[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017150323A1 - Location estimation system - Google Patents

Location estimation system Download PDF

Info

Publication number
WO2017150323A1
WO2017150323A1 PCT/JP2017/006772 JP2017006772W WO2017150323A1 WO 2017150323 A1 WO2017150323 A1 WO 2017150323A1 JP 2017006772 W JP2017006772 W JP 2017006772W WO 2017150323 A1 WO2017150323 A1 WO 2017150323A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio signal
flight
condition
position estimation
satisfying
Prior art date
Application number
PCT/JP2017/006772
Other languages
French (fr)
Japanese (ja)
Inventor
三浦 龍
滝沢 賢一
原 晋介
文枝 小野
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Publication of WO2017150323A1 publication Critical patent/WO2017150323A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders

Definitions

  • the present invention relates to a position estimation system that estimates the position of an object that is stationary or slightly moving.
  • the present invention is not limited to the case where the measurement target is a human being, and a technique for accurately estimating the current position of a wild animal is also required in order to perform an ecological exploration of, for example, a wild animal with high accuracy.
  • a radio signal transmitted from a stationary object is received by the moving object, and the position from the moving object to the object is determined based on information obtained from the received signal.
  • a technique for estimating a position by obtaining a distance and an angle has also been proposed (see, for example, Patent Document 1). For example, by assuming that the oscillation frequency of a radio signal transmitted from an object is known and the speed of the moving object is known, the frequency of the radio signal received at an arbitrary position of the moving object is measured. The angle from the moving object to the object can be estimated based on the Doppler shift amount. By performing these processes at a plurality of locations, the position of the object can also be estimated.
  • the oscillation frequency of the radio signal transmitted from the object can be easily detected if the signal is received when the moving object is stationary, and the position and traveling direction of the moving object can be easily determined using GPS or the like. Can be obtained. However, it is actually difficult to accurately measure the moving speed of the moving body at the measurement position and the Doppler shift amount of the radio signal.
  • the present invention has been devised in view of the above-described problems, and the object of the present invention is to perform a step of accurately measuring the moving speed of the moving body and the Doppler shift amount of the radio signal.
  • An object of the present invention is to provide a position estimation system capable of estimating the position of an object and capable of remarkably improving the estimation accuracy.
  • the present inventors have invented a position estimation system having the following configuration.
  • a position estimation system is a position estimation system for estimating the position of an object that is stationary or slightly moving, and in the process of flying on a flight trajectory that can be controlled from the outside.
  • a vehicle that continuously receives a radio signal transmitted from a signal transmitter attached to the vehicle, three-dimensional position information of each position on the flight trajectory of the aircraft, and 3 of the flight trajectory at the position.
  • the vehicle position information detecting means for detecting a dimensional direction vector, the observation means for observing the relative change tendency of the data relating to the radio signal received by the flying object with respect to the position, and the observation means A condition satisfying position in which the relative change tendency of data satisfies a preset condition is obtained, and three-dimensional position information at the condition satisfying position and A position estimation means for acquiring a direction vector from the flying object position information acquisition means and substituting it into a plane equation, wherein the position estimation means performs the observation in the process of flying the flying objects on different flight trajectories.
  • the position satisfying the condition is obtained at three or more locations from the relative change tendency observed three times or more from the means, and the three-dimensional position information and the direction vector at each position satisfying the condition are substituted.
  • the position of the object is estimated based on an equation of two or more planes.
  • the position estimation system according to a second invention is the position estimation system according to the first invention, wherein the position estimation means determines the position closest to the object from the relative change tendency of the data observed by the observation means. It is characterized by being a condition satisfying position.
  • the observation means observes a relative change tendency of the propagation delay amount as data relating to the radio signal, and the position estimation means is determined by the observation means.
  • the position where the observed propagation delay amount is minimized is the position satisfying the above condition.
  • the observation means observes a relative change tendency of the received power of the radio signal as data relating to the radio signal, and the position estimation means comprises the observation The position where the received power observed by the means is maximized is the position satisfying the above condition.
  • the observation means observes a relative change tendency of the frequency of the radio signal as data relating to the radio signal, and the position estimation means is the target object. with previously to obtain frequency f 0 of the outgoing radio signals from the observed frequency by the observation means, characterized in that the above conditions satisfying position comes closest position to the frequency f 0.
  • the position estimation system is the position estimation system according to the first aspect, wherein the observation unit continues to acquire data relating to a radio signal until the condition-satisfying position can be detected. After the condition satisfying position can be detected, the flight is changed to another flight trajectory and continues to fly.
  • the signal is transmitted in the direction of 90 ° from the flight direction only by following the relative change tendency of the data related to the radio signal observed by the observation unit 33. It is possible to specify a condition satisfying position on the flight trajectory k where the position U of the aircraft 20 exists. Then, substituting the three-dimensional position information and the direction vector at the condition satisfying position into the plane equation is repeated three or more times between different flight trajectories to estimate the position of the object. be able to.
  • the position estimation system 10 to which the present invention is applied includes a signal transmitter 20 and an aircraft 30 as shown in FIG.
  • FIG. 2A shows the configuration of the signal transmitter 20.
  • the signal transmitter 20 includes a signal generation unit 21 that generates a signal having a predetermined frequency, and an antenna 22 connected to the signal generation unit 21.
  • a signal having a predetermined frequency generated by the signal generation unit 21 is converted into a radio wave by the antenna 22 and transmitted in all directions.
  • the radio wave transmitted from the antenna 22 is referred to as a radio signal.
  • the signal transmitter 20 includes the signal generation unit 21 and the antenna 22 and may be embodied in any form as long as it transmits a radio signal having a predetermined frequency.
  • it may be embodied as a beacon transmitter that transmits only a beacon, or can perform wireless communication such as a mobile phone, a smartphone, a wearable terminal, a tablet terminal, or a personal computer (PC). It may be embodied as a communication terminal.
  • This signal transmitter 20 is carried or attached to a target whose position is actually to be estimated. If the object whose position is to be estimated is a person such as an elderly person or a child, the person carries the signal transmitter 20. If the object whose position is to be estimated is an animal, the signal transmitter 20 is attached to the animal.
  • the signal transmitter 20 is not limited to the case where it is attached to such a freely moving life form, and may be attached to a plant such as a tree.
  • the signal transmitter 20 may be attached to a non-life object such as a building structure, a building material, a stone, a road, a bridge, a tunnel, or various infrastructures.
  • the object to which the signal transmitter 20 is attached is assumed to be stationary at the time of position estimation by the position estimation system 10 to which the present invention is applied, but is not limited to this and moves slightly. There may be.
  • the position estimation system 10 to which the present invention is applied is a system for accurately detecting the position of the signal transmitter 20 and for grasping the position of the target to which the signal transmitter 20 is actually attached. It is.
  • the flying object 30 is an arbitrary flying object capable of autonomous flight.
  • the flying body 30 is embodied by a fixed wing aircraft, a rotary wing aircraft, an airship, a balloon, a drone, an unmanned aerial vehicle (UAV), a helicopter, an airplane, or the like.
  • the flying object 30 may be an unmanned person that is not boarded by humans, or may be capable of boarding humans. However, it is assumed that the flying object 30 does not fly at random, but its flight trajectory can be controlled from the outside.
  • FIG. 2B shows the configuration of the flying object 30.
  • the flying object 30 includes an airframe control unit 31, a radio signal receiving unit 32 connected to the antenna 29, an observation unit 33 connected to the radio signal receiving unit 32, an information detection unit 34, an observation unit 33, and information.
  • a position estimation unit 35 connected to the detection unit 34, an operation unit 36 and a control signal reception unit 37 connected to the airframe control unit 31, an information storage unit 38 and an estimated information transmission unit connected to the position estimation unit 35 39.
  • the aircraft control unit 31 controls the propulsion system and the steering system (both not shown) of the flying object 30 based on the flight trajectory and flight control commands specified in the flight plan input in advance.
  • the body control unit 31 acquires these flight plans and flight control commands via the operation unit 36 or the control signal receiving unit 37.
  • the airframe control unit 31 specifies the flight trajectory by specifying the flight altitude and the flight direction based on these flight plans and flight control commands, and can fly at the specified altitude and coordinates. .
  • the aircraft control unit 31 also designates the flight speed based on these flight plans and flight control commands.
  • the operation unit 36 is a user interface for the user to actually input a flight plan and a flight control command.
  • the operation unit 36 includes a keyboard, buttons, a touch panel, a mouse, a switch, and the like.
  • a control stick is used. Or cockpit.
  • the flight plan and flight control command input via the operation unit 36 are sent to the airframe control unit 31, and the flight trajectory and the like of the aircraft 30 are determined along this.
  • the control signal receiving unit 37 is a device for receiving a flight plan and a flight control command transmitted via a controller (not shown) or a base station (not shown) that is operated remotely. These flight plans and flight control commands are transmitted from the outside by wired communication or wireless communication. If these flight control commands and the like are transmitted by wireless communication, the control signal receiving unit 37 is configured as an antenna for receiving them.
  • the control signal receiving unit 37 transmits a flight plan and a flight control command to the airframe control unit 31.
  • the body control unit 31 receives the flight plan and the flight control command, and determines the flight trajectory of the flying body 30 according to the flight plan and the flight control command.
  • the flying object 30 is controlled not to fly in an arbitrary flight trajectory because the flight altitude and flight direction are controlled based on a flight control command or the like input based on the user's intention. It will fly in the flight trajectory according to the intention. That is, it is assumed that the flight trajectory of the flying object 30 is controlled from the outside.
  • the radio signal receiving unit 32 receives a radio signal transmitted from the signal transmitter 20 via the antenna 29.
  • the radio signal receiving unit 32 outputs the received radio signal to the observation unit 33.
  • the observation unit 33 observes the data related to the radio signal transmitted from the radio signal reception unit 32 based on various observation criteria.
  • the data related to the radio signal herein may be any data as long as it relates to the radio signal, and includes, for example, the propagation delay amount (propagation delay time), received power, frequency, and the like of the radio signal.
  • the observation unit 33 obtains data related to the radio signal and then continues to observe the change tendency in a time series.
  • the observation unit 33 notifies the position estimation unit 35 of the observation result of the data related to the radio signal.
  • the information detection unit 34 is a part for detecting various information in the flying object 30.
  • the information detection unit 34 includes one or a plurality of measuring instruments, for example, an apparatus for determining the engine speed, an attitude sensor, an altimeter, an acceleration sensor, an airspeed meter, a magnetic compass, and a gyrocompass. It is composed of compass and the like.
  • the information detection unit 34 may be a person having a GPS (Global Positioning System) device in order to detect the position information of the flying object 30 at the present time. In this GPS device, the latitude, longitude, altitude, and time information of the aircraft 30 at the current time are acquired.
  • GPS Global Positioning System
  • a satellite positioning system other than the GPS device may be used.
  • a radio timepiece other than the GPS device may be used.
  • the information detection unit 34 having these measuring instruments and devices, at least three-dimensional position information of each position on the flight trajectory of the flying object 30 can be acquired.
  • a three-dimensional direction vector of the flight trajectory at the position can be detected.
  • the information detection unit 34 detects this direction vector using, for example, a GPS or a geomagnetic sensor.
  • the information detection unit 34 transmits at least the acquired three-dimensional position information of each position on the flight trajectory of the flying object 30 and the three-dimensional direction vector of the flight trajectory at the position to the position estimation unit 35.
  • the position estimation unit 35 receives the observation result of the data related to the radio signal from the observation unit 33. Further, the position estimation unit 35 receives the three-dimensional position information of each position on the flight trajectory of the flying object 30 and the three-dimensional direction vector of the flight trajectory at the position from the information detection unit 34. The position estimation unit 35 estimates the position of the signal transmitter 20 while referring to the position information and the direction vector based on the observation result of the data. Details of the position estimation will be described later. The position estimation unit 35 outputs the estimated position of the signal transmitter 20 to the information storage unit 38 and / or the estimated information transmission unit 39.
  • the information storage unit 38 includes a semiconductor memory element such as (Flash Memory), a storage device such as a hard disk and an optical disk, and the like.
  • the information storage unit 38 stores information regarding the estimated position of the signal transmitter 20 transmitted from the position estimation unit 35.
  • the information storage unit 38 also stores the observation result of the data related to the radio signal transmitted from the observation unit 33 and the position information and the direction vector transmitted from the information detection unit 34 as necessary.
  • Information relating to the estimated position of the signal transmitter 20 stored in the information storage unit 38, observation results of data relating to radio signals, position information and direction vectors are read out as needed under the control of the position estimating unit 35 and the like.
  • the estimated information transmitting unit 39 transmits information on the estimated position of the signal transmitter 20 transmitted from the position estimating unit 35 to an external base station, a controller, etc. (not shown) through wireless communication or wired communication.
  • the flying object 30 spans the flight trajectories 1, 2, 3,... K,. Let it fly.
  • the flying body 30 continues to receive a radio signal having a frequency f 0 [Hz] transmitted from the signal transmitter 20 in the process of flying in each flight trajectory k.
  • the flying object 30 estimates the position of the signal transmitter 20 located in the 90 ° direction with respect to the direction of the flight trajectory by observing data regarding the received radio signal.
  • the coordinates U of the signal transmitter 20 are located at 90 ° with respect to the direction of the flight trajectory at Q 1 .
  • the U of the signal transmitter 20 is located at 90 ° with respect to the direction of the flight trajectory at Q 2 .
  • the U of the signal transmitter 20 is located at 90 ° with respect to the direction of the flight trajectory at Q k .
  • FIG. 4 shows an example in which one flying trajectory k is caused to fly by the flying object 30.
  • the direction vector d k [a k , b k , c k ] indicates the flight direction of the flying object 30 at the position Q k on the flight trajectory k, and the direction that forms 90 ° from the position Q k. Therefore, the position U of the signal transmitter 20 exists.
  • the operation of searching for the position Q k on the flight trajectory k where the position U of the transmitter 20 exists will be performed.
  • FIG. 5 an example in which a radio signal transmitted from the signal transmitter 20 is received while the flying object 30 is flying on the flight trajectory k set linearly is shown.
  • the position Q k-2 is the closest to the position U.
  • the position is the position Q k-2 .
  • the position Q k-2 on the flight trajectory k closest to the position U is analyzed via a radio signal transmitted from the signal transmitter 20.
  • the received power since the distance from the position U gradually increases until the flying object 30 reaches the position Q k-3 from the position Q k-2 , the received power gradually decreases accordingly. As a result, the peak of the received power appears just at the position Q k-2 .
  • the flight trajectory in which the position U of the signal transmitter 20 exists in the direction of 90 ° from the flight direction d k [a k , b k , c k ] simply by following the relative change tendency of the received power.
  • a position Q k on k hereinafter, a position Q k satisfying such a condition is referred to as a condition satisfying position).
  • Show. 6A shows the propagation delay amount as data related to the radio signal constituting the vertical axis
  • FIG. 6B shows the received power described above as data related to the radio signal constituting the vertical axis
  • FIG. Respectively assign reception frequencies as data relating to radio signals constituting the vertical axis.
  • a position Q k at which the propagation delay amount is minimum is a condition satisfying position.
  • the position Q k at which the reception power is maximized is the condition satisfaction position as described above.
  • the frequency of the radio signal is observed and the frequency is transmitted from the signal transmitter 20 to the frequency f 0.
  • the position closest to is the condition satisfaction position.
  • the method for obtaining the condition satisfaction position is not limited to these, and may be obtained based on any other method.
  • any method can be used as long as other data capable of identifying the distance from the position U is observed from the radio signal, and the condition satisfying position where the distance is closest can be identified from the relative change tendency. It may be a thing.
  • the relative change tendency of the observed data is followed, and a condition satisfying a preset condition, such as a condition of being closest to the frequency f 0 as shown in FIG. Any other method may be applied as long as it is.
  • this equation (2) has three variables X, Y, and Z, a solution for these variables X, Y, and Z cannot be obtained unless there are at least three such plane equations in total. It will be.
  • the three-dimensional coordinates U [X, Y, Z] of this U are based on the above-described method, and the equation of the plane of the equation (2) is created for each plane P 1 , P 2 , P k , and the simultaneous It can be obtained by solving the equation.
  • the signal transmitter 20 is attached in advance to an object for position estimation.
  • the signal generator 21 in the signal transmitter 20 generates a signal having a frequency f 0 constantly or intermittently. This generated signal is transmitted as a radio signal through the antenna 22 constantly or intermittently.
  • the user of the position estimation system 10 inputs a flight plan or a flight control command by operating the operation unit 36 or via a base station or a controller (not shown). Thereby, the flight trajectory of the flying object 30 can be controlled on the user side.
  • the aircraft control unit 31 that has received the flight control command or the like causes the aircraft 30 to fly toward the flight path k based on the command.
  • the information detection unit 34 At least three-dimensional position information of the position of the flying object 30 on the flight trajectory and the three-dimensional direction of the flight trajectory at the position.
  • the vector is continuously acquired and is output to the position estimation unit 35.
  • the wireless signal transmitted from the antenna 22 of the signal transmitter 20 is received by the wireless signal receiving unit 32 via the antenna 29 in the flying object 30, and further It is sent to the observation unit 33.
  • the observation unit 33 observes any data including the reception voltage, the propagation delay time, and the frequency from the radio signal.
  • the relative estimation tendency of the data regarding the radio signal observed by the observation unit 33 is sequentially input to the position estimation unit 35.
  • three-dimensional position information and a three-dimensional direction vector of the flight trajectory k at the position are input from the information detection unit 34 to each position on the flight trajectory k.
  • the user of the position estimation system 10 sets the flight path to be different from the above-described flight path k by operating the operation unit 36 or via a base station or a controller (not shown). Then, the flying object 30 is caused to fly and the same operation as described above is performed. By executing this three or more times, a change tendency of data regarding the relative radio signal is acquired three or more times from the observation unit 33 via the flying object 30 that has been flying on different flight trajectories k. It is possible to obtain three or more conditions satisfying conditions. In addition, it is possible to obtain three or more plane equations into which three-dimensional position information and direction vectors at each condition-satisfying position are substituted, and by solving this, it is possible to estimate the position U of the object. Become.
  • the signal in the direction of 90 ° from the flight direction can be obtained only by following the relative change tendency of the data related to the radio signal observed by the observation unit 33. It is possible to specify a condition satisfying position on the flight trajectory k where the position U of the transmitter 20 exists. Then, substituting the three-dimensional position information and the direction vector at the condition satisfying position into the plane equation is repeated three or more times between different flight trajectories to estimate the position of the object. be able to.
  • the position estimation unit 35 may estimate the position U of the object and then store it in the information storage unit 38 or display it on a display screen (not shown). Alternatively, the position estimation unit 35 may transmit the estimated position U of the target object via an estimation information transmission unit 39 to an external base station or controller (not shown) via wireless communication or wired communication.
  • the three-dimensional direction vector d k [a k , b k , c k ] of the flight trajectory k is detected by the information detection unit 34 and is sent to the position estimation unit 35.
  • the case of transmission has been described as an example, but the present invention is not limited to this.
  • a direction vector d k can be specified based on a flight plan or flight control command input by the user from the operation unit 36 or the like, it may be obtained by providing it to the position estimation unit 35. .
  • the moving speed of the flying object 30 is measured by the information detecting unit 34, or the moving speed of the object is measured by a measuring means (not shown), and this is stored in the information storing unit 38,
  • the number of flight trajectories k may be determined based on one or more of the moving speed of 30 and the moving speed of the object.
  • one or more of the observation unit 33 and the position estimation unit 35 may be mounted in an external base station or controller (not shown) instead of being provided in the aircraft 30.
  • the radio signal receiving unit 32 when a radio signal is received by the radio signal receiving unit 32, it is transmitted to a base station or a controller (not shown) via the estimation information transmitting unit 39, and an observation unit mounted therein 33, the position is estimated via the position estimation unit 35.
  • the flight trajectory k of the air vehicle 30 is a straight line.
  • the flight trajectory k is switched from the flight trajectory k to another flight trajectory k + 1, although it may be made to take off and land each time, it may be switched by changing the flight trajectory of the flying object 30 on the way.
  • the flying object 30 when the position where the condition is satisfied is followed by the position of the received power as shown in FIG. 6B, if the received power is measured and if this continues to decrease as the flying object 30 advances, the flying object 30 It means that it is gradually separated from the condition satisfaction position. In such a case, even if the flying object 30 continues to fly on the flight trajectory, it cannot reach the condition satisfying position where the received power is maximized, so the flight of the flying object 30 on the flight trajectory is stopped.
  • the flying object 3 will continue to fly on its flight path. During the flight, the flying object 3 continues to detect the received power. As a result, when the received power that has been raised up until now as the flying object 30 starts to decrease, the peak as shown in FIG. It means that the position has appeared. Such a peak position corresponds to the above-mentioned condition satisfaction position. At the stage where the condition satisfaction position can be specified, the flying object 30 can change to another flight trajectory and perform the same observation.
  • the flying object 30 appears until a position where the propagation delay amount is minimized appears.
  • the flight may be continued, or the flight may be continued until the position where the observed frequency is closest to the frequency f 0 can be identified.
  • data relating to a radio signal is continuously acquired in real time, whether or not a condition satisfying position appears is determined while flying the flying object 30, and the flight trajectory is maintained until the condition satisfying position can be confirmed. You may make it fly linearly. Then, the flying object 30 may be changed to another flight trajectory after the observation unit 33 can confirm the condition satisfaction position, and may continue to fly as it is. In other words, whether or not the condition satisfaction position is specified may be used for the determination of the flight trajectory change.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The present invention can estimate the location of a target object without proceeding through a step for accurately measuring the Doppler shift, etc. of wireless signals and, for the improvement of the precision of the estimations thereof, comprises: a flying body 30 that, in the process of flying an externally controllable flight trajectory, continuously receives wireless signals transmitted from a signal transmitter 20 that is attached to a target object; an observation unit 33 that observes trends in changes, relative to position, in data related to the wireless signals received by the flying body 30; and a location estimation unit 35 that finds condition-satisfying locations at which the observed relative trends in changes in the data satisfy preset conditions, that, in the process of the flying body 30 being made to fly different flight trajectories, finds at least 3 condition-satisfying locations from relative trends in changes from at least 3 observations made by the observation unit 33, and estimates the location of the target object on the basis of at least 3 plane equations into which have been respectively incorporated three-dimensional position information and a directional vector for the condition-satisfying locations.

Description

位置推定システムPosition estimation system
 本発明は、静止状態にあるか又は僅かに移動する対象物の位置を推定する位置推定システムに関するものである。 The present invention relates to a position estimation system that estimates the position of an object that is stationary or slightly moving.
 近年において、徘徊のために行方がわからなくなった高齢者の探索や、遭難者の探索を行うために、人間の現在位置を正確に推定するための技術に対する社会的なニーズが高まっている。また測定対象が人間である場合に限定されること無く、例えば野生動物等の生態探査を高精度に行うため、野生動物の現在位置を正確に推定する技術も求められている。 In recent years, there has been an increasing social need for technology for accurately estimating the current position of a person in order to search for an elderly person who has lost his or her whereabouts due to drought or to search for a victim. In addition, the present invention is not limited to the case where the measurement target is a human being, and a technique for accurately estimating the current position of a wild animal is also required in order to perform an ecological exploration of, for example, a wild animal with high accuracy.
 その推定の確実性を向上させるために、静止状態にある対象物から発信される無線信号を移動体により受信し、その受信信号から得られる情報に基づいて当該移動体の位置から対象物までの距離や角度を求めることで位置推定する技術も提案されている(例えば、特許文献1参照。)。例えば、対象物から発信される無線信号の発振周波数が既知で、かつ移動体の速度が既知である場合を仮定したとき、移動体の任意の位置で受信した無線信号の周波数を測定することにより、そのドップラーシフト量に基づいて移動体から対象物までの角度を推定することができる。これらのプロセスを複数個所で行うことにより、対象物の位置も推定できる。 In order to improve the certainty of the estimation, a radio signal transmitted from a stationary object is received by the moving object, and the position from the moving object to the object is determined based on information obtained from the received signal. A technique for estimating a position by obtaining a distance and an angle has also been proposed (see, for example, Patent Document 1). For example, by assuming that the oscillation frequency of a radio signal transmitted from an object is known and the speed of the moving object is known, the frequency of the radio signal received at an arbitrary position of the moving object is measured. The angle from the moving object to the object can be estimated based on the Doppler shift amount. By performing these processes at a plurality of locations, the position of the object can also be estimated.
特公平7-117580号公報Japanese Patent Publication No.7-1117580
 しかしながら、この特許文献1の開示技術によれば、移動体が任意の位置において位置推定の対象物までの角度を推定しようとする場合、対象物から発振される無線信号の発振周波数に加え、無線信号を受信した位置や当該位置における移動体の移動方向、更に当該位置における移動速度を正確に検知する必要がある。さらにこの特許文献1の開示技術によれば、かかる位置推定を行うためには、ドップラーシフト量も正確に測定する必要がある。 However, according to the technique disclosed in Patent Document 1, when the moving body tries to estimate the angle to the target of position estimation at an arbitrary position, in addition to the oscillation frequency of the radio signal oscillated from the target, It is necessary to accurately detect the position where the signal is received, the moving direction of the moving body at the position, and the moving speed at the position. Furthermore, according to the technique disclosed in Patent Document 1, it is necessary to accurately measure the Doppler shift amount in order to perform such position estimation.
 対象物から発信される無線信号の発振周波数は、移動体が静止している場合に信号を受信すれば容易に検知することができ、また移動体の位置と進行方向はGPS等を用いれば簡単に取得することができる。しかしながら、移動体の測定位置での移動速度と、無線信号のドップラーシフト量を正確に測定することは実際のところ困難である。 The oscillation frequency of the radio signal transmitted from the object can be easily detected if the signal is received when the moving object is stationary, and the position and traveling direction of the moving object can be easily determined using GPS or the like. Can be obtained. However, it is actually difficult to accurately measure the moving speed of the moving body at the measurement position and the Doppler shift amount of the radio signal.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、移動体の移動速度と、無線信号のドップラーシフト量を正確に測定するステップを経ることなく対象物の位置を推定することができ、その推定精度を格段に向上させることが可能な位置推定システムを提供することにある。 Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to perform a step of accurately measuring the moving speed of the moving body and the Doppler shift amount of the radio signal. An object of the present invention is to provide a position estimation system capable of estimating the position of an object and capable of remarkably improving the estimation accuracy.
 本発明者らは、上述した課題を解決するために、以下の構成からなる位置推定システムを発明した。 In order to solve the above-described problems, the present inventors have invented a position estimation system having the following configuration.
 第1発明に係る位置推定システムは、静止状態にあるか又は僅かに移動する対象物の位置を推定する位置推定システムにおいて、外部から制御可能とされた飛行軌道上を飛行する過程で上記対象物に取り付けられた信号発信機から発信された無線信号を継続して受信する飛行体と、上記飛行体における上記飛行軌道上の各位置の3次元的な位置情報並びに当該位置における上記飛行軌道の3次元的な方向ベクトルを検出する飛行体位置情報検出手段と、上記飛行体により受信された無線信号に関するデータの上記位置に対する相対的な変化傾向を観測する観測手段と、上記観測手段により観測されたデータの相対的な変化傾向が予め設定した条件を満たす条件満足位置を求めると共に、その条件満足位置における3次元的な位置情報並びに方向ベクトルを上記飛行体位置情報取得手段から取得してこれを平面の方程式に代入する位置推定手段とを備え、上記位置推定手段は、飛行体を互いに異なる飛行軌道上で飛行させる過程で上記観測手段から3回以上に亘り観測された相対的な変化傾向から上記条件満足位置を3箇所以上に亘り求めるとともに、それぞれの上記条件満足位置における3次元的な位置情報並びに方向ベクトルが代入された3つ以上の平面の方程式に基づいて上記対象物の位置を推定することを特徴とする。 A position estimation system according to a first aspect of the present invention is a position estimation system for estimating the position of an object that is stationary or slightly moving, and in the process of flying on a flight trajectory that can be controlled from the outside. A vehicle that continuously receives a radio signal transmitted from a signal transmitter attached to the vehicle, three-dimensional position information of each position on the flight trajectory of the aircraft, and 3 of the flight trajectory at the position. The vehicle position information detecting means for detecting a dimensional direction vector, the observation means for observing the relative change tendency of the data relating to the radio signal received by the flying object with respect to the position, and the observation means A condition satisfying position in which the relative change tendency of data satisfies a preset condition is obtained, and three-dimensional position information at the condition satisfying position and A position estimation means for acquiring a direction vector from the flying object position information acquisition means and substituting it into a plane equation, wherein the position estimation means performs the observation in the process of flying the flying objects on different flight trajectories. The position satisfying the condition is obtained at three or more locations from the relative change tendency observed three times or more from the means, and the three-dimensional position information and the direction vector at each position satisfying the condition are substituted. The position of the object is estimated based on an equation of two or more planes.
 第2発明に係る位置推定システムは、第1発明において、上記位置推定手段は、上記観測手段により観測されたデータの相対的な変化傾向から上記対象物に対して最も距離が近くなる位置を上記条件満足位置とすることを特徴とする。 The position estimation system according to a second invention is the position estimation system according to the first invention, wherein the position estimation means determines the position closest to the object from the relative change tendency of the data observed by the observation means. It is characterized by being a condition satisfying position.
 第3発明に係る位置推定システムは、第2発明において、上記観測手段は、上記無線信号に関するデータとしての伝搬遅延量の相対的な変化傾向を観測し、上記位置推定手段は、上記観測手段により観測された伝搬遅延量が最小となる位置を上記条件満足位置とすることを特徴とする。 In a position estimation system according to a third aspect based on the second aspect, the observation means observes a relative change tendency of the propagation delay amount as data relating to the radio signal, and the position estimation means is determined by the observation means. The position where the observed propagation delay amount is minimized is the position satisfying the above condition.
 第4発明に係る位置推定システムは、第2発明において、上記観測手段は、上記無線信号に関するデータとしての無線信号の受信電力の相対的な変化傾向を観測し、上記位置推定手段は、上記観測手段により観測された受信電力が最大となる位置を上記条件満足位置とすることを特徴とする。 In a position estimation system according to a fourth aspect based on the second aspect, the observation means observes a relative change tendency of the received power of the radio signal as data relating to the radio signal, and the position estimation means comprises the observation The position where the received power observed by the means is maximized is the position satisfying the above condition.
 第5発明に係る位置推定システムは、第1発明において、上記観測手段は、上記無線信号に関するデータとしての無線信号の周波数の相対的な変化傾向を観測し、上記位置推定手段は、上記対象物から発信された無線信号の周波数f0を予め取得すると共に、上記観測手段により観測された周波数が周波数f0に最も近くなる位置を上記条件満足位置とすることを特徴とする。 In a position estimation system according to a fifth aspect based on the first aspect, the observation means observes a relative change tendency of the frequency of the radio signal as data relating to the radio signal, and the position estimation means is the target object. with previously to obtain frequency f 0 of the outgoing radio signals from the observed frequency by the observation means, characterized in that the above conditions satisfying position comes closest position to the frequency f 0.
 第6発明に係る位置推定システムは、第1発明において、上記観測手段は、上記条件満足位置を検出することができるまで無線信号に関するデータを取得し続け、上記飛行体は、上記観測手段により上記条件満足位置を検出することができた後に、別の飛行軌道に変更して飛行し続けることを特徴とする。 The position estimation system according to a sixth aspect of the present invention is the position estimation system according to the first aspect, wherein the observation unit continues to acquire data relating to a radio signal until the condition-satisfying position can be detected. After the condition satisfying position can be detected, the flight is changed to another flight trajectory and continues to fly.
 上述した構成からなる本発明を適用した位置推定システムによれば、観測部33により観測された無線信号に関するデータの相対的な変化傾向を追うだけで、飛行方向から90°をなす方向に信号発信機20の位置Uが存在する飛行軌道k上の条件満足位置を特定することが可能となる。そして、この条件満足位置における3次元的な位置情報並びに方向ベクトルを平面の方程式に代入することを、互いに異なる飛行軌道間において3回以上に亘り繰り返して行うことにより、対象物の位置を推定することができる。 According to the position estimation system to which the present invention having the above-described configuration is applied, the signal is transmitted in the direction of 90 ° from the flight direction only by following the relative change tendency of the data related to the radio signal observed by the observation unit 33. It is possible to specify a condition satisfying position on the flight trajectory k where the position U of the aircraft 20 exists. Then, substituting the three-dimensional position information and the direction vector at the condition satisfying position into the plane equation is repeated three or more times between different flight trajectories to estimate the position of the object. be able to.
 実際のプロセスにおいては、無線信号に関するデータを正確に測定するステップを経ることなく、単に当該データの相対的な変化傾向を追うだけで対象物の位置を推定することができる。このため、従来技術のように、移動体の移動速度と、無線信号のドップラーシフト量を正確に測定するステップを経ることなく対象物の位置を推定することができ、その推定精度を格段に向上させることが可能となる。 In the actual process, it is possible to estimate the position of the object simply by following the relative change tendency of the data without going through the step of accurately measuring the data related to the radio signal. For this reason, the position of the object can be estimated without going through the steps of accurately measuring the moving speed of the moving object and the Doppler shift amount of the radio signal as in the prior art, and the estimation accuracy is greatly improved. It becomes possible to make it.
本発明を適用した位置推定システムの全体構成を示す図である。It is a figure which shows the whole structure of the position estimation system to which this invention is applied. 信号発信機並びに飛行体のブロック構成図である。It is a block block diagram of a signal transmitter and a flying body. 本発明を適用した位置推定システムにおける位置推定のコンセプトについて説明するための図である。It is a figure for demonstrating the concept of the position estimation in the position estimation system to which this invention is applied. 一の飛行軌道kを飛行体により飛行させる場合の例を示す図である。It is a figure which shows the example in the case of flying the one flight track | orbit k by a flying body. 直線状に設定した飛行軌道上で飛行体を飛行させつつ、信号発信機から発信される無線信号を受信する例を示す図である。It is a figure which shows the example which receives the radio signal transmitted from a signal transmitter, making a flying body fly on the flight track set to linear form. 横軸を飛行方向に向けた直線状に飛行軌道の各位置とし、縦軸を無線信号に関するデータの相対的な変化傾向を示す図である。It is a figure which shows the relative change tendency of the data regarding a radio signal on the vertical axis as each position of a flight trajectory in the shape of a straight line with the horizontal axis directed in the flight direction.
 以下、本発明を適用した位置推定システムを実施するための形態について図面を参照しながら詳細に説明をする。 Hereinafter, an embodiment for implementing a position estimation system to which the present invention is applied will be described in detail with reference to the drawings.
 本発明を適用した位置推定システム10は、図1に示すように信号発信機20と、飛行体30とを備えている。 The position estimation system 10 to which the present invention is applied includes a signal transmitter 20 and an aircraft 30 as shown in FIG.
 図2(a)は、信号発信機20の構成を示している。信号発信機20は、所定の周波数からなる信号を生成する信号生成部21と、この信号生成部21に接続されたアンテナ22とを有している。この信号生成部21において生成された所定の周波数からなる信号は、アンテナ22により電波とされて四方に向けて発信される。以下、このアンテナ22から発信される電波を無線信号という。 FIG. 2A shows the configuration of the signal transmitter 20. The signal transmitter 20 includes a signal generation unit 21 that generates a signal having a predetermined frequency, and an antenna 22 connected to the signal generation unit 21. A signal having a predetermined frequency generated by the signal generation unit 21 is converted into a radio wave by the antenna 22 and transmitted in all directions. Hereinafter, the radio wave transmitted from the antenna 22 is referred to as a radio signal.
 ちなみにこの信号発信機20は、これら信号生成部21並びにアンテナ22を有しており、所定の周波数からなる無線信号を発信するものであればいかなる形態に具現化されるものであってもよく、例えばビーコンのみ発信するビーコン発信機として具現化されるものであってもよいし、携帯電話機、スマートフォン、ウェアラブル端末、タブレット型端末、パーソナルコンピュータ(PC)等のように無線通信を行うことが可能な通信端末として具現化されるものであってもよい。この信号発信機20は実際に位置を推定したい対象に所持させ、或いは取り付けることとなる。仮に位置を推定したい対象が高齢者や子供等のような人間であれば、その人間にこの信号発信機20を所持させる。また位置を推定したい対象が動物であれば、その動物に対して信号発信機20を取り付ける。ちなみに、この信号発信機20は、このような自由に動く生命体に対して取り付けられる場合に限定されるものではなく、木等の植物に取り付けられるものであってもよい。またこの信号発信機20は、建築構造物、建材、石、道路、橋梁、トンネル、各種インフラ等の非生命体に取り付けられるものであってもよい。 Incidentally, the signal transmitter 20 includes the signal generation unit 21 and the antenna 22 and may be embodied in any form as long as it transmits a radio signal having a predetermined frequency. For example, it may be embodied as a beacon transmitter that transmits only a beacon, or can perform wireless communication such as a mobile phone, a smartphone, a wearable terminal, a tablet terminal, or a personal computer (PC). It may be embodied as a communication terminal. This signal transmitter 20 is carried or attached to a target whose position is actually to be estimated. If the object whose position is to be estimated is a person such as an elderly person or a child, the person carries the signal transmitter 20. If the object whose position is to be estimated is an animal, the signal transmitter 20 is attached to the animal. Incidentally, the signal transmitter 20 is not limited to the case where it is attached to such a freely moving life form, and may be attached to a plant such as a tree. The signal transmitter 20 may be attached to a non-life object such as a building structure, a building material, a stone, a road, a bridge, a tunnel, or various infrastructures.
 この信号発信機20の取り付け対象は、本発明を適用した位置推定システム10による位置推定時において静止していることを前提としているが、これに限定されるものではなく、僅かに移動するものであってもよい。 The object to which the signal transmitter 20 is attached is assumed to be stationary at the time of position estimation by the position estimation system 10 to which the present invention is applied, but is not limited to this and moves slightly. There may be.
 本発明を適用した位置推定システム10は、この信号発信機20の位置を正確に検知することで、実際に位置を推定したい、この信号発信機20が取り付けられる対象の位置を把握するためのシステムである。 The position estimation system 10 to which the present invention is applied is a system for accurately detecting the position of the signal transmitter 20 and for grasping the position of the target to which the signal transmitter 20 is actually attached. It is.
 飛行体30は、自律飛行が可能な任意の飛行物体である。この飛行体30は、固定翼機、回転翼機、飛行船、気球、ドローン、無人航空機(Unmanned aerial vehicle:UAV)、ヘリコプター、飛行機等で具現化される。この飛行体30は、人間が搭乗することの無い無人によるものであってもよいし、人間が搭乗可能とされていてもよい。但し、この飛行体30は、ランダムに飛行するのではなく、その飛行軌道が外部から制御可能であることが前提となる。 The flying object 30 is an arbitrary flying object capable of autonomous flight. The flying body 30 is embodied by a fixed wing aircraft, a rotary wing aircraft, an airship, a balloon, a drone, an unmanned aerial vehicle (UAV), a helicopter, an airplane, or the like. The flying object 30 may be an unmanned person that is not boarded by humans, or may be capable of boarding humans. However, it is assumed that the flying object 30 does not fly at random, but its flight trajectory can be controlled from the outside.
 図2(b)は、飛行体30の構成を示している。飛行体30は、機体制御部31と、アンテナ29に接続された無線信号受信部32と、この無線信号受信部32に接続された観測部33と、情報検出部34と、観測部33並びに情報検出部34とに接続された位置推定部35と、機体制御部31に接続された操作部36及び制御信号受信部37と、位置推定部35に接続された情報記憶部38及び推定情報送信部39とを有している。 FIG. 2B shows the configuration of the flying object 30. The flying object 30 includes an airframe control unit 31, a radio signal receiving unit 32 connected to the antenna 29, an observation unit 33 connected to the radio signal receiving unit 32, an information detection unit 34, an observation unit 33, and information. A position estimation unit 35 connected to the detection unit 34, an operation unit 36 and a control signal reception unit 37 connected to the airframe control unit 31, an information storage unit 38 and an estimated information transmission unit connected to the position estimation unit 35 39.
 機体制御部31は、予め入力された飛行計画に規定される飛行軌道や飛行制御コマンドに基づいて、飛行体30の推進システムや操舵システム(いずれも不図示)を制御する。機体制御部31は、これら飛行計画や飛行制御コマンドは、操作部36又は制御信号受信部37を介して取得する。この機体制御部31は、これら飛行計画や飛行制御コマンドに基づいて飛行高度や飛行方向が指定されることにより飛行軌道が特定されることとなり、指定した高度や座標を飛行することが可能となる。また、機体制御部31は、これら飛行計画や飛行制御コマンドに基づいて飛行速度も指定されることになる。 The aircraft control unit 31 controls the propulsion system and the steering system (both not shown) of the flying object 30 based on the flight trajectory and flight control commands specified in the flight plan input in advance. The body control unit 31 acquires these flight plans and flight control commands via the operation unit 36 or the control signal receiving unit 37. The airframe control unit 31 specifies the flight trajectory by specifying the flight altitude and the flight direction based on these flight plans and flight control commands, and can fly at the specified altitude and coordinates. . The aircraft control unit 31 also designates the flight speed based on these flight plans and flight control commands.
 操作部36は、飛行計画や飛行制御コマンドをユーザが実際に入力するためのユーザインターフェースである。この操作部36は、具体的にはキーボードやボタン、タッチパネル、マウス、スイッチ等により構成されているが、仮にこの飛行体30が無人ではなく、人間が搭乗するものである場合には、操縦桿やコックピットがこれに該当する。操作部36を介して入力された飛行計画や飛行制御コマンドは、機体制御部31へと送られ、これに沿って飛行体30の飛行軌道等が定まるものとなる。 The operation unit 36 is a user interface for the user to actually input a flight plan and a flight control command. Specifically, the operation unit 36 includes a keyboard, buttons, a touch panel, a mouse, a switch, and the like. However, if the flying object 30 is not unmanned but is a person on board, a control stick is used. Or cockpit. The flight plan and flight control command input via the operation unit 36 are sent to the airframe control unit 31, and the flight trajectory and the like of the aircraft 30 are determined along this.
 制御信号受信部37は、遠隔にて操作される図示しないコントローラ又は図示しない基地局を介して送信されてくる飛行計画や飛行制御コマンドを受信するためのデバイスである。これら飛行計画や飛行制御コマンドは、有線通信又は無線通信により外部から送信されてくる。仮にこれら飛行制御コマンド等が無線通信により送信されてくる場合には、制御信号受信部37は、これを受信するためのアンテナとして構成されることとなる。制御信号受信部37は、飛行計画や飛行制御コマンドを機体制御部31へ送信する。機体制御部31は、かかる飛行計画や飛行制御コマンドを受けて、これに応じた飛行体30の飛行軌道等を決定していくこととなる。 The control signal receiving unit 37 is a device for receiving a flight plan and a flight control command transmitted via a controller (not shown) or a base station (not shown) that is operated remotely. These flight plans and flight control commands are transmitted from the outside by wired communication or wireless communication. If these flight control commands and the like are transmitted by wireless communication, the control signal receiving unit 37 is configured as an antenna for receiving them. The control signal receiving unit 37 transmits a flight plan and a flight control command to the airframe control unit 31. The body control unit 31 receives the flight plan and the flight control command, and determines the flight trajectory of the flying body 30 according to the flight plan and the flight control command.
 即ちこの飛行体30は、ユーザの意思に基づいて入力された飛行制御コマンド等に基づいて、飛行高度や飛行方向が制御されることから、任意の飛行軌道を飛行するのではなく、あくまでユーザの意向に従った飛行軌道を飛行することとなる。即ち、この飛行体30の飛行軌道は、あくまで外部から制御されることが前提となる。 In other words, the flying object 30 is controlled not to fly in an arbitrary flight trajectory because the flight altitude and flight direction are controlled based on a flight control command or the like input based on the user's intention. It will fly in the flight trajectory according to the intention. That is, it is assumed that the flight trajectory of the flying object 30 is controlled from the outside.
 無線信号受信部32は、アンテナ29を介して信号発信機20から送信されてくる無線信号を受信する。無線信号受信部32は、この受信した無線信号を観測部33へと出力する。 The radio signal receiving unit 32 receives a radio signal transmitted from the signal transmitter 20 via the antenna 29. The radio signal receiving unit 32 outputs the received radio signal to the observation unit 33.
 観測部33は、無線信号受信部32から送られてくる無線信号に関するデータを、各種観測基準に基づいて観測する。ここでいう無線信号に関するデータとは、無線信号に関するものであればいかなるデータであってもよく、例えば無線信号の伝搬遅延量(伝播遅延時間)、受信電力、周波数等である。この観測部33は、無線信号に関するデータを取得した上で、その変化傾向を時系列的に観測し続ける。観測部33は、無線信号に関するデータの観測結果を、位置推定部35に対して通知する。 The observation unit 33 observes the data related to the radio signal transmitted from the radio signal reception unit 32 based on various observation criteria. The data related to the radio signal herein may be any data as long as it relates to the radio signal, and includes, for example, the propagation delay amount (propagation delay time), received power, frequency, and the like of the radio signal. The observation unit 33 obtains data related to the radio signal and then continues to observe the change tendency in a time series. The observation unit 33 notifies the position estimation unit 35 of the observation result of the data related to the radio signal.
 情報検出部34は、飛行体30における各種情報を検出するための部位である。この情報検出部34は、1又は複数からなる計測器等で構成されており、例えばエンジン回転数を判別するための装置、姿勢センサ、高度計、加速度センサ、対気速度計、磁気コンパスやジャイロコンパス等の方位計等で構成されている。またこの情報検出部34は、現時点における飛行体30の位置情報を検出するため、GPS(Global Positioning System)装置を有する者であってもよい。このGPS装置では、飛行体30の現時点における緯度、経度、高度及び時間情報を取得する。ちなみに、このような位置情報を検出するための手段としては、GPS装置以外の衛星測位システムを利用するようにしてもよい。また時間情報を取得する際には、このGPS装置以外の電波時計を使用するようにしてもよい。これらの計測器や装置を有する情報検出部34によれば、少なくとも飛行体30の飛行軌道上における各位置の3次元的な位置情報を取得することができる。また当該位置における飛行軌道の3次元的な方向ベクトルを検出することができる。情報検出部34は、この方向ベクトルを、例えばGPSや地磁気センサ等により検出する。情報検出部34は、少なくともこの取得した飛行体30の飛行軌道上における各位置の3次元的な位置情報並びに当該位置における飛行軌道の3次元的な方向ベクトルを位置推定部35へ送信する。 The information detection unit 34 is a part for detecting various information in the flying object 30. The information detection unit 34 includes one or a plurality of measuring instruments, for example, an apparatus for determining the engine speed, an attitude sensor, an altimeter, an acceleration sensor, an airspeed meter, a magnetic compass, and a gyrocompass. It is composed of compass and the like. Further, the information detection unit 34 may be a person having a GPS (Global Positioning System) device in order to detect the position information of the flying object 30 at the present time. In this GPS device, the latitude, longitude, altitude, and time information of the aircraft 30 at the current time are acquired. Incidentally, as a means for detecting such position information, a satellite positioning system other than the GPS device may be used. Further, when acquiring time information, a radio timepiece other than the GPS device may be used. According to the information detection unit 34 having these measuring instruments and devices, at least three-dimensional position information of each position on the flight trajectory of the flying object 30 can be acquired. In addition, a three-dimensional direction vector of the flight trajectory at the position can be detected. The information detection unit 34 detects this direction vector using, for example, a GPS or a geomagnetic sensor. The information detection unit 34 transmits at least the acquired three-dimensional position information of each position on the flight trajectory of the flying object 30 and the three-dimensional direction vector of the flight trajectory at the position to the position estimation unit 35.
 位置推定部35は、観測部33から無線信号に関するデータの観測結果が送られてくる。また位置推定部35は、情報検出部34から飛行体30の飛行軌道上における各位置の3次元的な位置情報並びに当該位置における飛行軌道の3次元的な方向ベクトルを受信する。位置推定部35は、かかるデータの観測結果に基づき、これら位置情報や方向ベクトルを参照しつつ、信号発信機20の位置推定を行う。この位置推定の詳細については、後述する。位置推定部35は、この推定した信号発信機20の位置を情報記憶部38及び/又は推定情報送信部39へと出力する。 The position estimation unit 35 receives the observation result of the data related to the radio signal from the observation unit 33. Further, the position estimation unit 35 receives the three-dimensional position information of each position on the flight trajectory of the flying object 30 and the three-dimensional direction vector of the flight trajectory at the position from the information detection unit 34. The position estimation unit 35 estimates the position of the signal transmitter 20 while referring to the position information and the direction vector based on the observation result of the data. Details of the position estimation will be described later. The position estimation unit 35 outputs the estimated position of the signal transmitter 20 to the information storage unit 38 and / or the estimated information transmission unit 39.
 情報記憶部38は、(Flash Memory)等の半導体メモリ素子、ハードディスク、光ディスク等の記憶装置等で構成される。この情報記憶部38は、位置推定部35から送信されてきた信号発信機20の推定位置に関する情報を記憶する。またこの情報記憶部38は、観測部33から送信されてきた無線信号に関するデータの観測結果や、情報検出部34から送信されてきた位置情報や方向ベクトルも必要に応じて記憶する。情報記憶部38に記憶された信号発信機20の推定位置に関する情報、無線信号に関するデータの観測結果、位置情報や方向ベクトルは、位置推定部35等による制御の下で必要に応じて読み出される。 The information storage unit 38 includes a semiconductor memory element such as (Flash Memory), a storage device such as a hard disk and an optical disk, and the like. The information storage unit 38 stores information regarding the estimated position of the signal transmitter 20 transmitted from the position estimation unit 35. The information storage unit 38 also stores the observation result of the data related to the radio signal transmitted from the observation unit 33 and the position information and the direction vector transmitted from the information detection unit 34 as necessary. Information relating to the estimated position of the signal transmitter 20 stored in the information storage unit 38, observation results of data relating to radio signals, position information and direction vectors are read out as needed under the control of the position estimating unit 35 and the like.
 推定情報送信部39は、位置推定部35から送信されてくる信号発信機20の推定位置に関する情報を無線通信又は有線通信を通じて外部の図示しない基地局やコントローラ等に送信する。 The estimated information transmitting unit 39 transmits information on the estimated position of the signal transmitter 20 transmitted from the position estimating unit 35 to an external base station, a controller, etc. (not shown) through wireless communication or wired communication.
 次に本発明を適用した位置推定システム10における位置推定のコンセプトについて説明をする。 Next, the concept of position estimation in the position estimation system 10 to which the present invention is applied will be described.
 本発明を適用した位置推定システム10によれば、図3に示すように、飛行体30を飛行軌道1、2、3、・・・k、・・N(ここでN≧3)に亘り、飛行させる。飛行体30は、各飛行軌道kを飛行する過程において、信号発信機20から発信される周波数f0[Hz]の無線信号を受信し続ける。そして、この飛行体30は、受信した無線信号に関するデータを観測することにより飛行軌道の方向に対して90°方向に位置する信号発信機20の位置を推定していくこととなる。この図3でいうところの飛行軌道1においては、Q1においてその飛行軌道の方向に対して90°方向に信号発信機20の座標Uが位置していることとなる。同様に飛行軌道2においては、Q2においてその飛行軌道の方向に対して90°方向に信号発信機20のUが位置していることとなる。また飛行軌道kにおいては、Qkにおいてその飛行軌道の方向に対して90°方向に信号発信機20のUが位置していることとなる。以下、この推定対象としての信号発信機20の3次元座標をU=[X,Y,Z]で与えるものとする。 According to the position estimation system 10 to which the present invention is applied, as shown in FIG. 3, the flying object 30 spans the flight trajectories 1, 2, 3,... K,. Let it fly. The flying body 30 continues to receive a radio signal having a frequency f 0 [Hz] transmitted from the signal transmitter 20 in the process of flying in each flight trajectory k. Then, the flying object 30 estimates the position of the signal transmitter 20 located in the 90 ° direction with respect to the direction of the flight trajectory by observing data regarding the received radio signal. In the flight trajectory 1 referred to in FIG. 3, the coordinates U of the signal transmitter 20 are located at 90 ° with respect to the direction of the flight trajectory at Q 1 . Similarly, in the flight trajectory 2, the U of the signal transmitter 20 is located at 90 ° with respect to the direction of the flight trajectory at Q 2 . In the flight trajectory k, the U of the signal transmitter 20 is located at 90 ° with respect to the direction of the flight trajectory at Q k . Hereinafter, the three-dimensional coordinates of the signal transmitter 20 as the estimation target are given by U = [X, Y, Z].
 図4は、一の飛行軌道kを飛行体30により飛行させる場合の例を示している。飛行軌道kにおける飛行体30の飛行方向における方向ベクトルはdk=[ak,bk,ck]で与えられる。また、その飛行方向から90°をなす方向に信号発信機20の位置Uが存在する飛行軌道k上の位置Qkの位置ベクトルは、Qk=[xk,yk,yk]で与えられる。即ち、方向ベクトルdk=[ak,bk,ck]は、飛行軌道k上の位置Qkにおいて飛行体30の飛行方向を示すものであり、この位置Qkから90°をなす方向に信号発信機20の位置Uが存在することとなる。 FIG. 4 shows an example in which one flying trajectory k is caused to fly by the flying object 30. The direction vector in the flight direction of the flying object 30 in the flight path k is given by d k = [a k , b k , c k ]. Further, the position vector of the position Q k on the flight trajectory k where the position U of the signal transmitter 20 exists in the direction of 90 ° from the flight direction is given by Q k = [x k , y k , y k ]. It is done. That is, the direction vector d k = [a k , b k , c k ] indicates the flight direction of the flying object 30 at the position Q k on the flight trajectory k, and the direction that forms 90 ° from the position Q k. Therefore, the position U of the signal transmitter 20 exists.
 本発明を適用した位置推定システム10によれば、飛行体30を飛行軌道k上において飛行させながら、その飛行方向dk=[ak,bk,ck]から90°をなす方向に信号発信機20の位置Uが存在する飛行軌道k上の位置Qkを探索する動作を行っていくこととなる。 According to the position estimation system 10 to which the present invention is applied, a signal is transmitted in the direction of 90 ° from the flight direction d k = [ ak , b k , c k ] while the flying object 30 is flying on the flight path k. The operation of searching for the position Q k on the flight trajectory k where the position U of the transmitter 20 exists will be performed.
 図5の例では、直線状に設定した飛行軌道k上で飛行体30を飛行させつつ、信号発信機20から発信される無線信号を受信する例を示している。飛行軌道kにおいて飛行体30が位置Qk-1、・・・Qk-2・・・Qk-3,を経て方向ベクトルdk=[ak,bk,ck]の方向に直線状に飛行していく場合、位置Uと最も距離が近いのは位置Qk-2である。そして、この位置Uと最も距離が近い位置Qk-2から方向ベクトルdk=[ak,bk,ck]の方向に対して90°をなす方向に信号発信機20の位置Uが存在する。図5において、位置Uと最も距離が近いのは位置Qk-2であり、位置Uからこの方向ベクトルdk=[ak,bk,ck]の飛行軌道に向けて引かれる垂線の位置が、位置Qk-2となる。 In the example of FIG. 5, an example in which a radio signal transmitted from the signal transmitter 20 is received while the flying object 30 is flying on the flight trajectory k set linearly is shown. In the flight trajectory k, the flying object 30 passes through the positions Q k−1 ,... Q k-2 ... Q k-3 , and is linear in the direction vector d k = [ ak , b k , c k ]. In the case of flying in a shape, the position Q k-2 is the closest to the position U. Then, the position U of the signal transmitter 20 is in a direction forming 90 ° with respect to the direction vector d k = [a k , b k , c k ] from the position Q k−2 closest to the position U. Exists. In FIG. 5, the position Q k-2 is closest to the position U, and the perpendicular line drawn from the position U toward the flight trajectory of this direction vector d k = [a k , b k , c k ]. The position is the position Q k-2 .
 このため、このような位置Uと最も距離が近い飛行軌道k上の位置Qk-2を、信号発信機20から発信される無線信号を介して解析していくこととなる。例えば無線信号の受信電力を解析した場合、飛行体30が位置Qk-1、・・・Qk-2・・・Qk-3を経て方向ベクトルdk=[ak,bk,ck]の方向に直線状に飛行する過程において、位置Qk-1から位置Qk-2に至るまでには位置Uからの距離が徐々に近くなるため、これに応じて受信電力が徐々に大きくなる。一方、飛行体30が位置Qk-2から位置Qk-3に至るまでには位置Uからの距離が徐々に遠くなるため、これに応じて受信電力が徐々に小さくなる。その結果、受信電力のピークはちょうど位置Qk-2において現れることとなる。 For this reason, the position Q k-2 on the flight trajectory k closest to the position U is analyzed via a radio signal transmitted from the signal transmitter 20. For example, when the received power of a radio signal is analyzed, the flying object 30 passes through the positions Q k−1 ,... Q k− 2, Q k−3 and the direction vector d k = [ ak , b k , c k ], the distance from the position U gradually decreases from the position Q k-1 to the position Q k-2 , and the received power gradually increases accordingly. growing. On the other hand, since the distance from the position U gradually increases until the flying object 30 reaches the position Q k-3 from the position Q k-2 , the received power gradually decreases accordingly. As a result, the peak of the received power appears just at the position Q k-2 .
 従って、飛行体30が位置Qk-1、・・・Qk-2・・・Qk-3を経て方向ベクトルdk=[ak,bk,ck]の方向に直線状に飛行する過程において、この受信電力の相対的な変化傾向を追うことにより、そのピークの位置を特定することで、位置Qk-2の位置情報を求めることが可能となる。その結果、受信電力の相対的な変化傾向を追うだけで、飛行方向dk=[ak,bk,ck]から90°をなす方向に信号発信機20の位置Uが存在する飛行軌道k上の位置Qk(以下、このような条件を満たす位置Qkを条件満足位置という。)特定することが可能となる。 Accordingly, the flight vehicle 30 is positioned Q k-1, flight ··· Q k-2 ··· Q k -3 through the direction vector d k = [a k, b k, c k] straight in the direction of In this process, it is possible to obtain the position information of the position Q k-2 by following the relative change tendency of the received power and specifying the position of the peak. As a result, the flight trajectory in which the position U of the signal transmitter 20 exists in the direction of 90 ° from the flight direction d k = [a k , b k , c k ] simply by following the relative change tendency of the received power. It is possible to specify a position Q k on k (hereinafter, a position Q k satisfying such a condition is referred to as a condition satisfying position).
 図6は、横軸を飛行方向dk=[ak,bk,ck]に向けた直線状の飛行軌道kの各位置とし、縦軸を無線信号に関するデータの相対的な変化傾向を示している。図6(a)は、縦軸を構成する無線信号に関するデータとして伝搬遅延量を、図6(b)は、縦軸を構成する無線信号に関するデータとして上述した受信電力を、図6(c)は、縦軸を構成する無線信号に関するデータとして受信周波数をそれぞれ割り当てている。 In FIG. 6, the horizontal axis represents each position of the linear flight trajectory k with the flight direction d k = [a k , b k , c k ], and the vertical axis represents the relative change tendency of the data related to the radio signal. Show. 6A shows the propagation delay amount as data related to the radio signal constituting the vertical axis, FIG. 6B shows the received power described above as data related to the radio signal constituting the vertical axis, and FIG. Respectively assign reception frequencies as data relating to radio signals constituting the vertical axis.
 図6(a)の例では、無線信号の伝搬遅延量(伝播遅延時間)を飛行方向dk=[ak,bk,ck]に向けた直線状の飛行軌道に沿って測定していく。そして、この伝搬遅延量が最小となる位置Qkが条件満足位置となる。 In the example of FIG. 6A, the propagation delay amount (propagation delay time) of the radio signal is measured along a linear flight trajectory in the flight direction d k = [a k , b k , c k ]. Go. A position Q k at which the propagation delay amount is minimum is a condition satisfying position.
 図6(b)の例では、上述と同様に受信電力が最大となる位置Qkが条件満足位置となる。 In the example of FIG. 6B, the position Q k at which the reception power is maximized is the condition satisfaction position as described above.
 図6(c)の例では、受信する無線信号が受けるドップラーシフト量が0となることを利用した場合、無線信号の周波数を観測し、その周波数が信号発信機20から発信される周波数f0に最も近くなる位置が条件満足位置となる。 In the example of FIG. 6C, when utilizing the fact that the received Doppler shift amount received by the radio signal is 0, the frequency of the radio signal is observed and the frequency is transmitted from the signal transmitter 20 to the frequency f 0. The position closest to is the condition satisfaction position.
 この図6の例において、いずれのケースにおいても縦軸について絶対的な正確な値を測定する必要は無く、あくまで横軸の位置に対して相対的な変化傾向を識別し、その最大値、最小値、或いは周波数f0に最も近くなるところを特定することで、条件満足位置を求めることができる。従って、条件満足位置を求めるにあたり、無線信号に関するデータを観測する観測部33の詳細なキャリブレーションの必要が無くなり、観測が複雑化してしまうのを防止することができる。 In the example of FIG. 6, it is not necessary to measure an absolute accurate value for the vertical axis in any case, and a change tendency relative to the position of the horizontal axis is identified, and its maximum value, minimum value By specifying a value or a place closest to the frequency f 0 , a condition satisfaction position can be obtained. Therefore, in obtaining the condition satisfaction position, it is not necessary to perform detailed calibration of the observation unit 33 that observes data related to the radio signal, and it is possible to prevent the observation from becoming complicated.
 なお、条件満足位置を求める方法は、これらに限定されるものではなく、他のいかなる方法に基づいて求めるようにしてもよい。即ち、位置Uからの距離を識別することが可能な他のデータを無線信号から観測し、その相対的な変化傾向から最も距離が近くなる条件満足位置を特定できるものであればいかなる方法に基づくものであってもよい。或いは、観測されたデータの相対的な変化傾向を追い、例えば図6(c)に示すような周波数f0に最も近くなるという条件等、予め設定した条件を満たすものを条件満足位置として特定するものであれば、他のいかなる方法が適用されるものであってもよい。 Note that the method for obtaining the condition satisfaction position is not limited to these, and may be obtained based on any other method. In other words, any method can be used as long as other data capable of identifying the distance from the position U is observed from the radio signal, and the condition satisfying position where the distance is closest can be identified from the relative change tendency. It may be a thing. Alternatively, the relative change tendency of the observed data is followed, and a condition satisfying a preset condition, such as a condition of being closest to the frequency f 0 as shown in FIG. Any other method may be applied as long as it is.
 このようにして求められた条件満足位置Qkにおける座標Qk=[xk,yk,yk]を含むと共に、飛行体30の飛行軌道kの方向ベクトルdk=[ak,bk,ck]に対して垂直な平面Pkは、信号発信機20の3次元座標U=[X,Y,Z]を含むものとなる。その条件満足位置Qkにおける座標Qk=[xk,yk,yk]は、情報検出部34から得ることができ、飛行体30の飛行軌道kの方向ベクトルdk=[ak,bk,ck]は既知であるため、Pk上の任意の点をP=[x,y,z]とすると平面の方程式はdk・(P-Qk)=0より、以下の(1)式により表すことができる。
Figure JPOXMLDOC01-appb-M000001
                        ・・・・・・・・・(1)
The coordinates Q k = [x k , y k , y k ] at the condition satisfying position Q k determined in this way are included, and the direction vector d k = [a k , b k of the flight trajectory k of the flying object 30 is included. , C k ] perpendicular to the plane P k includes the three-dimensional coordinates U = [X, Y, Z] of the signal transmitter 20. The coordinates Q k = [x k , y k , y k ] at the condition satisfaction position Q k can be obtained from the information detection unit 34, and the direction vector d k = [a k , b k , c k ] is already known, so if an arbitrary point on P k is P = [x, y, z], the plane equation is d k · (P−Q k ) = 0, so that (1) It can represent with Formula.
Figure JPOXMLDOC01-appb-M000001
... (1)
 また、このPk上の任意の点をP=[x,y,z]がU=[X,Y,Z]である場合には、この(1)式においてx=Xを代入し、y=Yを代入し、z=Zを代入すると以下の(2)式により表すことができる。
Figure JPOXMLDOC01-appb-M000002
                        ・・・・・・・・・(2)
Further, if P = [x, y, z] is U = [X, Y, Z] for an arbitrary point on this P k , x = X is substituted in this equation (1), and y Substituting = Y and substituting z = Z can be expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
(2)
 但し、この(2)式は、変数X、Y,Zが3つあることから、少なくともこのような平面の方程式が合計3以上存在しないと、これら変数X、Y,Zの解は求められないこととなる。 However, since this equation (2) has three variables X, Y, and Z, a solution for these variables X, Y, and Z cannot be obtained unless there are at least three such plane equations in total. It will be.
 図3は、このような飛行軌道kの方向ベクトルdk=[ak,bk,ck]に対して垂直な平面Pkを平面P1、P2、Pkに亘り3個描いたものである。これらの平面P1、P2、Pkは、それぞれに垂直な飛行軌道1の方向ベクトルd1、飛行軌道2の方向ベクトルd2、飛行軌道kの方向ベクトルdkが互いに異なる方向に向けて延長されている。推定誤差がない場合には、異なる3個の平面P1、P2、Pkは一点で交わり、その点がUの推定値となる。実際にこのUの3次元座標U=[X,Y,Z]は、上述した方法に基づき、それぞれの平面P1、P2、Pkについて式(2)の平面の方程式を作り、その連立方程式を解くことにより、求めることができる。 FIG. 3 depicts three planes P k perpendicular to the direction vector d k = [a k , b k , c k ] of the flight trajectory k over the planes P 1 , P 2 and P k . Is. These planes P 1 , P 2 and P k are directed in directions in which the direction vector d 1 of the flight trajectory 1 perpendicular to the plane, the direction vector d 2 of the flight trajectory 2 and the direction vector d k of the flight trajectory k are different from each other. It has been extended. When there is no estimation error, three different planes P 1 , P 2 , and P k intersect at one point, and that point becomes the estimated value of U. Actually, the three-dimensional coordinates U = [X, Y, Z] of this U are based on the above-described method, and the equation of the plane of the equation (2) is created for each plane P 1 , P 2 , P k , and the simultaneous It can be obtained by solving the equation.
 次に本発明を適用した位置推定システム10における実際の位置推定動作について説明をする。 Next, an actual position estimation operation in the position estimation system 10 to which the present invention is applied will be described.
 この位置推定システム10を動作させる前において、位置推定の対象物に信号発信機20を予め取り付けておく。この信号発信機20における信号生成部21は、常時、又は断続的に周波数f0の信号を生成する。この生成された信号は、アンテナ22を介して無線信号として常時、又は断続的に発信されることとなる。 Before the position estimation system 10 is operated, the signal transmitter 20 is attached in advance to an object for position estimation. The signal generator 21 in the signal transmitter 20 generates a signal having a frequency f 0 constantly or intermittently. This generated signal is transmitted as a radio signal through the antenna 22 constantly or intermittently.
 また、この位置推定システム10のユーザは、操作部36を操作することにより、或いは図示しない基地局又はコントローラを介して、飛行計画や飛行制御コマンドを入力する。これにより飛行体30の飛行軌道をユーザ側にて制御することができる。飛行制御コマンド等を受けた機体制御部31は、これに基づいて飛行体30を飛行軌道kに向けて飛行させる。 The user of the position estimation system 10 inputs a flight plan or a flight control command by operating the operation unit 36 or via a base station or a controller (not shown). Thereby, the flight trajectory of the flying object 30 can be controlled on the user side. The aircraft control unit 31 that has received the flight control command or the like causes the aircraft 30 to fly toward the flight path k based on the command.
 飛行体30を飛行軌道kに向けて飛行させる過程で、情報検出部34は、少なくとも飛行体30の飛行軌道上における位置の3次元的な位置情報並びに当該位置における飛行軌道の3次元的な方向ベクトルを取得し続け、これを位置推定部35へと出力する。また飛行体30を飛行軌道kに向けて飛行させる過程で、信号発信機20のアンテナ22から発信された無線信号は、飛行体30におけるアンテナ29を介して無線信号受信部32により受信され、更に観測部33に送られる。観測部33には、上述したように受信電圧、伝播遅延時間、周波数等を始めとした何れかのデータをこの無線信号から観測する。 In the process of flying the flying object 30 toward the flight trajectory k, the information detection unit 34 at least three-dimensional position information of the position of the flying object 30 on the flight trajectory and the three-dimensional direction of the flight trajectory at the position. The vector is continuously acquired and is output to the position estimation unit 35. Further, in the process of flying the flying object 30 toward the flight path k, the wireless signal transmitted from the antenna 22 of the signal transmitter 20 is received by the wireless signal receiving unit 32 via the antenna 29 in the flying object 30, and further It is sent to the observation unit 33. As described above, the observation unit 33 observes any data including the reception voltage, the propagation delay time, and the frequency from the radio signal.
 これらの動作は、飛行体30を飛行軌道kに向けて飛行させる過程で繰り返し行われていくこととなる。その結果、飛行軌道k上の各位置につき、3次元的な位置情報並びに当該位置における飛行軌道の3次元的な方向ベクトルを順次取得することができる。また飛行軌道k上の各位置につき受信電圧等を始めとした無線信号に関するデータを観測部33において順次観測することにより、図6に示すような横軸を位置とした相対的な変化傾向を取得することができる。 These operations are repeatedly performed in the process of flying the flying object 30 toward the flight path k. As a result, for each position on the flight trajectory k, the three-dimensional position information and the three-dimensional direction vector of the flight trajectory at that position can be acquired sequentially. In addition, the observation unit 33 sequentially observes data related to radio signals such as received voltage at each position on the flight trajectory k, thereby obtaining a relative change tendency with the horizontal axis as shown in FIG. can do.
 位置推定部35には、観測部33により観測された無線信号に関するデータの相対的な変化傾向が順次入力される。これと共に、位置推定部35には、飛行軌道k上の各位置につき、3次元的な位置情報並びに当該位置における飛行軌道kの3次元的な方向ベクトルが情報検出部34から入力される。位置推定部35は、この無線信号に関するデータの相対的な変化傾向に基づいて条件満足位置Qkを特定する作業を行う。また条件満足位置Qkが特定できた場合には、情報検出部34から入力された3次元的な位置情報のうち、条件満足位置Qkの座標Qk=[xk,yk,yk]を取得するとともに、情報検出部34から入力された3飛行軌道kの3次元的な方向ベクトルdk=[ak,bk,ck]を取得する。位置推定部35は、この取得した条件満足位置Qkの座標Qk=[xk,yk,yk]と、3次元的な方向ベクトルdk=[ak,bk,ck]を式(2)に代入することで平面の方程式を得ることができる。 The relative estimation tendency of the data regarding the radio signal observed by the observation unit 33 is sequentially input to the position estimation unit 35. At the same time, three-dimensional position information and a three-dimensional direction vector of the flight trajectory k at the position are input from the information detection unit 34 to each position on the flight trajectory k. The position estimation unit 35 performs an operation of specifying the condition satisfaction position Q k based on the relative change tendency of the data regarding the radio signal. If the condition satisfaction position Q k can be specified, the coordinates Q k = [x k , y k , y k of the condition satisfaction position Q k out of the three-dimensional position information input from the information detection unit 34. ], And the three-dimensional direction vector d k = [a k , b k , c k ] of the three flight trajectories k input from the information detection unit 34 is acquired. The position estimation unit 35 obtains the coordinates Q k = [x k , y k , y k ] of the acquired condition satisfaction position Q k and the three-dimensional direction vector d k = [a k , b k , c k ]. By substituting into equation (2), a plane equation can be obtained.
 次に、位置推定システム10のユーザは、操作部36を操作することにより、或いは図示しない基地局又はコントローラを介して、上述した飛行軌道kとは異なる他の飛行軌道となるように設定を行い、飛行体30を飛行させ、上述と同様の動作を実行していく。これを3回以上に亘り実行することにより、互いに異なる飛行軌道k上で飛行させた飛行体30を介して、観測部33から3回以上に亘り相対的な無線信号に関するデータの変化傾向を取得することができ、条件満足位置を3箇所以上に亘り求めることが可能となる。また、各条件満足位置における3次元的な位置情報並びに方向ベクトルが代入された3つ以上の平面の方程式を得ることができ、これを解くことにより対象物の位置Uを推定することが可能となる。 Next, the user of the position estimation system 10 sets the flight path to be different from the above-described flight path k by operating the operation unit 36 or via a base station or a controller (not shown). Then, the flying object 30 is caused to fly and the same operation as described above is performed. By executing this three or more times, a change tendency of data regarding the relative radio signal is acquired three or more times from the observation unit 33 via the flying object 30 that has been flying on different flight trajectories k. It is possible to obtain three or more conditions satisfying conditions. In addition, it is possible to obtain three or more plane equations into which three-dimensional position information and direction vectors at each condition-satisfying position are substituted, and by solving this, it is possible to estimate the position U of the object. Become.
 このようにして、本発明を適用した位置推定システム10によれば、観測部33により観測された無線信号に関するデータの相対的な変化傾向を追うだけで、飛行方向から90°をなす方向に信号発信機20の位置Uが存在する飛行軌道k上の条件満足位置を特定することが可能となる。そして、この条件満足位置における3次元的な位置情報並びに方向ベクトルを平面の方程式に代入することを、互いに異なる飛行軌道間において3回以上に亘り繰り返して行うことにより、対象物の位置を推定することができる。 In this way, according to the position estimation system 10 to which the present invention is applied, the signal in the direction of 90 ° from the flight direction can be obtained only by following the relative change tendency of the data related to the radio signal observed by the observation unit 33. It is possible to specify a condition satisfying position on the flight trajectory k where the position U of the transmitter 20 exists. Then, substituting the three-dimensional position information and the direction vector at the condition satisfying position into the plane equation is repeated three or more times between different flight trajectories to estimate the position of the object. be able to.
 実際のプロセスにおいては、無線信号に関するデータを正確に測定するステップを経ることなく、単に当該データの相対的な変化傾向を追うだけで対象物の位置を推定することができる。このため、従来技術のように、移動体の移動速度と、無線信号のドップラーシフト量を正確に測定するステップを経ることなく対象物の位置を推定することができ、その推定精度を格段に向上させることが可能となる。 In the actual process, it is possible to estimate the position of the object simply by following the relative change tendency of the data without going through the step of accurately measuring the data related to the radio signal. For this reason, the position of the object can be estimated without going through the steps of accurately measuring the moving speed of the moving object and the Doppler shift amount of the radio signal as in the prior art, and the estimation accuracy is greatly improved. It becomes possible to make it.
 位置推定部35は、対象物の位置Uを推定した後、これを情報記憶部38に記憶するようにしてもよいし、図示しない表示画面上にこれを表示するようにしてもよい。或いは位置推定部35は、推定した対象物の位置Uを推定情報送信部39を介して外部の図示しない基地局やコントローラ等に無線通信又は有線通信を介して送信するようにしてもよい。 The position estimation unit 35 may estimate the position U of the object and then store it in the information storage unit 38 or display it on a display screen (not shown). Alternatively, the position estimation unit 35 may transmit the estimated position U of the target object via an estimation information transmission unit 39 to an external base station or controller (not shown) via wireless communication or wired communication.
 なお、上述した実施の形態においては、飛行軌道kの3次元的な方向ベクトルdk=[ak,bk,ck]は、情報検出部34により検出してこれを位置推定部35に送信する場合を例にとり説明をしたが、これに限定されるものではない。操作部36等からユーザにより入力された飛行計画や飛行制御コマンドに基づいてこのような方向ベクトルdkが特定できる場合には、これを位置推定部35に提供することで得るようにしてもよい。 In the above-described embodiment, the three-dimensional direction vector d k = [a k , b k , c k ] of the flight trajectory k is detected by the information detection unit 34 and is sent to the position estimation unit 35. The case of transmission has been described as an example, but the present invention is not limited to this. When such a direction vector d k can be specified based on a flight plan or flight control command input by the user from the operation unit 36 or the like, it may be obtained by providing it to the position estimation unit 35. .
 また上述した実施の形態においては、推定誤差が無い場合を例に挙げて説明をしたが、推定誤差がある場合には以下の推定を行うようにしてもよい。 In the above-described embodiment, the case where there is no estimation error has been described as an example. However, when there is an estimation error, the following estimation may be performed.
 一般にこのような推定誤差がある場合、平面は一点で交わらない。Uの真の位置U=[X,Y,Z]から平面Pkまでの距離は、以下の(3)式により与えられる。
Figure JPOXMLDOC01-appb-M000003
                      ・・・・・・・・・・・(3)
In general, when there is such an estimation error, the planes do not intersect at one point. The distance from the true position U = [X, Y, Z] of U to the plane P k is given by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
(3)
 このため、この距離を誤差と考え、Uを最小二乗推定法で推定するならば、以下の(4)式により求めることができる。
Figure JPOXMLDOC01-appb-M000004
                      ・・・・・・・・・・・(4)
For this reason, if this distance is considered as an error and U is estimated by the least square estimation method, it can be obtained by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
(4)
 また本発明は、飛行体30の移動速度を情報検出部34により測定し、或いは対象物の移動速度を図示しない計測手段により計測して、これを情報記憶部38に記憶しておき、飛行体30の移動速度、対象物の移動速度の何れか1以上に基づいて、飛行軌道kの数を決定するようにしてもよい。 In the present invention, the moving speed of the flying object 30 is measured by the information detecting unit 34, or the moving speed of the object is measured by a measuring means (not shown), and this is stored in the information storing unit 38, The number of flight trajectories k may be determined based on one or more of the moving speed of 30 and the moving speed of the object.
 また、観測部33、位置推定部35の何れか1以上をこの飛行体30内部に設けるのではなく、外部の図示しない基地局やコントローラ内に実装するようにしてもよい。かかる場合には、無線信号受信部32により無線信号を受信した場合には、これを推定情報送信部39を介して図示しない基地局やコントローラ内に送信し、これらの中に実装された観測部33、位置推定部35を介して位置推定を行うこととなる。 Further, one or more of the observation unit 33 and the position estimation unit 35 may be mounted in an external base station or controller (not shown) instead of being provided in the aircraft 30. In such a case, when a radio signal is received by the radio signal receiving unit 32, it is transmitted to a base station or a controller (not shown) via the estimation information transmitting unit 39, and an observation unit mounted therein 33, the position is estimated via the position estimation unit 35.
 なお、本発明によれば、飛行体30を飛行軌道kは、直線状とされていることが前提となるが、飛行軌道kから他の飛行軌道k+1に切り替える際において、飛行体30をその都度離着陸させるようにしてもよいが、飛行体30の飛行軌道を途中で変更することにより切り替えるようにしてもよい。 According to the present invention, it is assumed that the flight trajectory k of the air vehicle 30 is a straight line. However, when the flight trajectory k is switched from the flight trajectory k to another flight trajectory k + 1, Although it may be made to take off and land each time, it may be switched by changing the flight trajectory of the flying object 30 on the way.
 かかる場合において、条件満足位置を図6(b)に示すように受信電力の位置で追う場合において、受信電力を計測した結果、飛行体30が進むにつれてこれが下がり続ける場合には、飛行体30は条件満足位置から徐々に離間していることを意味している。かかる場合には、飛行体30がその飛行軌道上を飛行し続けたとしても受信電力が最大なる条件満足位置に到達し得ないため、その飛行軌道上での飛行体30の飛行は中止する。 In such a case, when the position where the condition is satisfied is followed by the position of the received power as shown in FIG. 6B, if the received power is measured and if this continues to decrease as the flying object 30 advances, the flying object 30 It means that it is gradually separated from the condition satisfaction position. In such a case, even if the flying object 30 continues to fly on the flight trajectory, it cannot reach the condition satisfying position where the received power is maximized, so the flight of the flying object 30 on the flight trajectory is stopped.
 一方、受信電力を計測した結果、飛行体30が進むにつれてこれが上がり続ける場合には、飛行体30は条件満足位置に徐々に近づいていることを意味している。かかる場合において、飛行体3は、その飛行軌道上を継続して飛行することとなる。その飛行の間において飛行体3は受信電力を検出し続けた結果、今までは飛行体30が進むにつれて挙がり続けていた受信電力が下がり始めたとき、ちょうど図6(b)に示すようなピーク位置が現れたことを意味する。このようなピーク位置が上述した条件満足位置に該当するが、その条件満足位置を特定できた段階で飛行体30は他の飛行軌道に変更し、同様の観測を行うことが可能となる。上述した例はあくまで無線信号に関するデータとして受信電力を観測する場合を例に挙げて説明をしたが、他の例の場合も同様であり、伝搬遅延量が最小になる位置が現れるまで飛行体30による飛行を継続するようにしてもよいし、観測された周波数が周波数f0に最も近くなる位置が特定できるまで飛行を継続するようにしてもよ
い。
On the other hand, as a result of measuring the received power, if the aircraft 30 continues to increase as the aircraft 30 advances, it means that the aircraft 30 is gradually approaching the condition satisfaction position. In such a case, the flying object 3 will continue to fly on its flight path. During the flight, the flying object 3 continues to detect the received power. As a result, when the received power that has been raised up until now as the flying object 30 starts to decrease, the peak as shown in FIG. It means that the position has appeared. Such a peak position corresponds to the above-mentioned condition satisfaction position. At the stage where the condition satisfaction position can be specified, the flying object 30 can change to another flight trajectory and perform the same observation. In the above example, the case where the received power is observed as data relating to a radio signal has been described as an example. However, the same applies to other examples, and the flying object 30 appears until a position where the propagation delay amount is minimized appears. The flight may be continued, or the flight may be continued until the position where the observed frequency is closest to the frequency f 0 can be identified.
 即ち、本発明によれば、リアルタイムに無線信号に関するデータを取得し続け、条件満足位置が現れるか否かを飛行体30を飛行させつつ判定し、条件満足位置が確認できるまでその飛行軌道上を直線状に飛行させるようにしてもよい。そして、飛行体30は、観測部33により、条件満足位置を確認することができた後に、別の飛行軌道に変更し、そのまま飛行し続けるようにしてもよい。つまり、条件満足位置の特定の有無を、飛行軌道変更の判定に使用するようにしてもよい。 In other words, according to the present invention, data relating to a radio signal is continuously acquired in real time, whether or not a condition satisfying position appears is determined while flying the flying object 30, and the flight trajectory is maintained until the condition satisfying position can be confirmed. You may make it fly linearly. Then, the flying object 30 may be changed to another flight trajectory after the observation unit 33 can confirm the condition satisfaction position, and may continue to fly as it is. In other words, whether or not the condition satisfaction position is specified may be used for the determination of the flight trajectory change.
10 位置推定システム
20 信号発信機
21 信号生成部
22、29 アンテナ
30 飛行体
31 機体制御部
32 無線信号受信部
33 観測部
34 情報検出部
35 位置推定部
36 操作部
37 制御信号受信部
38 情報記憶部
39 推定情報送信部
DESCRIPTION OF SYMBOLS 10 Position estimation system 20 Signal transmitter 21 Signal generation part 22, 29 Antenna 30 Aircraft body 31 Airframe control part 32 Radio signal reception part 33 Observation part 34 Information detection part 35 Position estimation part 36 Operation part 37 Control signal reception part 38 Information storage Part 39 Estimated information transmitter

Claims (6)

  1.  静止状態にあるか又は僅かに移動する対象物の位置を推定する位置推定システムにおいて、
     外部から制御可能とされた飛行軌道上を飛行する過程で上記対象物に取り付けられた信号発信機から発信された無線信号を継続して受信する飛行体と、
     上記飛行体における上記飛行軌道上の各位置の3次元的な位置情報並びに当該位置における上記飛行軌道の3次元的な方向ベクトルを検出する飛行体位置情報検出手段と、
     上記飛行体により受信された無線信号に関するデータの上記位置に対する相対的な変化傾向を観測する観測手段と、
     上記観測手段により観測されたデータの相対的な変化傾向が予め設定した条件を満たす条件満足位置を求めると共に、その条件満足位置における3次元的な位置情報並びに方向ベクトルを上記飛行体位置情報取得手段から取得してこれを平面の方程式に代入する位置推定手段とを備え、
     上記位置推定手段は、飛行体を互いに異なる飛行軌道上で飛行させる過程で上記観測手段から3回以上に亘り観測された相対的な変化傾向から上記条件満足位置を3箇所以上に亘り求めるとともに、それぞれの上記条件満足位置における3次元的な位置情報並びに方向ベクトルが代入された3つ以上の平面の方程式に基づいて上記対象物の位置を推定すること
     を特徴とする位置推定システム。
    In a position estimation system for estimating the position of an object that is stationary or slightly moving,
    A vehicle that continuously receives a radio signal transmitted from a signal transmitter attached to the object in the process of flying on a flight trajectory that can be controlled from the outside;
    A vehicle position information detecting means for detecting three-dimensional position information of each position on the flight trajectory in the aircraft and a three-dimensional direction vector of the flight trajectory at the position;
    Observing means for observing a relative change tendency with respect to the position of the data relating to the radio signal received by the flying object;
    A condition satisfying position in which a relative change tendency of data observed by the observation means satisfies a preset condition is obtained, and three-dimensional position information and a direction vector at the condition satisfying position are obtained. And position estimation means for substituting this into the plane equation,
    The position estimation means obtains the condition satisfying position at three or more locations from the relative change tendency observed from the observation means three times or more in the process of flying the flying object on mutually different flight trajectories, A position estimation system, wherein the position of the object is estimated based on three-dimensional position information at each condition-satisfying position and an equation of three or more planes into which direction vectors are substituted.
  2.  上記位置推定手段は、上記観測手段により観測されたデータの相対的な変化傾向から上記対象物に対して最も距離が近くなる位置を上記条件満足位置とすること
     を特徴とする請求項1記載の位置推定システム。
    2. The position estimation unit sets the position closest to the object as the condition-satisfying position based on a relative change tendency of data observed by the observation unit. Position estimation system.
  3.  上記観測手段は、上記無線信号に関するデータとしての伝搬遅延量の相対的な変化傾向を観測し、
     上記位置推定手段は、上記観測手段により観測された伝搬遅延量が最小となる位置を上記条件満足位置とすること
     を特徴とする請求項2記載の位置推定システム。
    The observation means observes a relative change tendency of the propagation delay amount as data relating to the radio signal,
    The position estimation system according to claim 2, wherein the position estimation means sets the position where the propagation delay amount observed by the observation means is minimum as the condition satisfying position.
  4.  上記観測手段は、上記無線信号に関するデータとしての無線信号の受信電力の相対的な変化傾向を観測し、
     上記位置推定手段は、上記観測手段により観測された受信電力が最大となる位置を上記条件満足位置とすること
     を特徴とする請求項2記載の位置推定システム。
    The observation means observes a relative change tendency of the reception power of the radio signal as data relating to the radio signal,
    The position estimation system according to claim 2, wherein the position estimation means sets the position where the received power observed by the observation means is maximized as the condition satisfying position.
  5.  上記観測手段は、上記無線信号に関するデータとしての無線信号の周波数の相対的な変化傾向を観測し、
     上記位置推定手段は、上記対象物から発信された無線信号の周波数f0を予め取得する
    と共に、上記観測手段により観測された周波数が周波数f0に最も近くなる位置を上記条
    件満足位置とすること
     を特徴とする請求項1記載の位置推定システム。
    The observation means observes a relative change tendency of the frequency of the radio signal as data relating to the radio signal,
    The position estimation means obtains in advance the frequency f 0 of the radio signal transmitted from the object, and sets the position where the frequency observed by the observation means is closest to the frequency f 0 as the condition satisfying position. The position estimation system according to claim 1.
  6.  上記観測手段は、上記条件満足位置を検出することができるまで無線信号に関するデータを取得し続け、
     上記飛行体は、上記観測手段により上記条件満足位置を検出することができた後に、別の飛行軌道に変更して飛行し続けること
     を特徴とする請求項1記載の位置推定システム。
    The observation means continues to acquire data relating to the radio signal until the condition satisfying position can be detected,
    The position estimation system according to claim 1, wherein the flying object is changed to another flight trajectory and continues to fly after the condition satisfying position can be detected by the observation means.
PCT/JP2017/006772 2016-02-29 2017-02-23 Location estimation system WO2017150323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-036845 2016-02-29
JP2016036845A JP6742589B2 (en) 2016-02-29 2016-02-29 Position estimation system

Publications (1)

Publication Number Publication Date
WO2017150323A1 true WO2017150323A1 (en) 2017-09-08

Family

ID=59743842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006772 WO2017150323A1 (en) 2016-02-29 2017-02-23 Location estimation system

Country Status (2)

Country Link
JP (1) JP6742589B2 (en)
WO (1) WO2017150323A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200025900A1 (en) * 2018-07-19 2020-01-23 Rohde & Schwarz Gmbh & Co. Kg Apparatus and method for determining a spatial position of a transmitter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102136309B1 (en) * 2018-06-14 2020-07-21 김형준 Wireless power transmitter for flight and method for controlling thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329662A (en) * 1996-06-10 1997-12-22 Mitsubishi Electric Corp Locating device
WO2000014564A2 (en) * 1998-09-08 2000-03-16 Motorola, Inc. Movable subscriber device location using dual satellites
JP2011112370A (en) * 2009-11-24 2011-06-09 Nec Corp Signal source search method and signal source code search system
JP2014174080A (en) * 2013-03-12 2014-09-22 Nippon Telegr & Teleph Corp <Ntt> Position estimation method, position estimation device and position estimation program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994088A (en) * 1982-11-20 1984-05-30 Nec Corp Processing apparatus of satellite-borne type
JP2002267732A (en) * 2001-03-12 2002-09-18 Mitsubishi Electric Corp Method and device for locating passive position
JP2004317157A (en) * 2003-04-11 2004-11-11 National Institute Of Information & Communication Technology Method, device and system for specifying radio wave transmission source
JP4544878B2 (en) * 2004-02-16 2010-09-15 富山県 Mountain victim search system
JP4019149B2 (en) * 2004-03-05 2007-12-12 独立行政法人情報通信研究機構 Radio wave arrival direction identification system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329662A (en) * 1996-06-10 1997-12-22 Mitsubishi Electric Corp Locating device
WO2000014564A2 (en) * 1998-09-08 2000-03-16 Motorola, Inc. Movable subscriber device location using dual satellites
JP2011112370A (en) * 2009-11-24 2011-06-09 Nec Corp Signal source search method and signal source code search system
JP2014174080A (en) * 2013-03-12 2014-09-22 Nippon Telegr & Teleph Corp <Ntt> Position estimation method, position estimation device and position estimation program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200025900A1 (en) * 2018-07-19 2020-01-23 Rohde & Schwarz Gmbh & Co. Kg Apparatus and method for determining a spatial position of a transmitter
US11022686B2 (en) 2018-07-19 2021-06-01 Rohde & Schwarz Gmbh & Co. Kg Apparatus and method for determining a spatial position of a transmitter

Also Published As

Publication number Publication date
JP6742589B2 (en) 2020-08-19
JP2017156102A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
US10534068B2 (en) Localization system, vehicle control system, and methods thereof
CN104854428B (en) sensor fusion
US9645581B1 (en) Method and apparatus for navigating unmanned aerial vehicle
JP5544838B2 (en) Signal source search method and signal source search system
AU2012369136B2 (en) Wind calculation system using constant bank angle turn
AU2017251682B2 (en) Systems and methods for establishing a flight pattern adjacent to a target for a vehicle to follow
JP2019067252A (en) Route selecting unit, unmanned aircraft, data processing unit, route selection processing method, and program for route selection processing
US11808578B2 (en) Global positioning denied navigation
Dehghan et al. A new approach for Simultaneous Localization of UAV and RF Sources (SLUS)
CN101266150A (en) Un-manned machine side navigation method
JP6347469B2 (en) Weather observation system
JP2018191124A (en) Relay device, information processing apparatus, system, relay position determination method, information processing method, and program
US20190295428A1 (en) UASTrakker - Emergency RF locator for drones and robots
US20220366801A1 (en) Information processing device, information processing method, and program
EP4015993B1 (en) Aircraft sensor system synchronization
WO2017150323A1 (en) Location estimation system
KR20190092789A (en) Method for calculating position of drone and system for correcting position of drone using the method
JP2008241079A (en) Navigation system
US11105930B1 (en) Self contained satellite-navigation-based method and micro system for real-time relative-position determination
Benini Localization and Navigation of Autonomous Systems in Complex Scenarios
Thibault et al. Construction, Modeling and Control of an Autonomous Unmanned Aerial Vehicle Testbed

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759789

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759789

Country of ref document: EP

Kind code of ref document: A1