネル30の周縁部32に長フレーム22が配置される太陽電池モジュール100を設置するための架台200であって、太陽電池モジュール100において対向した長フレーム22のそれぞれを固定する複数の軒側固定部202、棟側固定部204と、複数の軒側固定部202、棟側固定部204の間に配置される接触用部材210とを備える。太陽電池パネル30の下面から上面への方向において、接触用部材210の厚みは、複数の軒側固定部202、棟側固定部204の少なくとも一方から太陽電池パネル30の下面までの距離よりも小さい。
The outline of this example is as follows. The gantry 200 according to an aspect of the present invention is a gantry 200 for installing the solar cell module 100 in which the long frame 22 is disposed on the peripheral edge portion 32 of the solar cell panel 30 including an upper surface and a lower surface facing each other. The solar cell module 100 is arranged between the plurality of eaves-side fixing portions 202 and the ridge-side fixing portion 204 that fix each of the opposed long frames 22, and between the plurality of eaves-side fixing portions 202 and the ridge-side fixing portion 204. The contact member 210 is provided. In the direction from the lower surface to the upper surface of the solar cell panel 30, the thickness of the contact member 210 is smaller than the distance from at least one of the plurality of eaves side fixing portions 202 and the ridge side fixing portion 204 to the lower surface of the solar cell panel 30. .
接触用部材210は、太陽電池パネル30が本架台200の方向に撓んだ場合に、太陽電池パネル30の下面のうち、接触に対する耐性が相対的に高い部分に接触可能な位置に配置されてもよい。
When the solar cell panel 30 bends in the direction of the main frame 200, the contact member 210 is disposed at a position where it can contact a portion of the lower surface of the solar cell panel 30 that is relatively resistant to contact. Also good.
接触用部材210は、太陽電池パネル30において、太陽電池セル10間を接続するためのセル間配線材14を避けた部分に接触可能な位置に配置されてもよい。
The contact member 210 may be disposed at a position in the solar battery panel 30 that can contact a portion that avoids the inter-cell wiring member 14 for connecting the solar battery cells 10.
接触用部材210は、太陽電池パネル30において、太陽電池セル10のストリング間を接続するための群間配線材16を避けた部分に接触可能な位置に配置されてもよい。
The contact member 210 may be disposed at a position in the solar battery panel 30 that can contact a portion avoiding the inter-group wiring member 16 for connecting the strings of the solar battery cells 10.
本発明の別の態様は、太陽電池システム500である。この太陽電池システム500は、互いに反対を向いた上面と下面とを含む太陽電池パネル30の周縁部32に長フレーム22が配置される太陽電池モジュール100と、太陽電池モジュール100において対向した長フレーム22のそれぞれを固定する複数の軒側固定部202、棟側固定部204を含む架台200とを備える。架台200は、複数の軒側固定部202、棟側固定部204の間に配置される接触用部材210とを備える。太陽電池パネル30の下面から上面への方向において、接触用部材210の厚みは、複数の軒側固定部202、棟側固定部204の少なくとも一方から太陽電池パネル30の下面までの距離よりも小さい。
Another aspect of the present invention is a solar cell system 500. This solar cell system 500 includes a solar cell module 100 in which a long frame 22 is disposed at a peripheral edge portion 32 of a solar cell panel 30 including an upper surface and a lower surface that are opposite to each other, and a long frame 22 that faces the solar cell module 100. A plurality of eaves-side fixing portions 202 that fix each of the two, and a gantry 200 including a ridge-side fixing portion 204. The gantry 200 includes a plurality of eaves-side fixing portions 202 and a contact member 210 disposed between the ridge-side fixing portions 204. In the direction from the lower surface to the upper surface of the solar cell panel 30, the thickness of the contact member 210 is smaller than the distance from at least one of the plurality of eaves side fixing portions 202 and the ridge side fixing portion 204 to the lower surface of the solar cell panel 30. .
(実施例2)
次に、実施例2を説明する。実施例2は、架台に設置される太陽電池モジュールに関する。実施例1と同様に、太陽電池パネルが屋根の方向に撓んだ場合、太陽電池パネルが架台に接触することによって、太陽電池パネルが損傷するおそれがある。太陽電池パネルの損傷を防止するために、実施例1では、架台に接触用部材が配置される。一方、実施例2では、太陽電池パネル30の裏面に接触用部材が取りつけられる。ここでは、実施例1との差異を中心に説明する。 (Example 2)
Next, Example 2 will be described. Example 2 is related with the solar cell module installed in a mount. Similarly to Example 1, when the solar cell panel is bent in the direction of the roof, the solar cell panel may be damaged by contacting the gantry. In order to prevent damage to the solar cell panel, in Example 1, a contact member is disposed on the gantry. On the other hand, in Example 2, the contact member is attached to the back surface of thesolar cell panel 30. Here, it demonstrates centering on the difference with Example 1. FIG.
次に、実施例2を説明する。実施例2は、架台に設置される太陽電池モジュールに関する。実施例1と同様に、太陽電池パネルが屋根の方向に撓んだ場合、太陽電池パネルが架台に接触することによって、太陽電池パネルが損傷するおそれがある。太陽電池パネルの損傷を防止するために、実施例1では、架台に接触用部材が配置される。一方、実施例2では、太陽電池パネル30の裏面に接触用部材が取りつけられる。ここでは、実施例1との差異を中心に説明する。 (Example 2)
Next, Example 2 will be described. Example 2 is related with the solar cell module installed in a mount. Similarly to Example 1, when the solar cell panel is bent in the direction of the roof, the solar cell panel may be damaged by contacting the gantry. In order to prevent damage to the solar cell panel, in Example 1, a contact member is disposed on the gantry. On the other hand, in Example 2, the contact member is attached to the back surface of the
図4は、本発明の実施例2に係る太陽電池システム500の構成を示す斜視図である。これは図1と同様に示されるが、架台200は接触用部材210を含まず、太陽電池パネル30は接触用部材34を含む。太陽電池パネル30の裏面には、接触用部材34が取りつけられる。接触用部材34は、太陽電池パネル30の下面において、x軸方向がy軸方向よりも長い矩形状を有する。このような接触用部材34の形状は、複数の架台200が並べられる方向に長いともいえる。
FIG. 4 is a perspective view showing a configuration of a solar cell system 500 according to Embodiment 2 of the present invention. Although this is shown in the same manner as FIG. 1, the gantry 200 does not include the contact member 210, and the solar cell panel 30 includes the contact member 34. A contact member 34 is attached to the back surface of the solar cell panel 30. The contact member 34 has a rectangular shape in which the x-axis direction is longer than the y-axis direction on the lower surface of the solar cell panel 30. It can be said that the shape of the contact member 34 is long in the direction in which the plurality of mounts 200 are arranged.
ここでは、太陽電池モジュール100、架台200の構成をさらに詳細に説明するために、図5(a)-(b)も使用する。図5(a)-(b)は、太陽電池システム500の構成を示すy軸に沿った断面図であり、図4のB-B’断面図である。図5(a)に示すように、太陽電池パネル30の裏面側において、架台200に向かうように接触用部材34が配置される。接触用部材34は、例えば金属により形成される。また、接触用部材34のz軸方向の厚みは、「C」と示される。一方、軒側固定部202あるいは棟側固定部204から太陽電池パネル30の裏面までのz軸方向の距離は、「D」と示される。これは、長フレーム22の下端から太陽電池パネル30の裏面までのz軸方向の距離に相当する。ここでは、図示のごとく、「C」<「D」となっている。
Here, FIGS. 5A to 5B are also used to describe the configuration of the solar cell module 100 and the gantry 200 in more detail. FIGS. 5A and 5B are cross-sectional views along the y-axis showing the configuration of the solar cell system 500, and are cross-sectional views taken along the line B-B ′ of FIG. As shown in FIG. 5A, the contact member 34 is disposed on the back side of the solar cell panel 30 so as to face the gantry 200. The contact member 34 is made of, for example, metal. The thickness of the contact member 34 in the z-axis direction is indicated as “C”. On the other hand, the distance in the z-axis direction from the eaves side fixing part 202 or the ridge side fixing part 204 to the back surface of the solar cell panel 30 is indicated as “D”. This corresponds to the distance in the z-axis direction from the lower end of the long frame 22 to the back surface of the solar cell panel 30. Here, as illustrated, “C” <“D”.
図5(b)は、図5(a)のように示した太陽電池モジュール100において、太陽電池パネル30のy軸方向の中央部分が、z軸の負方向側に移動するように、太陽電池パネル30が撓んだ場合の構成を示す断面図である。このような場合、太陽電池パネル30における接触用部材34が、第1架台200aに接触する。一方、太陽電池パネル30における接触用部材34以外の部分は、第1架台200aに接触しない。このような太陽電池パネル30における接触用部材34が配置される位置について、図6を使用してさらに説明する。
FIG. 5B shows a solar cell in the solar cell module 100 shown in FIG. 5A such that the central portion in the y-axis direction of the solar cell panel 30 moves to the negative direction side of the z-axis. It is sectional drawing which shows a structure when the panel 30 bends. In such a case, the contact member 34 in the solar cell panel 30 contacts the first mount 200a. On the other hand, parts other than the contact member 34 in the solar cell panel 30 do not contact the first mount 200a. The position where the contact member 34 in the solar cell panel 30 is arranged will be further described with reference to FIG.
図6は、太陽電池モジュール100の構成を示す平面図である。これは図3と同様に示されるが、架台200は接触用部材210を含まず、太陽電池パネル30は接触用部材34を含む。接触用部材34は、第2太陽電池群12bと第3太陽電池群12cとに挟まれた部分に取りつけられる。この部分は、太陽電池パネル30が本架台200の方向、つまりz軸の負方向に撓んだ場合に、第1架台200aに接触する部分である。また、この部分は、太陽電池パネル30においてセル間配線材14を避けた部分であるといえる。さらに、この部分は、太陽電池パネル30において群間配線材16を避けた部分であるともいえる。前述のごとく、セル間配線材14および群間配線材16は、接触により損傷しやすいので、これらを避けた部分は、接触に対する耐性が相対的に高い部分である。つまり、接触用部材34は、太陽電池パネル30が撓んだ場合に、太陽電池パネル30の裏面のうち、接触に対する耐性が相対的に高い部分に取りつけられる。
FIG. 6 is a plan view showing the configuration of the solar cell module 100. This is shown in the same manner as FIG. 3, but the gantry 200 does not include the contact member 210, and the solar cell panel 30 includes the contact member 34. The contact member 34 is attached to a portion sandwiched between the second solar cell group 12b and the third solar cell group 12c. This part is a part which contacts the 1st mount 200a, when the solar cell panel 30 bends in the direction of the main mount 200, ie, the negative direction of the z-axis. Further, it can be said that this portion is a portion where the inter-cell wiring member 14 is avoided in the solar battery panel 30. Further, it can be said that this portion is a portion where the inter-group wiring member 16 is avoided in the solar cell panel 30. As described above, the inter-cell wiring member 14 and the inter-group wiring member 16 are liable to be damaged by contact. Therefore, a portion avoiding these is a portion having relatively high resistance to contact. That is, the contact member 34 is attached to a portion of the back surface of the solar cell panel 30 that is relatively resistant to contact when the solar cell panel 30 is bent.
以下では、太陽電池パネル30の裏面における接触用部材34のさまざまな配置を説明する。図7は、太陽電池モジュール100の別の構成を示す平面図であり、図6と同様に示される。ここでは、これまでと異なり、セル間配線材14よりも太陽電池セル10自体が、接触により損傷しやすい場合を想定する。そのため、セル間配線材14が配置された部分が、接触に対する耐性が相対的に高い部分である。これを反映して、第1接触用部材34aは、第2太陽電池群12bにおけるy軸方向の中央部分において、セル間配線材14と重なるように取りつけられる。また、第2接触用部材34bは、第3太陽電池群12cにおけるy軸方向の中央部分において、セル間配線材14と重なるように取りつけられる。
Hereinafter, various arrangements of the contact member 34 on the back surface of the solar cell panel 30 will be described. FIG. 7 is a plan view showing another configuration of the solar cell module 100, and is shown in the same manner as FIG. Here, unlike the past, it is assumed that the solar cell 10 itself is more easily damaged by contact than the inter-cell wiring member 14. Therefore, the portion where the inter-cell wiring member 14 is disposed is a portion having a relatively high resistance to contact. Reflecting this, the first contact member 34a is attached so as to overlap the inter-cell wiring member 14 in the central portion in the y-axis direction of the second solar cell group 12b. Further, the second contact member 34b is attached so as to overlap the inter-cell wiring member 14 at the center portion in the y-axis direction of the third solar cell group 12c.
図8(a)-(b)は、太陽電池モジュール100の構成を示す断面図である。図8(a)は、セル間配線材14の長さを短くするための構成である。太陽電池パネル30は、第22太陽電池セル10bb、第23太陽電池セル10bc、セル間配線材14、第1保護部材50、第1封止部材52、第2封止部材54、第2保護部材56、バスバー電極58を含む。第1封止部材52、第2保護部材56は、前述の透光性基板、バックシートにそれぞれ対応する。また、第1封止部材52、第2封止部材54は、前述の封止部材に対応する。太陽電池セル10の裏面にはバスバー電極58が配置される。なお、これまでの構成においても、バスバー電極58の図示を省略していただけで、バスバー電極58は配置されている。
FIGS. 8A to 8B are cross-sectional views showing the configuration of the solar cell module 100. FIG. FIG. 8A shows a configuration for shortening the length of the inter-cell wiring member 14. The solar battery panel 30 includes a twenty-second solar battery cell 10bb, a twenty-third solar battery cell 10bc, an inter-cell wiring member 14, a first protective member 50, a first sealing member 52, a second sealing member 54, and a second protective member. 56 and bus bar electrodes 58. The first sealing member 52 and the second protective member 56 correspond to the above-described translucent substrate and back sheet, respectively. Moreover, the 1st sealing member 52 and the 2nd sealing member 54 respond | correspond to the above-mentioned sealing member. A bus bar electrode 58 is disposed on the back surface of the solar battery cell 10. In the configuration so far, the bus bar electrode 58 is disposed only by omitting the illustration of the bus bar electrode 58.
太陽電池セル10の受光面に配置されたセル間配線材14は、隣接した太陽電池セル10の裏面の方向に延び、隣接した太陽電池セル10のバスバー電極58に半田または導電性樹脂によって接続される。これまでの構成では、バスバー電極58の全面に対してセル間配線材14が接続されているが、ここでは、バスバー電極58の一部の接着領域60のみにセル間配線材14が接続される。このようにセル間配線材14とバスバー電極58とを接着するための領域が小さくなるので、接触による耐性が低くなりうる。そのため、接着領域60を考慮するように接触用部材34が取りつけられる。
The inter-cell wiring member 14 disposed on the light receiving surface of the solar battery cell 10 extends in the direction of the back surface of the adjacent solar battery cell 10 and is connected to the bus bar electrode 58 of the adjacent solar battery cell 10 by solder or conductive resin. The In the configuration so far, the inter-cell wiring member 14 is connected to the entire surface of the bus bar electrode 58, but here, the inter-cell wiring member 14 is connected only to a part of the adhesion region 60 of the bus bar electrode 58. . Thus, since the area | region for adhere | attaching the wiring material 14 between cells and the bus-bar electrode 58 becomes small, the tolerance by contact can become low. Therefore, the contact member 34 is attached so as to consider the adhesion region 60.
図8(b)は、図8(a)と同様のセル間配線材14が使用される別の構成を示す断面図である。ここでは、第22太陽電池セル10bbの近傍のみが示される。第22太陽電池セル10bbの裏面には、バスバー電極58が配置されており、バスバー電極58のz軸の負方向側には、配線材62、セル間配線材14が順に配置されている。z軸の負方向側から接着領域60のみにセル間配線材14が接続される。ここで、バスバー電極58と配線材62の接続には、半田または導電性樹脂が使用され、配線材62とセル間配線材14の接続には、半田が使用される。なお、第22太陽電池セル10bbの受光面にもバスバー電極58が配置されるが、図8(b)では省略している。
FIG. 8B is a cross-sectional view showing another configuration in which the inter-cell wiring material 14 similar to that in FIG. 8A is used. Here, only the vicinity of the 22nd solar battery cell 10bb is shown. A bus bar electrode 58 is disposed on the back surface of the twenty-second solar battery cell 10bb, and a wiring member 62 and an inter-cell wiring member 14 are sequentially disposed on the negative side of the z-axis of the bus bar electrode 58. The inter-cell wiring member 14 is connected only to the adhesion region 60 from the negative direction side of the z-axis. Here, solder or conductive resin is used to connect the bus bar electrode 58 and the wiring member 62, and solder is used to connect the wiring member 62 and the inter-cell wiring member 14. In addition, although the bus-bar electrode 58 is arrange | positioned also at the light-receiving surface of the 22nd photovoltaic cell 10bb, it is abbreviate | omitting in FIG.8 (b).
図9は、太陽電池モジュール100のさらに別の構成を示す平面図であり、図6と同様に示される。なお、図8(a)は、図9のC-C’断面図に相当する。各太陽電池セル10における接着領域60は、斜線によって示される。各接触用部材34は、x軸方向よりもy軸方向に長い矩形状を有しており、太陽電池パネル30の裏面において、各太陽電池セル10の中央部分を貫くように配置される。つまり、各接触用部材34は、接着領域60を避けた部分に取りつけられる。
FIG. 9 is a plan view showing still another configuration of the solar cell module 100, and is shown in the same manner as FIG. FIG. 8A corresponds to a cross-sectional view taken along the line C-C ′ of FIG. The adhesion region 60 in each solar battery cell 10 is indicated by hatching. Each contact member 34 has a rectangular shape that is longer in the y-axis direction than in the x-axis direction, and is disposed on the back surface of the solar battery panel 30 so as to penetrate the central portion of each solar battery cell 10. That is, each contact member 34 is attached to a portion avoiding the adhesion region 60.
図10は、太陽電池モジュール100のさらに別の構成を示す平面図であり、これは太陽電池モジュール100を裏面側から見た場合の構成を示す。これまでとは異なって、ここでの太陽電池モジュール100には、裏面電極型の太陽電池セル10が含まれる。裏面電極型の太陽電池セル10は公知の技術であるので、ここでは説明を省略する。また、各太陽電池セル10は配線材70によって接続される。各接触用部材34は、x軸方向よりもy軸方向に長い矩形状を有しており、太陽電池パネル30の裏面において、各太陽電池セル10の中央部分を貫くように配置される。つまり、各接触用部材34は、配線材70を避けた部分に取りつけられる。
FIG. 10 is a plan view showing still another configuration of the solar cell module 100, which shows a configuration when the solar cell module 100 is viewed from the back side. Unlike heretofore, the solar cell module 100 here includes a back electrode type solar cell 10. Since the back electrode type solar battery cell 10 is a known technique, the description thereof is omitted here. Moreover, each photovoltaic cell 10 is connected by the wiring material 70. Each contact member 34 has a rectangular shape that is longer in the y-axis direction than in the x-axis direction, and is disposed on the back surface of the solar battery panel 30 so as to penetrate the central portion of each solar battery cell 10. That is, each contact member 34 is attached to a portion avoiding the wiring member 70.
本発明の実施例によれば、太陽電池パネル30の裏面に接触用部材34を取りつけるので、太陽電池パネル30が架台200の方に撓んでも、接触用部材34と架台200とを接触させることができる。また、接触用部材34と架台200とが接触されるので、太陽電池パネル30において接触用部材34以外の部分の接触を防止できる。また、太陽電池パネル30の裏面から受光面への方向において、接触用部材34の厚みは、軒側固定部202と棟側固定部204の少なくとも一方から太陽電池パネル30の下面までの距離よりも小さいので、通常時の接触を防止できる。
According to the embodiment of the present invention, since the contact member 34 is attached to the back surface of the solar cell panel 30, the contact member 34 and the gantry 200 are brought into contact with each other even when the solar cell panel 30 is bent toward the gantry 200. Can do. Further, since the contact member 34 and the gantry 200 are brought into contact with each other, contact of portions other than the contact member 34 in the solar cell panel 30 can be prevented. Further, in the direction from the back surface of the solar cell panel 30 to the light receiving surface, the thickness of the contact member 34 is larger than the distance from at least one of the eaves side fixing portion 202 and the ridge side fixing portion 204 to the lower surface of the solar cell panel 30. Because it is small, it can prevent normal contact.
また、通常の接触が防止されるので、接触用部材34に金属を使用できる。また、接触用部材34に金属が使用されるので、接触用部材34の劣化を抑制できる。また、接触用部材34の劣化が抑制されるので、接触用部材34の定期的な交換を不要にできる。また、太陽電池パネル30を接触用部材34に取りつけるだけなので、太陽電池パネル30の撓みによる損傷を簡易に防止できる。
Also, since normal contact is prevented, metal can be used for the contact member 34. Moreover, since a metal is used for the contact member 34, deterioration of the contact member 34 can be suppressed. Further, since the deterioration of the contact member 34 is suppressed, it is possible to eliminate periodic replacement of the contact member 34. Further, since the solar cell panel 30 is simply attached to the contact member 34, damage due to the bending of the solar cell panel 30 can be easily prevented.
また、太陽電池パネル30が架台200の方向に撓んだ場合に、太陽電池パネル30の裏面において、接触に対する耐性が相対的に高い部分に接触用部材34が取りつけられるので、接触に対する耐性が相対的に低い部分の接触を防止できる。また、太陽電池パネル30において、セル間配線材14を避けた部分に接触用部材34が取りつけられるので、セル間配線材14での接触を防止できる。また、太陽電池パネル30において、群間配線材16を避けた部分に接触用部材34が取りつけられるので、群間配線材16での接触を防止できる。また、接触用部材34は、1つの方向が別の方向よりも長い矩形状を有するので、架台200の間隔が変わっても、太陽電池パネル30と架台200との接触を防止できる。
Further, when the solar cell panel 30 bends in the direction of the gantry 200, the contact member 34 is attached to a portion of the back surface of the solar cell panel 30 where the contact resistance is relatively high. Therefore, it is possible to prevent contact with a low part. In addition, since the contact member 34 is attached to a portion of the solar battery panel 30 that avoids the inter-cell wiring member 14, contact with the inter-cell wiring member 14 can be prevented. In addition, since the contact member 34 is attached to a portion of the solar cell panel 30 that avoids the inter-group wiring member 16, contact with the inter-group wiring member 16 can be prevented. Further, since the contact member 34 has a rectangular shape in which one direction is longer than the other direction, contact between the solar cell panel 30 and the gantry 200 can be prevented even if the interval between the gantry 200 changes.
本実施例の概要は、次の通りである。本発明のさらに別の態様は、太陽電池モジュール100である。この太陽電池モジュール100は、互いに反対を向いた上面と下面とを含む太陽電池パネル30と、太陽電池パネル30の周縁部32に配置される長フレーム22と、太陽電池パネル30の下面に取りつけられる接触用部材34とを備える。太陽電池パネル30の下面から上面への方向において、接触用部材34の厚みは、長フレーム22の下端から太陽電池パネル30の下面までの距離よりも小さい。
The outline of this example is as follows. Yet another embodiment of the present invention is a solar cell module 100. The solar cell module 100 is attached to a solar cell panel 30 including an upper surface and a lower surface facing opposite to each other, a long frame 22 disposed on a peripheral edge 32 of the solar cell panel 30, and a lower surface of the solar cell panel 30. And a contact member 34. In the direction from the lower surface to the upper surface of the solar cell panel 30, the thickness of the contact member 34 is smaller than the distance from the lower end of the long frame 22 to the lower surface of the solar cell panel 30.
接触用部材34は、太陽電池パネル30の下面のうち、接触に対する耐性が相対的に高い部分に取りつけられてもよい。
The contact member 34 may be attached to a portion of the lower surface of the solar cell panel 30 that is relatively resistant to contact.
接触用部材34は、太陽電池パネル30において、太陽電池セル10間を接続するためのセル間配線材14を避けた部分に取りつけられてもよい。
The contact member 34 may be attached to a portion of the solar battery panel 30 that avoids the inter-cell wiring member 14 for connecting the solar battery cells 10.
接触用部材34は、太陽電池パネル30において、太陽電池セル10のストリング間を接続するための群間配線材16を避けた部分に取りつけられてもよい。
The contact member 34 may be attached to a portion of the solar battery panel 30 that avoids the inter-group wiring member 16 for connecting the strings of the solar battery cells 10.
接触用部材34は、太陽電池パネル30の下面において、1つの方向が別の方向よりも長い矩形状を有してもよい。
The contact member 34 may have a rectangular shape in which one direction is longer than another direction on the lower surface of the solar cell panel 30.
本発明のさらに別の態様もまた、太陽電池システム500である。この太陽電池システム500は、互いに反対を向いた上面と下面とを含む太陽電池パネル30の周縁部32に長フレーム22が配置される太陽電池モジュール100と、太陽電池モジュール100において対向した長フレーム22のそれぞれを固定する複数の軒側固定部202、棟側固定部204を含む架台200とを備える。太陽電池モジュール100は、太陽電池パネル30の下面に取りつけられる接触用部材34をさらに備える。太陽電池パネル30の下面から上面への方向において、接触用部材34の厚みは、複数の軒側固定部202、棟側固定部204の少なくとも一方から太陽電池パネル30の下面までの距離よりも小さい。
Still another embodiment of the present invention is also a solar cell system 500. This solar cell system 500 includes a solar cell module 100 in which a long frame 22 is disposed at a peripheral edge portion 32 of a solar cell panel 30 including an upper surface and a lower surface that are opposite to each other, and a long frame 22 that faces the solar cell module 100. A plurality of eaves-side fixing portions 202 that fix each of the two, and a gantry 200 including a ridge-side fixing portion 204. The solar cell module 100 further includes a contact member 34 attached to the lower surface of the solar cell panel 30. In the direction from the lower surface to the upper surface of the solar cell panel 30, the thickness of the contact member 34 is smaller than the distance from at least one of the plurality of eaves side fixing portions 202 and the ridge side fixing portion 204 to the lower surface of the solar cell panel 30. .
以上、本発明について実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to each of those constituent elements or combinations of processing processes, and such modifications are also within the scope of the present invention. .
10 太陽電池セル、 12 太陽電池群、 14 セル間配線材、 16 群間配線材、 18 群端配線材、 20 短フレーム、 22 長フレーム(フレーム)、 30 太陽電池パネル、 32 周縁部、 34 接触用部材、 40 フランジ、 42 押え具、 44 フランジナット、 50 第1保護部材、 52 第1封止部材、 54 第2封止部材、 56 第2保護部材、 60 接着領域、 70 配線材、 100 太陽電池モジュール、 200 架台、 202 軒側固定部(固定部)、 204 棟側固定部(固定部)、 210 接触用部材。
10 solar cell, 12 solar cell group, 14 inter-cell wiring material, 16 inter-group wiring material, 18 group end wiring material, 20 short frame, 22 long frame (frame), 30 solar cell panel, 32 peripheral part, 34 contact Member, 40 flange, 42 presser, 44 flange nut, 50 first protective member, 52 first sealing member, 54 second sealing member, 56 second protective member, 60 adhesive region, 70 wiring material, 100 sun Battery module, 200 mount, 202 eaves side fixing part (fixing part), 204 building side fixing part (fixing part), 210 contact member.
本発明によれば、太陽電池パネルの撓みによる損傷を簡易に防止できる。
According to the present invention, damage due to bending of the solar cell panel can be easily prevented.
Claims (11)
- 互いに反対を向いた上面と下面とを含む太陽電池パネルの周縁部にフレームが配置される太陽電池モジュールを設置するための架台であって、
前記太陽電池モジュールにおいて対向したフレームのそれぞれを固定する複数の固定部と、
前記複数の固定部の間に配置される接触用部材とを備え、
前記太陽電池パネルの下面から上面への方向において、前記接触用部材の厚みは、前記複数の固定部の少なくとも一方から前記太陽電池パネルの下面までの距離よりも小さいことを特徴とする架台。 A frame for installing a solar cell module in which a frame is arranged on a peripheral portion of a solar cell panel including an upper surface and a lower surface facing each other,
A plurality of fixing portions for fixing each of the opposed frames in the solar cell module;
A contact member disposed between the plurality of fixing portions,
In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from at least one of the plurality of fixing portions to the lower surface of the solar cell panel. - 前記接触用部材は、前記太陽電池パネルが本架台の方向に撓んだ場合に、前記太陽電池パネルの下面のうち、接触に対する耐性が相対的に高い部分に接触可能な位置に配置されることを特徴とする請求項1に記載の架台。 When the solar cell panel is bent in the direction of the main frame, the contact member is disposed at a position where it can contact a portion of the lower surface of the solar cell panel that is relatively resistant to contact. The gantry according to claim 1.
- 前記接触用部材は、前記太陽電池パネルにおいて、太陽電池セル間を接続するための配線材を避けた部分に接触可能な位置に配置されることを特徴とする請求項2に記載の架台。 3. The pedestal according to claim 2, wherein the contact member is disposed at a position in the solar cell panel that can contact a portion that avoids a wiring material for connecting solar cells.
- 前記接触用部材は、前記太陽電池パネルにおいて、太陽電池セルのストリング間を接続するための配線材を避けた部分に接触可能な位置に配置されることを特徴とする請求項2または3に記載の架台。 The said contact member is arrange | positioned in the position which can contact the part which avoided the wiring material for connecting between the strings of a photovoltaic cell in the said photovoltaic panel. Pedestal.
- 互いに反対を向いた上面と下面とを含む太陽電池パネルと、
前記太陽電池パネルの周縁部に配置されるフレームと、
前記太陽電池パネルの下面に取りつけられる接触用部材とを備え、
前記太陽電池パネルの下面から上面への方向において、前記接触用部材の厚みは、前記フレームの下端から前記太陽電池パネルの下面までの距離よりも小さいことを特徴とする太陽電池モジュール。 A solar panel including an upper surface and a lower surface facing away from each other;
A frame disposed at a peripheral edge of the solar cell panel;
A contact member attached to the lower surface of the solar cell panel,
In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from the lower end of the frame to the lower surface of the solar cell panel. - 前記接触用部材は、前記太陽電池パネルの下面のうち、接触に対する耐性が相対的に高い部分に取りつけられることを特徴とする請求項5に記載の太陽電池モジュール。 The solar cell module according to claim 5, wherein the contact member is attached to a portion of the lower surface of the solar cell panel that is relatively resistant to contact.
- 前記接触用部材は、前記太陽電池パネルにおいて、太陽電池セル間を接続するための配線材を避けた部分に取りつけられることを特徴とする請求項6に記載の太陽電池モジュール。 The solar cell module according to claim 6, wherein the contact member is attached to a portion of the solar cell panel that avoids a wiring material for connecting solar cells.
- 前記接触用部材は、前記太陽電池パネルにおいて、太陽電池セルのストリング間を接続するための配線材を避けた部分に取りつけられることを特徴とする請求項6または7に記載の太陽電池モジュール。 The solar cell module according to claim 6 or 7, wherein the contact member is attached to a portion of the solar cell panel that avoids a wiring material for connecting between strings of solar cells.
- 前記接触用部材は、前記太陽電池パネルの下面において、1つの方向が別の方向よりも長い矩形状を有することを特徴とする請求項5から8のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 5 to 8, wherein the contact member has a rectangular shape in which one direction is longer than another direction on the lower surface of the solar cell panel.
- 互いに反対を向いた上面と下面とを含む太陽電池パネルの周縁部にフレームが配置される太陽電池モジュールと、
前記太陽電池モジュールにおいて対向したフレームのそれぞれを固定する複数の固定部を含む架台とを備え、
前記架台は、
前記複数の固定部の間に配置される接触用部材とを備え、
前記太陽電池パネルの下面から上面への方向において、前記接触用部材の厚みは、前記複数の固定部の少なくとも一方から前記太陽電池パネルの下面までの距離よりも小さいことを特徴とする太陽電池システム。 A solar cell module in which a frame is disposed on a peripheral portion of a solar cell panel including an upper surface and a lower surface facing away from each other;
A stand including a plurality of fixing portions for fixing each of the opposed frames in the solar cell module;
The mount is
A contact member disposed between the plurality of fixing portions,
In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from at least one of the plurality of fixing portions to the lower surface of the solar cell panel. . - 互いに反対を向いた上面と下面とを含む太陽電池パネルの周縁部にフレームが配置される太陽電池モジュールと、
前記太陽電池モジュールにおいて対向したフレームのそれぞれを固定する複数の固定部を含む架台とを備え、
前記太陽電池モジュールは、
前記太陽電池パネルの下面に取りつけられる接触用部材をさらに備え、
前記太陽電池パネルの下面から上面への方向において、前記接触用部材の厚みは、前記複数の固定部の少なくとも一方から前記太陽電池パネルの下面までの距離よりも小さいことを特徴とする太陽電池システム。 A solar cell module in which a frame is disposed on a peripheral portion of a solar cell panel including an upper surface and a lower surface facing away from each other;
A stand including a plurality of fixing portions for fixing each of the opposed frames in the solar cell module;
The solar cell module is
A contact member attached to the lower surface of the solar cell panel;
In the direction from the lower surface to the upper surface of the solar cell panel, the thickness of the contact member is smaller than the distance from at least one of the plurality of fixing portions to the lower surface of the solar cell panel. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018504472A JP6807551B2 (en) | 2016-03-08 | 2017-03-06 | Mount, solar cell module, solar cell system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016044330 | 2016-03-08 | ||
JP2016-044330 | 2016-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017154826A1 true WO2017154826A1 (en) | 2017-09-14 |
Family
ID=59790465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/008740 WO2017154826A1 (en) | 2016-03-08 | 2017-03-06 | Stand, solar cell module, and solar cell system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6807551B2 (en) |
WO (1) | WO2017154826A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022140682A1 (en) * | 2020-12-23 | 2022-06-30 | Array Technologies, Inc. | Photovoltaic module deflection limiter |
US11581846B2 (en) | 2020-12-23 | 2023-02-14 | Array Technologies, Inc. | Photovoltaic module deflection limiter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003105940A (en) * | 2001-09-28 | 2003-04-09 | Sekisui Chem Co Ltd | Structure for installing solar-battery module |
WO2009107776A1 (en) * | 2008-02-28 | 2009-09-03 | 京セラ株式会社 | Solar power generation system |
JP2011231477A (en) * | 2010-04-26 | 2011-11-17 | Fp Corporation Ltd | Installation structure of solar cell module |
WO2012017957A1 (en) * | 2010-08-03 | 2012-02-09 | 昭和シェル石油株式会社 | Solar cell module |
JP2015227558A (en) * | 2014-05-30 | 2015-12-17 | パナソニックIpマネジメント株式会社 | Photovoltaic power generator |
-
2017
- 2017-03-06 JP JP2018504472A patent/JP6807551B2/en not_active Expired - Fee Related
- 2017-03-06 WO PCT/JP2017/008740 patent/WO2017154826A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003105940A (en) * | 2001-09-28 | 2003-04-09 | Sekisui Chem Co Ltd | Structure for installing solar-battery module |
WO2009107776A1 (en) * | 2008-02-28 | 2009-09-03 | 京セラ株式会社 | Solar power generation system |
JP2011231477A (en) * | 2010-04-26 | 2011-11-17 | Fp Corporation Ltd | Installation structure of solar cell module |
WO2012017957A1 (en) * | 2010-08-03 | 2012-02-09 | 昭和シェル石油株式会社 | Solar cell module |
JP2015227558A (en) * | 2014-05-30 | 2015-12-17 | パナソニックIpマネジメント株式会社 | Photovoltaic power generator |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022140682A1 (en) * | 2020-12-23 | 2022-06-30 | Array Technologies, Inc. | Photovoltaic module deflection limiter |
US11581846B2 (en) | 2020-12-23 | 2023-02-14 | Array Technologies, Inc. | Photovoltaic module deflection limiter |
CN116762271A (en) * | 2020-12-23 | 2023-09-15 | 阵列科技股份有限公司 | Photovoltaic module deflection limiter |
Also Published As
Publication number | Publication date |
---|---|
JP6807551B2 (en) | 2021-01-06 |
JPWO2017154826A1 (en) | 2018-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9948232B2 (en) | Method for fabricating flexible solar panel module | |
JP6624418B2 (en) | Solar cell module | |
TWI429096B (en) | Solar cell module and manufacturing method thereof | |
US20150171788A1 (en) | Solar module junction box bypass diode | |
US8418416B2 (en) | Solar cell module | |
US11728451B2 (en) | Flexible laminates for solar modules | |
US20150188483A1 (en) | Photovoltaic system and holder unit | |
EP3067937A1 (en) | Solar cell module | |
US9530919B2 (en) | Solar cell module | |
EP2747151A2 (en) | Apparatus for photovoltaic power generation | |
US9972726B2 (en) | Photovoltaic apparatus | |
US20140182651A1 (en) | Integrated junction insulation for photovoltaic module | |
WO2017154826A1 (en) | Stand, solar cell module, and solar cell system | |
KR20150031975A (en) | Solar cell module | |
JP2007180314A (en) | Solar cell module | |
JP6624535B2 (en) | Solar cell module | |
JP2009238876A (en) | Solar cell module | |
WO2012017994A1 (en) | Solar cell module | |
JP2005235842A (en) | Solar cell module | |
WO2019069396A1 (en) | Solar cell module | |
EP4216285A1 (en) | Solar cell | |
JP2001311281A (en) | How to install solar cell module | |
WO2016103626A1 (en) | Terminal box, and solar battery module with attached terminal box using same | |
JP2017055525A (en) | Solar cell module installation structure and installation method | |
KR20130101818A (en) | Solar cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018504472 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17763166 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17763166 Country of ref document: EP Kind code of ref document: A1 |