WO2017154623A1 - Sensing apparatus - Google Patents
Sensing apparatus Download PDFInfo
- Publication number
- WO2017154623A1 WO2017154623A1 PCT/JP2017/007270 JP2017007270W WO2017154623A1 WO 2017154623 A1 WO2017154623 A1 WO 2017154623A1 JP 2017007270 W JP2017007270 W JP 2017007270W WO 2017154623 A1 WO2017154623 A1 WO 2017154623A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detection
- sensor
- distance
- outer edge
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/32—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S13/34—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/46—Indirect determination of position data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/12—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/181—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
Definitions
- the present invention relates to a detection device.
- the detection device includes a plurality of transducers (sensors) attached so as to be close to the doorway and a processor.
- the detection device at least one transducer is arranged to repeatedly transmit a signal to an area near the entrance / exit.
- at least two transducers are arranged to repeatedly receive the return signal.
- the processor measures the position of the object based on one or more measured distances calculated from the time between transmission of the signal and reception of the corresponding return signal.
- the processor can also measure object motion based on Doppler shifts in signal transmission and return signal reception. As a result, the processor can detect approaching, leaving, and passing of an object in a region near the entrance / exit.
- the detection device of Patent Document 1 can detect the approach, separation, and passage of an object (detection target) in a detection region (region near the entrance / exit).
- the detection device of Patent Document 1 requires a plurality of transducers (sensors) to transmit and receive signals. Therefore, the detection device of Patent Document 1 has a large number of parts and is expensive.
- An object of the present invention is to provide a detection device that includes one sensor and can detect a state of a detection target such as approach, separation, or passage of the detection target in a detection region.
- the detection device includes a sensor, a determination unit, and an output unit.
- the sensor transmits a radio wave, receives a reflected wave reflected by the detection target, and outputs a sensor signal corresponding to the distance to the detection target.
- the determination unit determines the state of the detection target based on the sensor signal.
- the output unit outputs a signal based on a determination result of the determination unit.
- the sensor uses, as a detection region, a region where the detection sensitivity of the detection target is a certain level or higher on a moving plane on which the detection target moves. The distance between the sensor and the outer edge of the detection area changes according to the direction seen from the sensor.
- the determination unit includes an intrusion determination unit, a history storage unit, and a recognition unit.
- the intrusion determination unit determines that the detection target has reached the outer edge of the detection region from outside the detection region when the sensor receives the reflected wave having a signal intensity equal to or greater than a threshold value.
- the intrusion determination unit determines an intrusion position that is the position of the detection target at the outer edge of the detection region based on the distance to the detection target that has reached the outer edge of the detection region.
- the history storage unit stores a distance history that is a temporal change in the distance to the detection target when the detection target existing at the intrusion position moves into the detection region.
- the recognition unit determines the state of the detection target based on the intrusion position and the distance history.
- FIG. 1 is a block diagram illustrating a configuration of a detection device according to the embodiment.
- FIG. 2 is a schematic diagram showing the positional relationship between the sensor and the human body of the above-described detection device.
- FIG. 3 is a plan view of the installation space of the detection device as seen from above.
- FIG. 4 is an explanatory diagram of the FMCW method used by the above-described detection apparatus.
- FIG. 5 is an explanatory diagram of the sensor signal in the frequency domain in the above-described detection apparatus.
- FIG. 6 is a flowchart showing the operation of the above-described detection apparatus.
- FIG. 7 is a diagram for explaining an intrusion position detection process in the above-described detection apparatus.
- FIG. 8A is a block diagram showing a sensor of the detection device of Modification 1 of the above.
- FIG. 8B is a block diagram showing a sensor of the detection device of Modification 2 of the above.
- This embodiment relates to a detection device. More specifically, the present embodiment relates to a detection device using a radio wave sensor.
- FIG. 1 shows a block diagram of the detection apparatus 1 of the present embodiment.
- the detection device 1 includes a sensor 11 and a signal processing unit 12.
- the detection device 1 is used in combination with the equipment 2.
- Examples of the equipment 2 combined with the detection device 1 include an automatic door, a lighting device, a monitoring camera, a digital signage, a vending machine, and an elevator.
- the kind of equipment 2 combined with the detection apparatus 1 is not limited.
- the sensor 11 is a radio wave sensor that transmits radio waves, receives radio waves (reflected waves) reflected by the detection target, and outputs a sensor signal corresponding to the distance to the detection target.
- the human body 200 is exemplified as the detection target.
- the human body 200 is moving on the floor surface 400 (including the ground) as shown in FIG. And the sensor 11 installed above the floor surface 400 transmits an electromagnetic wave.
- a two-dimensional space in which the human body 200 moves is called a moving plane 300.
- FIG. 3 is a plan view of the installation space of the detection apparatus 1 as viewed from above (plan view of the installation space).
- the sensitivity (detection sensitivity) of the sensor 11 to the human body 200 is a certain level or more. Is represented as a detection region 100.
- the sensor 11 is configured such that the signal intensity (transmission intensity) of the radio wave to be transmitted changes according to the transmission direction, and the detection sensitivity corresponding to the transmission direction is set depending on the strength of the transmission intensity.
- the movement plane 300 may be set along the floor surface 400, or may be set virtually away from the floor surface 400 by a predetermined distance. In FIG. 2, the moving plane 300 is virtually set above the floor surface 400.
- the detection region 100 is formed in a shape like one obtained by dividing an ellipse into two by a reference line 501 along the short axis.
- the sensor 11 is installed so as to overlap the center of the short axis.
- the direction of the reference line 502 along the long axis of the above ellipse becomes the reference direction passing through the sensor 11.
- the detection area 100 has a line-symmetric shape with respect to the reference line 502.
- the detection area 100 has a detection area 101 on one side with respect to the reference line 502 and a detection area 102 on the other side with respect to the reference line 502.
- the detection areas 101 and 102 are line symmetric with respect to the reference line 502.
- the distance to the sensor 11 changes continuously.
- the outer edge 110 on the detection region 101 side is referred to as an outer edge 111.
- the distance to the sensor 11 continuously decreases.
- the outer edge 110 on the detection region 102 side is referred to as an outer edge 112.
- the distance to the sensor 11 continuously decreases. That is, if the distance from one point on the outer edge 110 to the sensor 11 is determined, the position on the outer edge 111 and the position on the outer edge 112 corresponding to this distance are uniquely determined.
- the detection apparatus 1 knows the predetermined distance on the outer edge 111 corresponding to the distance to the human body 200 if the distance from the sensor 11 to the human body 200 is known. It can be determined that the human body 200 has reached a position or a predetermined position on the outer edge 112.
- the position of the human body 200 that has reached the outer edge 110 from the outside of the detection region 100 is referred to as an intrusion position.
- the U-shaped outer edge 110 of the detection area 100 is a line in which the farthest point where the sensor 11 starts detecting the human body 200 is continued.
- the electric field intensity of the radio wave transmitted by the sensor 11 has the same value on the outer edge 110. That is, the outer edge 110 can be regarded as a line connecting points having the same electric field intensity of transmitted radio waves.
- the detection apparatus 1 determines that the human body 200 exists in the detection region 100 (including on the outer edge 110).
- the detection threshold value is set to be equal to the reception intensity of the reflected wave reflected by the human body 200 existing on the outer edge 110. Therefore, when the detection apparatus 1 receives a reflected wave from the human body 200 existing on the outer edge 110, the intrusion position estimated on the outer edge 111, the outer edge 112, based on the distance to the human body 200 obtained based on the reflected wave.
- Each of the intrusion positions estimated above can be specified.
- the actual entry position is one of the outer edge 111 and the outer edge 112.
- the detection apparatus 1 further obtains the movement locus of the human body 200 in the detection region 100 based on the change in the distance to the human body 200, starting from the intrusion position of the human body 200 on the outer edge 110.
- the detection device 1 determines the approach and separation of the human body 200 with respect to the sensor 11 and further the passage of the human body 200 within the detection region 100, the detection device 1 is provisionally placed on either the outer edge 111 or the outer edge 112. Thus, there is no problem in setting the intrusion position.
- the detection apparatus 1 discriminate
- the detection apparatus 1 can also use the intrusion position estimated on the outer edge 112 and the subsequent change in the distance to the human body 200. In the present embodiment, the detection apparatus 1 uses the intrusion position estimated on the outer edge 111 and the subsequent change in the distance to the human body 200.
- the sensor 11 includes a transmission control unit 11a, a transmission unit 11b, a transmission antenna 11c, a reception antenna 11d, and a reception unit 11e.
- the transmission unit 11b transmits radio waves via the transmission antenna 11c.
- the transmission control unit 11a controls the frequency, transmission timing, and the like of the radio wave transmitted by the transmission unit 11b.
- the radio wave transmitted by the transmitter 11b is preferably a quasi-millimeter wave of 10 GHz to 30 GHz.
- the radio wave transmitted by the transmitter 11b is not limited to a quasi-millimeter wave, but may be a millimeter wave or a microwave.
- the value of the frequency of the radio wave transmitted by the transmitter 11b is not particularly limited.
- the transmission antenna 11c has directivity that forms the detection region 100 of FIG. 3, and changes the transmission intensity depending on the transmission direction of the radio wave. That is, the detection region 100 is formed by the directivity of the transmission antenna 11c.
- the receiving unit 11e receives a reflected wave reflected by an object such as the human body 200 in the detection area 100 via the receiving antenna 11d.
- the receiving antenna 11d is preferably non-directional.
- the receiving unit 11e determines that the human body 200 is present in the detection region 100 if the received intensity of the reflected wave is equal to or greater than a predetermined detection threshold value, and an analog sensor in the time domain corresponding to the distance to the human body 200. Output a signal.
- the sensor 11 changes the frequency of the radio wave to be transmitted over time. Then, the sensor 11 outputs a sensor signal including information on the distance to the human body 200.
- the sensor 11 uses an FMCW (Frequency-Modulated Continuous-Wave) method.
- the transmission control unit 11 a repeats the sweep process of increasing and decreasing the frequency (transmission frequency) fs of the radio wave transmitted by the transmission unit 11 b. In the sweep process, the sweep frequency width ⁇ fa and the sweep time T1 are determined.
- the frequency (reception frequency) fr of the reflected wave changes with the sweep frequency width ⁇ fa and the sweep time T1, similarly to the transmission frequency fs.
- the reception unit 11e generates a beat signal having a frequency fb equal to the frequency difference between the transmission frequency fs and the reception frequency fr, and outputs the beat signal as a sensor signal.
- the signal processing unit 12 has a function of performing signal processing on the sensor signal output from the sensor 11.
- the signal processing unit 12 includes an amplification unit 12a, an A / D conversion unit 12b, a frequency analysis unit 12c, a correction unit 12d, a determination unit 12e, a database 12f, and an output unit 12g.
- the amplifying unit 12a amplifies the sensor signal output from the sensor 11.
- the amplifying unit 12a is configured by an amplifier using an operational amplifier, for example.
- the A / D converter 12b converts the sensor signal amplified by the amplifier 12a into a digital sensor signal in the time domain and outputs it.
- the frequency analyzer 12c converts the time domain sensor signal output from the A / D converter 12b into a frequency domain sensor signal (frequency axis signal).
- the frequency analysis unit 12c divides the frequency band of the sensor signal into a plurality of filter banks 9a (see FIG. 5) having different frequency bands. Then, the frequency analysis unit 12c extracts a signal corresponding to each of the plurality of filter banks 9a from the frequency domain sensor signal.
- the frequency analysis unit 12c sets a predetermined number (for example, 16) of filter banks 9a as a group of the plurality of filter banks 9a, but the number of the filter banks 9a is not particularly limited.
- the frequency analysis unit 12c performs discrete cosine transform (DCT) on the time-domain sensor signal output from the A / D conversion unit 12b to convert it into a frequency-domain sensor signal.
- DCT discrete cosine transform
- each of the plurality of filter banks 9a has a plurality (five in FIG. 5) of frequency bins 9b.
- the frequency bin 9b of the filter bank 9a is also called a DCT bin.
- the resolution of the filter bank 9a is determined by the width of the frequency bin 9b.
- the number of frequency bins 9b in each of the filter banks 9a is not particularly limited, and may be a plurality other than five or one.
- the orthogonal transform for converting the time-domain sensor signal output from the A / D conversion unit 12b into the frequency-domain sensor signal is not limited to DCT, and may be, for example, fast Fourier transform (FFT). Further, the method of converting the time domain sensor signal output from the A / D converter 12b into the frequency domain sensor signal may be wavelet transform (WT).
- WT wavelet transform
- the correction unit 12d includes a normalization unit 121, a smoothing unit 122, a background signal estimation unit 123, and a background signal removal unit 124.
- the normalization unit 121 normalizes the sensor signal output from the frequency analysis unit 12c.
- the normalization unit 121 normalizes the strength of the sensor signal that has passed through each filter bank 9a by the sum of the signal strengths of all the filter banks 9a extracted by the frequency analysis unit 12c.
- the normalization part 121 normalizes the intensity
- the smoothing unit 122 has at least one of the following two smoothing functions.
- the first smoothing function is a function of smoothing the signal strength in the frequency domain (frequency axis direction) in each of the plurality of filter banks 9a.
- the second smoothing function is a function of smoothing the signal intensity in the time axis direction in each of the plurality of filter banks 9a.
- the signal processing unit 12 can reduce the influence of noise by the smoothing function of the smoothing unit 122. If the smoothing unit 122 has both the first smoothing function and the second smoothing function, the influence of noise can be further reduced.
- the signal processing unit 12 alternately switches between an estimation period for estimating the background signal and a determination period for performing the determination process.
- the background signal estimation unit 123 estimates the background signal.
- the determination period after the background signal removal unit 124 removes the background signal, the determination unit 12e performs the determination process.
- the estimation period and the determination period are not limited to the same time length, and may be different time lengths.
- the background signal estimation unit 123 estimates a background signal included in each of the plurality of filter banks 9a.
- the background signal is a signal component included in the sensor signal due to noise or factors other than the detection target (here, the human body 200).
- the background signal estimation unit 123 estimates that the signal obtained for each of the plurality of filter banks 9a is the background signal of each of the plurality of filter banks 9a in the estimation period.
- the background signal estimation part 123 updates the data of a background signal at any time.
- the background signal removal unit 124 removes the background signal from each signal of the plurality of filter banks 9a in the determination period.
- the frequency bin 9b including a relatively large background signal may be known.
- a device that is supplied with power from a commercial power source exists around the detection device 1.
- a relatively large background signal is included in the signal of the frequency bin 9b including the harmonic component (for example, 60 Hz, 120 Hz, etc.) of the commercial power supply frequency (for example, 60 Hz).
- the background signal removal unit 124 preferably uses the frequency bin 9b in which the background signal is constantly included as a specific frequency bin. Then, the background signal removal unit 124 invalidates the signal of the specific frequency bin, and complements the signal of the specific frequency bin with a signal estimated from the signal strengths of the two frequency bins 9b on both sides of the specific frequency bin. Therefore, the background signal removal unit 124 can reduce the background signal having a specific frequency that is generated constantly.
- the background signal removal unit 124 can use an adaptive filter that removes the background signal by filtering the background signal in the frequency domain (on the frequency axis).
- an adaptive filter using DCT Adaptive filter using Discrete Cosine Transform
- the background signal removal unit 124 may use a DCT LMS (Least Mean Square) algorithm as an adaptive algorithm of the adaptive filter.
- the adaptive filter may be an adaptive filter using FFT.
- the background signal removal unit 124 may use an FFT LMS algorithm as the adaptive algorithm of the adaptive filter.
- the sensor signal output from the frequency analysis unit 12c is normalized and smoothed by the correction unit 12d, and the background signal is further removed and input to the determination unit 12e.
- the determination unit 12e includes a distance measurement unit 125, an intrusion determination unit 126, a tracking unit 127, a recognition unit 128, and a history storage unit 129. And the determination part 12e performs the determination process which determines the state of the human body 200 based on the input sensor signal.
- the determination unit 12e sets the human body 200 as a detection target, but can also set other moving bodies such as rain as the detection target.
- the determination unit 12e sets a non-detection state in which the human body 200 is not detected.
- a sensor signal is output from the receiving unit 11e.
- the distance measuring unit 125 obtains the distance to the human body 200 based on the input sensor signal.
- the “first reflected wave having a reception intensity equal to or greater than the detection threshold (or within the range of the detection threshold + ⁇ )” has a reception intensity equal to or greater than the detection threshold (or within the range of the detection threshold + ⁇ ) and is a tracking unit. 127 indicates a “reflected wave that is not yet a target of the tracking process described later”.
- the “first reflected wave having a reception intensity equal to or higher than the detection threshold (or within the range of the detection threshold + ⁇ )” is abbreviated as “first reflected wave”.
- the database 12f stores map data, outer edge data, and the like in advance.
- the map data is data indicating the positional relationship between the sensor 11 and the detection area 100 in the moving plane 300 as shown in FIG.
- the outer edge data is data indicating the correspondence between the coordinates on the outer edge 111 of the detection region 100 and the distance to each coordinate.
- the outer edge data represents, for example, the correspondence between the coordinates (X1, Y1) on the outer edge 111 and the distance L1 from the sensor 11 to the coordinates (X1, Y1) by a data table or a mathematical expression.
- the outer edge data may represent a correspondence relationship between the angle ⁇ around the sensor 11 and the distance L1 from the sensor 11 to the outer edge 111 by a data table or a mathematical expression.
- the value of the distance L1 is associated with the value of the angle ⁇ on a one-to-one basis.
- the value L11 of the distance L1 is associated with the value ⁇ 11 of the angle ⁇ .
- the value L12 of the distance L1 is associated with the value ⁇ 12 of the angle ⁇ .
- the value L13 of the distance L1 is associated with the value ⁇ 13 of the angle ⁇ .
- the entire range of the distance L1 is divided into a plurality of distance ranges [L11 to L12], [L12 to L13], [L13 to L14].
- Each can be associated with one angle range.
- the distance range [L11 to L12] is associated with the angle range [ ⁇ 11 to ⁇ 12].
- the distance range [L12 to L13] is associated with the angle range [ ⁇ 12 to ⁇ 13].
- the distance range [L13 to L14] is associated with the angle range [ ⁇ 13 to ⁇ 14].
- Each of the angle ranges associated with the distance range may be represented by one representative value such as a median value.
- the maximum value of the angle ⁇ in the outer edge data is 90 °.
- the maximum value of the angle ⁇ in the outer edge data can be 180 °.
- the signal processing unit 12 can use the outer edge data by setting the maximum value of the angle ⁇ in the outer edge data to 360 °.
- the human body 200 that has entered from the reference line 501 side is detected at a shorter distance than the human body 200 that has entered from the outer edge 110 side. Therefore, the signal processing unit 12 (determination unit 12e) can detect not only the human body 200 entering from the outer edge 110 side but also the human body 200 entering from the reference line 501 side.
- the distance L1 is not a distance on the moving plane 300 but a distance in a three-dimensional space.
- the intrusion determining unit 126 determines whether or not the receiving unit 11e has received the first reflected wave (S1). The intrusion determination unit 126 determines that the first reflected wave is received when the sensor signal based on the first reflected wave is received. When the receiving unit 11e receives the first reflected wave, the intrusion determining unit 126 detects (specifies) the intrusion position of the human body 200 based on the distance to the human body 200 obtained by the distance measuring unit 125 (S2). That is, based on the distance to the human body 200 obtained by the distance measuring unit 125 when the human body 200 reaches the outer edge 110 from the outside of the detection region 100, the intrusion determining unit 126 determines the human body 200 on the outer edge 111 in the map data. Identify the intrusion location. Further, the intrusion determination unit 126 repeats the process of step S1 described above until the reception unit 11e receives the first reflected wave.
- the distance measuring unit 125 When the human body 200 whose intrusion position is specified enters the detection area 100, the distance measuring unit 125 performs a distance measuring process (S3). The distance measuring unit 125 that performs the distance measuring process periodically obtains the distance to the human body 200 based on the sensor signal continuously input by the human body 200. Then, the distance measuring unit 125 stores the history of the distance to the human body 200 (distance history) in the history storage unit 129.
- the tracking unit 127 performs the tracking process of the human body 200 starting from the intrusion position in the map data based on the history of the distance to the human body 200 (S4). When the distance to the human body 200 is obtained, the tracking unit 127 performs a tracking process of generating a movement trajectory on the map data by projecting a trajectory of the distance from the intrusion position to the human body 200 on the map data. It can be carried out.
- the projection processing is realized by using, for example, data on the installation angle of the sensor 11 with respect to the floor surface 400.
- the recognition unit 128 determines the state of the human body 200 based on the movement locus of the human body 200 (S5). For example, the recognizing unit 128 can detect each of approach, separation, passage of the human body 200 in the detection region 100, and escape of the human body 200 out of the detection region 100.
- the approach is a direction toward the installation position of the sensor 11 in the detection area 100, a state in which the human body 200 approaches the sensor 11, and a certain distance centered on the sensor 11 after the human body 200 is in the detection area 100. It is either in the state where it entered within the circular area of the radius of. That is, in either of the two states described above, it means “approach”.
- Detachment is a state in which the human body 200 moves away from the installation position of the sensor 11 in the detection area 100. Passing is a state in which the human body 200 crosses the detection region 100. Escape is a state in which the human body 200 has moved from the detection area 100 to the outside of the detection area 100.
- the movement trajectory of the human body 200 is obtained based on the intrusion position of the human body 200 and the distance history. Therefore, it can be said that the recognition unit 128 determines the state of the human body 200 based on the intrusion position of the human body 200 and the distance history.
- the recognition unit 128 determines whether or not the human body 200 has escaped outside the detection area 100 (S6).
- the recognition unit 128 detects the escape of the human body 200, the determination unit 12e returns to step S1 described above.
- the output unit 12g determines whether or not to output a control signal for controlling the equipment 2 based on the determination result of the determination unit 12e (S7). If the output unit 12g determines that it is not necessary to output a control signal based on the determination result of the determination unit 12e, the process returns to step S3 and the distance measurement unit 125 performs the distance measurement process.
- the output unit 12g determines that it is necessary to output a control signal based on the determination result of the determination unit 12e, the output unit 12g outputs a control signal (S8).
- the output unit 12g When the equipment 2 is an automatic door, the output unit 12g outputs control signals such as automatic door opening control and closing control. For example, the output unit 12g outputs a control signal for opening control when the human body 200 approaches the automatic door, and then outputs a control signal for closing control when the human body 200 leaves the automatic door. Further, when the human body 200 passes around the automatic door, the output unit 12g does not output a control signal for opening control and maintains the closed state of the automatic door.
- control signals such as automatic door opening control and closing control.
- the output unit 12g outputs a control signal for opening control when the human body 200 approaches the automatic door, and then outputs a control signal for closing control when the human body 200 leaves the automatic door. Further, when the human body 200 passes around the automatic door, the output unit 12g does not output a control signal for opening control and maintains the closed state of the automatic door.
- the output unit 12g outputs control signals such as lighting, extinguishing, and dimming of the lighting device.
- control signals such as lighting, extinguishing, and dimming of the lighting device.
- the output unit 12g outputs a control signal for lighting control when the human body 200 approaches the entrance, and then a control signal for extinguishing control when the human body 200 leaves the entrance. Is output.
- the output unit 12g does not output a control signal for lighting control, and keeps the entrance lamp off.
- the sensor 11 may be configured such that the reception gain of the reflected wave changes according to the reception direction.
- the transmission antenna 11c is omnidirectional, and the reception antenna 11d is directional.
- the receiving antenna 11d has directivity that forms the detection region 100 of FIG. 3, and the gain is changed according to the reception direction of the reflected wave. That is, the detection area 100 is formed by the directivity of the receiving antenna 11d.
- both the transmitting antenna 11c and the receiving antenna 11d may have directivity.
- both the transmission antenna 11c and the reception antenna 11d have directivity that forms the detection region 100 of FIG.
- Modification 1 of the present embodiment is shown in FIG. 8A.
- the 8A includes a dielectric lens 11f on the transmission surface of the transmission antenna 11c.
- the transmission antenna 11c and the reception antenna 11d are omnidirectional antennas.
- the radio wave emitted from the transmission antenna 11c is refracted by the dielectric lens 11f, and the transmission intensity is changed depending on the transmission direction of the radio wave. That is, the detection region 100 is formed by the dielectric lens 11f.
- Modification 2 of the present embodiment is shown in FIG. 8B.
- the 8B includes a dielectric lens 11g on the receiving surface of the receiving antenna 11d.
- the transmission antenna 11c and the reception antenna 11d are omnidirectional antennas.
- the reflected wave is refracted by the dielectric lens 11g, and the gain changes depending on the direction of reception of the reflected wave. That is, the detection region 100 is formed by the dielectric lens 11g.
- the shape of the detection region 100 shown in FIG. 3 is a shape like one obtained by dividing an ellipse into two by a reference line 501 along the short axis.
- the shape of the detection region 100 may be a shape obtained by dividing an ellipse into two along the major axis.
- the distance between the sensor 11 and the outer edge 110 of the detection region 100 continuously increases as the direction viewed from the sensor 11 in the plan view of the moving plane 300 deviates from the reference line 502.
- the detection region 100 may be asymmetric with respect to the reference line 502.
- the detection device 1 includes the sensor 11, the determination unit 12e, and the output unit 12g.
- the sensor 11 transmits a radio wave, receives a reflected wave reflected by the detection target (for example, the human body 200), and outputs a sensor signal corresponding to the distance to the detection target.
- the determination unit 12e determines the state of the detection target based on the sensor signal.
- the output unit 12g outputs a signal based on the determination result of the determination unit 12e.
- the sensor 11 sets the detection region 100 as a region where the detection sensitivity of the detection target is a certain level or higher on the moving plane 300 on which the detection target moves. The distance between the sensor 11 and the outer edge 110 of the detection region 100 changes according to the direction viewed from the sensor 11.
- the determination unit 12e includes an intrusion determination unit 126, a history storage unit 129, and a recognition unit 128. Assume that the intrusion determination unit 126 determines that the detection target has reached the outer edge 110 of the detection region 100 from the outside of the detection region 100 when the sensor 11 receives a reflected wave having a signal intensity equal to or greater than a threshold value. In this case, the intrusion determination unit 126 determines an intrusion position that is the position of the detection target at the outer edge 110 of the detection region 100 based on the distance to the detection target that has reached the outer edge 110 of the detection region 100.
- the history storage unit 129 stores a distance history that is a temporal change in the distance to the detection target when the detection target existing at the intrusion position moves into the detection region 100.
- the recognition unit 128 determines the detection target state based on the intrusion position and the distance history.
- the detection device 1 changes the distance between the sensor 11 and the outer edge 110 of the detection region 100 according to the direction viewed from the sensor 11.
- the detection apparatus 1 can determine the intrusion position of the detection target based on the distance to the detection target such as the human body 200 that has reached the outer edge 110 of the detection region 100.
- the detection apparatus 1 can perform the tracking process which produces
- the detection device 1 includes the radio wave type sensor 11, thereby suppressing erroneous detection due to light such as sunlight, vehicle headlights, and illumination.
- the senor 11 includes a transmission antenna 11c that transmits radio waves and a reception antenna 11d that receives reflected waves.
- the detection region 100 is preferably determined by the directivity of at least one of the transmission antenna 11c and the reception antenna 11d.
- the detection device 1 can easily set the shape of the detection region 100 according to the directivity of the antenna.
- the senor 11 includes the dielectric lenses 11f and 11g that transmit at least one of the radio wave transmitted by the sensor 11 and the reflected wave received by the sensor 11. At least one is provided.
- the detection region 100 is preferably determined by the directivity of at least one of the dielectric lenses 11f and 11g.
- the detection device 1 can easily set the shape of the detection region 100 by the radio wave refraction characteristics of the dielectric lens.
- the detection region 100 is preferably a region where the electric field intensity of the radio wave is equal to or higher than a certain level.
- the detection device 1 can determine that the detection target exists in the detection region 100 if the signal intensity (reception intensity) of the received reflected wave is equal to or greater than a predetermined detection threshold.
- the senor 11 is relative to a reference direction (reference line 502) passing through the sensor 11 in a plan view of the moving plane 300. It is preferable to set the detection region 100 in a line-symmetric shape.
- the detection region 100 has a sensor 11 and an outer edge 110 of the detection region 100 as the direction viewed from the sensor 11 in a plan view of the moving plane 300 is shifted from the reference direction on each of one side and the other side with respect to the reference direction. The distance of increases or decreases continuously.
- the detection device 1 can simplify the shape of the detection region 100, the accuracy of the size and shape of the detection region 100 is improved.
- the senor 11 transmits a frequency-modulated radio wave and outputs a beat signal based on the radio wave and the reflected wave as a sensor signal. It is preferable to output as
- the senor 11 can output a sensor signal including information on the distance to the detection target.
- the detection apparatus 1 is equipped with a computer composed of a microcomputer or the like. And it is preferable that each function of the frequency analysis part 12c, the correction
- the computer mounted on the detection apparatus 1 includes a processor and an interface that operate according to a program as main hardware configurations. This type of processor includes a DSP (Digital Signal Processor), a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), and the like. And if a processor can implement
- DSP Digital Signal Processor
- CPU Central Processing Unit
- MPU Micro-Processing Unit
- a computer-readable ROM Read Only Memory
- a form stored in advance in a recording medium such as an optical disk, or the like is supplied to the recording medium via a wide area communication network including the Internet.
- a wide area communication network including the Internet.
- the program preferably causes the computer to function as each of the correction unit 12d, the determination unit 12e, and the output unit 12g.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Radar Systems Or Details Thereof (AREA)
- Geophysics And Detection Of Objects (AREA)
- Burglar Alarm Systems (AREA)
Abstract
The present invention addresses the problem of providing a sensing apparatus which is provided with a single sensor and can sense states of a sensing subject such as approach, departure, and passing through in a sensing region. The sensing apparatus (1) pertaining to the present invention is configured so that an intrusion determination unit (126) determines that a person (200) has reached an outer edge of the sensing region from outside the sensing region. In this case, the intrusion determination unit (126) determines an intrusion position which is the position of the person (200) at the outer edge on the basis of the distance to the person (200). A history storage unit (129) stores a distance history which a change in the distance to the person (200) over time. A recognition unit (128) determines the state of the sensing subject on the basis of the intrusion position and the distance history.
Description
本発明は、検知装置に関する。
The present invention relates to a detection device.
従来、出入口付近の領域における物体(検知対象)を検知する検知装置がある(例えば、特許文献1参照)。この検知装置は、出入口に近接するように取り付けられた複数のトランスデューサ(センサ)と、プロセッサとを含む。この検知装置では、少なくとも一つのトランスデューサが、出入口付近の領域に信号を繰り返し送信するように配置されている。さらにこの検知装置では、少なくとも2つのトランスデューサが戻り信号を繰り返し受信するように配置されている。
Conventionally, there is a detection device that detects an object (detection target) in an area near an entrance / exit (see, for example, Patent Document 1). The detection device includes a plurality of transducers (sensors) attached so as to be close to the doorway and a processor. In this detection device, at least one transducer is arranged to repeatedly transmit a signal to an area near the entrance / exit. Furthermore, in this sensing device, at least two transducers are arranged to repeatedly receive the return signal.
プロセッサは、信号の送信とそれに対応する戻り信号の受信との間の時間から算出された一つもしくは複数の測定された距離に基づく物体の位置を測定する。また、プロセッサは、信号の送信と戻り信号の受信におけるドップラーシフトに基づいた物体の動きを測定することもできる。この結果、プロセッサは、出入口付近の領域における物体の接近、離脱、通過を検出することができる。
The processor measures the position of the object based on one or more measured distances calculated from the time between transmission of the signal and reception of the corresponding return signal. The processor can also measure object motion based on Doppler shifts in signal transmission and return signal reception. As a result, the processor can detect approaching, leaving, and passing of an object in a region near the entrance / exit.
上述のように、特許文献1の検知装置は、検知領域(出入口付近の領域)における物体(検知対象)の接近、離脱、通過を検出することができる。
As described above, the detection device of Patent Document 1 can detect the approach, separation, and passage of an object (detection target) in a detection region (region near the entrance / exit).
しかしながら、特許文献1の検知装置は、信号を送信および受信するために複数のトランスデューサ(センサ)が必要であった。したがって、特許文献1の検知装置は、部品点数が多く、高コストになっていた。
However, the detection device of Patent Document 1 requires a plurality of transducers (sensors) to transmit and receive signals. Therefore, the detection device of Patent Document 1 has a large number of parts and is expensive.
本発明の目的は、1つのセンサを備えて、検知領域における検知対象の接近、離脱、通過などの検知対象の状態を検知できる検知装置を提供することにある。
An object of the present invention is to provide a detection device that includes one sensor and can detect a state of a detection target such as approach, separation, or passage of the detection target in a detection region.
本発明の一態様に係る検知装置は、センサと、判定部と、出力部とを備える。前記センサは、電波を送信し、電波が検知対象で反射した反射波を受信して、前記検知対象までの距離に対応したセンサ信号を出力する。前記判定部は、前記センサ信号に基づいて前記検知対象の状態を判定する。前記出力部は、前記判定部の判定結果に基づく信号を出力する。前記センサは、前記検知対象が移動する移動平面上において前記検知対象の検出感度が一定レベル以上となる領域を検知領域とする。前記センサと前記検知領域の外縁との距離は、前記センサから見た方向に応じて変化している。前記判定部は、侵入判定部と、履歴記憶部と、認識部とを有する。前記侵入判定部が、信号強度が閾値以上である前記反射波を前記センサが受信して、前記検知対象が前記検知領域の外部から前記検知領域の外縁に到達したと判定したとする。この場合、前記侵入判定部は、前記検知領域の外縁に到達した前記検知対象までの距離に基づいて、前記検知領域の外縁における前記検知対象の位置である侵入位置を判定する。前記履歴記憶部は、前記侵入位置に存在する前記検知対象が前記検知領域内に移動した場合、前記検知対象までの距離の時間的な変化である距離履歴を記憶する。前記認識部は、前記侵入位置と前記距離履歴とに基づいて、前記検知対象の状態を判定する。
The detection device according to an aspect of the present invention includes a sensor, a determination unit, and an output unit. The sensor transmits a radio wave, receives a reflected wave reflected by the detection target, and outputs a sensor signal corresponding to the distance to the detection target. The determination unit determines the state of the detection target based on the sensor signal. The output unit outputs a signal based on a determination result of the determination unit. The sensor uses, as a detection region, a region where the detection sensitivity of the detection target is a certain level or higher on a moving plane on which the detection target moves. The distance between the sensor and the outer edge of the detection area changes according to the direction seen from the sensor. The determination unit includes an intrusion determination unit, a history storage unit, and a recognition unit. It is assumed that the intrusion determination unit determines that the detection target has reached the outer edge of the detection region from outside the detection region when the sensor receives the reflected wave having a signal intensity equal to or greater than a threshold value. In this case, the intrusion determination unit determines an intrusion position that is the position of the detection target at the outer edge of the detection region based on the distance to the detection target that has reached the outer edge of the detection region. The history storage unit stores a distance history that is a temporal change in the distance to the detection target when the detection target existing at the intrusion position moves into the detection region. The recognition unit determines the state of the detection target based on the intrusion position and the distance history.
本実施形態は、検知装置に関する。より詳細には、本実施形態は、電波式のセンサを用いた検知装置に関する。
This embodiment relates to a detection device. More specifically, the present embodiment relates to a detection device using a radio wave sensor.
本実施形態の検知装置1のブロック図を図1に示す。検知装置1は、センサ11と、信号処理部12とを備える。検知装置1は、設備機器2と組み合わせて用いられる。検知装置1に組み合される設備機器2として、自動ドア、照明装置、監視カメラ、デジタルサイネージ(Digital Signage)、自動販売機、エレベータなどが挙げられる。なお、検知装置1に組み合される設備機器2の種類は限定されない。
FIG. 1 shows a block diagram of the detection apparatus 1 of the present embodiment. The detection device 1 includes a sensor 11 and a signal processing unit 12. The detection device 1 is used in combination with the equipment 2. Examples of the equipment 2 combined with the detection device 1 include an automatic door, a lighting device, a monitoring camera, a digital signage, a vending machine, and an elevator. In addition, the kind of equipment 2 combined with the detection apparatus 1 is not limited.
センサ11は、電波を送信し、検知対象で反射された電波(反射波)を受信して、検知対象までの距離に対応したセンサ信号を出力する電波式のセンサである。なお、本実施形態では、検知対象として人体200を例示する。
The sensor 11 is a radio wave sensor that transmits radio waves, receives radio waves (reflected waves) reflected by the detection target, and outputs a sensor signal corresponding to the distance to the detection target. In the present embodiment, the human body 200 is exemplified as the detection target.
人体200は、図2に示すように、床面400(地面を含む)の上を移動している。そして、床面400の上方に設置されたセンサ11が電波を送信する。人体200が移動する二次元空間を移動平面300と呼ぶ。
The human body 200 is moving on the floor surface 400 (including the ground) as shown in FIG. And the sensor 11 installed above the floor surface 400 transmits an electromagnetic wave. A two-dimensional space in which the human body 200 moves is called a moving plane 300.
図3は、検知装置1の設置空間を上方から見た平面図(設置空間の平面視)であり、移動平面300において、人体200に対するセンサ11の感度(検知感度)が一定レベル以上となる領域を検知領域100として表している。本実施形態において、センサ11は、送信する電波の信号強度(送信強度)が送信方向に応じて変化するように構成されており、送信強度の強弱によって送信方向に応じた検知感度が設定される。移動平面300は、床面400に沿って設定されてもよいし、床面400から上方に所定距離離れて仮想的に設定されてもよい。図2では、移動平面300が、床面400よりも上方に仮想的に設定されている。
FIG. 3 is a plan view of the installation space of the detection apparatus 1 as viewed from above (plan view of the installation space). In the moving plane 300, the sensitivity (detection sensitivity) of the sensor 11 to the human body 200 is a certain level or more. Is represented as a detection region 100. In the present embodiment, the sensor 11 is configured such that the signal intensity (transmission intensity) of the radio wave to be transmitted changes according to the transmission direction, and the detection sensitivity corresponding to the transmission direction is set depending on the strength of the transmission intensity. . The movement plane 300 may be set along the floor surface 400, or may be set virtually away from the floor surface 400 by a predetermined distance. In FIG. 2, the moving plane 300 is virtually set above the floor surface 400.
検知領域100は、短軸に沿った基準線501で長円を2分割した一方のような形状に形成されている。そして、センサ11の設置空間の平面視(移動平面300の平面視)において、センサ11は、上述の短軸の中央に重なるように設置されている。この場合、平面視において、上述の長円の長軸に沿った基準線502の方向がセンサ11を通る基準方向となる。そして、検知領域100は、基準線502に対して線対称な形状になる。検知領域100は、基準線502に対して一方側を検知領域101とし、基準線502に対して他方側を検知領域102とする。検知領域101,102は、基準線502に対して互いに線対称となる。
The detection region 100 is formed in a shape like one obtained by dividing an ellipse into two by a reference line 501 along the short axis. In plan view of the installation space of the sensor 11 (plan view of the moving plane 300), the sensor 11 is installed so as to overlap the center of the short axis. In this case, in the plan view, the direction of the reference line 502 along the long axis of the above ellipse becomes the reference direction passing through the sensor 11. The detection area 100 has a line-symmetric shape with respect to the reference line 502. The detection area 100 has a detection area 101 on one side with respect to the reference line 502 and a detection area 102 on the other side with respect to the reference line 502. The detection areas 101 and 102 are line symmetric with respect to the reference line 502.
検知領域100のU字状の外縁110は、センサ11までの距離が連続的に変化する。具体的に、検知領域101側の外縁110を外縁111とする。この場合、外縁110と基準線502との交点503を始点として外縁111上を移動すると、センサ11までの距離が連続的に減少する。また、検知領域102側の外縁110を外縁112とする。この場合、交点503を始点として外縁112上を移動すると、センサ11までの距離が連続的に減少する。すなわち、外縁110上の一点からセンサ11までの距離が決まれば、この距離に対応する外縁111上の位置、および外縁112上の位置のそれぞれが一義的に決まる。
In the U-shaped outer edge 110 of the detection region 100, the distance to the sensor 11 changes continuously. Specifically, the outer edge 110 on the detection region 101 side is referred to as an outer edge 111. In this case, when moving on the outer edge 111 starting from the intersection 503 between the outer edge 110 and the reference line 502, the distance to the sensor 11 continuously decreases. The outer edge 110 on the detection region 102 side is referred to as an outer edge 112. In this case, when moving on the outer edge 112 starting from the intersection 503, the distance to the sensor 11 continuously decreases. That is, if the distance from one point on the outer edge 110 to the sensor 11 is determined, the position on the outer edge 111 and the position on the outer edge 112 corresponding to this distance are uniquely determined.
したがって、人体200が検知領域100の外部から外縁110上に到達した場合、検知装置1は、センサ11から人体200までの距離が判れば、この人体200までの距離に対応する外縁111上の所定位置または外縁112上の所定位置に、人体200が到達したと判定することができる。以降、検知領域100の外部から外縁110上に到達した人体200の位置を侵入位置と呼ぶ。
Therefore, when the human body 200 arrives on the outer edge 110 from the outside of the detection region 100, the detection apparatus 1 knows the predetermined distance on the outer edge 111 corresponding to the distance to the human body 200 if the distance from the sensor 11 to the human body 200 is known. It can be determined that the human body 200 has reached a position or a predetermined position on the outer edge 112. Hereinafter, the position of the human body 200 that has reached the outer edge 110 from the outside of the detection region 100 is referred to as an intrusion position.
検知領域100のU字状の外縁110は、センサ11が人体200を検知し始める最遠点を連続させた線である。具体的には、センサ11が送信した電波の電界強度は、外縁110上において同値となる。すなわち、外縁110は、送信された電波の電界強度が等しい点をつないだ線とみなすことができる。
The U-shaped outer edge 110 of the detection area 100 is a line in which the farthest point where the sensor 11 starts detecting the human body 200 is continued. Specifically, the electric field intensity of the radio wave transmitted by the sensor 11 has the same value on the outer edge 110. That is, the outer edge 110 can be regarded as a line connecting points having the same electric field intensity of transmitted radio waves.
そこで、検知装置1は、受信した反射波の信号強度(受信強度)が予め決められた検知閾値以上であれば、人体200が検知領域100内(外縁110上を含む)に存在すると判断する。この場合、検知閾値は、外縁110上に存在する人体200で反射した反射波の受信強度に等しくなるように設定されている。したがって、検知装置1は、外縁110上に存在する人体200による反射波を受信した場合、この反射波に基づいて求められる人体200までの距離によって、外縁111上において推定される侵入位置、外縁112上において推定される侵入位置をそれぞれ特定することができる。実際の侵入位置は、外縁111上と外縁112上とのいずれか一方である。しかし、外縁111上と外縁112上とのいずれが実際の侵入位置であるかを判定することは困難である。すなわち、検知領域101(外縁111),検知領域102(外縁112)は互いに線対称であるので、外縁110上に存在する人体200までの距離だけを用いて、外縁111上と外縁112上とのいずれが実際の侵入位置であるかを判定することはできない。
Therefore, if the signal intensity (reception intensity) of the received reflected wave is equal to or greater than a predetermined detection threshold, the detection apparatus 1 determines that the human body 200 exists in the detection region 100 (including on the outer edge 110). In this case, the detection threshold value is set to be equal to the reception intensity of the reflected wave reflected by the human body 200 existing on the outer edge 110. Therefore, when the detection apparatus 1 receives a reflected wave from the human body 200 existing on the outer edge 110, the intrusion position estimated on the outer edge 111, the outer edge 112, based on the distance to the human body 200 obtained based on the reflected wave. Each of the intrusion positions estimated above can be specified. The actual entry position is one of the outer edge 111 and the outer edge 112. However, it is difficult to determine which of the outer edge 111 and the outer edge 112 is the actual entry position. That is, since the detection area 101 (outer edge 111) and the detection area 102 (outer edge 112) are line-symmetric with each other, only the distance to the human body 200 existing on the outer edge 110 is used to determine the distance between the outer edge 111 and the outer edge 112. It is not possible to determine which is the actual intrusion position.
そして、検知装置1は、外縁110上の人体200の侵入位置を起点とし、人体200までの距離変化に基づいて、検知領域100内における人体200の移動軌跡をさらに求める。この結果、検知装置1が、センサ11に対する人体200の接近および離隔、さらには検知領域100内における人体200の通過を判別するのであれば、外縁111上と外縁112上とのいずれか一方に暫定的に侵入位置を設定することに問題はなくなる。
Then, the detection apparatus 1 further obtains the movement locus of the human body 200 in the detection region 100 based on the change in the distance to the human body 200, starting from the intrusion position of the human body 200 on the outer edge 110. As a result, if the detection device 1 determines the approach and separation of the human body 200 with respect to the sensor 11 and further the passage of the human body 200 within the detection region 100, the detection device 1 is provisionally placed on either the outer edge 111 or the outer edge 112. Thus, there is no problem in setting the intrusion position.
すなわち、実際の侵入位置が外縁111上および外縁112上のいずれであっても、検知装置1内の処理では、外縁111上に暫定的に侵入位置を設定することは可能である。そして、検知装置1は、外縁111上において推定される侵入位置と、以降の人体200までの距離の変化とを用いることで、検知領域100内における人体200の接近、離隔、横切りを判別することができる。もちろん、検知装置1は、外縁112上において推定される侵入位置と、以降の人体200までの距離の変化とを用いることも可能である。なお、本実施形態において、検知装置1は、外縁111上において推定される侵入位置と、以降の人体200までの距離の変化とを用いる。
That is, regardless of whether the actual intrusion position is on the outer edge 111 or on the outer edge 112, it is possible to provisionally set the intrusion position on the outer edge 111 in the processing in the detection apparatus 1. And the detection apparatus 1 discriminate | determines approach, separation, and crossing of the human body 200 in the detection area 100 by using the intrusion position estimated on the outer edge 111 and the subsequent change in the distance to the human body 200. Can do. Of course, the detection apparatus 1 can also use the intrusion position estimated on the outer edge 112 and the subsequent change in the distance to the human body 200. In the present embodiment, the detection apparatus 1 uses the intrusion position estimated on the outer edge 111 and the subsequent change in the distance to the human body 200.
以下、検知装置1の構成、および動作について詳述する(図1参照)。
Hereinafter, the configuration and operation of the detection device 1 will be described in detail (see FIG. 1).
センサ11は、送信制御部11a、送信部11b、送信アンテナ11c、受信アンテナ11d、及び受信部11eを備える。
The sensor 11 includes a transmission control unit 11a, a transmission unit 11b, a transmission antenna 11c, a reception antenna 11d, and a reception unit 11e.
送信部11bは、送信アンテナ11cを介して電波を送信する。送信制御部11aは、送信部11bが送信する電波の周波数、送信タイミング等を制御する。送信部11bが送信する電波は、10GHz~30GHzの準ミリ波であることが好ましい。なお、送信部11bが送信する電波は、準ミリ波に限らず、ミリ波、マイクロ波でもよい。また、送信部11bが送信する電波の周波数の値は、特に限定されるものではない。
The transmission unit 11b transmits radio waves via the transmission antenna 11c. The transmission control unit 11a controls the frequency, transmission timing, and the like of the radio wave transmitted by the transmission unit 11b. The radio wave transmitted by the transmitter 11b is preferably a quasi-millimeter wave of 10 GHz to 30 GHz. The radio wave transmitted by the transmitter 11b is not limited to a quasi-millimeter wave, but may be a millimeter wave or a microwave. Moreover, the value of the frequency of the radio wave transmitted by the transmitter 11b is not particularly limited.
送信アンテナ11cは、図3の検知領域100を形成する指向性を有しており、電波の送信方向によって送信強度を変えている。すなわち、送信アンテナ11cの指向性によって、検知領域100が形成されている。
The transmission antenna 11c has directivity that forms the detection region 100 of FIG. 3, and changes the transmission intensity depending on the transmission direction of the radio wave. That is, the detection region 100 is formed by the directivity of the transmission antenna 11c.
受信部11eは、受信アンテナ11dを介して、検知領域100内の人体200などの物体で反射された反射波を受信する。受信アンテナ11dは、無指向性であることが好ましい。受信部11eは、反射波の受信強度が予め決められた検知閾値以上であれば、人体200が検知領域100内に存在すると判断して、人体200までの距離に対応した時間領域のアナログのセンサ信号を出力する。
The receiving unit 11e receives a reflected wave reflected by an object such as the human body 200 in the detection area 100 via the receiving antenna 11d. The receiving antenna 11d is preferably non-directional. The receiving unit 11e determines that the human body 200 is present in the detection region 100 if the received intensity of the reflected wave is equal to or greater than a predetermined detection threshold value, and an analog sensor in the time domain corresponding to the distance to the human body 200. Output a signal.
具体的に、センサ11は、送信する電波の周波数を時間の経過に伴って変化させる。そして、センサ11は、人体200までの距離の情報が含まれるセンサ信号を出力する。たとえば、センサ11は、FMCW(Frequency-Modulated Continuous-Wave)方式を用いる。図4に示すように、送信制御部11aは、送信部11bが送信する電波の周波数(送信周波数)fsを上昇させた後に下降させるスイープ処理を繰り返す。スイープ処理は、掃引周波数幅Δfa、掃引時間T1が決められている。
Specifically, the sensor 11 changes the frequency of the radio wave to be transmitted over time. Then, the sensor 11 outputs a sensor signal including information on the distance to the human body 200. For example, the sensor 11 uses an FMCW (Frequency-Modulated Continuous-Wave) method. As illustrated in FIG. 4, the transmission control unit 11 a repeats the sweep process of increasing and decreasing the frequency (transmission frequency) fs of the radio wave transmitted by the transmission unit 11 b. In the sweep process, the sweep frequency width Δfa and the sweep time T1 are determined.
センサ11と人体200との間の距離をL、光速をCとすると、受信部11eは、T2=2L/C後に反射波を受信する(図4)。反射波の周波数(受信周波数)frは、送信周波数fsと同様に、掃引周波数幅Δfa、掃引時間T1で変化する。そして、受信部11eが、送信周波数fsと受信周波数frとの周波数差に等しい周波数fbのビート信号を生成して、センサ信号として出力する。ビート信号の周波数fbは、fb=[(Δfa・2L)/(C・T1)]となる。故に、人体200までの距離Lは、L=(fb・C・T1)/(2・Δfa)となる。したがって、信号処理部12は、距離Lの情報に基づいて、検知領域100内における人体200の状態を判定することができる。
If the distance between the sensor 11 and the human body 200 is L and the speed of light is C, the receiving unit 11e receives the reflected wave after T2 = 2L / C (FIG. 4). The frequency (reception frequency) fr of the reflected wave changes with the sweep frequency width Δfa and the sweep time T1, similarly to the transmission frequency fs. Then, the reception unit 11e generates a beat signal having a frequency fb equal to the frequency difference between the transmission frequency fs and the reception frequency fr, and outputs the beat signal as a sensor signal. The frequency fb of the beat signal is fb = [(Δfa · 2L) / (C · T1)]. Therefore, the distance L to the human body 200 is L = (fb · C · T1) / (2 · Δfa). Therefore, the signal processing unit 12 can determine the state of the human body 200 in the detection region 100 based on the information on the distance L.
信号処理部12は、センサ11から出力されるセンサ信号を信号処理する機能を有する。信号処理部12は、増幅部12a、A/D変換部12b、周波数分析部12c、補正部12d、判定部12e、データベース12f、及び出力部12gを備える。
The signal processing unit 12 has a function of performing signal processing on the sensor signal output from the sensor 11. The signal processing unit 12 includes an amplification unit 12a, an A / D conversion unit 12b, a frequency analysis unit 12c, a correction unit 12d, a determination unit 12e, a database 12f, and an output unit 12g.
増幅部12aは、センサ11から出力されたセンサ信号を増幅する。増幅部12aは、例えば、オペアンプを用いた増幅器により構成される。A/D変換部12bは、増幅部12aによって増幅されたセンサ信号を時間領域のディジタルのセンサ信号に変換して出力する。
The amplifying unit 12a amplifies the sensor signal output from the sensor 11. The amplifying unit 12a is configured by an amplifier using an operational amplifier, for example. The A / D converter 12b converts the sensor signal amplified by the amplifier 12a into a digital sensor signal in the time domain and outputs it.
周波数分析部12cは、A/D変換部12bから出力される時間領域のセンサ信号を周波数領域のセンサ信号(周波数軸信号)に変換する。周波数分析部12cは、センサ信号の周波数帯域を、互いに周波数帯域が異なる複数のフィルタバンク9a(図5参照)に分割している。そして、周波数分析部12cは、周波数領域のセンサ信号から、複数のフィルタバンク9aのそれぞれに対応する信号を抽出する。周波数分析部12cは、複数のフィルタバンク9aの群として、規定数(例えば、16個)のフィルタバンク9aを設定してあるが、複数のフィルタバンク9aの個数は特に限定するものではない。
The frequency analyzer 12c converts the time domain sensor signal output from the A / D converter 12b into a frequency domain sensor signal (frequency axis signal). The frequency analysis unit 12c divides the frequency band of the sensor signal into a plurality of filter banks 9a (see FIG. 5) having different frequency bands. Then, the frequency analysis unit 12c extracts a signal corresponding to each of the plurality of filter banks 9a from the frequency domain sensor signal. The frequency analysis unit 12c sets a predetermined number (for example, 16) of filter banks 9a as a group of the plurality of filter banks 9a, but the number of the filter banks 9a is not particularly limited.
具体的に、周波数分析部12cは、A/D変換部12bから出力される時間領域のセンサ信号に離散コサイン変換(Discrete Cosine Transform:DCT)を行うことで、周波数領域のセンサ信号に変換する。また、図5に示すように、複数のフィルタバンク9aの各々は、複数(図5では、5個)の周波数ビン(frequency bin)9bを有している。この場合、フィルタバンク9aの周波数ビン9bは、DCTビンとも呼ばれる。フィルタバンク9aは、周波数ビン9bの幅により分解能が決まる。フィルタバンク9aのそれぞれにおける周波数ビン9bの数は、特に限定されるものではなく、5個以外の複数でもよいし、1個でもよい。A/D変換部12bから出力される時間領域のセンサ信号を周波数領域のセンサ信号に変換する直交変換は、DCTに限らず、例えば、高速フーリエ変換(Fast Fourier Transformation:FFT)でもよい。また、A/D変換部12bから出力される時間領域のセンサ信号を周波数領域のセンサ信号に変換する方式は、ウェーブレット変換(Wavelet Transform:WT)でもよい。
Specifically, the frequency analysis unit 12c performs discrete cosine transform (DCT) on the time-domain sensor signal output from the A / D conversion unit 12b to convert it into a frequency-domain sensor signal. Further, as shown in FIG. 5, each of the plurality of filter banks 9a has a plurality (five in FIG. 5) of frequency bins 9b. In this case, the frequency bin 9b of the filter bank 9a is also called a DCT bin. The resolution of the filter bank 9a is determined by the width of the frequency bin 9b. The number of frequency bins 9b in each of the filter banks 9a is not particularly limited, and may be a plurality other than five or one. The orthogonal transform for converting the time-domain sensor signal output from the A / D conversion unit 12b into the frequency-domain sensor signal is not limited to DCT, and may be, for example, fast Fourier transform (FFT). Further, the method of converting the time domain sensor signal output from the A / D converter 12b into the frequency domain sensor signal may be wavelet transform (WT).
補正部12dは、規格化部121、平滑部122、背景信号推定部123、及び背景信号除去部124を備える。
The correction unit 12d includes a normalization unit 121, a smoothing unit 122, a background signal estimation unit 123, and a background signal removal unit 124.
規格化部121は、周波数分析部12cが出力するセンサ信号を規格化する。規格化部121は、周波数分析部12cにより抽出された全てのフィルタバンク9aそれぞれの信号強度の総和で、フィルタバンク9aそれぞれを通過したセンサ信号の強度を規格化する。あるいは、規格化部121は、複数(例えば、低周波側の4個)のフィルタバンク9aの各信号強度の総和で、フィルタバンク9aそれぞれを通過したセンサ信号の強度を規格化する。
The normalization unit 121 normalizes the sensor signal output from the frequency analysis unit 12c. The normalization unit 121 normalizes the strength of the sensor signal that has passed through each filter bank 9a by the sum of the signal strengths of all the filter banks 9a extracted by the frequency analysis unit 12c. Or the normalization part 121 normalizes the intensity | strength of the sensor signal which passed each filter bank 9a with the sum total of each signal intensity | strength of the filter bank 9a of multiple (for example, four on the low frequency side).
平滑部122は、以下の2つの平滑機能のうち、少なくとも一方を有する。第1の平滑機能は、複数のフィルタバンク9aのそれぞれにおいて、信号強度を周波数領域(周波数軸方向)において平滑する機能である。第2の平滑機能は、複数のフィルタバンク9aのそれぞれにおいて、信号強度を時間軸方向において平滑する機能である。信号処理部12は、平滑部122の平滑機能によって雑音の影響を低減することが可能となる。平滑部122が第1の平滑機能および第2の平滑機能の両方を備えていれば、雑音の影響をより低減することが可能となる。
The smoothing unit 122 has at least one of the following two smoothing functions. The first smoothing function is a function of smoothing the signal strength in the frequency domain (frequency axis direction) in each of the plurality of filter banks 9a. The second smoothing function is a function of smoothing the signal intensity in the time axis direction in each of the plurality of filter banks 9a. The signal processing unit 12 can reduce the influence of noise by the smoothing function of the smoothing unit 122. If the smoothing unit 122 has both the first smoothing function and the second smoothing function, the influence of noise can be further reduced.
また、信号処理部12は、背景信号を推定する推定期間と、判定処理を行う判定期間とを交互に切り替える。推定期間において、背景信号推定部123は背景信号を推定する。判定期間において、背景信号除去部124が背景信号を除去してから、判定部12eが判定処理を行う。推定期間と判定期間とは、同じ時間長さに限らず、互いに異なる時間長さでもよい。
Further, the signal processing unit 12 alternately switches between an estimation period for estimating the background signal and a determination period for performing the determination process. In the estimation period, the background signal estimation unit 123 estimates the background signal. In the determination period, after the background signal removal unit 124 removes the background signal, the determination unit 12e performs the determination process. The estimation period and the determination period are not limited to the same time length, and may be different time lengths.
具体的に、背景信号推定部123は、複数のフィルタバンク9aそれぞれの信号に含まれている背景信号を推定する。背景信号は、雑音、あるいは検出対象(ここでは、人体200)以外の要因によってセンサ信号に含まれる信号成分である。背景信号推定部123は、推定期間において、複数のフィルタバンク9aそれぞれについて得られた信号を、複数のフィルタバンク9aそれぞれの背景信号であると推定する。そして、背景信号推定部123は、背景信号のデータを随時更新する。背景信号除去部124は、判定期間において、複数のフィルタバンク9aのそれぞれの信号から背景信号を除去する。
Specifically, the background signal estimation unit 123 estimates a background signal included in each of the plurality of filter banks 9a. The background signal is a signal component included in the sensor signal due to noise or factors other than the detection target (here, the human body 200). The background signal estimation unit 123 estimates that the signal obtained for each of the plurality of filter banks 9a is the background signal of each of the plurality of filter banks 9a in the estimation period. And the background signal estimation part 123 updates the data of a background signal at any time. The background signal removal unit 124 removes the background signal from each signal of the plurality of filter banks 9a in the determination period.
ところで、検知装置1の周囲環境によっては、比較的大きな背景信号が含まれる周波数ビン9bが既知である場合がある。例えば、検知装置1の周辺に、商用電源から電源供給される機器が存在しているとする。この場合、商用電源周波数(例えば、60Hz)の高調波成分(例えば、60Hz、120Hz等)を含む周波数ビン9bの信号には、比較的大きな背景信号が含まれる可能性が高い。
By the way, depending on the surrounding environment of the detection apparatus 1, the frequency bin 9b including a relatively large background signal may be known. For example, it is assumed that a device that is supplied with power from a commercial power source exists around the detection device 1. In this case, there is a high possibility that a relatively large background signal is included in the signal of the frequency bin 9b including the harmonic component (for example, 60 Hz, 120 Hz, etc.) of the commercial power supply frequency (for example, 60 Hz).
そこで、背景信号除去部124は、背景信号が定常的に含まれる周波数ビン9bを特定周波数ビンとすることが好ましい。そして、背景信号除去部124は、特定周波数ビンの信号を無効とし、この特定周波数ビンの両側の2個の周波数ビン9bの信号強度から推定した信号で、特定周波数ビンの信号を補完する。したがって、背景信号除去部124は、定常的に発生する特定周波数の背景信号を低減することができる。
Therefore, the background signal removal unit 124 preferably uses the frequency bin 9b in which the background signal is constantly included as a specific frequency bin. Then, the background signal removal unit 124 invalidates the signal of the specific frequency bin, and complements the signal of the specific frequency bin with a signal estimated from the signal strengths of the two frequency bins 9b on both sides of the specific frequency bin. Therefore, the background signal removal unit 124 can reduce the background signal having a specific frequency that is generated constantly.
また、背景信号除去部124は、周波数領域(周波数軸上)において背景信号を濾波することで背景信号を除去する適応フィルタ(Adaptive filter)を用いることもできる。この種の適応フィルタとしては、DCTを用いた適応フィルタ(Adaptive filter using Discrete Cosine Transform)が好ましい。この場合、背景信号除去部124は、適応フィルタの適応アルゴリズムとして、DCTのLMS(Least Mean Square)アルゴリズムを用いればよい。また、適応フィルタは、FFTを用いた適応フィルタでもよい。この場合、背景信号除去部124は、適応フィルタの適応アルゴリズムとして、FFTのLMSアルゴリズムを用いればよい。
Also, the background signal removal unit 124 can use an adaptive filter that removes the background signal by filtering the background signal in the frequency domain (on the frequency axis). As this type of adaptive filter, an adaptive filter using DCT (Adaptive filter using Discrete Cosine Transform) is preferable. In this case, the background signal removal unit 124 may use a DCT LMS (Least Mean Square) algorithm as an adaptive algorithm of the adaptive filter. The adaptive filter may be an adaptive filter using FFT. In this case, the background signal removal unit 124 may use an FFT LMS algorithm as the adaptive algorithm of the adaptive filter.
上述のように、周波数分析部12cが出力するセンサ信号は、補正部12dによって規格化、平滑化され、さらに背景信号を除去されて、判定部12eに入力される。
As described above, the sensor signal output from the frequency analysis unit 12c is normalized and smoothed by the correction unit 12d, and the background signal is further removed and input to the determination unit 12e.
判定部12eは、測距部125、侵入判定部126、追跡部127、認識部128、及び履歴記憶部129を備える。そして、判定部12eは、入力されたセンサ信号に基づいて、人体200の状態を判定する判定処理を行う。判定部12eは、人体200を検出対象とするが、雨等の他の移動体を検出対象とすることもできる。
The determination unit 12e includes a distance measurement unit 125, an intrusion determination unit 126, a tracking unit 127, a recognition unit 128, and a history storage unit 129. And the determination part 12e performs the determination process which determines the state of the human body 200 based on the input sensor signal. The determination unit 12e sets the human body 200 as a detection target, but can also set other moving bodies such as rain as the detection target.
判定部12eの判定処理について、図6のフローチャートを用いて説明する。
The determination process of the determination part 12e is demonstrated using the flowchart of FIG.
まず、判定部12eは、人体200を検知していない非検知状態とする。そして、受信部11eが検知閾値以上(または検知閾値+αの範囲内)の受信強度を有する最初の反射波を受信すると、受信部11eからセンサ信号が出力される。測距部125は、入力されたセンサ信号に基づいて、人体200までの距離を求める。なお、「検知閾値以上(または検知閾値+αの範囲内)の受信強度を有する最初の反射波」は、「検知閾値以上(または検知閾値+αの範囲内)の受信強度を有し、かつ追跡部127がまだ後述の追跡処理の対象としていない反射波」を意味している。以降、「検知閾値以上(または検知閾値+αの範囲内)の受信強度を有する最初の反射波」は、「最初の反射波」と略称する。
First, the determination unit 12e sets a non-detection state in which the human body 200 is not detected. When the receiving unit 11e receives the first reflected wave having a reception intensity equal to or higher than the detection threshold (or within the range of the detection threshold + α), a sensor signal is output from the receiving unit 11e. The distance measuring unit 125 obtains the distance to the human body 200 based on the input sensor signal. The “first reflected wave having a reception intensity equal to or greater than the detection threshold (or within the range of the detection threshold + α)” has a reception intensity equal to or greater than the detection threshold (or within the range of the detection threshold + α) and is a tracking unit. 127 indicates a “reflected wave that is not yet a target of the tracking process described later”. Hereinafter, the “first reflected wave having a reception intensity equal to or higher than the detection threshold (or within the range of the detection threshold + α)” is abbreviated as “first reflected wave”.
データベース12fは、マップデータ、外縁データなどを予め格納している。
The database 12f stores map data, outer edge data, and the like in advance.
マップデータは、図7に示すように、移動平面300においてセンサ11と検知領域100との位置関係を示すデータである。外縁データは、検知領域100の外縁111上の座標と、各座標までの距離との対応関係を示すデータである。外縁データは、たとえば、外縁111上の座標(X1,Y1)と、センサ11から座標(X1,Y1)までの距離L1との対応関係をデータテーブルまたは数式で表している。
The map data is data indicating the positional relationship between the sensor 11 and the detection area 100 in the moving plane 300 as shown in FIG. The outer edge data is data indicating the correspondence between the coordinates on the outer edge 111 of the detection region 100 and the distance to each coordinate. The outer edge data represents, for example, the correspondence between the coordinates (X1, Y1) on the outer edge 111 and the distance L1 from the sensor 11 to the coordinates (X1, Y1) by a data table or a mathematical expression.
あるいは、外縁データは、センサ11を中心とする角度θと、センサ11から外縁111までの距離L1との対応関係をデータテーブルまたは数式で表してもよい。たとえば、外縁データのデータテーブルまたは数式において、距離L1の値と角度θの値とを1対1で対応付ける。この場合、距離L1の値L11は、角度θの値θ11に対応付けられる。距離L1の値L12は、角度θの値θ12に対応付けられる。距離L1の値L13は、角度θの値θ13に対応付けられる。
Alternatively, the outer edge data may represent a correspondence relationship between the angle θ around the sensor 11 and the distance L1 from the sensor 11 to the outer edge 111 by a data table or a mathematical expression. For example, in the data table or mathematical expression of the outer edge data, the value of the distance L1 is associated with the value of the angle θ on a one-to-one basis. In this case, the value L11 of the distance L1 is associated with the value θ11 of the angle θ. The value L12 of the distance L1 is associated with the value θ12 of the angle θ. The value L13 of the distance L1 is associated with the value θ13 of the angle θ.
または、外縁データのデータテーブルまたは数式において、距離L1の全範囲を複数の距離範囲[L11~L12],[L12~L13],[L13~L14]……… に分割し、複数の距離範囲のそれぞれを、1つの角度範囲に対応付けることも可能である。この場合、距離範囲[L11~L12]は、角度範囲[θ11~θ12]に対応付けられる。距離範囲[L12~L13]は、角度範囲[θ12~θ13]に対応付けられる。距離範囲[L13~L14]は、角度範囲[θ13~θ14]に対応付けられる。また、距離範囲に対応付けられる角度範囲のそれぞれは、中央値などの1つの代表値で表されてもよい。
Alternatively, in the data table or mathematical expression of the outer edge data, the entire range of the distance L1 is divided into a plurality of distance ranges [L11 to L12], [L12 to L13], [L13 to L14]. Each can be associated with one angle range. In this case, the distance range [L11 to L12] is associated with the angle range [θ11 to θ12]. The distance range [L12 to L13] is associated with the angle range [θ12 to θ13]. The distance range [L13 to L14] is associated with the angle range [θ13 to θ14]. Each of the angle ranges associated with the distance range may be represented by one representative value such as a median value.
なお、図7では、外縁111上において侵入位置が設定されるので、外縁データにおける角度θの最大値は90°となる。なお、検知領域の形状によっては、外縁データにおける角度θの最大値は180°とすることも可能である。
In FIG. 7, since the intrusion position is set on the outer edge 111, the maximum value of the angle θ in the outer edge data is 90 °. Depending on the shape of the detection region, the maximum value of the angle θ in the outer edge data can be 180 °.
また、信号処理部12は、外縁データにおける角度θの最大値を360°として、この外縁データを用いることも可能である。
Also, the signal processing unit 12 can use the outer edge data by setting the maximum value of the angle θ in the outer edge data to 360 °.
たとえば、図7に示すマップデータの場合、基準線501側から侵入した人体200は、外縁110側から侵入した人体200に比べて、近距離で検知される。したがって、信号処理部12(判定部12e)は、外縁110側から侵入した人体200だけでなく、基準線501側から侵入した人体200も検知できる。
For example, in the case of the map data shown in FIG. 7, the human body 200 that has entered from the reference line 501 side is detected at a shorter distance than the human body 200 that has entered from the outer edge 110 side. Therefore, the signal processing unit 12 (determination unit 12e) can detect not only the human body 200 entering from the outer edge 110 side but also the human body 200 entering from the reference line 501 side.
また、距離L1は、移動平面300上の距離ではなく、3次元空間内における距離である。
Further, the distance L1 is not a distance on the moving plane 300 but a distance in a three-dimensional space.
侵入判定部126は、受信部11eが最初の反射波を受信したか否かを判断する(S1)。侵入判定部126は、最初の反射波によるセンサ信号を受信した場合に、最初の反射波を受信したと判断する。侵入判定部126は、受信部11eが最初の反射波を受信した場合、測距部125が求めた人体200までの距離に基づいて、人体200の侵入位置を検出(特定)する(S2)。すなわち、人体200が検知領域100の外部から外縁110上に到達した時点で測距部125が求めた人体200までの距離に基づいて、侵入判定部126は、マップデータにおいて外縁111上における人体200の侵入位置を特定する。また、侵入判定部126は、受信部11eが最初の反射波を受信するまで、上述のステップS1の処理を繰り返す。
The intrusion determining unit 126 determines whether or not the receiving unit 11e has received the first reflected wave (S1). The intrusion determination unit 126 determines that the first reflected wave is received when the sensor signal based on the first reflected wave is received. When the receiving unit 11e receives the first reflected wave, the intrusion determining unit 126 detects (specifies) the intrusion position of the human body 200 based on the distance to the human body 200 obtained by the distance measuring unit 125 (S2). That is, based on the distance to the human body 200 obtained by the distance measuring unit 125 when the human body 200 reaches the outer edge 110 from the outside of the detection region 100, the intrusion determining unit 126 determines the human body 200 on the outer edge 111 in the map data. Identify the intrusion location. Further, the intrusion determination unit 126 repeats the process of step S1 described above until the reception unit 11e receives the first reflected wave.
そして、侵入位置が特定された人体200が検知領域100内に侵入した場合、測距部125は、測距処理を行う(S3)。測距処理を行う測距部125は、この人体200によって引き続き入力されたセンサ信号に基づいて人体200までの距離を定期的に求める。そして、測距部125は、人体200までの距離の履歴(距離履歴)を履歴記憶部129に格納する。
When the human body 200 whose intrusion position is specified enters the detection area 100, the distance measuring unit 125 performs a distance measuring process (S3). The distance measuring unit 125 that performs the distance measuring process periodically obtains the distance to the human body 200 based on the sensor signal continuously input by the human body 200. Then, the distance measuring unit 125 stores the history of the distance to the human body 200 (distance history) in the history storage unit 129.
追跡部127は、人体200までの距離の履歴に基づいて、マップデータにおいて侵入位置を起点とする人体200の追跡処理を行う(S4)。追跡部127は、人体200までの距離が求められれば、侵入位置を起点とする人体200までの距離の軌跡をマップデータ上に投影することで、マップデータ上の移動軌跡を生成する追跡処理を行うことができる。投影処理は、たとえば床面400に対するセンサ11の設置角度のデータなどを利用して実現される。
The tracking unit 127 performs the tracking process of the human body 200 starting from the intrusion position in the map data based on the history of the distance to the human body 200 (S4). When the distance to the human body 200 is obtained, the tracking unit 127 performs a tracking process of generating a movement trajectory on the map data by projecting a trajectory of the distance from the intrusion position to the human body 200 on the map data. It can be carried out. The projection processing is realized by using, for example, data on the installation angle of the sensor 11 with respect to the floor surface 400.
認識部128は、人体200の移動軌跡に基づいて、人体200の状態を判定する(S5)。たとえば、認識部128は、検知領域100における人体200の接近、離脱、通過、検知領域100外への人体200の脱出のそれぞれを検出することができる。接近とは、検知領域100においてセンサ11の設置位置に向く方向で、人体200がセンサ11に近付く状態と、人体200が検知領域100内に居たうえで、センサ11を中心とする一定の距離の半径の円領域以内に入ってきた状態とのいずれかである。すなわち、上述の2つの状態のうち、どちらであっても「接近」を意味するものとする。離脱とは、検知領域100においてセンサ11の設置位置から人体200が遠ざかる状態である。通過とは、検知領域100を人体200が横切る状態である。脱出とは、検知領域100内から検知領域100外へ人体200が移動した状態である。
The recognition unit 128 determines the state of the human body 200 based on the movement locus of the human body 200 (S5). For example, the recognizing unit 128 can detect each of approach, separation, passage of the human body 200 in the detection region 100, and escape of the human body 200 out of the detection region 100. The approach is a direction toward the installation position of the sensor 11 in the detection area 100, a state in which the human body 200 approaches the sensor 11, and a certain distance centered on the sensor 11 after the human body 200 is in the detection area 100. It is either in the state where it entered within the circular area of the radius of. That is, in either of the two states described above, it means “approach”. Detachment is a state in which the human body 200 moves away from the installation position of the sensor 11 in the detection area 100. Passing is a state in which the human body 200 crosses the detection region 100. Escape is a state in which the human body 200 has moved from the detection area 100 to the outside of the detection area 100.
ここで、人体200の移動軌跡は、人体200の侵入位置と距離履歴とに基づいて求められている。したがって、認識部128は、人体200の侵入位置と距離履歴とに基づいて、人体200の状態を判定しているともいえる。
Here, the movement trajectory of the human body 200 is obtained based on the intrusion position of the human body 200 and the distance history. Therefore, it can be said that the recognition unit 128 determines the state of the human body 200 based on the intrusion position of the human body 200 and the distance history.
そして、認識部128は、検知領域100外へ人体200が脱出したか否かを判定する(S6)。認識部128が人体200の脱出を検出した場合、判定部12eは、上述のステップS1に戻る。
Then, the recognition unit 128 determines whether or not the human body 200 has escaped outside the detection area 100 (S6). When the recognition unit 128 detects the escape of the human body 200, the determination unit 12e returns to step S1 described above.
認識部128が人体200の脱出を検出していなければ、出力部12gは、判定部12eの判定結果に基づいて、設備機器2を制御する制御信号を出力するか否かを判定する(S7)。出力部12gが、判定部12eの判定結果に基づいて、制御信号を出力する必要がないと判断すれば、上述のステップS3に戻って測距部125が測距処理を行う。
If the recognition unit 128 has not detected the escape of the human body 200, the output unit 12g determines whether or not to output a control signal for controlling the equipment 2 based on the determination result of the determination unit 12e (S7). . If the output unit 12g determines that it is not necessary to output a control signal based on the determination result of the determination unit 12e, the process returns to step S3 and the distance measurement unit 125 performs the distance measurement process.
また、出力部12gは、判定部12eの判定結果に基づいて制御信号を出力する必要があると判断すれば、制御信号を出力する(S8)。
If the output unit 12g determines that it is necessary to output a control signal based on the determination result of the determination unit 12e, the output unit 12g outputs a control signal (S8).
設備機器2が自動ドアである場合、出力部12gは、自動ドアの開制御、閉制御などの制御信号を出力する。たとえば、出力部12gは、人体200が自動ドアへ接近するときに開制御の制御信号を出力し、その後、人体200が自動ドアからの離脱するとき閉制御の制御信号を出力する。また、出力部12gは、人体200が自動ドアの周辺を通過するとき、開制御の制御信号を出力せずに、自動ドアの閉状態を維持する。
When the equipment 2 is an automatic door, the output unit 12g outputs control signals such as automatic door opening control and closing control. For example, the output unit 12g outputs a control signal for opening control when the human body 200 approaches the automatic door, and then outputs a control signal for closing control when the human body 200 leaves the automatic door. Further, when the human body 200 passes around the automatic door, the output unit 12g does not output a control signal for opening control and maintains the closed state of the automatic door.
また、設備機器2が照明装置である場合、出力部12gは、照明装置の点灯、消灯、調光などの制御信号を出力する。たとえば、照明装置が玄関灯である場合、出力部12gは、人体200が玄関へ接近するときに点灯制御の制御信号を出力し、その後、人体200が玄関からの離脱するとき消灯制御の制御信号を出力する。また、出力部12gは、人体200が玄関の前を通過するとき、点灯制御の制御信号を出力せずに、玄関灯の消灯状態を維持する。
Further, when the equipment 2 is a lighting device, the output unit 12g outputs control signals such as lighting, extinguishing, and dimming of the lighting device. For example, when the lighting device is an entrance lamp, the output unit 12g outputs a control signal for lighting control when the human body 200 approaches the entrance, and then a control signal for extinguishing control when the human body 200 leaves the entrance. Is output. Further, when the human body 200 passes in front of the entrance, the output unit 12g does not output a control signal for lighting control, and keeps the entrance lamp off.
なお、設備機器2の種類および制御内容は、特定の設備機器2および制御内容に限定されない。
Note that the types of equipment 2 and the contents of control are not limited to specific equipment 2 and contents of control.
また、センサ11は、反射波の受信利得が受信方向に応じて変化するように構成されてもよい。具体的に、送信アンテナ11cは無指向性であり、受信アンテナ11dが指向性を有している。この場合、受信アンテナ11dは、図3の検知領域100を形成する指向性を有しており、反射波の受信方向によって利得を変えている。すなわち、受信アンテナ11dの指向性によって、検知領域100が形成される。
Further, the sensor 11 may be configured such that the reception gain of the reflected wave changes according to the reception direction. Specifically, the transmission antenna 11c is omnidirectional, and the reception antenna 11d is directional. In this case, the receiving antenna 11d has directivity that forms the detection region 100 of FIG. 3, and the gain is changed according to the reception direction of the reflected wave. That is, the detection area 100 is formed by the directivity of the receiving antenna 11d.
また、送信アンテナ11cおよび受信アンテナ11dの両方が指向性を有していてもよい。この場合、送信アンテナ11cおよび受信アンテナ11dの両方が、図3の検知領域100を形成する指向性を有している。
Further, both the transmitting antenna 11c and the receiving antenna 11d may have directivity. In this case, both the transmission antenna 11c and the reception antenna 11d have directivity that forms the detection region 100 of FIG.
また、本実施形態の変形例1を図8Aに示す。
Further, Modification 1 of the present embodiment is shown in FIG. 8A.
図8Aのセンサ11は、送信アンテナ11cの送信面に誘電体レンズ11fを備える。この場合、送信アンテナ11cおよび受信アンテナ11dは無指向性のアンテナである。そして、送信アンテナ11cが発した電波は、誘電体レンズ11fによって屈折し、電波の送信方向によって送信強度を変えている。すなわち、誘電体レンズ11fによって、検知領域100が形成されている。
8A includes a dielectric lens 11f on the transmission surface of the transmission antenna 11c. In this case, the transmission antenna 11c and the reception antenna 11d are omnidirectional antennas. The radio wave emitted from the transmission antenna 11c is refracted by the dielectric lens 11f, and the transmission intensity is changed depending on the transmission direction of the radio wave. That is, the detection region 100 is formed by the dielectric lens 11f.
また、本実施形態の変形例2を図8Bに示す。
Further, Modification 2 of the present embodiment is shown in FIG. 8B.
図8Bのセンサ11は、受信アンテナ11dの受信面に誘電体レンズ11gを備える。この場合、送信アンテナ11cおよび受信アンテナ11dは無指向性のアンテナである。そして、反射波は誘電体レンズ11gによって屈折し、反射波の受信方向によって利得が変わる。すなわち、誘電体レンズ11gによって、検知領域100が形成されている。
8B includes a dielectric lens 11g on the receiving surface of the receiving antenna 11d. In this case, the transmission antenna 11c and the reception antenna 11d are omnidirectional antennas. The reflected wave is refracted by the dielectric lens 11g, and the gain changes depending on the direction of reception of the reflected wave. That is, the detection region 100 is formed by the dielectric lens 11g.
また、図3に示す検知領域100の形状は、長円を短軸に沿った基準線501で2分割した一方のような形状である。しかし、検知領域100の形状として、長円を長軸で2分割した一方のような形状としてもよい。この場合、移動平面300の平面視においてセンサ11から見た方向が基準線502に対してずれるにしたがって、センサ11と検知領域100の外縁110との距離が連続的に増加する。さらに、検知領域100は、基準線502に対して非対称であってもよい。
Further, the shape of the detection region 100 shown in FIG. 3 is a shape like one obtained by dividing an ellipse into two by a reference line 501 along the short axis. However, the shape of the detection region 100 may be a shape obtained by dividing an ellipse into two along the major axis. In this case, the distance between the sensor 11 and the outer edge 110 of the detection region 100 continuously increases as the direction viewed from the sensor 11 in the plan view of the moving plane 300 deviates from the reference line 502. Further, the detection region 100 may be asymmetric with respect to the reference line 502.
以上のように、第1の態様の検知装置1は、センサ11と、判定部12eと、出力部12gとを備える。センサ11は、電波を送信し、電波が検知対象(たとえば人体200)で反射した反射波を受信して、検知対象までの距離に対応したセンサ信号を出力する。判定部12eは、センサ信号に基づいて検知対象の状態を判定する。出力部12gは、判定部12eの判定結果に基づく信号を出力する。センサ11は、検知対象が移動する移動平面300上において検知対象の検出感度が一定レベル以上となる領域を検知領域100とする。センサ11と検知領域100の外縁110との距離は、センサ11から見た方向に応じて変化している。判定部12eは、侵入判定部126と、履歴記憶部129と、認識部128とを有する。侵入判定部126が、信号強度が閾値以上である反射波をセンサ11が受信して、検知対象が検知領域100の外部から検知領域100の外縁110に到達したと判定したとする。この場合、侵入判定部126は、検知領域100の外縁110に到達した検知対象までの距離に基づいて、検知領域100の外縁110における検知対象の位置である侵入位置を判定する。履歴記憶部129は、侵入位置に存在する検知対象が検知領域100内に移動した場合、検知対象までの距離の時間的な変化である距離履歴を記憶する。認識部128は、侵入位置と距離履歴とに基づいて、検知対象の状態を判定する。
As described above, the detection device 1 according to the first aspect includes the sensor 11, the determination unit 12e, and the output unit 12g. The sensor 11 transmits a radio wave, receives a reflected wave reflected by the detection target (for example, the human body 200), and outputs a sensor signal corresponding to the distance to the detection target. The determination unit 12e determines the state of the detection target based on the sensor signal. The output unit 12g outputs a signal based on the determination result of the determination unit 12e. The sensor 11 sets the detection region 100 as a region where the detection sensitivity of the detection target is a certain level or higher on the moving plane 300 on which the detection target moves. The distance between the sensor 11 and the outer edge 110 of the detection region 100 changes according to the direction viewed from the sensor 11. The determination unit 12e includes an intrusion determination unit 126, a history storage unit 129, and a recognition unit 128. Assume that the intrusion determination unit 126 determines that the detection target has reached the outer edge 110 of the detection region 100 from the outside of the detection region 100 when the sensor 11 receives a reflected wave having a signal intensity equal to or greater than a threshold value. In this case, the intrusion determination unit 126 determines an intrusion position that is the position of the detection target at the outer edge 110 of the detection region 100 based on the distance to the detection target that has reached the outer edge 110 of the detection region 100. The history storage unit 129 stores a distance history that is a temporal change in the distance to the detection target when the detection target existing at the intrusion position moves into the detection region 100. The recognition unit 128 determines the detection target state based on the intrusion position and the distance history.
すなわち、検知装置1は、センサ11から見た方向に応じてセンサ11と検知領域100の外縁110との距離を変化させている。この結果、検知装置1は、検知領域100の外縁110に到達した人体200などの検知対象までの距離に基づいて、検知対象の侵入位置を判定することができる。そして、検知装置1は、侵入位置を判定された検知対象の以降の距離履歴に基づいて、侵入位置を起点とする検出対象の移動軌跡を生成する追跡処理を行うことができる。したがって、検知装置1は、電波式の1つのセンサ11を用いて、検知領域100における検知対象の接近、離脱、通過などの検知対象の状態を検知できる。
That is, the detection device 1 changes the distance between the sensor 11 and the outer edge 110 of the detection region 100 according to the direction viewed from the sensor 11. As a result, the detection apparatus 1 can determine the intrusion position of the detection target based on the distance to the detection target such as the human body 200 that has reached the outer edge 110 of the detection region 100. And the detection apparatus 1 can perform the tracking process which produces | generates the movement locus | trajectory of the detection target from the intrusion position based on the distance history after the detection target for which the intrusion position has been determined. Therefore, the detection apparatus 1 can detect the state of the detection target such as the approach, separation, and passage of the detection target in the detection region 100 using the single radio wave type sensor 11.
また、光学式のセンサを用いた場合、日光、車両のヘッドライト、照明などの光による誤検知が発生する可能性がある。しかし、検知装置1は、電波式のセンサ11を備えることによって、日光、車両のヘッドライト、照明などの光による誤検知を抑制できる。
In addition, when an optical sensor is used, there is a possibility that false detection due to light such as sunlight, vehicle headlights, and lighting may occur. However, the detection device 1 includes the radio wave type sensor 11, thereby suppressing erroneous detection due to light such as sunlight, vehicle headlights, and illumination.
また、第2の態様の検知装置1では、第1の態様において、センサ11は、電波を送信する送信アンテナ11c、および反射波を受信する受信アンテナ11dを備えている。そして、検知領域100は、送信アンテナ11cおよび受信アンテナ11dの少なくとも一方の指向性によって決定されていることが好ましい。
Also, in the detection device 1 of the second aspect, in the first aspect, the sensor 11 includes a transmission antenna 11c that transmits radio waves and a reception antenna 11d that receives reflected waves. The detection region 100 is preferably determined by the directivity of at least one of the transmission antenna 11c and the reception antenna 11d.
この場合、検知装置1は、アンテナの指向性によって検知領域100の形状を容易に設定できる。
In this case, the detection device 1 can easily set the shape of the detection region 100 according to the directivity of the antenna.
また、第3の態様の検知装置1では、第1の態様において、センサ11は、センサ11が送信した電波とセンサ11が受信する反射波との少なくとも一方を透過させる誘電体レンズ11f,11gの少なくとも一方を備えている。そして、検知領域100は、誘電体レンズ11f,11gの少なくとも一方の指向性によって決定されていることが好ましい。
Further, in the detection device 1 of the third aspect, in the first aspect, the sensor 11 includes the dielectric lenses 11f and 11g that transmit at least one of the radio wave transmitted by the sensor 11 and the reflected wave received by the sensor 11. At least one is provided. The detection region 100 is preferably determined by the directivity of at least one of the dielectric lenses 11f and 11g.
この場合、検知装置1は、誘電体レンズの電波屈折特性によって検知領域100の形状を容易に設定できる。
In this case, the detection device 1 can easily set the shape of the detection region 100 by the radio wave refraction characteristics of the dielectric lens.
また、第4の態様の検知装置1では、第1乃至第3のいずれか一つの態様において、検知領域100は、電波の電界強度が一定レベル以上となる領域であることが好ましい。
Further, in the detection device 1 of the fourth aspect, in any one of the first to third aspects, the detection region 100 is preferably a region where the electric field intensity of the radio wave is equal to or higher than a certain level.
この場合、検知装置1は、受信した反射波の信号強度(受信強度)が予め決められた検知閾値以上であれば、検出対象が検知領域100内に存在すると判断することができる。
In this case, the detection device 1 can determine that the detection target exists in the detection region 100 if the signal intensity (reception intensity) of the received reflected wave is equal to or greater than a predetermined detection threshold.
また、第5の態様の検知装置1では、第1乃至第4のいずれか一つの態様において、センサ11は、移動平面300の平面視においてセンサ11を通る基準方向(基準線502)に対して線対称の形状に検知領域100を設定することが好ましい。検知領域100は、基準方向に対する一方側および他方側のそれぞれにおいて、移動平面300の平面視においてセンサ11から見た方向が基準方向に対してずれるにしたがって、センサ11と検知領域100の外縁110との距離が連続的に増加または減少する。
Further, in the detection device 1 of the fifth aspect, in any one of the first to fourth aspects, the sensor 11 is relative to a reference direction (reference line 502) passing through the sensor 11 in a plan view of the moving plane 300. It is preferable to set the detection region 100 in a line-symmetric shape. The detection region 100 has a sensor 11 and an outer edge 110 of the detection region 100 as the direction viewed from the sensor 11 in a plan view of the moving plane 300 is shifted from the reference direction on each of one side and the other side with respect to the reference direction. The distance of increases or decreases continuously.
この場合、検知装置1は、検知領域100の形状を単純化できるので、検知領域100のサイズ、形状などの精度が向上する。
In this case, since the detection device 1 can simplify the shape of the detection region 100, the accuracy of the size and shape of the detection region 100 is improved.
また、第6の態様の検知装置1では、第1乃至第5のいずれか一つの態様において、センサ11は、周波数変調した電波を送信して、電波と反射波とに基づくビート信号をセンサ信号として出力することが好ましい。
In addition, in the detection device 1 of the sixth aspect, in any one of the first to fifth aspects, the sensor 11 transmits a frequency-modulated radio wave and outputs a beat signal based on the radio wave and the reflected wave as a sensor signal. It is preferable to output as
この場合、センサ11は、検知対象までの距離の情報を含むセンサ信号を出力することができる。
In this case, the sensor 11 can output a sensor signal including information on the distance to the detection target.
また、検知装置1は、マイクロコンピュータ等で構成されたコンピュータを搭載している。そして、このコンピュータがプログラムを実行することによって、周波数分析部12c、補正部12d、判定部12e、出力部12gの各機能が実現されることが好ましい。なお、検知装置1に搭載されるコンピュータは、プログラムに従って動作するプロセッサおよびインターフェースを主なハードウェア構成として備える。この種のプロセッサとしては、DSP(Digital Signal Processor)、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)等を含む。そして、プロセッサがプログラムを実行することによって、周波数分析部12c補正部12d、判定部12e、出力部12gの各機能を実現することができれば、その種類は問わない。
Moreover, the detection apparatus 1 is equipped with a computer composed of a microcomputer or the like. And it is preferable that each function of the frequency analysis part 12c, the correction | amendment part 12d, the determination part 12e, and the output part 12g is implement | achieved when this computer runs a program. The computer mounted on the detection apparatus 1 includes a processor and an interface that operate according to a program as main hardware configurations. This type of processor includes a DSP (Digital Signal Processor), a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), and the like. And if a processor can implement | achieve each function of the frequency analysis part 12c correction | amendment part 12d, the determination part 12e, and the output part 12g, the kind will not be ask | required.
また、プログラムの提供形態としては、コンピュータに読み取り可能なROM(Read Only Memory)、光ディスク等の記録媒体に予め格納されている形態、インターネット等を含む広域通信網を介して記録媒体に供給される形態等がある。
As a program providing form, a computer-readable ROM (Read Only Memory), a form stored in advance in a recording medium such as an optical disk, or the like is supplied to the recording medium via a wide area communication network including the Internet. There are forms.
すなわち、プログラムは、コンピュータを、補正部12d、判定部12e、出力部12gのそれぞれとして機能させることが好ましい。
That is, the program preferably causes the computer to function as each of the correction unit 12d, the determination unit 12e, and the output unit 12g.
なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
The above embodiment is an example of the present invention. For this reason, the present invention is not limited to the above-described embodiment, and various modifications can be made depending on the design and the like as long as the technical idea according to the present invention is not deviated from this embodiment. Of course, it is possible to change.
1 検知装置
2 設備機器
11 センサ
11c 送信アンテナ
11d 受信アンテナ
11f,11g 誘電体レンズ
12 信号処理部
12e 判定部
12g 出力部
126 侵入判定部
128 認識部
129 履歴記憶部
100 検知領域
110 外縁
200 人体(検知対象)
300 移動平面
502 基準線(基準方向) DESCRIPTION OF SYMBOLS 1Detection apparatus 2 Equipment 11 Sensor 11c Transmission antenna 11d Reception antenna 11f, 11g Dielectric lens 12 Signal processing part 12e Determination part 12g Output part 126 Intrusion determination part 128 Recognition part 129 History storage part 100 Detection area 110 Outer edge 200 Human body (Detection Target)
300 Moving plane 502 Reference line (reference direction)
2 設備機器
11 センサ
11c 送信アンテナ
11d 受信アンテナ
11f,11g 誘電体レンズ
12 信号処理部
12e 判定部
12g 出力部
126 侵入判定部
128 認識部
129 履歴記憶部
100 検知領域
110 外縁
200 人体(検知対象)
300 移動平面
502 基準線(基準方向) DESCRIPTION OF SYMBOLS 1
300 Moving plane 502 Reference line (reference direction)
Claims (6)
- 電波を送信し、前記電波が検知対象で反射した反射波を受信して、前記検知対象までの距離に対応したセンサ信号を出力するセンサと、
前記センサ信号に基づいて前記検知対象の状態を判定する判定部と、
前記判定部の判定結果に基づく信号を出力する出力部とを備え、
前記センサは、前記検知対象が移動する移動平面上において前記検知対象の検出感度が一定レベル以上となる領域を検知領域とし、前記センサと前記検知領域の外縁との距離は、前記センサから見た方向に応じて変化しており、
前記判定部は、
信号強度が閾値以上である前記反射波を前記センサが受信して、前記検知対象が前記検知領域の外部から前記検知領域の外縁に到達したと判定した場合、前記検知領域の外縁に到達した前記検知対象までの距離に基づいて、前記検知領域の外縁における前記検知対象の位置である侵入位置を判定する侵入判定部と、
前記侵入位置に存在する前記検知対象が前記検知領域内に移動した場合、前記検知対象までの距離の時間的な変化である距離履歴を記憶する履歴記憶部と、
前記侵入位置と前記距離履歴とに基づいて、前記検知対象の状態を判定する認識部とを有する
ことを特徴とする検知装置。 A sensor that transmits a radio wave, receives a reflected wave reflected by the detection target, and outputs a sensor signal corresponding to the distance to the detection target;
A determination unit that determines a state of the detection target based on the sensor signal;
An output unit that outputs a signal based on the determination result of the determination unit,
The sensor has a detection area in which a detection sensitivity of the detection target is a certain level or higher on a moving plane on which the detection target moves, and a distance between the sensor and an outer edge of the detection area is viewed from the sensor. Depending on the direction,
The determination unit
When the sensor receives the reflected wave having a signal intensity equal to or higher than a threshold value and determines that the detection target has reached the outer edge of the detection region from the outside of the detection region, the sensor reaches the outer edge of the detection region. Based on the distance to the detection target, an intrusion determination unit that determines an intrusion position that is the position of the detection target at the outer edge of the detection area;
A history storage unit that stores a distance history that is a temporal change in the distance to the detection target when the detection target at the intrusion position moves into the detection area;
And a recognition unit that determines a state of the detection target based on the intrusion position and the distance history. - 前記センサは、前記電波を送信する送信アンテナ、および前記反射波を受信する受信アンテナを備えており、前記検知領域は、前記送信アンテナおよび前記受信アンテナの少なくとも一方の指向性によって決定されていることを特徴とする請求項1記載の検知装置。 The sensor includes a transmission antenna that transmits the radio wave and a reception antenna that receives the reflected wave, and the detection area is determined by directivity of at least one of the transmission antenna and the reception antenna. The detection device according to claim 1.
- 前記センサは、前記センサが送信した前記電波と前記センサが受信する前記反射波との少なくとも一方を透過させる誘電体レンズを備えており、前記検知領域は、前記誘電体レンズの指向性によって決定されていることを特徴とする請求項1記載の検知装置。 The sensor includes a dielectric lens that transmits at least one of the radio wave transmitted by the sensor and the reflected wave received by the sensor, and the detection region is determined by directivity of the dielectric lens. The detection device according to claim 1, wherein:
- 前記検知領域は、前記電波の電界強度が一定レベル以上となる領域であることを特徴とする請求項1から請求項3のいずれか一項に記載の検知装置。 The detection device according to any one of claims 1 to 3, wherein the detection region is a region where the electric field intensity of the radio wave is equal to or higher than a certain level.
- 前記センサは、平面視において前記センサを通る基準方向に対して線対称の形状に前記検知領域を設定し、
前記検知領域は、前記基準方向に対する一方側および他方側のそれぞれについて、平面視において前記センサから見た方向が前記基準方向に対してずれるにしたがって、前記センサと前記検知領域の外縁との距離が連続的に増加または減少する
ことを特徴とする請求項1から請求項4のいずれか一項に記載の検知装置。 The sensor sets the detection region in a line-symmetric shape with respect to a reference direction passing through the sensor in plan view,
The detection area has a distance between the sensor and the outer edge of the detection area as the direction viewed from the sensor in a plan view is shifted from the reference direction for each of one side and the other side with respect to the reference direction. The detection device according to any one of claims 1 to 4, wherein the detection device continuously increases or decreases. - 前記センサは、周波数変調した前記電波を送信して、前記電波と前記反射波とに基づくビート信号を前記センサ信号として出力することを特徴とする請求項1から請求項5のいずれか一項に記載の検知装置。 6. The sensor according to claim 1, wherein the sensor transmits the frequency-modulated radio wave and outputs a beat signal based on the radio wave and the reflected wave as the sensor signal. The detection device described.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018504374A JP6745489B2 (en) | 2016-03-09 | 2017-02-27 | Detector |
CN201780016077.XA CN108713155A (en) | 2016-03-09 | 2017-02-27 | Detection device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016046290 | 2016-03-09 | ||
JP2016-046290 | 2016-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017154623A1 true WO2017154623A1 (en) | 2017-09-14 |
Family
ID=59789290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/007270 WO2017154623A1 (en) | 2016-03-09 | 2017-02-27 | Sensing apparatus |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6745489B2 (en) |
CN (1) | CN108713155A (en) |
WO (1) | WO2017154623A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112505674A (en) * | 2020-12-17 | 2021-03-16 | 广东蓝水花智能电子有限公司 | Automatic door control method and system based on FMCW microwave inductor |
CN112462357B (en) * | 2020-12-17 | 2024-04-30 | 广东蓝水花智能电子有限公司 | Automatic door control method and automatic door control system based on FMCW principle |
CN113622786B (en) * | 2021-08-04 | 2022-11-11 | 上海炬佑智能科技有限公司 | Automatic door control method, system and equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07110375A (en) * | 1993-10-13 | 1995-04-25 | Opt Kk | Object detection sensor using dielectric lens |
JPH08327731A (en) * | 1995-05-31 | 1996-12-13 | Fujitsu Ten Ltd | Method for detecting azimuth by radar, azimuth detecting radar equipment and collision avoidance device for automobile |
JP2010002389A (en) * | 2008-06-23 | 2010-01-07 | Fujitsu Ten Ltd | Signal processing device, radar device, and signal processing method |
-
2017
- 2017-02-27 JP JP2018504374A patent/JP6745489B2/en active Active
- 2017-02-27 CN CN201780016077.XA patent/CN108713155A/en not_active Withdrawn
- 2017-02-27 WO PCT/JP2017/007270 patent/WO2017154623A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07110375A (en) * | 1993-10-13 | 1995-04-25 | Opt Kk | Object detection sensor using dielectric lens |
JPH08327731A (en) * | 1995-05-31 | 1996-12-13 | Fujitsu Ten Ltd | Method for detecting azimuth by radar, azimuth detecting radar equipment and collision avoidance device for automobile |
JP2010002389A (en) * | 2008-06-23 | 2010-01-07 | Fujitsu Ten Ltd | Signal processing device, radar device, and signal processing method |
Also Published As
Publication number | Publication date |
---|---|
CN108713155A (en) | 2018-10-26 |
JPWO2017154623A1 (en) | 2019-01-24 |
JP6745489B2 (en) | 2020-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4593468B2 (en) | Radar equipment | |
JP5874824B2 (en) | Radar device, angle verification method | |
CN105093213B (en) | The radar system distinguished with improved multiple target | |
KR20160144729A (en) | Apparatur for processing signal of radar and method for processing signal thereof | |
JP6827216B2 (en) | Detection device and control system | |
JP5992574B1 (en) | Object detection device | |
JP6745489B2 (en) | Detector | |
JP2009271086A (en) | Radar device | |
US20160299216A1 (en) | Axial misalignment determination apparatus | |
JP2017203751A (en) | Radio wave sensor and facility apparatus equipped with radio wave sensor | |
US20180156909A1 (en) | Direction error detection method and apparatus using estimated directions, and in-vehicle radar apparatus | |
US20130241763A1 (en) | Radar device | |
JP6111506B2 (en) | Sensor device | |
KR20190070088A (en) | Radar sensor and method of detecting object | |
JP2017134012A (en) | Vehicle detection device, vehicle detection device control method and vehicle detection program | |
JP2017161368A (en) | Detector | |
JP3446669B2 (en) | Detecting method and detecting device | |
JP2012168119A (en) | Radar device | |
Riid et al. | An application of a low-cost microwave radar to traffic monitoring | |
JP2017161367A (en) | Detector | |
JP2018141763A (en) | Detector and control system | |
JP2018116028A (en) | Radar device and road surface detection method | |
WO2021241501A1 (en) | Radio wave sensor, object detection method, and setting method | |
JP2007040895A (en) | Crime preventive sensor | |
WO2022249552A1 (en) | Information processing device and information processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018504374 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17762963 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17762963 Country of ref document: EP Kind code of ref document: A1 |