[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017150372A1 - 太陽電池モジュールおよび太陽電池モジュールの製造方法 - Google Patents

太陽電池モジュールおよび太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2017150372A1
WO2017150372A1 PCT/JP2017/007070 JP2017007070W WO2017150372A1 WO 2017150372 A1 WO2017150372 A1 WO 2017150372A1 JP 2017007070 W JP2017007070 W JP 2017007070W WO 2017150372 A1 WO2017150372 A1 WO 2017150372A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
conductive film
film adhesive
disposed
solar
Prior art date
Application number
PCT/JP2017/007070
Other languages
English (en)
French (fr)
Inventor
和生 太田
潤也 三原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018503101A priority Critical patent/JPWO2017150372A1/ja
Publication of WO2017150372A1 publication Critical patent/WO2017150372A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module, particularly a solar cell module in which a plurality of solar cells are connected by a wiring material, and a method for manufacturing the solar cell module.
  • the solar cell module a plurality of solar cells are arranged flat and flush with each other.
  • a conductive material is disposed on the surface of each solar battery cell, and two adjacent solar battery cells are electrically connected via the conductive material and the connection member (see, for example, Patent Document 1).
  • a conductive film adhesive is used as the conductive material. Since the conductive film adhesive is generally expensive, it is desirable that the amount of the conductive film adhesive used is small in order to suppress the manufacturing cost of the solar cell module. On the other hand, since the conductive film adhesive is used to bond the wiring member as the connecting member and the surface of the solar battery cell, the adhesive strength is reduced even when the amount used is reduced. Should be suppressed.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for suppressing a decrease in adhesive force while reducing the amount of conductive film adhesive used.
  • a solar cell module includes a plurality of solar cells, a wiring material that electrically connects adjacent solar cells among the plurality of solar cells, and wiring A conductive film adhesive is provided between the surface of the solar cells to be connected by the material and the wiring material.
  • the conductive film adhesive is disposed in the first region and not disposed in the second region among the first region and the second region included in the connection region to which the wiring material is to be connected on the surface of the solar battery cell. It is.
  • Another aspect of the present invention is a method for manufacturing a solar cell module.
  • the method includes the steps of disposing a conductive film adhesive on the surface of the solar cell, connecting the wiring material to the surface of the solar cell by adhering the wiring material to the conductive film adhesive, and Is provided.
  • the conductive film adhesive is arranged in the first region among the first region and the second region included in the connection region to which the wiring material is to be connected on the surface of the solar battery cell, and the second region.
  • the conductive film adhesive is not disposed.
  • FIGS. 5A to 5C are cross-sectional views along the x-axis of the solar battery cell of FIG. 6 (a) to 6 (e) are plan views showing various configurations of the solar battery cell of FIG. 3 (a).
  • FIGS. 7A to 7B are diagrams showing the configuration of the solar battery cell according to Example 2 of the present invention.
  • Example 1 of the present invention relates to a solar cell module in which a plurality of solar cells are arranged.
  • a bus bar electrode is disposed on the surface of each solar battery cell.
  • a wiring material is adhere
  • the bus bar electrode and the wiring material are electrically connected.
  • the wiring material is also bonded to the solar cell adjacent to the solar cell, the two adjacent solar cells are electrically connected.
  • the conductive film adhesive is generally expensive, it is required to reduce the amount used.
  • the solar cell module according to this example is configured as follows.
  • a connection area is defined on the surface of the solar battery cell as an area to which a wiring material is to be connected.
  • the connection area is classified into a first area and a second area.
  • the first region is a region where the conductive film adhesive is to be disposed
  • the second region is a region where the conductive film adhesive is not disposed.
  • the second region is formed along one direction in which the bus bar electrode extends so as to overlap the bus bar electrode, and the first region is arranged side by side on both sides of the second region.
  • the surface of the solar battery cell and the wiring material are bonded by the adhesive force of the conductive film adhesive.
  • the connection between the bus bar electrode and the wiring material is maintained by the wiring material directly contacting the bar bar electrode.
  • parallel and “orthogonal” include not only perfect parallel and orthogonal, but also a case of deviating from parallel within an error range. Further, “substantially” means that they are the same in an approximate range.
  • FIG. 1 is a plan view from the light-receiving surface side of the configuration of the solar cell module 100 according to Example 1 of the present invention.
  • FIG. 2 is a plan view from the back side of the solar cell module 100.
  • an orthogonal coordinate system including an x-axis, a y-axis, and a z-axis is defined.
  • the x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100.
  • the z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100.
  • the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow.
  • the main plane arranged on the positive side of the z axis is the light receiving surface
  • the z axis The main plane arranged on the negative direction side is the back surface.
  • the positive direction side of the z-axis is referred to as “light-receiving surface side”
  • the negative direction side of the z-axis is referred to as “back surface side”.
  • the solar cell module 100 includes eleventh solar cells 10aa, collectively referred to as solar cells 10, ..., 84th solar cell 10hd, inter-group wiring member 14, group end wiring member 16, inter-cell wiring member 18, A termination wiring member 20 is included.
  • the first non-power generation region 38a and the second non-power generation region 38b are arranged so as to sandwich the plurality of solar cells 10 in the y-axis direction. Specifically, the first non-power generation region 38 a is arranged on the positive side of the y axis with respect to the plurality of solar cells 10, and the second non-power generation region 38 b is on the y axis with respect to the plurality of solar cells 10. It is arranged on the negative direction side.
  • the first non-power generation region 38 a and the second non-power generation region 38 b (hereinafter, sometimes collectively referred to as “non-power generation region 38”) have a rectangular shape and do not include the solar battery cell 10.
  • the solar battery cell 10 is made of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • the structure of the solar battery cell 10 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked.
  • FIGS. 3A to 3B are plan views showing the configuration of the solar battery cell 10.
  • FIG. 3A shows the light receiving surface of the solar battery cell 10
  • FIG. 3B shows the back surface of the solar battery cell 10.
  • a plurality of finger electrodes 52 extending in the x-axis direction are arranged in parallel with each other on the light receiving surface and the back surface of the solar battery cell 10.
  • a plurality of, for example, three bus bar electrodes extending in the y-axis direction so as to be orthogonal to the plurality of finger electrodes 52 are disposed on the light receiving surface and the back surface of the solar battery cell 10.
  • the bus bar electrode 50 connects each of the plurality of finger electrodes 52.
  • the bus bar electrode 50 and the finger electrode 52 are formed of, for example, silver paste. Other configurations will be described later, and the description returns to FIGS. 1 and 2.
  • the plurality of solar cells 10 are arranged in a matrix on the xy plane.
  • eight solar cells 10 are arranged in the x-axis direction, and four solar cells 10 are arranged in the y-axis direction.
  • the number of the photovoltaic cells 10 arranged in the x-axis direction and the number of the photovoltaic cells 10 arranged in the y-axis direction are not limited to this.
  • the four solar cells 10 arranged side by side in the y-axis direction are connected in series by the inter-cell wiring member 18 to form one solar cell group 12.
  • the first solar cell group 12a is formed by connecting the eleventh solar cell 10aa, the twelfth solar cell 10ab, the thirteenth solar cell 10ac, and the fourteenth solar cell 10ad.
  • Other solar cell groups 12, for example, the second solar cell group 12b to the eighth solar cell group 12h are formed in the same manner.
  • the eight solar cell groups 12 are arranged in parallel in the x-axis direction.
  • the solar cell group 12 corresponds to a string.
  • the inter-cell wiring member 18 connects the bus bar electrode 50 on one light receiving surface side of the adjacent solar cells 10 and the bus bar electrode 50 on the other back surface side.
  • the two inter-cell wiring members 18 for connecting the eleventh solar cell 10aa and the twelfth solar cell 10ab are the bus bar electrode 50 on the back surface side of the eleventh solar cell 10aa and the twelfth solar cell 10ab.
  • the inter-cell wiring member 18 is disposed so as to overlap the bus bar electrodes 50. In FIG. Connection of the inter-cell wiring member 18 on the light receiving surface and the back surface of the solar battery cell 10 will be described later, and the description returns to FIGS. 1 and 2.
  • Each of the seven inter-group wiring members 14 extends in the x-axis direction and is electrically connected to two adjacent solar cell groups 12 via the group end wiring member 16.
  • Each is electrically connected to the inter-group wiring member 14 via the group end wiring member 16.
  • the group end wiring member 16 is arranged in the same manner as the inter-cell wiring member 18 on the light receiving surface or the back surface of the solar battery cell 10.
  • the termination wiring member 20 is connected to the first solar cell group 12a and the eighth solar cell group 12h located at both ends in the x-axis direction.
  • the termination wiring member 20 connected to the first solar cell group 12a extends in the direction of the first non-power generation region 38a from the light receiving surface side of the eleventh solar cell 10aa.
  • a pair of positive and negative lead wires is connected to the termination wiring member 20.
  • FIG. 4 is a cross-sectional view taken along the y-axis of the solar cell module 100, and is a cross-sectional view taken along the line A-A ′ of FIG.
  • the solar cell module 100 includes an eleventh solar cell 10aa, a twelfth solar cell 10ab, a thirteenth solar cell 10ac, a fourteenth solar cell 10ad, an inter-group wiring member 14, and a group end.
  • Wiring material 16, inter-cell wiring material 18, termination wiring material 20, take-out wiring 30, first protective member 40a, second protective member 40b, collectively referred to as protective member 40, and first sealing, collectively referred to as sealing member 42 A member 42a, a second sealing member 42b, and a terminal box 44 are included.
  • the upper side in FIG. 4 corresponds to the back side, and the lower side corresponds to the light receiving side.
  • the first protective member 40 a is disposed on the light receiving surface side of the solar cell module 100 and protects the surface of the solar cell module 100.
  • the first protective member 40a is made of a light-transmitting and water-blocking glass, a light-transmitting plastic, or the like, and is formed in a rectangular plate shape.
  • the 1st sealing member 42a is laminated
  • the 1st sealing member 42a is arrange
  • first sealing member 42a for example, a thermoplastic resin such as a resin film of polyolefin, EVA, PVB (polyvinyl butyral), polyimide, or the like is used. A thermosetting resin may be used.
  • the first sealing member 42a is formed of a rectangular sheet material having translucency and having a surface having substantially the same dimensions as the xy plane of the first protection member 40a.
  • the second sealing member 42b is laminated on the back side of the first sealing member 42a.
  • the second sealing member 42b seals the plurality of solar cells 10, the inter-cell wiring member 18 and the like with the first sealing member 42a.
  • the 2nd sealing member 42b can use the thing similar to the 1st sealing member 42a.
  • the second sealing member 42b may be integrated with the first sealing member 42a by heating in the laminating / curing process.
  • the second protective member 40b is laminated on the back side of the second sealing member 42b.
  • the 2nd protection member 40b protects the back surface side of the solar cell module 100 as a back sheet.
  • a resin film such as PET (polyethylene terephthalate), a laminated film having a structure in which an Al foil is sandwiched between resin films, and the like are used.
  • the second protective member 40b is provided with an opening (not shown) penetrating in the z-axis direction.
  • the terminal box 44 is formed in a rectangular parallelepiped shape, and is bonded from the back surface side of the second protective member 40b using an adhesive such as silicone so as to cover the opening (not shown) of the second protective member 40b.
  • the lead-out wiring 30 is led to a bypass diode (not shown) stored in the terminal box 44.
  • the terminal box 44 is arrange
  • An Al frame frame may be attached around the solar cell module 100.
  • connection region 54 a region to which the inter-cell wiring member 18 is connected on the light receiving surface of the solar battery cell 10 is shown as a connection region 54.
  • 3A is a configuration when the solar battery cell 10 is viewed from the light receiving surface side, and therefore, the inter-cell wiring member 18 and the connection region 54 coincide with each other in FIG.
  • the connection area 54 is divided into a first area 56 and a second area 58.
  • the first region 56 is a region where the conductive film adhesive 60 is to be disposed
  • the second region 58 is a region where the conductive film adhesive 60 is not disposed.
  • the second region 58 is formed in the y-axis direction in which the bus bar electrode 50 extends while overlapping with the bus bar electrode 50.
  • the width of the second region 58 in the x-axis direction is made wider than the width of the bus bar electrode 50 in the x-axis direction.
  • the first region 56 is formed to extend in the y-axis direction along with both sides of the second region 58.
  • the conductive film adhesive 60 is disposed in the first region 56 and is not disposed in the second region 58.
  • the conductive film adhesive 60 is a polymer resin containing an acrylic polymer and a thermosetting resin.
  • the conductive film adhesive 60 also includes conductive particles and has anisotropic conductivity.
  • FIGS. 5A to 5C are used.
  • FIGS. 5A to 5C are cross-sectional views taken along the x-axis of the solar battery cell 10, and are cross-sectional views taken along the line B-B ′ of FIG. In these, the vicinity of one of the three bus bar electrodes 50 shown in FIG. 3A is enlarged.
  • the second region 58 is disposed so as to include the bus bar electrode 50 on the light receiving surface of the solar battery cell 10.
  • the conductive film adhesive 60 is arrange
  • the conductive film adhesive 60 is disposed between the light receiving surface of the solar battery cell 10 and the inter-cell wiring member 18 in the z-axis direction in order to bond the light receiving surface.
  • the bonding is performed by thermocompression bonding.
  • the bus bar electrode 50 and the inter-cell wiring member 18 are in direct contact with each other in the z-axis direction. In particular, since the inter-cell wiring member 18 is in direct contact with the bus bar electrode 50, the adhesive force between the two is ensured and the connection between the two is maintained without using the conductive film adhesive 60.
  • FIG.5 (b) is sectional drawing which shows the structure of the photovoltaic cell 110 used as the comparison object of the photovoltaic cell 10 of Fig.5 (a), and shows the conventional general structure.
  • the conductive film adhesive 60 is entirely disposed between the connection region 54 and the inter-cell wiring member 18 in the z-axis direction so as to surround the bus bar electrode 50.
  • the amount of the conductive film adhesive 60 used is reduced in the x-axis direction and the z-axis direction.
  • FIG. 5C shows an arrangement of the conductive film adhesive 60 different from that shown in FIG. In FIG.5 (c), the 1st area
  • the conductive film adhesive 60 is not disposed in the second region 58 and is disposed only in the first region 56, but bonds across the bus bar electrode 50 on the positive side of the z axis. Since the inter-cell wiring member 18 and the conductive film adhesive 60 are in full contact with each other in the x-axis direction, the adhesive force is strengthened.
  • the usage amount of the conductive film adhesive 60 is reduced in the x-axis direction in the solar battery cell 10 in FIG.
  • the arrangement of the conductive film adhesive 60 on the light receiving surface of the solar battery cell 10 has been described based on FIGS. 3 (a) and 5 (a)-(c).
  • the conductive film adhesive 60 is similarly disposed on the back surface side of the solar battery cell 10.
  • FIGS. 6A to 6E are plan views showing various configurations of the solar battery cell 10. In these, the vicinity of the bus-bar electrode 50 arrange
  • FIG. 6 (a) is shown in the same manner as FIG. 3 (a), which is a comparison object with FIG. 6 (b)-(e).
  • the conductive film adhesive 60 is disposed in a wavy shape in the connection region 54 while extending in the y-axis direction. Therefore, it can be said that the first region 56 is also formed in a waveform shape.
  • the second region 58 is disposed in a portion other than the portion where the conductive film adhesive 60 is disposed.
  • the conductive film adhesive 60 is disposed in the y-axis direction in which the bus bar electrode 50 extends while straddling the bus bar electrode 50 a plurality of times. That is, the conductive film adhesive 60 alternately extends in the positive and negative directions of the x-axis and also extends in the y-axis direction across the bus bar electrode 50 in the width of the connection region 54 in the x-axis direction. . This is a zigzag shape. Further, in the connection region 54, the second region 58 is disposed in a portion other than the portion where the conductive film adhesive 60 is disposed.
  • the conductive film adhesive 60 is discretely arranged in the y-axis direction in which the bus bar electrode 50 extends. That is, the conductive film adhesive 60 includes a plurality of rectangular portions that are longer in the x-axis direction than in the y-axis direction, and these are discretely arranged in the y-axis direction. Moreover, in the connection area
  • the second area 58 in the connection area 54, the second area 58 is arranged at a portion where FIG. 6A and FIG. 6D are combined. That is, the second region 58 is arranged in the y-axis direction in which the bus bar electrode 50 extends while overlapping with the bus bar electrode 50 in addition to the portion in FIG.
  • the conductive film adhesive 60 is disposed in a portion other than the portion where the second region 58 is disposed. 6B to 6B may be made on the back surface of the solar battery cell 10.
  • the manufacturing method of the solar cell module 100 is demonstrated.
  • the first protective member 40a, the first sealing member 42a, the solar battery cell 10, the second sealing member 42b, and the second protective member 40b are sequentially stacked from the positive direction of the z axis toward the negative direction.
  • a laminate is generated.
  • the conductive film adhesive 60 is pulled out from the roll of the conductive film adhesive 60 wound around the reel member, and used to bond the surface of the solar battery cell 10 and the inter-cell wiring member 18. Is done.
  • thermocompression bonding is performed for adhesion.
  • a laminate curing process is performed on the laminate.
  • air is extracted from the laminated body, and heated and pressurized to integrate the laminated body.
  • the terminal box 44 is attached to the second protective member 40b with an adhesive.
  • the conductive film adhesive 60 is disposed in the first region 56 in the connection region 54 on the surface of the solar battery cell 10 and the conductive film adhesive in the second region 58. Since 60 is not disposed, the amount of the conductive film adhesive 60 used can be reduced. Further, since the inter-cell wiring member 18 is brought into direct contact with the bus bar electrode 50 in a portion where the conductive film adhesive 60 is not disposed, it is possible to suppress a decrease in adhesive force. In addition, since the conductive film adhesive 60 is arranged side by side on both sides of the second region 58 without overlapping the bus bar electrode 50, the conductive film adhesive 60 is not arranged in one direction in which the bus bar electrode 50 extends. The amount of the conductive film adhesive 60 used can be reduced.
  • the conductive film adhesive 60 is disposed in the connection region 54 formed side by side on the both sides of the second region 58 and the conductive film adhesive 60 is bonded across the bus bar electrode 50, the conductive The amount of film adhesive 60 used can be reduced. Moreover, since the usage-amount of the electroconductive film adhesive 60 reduces, the manufacturing cost of the solar cell module 100 can be reduced.
  • the conductive film adhesive 60 is arranged in a corrugated shape, the amount of the conductive film adhesive 60 used can be reduced. Moreover, since the conductive film adhesive 60 is disposed in one direction in which the bus bar electrode 50 extends while straddling the bus bar electrode 50 a plurality of times, the amount of the conductive film adhesive 60 used can be reduced. Further, since the conductive film adhesive 60 is disposed in one direction in which the bus bar electrode 50 extends while straddling the bus bar electrode 50 a plurality of times, conductivity can be ensured even if the bus bar electrode 50 is displaced during bonding.
  • the conductive film adhesive 60 is discretely arranged in one direction in which the bus bar electrode 50 extends, the amount of the conductive film adhesive 60 used can be reduced. In addition, while disposing conductive film adhesive 60 in one direction in which bus bar electrode 50 extends, conductive film adhesive 60 is disposed in one direction in which bus bar electrode 50 extends, overlapping bus bar electrode 50. Therefore, the amount of the conductive film adhesive 60 used can be reduced. Moreover, since the usage-amount of the electroconductive film adhesive 60 reduces, the manufacturing cost of the solar cell module 100 can be reduced.
  • the solar cell module 100 includes a plurality of solar cells 10, an inter-cell wiring member 18 that electrically connects adjacent solar cells 10 among the plurality of solar cells 10, and an inter-cell A conductive film adhesive 60 is provided between the surface of the solar battery cell 10 to be connected by the wiring member 18 and the inter-cell wiring member 18.
  • the conductive film adhesive 60 is disposed in the first region 56 among the first region 56 and the second region 58 included in the connection region 54 to which the inter-cell wiring member 18 is to be connected on the surface of the solar battery cell 10.
  • the second region 58 is not arranged.
  • a bus bar electrode 50 extending in one direction is disposed on the surface of the solar battery cell 10, and the conductive film adhesive 60 is formed in one direction in which the bus bar electrode 50 extends while overlapping with the bus bar electrode 50. It may not be arranged in the region 58 and may be arranged in the first region 56 formed side by side on the both sides of the second region 58.
  • the conductive film adhesive 60 may be disposed in the first region 56 formed side by side on the both sides of the second region 58 and may be coupled across the bus bar electrode 50.
  • the conductive film adhesive 60 may be disposed in the first region 56 formed in a corrugated shape.
  • a bus bar electrode 50 extending in one direction is disposed on the surface of the solar battery cell 10, and the conductive film adhesive 60 is formed in one direction in which the bus bar electrode 50 extends while straddling the bus bar electrode 50 a plurality of times. It may be arranged in one area 56.
  • a bus bar electrode 50 extending in one direction is disposed on the surface of the solar battery cell 10, and the conductive film adhesive 60 is disposed in first regions 56 that are discretely formed in the one direction in which the bus bar electrode 50 extends. May be.
  • the conductive film adhesive 60 may not be arranged in the second region 58 formed in one direction in which the bus bar electrode 50 extends while overlapping with the bus bar electrode 50.
  • Another aspect of the present invention is a method for manufacturing the solar cell module 100.
  • the conductive film adhesive 60 is disposed on the surface of the solar battery cell 10, and the intercell wiring member 18 is adhered to the conductive film adhesive 60, whereby the surface of the solar battery cell 10 is adhered. Connecting the inter-cell wiring member 18.
  • the conductive film adhesive is formed in the first region 56 among the first region 56 and the second region 58 included in the connection region 54 to which the inter-cell wiring member 18 is connected on the surface of the solar battery cell 10. 60 is disposed, and the conductive film adhesive 60 is not disposed in the second region 58.
  • Example 2 is related to a solar cell module in which a plurality of solar cells are arranged in the same manner as Example 1.
  • the purpose is to suppress the decrease in adhesive force while reducing the amount of conductive film adhesive used to bond the surface of the solar battery cell and the bus bar electrode.
  • the arrangement of the conductive film adhesive in Example 2 is different from that in Example 1.
  • the solar cell module 100 according to the second embodiment is of the same type as that shown in FIGS. Below, it demonstrates focusing on a difference.
  • FIGS. 7A to 7B show the configuration of the solar battery cell 10 according to Example 2 of the present invention.
  • the vicinity of the bus bar electrode 50 arranged on the light receiving surface of the solar battery cell 10 is enlarged, as in FIGS. 6A to 6E.
  • the bus bar electrode 50 is arranged extending in the y-axis direction as before.
  • the conductive film adhesive 60 is disposed so as to extend in the y-axis direction inside the bus bar electrode 50 on the xy plane.
  • FIG. 7B is used to describe the configuration of the bus bar electrode 50 and the conductive film adhesive 60 in more detail.
  • FIG. 7B is a cross-sectional view of the solar battery cell 10 along the x-axis, and is a cross-sectional view taken along the line C-C ′ of FIG.
  • the bus bar electrode 50 is disposed on the light receiving surface of the solar battery cell 10.
  • the bus bar electrode 50 has a shape in which a central portion in the x-axis direction is recessed on the positive side of the z-axis. Further, the conductive film adhesive 60 is disposed in the recessed portion of the bus bar electrode 50.
  • the conductive film adhesive 60 is disposed at the central portion in the x-axis direction on the positive side of the z-axis of the bus bar electrode 50.
  • the conductive film adhesive 60 adheres to the inter-cell wiring member 18, and the z-axis positive side end of the bus bar electrode 50 is in contact with the inter-cell wiring member 18. As described above, the inter-cell wiring member 18 is connected to the bus bar electrode 50.
  • the amount of material used for the bus bar electrode 50 can be reduced.
  • the conductive film adhesive 60 is arrange

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池モジュールには、複数の太陽電池セル10が含まれる。セル間配線材18は、複数の太陽電池セル10のうち、隣接した太陽電池セル10を電気的に接続する。導電性フィルム状接着剤60は、太陽電池セル10によって接続すべき太陽電池セル10の表面と、セル間配線材18との間に配置される。導電性フィルム状接着剤60は、太陽電池セル10の表面においてセル間配線材18を接続すべき接続領域54に含まれる第1領域56と第1領域56のうち、第1領域56に配置されるとともに、第2領域58に非配置である。

Description

太陽電池モジュールおよび太陽電池モジュールの製造方法
 本発明は、太陽電池モジュール、特に複数の太陽電池セルが配線材によって接続される太陽電池モジュールおよび太陽電池モジュールの製造方法に関する。
 太陽電池モジュールでは、複数の太陽電池セルが平面的にかつ面一に配置されている。各太陽電池セルの表面には導通材が配置されており、隣接した2つの太陽電池セルは、導通材および接続部材を介して電気的に接続される(例えば、特許文献1参照)。
特開2014-197700号公報
 導通材として、例えば、導電性フィルム状接着剤が使用される。導電性フィルム状接着剤は一般的に高価であるので、太陽電池モジュールの製造コストを抑制するために、導電性フィルム状接着剤の使用量は少ない方が望ましい。一方、導電性フィルム状接着剤は、接続部材である配線材と、太陽電池セルの表面とを接着させるために使用されるので、使用量を少なくする場合であっても、接着力の低下を抑制すべきである。
 本発明はこうした状況に鑑みなされたものであり、その目的は、導電性フィルム状接着剤の使用量を減少させながら、接着力の低下を抑制する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の太陽電池モジュールは、複数の太陽電池セルと、複数の太陽電池セルのうち、隣接した太陽電池セルを電気的に接続する配線材と、配線材によって接続すべき太陽電池セルの表面と、配線材との間に配置される導電性フィルム状接着剤とを備える。導電性フィルム状接着剤は、太陽電池セルの表面において配線材を接続すべき接続領域に含まれる第1領域と第2領域のうち、第1領域に配置されるとともに、第2領域に非配置である。
 本発明の別の態様は、太陽電池モジュールの製造方法である。この方法は、太陽電池セルの表面に導電性フィルム状接着剤を配置するステップと、導電性フィルム状接着剤に配線材を接着させることによって、太陽電池セルの表面に配線材を接続するステップとを備える。配置するステップでは、太陽電池セルの表面において配線材を接続すべき接続領域に含まれる第1領域と第2領域のうち、第1領域に導電性フィルム状接着剤を配置するとともに、第2領域に導電性フィルム状接着剤を非配置とする。
 本発明によれば、導電性フィルム状接着剤の使用量を減少させながら、接着力の低下を抑制できる。
本発明の実施例1に係る太陽電池モジュールの構成の受光面側からの平面図である。 図1の太陽電池モジュールの裏面側からの平面図である。 図3(a)-(b)は、図1の太陽電池セルの構成を示す平面図である。 図1の太陽電池モジュールのy軸に沿った断面図である。 図5(a)-(c)は、図3(a)の太陽電池セルのx軸に沿った断面図である。 図6(a)-(e)は、図3(a)の太陽電池セルのさまざまな構成を示す平面図である。 図7(a)-(b)は、本発明の実施例2に係る太陽電池セルの構成を示す図である。
(実施例1)
 本発明を具体的に説明する前に、概要を述べる。本発明の実施例1は、複数の太陽電池セルが配置された太陽電池モジュールに関する。各太陽電池セルの表面には、バスバー電極が配置される。また、太陽電池セルの表面には、導電性フィルム状接着剤を介して配線材が接着される。この接着によって、バスバー電極と配線材が電気的に接続される。さらに、配線材は、当該太陽電池セルに隣接した太陽電池セルにも接着されるので、隣接した2つの太陽電池セルが電気的に接続される。前述のごとく、導電性フィルム状接着剤は一般的に高価であるので、使用量の減少が求められる。また、導電性フィルム状接着剤は、太陽電池セルの表面と配線材とを接着するので、使用量の減少による接着力の低下を抑制する必要がある。導電性フィルム状接着剤の使用量を減少させながら、接着力の低下を抑制するために、本実施例に係る太陽電池モジュールは次のように構成される。
 太陽電池セルの表面上に、配線材を接続すべき領域として接続領域が規定される。また、接続領域は、第1領域と第2領域とに分類される。ここで、第1領域は、導電性フィルム状接着剤を配置すべき領域であり、第2領域は、導電性フィルム状接着剤を非配置とすべき領域である。また、第2領域は、バスバー電極と重複するように、バスバー電極が延びる一方向に沿って形成され、第1領域は、第2領域の両側に並んで配置される。第1領域では、導電性フィルム状接着剤の接着力によって、太陽電池セルの表面と配線材とが接着される。一方、第2領域では、配線材がバースバー電極に直接接触することによって、バスバー電極と配線材との接続が保持される。なお、以下の説明において、「平行」、「直交」は、完全な平行、直交だけではなく、誤差の範囲で平行からずれている場合も含むものとする。また、「略」は、おおよその範囲で同一であるという意味である。
 図1は、本発明の実施例1に係る太陽電池モジュール100の構成の受光面側からの平面図である。図2は、太陽電池モジュール100の裏面側からの平面図である。図1に示すように、x軸、y軸、z軸からなる直交座標系が規定される。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。太陽電池モジュール100を形成する2つの主表面であって、かつx-y平面に平行な2つの主表面のうち、z軸の正方向側に配置される主平面が受光面であり、z軸の負方向側に配置される主平面が裏面である。以下では、z軸の正方向側を「受光面側」とよび、z軸の負方向側を「裏面側」とよぶ。
 太陽電池モジュール100は、太陽電池セル10と総称される第11太陽電池セル10aa、・・・、第84太陽電池セル10hd、群間配線材14、群端配線材16、セル間配線材18、終端配線材20を含む。第1非発電領域38aと第2非発電領域38bは、y軸方向において、複数の太陽電池セル10を挟むように配置される。具体的には、第1非発電領域38aは、複数の太陽電池セル10よりもy軸の正方向側に配置され、第2非発電領域38bは、複数の太陽電池セル10よりもy軸の負方向側に配置される。第1非発電領域38a、第2非発電領域38b(以下、「非発電領域38」と総称することもある)は、矩形状を有し、太陽電池セル10を含まない。
 複数の太陽電池セル10のそれぞれは、入射する光を吸収して光起電力を発生する。太陽電池セル10は、例えば、結晶系シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル10の構造は、特に限定されないが、ここでは、一例として、結晶シリコンとアモルファスシリコンとが積層されているとする。
 図3(a)-(b)は、太陽電池セル10の構成を示す平面図である。図3(a)は、太陽電池セル10の受光面を示し、図3(b)は、太陽電池セル10の裏面を示す。太陽電池セル10の受光面および裏面には、互いに平行にx軸方向に延びる複数のフィンガー電極52が配置される。また、太陽電池セル10の受光面および裏面には、複数のフィンガー電極52に直交するようにy軸方向に延びる複数、例えば3本のバスバー電極が配置される。バスバー電極50は、複数のフィンガー電極52のそれぞれを接続する。また、バスバー電極50、フィンガー電極52は、例えば、銀ペースト等により形成される。他の構成は後述し、図1、図2に戻る。
 複数の太陽電池セル10は、x-y平面上にマトリクス状に配列される。ここでは、一例として、x軸方向に8つの太陽電池セル10が並べられ、y軸方向に4つの太陽電池セル10が並べられる。なお、x軸方向に並べられる太陽電池セル10の数と、y軸方向に並べられる太陽電池セル10の数は、これに限定されない。y軸方向に並んで配置される4つの太陽電池セル10は、セル間配線材18によって直列に接続され、1つの太陽電池群12が形成される。例えば、第11太陽電池セル10aa、第12太陽電池セル10ab、第13太陽電池セル10ac、第14太陽電池セル10adが接続されることによって、第1太陽電池群12aが形成される。他の太陽電池群12、例えば、第2太陽電池群12bから第8太陽電池群12hも同様に形成される。その結果、8つの太陽電池群12がx軸方向に平行に並べられる。また、太陽電池群12がストリングに相当する。
 太陽電池群12を形成するために、セル間配線材18は、隣接した太陽電池セル10のうちの一方の受光面側のバスバー電極50と、他方の裏面側のバスバー電極50とを接続する。例えば、第11太陽電池セル10aaと第12太陽電池セル10abとを接続するための2つのセル間配線材18は、第11太陽電池セル10aaの裏面側のバスバー電極50と第12太陽電池セル10abの受光面側のバスバー電極50とを電気的に接続する。図3(a)-(b)において、各バスバー電極50に重なられるようにセル間配線材18が配置される。太陽電池セル10の受光面および裏面におけるセル間配線材18の接続については後述し、図1、図2に戻る。
 7つの群間配線材14のうちの3つが、第1非発電領域38aに配置され、残りの4つが、第2非発電領域38bに配置される。7つの群間配線材14のそれぞれは、x軸方向に延びて、群端配線材16を介して互いに隣接する2つの太陽電池群12に電気的に接続される。例えば、第1太陽電池群12aの第2非発電領域38b側に位置する第14太陽電池セル10ad、第2太陽電池群12bの第2非発電領域38b側に位置する第24太陽電池セル10bdのそれぞれは、群端配線材16を介して群間配線材14に電気的に接続される。ここで、群端配線材16は、太陽電池セル10の受光面あるいは裏面において、セル間配線材18と同様に配置される。
 x軸方向の両端に位置する第1太陽電池群12a、第8太陽電池群12hには、終端配線材20が接続される。第1太陽電池群12aに接続される終端配線材20は、第11太陽電池セル10aaの受光面側から第1非発電領域38aの方向に延びている。終端配線材20には、正負一対の取出し配線が接続されている。
 図4は、太陽電池モジュール100のy軸に沿った断面図であり、図1のA-A’断面図である。太陽電池モジュール100は、太陽電池セル10と総称される第11太陽電池セル10aa、第12太陽電池セル10ab、第13太陽電池セル10ac、第14太陽電池セル10ad、群間配線材14、群端配線材16、セル間配線材18、終端配線材20、取出し配線30、保護部材40と総称される第1保護部材40a、第2保護部材40b、封止部材42と総称される第1封止部材42a、第2封止部材42b、端子ボックス44を含む。図4の上側が裏面側に相当し、下側が受光面側に相当する。
 第1保護部材40aは、太陽電池モジュール100の受光面側に配置されており、太陽電池モジュール100の表面を保護する。第1保護部材40aには、透光性および遮水性を有するガラス、透光性プラスチック等が使用され、矩形板状に形成される。第1封止部材42aは、第1保護部材40aの裏面側に積層される。第1封止部材42aは、第1保護部材40aと太陽電池セル10との間に配置されて、これらを接着する。第1封止部材42aとして、例えば、ポリオレフィン、EVA、PVB(ポリビニルブチラール)、ポリイミド等の樹脂フィルムのような熱可塑性樹脂が使用される。なお、熱硬化性樹脂が使用されてもよい。第1封止部材42aは、透光性を有するとともに、第1保護部材40aにおけるx-y平面と略同一寸法の面を有する矩形状のシート材によって形成される。
 第2封止部材42bは、第1封止部材42aの裏面側に積層される。第2封止部材42bは、第1封止部材42aとの間で、複数の太陽電池セル10、セル間配線材18等を封止する。第2封止部材42bは、第1封止部材42aと同様のものを用いることができる。また、ラミネート・キュア工程における加熱によって、第2封止部材42bは第1封止部材42aと一体化されていてもよい。
 第2保護部材40bは、第2封止部材42bの裏面側に積層される。第2保護部材40bは、バックシートとして太陽電池モジュール100の裏面側を保護する。第2保護部材40bとしては、PET(ポリエチレンテレフタラート)等の樹脂フィルム、Al箔を樹脂フィルムで挟んだ構造を有する積層フィルムなどが使用される。第2保護部材40bには、z軸方向に貫通した開口部(図示せず)が設けられる。
 端子ボックス44は、直方体状に形成され、第2保護部材40bの開口部(図示せず)を覆うように、第2保護部材40bの裏面側から、シリコーンなどの接着剤を使用して接着される。取出し配線30は、端子ボックス44に格納されているバイパスダイオード(不図示)に導かれている。ここで端子ボックス44は、例えば、第2保護部材40b上において、第41太陽電池セル10da、第51太陽電池セル10eaにオーバーラップする位置に配置される。太陽電池モジュール100の周囲には、Alフレーム枠が取り付けられてもよい。
 このような太陽電池モジュール100の構成をもとにして、以下では、太陽電池セル10の表面と、セル間配線材18との接着をさらに詳細に説明する。図3(a)では、太陽電池セル10の受光面においてセル間配線材18を接続すべき領域が、接続領域54として示される。図3(a)は、太陽電池セル10を受光面側から見た場合の構成であるので、図3(a)において、セル間配線材18と接続領域54は一致する。また、接続領域54は、第1領域56と第2領域58に分けられる。第1領域56は、導電性フィルム状接着剤60を配置すべき領域であり、第2領域58は、導電性フィルム状接着剤60を非配置とすべき領域である。ここで、第2領域58は、バスバー電極50と重複しながら、バスバー電極50が延びるy軸方向に形成される。また、第2領域58のx軸方向の幅は、バスバー電極50のx軸方向の幅よりも広くされる。一方、第1領域56は、第2領域58の両側に並んで、y軸方向に延びるように形成される
 導電性フィルム状接着剤60は、前述のごとく、第1領域56に配置され、第2領域58に配置されない。導電性フィルム状接着剤60は、アクリル系ポリマーおよび熱硬化性樹脂を含有する高分子樹脂である。また、導電性フィルム状接着剤60は、導電粒子も含んでおり、異方導電性を有する。このような導電性フィルム状接着剤60による太陽電池セル10の受光面とセル間配線材18との接着を説明するために、図5(a)-(c)を使用する。図5(a)-(c)は、太陽電池セル10のx軸に沿った断面図であり、図3(a)のB-B’断面図である。これらでは、図3(a)に示された3つのバスバー電極50のうちの1つの近傍が拡大されている。
 図5(a)では、太陽電池セル10の受光面におけるバスバー電極50を含むように第2領域58が配置される。また、太陽電池セル10の受光面における第1領域56に導電性フィルム状接着剤60が配置される。導電性フィルム状接着剤60は、z軸方向において、太陽電池セル10の受光面と、セル間配線材18とを接着するために、両者の間に配置される。ここでは、熱圧着により接着がなされる。一方、バスバー電極50とセル間配線材18は、z軸方向において直接接触する。特に、セル間配線材18はバスバー電極50に直接接触しているので、導電性フィルム状接着剤60を介さなくても、両者の間の接着力は確保され、両者の接続が保持される。
 図5(b)は、図5(a)の太陽電池セル10の比較対象となる太陽電池セル110の構成を示す断面図であり、これまでの一般的な構成を示す。図示のごとく、導電性フィルム状接着剤60は、バスバー電極50を囲むように、z軸方向において、接続領域54とセル間配線材18の間に全体的に配置される。このような太陽電池セル110と比較して、図5(a)の太陽電池セル10では、x軸方向およびz軸方向において、導電性フィルム状接着剤60の使用量が減少している。
 図5(c)は、図5(a)とは異なった導電性フィルム状接着剤60の配置を示す。図5(c)において、第1領域56、第2領域58、バスバー電極50は、図5(a)と同様に配置される。導電性フィルム状接着剤60は、第2領域58に配置されず、第1領域56のみに配置されるが、z軸の正方向側においてバスバー電極50をまたいで結合する。セル間配線材18と導電性フィルム状接着剤60とが、x軸方向において全面的に接するので、接着力が強化される。一方、図5(b)の太陽電池セル110と比較して、図5(c)の太陽電池セル10では、x軸方向において、導電性フィルム状接着剤60の使用量が減少している。
 これまでは、図3(a)、図5(a)-(c)をもとに、太陽電池セル10の受光面における導電性フィルム状接着剤60の配置を説明した。一方、図3(b)のように、太陽電池セル10の裏面側においても、導電性フィルム状接着剤60が、同様に配置される。
 以下では、導電性フィルム状接着剤60、つまり第1領域56のさまざまな配置を説明する。図6(a)-(e)は、太陽電池セル10のさまざまな構成を示す平面図である。これらにおいて、太陽電池セル10の受光面に配置されたバスバー電極50の近傍が拡大されている。また、図面を明瞭にするために、導電性フィルム状接着剤60の配置と第1領域56とが同一であるとして、導電性フィルム状接着剤60のみが示される。
 図6(a)は図3(a)と同様に示されており、これは、図6(b)-(e)との比較対象である。図6(b)では、接続領域54内において、導電性フィルム状接着剤60は、y軸方向に延びながらも、波形形状に配置される。そのため、第1領域56も、波形形状に形成されるといえる。また、接続領域54には、導電性フィルム状接着剤60が配置される部分以外の部分において、第2領域58が配置される。
 図6(c)では、接続領域54内において、導電性フィルム状接着剤60は、バスバー電極50を複数回またぎながら、バスバー電極50が延びるy軸方向に配置される。つまり、導電性フィルム状接着剤60は、接続領域54のx軸方向の幅において、バスバー電極50をまたぎながら、x軸の正方向と負方向とに交互に延び、かつy軸方向にも延びる。これはジグザグ形状といえる。また、接続領域54には、導電性フィルム状接着剤60が配置される部分以外の部分において、第2領域58が配置される。
 図6(d)では、接続領域54内において、導電性フィルム状接着剤60は、バスバー電極50が延びるy軸方向において離散的に配置される。つまり、導電性フィルム状接着剤60は、y軸方向よりもx軸方向に長い矩形状の部分を複数含み、これらがy軸方向に離散的に配置される。また、接続領域54において、導電性フィルム状接着剤60が配置される部分以外の部分において、第2領域58も離散的に配置される。
 図6(e)では、接続領域54内において、第2領域58が、図6(a)と図6(d)とを組み合わせた部分に配置される。つまり、第2領域58は、図6(d)での部分に加えて、バスバー電極50と重複しながら、バスバー電極50が延びるy軸方向にも配置される。導電性フィルム状接着剤60は、第2領域58が配置される部分以外の部分に配置される。なお、図6(b)-(b)の構成は、太陽電池セル10の裏面においてなされてもよい。
 以下では、太陽電池モジュール100の製造方法について説明する。まず、z軸の正方向から負方向に向かって、第1保護部材40a、第1封止部材42a、太陽電池セル10、第2封止部材42b、第2保護部材40bが順に重ね合わせられることによって、積層体が生成される。その際、リール部材に巻き取られた導電性フィルム状接着剤60のロールから導電性フィルム状接着剤60が引き出され、太陽電池セル10の表面とセル間配線材18とを接着するために使用される。また、接着のために、熱圧着が実行される。
 これに続いて、積層体に対して、ラミネート・キュア工程がなされる。この工程では、積層体から空気を抜き、加熱、加圧して、積層体を一体化する。さらに、第2保護部材40bに対して、端子ボックス44が接着剤にて取り付けられる。
 本発明の実施例によれば、太陽電池セル10の表面における接続領域54のうち、第1領域56に導電性フィルム状接着剤60を配置するとともに、第2領域58に導電性フィルム状接着剤60を配置しないので、導電性フィルム状接着剤60の使用量を減少できる。また、導電性フィルム状接着剤60を配置しない部分において、バスバー電極50にセル間配線材18を直接接触させるので、接着力の低下を抑制できる。また、バスバー電極50と重複しながら、バスバー電極50が延びる一方向に導電性フィルム状接着剤60を配置せず、第2領域58の両側に並んで導電性フィルム状接着剤60を配置するので、導電性フィルム状接着剤60の使用量を減少できる。また、第2領域58の両側に並んで形成される接続領域54に導電性フィルム状接着剤60を配置し、かつバスバー電極50をまたいで導電性フィルム状接着剤60を結合するので、導電性フィルム状接着剤60の使用量を減少できる。また、導電性フィルム状接着剤60の使用量が減少するので、太陽電池モジュール100の製造コストを低減できる。
 また、導電性フィルム状接着剤60を波形形状に配置するので、導電性フィルム状接着剤60の使用量を減少できる。また、バスバー電極50を複数回またぎながら、バスバー電極50が延びる一方向に導電性フィルム状接着剤60を配置するので、導電性フィルム状接着剤60の使用量を減少できる。また、バスバー電極50を複数回またぎながら、バスバー電極50が延びる一方向に導電性フィルム状接着剤60を配置するので、バスバー電極50が接着時にずれたとしても、導電性を確保できる。また、バスバー電極50が延びる一方向において離散的に導電性フィルム状接着剤60を配置するので、導電性フィルム状接着剤60の使用量を減少できる。また、バスバー電極50が延びる一方向において離散的に導電性フィルム状接着剤60を配置しながら、バスバー電極50と重複して、バスバー電極50が延びる一方向に導電性フィルム状接着剤60を配置しないので、導電性フィルム状接着剤60の使用量を減少できる。また、導電性フィルム状接着剤60の使用量が減少するので、太陽電池モジュール100の製造コストを低減できる。
 本実施例の概要は、次の通りである。本発明のある態様の太陽電池モジュール100は、複数の太陽電池セル10と、複数の太陽電池セル10のうち、隣接した太陽電池セル10を電気的に接続するセル間配線材18と、セル間配線材18によって接続すべき太陽電池セル10の表面と、セル間配線材18との間に配置される導電性フィルム状接着剤60とを備える。導電性フィルム状接着剤60は、太陽電池セル10の表面においてセル間配線材18を接続すべき接続領域54に含まれる第1領域56と第2領域58のうち、第1領域56に配置されるとともに、第2領域58に非配置である。
 太陽電池セル10の表面には、一方向に延びるバスバー電極50が配置され、導電性フィルム状接着剤60は、バスバー電極50と重複しながら、バスバー電極50が延びる一方向に形成される第2領域58に非配置であり、第2領域58の両側に並んで形成される第1領域56に配置されてもよい。
 導電性フィルム状接着剤60は、第2領域58の両側に並んで形成される第1領域56に配置されるとともに、バスバー電極50をまたいで結合してもよい。
 導電性フィルム状接着剤60は、波形形状に形成される第1領域56に配置されてもよい。
 太陽電池セル10の表面には、一方向に延びるバスバー電極50が配置され、導電性フィルム状接着剤60は、バスバー電極50を複数回またぎながら、バスバー電極50が延びる一方向に形成される第1領域56に配置されてもよい。
 太陽電池セル10の表面には、一方向に延びるバスバー電極50が配置され、導電性フィルム状接着剤60は、バスバー電極50が延びる一方向において離散的に形成される第1領域56に配置されてもよい。
 導電性フィルム状接着剤60は、バスバー電極50と重複しながら、バスバー電極50が延びる一方向に形成される第2領域58に非配置であってもよい。
 本発明の別の態様は、太陽電池モジュール100の製造方法である。この方法は、太陽電池セル10の表面に導電性フィルム状接着剤60を配置するステップと、導電性フィルム状接着剤60にセル間配線材18を接着させることによって、太陽電池セル10の表面にセル間配線材18を接続するステップとを備える。配置するステップでは、太陽電池セル10の表面においてセル間配線材18を接続すべき接続領域54に含まれる第1領域56と第2領域58のうち、第1領域56に導電性フィルム状接着剤60を配置するとともに、第2領域58に導電性フィルム状接着剤60を非配置とする。
(実施例2)
 次に、実施例2を説明する。実施例2は、実施例1と同様に、複数の太陽電池セルが配置された太陽電池モジュールに関する。実施例2においても、実施例1と同様に、太陽電池セルの表面とバスバー電極を接着するための導電性フィルム状接着剤の使用量を減少させながら、接着力の低下を抑制することを目的とする。しかしながら、実施例2における導電性フィルム状接着剤の配置は、実施例1と異なる。実施例2に係る太陽電池モジュール100は、図1、図2、図4と同様のタイプである。以下では、差異を中心に説明する。
 図7(a)-(b)は、本発明の実施例2に係る太陽電池セル10の構成を示す。図7(a)は、図6(a)-(e)と同様に、太陽電池セル10の受光面に配置されたバスバー電極50の近傍が拡大されている。図7(a)において、バスバー電極50は、これまでと同様に、y軸方向に延びて配置される。一方、導電性フィルム状接着剤60は、x-y平面上において、バスバー電極50の内側でy軸方向に延びて配置される。
 ここでは、このようなバスバー電極50、導電性フィルム状接着剤60の構成をさらに詳細に説明するために図7(b)を使用する。図7(b)は、太陽電池セル10のx軸に沿った断面図であり、図7(a)のC-C’断面図である。バスバー電極50は、太陽電池セル10の受光面に配置される。バスバー電極50は、z軸の正方向側において、x軸方向の中央部分が凹んだ形状を有する。また、バスバー電極50における凹んだ部分に導電性フィルム状接着剤60が配置される。そのため、導電性フィルム状接着剤60は、バスバー電極50のz軸の正方向側におけるx軸方向の中央部分に配置される。導電性フィルム状接着剤60は、セル間配線材18に接着するとともに、バスバー電極50におけるz軸の正方向側端は、セル間配線材18に接する。このように、セル間配線材18は、バスバー電極50に接続される。
 本発明の実施例によれば、バスバー電極50の一部分を凹ませるので、バスバー電極50に使用する材料の量を減少できる。また、バスバー電極50の凹んだ部分に導電性フィルム状接着剤60を配置させるので、導電性フィルム状接着剤60の使用量を減少できる。
 以上、本発明について実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 10 太陽電池セル、 12 太陽電池群、 14 群間配線材、 16 群端配線材(配線材)、 18 セル間配線材(配線材)、 20 終端配線材、 38 非発電領域、 40 保護部材、 42 封止部材、 44 端子ボックス、 50 バスバー電極、 52 フィンガー電極、 54 接続領域、 56 第1領域、 58 第2領域、 60 導電性フィルム状接着剤、 100 太陽電池モジュール。
 本発明によれば、導電性フィルム状接着剤の使用量を減少させながら、接着力の低下を抑制できる。

Claims (8)

  1.  複数の太陽電池セルと、
     前記複数の太陽電池セルのうち、隣接した太陽電池セルを電気的に接続する配線材と、
     前記配線材によって接続すべき太陽電池セルの表面と、前記配線材との間に配置される導電性フィルム状接着剤とを備え、
     前記導電性フィルム状接着剤は、前記太陽電池セルの表面において前記配線材を接続すべき接続領域に含まれる第1領域と第2領域のうち、前記第1領域に配置されるとともに、前記第2領域に非配置であることを特徴とする太陽電池モジュール。
  2.  前記太陽電池セルの表面には、一方向に延びる電極が配置され、
     前記導電性フィルム状接着剤は、前記電極と重複しながら、前記電極が延びる一方向に形成される前記第2領域に非配置であり、前記第2領域の両側に並んで形成される前記第1領域に配置されることを特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記導電性フィルム状接着剤は、前記第2領域の両側に並んで形成される前記第1領域に配置されるとともに、前記電極をまたいで結合することを特徴とする請求項2に記載の太陽電池モジュール。
  4.  前記導電性フィルム状接着剤は、波形形状に形成される前記第1領域に配置されることを特徴とする請求項1に記載の太陽電池モジュール。
  5.  前記太陽電池セルの表面には、一方向に延びる電極が配置され、
     前記導電性フィルム状接着剤は、前記電極を複数回またぎながら、前記電極が延びる一方向に形成される前記第1領域に配置されることを特徴とする請求項1に記載の太陽電池モジュール。
  6.  前記太陽電池セルの表面には、一方向に延びる電極が配置され、
     前記導電性フィルム状接着剤は、前記電極が延びる一方向において離散的に形成される前記第1領域に配置されることを特徴とする請求項1に記載の太陽電池モジュール。
  7.  前記導電性フィルム状接着剤は、前記電極と重複しながら、前記電極が延びる一方向に形成される前記第2領域に非配置であることを特徴とする請求項6に記載の太陽電池モジュール。
  8.  太陽電池セルの表面に導電性フィルム状接着剤を配置するステップと、
     前記導電性フィルム状接着剤に配線材を接着させることによって、太陽電池セルの表面に配線材を接続するステップとを備え、
     前記配置するステップでは、前記太陽電池セルの表面において前記配線材を接続すべき接続領域に含まれる第1領域と第2領域のうち、前記第1領域に前記導電性フィルム状接着剤を配置するとともに、前記第2領域に前記導電性フィルム状接着剤を非配置とすることを特徴とする太陽電池モジュールの製造方法。
PCT/JP2017/007070 2016-02-29 2017-02-24 太陽電池モジュールおよび太陽電池モジュールの製造方法 WO2017150372A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018503101A JPWO2017150372A1 (ja) 2016-02-29 2017-02-24 太陽電池モジュールおよび太陽電池モジュールの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038312 2016-02-29
JP2016038312 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150372A1 true WO2017150372A1 (ja) 2017-09-08

Family

ID=59743916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007070 WO2017150372A1 (ja) 2016-02-29 2017-02-24 太陽電池モジュールおよび太陽電池モジュールの製造方法

Country Status (2)

Country Link
JP (1) JPWO2017150372A1 (ja)
WO (1) WO2017150372A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142452A (ja) * 2010-12-29 2012-07-26 Sanyo Electric Co Ltd 太陽電池及び太陽電池モジュール
JP2012253062A (ja) * 2011-05-31 2012-12-20 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
WO2013140623A1 (ja) * 2012-03-23 2013-09-26 三洋電機株式会社 太陽電池モジュール及びその製造方法
US20140130863A1 (en) * 2011-07-28 2014-05-15 Sanyo Electric Co., Ltd. Photovoltaic module
WO2014174836A1 (ja) * 2013-04-25 2014-10-30 三洋電機株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142452A (ja) * 2010-12-29 2012-07-26 Sanyo Electric Co Ltd 太陽電池及び太陽電池モジュール
JP2012253062A (ja) * 2011-05-31 2012-12-20 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
US20140130863A1 (en) * 2011-07-28 2014-05-15 Sanyo Electric Co., Ltd. Photovoltaic module
WO2013140623A1 (ja) * 2012-03-23 2013-09-26 三洋電機株式会社 太陽電池モジュール及びその製造方法
WO2014174836A1 (ja) * 2013-04-25 2014-10-30 三洋電機株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法

Also Published As

Publication number Publication date
JPWO2017150372A1 (ja) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6536838B2 (ja) 太陽電池モジュールの製造方法およびそれを利用した太陽電池モジュール
US10797186B2 (en) Solar cell, solar cell module, and solar cell manufacturing method in which wiring member is connected to surface
US20190207045A1 (en) Solar cell module including a plurality of solar cells
US20200105954A1 (en) Solar cell module including a plurality of solar cells connected and method of manufacturing a solar cell module
JP6893330B2 (ja) 太陽電池モジュール
JP2018046112A (ja) 太陽電池モジュール
JP2017174986A (ja) 太陽電池セルおよび太陽電池モジュール
US20180097135A1 (en) Solar cell module and solar cell in which wiring member is connected to surface
US11075312B2 (en) Solar cell module and method for manufacturing solar cell module
JP6735472B2 (ja) 太陽電池モジュール
JP2020107758A (ja) 太陽電池モジュール
WO2017150372A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
US20190305145A1 (en) Solar cell module and solar cell including collecting electrodes on both surfaces
JP6706841B2 (ja) 端子ボックス、太陽電池モジュール、太陽電池モジュールの製造方法
JP2020088133A (ja) 太陽電池モジュール
JP2017183650A (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法
US20190221680A1 (en) Solar cell module including terminal box and method of manufacturing solar cell
US20210066523A1 (en) Solar cell module including solar cell
WO2016051624A1 (ja) 太陽電池モジュール
WO2016103626A1 (ja) 端子ボックスおよびそれを利用した端子ボックス付太陽電池モジュール
WO2016051625A1 (ja) 太陽電池モジュール
JP2018107211A (ja) 太陽電池モジュール
JP2017059776A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759838

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759838

Country of ref document: EP

Kind code of ref document: A1