[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017145706A1 - Method for bending thin film member - Google Patents

Method for bending thin film member Download PDF

Info

Publication number
WO2017145706A1
WO2017145706A1 PCT/JP2017/003980 JP2017003980W WO2017145706A1 WO 2017145706 A1 WO2017145706 A1 WO 2017145706A1 JP 2017003980 W JP2017003980 W JP 2017003980W WO 2017145706 A1 WO2017145706 A1 WO 2017145706A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thin film
forming
optical waveguide
film member
Prior art date
Application number
PCT/JP2017/003980
Other languages
French (fr)
Japanese (ja)
Inventor
知也 吉田
榊原 陽一
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018501107A priority Critical patent/JP6741921B2/en
Publication of WO2017145706A1 publication Critical patent/WO2017145706A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching

Definitions

  • the present invention relates to a fine bending process of a thin film member to which an ion implantation technique is applied, and relates to a method of bending a thin film member that improves the control of the bending position and improves the integration density of the structure.
  • the technical fields to which the present invention contributes include the manufacture of semiconductor integrated circuits, the manufacture of NEMS / MEMS (microelectromechanical system) devices, the manufacture of optical devices and optical integrated circuits, and the manufacture of integrated devices integrating them.
  • the present invention is applied to a technical field that requires fine processing on the order of micrometers to nanometers of a thin film member, particularly to a technical field that requires a three-dimensional structure instead of a conventional planar structure.
  • the manufacturing of devices with micrometer to nanometer order dimensions as described above is centered on photolithography technology, semiconductor materials such as silicon, insulator materials such as quartz (silica), and conductors such as metals. It consists of a process in which materials are stacked in layers by repeating film formation and patterning. A deposition technique for depositing the material and an etching technique for patterning the deposited thin film are the basic technologies next to the photolithography technique in this series of processes.
  • the conventional deposition technique and etching technique are limited in that the dimension of the thin film member to be processed is less than about 1 ⁇ m in thickness.
  • the substrate in order to form a film having a thickness of 200 nm or more, the substrate is warped due to an increase in internal stress of the thin film, the deposited thin film is peeled off, or a uniform thin film is formed on the entire surface of the substrate.
  • problems such as difficulty and increase in maintenance frequency of the film forming apparatus.
  • film formation with a thickness of 200 nm or more has been put to practical use by overcoming these problems, but the actual situation is that the thickness is still limited to less than about 1 ⁇ m.
  • the existing fine processing technique is a processing technique in an extremely thin planar region of less than 1 ⁇ m at most on the surface of the substrate, and is not good at processing a three-dimensional structure having a height exceeding 1 ⁇ m. .
  • ions are implanted into a thin film member, and the phenomenon that stress caused by the implanted ions causes deformation of the thin film is used.
  • the thin film member to be processed has a cantilever structure formed in advance, and ion implantation is performed on the cantilever structure.
  • the planar shape of the cantilever structure is not limited to a simple shape such as a rectangle or a triangle, and even a complicated shape including an arc can be freely selected to some extent by using photolithography and etching.
  • the IIB technique is a technique that can be formed into a three-dimensional shape by bending a thin film patterned in two dimensions.
  • the radius of curvature of the bending process can be a gentle curve on the order of micrometers or a small angle bent vertically on the order of nanometers.
  • the ion implantation technology that forms the basis of the IIB technology is a core technology used for introducing impurities in the silicon LSI manufacturing process, and is already a mature mass production technology. Since the IIB technology applies ion implantation, which is a mature technology, the processing uniformity and reproducibility are extremely high. Furthermore, it is a technology having high process integration with existing electronic devices such as LSI, NEMS / MEMS devices, optical devices, and optical integrated circuits.
  • Micro origami disclosed in Non-Patent Document 1
  • Non-Patent Document 3 is a method for producing a metamaterial
  • these are all techniques for bending by releasing internal stress generated during film formation of the thin film member. In these methods, two kinds of materials having different stresses are laminated, and then the thin film member supporting layer called a sacrificial layer is removed to release the internal stress and to physically self-deform the thin film member.
  • the radius of curvature that can be realized is about 64 ⁇ m in the example of the film thickness of 2.1 ⁇ m, about 20 ⁇ m in the example of the film thickness of 0.11 ⁇ m, and about 1.1 ⁇ m in the example of the film thickness of 0.07 ⁇ m.
  • the thickness of the thin film member is as large as 15 to 180 times, and there is a limit to miniaturization.
  • the thin film member since the thin film member must be selected with priority given to the control of internal stress, the essential electrical and optical characteristics of the device are sacrificed.
  • the above-mentioned IIB technique realizes bending of a fine thin film structure using ions generated by implanting ions into the thin film member. That is, the kinetic energy of irradiated ions is the driving force for deformation. Since the stress can be controlled by the kinetic energy of ions and the implantation amount, extremely high in-plane uniform control is possible.
  • the radius of curvature that can be realized is 0.1 ⁇ m in the case of bending a thin film having a thickness of 0.1 ⁇ m, and the thin film bending process is driven by the internal stress of a conventional laminated film represented by the above-mentioned micro origami technology. Compared with the technology, it is possible to perform bending processing with a fine size of 1/15 to 1/180.
  • the IIB technology is a very versatile technology. Although it has already been disclosed in Patent Document 2, it can be said that the thin film member can be bent almost regardless of the material.
  • semiconductors such as silicon, molybdenum, tungsten, tantalum, technetium, rhenium, cobalt, nickel, ruthenium, osmium, rhodium, iridium, palladium, Metals such as platinum, copper, silver, gold, lead, germanium, silicon compounds such as tungsten silicide, molybdenum silicide, tantalum silicide, titanium silicide, cobalt silicide, chromium silicide, nickel silicide, carbon, silicon carbide, tantalum carbide, Carbonaceous materials such as titanium carbide, molybdenum carbide, niobium carbide, hafnium carbide, tungsten carbide, vanadium carbide, diamond-like carbon, titanium nitrid
  • a thin film having a thickness of 20 nm to 240 nm is a main processing target. However, it can be processed if ion irradiation conditions are selected. Further, regarding the length of the cantilever structure, as already disclosed in Patent Documents 1 to 4 and Non-Patent Documents 5 to 7, a cantilever beam of 0.5 ⁇ m to 50 ⁇ m can be processed. In principle, as long as a cantilever can be formed, it is clear that it can be processed even shorter or longer.
  • Patent Document 2 It has already been disclosed in Patent Document 2 that there are no particular restrictions on the ion species used in the IIB technology. Phosphorous, boron, arsenic, indium, antimony, boron fluoride, aluminum, nitrogen, argon, silicon fluoride, silicon, boron hydride, carbon hydride are used when an ion implantation apparatus is used, and gallium is used when an FIB apparatus is used. It is easy to use because it is generally provided.
  • a scanning probe microscope (SPM) probe such as an atomic force microscope (AFM) or a probe for a silicon LSI device tester uses a three-dimensional, high-aspect ratio sharp structure using etching technology.
  • SPM scanning probe microscope
  • a type produced by anisotropic etching of a silicon single crystal is the mainstream, and a pyramid probe with a quadrangular pyramid having a base length of 10 ⁇ m to 100 ⁇ m and a height of 10 ⁇ m to 100 ⁇ m is widely used.
  • the reason why single crystal silicon is selected as the material is that a sharp structure with a high aspect ratio is formed in a self-aligning manner by anisotropic etching.
  • a triangle having a base of 1 ⁇ m and a height of 100 ⁇ m is two-dimensionally patterned on a tungsten thin film having a thickness of about 20 nm to 200 nm, using double patterning as necessary to sharpen the tip to the nanometer order.
  • the two-dimensional triangular patterned metal thin film is processed into a cantilever structure using a sacrificial layer etching technique and a supercritical drying technique.
  • a high-aspect ratio three-dimensional structure having a height of 100 ⁇ m, a thickness of about 20 nm to 200 nm, and a base of 1 ⁇ m can be formed.
  • the conventional anisotropic etching technology for silicon has to be a pyramid structure because the angle of crystal orientation to be etched is constant, but the shape can be designed with two-dimensional patterning using IIB technology. Therefore, the footprint can be greatly reduced. As a result, it is possible to form an ultra-high-density probe array with a metal material such as tungsten having excellent electrical characteristics and mechanical durability.
  • the process of forming a three-dimensional structure having a height of 10 ⁇ m to 100 ⁇ m by an etching technique as an example of such an electric measurement probe is generally a very special process in which materials and shapes are limited.
  • the IIB technology is a technology that can bend a wide range of materials, it can be said to be a highly versatile technology.
  • a vacuum electron source device applied to an ultra-high sensitivity imaging device or the like is a device characterized by having a metal conical structure with a height of 1 ⁇ m called an emitter.
  • the three-dimensional emitter structure has been fabricated by a technique called Spindt method using deposition technology.
  • the procedure will be described. First, a substrate in which a metal thin film (about 100 nm) / insulator thin film (about 1 ⁇ m) / metal thin film (about 100 nm) is laminated is prepared.
  • a hole having a diameter of about 1 ⁇ m is formed in the upper metal thin film.
  • the insulator thin film is etched until the underlying metal thin film is exposed using the metal thin film having the holes formed therein as a mask.
  • a cylindrical hole having a diameter of 1 ⁇ m and a depth of about 1 ⁇ m is formed in the substrate.
  • a metal such as molybdenum is vacuum deposited on the substrate. Then, the metal deposited on the upper part of the hole is reduced in diameter as the hole is deposited due to migration in the in-plane direction. Finally, the hole is completely closed by the deposited metal, and a conical structure is formed in the hole in a self-aligning manner accordingly.
  • This method is the oldest method for manufacturing a vacuum electron source. However, many different approaches have been researched and developed since then, but none of the device performance exceeds that of the vacuum electron source based on the Spindt method.
  • the material of the vacuum electron source is preferably a refractory metal such as tungsten or molybdenum.
  • the refractory metal is a material that easily generates a large stress because the migration distance on the substrate surface during deposition is small.
  • the stress during deposition increases as the film thickness increases. Therefore, the process of depositing the refractory metal with a thickness of 1 ⁇ m is a condition in which peeling is very likely to occur because the internal stress generated in the film becomes enormous.
  • the incident direction of flying particles during film formation must be strictly perpendicular to the substrate.
  • a sputtering method in which the incident angle of flying particles has a certain width cannot be used, and a vapor deposition method in a high vacuum with a small amount of residual gas which is a scattering factor of flying particles is selected.
  • the vacuum evaporation method has smaller kinetic energy of the flying particles than the sputtering method. Therefore, this is a deposition method in which the migration of flying particles on the substrate surface is small and stress is likely to occur.
  • the Spindt method is a special technique that imposes very difficult conditions for the deposition process, it is difficult to put the Spindt method into practical use. In general, it is recognized that the deposition of a metal having a thickness of 1 ⁇ m or more is a difficult technique because of the problem of stress even in the sputtering method.
  • the cantilever structure When a sufficiently large number of ion implantations are performed, the cantilever structure can be bent completely vertically, and a three-dimensional structure having a high aspect ratio of 1 ⁇ m in height, about 20 nm to 50 nm in thickness, and 400 nm in the bottom can be formed.
  • the conventional method required the deposition of refractory metal with a thickness of 1 ⁇ m, which caused problems of stress and delamination.
  • a thin film with a thickness of about 20nm to 50nm was folded to form a three-dimensional structure with a height of 1 ⁇ m. As a result, the problem of stress and peeling due to thick film deposition does not occur.
  • the process constituted by thin film deposition, etching, and ion implantation is highly similar to the silicon LSI manufacturing process, mass production using the equipment of the LSI manufacturing factory is possible.
  • Silicon photonics is expected as a technology for realizing optical interconnection, and element device performance has already achieved a practical level.
  • the realization of optical coupling technology for mounting external optical components such as optical fibers and light emitting / receiving elements on silicon optical circuits and the realization of wafer level tests essential for mass production have become major issues.
  • optical coupling technology for connecting optical wiring has difficulty due to the light propagation principle that light cannot be transmitted with high efficiency simply by connecting the structures.
  • optical wiring a mechanism for efficiently converting the optical path of light in the vertical direction of the wafer is not easy in the first place. This is because, even when the orientation of the optical wiring is changed by 90 degrees in the plane, the direction change is not so easy that the propagation efficiency is deteriorated unless a gentle curve having a curvature radius of about 3 ⁇ m or more is formed. Moreover, due to the characteristics of the conventional microfabrication technology, it has been practically impossible to form an optical wiring that is gently curved in the vertical direction even by making full use of deposition technology and etching technology.
  • diffraction grating couplers that utilize the phenomenon that light changes direction with diffraction gratings are becoming the industry standard for silicon photonics surface optical couplers, and development is progressing toward mounting applications and wafer level test applications. It is out.
  • the light diffraction phenomenon has a strong wavelength dependency, incident angle dependency, and polarization dependency in principle, it is a problem that the device has a narrow allowable band of wavelength, angle, and polarization. If a silicon optical waveguide that is three-dimensionally curved in the vertical direction of the wafer can be formed, a surface type optical coupler with a dramatically wider wavelength, angle, and polarization tolerance band than a diffraction grating type coupler can be used. realizable.
  • Non-Patent Document 6 and Patent Documents 3 to 4 the IIB technique is suitable for forming a silicon optical waveguide shape that is three-dimensionally curved in the vertical direction of such a wafer.
  • the manufacturing procedure of the surface light input / output device for silicon photonics is shown below.
  • a general silicon photonics circuit has an optical wiring / circuit layer having a thickness of 220 nm formed of silicon on a silicon oxide film having a thickness of 2 ⁇ m or more, and a silicon oxide film having a thickness of about 2 ⁇ m is further formed thereon.
  • a cladding layer is formed.
  • a cantilever beam having a length of about 5 ⁇ m to 50 ⁇ m is formed at the terminal portion of such a silicon optical circuit.
  • the method of forming the cantilever is performed by a process of removing the silicon oxide films above and below the silicon optical circuit layer. Thereafter, ions are implanted into the cantilever structure of the silicon optical wiring to form a three-dimensionally curved silicon optical waveguide having a curvature radius of about 3 ⁇ m to 30 ⁇ m.
  • the solid curved portion is again filled with the silicon oxide film to complete the device.
  • the structure in which the optical waveguide is curved three-dimensionally can propagate light waves in the direction perpendicular to the substrate on the same principle as a curved optical waveguide formed on a flat surface. Therefore, it is possible to realize a vertical light input / output port and an interlayer optical coupler with low angle dependency and low loss.
  • the IIB technique has a great effect when forming a three-dimensional structure that was impossible with the conventional technique.
  • the process of bending a silicon optical waveguide having a thickness of about 220 nm with a radius of curvature of about 3 ⁇ m cannot be realized by other bending techniques.
  • Non-Patent Document 6 It can be read from the information disclosed in Non-Patent Document 6 that this is not the only merit that the three-dimensionally curved silicon optical waveguide has over the diffraction grating coupler. Since the three-dimensionally curved silicon optical waveguide has its unique three-dimensional shape protruding out of the wafer surface, it realizes a new functional form and contributes to high functionality and high integration of the optical device. Examples of new functional forms include a waveguide core structure formed with a taper in the vertical direction as shown below, a second core formed rotationally symmetrically with respect to the optical axis, and formed at the tip of the waveguide. There is a lens structure.
  • lens 3 lens structure formed at the tip of the waveguide
  • lens formation can be easily performed by utilizing the CVD method. By selecting the diameter of the lens and the refractive index of the material, it becomes possible to enlarge / reduce the spot size of the light.
  • the three-dimensionally curved silicon optical waveguide is not limited to the function of merely a mechanism for converting the traveling direction of light into a direction perpendicular to the wafer.
  • the three-dimensional curved silicon optical waveguide also has a function of forming a base for forming an optical structure for freely controlling the light input / output mode toward the wafer surface.
  • a fumode fiber a multimode fiber, a multicore fiber, a fumode multicore fiber or a multimode multicore fiber, a laser diode array, a surface emitting laser array, a MEMS mirror, a space It is effective as a vertical light input / output port for optical coupling with an optical device in which a plurality of light propagation modes are spatially gathered, such as a phase modulator, and contributes to an increase in capacity of optical communication technology.
  • the application field of an array in which a large number of three-dimensionally curved silicon optical waveguides that can freely control modes, such as a vehicle-mounted rider using interference light is not limited to the communication field.
  • IIB technology for silicon photonics can be said to be a revolutionary technology that not only solves conventional problems but also pioneers application fields that were impossible in the past.
  • FIG. 5 schematically illustrates a conventional basic process for bending a thin film member.
  • a starting layer 20 ′ for forming a supporting layer to be a supporting layer for a thin film member is formed on a substrate 10, and a starting layer for forming a thin film member to be a thin film member in the future. 30 ′ is deposited.
  • the thin film member forming starting layer 30 ′ is patterned into a desired planar shape using photolithography and etching techniques to form the thin film member 30.
  • the surface 21 is the support layer 20 at a position retracted inward in the lateral direction from the distal end free end 41 of the thin film member 30, and the patterned thin film member 30 on the support layer 20 is an object to be processed. That is, the thin film member 30 does not have the support layer 20 below it, and has a cantilever structure 40 that reaches the free end 41 in a floating state.
  • the cantilever structure 40 is substantially subject to bending.
  • the cantilever structure 40 has a shape in which the root is located at a position where the peripheral surface 21 of the support layer 20 is located, and extends from there to the free end 41 of the tip.
  • the cantilever structure is irradiated with ions to bend the cantilever structure.
  • the cantilever structure 40 is curved starting from the peripheral surface 21 of the support layer 20.
  • the cantilever structure 40 finally stands upright with respect to the substrate 10 as shown in FIG.
  • a metal thin film having a thickness of about 20 nm to 200 nm is formed on a substrate on which an insulator layer (support layer 20) formed of SiO 2 is formed.
  • the thin film member 30 is formed by patterning.
  • the tip of the thin film member 30 formed from the metal thin film is processed into a cantilever structure 40 having a length of about 10 ⁇ m to 100 ⁇ m.
  • the insulator layer (support layer 20) immediately below the metal material thin film member 30 must be removed by a method that does not damage the metal material thin film member 30.
  • hydrofluoric acid which dissolves SiO 2 and does not dissolve metals such as tungsten
  • SiO 2 is isotropically etched, so that the insulator layer (support layer 20) immediately below the thin film member 30 of the metal material can be removed.
  • the same isotropic etching can be performed by dry etching using hydrogen fluoride gas.
  • the operation of stopping the supply of hydrofluoric acid is performed, for example, by a process of substituting with pure water.
  • the finished height of the electrical measurement probe varies.
  • IIB technology for probe fabrication an ultra-high density probe array can be realized. However, if the height variation of these probes is large, it is not useful from the viewpoint of the reliability of the measurement data.
  • the characteristics of hydrofluoric acid which dissolves SiO 2 and does not dissolve metals such as molybdenum and tungsten, are used.
  • wet etching using hydrofluoric acid the etching of SiO 2 proceeds in the lateral direction, so that the insulator layer (support layer 20) immediately below the thin film member 30 of the metal material can be removed.
  • the same isotropic etching can be performed by dry etching using hydrogen fluoride gas.
  • the vacuum electron source is a device that is more sensitive to variations than the electrical measurement probe, and even if the variation in the tip position of the emitter is only 100 nm, the device characteristics vary several times.
  • Vacuum electron sources are devices that are often used as an array in which several to several hundreds of units are grouped, and hundreds to tens of thousands of these groups are arranged.
  • one pixel is formed by 10 to 100, and 1920 ⁇ 1080 pixels are laid down in the case of the high vision standard. Since it is necessary in such an application that each emitter has a uniform characteristic, it is a fatal drawback that individual device characteristics have a difference of several times.
  • the tip of an optical waveguide core structure made of silicon material having a thickness of about 220 nm and a width of about 400 nm embedded with a quartz (SiO 2 ) cladding layer is about 5 ⁇ m to 50 ⁇ m in length.
  • the cantilever structure 40 is formed by being exposed as much as possible.
  • the cladding (support layer 20) immediately below the silicon core structure must be removed by a method that does not damage the silicon core structure.
  • hydrofluoric acid which dissolves SiO 2 and does not dissolve silicon
  • SiO 2 is isotropically etched in the lateral direction, so that the clad layer (support) directly under the thin film member 30 that forms the optical waveguide core structure made of silicon material. Layer 20) can be removed.
  • the same isotropic etching can be performed by dry etching using hydrogen fluoride gas.
  • the difference in isotropic lateral etching distance is a difference in cantilever structure, and the difference in cantilever structure is a three-dimensionally curved silicon optical waveguide formed by IIB processing (vertical optical coupler or vertical light input). This affects the in-plane variation and height variation of the tip position of the output port.
  • optical fibers such as fumode fibers, multimode fibers, multicore fibers, fumode multicore fibers, multimode multicore fibers, and laser diode arrays.
  • optical devices in which a plurality of light propagation modes are integrated spatially such as array type light emitting devices such as surface emitting laser arrays, and spatially divided type light control devices such as MEMS mirrors and spatial phase modulators.
  • array type light emitting devices such as surface emitting laser arrays
  • spatially divided type light control devices such as MEMS mirrors and spatial phase modulators.
  • isotropic etching is indispensable for IIB technology to form a cantilever structure.
  • the difference in the isotropic etching distance caused by the variation in the etching stop position becomes the difference in the length of the cantilever structure, which causes the variation in shape such as the height and position of the three-dimensional structure after IIB processing.
  • Such a problem of variation is not limited to the applications listed here, such as probes, vacuum electron sources, and silicon photonics.
  • FIG. 6 illustrates the problems regarding the position controllability of the curved structure with reference to the cross-sectional views before (A) and after (I) the ion irradiation with respect to (C) and (D) in FIG. It is a figure for doing.
  • the variation in the etching stop position (“peripheral surface 21” shown in FIG. 6A) as described above affects the variation in the position of the support point for the bending process in the IIB process.
  • the IIB processing is a deformation processing in which the free end side of the cantilever structure is greatly displaced and the fixed end is not displaced. Therefore, even if the ion implantation conditions are precisely controlled and the displacement of the beam portion from the fixed end to the free end is precisely controlled, the fixed end position that is affected by the variation in the stationary position of the isotropic etching eventually becomes three-dimensional. This is to define the position of the curved free end.
  • the cantilever structure When etching is stopped with this cape-shaped tip having a sharp shape on the order of nanometers, and then subjected to IIB processing, the cantilever structure is not supported in a plane but in a point support Therefore, the deformation process becomes extremely unstable.
  • the apex of this cape shape is ideally located exactly in the center of the cantilever structure, and there is no effect if the ion implantation angle can be kept strictly perpendicular to the wafer, but either one is slightly If it is shifted, the bending process of the cantilever beam structure is twisted and the desired shape cannot be obtained. If the three-dimensional structure is different from the desired structure, the three-dimensional cantilever structure varies as a result.
  • the erosion distance from both sides should be made sufficiently long to eliminate the cape-like shape, or the masking design for isotropic etching should be designed so that the cape-like shape is not formed in advance.
  • the masking technique is a method in which the etchant erodes in parallel from the position where it becomes the free end of the cantilever structure so that the etchant does not erode from both sides of the cantilever structure.
  • Figure 8 shows an example of masking techniques. If the masking window region is designed near the tip of the cantilever structure, a cape-like structure will not be formed if lateral etching is performed by isotropic etching. However, at the cost of this, the etching time becomes longer, resulting in a larger etching area and a larger device footprint.
  • an isotropic etching having a length of 5 ⁇ m is required in the lateral direction, and therefore occupies an area of about 25 ⁇ m 2. This means that a much larger footprint is required than the object to be bent, and as a result, the placement of IIB workpieces at a narrow pitch is limited.
  • isotropic etching proceeds not only in the depth direction but also in the plane direction. Therefore, when arranging cantilever structures in a line in a certain direction, it is possible to increase the degree of integration with a design in which adjacent positions are close to each other and the fixed end positions are aligned. Thus, when a cantilever structure is arranged on a two-dimensional plane, each plane etching region interferes to greatly limit the fixed end position.
  • FIG. 9A is a top view of a state where the cantilever structure 40 is formed on the thin film member 30.
  • a design that avoids the cape-like structure shown in FIG. 8 is adopted.
  • the length of the desired three-dimensional structure is L, and a state where a cantilever beam structure having a length L is formed on the thin film member 30 is shown.
  • a masking window region indicated by a broken line indicates a window portion of a masking layer for isotropic etching for forming a cantilever structure. The isotropic etching proceeds planarly starting from this masking window region.
  • etching of a length L proceeds in a plane starting from the masking window region.
  • the stop line of the etching region viewed in plan is drawn as the peripheral surface 21.
  • the cantilever structure 40 is drawn in a rectangle, but may of course be a triangle, a circle, or another two-dimensional figure. However, for the sake of simplicity, the description will be continued with a rectangular cantilever structure.
  • the length of the thin film member 30 other than the cantilever structure 40 is indicated by M.
  • M This region becomes a necessary part later as a region for supporting the produced three-dimensional structure.
  • the shape of M differs depending on the application device. However, it is drawn here as a rectangle for simplicity of discussion. However, in the region indicated by M, not only the length but also the width is an important parameter, but the width is omitted for the sake of simplicity of discussion.
  • the region indicated by the length M may be considered including the region necessary for wiring. In any case, in order to form the cantilever structure 40, it must be considered that the supporting portion occupies a certain area.
  • the integration density in the case where the same three-dimensional structure is arrayed by arranging a plurality of the structures in FIG. 9A on the same substrate will be considered.
  • the arrangement interval is greatly restricted.
  • FIG. 9D there is a request to make the interval g between adjacent cantilever structures smaller than the cantilever length L, and a request to arrange the tip positions while shifting the position in the X-axis direction.
  • the peripheral surface 21 (thick line) combined with the planar etching region substantially forms the peripheral surface of isotropic etching, the position where the three cantilever structures shown in FIG. (Bold line) position.
  • the peripheral surface 21 is formed in the position of the length K from the front-end
  • K is larger than L.
  • the third cantilever structure from the top has a length J (J is larger than K). That is, when there is a request to make the gap g between adjacent cantilever structures smaller than the cantilever length L and a request to arrange the tip positions while shifting in the X-axis direction, It is impossible to make the length of the structure the same L.
  • the interval g between adjacent cantilever beam structures is set to the cantilever length. It must be larger than L to avoid interference in the planar etching region.
  • the three-dimensional structure cannot obtain a desired integration density.
  • FIG. 10A shows a method of arranging a plurality of one-dimensional arrays in FIG. 9B in the X-axis time direction.
  • the gap g in the X direction is g> 2L + M. That is, a distance of a distance obtained by adding the length M of the support region to twice the length of the desired cantilever structure is necessary.
  • FIG. 10A such a two-dimensional array design shown in FIG. 10A can easily double the device integration density depending on the device.
  • FIG. 10B two cantilever structures are formed in the interval g where g> 2L + M when the cantilever beam structures are alternately arranged in the right direction and the left direction. can do. If such an arrangement is used, the effective interval g is g> (2L + M) / 2. However, even if such a device is applied, it is impossible to design g to be less than L. In addition, it is a new design issue that the direction of the cantilever structure is staggered.
  • the interval in the X-axis direction can be shortened. For example, by tilting 30 degrees, as shown in FIG. Can be doubled. However, the interval in the Y-axis direction is increased to an interval g> (2L + M) / 2.
  • the cantilever structure is arranged at an angle of 45 degrees with respect to the lattice, the interval in the X-axis direction can be further shortened, but at the same time, the interval in the Y-axis direction is increased. In this case, both X and Y directions Is required.
  • the cantilever structure can be easily arranged by alternately arranging the right and left directions of the cantilever structure.
  • the integration density can be doubled.
  • the effective interval g is the X-axis direction of FIG. Y axis direction is g> (2L + M) / 4, and both X and Y axis directions in FIG. Can be shortened.
  • FIG. 10E illustrates the case where a three-dimensional structure is arranged in a triangular lattice shape.
  • the gap g of the cantilever structure corresponds to the length of one side of the triangle connecting the lattice points, and the condition is approximately g> 2L.
  • the cantilever structure can be easily integrated by alternately arranging the cantilever structures facing right and left. The density can be increased by a factor of 2, and can be effectively reduced to g> L.
  • the direction of the cantilever structure is staggered.
  • the length L of the cantilever structure is required to be 50 ⁇ m.
  • the support region M is assumed to be about 10 ⁇ m including wiring. If this is arranged one-dimensionally as shown in FIG. 9B, the interval g can be reduced regardless of the length of L. For example, g can have a pinching pitch of 5 ⁇ m or less. It is possible to form a probe array.
  • the interval in the X direction is approximately 95 ⁇ m and the interval in the Y direction is approximately 55 ⁇ m.
  • the interval in the X direction and the Y direction is approximately 78 ⁇ m.
  • an interval of 100 ⁇ m or more is obtained.
  • the cantilever structure can be easily arranged in the right direction on the paper and the left direction on the paper alternately to double the integration density of the device. Can be improved. Moreover, in the case of a vacuum electron source application, since an array arrangement in which each cantilever structure is electrically connected in units of 10 to 100 is generally used, there is no need to worry about wiring. In fact, Non-Patent Document 7 discloses such a vacuum electron source array.
  • the distance between the X direction and the Y direction is the same.
  • the method of arraying in a triangular lattice shape in FIG. 10E is optimal.
  • an interval of at least twice the height is required for an emitter having a height of 1 ⁇ m, and the emitter array becomes a device with a low integration density. That is, when the vacuum electron source array is manufactured using the IIB technology, it becomes possible to manufacture an emitter of a refractory metal material by a process according to the LSI manufacturing process, but there is a problem in terms of integration density. I can say that.
  • the length L of the cantilever structure is required to be 5 ⁇ m. It is assumed that the length M as an area necessary for routing of the support portion and the wiring is 5 ⁇ m.
  • the interval in the X direction is approximately 13 ⁇ m and the interval in the Y direction is approximately 7.5 ⁇ m.
  • the distance between the X direction and the Y direction is approximately 10.6 ⁇ m.
  • the interval is approximately 10 ⁇ m or more.
  • the footprint of the optical input / output port for exchanging optical signals with the outside is 10 ⁇ m square in the conventional diffraction grating type coupler. Because of the large size, the optical input / output port is a bottleneck in improving the integration density. For example, in the case of a fu mode fiber, there are 3 to 4 modes in a core having a diameter of about 17 ⁇ m. Therefore, the footprint of the optical input / output port corresponding to the fu mode fiber is too large at 10 ⁇ m square.
  • a solid curved optical waveguide when used as a light output port in the vertical direction, if the interval between the emission positions can be reduced to about half of the wavelength of light, excellent characteristics can be obtained as a device utilizing the light interference effect.
  • the pitch of the vertical light output port can be made between 1.55 ⁇ m and 0.775 ⁇ m, a rider (LIDAR: Light Detection and Ranging, or Laser) Imaging Detection and Ranging) and other applications.
  • Means for solving the above problems are as follows. (1) A step of laminating a starting layer for forming a support layer and a starting layer for forming a thin film member on a substrate, a step of patterning the starting layer for forming a thin film member to form a thin film member, Forming a position control layer for determining a position at which the cantilever structure of the thin film member starts to bend by irradiating ions directly or via a starting layer for forming the position control layer support layer; A part of the starting layer for forming the supporting layer, a part of the starting layer for forming the supporting layer and a part of the starting layer for forming the position control layer, the peripheral surface of the supporting layer, or the peripheral surface of the supporting layer And a step of removing the end face of the position control layer support layer so as to be on or inside the lower extension line of the tip of the position control layer to form a cantilever structure having a tip free end on the thin film member; The cantilever beam using the position control layer as a mask I
  • a step of laminating a starting layer for forming a support layer and a starting layer for forming a thin film member on a substrate, a step of forming a thin film member by patterning the starting layer for forming a thin film member, and on the thin film member Forming a position control layer by anisotropic etching, which determines a position at which the cantilever structure of the thin film member begins to bend when irradiated with ions, directly or through a starting layer for forming a position control layer support layer; A part of the starting layer for forming the support layer under the thin film member, or a part of the starting layer for forming the supporting layer and a part of the starting layer for forming the position control layer supporting layer, the peripheral surface of the supporting layer, or The peripheral surface of the support layer and the end surface of the position control layer support layer are removed by isotropic etching so that the end surface of the position control layer is on or inside the lower extension line of the tip of the position control layer, and the free end of the tip is formed
  • the cantilever structure of the optical waveguide is arranged in a two-dimensional array at an interval smaller than the length of the cantilever structure.
  • the step of bending a portion of the cantilever structure to form a vertical optical coupler is a step of bending a portion of the cantilever structure upward to form a vertical optical coupler. The method for bending an optical waveguide according to (6) above.
  • a step of filling the vertical optical coupler curved upward with a clad layer and a step of laminating a second support layer forming start layer and a second optical waveguide forming start layer on the clad layer
  • Patterning the second optical waveguide forming starting layer to form a second optical waveguide, and directly on the second optical waveguide or via the second position control layer support layer Forming a second position control layer by anisotropic etching to determine a position at which the second cantilever structure of the second optical waveguide starts to bend when irradiated with ions; and the second optical waveguide.
  • a part of the starting layer for forming the second support layer below or a part of the starting layer for forming the second supporting layer and a part of the starting layer for forming the second position control layer The peripheral surface of the second support layer, or the peripheral surface of the second support layer and the second position control layer Removing the end face of the position control layer by isotropic etching so that the end face is on or inside the lower extension line of the tip of the position control layer, and forming a cantilever structure having a tip free end in the optical waveguide;
  • Using the second position control layer as a mask a part of the second cantilever structure is irradiated with ions, and a part of the second cantilever structure is bent downward to form the vertical optical coupler.
  • the cantilever structure of the thin film member is irradiated with ions directly on the thin film member or via the starting layer for forming the position control layer support layer. Since the process of forming a position control layer that determines the position at which to start bending is adopted, position control is performed compared to the case where the cantilever structure is bent from the peripheral surface of the support layer that has been determined by, for example, lateral etching as in the past. Can dramatically improve performance. Furthermore, since a plurality of cantilever structures can be arranged close to each other, high integration of the processed cantilever structures can also be achieved.
  • the main point of the present invention is that the irradiated ions are newly shielded in the direction in which the irradiated ions fly as viewed from the cantilever structure, and IIB processing is performed at a position different from the end point position of the lateral etching such as isotropic etching. This is to add a position control layer that can define the position at which the bending starts.
  • the conditions required for the position control layer are: A: processed by anisotropic etching with higher controllability than isotropic etching, B: whether the tip is in the same plane as the lateral etching stop position, or It is desirable to satisfy the following four conditions: the position extended toward the tip of the cantilever, C: irradiation ions do not penetrate, and D: IIB is not deformed by itself.
  • the position control layer does not have to satisfy all of the above conditions, and even if there are some ions penetrating through C, the energy may be substantially reduced if the energy is greatly reduced. If it is slight, even if it is deformed, there is substantially no influence.
  • conditions A and B must be strictly met, and are essential to the present invention.
  • FIG. 1A to 1H are drawings schematically showing a method of bending a thin film member according to the present invention. Hereinafter, the steps will be sequentially described.
  • a support layer forming starting layer 20 ′ is formed on the substrate 10, and a thin film member forming starting layer 30 ′ is formed thereon.
  • FIG. 1A the support layer forming starting layer 20 ′ is drawn as necessary over the entire surface of the substrate, but only the region forming the cantilever 40 is necessary. In other regions, the support layer forming start layer 20 ′ may not be formed under the thin film member forming start layer 30 ′.
  • the support layer forming starting layer 20 ′ is a layer necessary for forming a part of the thin film member forming starting layer 30 ′ into the cantilever structure 40.
  • the thin film member forming starting layer 30 ′ is patterned to form the thin film member 30.
  • the planar shape of the patterned thin film member 30 depends on the final production target structure. For example, when the final fabrication target structure is an emitter of a field emission device, a planar pattern having a sharp triangular tip is formed, and the final fabrication target structure is a three-dimensionally curved silicon wire waveguide. In some cases, the width is an elongated structure with a submicron order. In addition to these examples, various applications are conceivable. In either case, a generalized cross-sectional view is as shown in FIG.
  • the patterned thin film member 30 is embedded in the position control layer support layer forming starting layer 60 ′.
  • Figure 1 (C) In FIG. 1C, the upper portion of the position control layer support layer forming starting layer 60 ′ is drawn flat, but irregularities reflecting the shape of the thin film member 30 may be generated. If the processing method for forming the position control layer 50 is not a processing method that substantially leaves a trace on the thin film member 30 as shown in FIG. 1E, the position control layer support layer The formation of the forming starting layer 60 ′ can be omitted.
  • a position control layer forming starting layer 50 ′ is formed.
  • the position control layer 50 is formed by processing the position control layer forming starting layer 50 ′.
  • the edge of the tip 51 of the position control layer 50 plays a role of determining a position where the cantilever structure starts to bend when ion irradiation is performed thereafter. For this purpose, the tip 51 needs to be in a position retracted inward in the lateral direction from the tip free end 41 of the cantilever structure 40.
  • the planar shape of the position control layer 50 depends on the planar shape of the patterned thin film member 30 and the final structure to be created. In either case, a generalized cross-sectional view is as shown in FIG. .
  • the cantilever structure 40 is formed.
  • Fig. 1 (F) The isotropic etching is performed to remove the starting layer 20 ′ for supporting layer formation immediately below the portion to be bent of the thin film member 30 and the starting layer 60 ′ for forming position control layer supporting layer immediately above the portion to be bent,
  • the peripheral surface 21 is the support layer 20 in a position retracted inward in the lateral direction from the free end 41 of the thin film member 30, and the thin film member 30 thereon is a thin film member to be processed.
  • the position control layer 50 is also drawn so as to have a cantilever structure like the thin film member 30, but the end surface 61 of the position control layer support layer 60 is the tip of the position control layer 50. Even if it is in the same position as 51, the function of the position control layer 50 is not hindered. Moreover, the peripheral surface 21 of the support layer 20 needs to be in the position extended on the downward extension line of the front-end
  • the material of the starting layer 60 ′ for forming the position control layer support layer can be selected within the range of materials that can be processed into a shape as shown in FIG. In other words, the position control layer support layer forming starting layer 60 ′ is removed, but the position control layer 50 and the thin film member 30 can be selected within a range in which processing is not affected. From the viewpoint of facilitating the production by reducing the number of steps, the position control layer support layer forming starting layer 60 ′ is made of the same type or the same material as the support layer forming starting layer 20 ′. desirable. Then, the etching for forming the structure shown in FIGS. 1E to 1F can be integrated into one process.
  • both the position control layer support layer forming start layer 60 ′ and the support layer forming start layer 20 ′ are made of silicon dioxide (quartz), they can be removed with hydrofluoric acid, and the thin film member 30 can be made of silicon, molybdenum, tungsten, or the like.
  • the cantilever structure 40 is bent by ion irradiation.
  • Fig. 1 (G) The position where the cantilever structure starts to bend is a position where the cantilever structure 40 intersects with the cantilever structure 40 extending in the direction of the downward extension of the tip 51 of the position control layer 50.
  • ion irradiation is performed from a direction perpendicular to the substrate, the tip 51 of the position control layer 50 becomes a wrinkle and position control is possible even when the ion incident angle is not vertical.
  • the position control layer 50 needs to have a role to shield the irradiation ions from penetrating.
  • the ions are shielded when the projected range of ions is smaller than the film thickness.
  • a material with a small ion projection range may be selected.
  • a higher density material has a smaller ion projection range and higher shielding performance.
  • the shielding performance increases in the order of carbon, silicon, chromium, molybdenum, and tungsten, which is desirable as the position control layer 50.
  • the position control layer 50 is not deformed by ion irradiation. For this reason, the material and film thickness which are hard to deform
  • IIB processing what are the materials and film thickness that are difficult to deform?
  • the ease of IIB processing is summarized.
  • the kinetic energy of irradiated ions is a parameter that determines whether the cantilever structure is bent upward or downward with respect to the substrate. Ions penetrate deeper into the cantilever structure as the acceleration energy increases. Collisions with many atoms occur from when ions enter the cantilever structure until they lose kinetic energy and stop in the film. In the process, recoil atoms are generated, and as a result of the recoil atoms being generated, lattice defects such as vacancies and interstitial atoms are generated.
  • the optimum energy for bending the cantilever structure upward with respect to the substrate in IIB processing is the cantilever structure. It is shown that the peak position of the recoil atom distribution is approximately 30% from the surface with respect to the depth direction of the film to be formed. In addition, when the depth of the peak position of the recoil atom distribution is 10% to 20%, the curve bends upward, but a large amount of irradiation is required because the amount of bending per unit dose is small. % To 30% is not optimal, but a sufficiently practical upward bending process can be carried out. From 30% to 40%, the irradiation becomes too deep and a downward bending force is produced. It is shown that when the amount of bending in the direction is reduced, and when it exceeds 40% to 60%, the downward bending force is superior to the upward bending force.
  • the average projected range is 50% deep with respect to the cantilever structure. If the average projection range is between 20% and 30%, it will bend upward, but since the amount of curvature per unit dose is small, it will be a condition that requires a large dose, and the average projection range will be between 30% and 50%. Although this condition is not optimal, it is a condition that allows a sufficiently practical upward bending process. On the other hand, as the average projection range exceeds 50% and becomes as large as 60% and 70%, it becomes a condition that the downward bending force becomes dominant.
  • one of the conditions that are difficult to deform in IIB processing is that the ion irradiation condition where the peak position of recoil atom density is less than 10% deep from the surface relative to the cantilever structure, in other words, the cantilever structure.
  • this is an ion irradiation condition in which the average projected range is less than 20% from the surface.
  • the peak position of recoil atom density is between 40% and 60% deep from the surface with respect to the cantilever structure, and the upward bending force and the downward bending force are equal.
  • Ion irradiation conditions in which the average projected range is between 40% and 60% deep from the surface with respect to the cantilever structure, and the upward bending force and the downward bending force are equal. It can be said that it is a condition.
  • the optimum kinetic energy of irradiated ions is calculated when the average projected range is 50% of the film thickness, that is, when the depth is 110 nm, for example, in the order of the atomic number, in the case of silicon ions, about 80 keV, About 85 keV for phosphorus ions, about 110 keV for argon ions, about 170 keV for arsenic ions, about 200 keV for krypton ions, about 250 keV for indium ions, about 250 keV for antimony ions, and about 270 keV for xenon ions. .
  • the film thickness at which the average projected range in the calculated kinetic energy of ion implantation is 15% or less of the film thickness is calculated with several materials, for example, density From about 1300 nm to about 1450 nm for photoresist, from about 1030 nm to about 1120 nm for epoxy resin, from about 570 nm to about 670 nm for carbon, from about 740 nm to about 780 nm for silicon, and from about 310 nm to about 330 nm for niobium.
  • the minimum required film thickness is about 270 nm to about 290 nm for molybdenum and about 190 nm to about 210 nm for tungsten.
  • the position control layer 50 is selected according to the selected kinetic energy. The minimum required film thickness can be made smaller than the above calculation result.
  • the thickness of the position control material 50 in the case of bending a tungsten thin film having a thickness of 20 nm with various ions in a vacuum electron source was calculated using the SRIM code (http://www.srim.org/). Results are shown. First, the optimal kinetic energy of irradiated ions is calculated when the average projected range is 50% of the film thickness, that is, when the depth is 10 nm.
  • silicon ions in the order of decreasing atomic number about 25 keV, About 25 keV for phosphorus ions, about 30 keV for argon ions, about 50 keV for arsenic ions, about 55 keV for krypton ions, about 65 keV for indium ions, about 70 keV for antimony ions, and about 80 keV for xenon ions.
  • the film thickness at which the average projected range in the calculated kinetic energy of ion implantation is 15% or less of the film thickness is calculated with several materials, for example, density From about 420 nm to about 560 nm for photoresist, about 340 nm to about 450 nm for epoxy resin, about 190 nm to about 250 nm for carbon, about 240 nm to about 290 nm for silicon, and about 110 nm to about 120 nm for niobium. It can be seen that the required film thickness is about 95 nm to about 100 nm for molybdenum and about 70 nm for tungsten.
  • the position control layer 50 is selected according to the selected kinetic energy.
  • the minimum required film thickness can be made smaller than the above calculation result.
  • the SRIM code http://www.srim.org/
  • the film thickness of the position control member 50 when a tungsten thin film having a thickness of 100 nm is bent with various ions. The calculated result is shown.
  • the optimum kinetic energy of irradiated ions is calculated when the average projected range is 50% of the film thickness, that is, when the depth is 50 nm, for example, in the order of the atomic number, in the case of silicon ions, about 140 keV, About 150 keV for phosphorus ions, about 180 keV for argon ions, about 300 keV for arsenic ions, about 325 keV for krypton ions, about 450 keV for indium ions, about 450 keV for antimony ions, and about 500 keV for xenon ions. .
  • the film thickness at which the average projected range in the calculated kinetic energy of ion implantation is 15% or less of the film thickness is calculated with several materials, for example, density From about 2200 nm to about 2500 nm for photoresist, from about 1800 nm to about 2100 nm for epoxy resin, from about 950 nm to about 1150 nm for carbon, from about 1250 nm to about 1350 nm for silicon, and from about 530 nm to about 560 nm for niobium.
  • the minimum required film thickness is about 450 nm to about 480 nm for molybdenum and about 320 nm to 340 nm for tungsten.
  • the position control layer 50 is selected according to the selected kinetic energy. The minimum required film thickness can be made smaller than the above calculation result.
  • the position control layer 50 When the position control layer 50 is selected from materials used for semiconductor processes, it is convenient because molybdenum and tungsten can easily perform their functions with a relatively small film thickness.
  • carbon-based materials such as carbon, photoresist and polyimide have low ion shielding performance per unit thickness, but can easily form a thick film on the order of 1 ⁇ m. As desirable. The fact that carbon-based materials can be easily removed by oxygen ashing is another factor that simplifies the process.
  • the present invention can also be implemented with an inexpensive ion irradiation apparatus that omits the mass analyzer.
  • the positioning of the tip 51 of the position control layer 50 is important.
  • the processing of the position control layer 50 is performed by anisotropic etching, higher positioning accuracy can be obtained as compared with the isotropic etching of the conventional method.
  • dry etching processes such as RIE (Reactive Ion Etching) and ion milling
  • RIE Reactive Ion Etching
  • ion milling a thin film can be etched anisotropically and vertically, so that a fine pattern formed in a photoresist can be accurately transferred to the thin film.
  • wet etching it is impossible to transfer the fine pattern formed on the photoresist as it is to the thin film because the etching process isotropically proceeds due to the effect of the chemical solution soaking.
  • the position control layer 50 for determining the position where the cantilever structure starts to bend in the direction in which the ions fly as viewed from the cantilever structure 40 exists at least at the time of ion irradiation. That is.
  • the position control layer 50 is selected so as not to be deformed when the cantilever structure 40 is subjected to ion irradiation for bending processing, the cantilever structure 40 is selected from the tip 51 of the position control layer 50.
  • the position of the extended line down to the structure 40 determines the position where the cantilever structure 40 begins to bend.
  • the position control layer 50 does not have to be a single layer film.
  • the position control layer support layer 60 for supporting the position control layer 50 may be omitted as is apparent from the bending principle in the present invention described later.
  • FIG. 1 An SOI wafer is prepared in which the substrate 10 is single crystal silicon, the support layer forming start layer 20 ′ is a 2 ⁇ m thick silicon thermal oxide film, and the thin film member forming start layer 30 ′ is 220 nm thick single crystal silicon. To do. (Fig. 1 (A)) (2) A silicon optical circuit (thin film member 30) is produced by patterning single crystal silicon having a thickness of 220 nm by photolithography and RIE. (Fig. 1 (B)) (3) A SiO 2 layer having a thickness of about 2 ⁇ m was formed as a cladding layer on the silicon optical circuit by the CVD method.
  • the cladding layer corresponds to the starting layer 60 ′ for forming the position control layer support layer.
  • Figure 1 (C) (4) Tungsten having a film thickness of 200 nm is deposited by sputtering as the starting layer 50 ′ for forming the position control layer.
  • Figure 1 (D) (5) The position control layer 50 is formed by patterning tungsten having a thickness of 200 nm by photolithography and RIE.
  • the end portion of the silicon optical circuit having a cantilever structure can be curved in the downward direction perpendicular to the substrate, if necessary. This is applied to a structure in which, for example, when a plurality of silicon optical circuits are stacked, the end portion of the silicon optical circuit in the upper layer is bent downward and utilized.
  • tungsten having a thickness of 200 nm is used for the position control layer 50.
  • Replacement with a material that satisfies the conditions that do not cause deformation in the ion implantation process such as silicon, niobium with a thickness of about 330 nm or more, molybdenum with a thickness of about 290 nm or more, and tungsten with a thickness of about 210 nm or more. Is possible.
  • FIG. 2A shows an SEM image after ion irradiation.
  • the silicon optical waveguide is curved, it can be seen that the position where the cantilever structure starts to bend is determined by the edge position of the tungsten thin film which is the position control layer. Thereafter, if the position control layer 50 made of tungsten is unnecessary, it is selectively removed by wet etching with an acid such as a sulfuric acid solution.
  • FIG. 2B shows an SEM image after removing tungsten.
  • a silicon optical waveguide with a curved tip is revealed, and the position where the cantilever beam structure begins to bend is determined by the peripheral surface of the support layer in the prior art, but in this embodiment it is more than that. It can be confirmed that the turn starts from the left side position. Compared with the SEM image of FIG. 2A, it can be seen that the position where the bending starts is aligned with the position where the edge of the tungsten thin film originally existed.
  • the peripheral surface determined by wet etching which has low in-plane uniformity and reproducibility of position control, determines the position of the curved process, so even if it can be used for lab-level device demonstration, mass production It was a difficult technology.
  • the present invention overcomes this problem and enables a process in which the peripheral surface of the position control layer determined by dry etching, which has high in-plane uniformity and reproducibility of position control, determines the position of the bending process.
  • FIG. 3A is a top view of a state in which the cantilever structure 40 is formed on the thin film member 30 according to the present invention.
  • the length of the desired three-dimensional structure is L, and a state where a cantilever structure of length L + ⁇ is formed on the thin film member 30 for that purpose is shown.
  • a tip 51 indicated by a solid line indicates an edge portion of the position control layer 50 in the cross-sectional view shown in FIG.
  • the position where the cantilever structure 40 begins to bend is a position where it extends in the direction of the downward extension of the tip 51 of the position control layer 50 and intersects the cantilever structure 40. That is, the portion indicated as the length L in FIG. 3A is the portion to be subjected to the solid bending process.
  • the present invention if the present invention is adopted, a design that avoids the structure like the cape shown in FIG. 7 is not necessary. Therefore, in the step of removing the support layer 20 and the position control layer support layer 60 by isotropic etching, the lateral etching at a distance corresponding to the length L of the desired three-dimensional structure is not performed. A stop line of the shortened planar etching region is drawn as the peripheral surface 21. In FIG. 3, the cantilever structure 40 is drawn as a rectangle, but it may be a triangle, a circle, or another two-dimensional figure.
  • the length of the thin film member 30 other than the cantilever structure 40 (the portion necessary as a region for supporting the produced three-dimensional structure) is indicated by M, and this portion is also included.
  • M the length of the thin film member 30 other than the cantilever structure 40
  • this portion is also included.
  • the portion of the length M shown in FIGS. 9 and 10 is omitted.
  • the interference between the planar etching regions of the two cantilevers will be considered with reference to FIG.
  • the cantilever structure is arranged at the interval g ⁇ L without aligning the positions at which the bend starts, interference does not occur because the planar etching region is reduced compared to FIG. Therefore, only cantilever beams adjacent to each other are bent at the same length L.
  • the distance g is further reduced and the distance between the planar etching regions interferes, as shown in FIG. 9D, the lengths of adjacent cantilever structures are L + ⁇ on one side, L + ⁇ on the other side, ( ⁇ is smaller than ⁇ ).
  • the position where the cantilever beam structure 40 begins to bend is a position where it extends in the direction of the downward extension of the tip 51 of the position control layer 50 and intersects with the cantilever beam structure 40. Even if they are different from each other, the curved lengths of adjacent cantilever structures can be the same L. This is an essence that overcomes the limitations of integrated design, which was a drawback of the IIB technology according to the present invention. Hereinafter, this is expanded into a square lattice and a triangular lattice.
  • FIG. 3E An example of arrangement in a square lattice is shown in FIG.
  • the free end of the tip of the cantilever structure is arranged at each vertex of the square lattice. It can be seen that the interval g can be easily reduced to g ⁇ L in both the X-axis and Y-axis directions.
  • FIG. 3 (F) it can be seen that the gap g can be easily reduced to g ⁇ L even when arranged in a triangular lattice.
  • the free end of the cantilever structure is arranged at each vertex of the triangular lattice.
  • the interval g can be reduced to g ⁇ L / 2 as shown in FIG. Such a two-dimensional arrangement with a narrow pitch is not possible with the prior art.
  • the present invention is applied to an example in which an electrical measurement probe having a height of 50 ⁇ m is manufactured using IIB technology.
  • the length L of the cantilever structure is required to be 50 ⁇ m. If this is arranged as shown in FIG. 3E, the distance between the X direction and the Y direction is less than about 50 ⁇ m. Similarly, when the array is formed in the triangular lattice shape of FIG. 3F, the interval is less than about 50 ⁇ m. Similarly, when the array is formed in the triangular lattice shape of FIG. 3G, the interval is less than about 25 ⁇ m. These values are smaller than those of the existing electrical measurement probe array, and the merit of fine integration can be obtained by introducing the IIB technology.
  • the present invention is applied to an example in which a vacuum electron source having a height of 1 ⁇ m is manufactured using IIB technology.
  • the length L of the cantilever structure is 1 ⁇ m. If this is arranged two-dimensionally, the arrangement in the X direction and the Y direction will be less than about 1 ⁇ m if arranged as shown in FIG. Similarly, when the array is formed in the triangular lattice shape of FIG. 3F, the interval is less than about 1 ⁇ m. Similarly, when the array is formed in the triangular lattice shape of FIG. 3G, the interval is less than about 0.5 ⁇ m.
  • the present invention is applied to an example in which a vertical photocoupler for silicon photonics having a curvature radius of 3 ⁇ m is manufactured using IIB technology.
  • the length L of the cantilever structure is required to be 5 ⁇ m.
  • the interval in the X direction and the Y direction is less than about 5 ⁇ m.
  • an interval of less than 2.5 ⁇ m is possible.
  • a silicon optical waveguide having a vertical optical coupler that is three-dimensionally curved upward is filled with a cladding layer 70 to obtain a lower layer silicon optical circuit.
  • a start layer for forming a support layer and a start layer for forming an optical waveguide are laminated thereon, and an optical waveguide is formed by patterning the start layer for forming an optical waveguide, and is supported directly or on the position control layer on the optical waveguide.
  • a position control layer for determining a position where the cantilever structure of the optical waveguide starts to bend by irradiating ions through the layer is formed by anisotropic etching, and one of the starting layers for forming the support layer under the optical waveguide is formed. Or a part of the starting layer for forming the support layer and a part of the starting layer for forming the position control layer, the peripheral surface of the support layer, or the peripheral surface of the support layer and the end surface of the position control layer supporting layer are positioned.
  • the cantilever structure 40 having the tip free end 41 is formed in the optical waveguide by removing by isotropic etching so as to be on the lower extension line of the tip of the control layer or on the inner side thereof. (Fig. 4 (A))
  • a part of the cantilever structure 40 is irradiated with ions using the position control layer 50 as a mask, and a part of the cantilever structure is bent downward to form a second vertical optical coupler.
  • the lower vertical optical coupler in the lower layer and the second vertical optical coupler in the upper layer are arranged to face each other so as to be optically connected.
  • an inter-layer connected solid curved optical circuit is obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Measuring Leads Or Probes (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

The present invention addresses the problem of achieving a method such as isotropic etching for bending a thin film member in which the etching stop position differs from the position at which bending from IIB processing begins. Provided is a method for bending a thin film member comprising: a step for laminating a support layer formation starting layer 20' and a thin film member formation starting layer 30' on a substrate 10; a step for forming the thin film member 30 by patterning the thin film member formation starting layer 30'; a step for forming, on the thin film member via a position-controlling layer support layer formation starting layer 60', a position-controlling layer 50 for determining the position at which a cantilever structure of the thin film member begins to bend as a result of ion irradiation; a step for removing a portion of the support layer formation starting layer 20' below the thin film member and a portion of the position-controlling layer support layer formation starting layer 60' so that the circumferential surface 21 of the support layer and the end face 61 of the position-controlling layer support layer 60 are on or inside a line extended downward from the leading edge 51 of the position-controlling material layer to form the cantilever structure 40, which has a free leading end 41, on the thin film member 30; and a step for irradiating ions on a portion of the cantilever structure with the position-controlling layer 50 as a mask to bend a portion of the cantilever structure 40.

Description

薄膜部材の湾曲加工方法Method of bending thin film member
 本発明は、イオン注入技術を応用した薄膜部材の微細曲げ加工に関し、その曲げ位置制御を改善し、その構造の集積密度を向上する薄膜部材の湾曲加工方法に関するものである。
 本発明が寄与する技術分野は、半導体集積回路の製造、NEMS/MEMS(微小電気機械システム)デバイスの製造、光デバイス及び光集積回路の製造や、それらを集積化した融合デバイスの製造をはじめとする薄膜部材のマイクロメートルからナノメートルオーダーの微細な加工が必要とされる技術分野において、特に従来からある平面的な構造ではなく、三次元的な構造を必要とする技術分野に適用される。
The present invention relates to a fine bending process of a thin film member to which an ion implantation technique is applied, and relates to a method of bending a thin film member that improves the control of the bending position and improves the integration density of the structure.
The technical fields to which the present invention contributes include the manufacture of semiconductor integrated circuits, the manufacture of NEMS / MEMS (microelectromechanical system) devices, the manufacture of optical devices and optical integrated circuits, and the manufacture of integrated devices integrating them. The present invention is applied to a technical field that requires fine processing on the order of micrometers to nanometers of a thin film member, particularly to a technical field that requires a three-dimensional structure instead of a conventional planar structure.
 上述のようなマイクロメートルからナノメートルオーダーの微細な寸法のデバイスの製造は、フォトリソグラフィ技術を中核に据え、シリコンなどの半導体材料や、石英(シリカ)などの絶縁体材料や、金属などの導体材料を、成膜やパタニングを繰り返して幾層にも積層していく工程で構成される。そして上記材料を成膜するための堆積技術と、成膜された薄膜をパタニングするためのエッチング技術がこの一連のプロセスにおいてフォトリソグラフィ技術に次ぐ基盤技術となっている。 The manufacturing of devices with micrometer to nanometer order dimensions as described above is centered on photolithography technology, semiconductor materials such as silicon, insulator materials such as quartz (silica), and conductors such as metals. It consists of a process in which materials are stacked in layers by repeating film formation and patterning. A deposition technique for depositing the material and an etching technique for patterning the deposited thin film are the basic technologies next to the photolithography technique in this series of processes.
 しかし、いくつかの例外を除いて従来の堆積技術やエッチング技術は、加工対象となる薄膜部材の寸法がおよそ厚さ1μm未満に限定されている。例えば、堆積技術の場合、厚さ200nm以上の成膜を実施するには、薄膜の内部応力の増大による基板の反りや堆積された薄膜の剥離や、基板全面に均質な薄膜を実施することの困難性、加えて成膜装置のメンテンナンス頻度の増加などの課題がある。幾つかの絶縁体材料では、それらの課題を克服して厚さ200nm以上の成膜が実用化されているが、それでもおよそ厚さ1μm未満に制限されているのが実態である。 However, with some exceptions, the conventional deposition technique and etching technique are limited in that the dimension of the thin film member to be processed is less than about 1 μm in thickness. For example, in the case of a deposition technique, in order to form a film having a thickness of 200 nm or more, the substrate is warped due to an increase in internal stress of the thin film, the deposited thin film is peeled off, or a uniform thin film is formed on the entire surface of the substrate. There are problems such as difficulty and increase in maintenance frequency of the film forming apparatus. In some insulator materials, film formation with a thickness of 200 nm or more has been put to practical use by overcoming these problems, but the actual situation is that the thickness is still limited to less than about 1 μm.
 一方、エッチング技術の場合、深さ200nm以上のエッチングを実施するには、レジスト材料の耐久性の課題や、微細孔の場合は形状の制御性などの課題がある。それでも近年、シリコンなどの深掘りエッチングが実用化されて深さ100μmの加工が実用化されてはいるが、応用分野はNEMS/MEMSデバイスの製造や、シリコンウェハの貫通穴電極作製にほぼ限られている。
 すなわち、既存の微細加工技術は、基板の表面のせいぜい1μm未満の極薄い平面的な領域における加工技術であると言え、1μmを超える高さの立体的な構造を加工することは不得手としている。
On the other hand, in the case of an etching technique, in order to carry out etching with a depth of 200 nm or more, there are problems of durability of the resist material, and in the case of fine holes, there are problems such as shape controllability. However, in recent years, deep etching of silicon and the like has been put into practical use and processing of a depth of 100 μm has been put into practical use, but the application field is almost limited to the manufacture of NEMS / MEMS devices and the production of through-hole electrodes of silicon wafers. ing.
That is, it can be said that the existing fine processing technique is a processing technique in an extremely thin planar region of less than 1 μm at most on the surface of the substrate, and is not good at processing a three-dimensional structure having a height exceeding 1 μm. .
 近年、上記堆積技術とエッチング技術だけでは実現が困難な三次元的な立体構造を実現する微細加工技術として、イオン注入技術を応用した薄膜部材の湾曲加工技術が開示された。(特許文献1ないし4及び非特許文献5ないし7参照)
 この手法に依れば、堆積技術やエッチング技術では構築し得なかった1μm~100μmの立体的な微細構造を形成できるため、その応用使途は極めて広範なものとなる。
In recent years, a thin film member bending technique using an ion implantation technique has been disclosed as a fine processing technique that realizes a three-dimensional structure that is difficult to achieve with only the deposition technique and the etching technique. (See Patent Documents 1 to 4 and Non-Patent Documents 5 to 7)
According to this method, a three-dimensional fine structure of 1 μm to 100 μm, which could not be constructed by the deposition technique or the etching technique, can be formed, and its application is extremely wide.
 このイオン注入による湾曲加工技術(IIB技術(Ion Implantation Bending、又はIon Induced Bending))では、薄膜部材にイオンを注入し、その注入イオンによって生じる応力が薄膜の変形を引き起こす現象を利用している。加工する薄膜部材は予め片持ち梁構造を形成しておき、該片持ち梁構造にイオン注入を行う。片持ち梁構造の平面形状は矩形や三角形などの単純な形状に限らず、円弧を含むような複雑な形状でもフォトリソグラフィとエッチングを使えばある程度自在に選ぶことができる。つまり、IIB技術は二次元にパタニングした薄膜を折り曲げて立体化することができる技術である。また、湾曲加工の曲率半径は、マイクロメートルオーダーの緩やかな曲線も、ナノメートルオーダーの垂直に折り曲げた小さな角も加工可能である。 In this bending process technology by ion implantation (IIB technology (Ion Implantation Bending) or Ion Induced Bending), ions are implanted into a thin film member, and the phenomenon that stress caused by the implanted ions causes deformation of the thin film is used. The thin film member to be processed has a cantilever structure formed in advance, and ion implantation is performed on the cantilever structure. The planar shape of the cantilever structure is not limited to a simple shape such as a rectangle or a triangle, and even a complicated shape including an arc can be freely selected to some extent by using photolithography and etching. That is, the IIB technique is a technique that can be formed into a three-dimensional shape by bending a thin film patterned in two dimensions. In addition, the radius of curvature of the bending process can be a gentle curve on the order of micrometers or a small angle bent vertically on the order of nanometers.
 IIB技術の基盤となっているイオン注入技術は、シリコンLSI製造工程において不純物導入に利用される中核技術で、既に成熟した大量生産技術である。IIB技術は成熟技術であるイオン注入を応用しているため、加工の均一性や再現性は極めて高い。更には、LSIなどの既存のエレクトロニクスデバイスや、NEMS/MEMSデバイスや、光デバイス及び光集積回路との高いプロセス融合性も有する技術である。 The ion implantation technology that forms the basis of the IIB technology is a core technology used for introducing impurities in the silicon LSI manufacturing process, and is already a mature mass production technology. Since the IIB technology applies ion implantation, which is a mature technology, the processing uniformity and reproducibility are extremely high. Furthermore, it is a technology having high process integration with existing electronic devices such as LSI, NEMS / MEMS devices, optical devices, and optical integrated circuits.
 もっとも、薄膜部材の湾曲加工と言うことだけであるならば、非特許文献1に開示されている“マイクロ折り紙”や、非特許文献2に開示されている真空電子源の作製方法、非特許文献3に開示されているメタマテリアルの作製方法、非特許文献4に開示されているシリコン光結合器の作製方法における加工法がある。しかし、これらはいずれも薄膜部材の成膜時に生じた内部応力を解放することで曲げ加工を図る技術である。これらの手法では、応力の異なる二種類の材質を積層し、その後、犠牲層と呼ばれる薄膜部材支持層を除去することにより、内部応力を解放して薄膜部材を物理的に自己変形させる。 Of course, if it is only a bending process of a thin film member, “micro origami” disclosed in Non-Patent Document 1, a vacuum electron source manufacturing method disclosed in Non-Patent Document 2, and Non-Patent Document 3 is a method for producing a metamaterial, and a processing method in a method for producing a silicon optical coupler disclosed in Non-Patent Document 4. However, these are all techniques for bending by releasing internal stress generated during film formation of the thin film member. In these methods, two kinds of materials having different stresses are laminated, and then the thin film member supporting layer called a sacrificial layer is removed to release the internal stress and to physically self-deform the thin film member.
 ところがこの手法では薄膜部材の内部応力を高精度に制御する必要があるため、適応できる材料の選択肢が少なく、生産性や汎用性の面で短所がある。また、実現できる曲率半径は膜厚2.1μmの例では曲率半径約64μm、膜厚0.11μmの例では曲率半径約20μm、膜厚0.07μmの例では曲率半径約1.1μmというように、薄膜部材の厚さの15倍から180倍程度と大きく微細化に制限がある。加えて、薄膜部材は内部応力の制御を優先して選定せざるを得ないため、デバイスとして肝心な電気特性や光学特性を犠牲にしてしまう。 However, in this method, since the internal stress of the thin film member needs to be controlled with high accuracy, there are few choices of applicable materials, and there are disadvantages in terms of productivity and versatility. Further, the radius of curvature that can be realized is about 64 μm in the example of the film thickness of 2.1 μm, about 20 μm in the example of the film thickness of 0.11 μm, and about 1.1 μm in the example of the film thickness of 0.07 μm. The thickness of the thin film member is as large as 15 to 180 times, and there is a limit to miniaturization. In addition, since the thin film member must be selected with priority given to the control of internal stress, the essential electrical and optical characteristics of the device are sacrificed.
 対して上述のIIB技術は、薄膜部材にイオンを注入し、これによって生じる応力を利用して、微細な薄膜構造の曲げ加工を実現するものである。つまり、照射イオンの運動エネルギーが変形の原動力である。その応力はイオンの運動エネルギーと注入量で制御可能であるため、極めて高い面内均一制御が可能である。
 また、実現できる曲率半径は、厚さ0.1μmの薄膜の曲げ加工の場合に0.1μmとなり、上記のマイクロ折り紙技術に代表される従来型の積層膜の内部応力を原動力とした薄膜曲げ加工技術に比べて15分の1から180分の1の微細なサイズの湾曲加工が可能である。
On the other hand, the above-mentioned IIB technique realizes bending of a fine thin film structure using ions generated by implanting ions into the thin film member. That is, the kinetic energy of irradiated ions is the driving force for deformation. Since the stress can be controlled by the kinetic energy of ions and the implantation amount, extremely high in-plane uniform control is possible.
In addition, the radius of curvature that can be realized is 0.1 μm in the case of bending a thin film having a thickness of 0.1 μm, and the thin film bending process is driven by the internal stress of a conventional laminated film represented by the above-mentioned micro origami technology. Compared with the technology, it is possible to perform bending processing with a fine size of 1/15 to 1/180.
 また、IIB技術は非常に汎用性の高い技術である。特許文献2に既に開示されているが薄膜部材の材質は何であっても大方曲がり得ると言える。
 その内容から推測するに、微細加工プロセスによく利用される材料の中では、シリコンなどの半導体や、モリブデン、タングステン、タンタル、テクネチウム、レニウム、コバルト、ニッケル、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銅、銀、金、鉛、ゲルマニウムなどの金属や、タングステンシリサイド、モリブデンシリサイド、タンタルシリサイド、チタンシリサイド、コバルトシリサイド、クロムシリサイド、ニッケルシリサイドなどのシリコン化合物や、炭素、炭化シリコン、炭化タンタル、炭化チタン、炭化モリブデン、炭化ニオブ、炭化ハフニウム、炭化タングステン、炭化バナジウム、ダイヤモンドライクカーボンなどの炭素系材料や、窒化チタン、窒化アルミニウム、窒化シリコン、窒化タンタル、窒化ホウ素、窒化クロム、窒化ジルコニウムなどの窒化物や、酸化インジウム錫、酸化亜鉛アルミニウム、酸化亜鉛、酸化インジウムガリウム亜鉛などの透明導電膜は、片持ち梁構造の形成プロセスで最もよく使われる弗化水素酸に対する耐薬品性が高いことを特徴とするため利用されやすい。また、原子番号が小さい材料、質量が小さな材質、密度の小さな材料ほど良く曲がるため、少ない照射量で大きな変形角度が得られることも分かっている。
The IIB technology is a very versatile technology. Although it has already been disclosed in Patent Document 2, it can be said that the thin film member can be bent almost regardless of the material.
Inferring from its contents, among the materials often used in microfabrication processes, semiconductors such as silicon, molybdenum, tungsten, tantalum, technetium, rhenium, cobalt, nickel, ruthenium, osmium, rhodium, iridium, palladium, Metals such as platinum, copper, silver, gold, lead, germanium, silicon compounds such as tungsten silicide, molybdenum silicide, tantalum silicide, titanium silicide, cobalt silicide, chromium silicide, nickel silicide, carbon, silicon carbide, tantalum carbide, Carbonaceous materials such as titanium carbide, molybdenum carbide, niobium carbide, hafnium carbide, tungsten carbide, vanadium carbide, diamond-like carbon, titanium nitride, aluminum nitride, silicon nitride, tan nitride Nitride such as copper, boron nitride, chromium nitride and zirconium nitride, and transparent conductive films such as indium tin oxide, zinc aluminum oxide, zinc oxide and indium gallium zinc oxide are most often used in the cantilever structure formation process Since it is characterized by high chemical resistance to hydrofluoric acid, it is easily used. It has also been found that a material with a small atomic number, a material with a small mass, and a material with a low density bend better, so that a large deformation angle can be obtained with a small dose.
 薄膜部材の膜厚に関しては、特許文献1ないし4及び非特許文献5ないし7に既に開示されているとおり、20nm~240nmの薄膜が主な加工対象となるが、それよりも薄い場合や厚い場合でも、イオン照射条件を選べば加工可能である。
 また、片持ち梁構造の長さに関しても特許文献1ないし4及び非特許文献5ないし7に既に開示されているとおり、0.5μmから50μmの片持ち梁を加工可能であるとある。原理上、片持ち梁が形成できさえすれば、それよりも短くても長くても加工可能であることは明らかである。
Regarding the film thickness of the thin film member, as already disclosed in Patent Documents 1 to 4 and Non-Patent Documents 5 to 7, a thin film having a thickness of 20 nm to 240 nm is a main processing target. However, it can be processed if ion irradiation conditions are selected.
Further, regarding the length of the cantilever structure, as already disclosed in Patent Documents 1 to 4 and Non-Patent Documents 5 to 7, a cantilever beam of 0.5 μm to 50 μm can be processed. In principle, as long as a cantilever can be formed, it is clear that it can be processed even shorter or longer.
 IIB技術に用いるイオン種には特に制限がないことが特許文献2に既に開示されている。イオン注入装置を用いる場合はリン、硼素、砒素、インジウム、アンチモン、弗化硼素、アルミニウム、窒素、アルゴン、弗化シリコン、シリコン、水素化硼素、水素化炭素が、FIB装置を用いる場合はガリウムが一般的に備わっているため利用されやすい。 It has already been disclosed in Patent Document 2 that there are no particular restrictions on the ion species used in the IIB technology. Phosphorous, boron, arsenic, indium, antimony, boron fluoride, aluminum, nitrogen, argon, silicon fluoride, silicon, boron hydride, carbon hydride are used when an ion implantation apparatus is used, and gallium is used when an FIB apparatus is used. It is easy to use because it is generally provided.
 また、半導体プロセスではあまり利用されないが、水素、ヘリウム、炭素、酸素、フッ素、ネオン、マグネシウム、硫黄、塩素、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ゲルマニウム、クリプトン、ルビジウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、パラジウム、銀、カドミウム、錫、ヨウ素、キセノン、ハフニウム、タングステン、イリジウム、白金、金、鉛、ビスマス、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、ガドリニウム、テルビウム、ジスプロシウム、エルビウム、ツリウム、イッテルビウムなども実用的なイオン注入が可能なイオンであるためIIB技術に用いることが容易である。 In addition, it is not often used in semiconductor processes, but hydrogen, helium, carbon, oxygen, fluorine, neon, magnesium, sulfur, chlorine, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, germanium, Krypton, rubidium, zirconium, niobium, molybdenum, ruthenium, palladium, silver, cadmium, tin, iodine, xenon, hafnium, tungsten, iridium, platinum, gold, lead, bismuth, cerium, praseodymium, neodymium, samarium, eurobium, gadolinium, Terbium, dysprosium, erbium, thulium, ytterbium, and the like are ions that can be practically ion-implanted and can be easily used in the IIB technique.
 また、質量が大きなイオン種ほど薄膜部材をよく曲げられるため、少ない照射量で大きな変形角度が得られることも分かっている。イオン種は1種の方が制御性は高くなる。
 しかし、質量分析が困難な場合や、質量分析器を未搭載の装置でIIB技術を実施する場合には複数種が混合されたイオンを用いることも可能である。
It has also been found that a large deformation angle can be obtained with a small amount of irradiation because the ion species having a larger mass can bend the thin film member better. One type of ion species has higher controllability.
However, when mass spectrometry is difficult or when the IIB technique is carried out with an apparatus not equipped with a mass analyzer, it is possible to use ions in which a plurality of types are mixed.
[電気測定用プローブへの応用例]
 (従来技術とその課題)
 IIB技術のメリットを説明するために、電気測定用プローブへの応用例を示す。原子間力顕微鏡(Atomic Force Microscope; AFM)などの走査型プローブ顕微鏡(SPM)のプローブや、シリコンLSIのデバイステスター用のプローブでは、エッチング技術を駆使した立体的な高アスペクト比の先鋭構造が利用されている。シリコン単結晶の異方性エッチングで作製されるタイプが主流であり、寸法は底辺長10μm~100μm、高さ10μm~100μmの四角錐のピラミッド形状のプローブが広く利用されている。材料として単結晶シリコンが選ばれている理由は、異方性エッチングで自己整合的に高アスペクト比の先鋭構造が形成されるためである。
[Application example to electrical measurement probe]
(Prior art and its problems)
In order to explain the merits of the IIB technology, an application example to an electrical measurement probe will be shown. A scanning probe microscope (SPM) probe such as an atomic force microscope (AFM) or a probe for a silicon LSI device tester uses a three-dimensional, high-aspect ratio sharp structure using etching technology. Has been. A type produced by anisotropic etching of a silicon single crystal is the mainstream, and a pyramid probe with a quadrangular pyramid having a base length of 10 μm to 100 μm and a height of 10 μm to 100 μm is widely used. The reason why single crystal silicon is selected as the material is that a sharp structure with a high aspect ratio is formed in a self-aligning manner by anisotropic etching.
 しかし、シリコンは金属に比べ電気抵抗が高いため、繰り返し電流が流れることによる劣化が課題となっている。また、接触式のプローブとして利用する場合には機械的な耐久性も金属に比べてシリコンは低いため課題となる。本来は、電気測定用プローブの材料はタングステンのような耐久性が高い金属が望ましいが、立体構造を形成するための製造プロセスが他にはないため、シリコンで代用されているというのが現状である。もし、タングステンなどの金属で高アスペクト比のプローブを形成できれば、これらの課題は克服でき、これまでよりも自由度の高いプローブ形状やプローブアレイ配列を実現できる。 However, since silicon has a higher electrical resistance than metal, deterioration due to repeated current flow is a problem. In addition, when used as a contact type probe, mechanical durability is also low because silicon is lower than metal, which is a problem. Originally, a highly durable metal such as tungsten is desirable as the material for the probe for electrical measurement, but since there is no other manufacturing process for forming a three-dimensional structure, it is currently being used as a substitute for silicon. is there. If a high aspect ratio probe can be formed of a metal such as tungsten, these problems can be overcome, and a probe shape and a probe array arrangement with a higher degree of freedom than before can be realized.
 (IIB技術の応用)
 IIB技術は幅広い材料に適用可能であるためタングステンのような高融点・高硬度の加工難易度が高い金属を湾曲加工することも容易に可能である。手順を以下に示す。まず、厚さ20nm~200nm程度のタングステン薄膜に必要に応じてダブルパターニングなどを駆使して先端をナノメートルオーダーに先鋭化した底辺1μm高さ100μmの三角形を二次元的にパタニングする。次に、この二次元の三角形パタン化金属薄膜を犠牲層エッチング技術と超臨界乾燥技術などを使用して片持ち梁構造に加工する。そして、三角形のタングステン薄膜の片持ち梁構造にイオン注入を行うことで、高さ100μm、厚さ20nm~200nm程度、底辺1μmの高アスペクト比の立体構造を形成できる。従来法のシリコンの異方性エッチング技術は、エッチングされる結晶方位の角度が一定であるためピラミッド構造にならざるをえなかったが、IIB技術を利用すると二次元的なパタニングで形状を設計可能になるためフットプリントを大幅に削減できる。その結果、電気特性と機械的な耐久性に優れるタングステンのような金属材料で超高密度なプローブアレイを形成可能となる。
 このような電気測定用プローブの例のようにエッチング技術で高さ10μm~100μmの立体構造を形成するというプロセスは、一般的には材料や形状が限定されるかなり特殊なプロセスである。一方、IIB技術は幅広い材料を湾曲加工可能な技術であるため、非常に汎用性が高い技術であるといえる。
(Application of IIB technology)
Since the IIB technology can be applied to a wide range of materials, it is possible to easily bend a metal having a high melting point and high hardness, such as tungsten, which is highly difficult to process. The procedure is shown below. First, a triangle having a base of 1 μm and a height of 100 μm is two-dimensionally patterned on a tungsten thin film having a thickness of about 20 nm to 200 nm, using double patterning as necessary to sharpen the tip to the nanometer order. Next, the two-dimensional triangular patterned metal thin film is processed into a cantilever structure using a sacrificial layer etching technique and a supercritical drying technique. Then, by performing ion implantation on the cantilever structure of the triangular tungsten thin film, a high-aspect ratio three-dimensional structure having a height of 100 μm, a thickness of about 20 nm to 200 nm, and a base of 1 μm can be formed. The conventional anisotropic etching technology for silicon has to be a pyramid structure because the angle of crystal orientation to be etched is constant, but the shape can be designed with two-dimensional patterning using IIB technology. Therefore, the footprint can be greatly reduced. As a result, it is possible to form an ultra-high-density probe array with a metal material such as tungsten having excellent electrical characteristics and mechanical durability.
The process of forming a three-dimensional structure having a height of 10 μm to 100 μm by an etching technique as an example of such an electric measurement probe is generally a very special process in which materials and shapes are limited. On the other hand, since the IIB technology is a technology that can bend a wide range of materials, it can be said to be a highly versatile technology.
[真空電子源への応用例]
 (従来技術)
 次にIIB技術の真空電子源への応用例を示す。超高感度撮像素子などへ応用される真空電子源デバイスは、エミッタと呼ばれる金属製の高さ1μmの円錐構造を持つことを特徴とするデバイスである。従来その立体的なエミッタの構造は堆積技術を駆使したSpindt法と呼ばれる手法で作製されている。
 まずはその手順を説明する。はじめに、金属薄膜(100nm程度)/絶縁体薄膜(1μm程度)/金属薄膜(100nm程度)を積層した基板を用意する。次に、上層の金属薄膜に直径1μm程度の孔を作製する。その後、孔が形成された金属薄膜をマスクに、絶縁体薄膜を下層の金属薄膜が露出するまでエッチングする。すると、直径1μm深さ1μm程度の円筒状の穴が基板に形成される。
[Example of application to vacuum electron source]
(Conventional technology)
Next, an application example of the IIB technology to a vacuum electron source will be shown. A vacuum electron source device applied to an ultra-high sensitivity imaging device or the like is a device characterized by having a metal conical structure with a height of 1 μm called an emitter. Conventionally, the three-dimensional emitter structure has been fabricated by a technique called Spindt method using deposition technology.
First, the procedure will be described. First, a substrate in which a metal thin film (about 100 nm) / insulator thin film (about 1 μm) / metal thin film (about 100 nm) is laminated is prepared. Next, a hole having a diameter of about 1 μm is formed in the upper metal thin film. Thereafter, the insulator thin film is etched until the underlying metal thin film is exposed using the metal thin film having the holes formed therein as a mask. Then, a cylindrical hole having a diameter of 1 μm and a depth of about 1 μm is formed in the substrate.
 次に、この基板に対してモリブデンなどの金属を真空蒸着する。すると、孔の上部に堆積された金属は面内方向でのマイグレーションにより、堆積に伴い孔の直径を縮径していくようになる。そして最終的には蒸着された金属によって孔が完全に閉ざされ、これに従って自己整合的に円錐構造が穴の中に形成される。この手法は真空電子源の作製方法として最も古い手法である。しかし、その後に異なるアプローチの真空電子源の作製手法は数多く研究開発されてきたが、デバイス性能でこのSpindt法を原理とする真空電子源を越えるものは出てきていない。 Next, a metal such as molybdenum is vacuum deposited on the substrate. Then, the metal deposited on the upper part of the hole is reduced in diameter as the hole is deposited due to migration in the in-plane direction. Finally, the hole is completely closed by the deposited metal, and a conical structure is formed in the hole in a self-aligning manner accordingly. This method is the oldest method for manufacturing a vacuum electron source. However, many different approaches have been researched and developed since then, but none of the device performance exceeds that of the vacuum electron source based on the Spindt method.
 (従来技術の課題)
 ところが、この従来手法は広く実用化されるには至っていない。
 その原因は、厚さ1μm以上の金属材料の真空蒸着が円錐形状形成の必須条件であるためである。真空電子源の材料としてはタングステンやモリブデンなどの高融点金属が望ましいが、高融点金属は堆積時の基板表面でのマイグレーション距離が僅かであるため、大きな応力が生じやすい材料である。しかも、堆積時の応力は膜厚が増すほど大きくなる。従って、高融点金属を厚さ1μm堆積するプロセスは膜内に生じる内部応力が巨大になるため剥離が非常に生じやすい条件となる。更には、デバイスの均一性確保の要求から、成膜中の飛来粒子の入射方向が基板に対して厳密に垂直である必要がある。
(Prior art issues)
However, this conventional method has not been widely put into practical use.
This is because vacuum deposition of a metal material having a thickness of 1 μm or more is an essential condition for forming a conical shape. The material of the vacuum electron source is preferably a refractory metal such as tungsten or molybdenum. However, the refractory metal is a material that easily generates a large stress because the migration distance on the substrate surface during deposition is small. Moreover, the stress during deposition increases as the film thickness increases. Therefore, the process of depositing the refractory metal with a thickness of 1 μm is a condition in which peeling is very likely to occur because the internal stress generated in the film becomes enormous. Furthermore, in order to ensure device uniformity, the incident direction of flying particles during film formation must be strictly perpendicular to the substrate.
 そのため飛来粒子の入射角度がある程度の幅を持つスパッタ法は利用できず、飛来粒子の散乱要因である残留ガスが少ない高真空中での蒸着法が選ばれている。しかし、真空蒸着法はスパッタ法に比べ飛来粒子の運動エネルギーが小さい。そのため飛来粒子の基板表面でのマイグレーションが小さく応力が生じやすい堆積法である。このようにSpindt法には、非常に困難な堆積プロセスの条件が科せられている特殊な技術であることから、Spindt法の実用化は困難である。
 なお、一般的にはスパッタ法でも厚さ1μm以上の金属の堆積は応力の問題が生じるため困難な技術であると認識されている。
Therefore, a sputtering method in which the incident angle of flying particles has a certain width cannot be used, and a vapor deposition method in a high vacuum with a small amount of residual gas which is a scattering factor of flying particles is selected. However, the vacuum evaporation method has smaller kinetic energy of the flying particles than the sputtering method. Therefore, this is a deposition method in which the migration of flying particles on the substrate surface is small and stress is likely to occur. Thus, since the Spindt method is a special technique that imposes very difficult conditions for the deposition process, it is difficult to put the Spindt method into practical use.
In general, it is recognized that the deposition of a metal having a thickness of 1 μm or more is a difficult technique because of the problem of stress even in the sputtering method.
 (IIB技術の応用)
 IIB技術を応用したエミッタの作製手順を非特許文献5、7に開示されている情報を基に以下に示す。まず、厚さ20nm~50nm程度のモリブデン又はタングステン薄膜にダブルパターニングなどを駆使して先端をナノメートルオーダーに先鋭化した底辺400nm高さ1μmの三角形を二次元的にパタニングする。次に、二次元の三角形パタン化金属薄膜を、エッチング技術などを使用して片持ち梁構造に加工する。その後、三角形の金属薄膜の片持ち梁構造にイオン注入を行う。十分に多いイオン注入を行うと、片持ち梁構造を完全に垂直に折り曲げることができ、高さ1μm、厚さ20nm~50nm程度、底辺400nmの高アスペクト比の立体構造を形成できる。
 従来法では厚さ1μmの高融点金属の堆積が必要であったため応力と剥離の問題があったが、IIB技術を利用すると厚さ20nm~50nm程度の薄膜を折り曲げて高さ1μmの立体構造を形成するため、厚膜堆積に起因する応力と剥離の問題が生じない。しかも、薄膜の堆積とエッチングとイオン注入により構成されたプロセスは、シリコンLSI製造プロセスと類似性が高いため、LSI製造工場の設備を活用した量産が可能になる。
(Application of IIB technology)
A procedure for manufacturing an emitter using the IIB technique will be described below based on information disclosed in Non-Patent Documents 5 and 7. First, using a double patterning or the like on a molybdenum or tungsten thin film having a thickness of about 20 nm to 50 nm, a triangle having a base of 400 nm and a height of 1 μm is sharply two-dimensionally patterned. Next, the two-dimensional triangular patterned metal thin film is processed into a cantilever structure using an etching technique or the like. Thereafter, ion implantation is performed on the cantilever structure of the triangular metal thin film. When a sufficiently large number of ion implantations are performed, the cantilever structure can be bent completely vertically, and a three-dimensional structure having a high aspect ratio of 1 μm in height, about 20 nm to 50 nm in thickness, and 400 nm in the bottom can be formed.
The conventional method required the deposition of refractory metal with a thickness of 1μm, which caused problems of stress and delamination. However, using the IIB technology, a thin film with a thickness of about 20nm to 50nm was folded to form a three-dimensional structure with a height of 1μm. As a result, the problem of stress and peeling due to thick film deposition does not occur. In addition, since the process constituted by thin film deposition, etching, and ion implantation is highly similar to the silicon LSI manufacturing process, mass production using the equipment of the LSI manufacturing factory is possible.
[シリコンフォトニクスへの応用]
 (従来技術)
 次にIIB技術のシリコンフォトニクスへの応用例を示す。近年、光導波路のコア部に単結晶シリコンあるいはアモルファスシリコンなどのシリコン材料を用いたシリコン細線光導波路を主要構成部とするシリコンフォトニクスの研究開発が活発に行われている。シリコンコア材料と石英系クラッド材料の間で大きな比屈折率差が得られるために、小さな曲率半径で光導波路を曲げても光が放射損失することがなく、光回路の著しい小型化が実現できるためである。
 またシリコンLSIの製造プロセスの転用が可能なため、量産による低廉な製造コストが期待されている。シリコンフォトニクスは光インターコネクションを実現する技術として期待されており、既に要素デバイス性能は実用化レベルを達成しつつある。
 しかし、シリコン光回路に光ファイバ、発光・受光素子などの外部光部品を実装するための光結合技術や、量産化に不可欠なウェハレベルテストの実現が大きな課題となっている。
[Application to silicon photonics]
(Conventional technology)
Next, application examples of IIB technology to silicon photonics will be shown. In recent years, research and development of silicon photonics, in which a silicon thin-wire optical waveguide using a silicon material such as single crystal silicon or amorphous silicon for a core portion of the optical waveguide is a main component, has been actively conducted. Since a large relative refractive index difference is obtained between the silicon core material and the silica-based cladding material, light is not lost even if the optical waveguide is bent with a small radius of curvature, and the optical circuit can be significantly reduced in size. Because.
In addition, since the manufacturing process of silicon LSI can be diverted, low manufacturing costs due to mass production are expected. Silicon photonics is expected as a technology for realizing optical interconnection, and element device performance has already achieved a practical level.
However, the realization of optical coupling technology for mounting external optical components such as optical fibers and light emitting / receiving elements on silicon optical circuits and the realization of wafer level tests essential for mass production have become major issues.
 (従来技術の課題)
 電気配線とは異なり光配線を接続するための光結合技術は、ただ単に構造が繋がっているだけでは光が高効率で伝達できないという光の伝搬原理に起因する難しさがある。電子デバイスの金属配線の場合は、基本的に金属同士が接触していれば電気が流れるため、チップ表面に電極パッドを形成しそこへ金属ワイヤーや金属バンプなどを結合すれば、チップの垂直方向へ電気信号を伝達することができる。従って、チップを何枚も積み重ねた集積度の高い実装や、プロセス途中のウェハにプローブを当てて電気特性を検査するウェハレベルテストも容易に行える。
(Prior art issues)
Unlike electrical wiring, optical coupling technology for connecting optical wiring has difficulty due to the light propagation principle that light cannot be transmitted with high efficiency simply by connecting the structures. In the case of metal wiring for electronic devices, electricity flows basically when the metals are in contact with each other. Therefore, if an electrode pad is formed on the chip surface and a metal wire or metal bump is bonded thereto, the vertical direction of the chip An electrical signal can be transmitted to Therefore, it is possible to easily perform mounting with a high degree of integration in which many chips are stacked and a wafer level test in which a probe is applied to a wafer in the middle of a process to inspect electrical characteristics.
 一方、光配線では光の光路をウェハの垂直方向へ効率よく変換するための機構がそもそも容易ではない。なぜなら光配線は、平面内で90度の向きを変える場合でも、曲率半径が3μm程度以上の緩やかなカーブを形成しなければ伝搬効率が悪くなるほど方向転換が容易では無いためである。しかも従来の微細加工技術の特性から、垂直方向に緩やかにカーブした光配線を形成することは堆積技術やエッチング技術を駆使しても実用的にはほぼ不可能であった。 On the other hand, in optical wiring, a mechanism for efficiently converting the optical path of light in the vertical direction of the wafer is not easy in the first place. This is because, even when the orientation of the optical wiring is changed by 90 degrees in the plane, the direction change is not so easy that the propagation efficiency is deteriorated unless a gentle curve having a curvature radius of about 3 μm or more is formed. Moreover, due to the characteristics of the conventional microfabrication technology, it has been practically impossible to form an optical wiring that is gently curved in the vertical direction even by making full use of deposition technology and etching technology.
 そのため、現在は光が回折格子で向きを変える現象を利用した回折格子型結合器がシリコンフォトニクスの表面型光結合器の業界標準となりつつあり、実装応用やウェハレベルテスト応用に向けて開発が進んでいる。しかし、光の回折現象は原理上、強い波長依存性、入射角度依存性、偏波依存性があるため、波長・角度・偏光の許容帯域が狭いデバイスとなることが課題である。もし、ウェハの垂直方向に向かって立体的に湾曲したシリコン光導波路を形成することができれば、回折格子型結合器よりも波長・角度・偏光の許容帯域が劇的に広い表面型光結合器を実現できる。 As a result, diffraction grating couplers that utilize the phenomenon that light changes direction with diffraction gratings are becoming the industry standard for silicon photonics surface optical couplers, and development is progressing toward mounting applications and wafer level test applications. It is out. However, since the light diffraction phenomenon has a strong wavelength dependency, incident angle dependency, and polarization dependency in principle, it is a problem that the device has a narrow allowable band of wavelength, angle, and polarization. If a silicon optical waveguide that is three-dimensionally curved in the vertical direction of the wafer can be formed, a surface type optical coupler with a dramatically wider wavelength, angle, and polarization tolerance band than a diffraction grating type coupler can be used. realizable.
 (IIB技術の応用)
 非特許文献6や特許文献3ないし4に示されているように、IIB技術はまさにこのようなウェハの垂直方向に向かって立体的に湾曲したシリコン光導波路形状を形成するのに適している。
 シリコンフォトニクス用の表面光入出力器の作製手順を以下に示す。一般的なシリコンフォトニクス回路は、厚さ2μm以上のシリコン酸化膜の上に、シリコンで形成された厚さ220nmの光配線・回路層があり、その上にさらに厚さ2μm程度のシリコン酸化膜がクラッド層を形成している。このようなシリコン光回路の終端部分に長さ約5μm~50μmの片持ち梁を形成する。片持ち梁の形成方法は、シリコン光回路層上下のシリコン酸化膜を除去するプロセスで実施する。その後、シリコン光配線の片持ち梁構造にイオン注入を行い、曲率半径約3μm~30μmの立体湾曲型シリコン光導波路を形成できる。
(Application of IIB technology)
As shown in Non-Patent Document 6 and Patent Documents 3 to 4, the IIB technique is suitable for forming a silicon optical waveguide shape that is three-dimensionally curved in the vertical direction of such a wafer.
The manufacturing procedure of the surface light input / output device for silicon photonics is shown below. A general silicon photonics circuit has an optical wiring / circuit layer having a thickness of 220 nm formed of silicon on a silicon oxide film having a thickness of 2 μm or more, and a silicon oxide film having a thickness of about 2 μm is further formed thereon. A cladding layer is formed. A cantilever beam having a length of about 5 μm to 50 μm is formed at the terminal portion of such a silicon optical circuit. The method of forming the cantilever is performed by a process of removing the silicon oxide films above and below the silicon optical circuit layer. Thereafter, ions are implanted into the cantilever structure of the silicon optical wiring to form a three-dimensionally curved silicon optical waveguide having a curvature radius of about 3 μm to 30 μm.
 その後、再びシリコン酸化膜で立体湾曲部を埋め込み、デバイスの完成となる。光導波路が立体的に湾曲された構造は、平面に形成されたカーブ型光導波路と同様の原理で、基板垂直方向へ光波を伝搬することが可能であるため、波長依存性、偏波依存性、角度依存性が弱くかつ低損失な垂直光入出力ポートや層間光結合器を実現できる。
 IIB技術はこのように従来技術では到底不可能であった立体構造を形成する場合に効果が大きい。厚さが約220nmのシリコン光導波路を約3μmの曲率半径で曲げる加工は、他の曲げ技術では実現し得ない。
Thereafter, the solid curved portion is again filled with the silicon oxide film to complete the device. The structure in which the optical waveguide is curved three-dimensionally can propagate light waves in the direction perpendicular to the substrate on the same principle as a curved optical waveguide formed on a flat surface. Therefore, it is possible to realize a vertical light input / output port and an interlayer optical coupler with low angle dependency and low loss.
Thus, the IIB technique has a great effect when forming a three-dimensional structure that was impossible with the conventional technique. The process of bending a silicon optical waveguide having a thickness of about 220 nm with a radius of curvature of about 3 μm cannot be realized by other bending techniques.
 立体湾曲型シリコン光導波路が、回折格子型結合器に対して有するメリットはこれだけではないことが、非特許文献6に開示されている情報から読み取ることができる。立体湾曲シリコン光導波路はウェハ面外へ飛び出したその特異な立体形状を有するが故に、新しい機能形態を実現して、光デバイスの高機能・高集積化に貢献する。新しい機能形態とは、例えば下記に示すような、垂直方向にテーパーが形成された導波路コア構造や、光軸に対して回転対称に形成されたセカンドコアや、導波路の先端に形成されるレンズ構造がある。 It can be read from the information disclosed in Non-Patent Document 6 that this is not the only merit that the three-dimensionally curved silicon optical waveguide has over the diffraction grating coupler. Since the three-dimensionally curved silicon optical waveguide has its unique three-dimensional shape protruding out of the wafer surface, it realizes a new functional form and contributes to high functionality and high integration of the optical device. Examples of new functional forms include a waveguide core structure formed with a taper in the vertical direction as shown below, a second core formed rotationally symmetrically with respect to the optical axis, and formed at the tip of the waveguide. There is a lens structure.
[シリコンフォトニクス応用のメリット]
(メリット1:垂直方向にテーパーが形成された導波路コア構造)
 立体湾曲シリコン光導波路は、二次元平面でパタニングされた導波路を立体的に曲げ加工して形成される。そのため、従来プロセスでは作製が非常に困難な、垂直方向に順テーパーや逆テーパーを形成した導波路コアを形成することができる。それにより、垂直方向へ伝搬する光のスポット形状を自在に制御でき、ビームサイズの拡大や縮小、扁平化などが可能となり、光ファイバや光源や光受光器との高効率光結合を実現する要素技術となる。
[Merit of silicon photonics application]
(Merit 1: Waveguide core structure with a taper formed in the vertical direction)
The three-dimensional curved silicon optical waveguide is formed by three-dimensionally bending a waveguide patterned in a two-dimensional plane. Therefore, it is possible to form a waveguide core having a forward taper or a reverse taper formed in the vertical direction, which is very difficult to manufacture by the conventional process. As a result, the spot shape of light propagating in the vertical direction can be freely controlled, and the beam size can be expanded, reduced, flattened, etc., and elements that realize high-efficiency optical coupling with optical fibers, light sources, and optical receivers Technology.
(メリット2:光軸に対して回転対称に形成されたセカンドコア構造)
 通常のシリコン光導波路にスポットサイズ変換器を作製する場合、スポットサイズ拡大を担うセカンドコアを、堆積技術を利用して形成する。そのため、導波路層の上側にしかセカンドコアを形成することができない。一方、立体湾曲シリコン光導波路はウェハ面外へ飛び出した構造であるため、CVD法などで等方的に酸化窒化シリコンなどのセカンドコア部材を堆積することができる。するとその構造は、光軸に対して回転対称なセカンドコアを形成することになる。このような構造は、高効率のスポットサイズコンバータを実現できる。
(Merit 2: Second core structure formed rotationally symmetric with respect to the optical axis)
When producing a spot size converter in a normal silicon optical waveguide, a second core responsible for spot size expansion is formed using a deposition technique. Therefore, the second core can be formed only above the waveguide layer. On the other hand, since the three-dimensionally curved silicon optical waveguide has a structure protruding out of the wafer surface, a second core member such as silicon oxynitride can be deposited isotropically by a CVD method or the like. Then, the structure forms a second core that is rotationally symmetric with respect to the optical axis. Such a structure can realize a highly efficient spot size converter.
(メリット3:導波路の先端に形成されるレンズ構造)
 通常の平面上に形成されたシリコン細線導波路の先端にレンズを形成することは困難である。しかし、ウェハ面外へ飛び出した立体湾曲シリコン光導波路であれば、CVD法を活用することによってレンズ形成が容易に可能となる。レンズの直径と材料の屈折率を選定することで、光のスポットサイズを拡大・縮小することが可能になる。
(Merit 3: lens structure formed at the tip of the waveguide)
It is difficult to form a lens at the tip of a silicon wire waveguide formed on a normal plane. However, in the case of a three-dimensionally curved silicon optical waveguide protruding out of the wafer surface, lens formation can be easily performed by utilizing the CVD method. By selecting the diameter of the lens and the refractive index of the material, it becomes possible to enlarge / reduce the spot size of the light.
 以上に挙げた構造はいずれも、立体湾曲シリコン光導波路の構造が有るが故に実現可能な構造である。つまり、立体湾曲シリコン光導波路は、単に光の進行方向をウェハに対して垂直方向へ変換するための機構という機能に留まらない。
 立体湾曲シリコン光導波路は、ウェハ表面方向への光入出力モードを自在に制御可能にするための光学的な構造を形成するための土台になるという機能も有する。
Any of the structures listed above can be realized because of the structure of a solid curved silicon optical waveguide. In other words, the three-dimensionally curved silicon optical waveguide is not limited to the function of merely a mechanism for converting the traveling direction of light into a direction perpendicular to the wafer.
The three-dimensional curved silicon optical waveguide also has a function of forming a base for forming an optical structure for freely controlling the light input / output mode toward the wafer surface.
 また、その用途は、単なる垂直光結合器に留まらない。モード制御を自在に行える立体湾曲シリコン光導波路を多数配列すればフューモードファイバ、マルチモードファイバ、マルチコアファイバ、フューモードマルチコアファイバやマルチモードマルチコアファイバ、レーザーダイオードアレイ、面発光レーザーアレイ、MEMSミラー、空間位相変調器などのような、空間的に複数の光伝搬モードが集合された光デバイスとの光結合のための垂直光入出力ポートとして有効で、光通信技術の大容量化に貢献する。他にも干渉光を利用した車載用ライダーなど、モード制御を自在に行える立体湾曲シリコン光導波路を多数配列したアレイの応用分野は通信分野にとどまらない。
 すなわち、シリコンフォトニクスにとってIIB技術は、従来の課題を解決するだけではなく、従来には不可能であった応用分野を開拓する革命的な技術と言える。
Moreover, its application is not limited to a simple vertical optical coupler. If a large number of three-dimensional curved silicon optical waveguides that can freely control the mode are arranged, a fumode fiber, a multimode fiber, a multicore fiber, a fumode multicore fiber or a multimode multicore fiber, a laser diode array, a surface emitting laser array, a MEMS mirror, a space It is effective as a vertical light input / output port for optical coupling with an optical device in which a plurality of light propagation modes are spatially gathered, such as a phase modulator, and contributes to an increase in capacity of optical communication technology. In addition, the application field of an array in which a large number of three-dimensionally curved silicon optical waveguides that can freely control modes, such as a vehicle-mounted rider using interference light, is not limited to the communication field.
In other words, IIB technology for silicon photonics can be said to be a revolutionary technology that not only solves conventional problems but also pioneers application fields that were impossible in the past.
特開2009-252689号公報JP 2009-252689 A 特開2011-140072号公報JP2011-140072 特開2013-178333号公報JP 2013-178333 A WO/2014/156233号公報WO / 2014/156233
(従来のIIB技術)
 図5に、薄膜部材を曲げ加工する場合の従来の基本的な工程を模式的に例示する。
 図5(A)に示すように、基板10上に、薄膜部材の支持層となる支持層形成用出発層20’を成膜し、その上に将来、薄膜部材となる薄膜部材形成用出発層30’を成膜する。この薄膜部材形成用出発層30’を図5(B)に示すように、フォトリソグラフィとエッチング技術を利用して所望の平面形状にパタニングし、薄膜部材30とする。
(Conventional IIB technology)
FIG. 5 schematically illustrates a conventional basic process for bending a thin film member.
As shown in FIG. 5 (A), a starting layer 20 ′ for forming a supporting layer to be a supporting layer for a thin film member is formed on a substrate 10, and a starting layer for forming a thin film member to be a thin film member in the future. 30 ′ is deposited. As shown in FIG. 5B, the thin film member forming starting layer 30 ′ is patterned into a desired planar shape using photolithography and etching techniques to form the thin film member 30.
 このパタニング処理の後、薄膜部材30の曲げ加工したい部分の直下にある支持層形成用出発層20’のみをフォトリソグラフィと横方向エッチングで除去し、図5(C)に示すように、その周縁面21が薄膜部材30の先端自由端41よりも横方向内方に引っ込んだ位置にある支持層20となし、その上のパタン化した薄膜部材30を加工対象とする。
 すなわち、薄膜部材30は、その下に支持層20がなく、浮いた状態で先端自由端41に至る片持ち梁構造40を有するものであり、この片持ち梁構造40が実質的に曲げ加工対象となる部分であって、片持ち梁構造40は、その付け根が支持層20の周縁面21のある位置にあり、そこから空間を伸びて先端自由端41に至る形状となっている。
After this patterning process, only the support layer forming starting layer 20 ′ immediately below the portion of the thin film member 30 to be bent is removed by photolithography and lateral etching, and as shown in FIG. The surface 21 is the support layer 20 at a position retracted inward in the lateral direction from the distal end free end 41 of the thin film member 30, and the patterned thin film member 30 on the support layer 20 is an object to be processed.
That is, the thin film member 30 does not have the support layer 20 below it, and has a cantilever structure 40 that reaches the free end 41 in a floating state. The cantilever structure 40 is substantially subject to bending. The cantilever structure 40 has a shape in which the root is located at a position where the peripheral surface 21 of the support layer 20 is located, and extends from there to the free end 41 of the tip.
 次に、片持ち梁構造にイオンを照射し、片持ち梁構造を湾曲させる。
 図5(D)に示すように、片持ち梁構造40は、支持層20の周縁面21を始点として湾曲する。さらにイオン照射を続けると、最終的に片持ち梁構造40は、図5(E)に示すように、基板10に対して直立する。
Next, the cantilever structure is irradiated with ions to bend the cantilever structure.
As shown in FIG. 5D, the cantilever structure 40 is curved starting from the peripheral surface 21 of the support layer 20. When the ion irradiation is further continued, the cantilever structure 40 finally stands upright with respect to the substrate 10 as shown in FIG.
[課題の具体例]
(電気測定用プローブの場合)
 電気測定用プローブへの応用の場合、SiOで形成される絶縁体層(支持層20)が表面に形成されている基板の上に厚さ20nm~200nm程度の金属薄膜を成膜し、それをパタニングして薄膜部材30を形成する。次に、その金属薄膜から形成された薄膜部材30の先端を長さ10μm~100μm程度の片持ち梁構造40に加工する。片持ち梁構造を形成する工程は、金属材料の薄膜部材30直下の絶縁体層(支持層20)を金属材料の薄膜部材30に損傷を与えない方法で除去なければならない。
[Specific examples of issues]
(For electrical measurement probes)
In the case of application to an electrical measurement probe, a metal thin film having a thickness of about 20 nm to 200 nm is formed on a substrate on which an insulator layer (support layer 20) formed of SiO 2 is formed. The thin film member 30 is formed by patterning. Next, the tip of the thin film member 30 formed from the metal thin film is processed into a cantilever structure 40 having a length of about 10 μm to 100 μm. In the process of forming the cantilever structure, the insulator layer (support layer 20) immediately below the metal material thin film member 30 must be removed by a method that does not damage the metal material thin film member 30.
 そこで、弗化水素酸が有する、SiOを溶解し、且つタングステンなどの金属を溶解しない特性を利用する。弗化水素酸を用いたウェットエッチングを行うと、SiOは等方的にエッチングされるため、金属材料の薄膜部材30直下の絶縁体層(支持層20)を除去することができる。他にも、フッ化水素ガスを用いたドライエッチングでも同様の等方性エッチングを行うことができる。 Therefore, the characteristics of hydrofluoric acid, which dissolves SiO 2 and does not dissolve metals such as tungsten, are used. When wet etching using hydrofluoric acid is performed, SiO 2 is isotropically etched, so that the insulator layer (support layer 20) immediately below the thin film member 30 of the metal material can be removed. In addition, the same isotropic etching can be performed by dry etching using hydrogen fluoride gas.
 ところが、このような等方性の横方向へのエッチングは、所望の位置でエッチングを止める制御性が低い点が、製造プロセス上のデメリットとなる。通常、縦方向へのエッチングでは基板の材料に弗化水素酸に溶解しない材料を選べば、SiOがエッチングされ基板が露出するとエッチングが停止する。つまり縦へのエッチングは、基板がエッチストッパー層として機能する。一方、横方向のエッチングに対してはエッチストッパー層が無いため、エッチングの停止は弗化水素酸の供給停止で制御するしかない。 However, such an isotropic lateral etching has a disadvantage in the manufacturing process in that the controllability of stopping the etching at a desired position is low. Normally, in the vertical etching, if a material that does not dissolve in hydrofluoric acid is selected as the material of the substrate, the etching stops when the SiO 2 is etched and the substrate is exposed. That is, in the vertical etching, the substrate functions as an etch stopper layer. On the other hand, since there is no etch stopper layer for lateral etching, the stop of etching can only be controlled by stopping the supply of hydrofluoric acid.
 弗化水素酸の供給停止操作は、例えば純水で置換するというプロセスで実施されるが、このプロセスを基板面内で毎回厳密に実施することは非常に困難である。そのため、基板面内で横方向エッチングの距離が差異をもち、横方向エッチング距離の差異は片持ち梁構造の長さの差異となる。その結果、電気測定用プローブの仕上がり高さがばらつく。
 IIB技術をプローブ作製に利用することで超高密度のプローブアレイを実現できる。しかし、それらのプローブの高さばらつきが大きくては、測定データの信頼性の観点から使いものにならない。
The operation of stopping the supply of hydrofluoric acid is performed, for example, by a process of substituting with pure water. However, it is very difficult to perform this process strictly in the substrate surface every time. Therefore, there is a difference in the lateral etching distance within the substrate surface, and the difference in the lateral etching distance is a difference in the length of the cantilever structure. As a result, the finished height of the electrical measurement probe varies.
By using IIB technology for probe fabrication, an ultra-high density probe array can be realized. However, if the height variation of these probes is large, it is not useful from the viewpoint of the reliability of the measurement data.
(真空電子源の場合)
 同様の課題は、真空電子源応用にも存在する。非特許文献7に開示されている情報を基に説明すると、真空電子源応用の場合、SiOで形成される絶縁体層(支持層20)の上に厚さ20nm~50nm程度のモリブデンやタングステンなどの高融点金属薄膜を成膜し、それをパタニングして薄膜部材30を形成する。
 次に、金属材料の薄膜部材30の先端を長さ1μm程度の片持ち梁構造40に加工する。片持ち梁構造を形成する工程は、金属材料の薄膜部材30直下の絶縁体層(支持層20)を金属材料の薄膜部材30に損傷を与えない方法で除去しなければならない。
(For vacuum electron source)
Similar challenges exist for vacuum electron source applications. Describing based on the information disclosed in Non-Patent Document 7, in the case of a vacuum electron source application, molybdenum or tungsten having a thickness of about 20 nm to 50 nm on an insulator layer (support layer 20) formed of SiO 2. A thin film member 30 is formed by forming a refractory metal thin film such as the above and patterning it.
Next, the tip of the metal material thin film member 30 is processed into a cantilever structure 40 having a length of about 1 μm. In the process of forming the cantilever structure, the insulator layer (support layer 20) immediately below the metal material thin film member 30 must be removed by a method that does not damage the metal material thin film member 30.
 そこでこの場合にも、弗化水素酸が有する、SiOを溶解し、且つモリブデンやタングステンなどの金属を溶解しない特性を利用する。弗化水素酸を用いたウェットエッチングを行うと、SiOのエッチングが横方向にも進行するため、金属材料の薄膜部材30直下の絶縁体層(支持層20)を除去することができる。もちろん、フッ化水素ガスを用いたドライエッチングでも同様の等方性エッチングを行うことができる。 Therefore, also in this case, the characteristics of hydrofluoric acid, which dissolves SiO 2 and does not dissolve metals such as molybdenum and tungsten, are used. When wet etching using hydrofluoric acid is performed, the etching of SiO 2 proceeds in the lateral direction, so that the insulator layer (support layer 20) immediately below the thin film member 30 of the metal material can be removed. Of course, the same isotropic etching can be performed by dry etching using hydrogen fluoride gas.
 真空電子源応用の場合にも、電気測定用プローブ応用の場合と同様のばらつきの課題がある。横方向へのエッチングは、所望の位置でエッチングを止める制御性が低いため、基板面内で横方向エッチングの距離が差異をもち、その差異が片持ち梁構造の長さの差異となる。その結果、エミッタの高さがばらつく。しかも、真空電子源は電気測定用プローブに比べてばらつきに敏感なデバイスで、エミッタの先端位置のばらつきがわずか100nmでも、デバイス特性として数倍のばらつきとなる。 Also in the case of vacuum electron source application, there is the same problem of variation as in the case of electrical measurement probe application. Since the etching in the lateral direction has low controllability to stop the etching at a desired position, the lateral etching distance has a difference in the substrate surface, and the difference becomes the difference in the length of the cantilever structure. As a result, the height of the emitter varies. In addition, the vacuum electron source is a device that is more sensitive to variations than the electrical measurement probe, and even if the variation in the tip position of the emitter is only 100 nm, the device characteristics vary several times.
 真空電子源は、数個から数百個単位でグループ化し、それらのグループを数百から数万個以上並べたアレイとして利用されることが多いデバイスである。例えば、前述の超高解像度撮像素子の場合は、10個から100個で一つの画素を形成し、それをハイビジョン規格の場合で1920×1080個敷き詰める。各エミッタが均一な特性を有することがこのようなアプリケーションでは必要となるため、個々のデバイス特性が数倍の差異を持つということは致命的な欠点となる。 Vacuum electron sources are devices that are often used as an array in which several to several hundreds of units are grouped, and hundreds to tens of thousands of these groups are arranged. For example, in the case of the above-described ultra-high resolution image sensor, one pixel is formed by 10 to 100, and 1920 × 1080 pixels are laid down in the case of the high vision standard. Since it is necessary in such an application that each emitter has a uniform characteristic, it is a fatal drawback that individual device characteristics have a difference of several times.
(シリコンフォトニクス応用の場合)
 同様にシリコンフォトニクス応用でも、等方性エッチングのばらつきは問題になる。シリコンフォトニクス応用の場合、石英(SiO)クラッド層で埋め込まれた厚さ220nm、幅400nm程度の、シリコン材料で形成された光導波路コア構造(薄膜部材30)の先端を長さ約5μm~50μmほど露出させ片持ち梁構造40を形成する。この構造を実現するために、シリコンコア構造直下のクラッド(支持層20)をシリコンコア構造にダメージを与えない方法で除去しなければならない。
(For silicon photonics applications)
Similarly, variations in isotropic etching become a problem even in silicon photonics applications. In the case of silicon photonics application, the tip of an optical waveguide core structure (thin film member 30) made of silicon material having a thickness of about 220 nm and a width of about 400 nm embedded with a quartz (SiO 2 ) cladding layer is about 5 μm to 50 μm in length. The cantilever structure 40 is formed by being exposed as much as possible. In order to realize this structure, the cladding (support layer 20) immediately below the silicon core structure must be removed by a method that does not damage the silicon core structure.
 そこで、弗化水素酸が有する、SiOを溶解し、且つシリコンを溶解しない特性を利用する。弗化水素酸を用いたウェットエッチングを行うと、SiOは等方的に横方向にもエッチングされるため、シリコン材料で形成された光導波路コア構造を成す薄膜部材30直下のクラッド層(支持層20)を除去することができる。もちろん、フッ化水素ガスを用いたドライエッチングでも同様の等方性エッチングを行うことができる。 Therefore, the characteristics of hydrofluoric acid, which dissolves SiO 2 and does not dissolve silicon, are used. When wet etching using hydrofluoric acid is performed, SiO 2 is isotropically etched in the lateral direction, so that the clad layer (support) directly under the thin film member 30 that forms the optical waveguide core structure made of silicon material. Layer 20) can be removed. Of course, the same isotropic etching can be performed by dry etching using hydrogen fluoride gas.
 シリコンフォトニクス応用の場合も、等方性エッチングのばらつきが問題となる。等方性の横方向エッチングの距離の差異は、片持梁構造の差異となり、片持ち梁構造の差異は、IIB加工で形成された立体湾曲型シリコン光導波路(垂直光結合器や垂直光入出力ポートなど)の先端位置の面内ばらつきと高さばらつきに影響する。 Also in the case of silicon photonics application, variation in isotropic etching becomes a problem. The difference in isotropic lateral etching distance is a difference in cantilever structure, and the difference in cantilever structure is a three-dimensionally curved silicon optical waveguide formed by IIB processing (vertical optical coupler or vertical light input). This affects the in-plane variation and height variation of the tip position of the output port.
 一般にシリコンフォトニクスデバイスと、光ファイバや発光・受光素子などその他光デバイスの光結合では、100nmオーダー以下の精密な位置合わせが必要となる。
従って、立体湾曲型シリコン光導波路の先端位置がばらついていると、各立体湾曲型シリコン光導波路に対してそれぞれに位置合わせが必要になり、実装応用にせよウェハテスト応用にせよ、位置合わせに時間とコストを要することになる。
In general, in optical coupling between a silicon photonics device and other optical devices such as an optical fiber and a light emitting / receiving element, precise alignment of the order of 100 nm or less is required.
Therefore, if the tip position of the three-dimensionally curved silicon optical waveguide varies, it is necessary to align each of the three-dimensionally curved silicon optical waveguides, and it takes time to align whether it is a mounting application or a wafer test application. Cost.
 更には、IIB加工で形成された立体湾曲型シリコン光導波路を多数アレイ化して、フューモードファイバ、マルチモードファイバ、マルチコアファイバ、フューモードマルチコアファイバ、マルチモードマルチコアファイバなどの光ファイバや、レーザーダイオードアレイ、面発光レーザーアレイなどのアレイタイプの発光デバイスや、MEMSミラー、空間位相変調器などの空間分割タイプの光制御デバイスのような、空間的に複数の光伝搬モードが集積された光デバイスとの光結合のための垂直光入出力ポートとして利用する場合、各々の垂直光入出力ポートの先端位置に面内ばらつきと高さばらつきがあると、各々で光結合損失が異なる結果となり、全く実用にならない。 Furthermore, a large number of solid curved silicon optical waveguides formed by IIB processing are arrayed to form optical fibers such as fumode fibers, multimode fibers, multicore fibers, fumode multicore fibers, multimode multicore fibers, and laser diode arrays. And optical devices in which a plurality of light propagation modes are integrated spatially, such as array type light emitting devices such as surface emitting laser arrays, and spatially divided type light control devices such as MEMS mirrors and spatial phase modulators. When used as a vertical light input / output port for optical coupling, if there is in-plane variation and height variation at the tip position of each vertical light input / output port, the optical coupling loss will be different for each, resulting in completely practical use. Don't be.
 以上の例に示したように、IIB技術には片持ち梁構造を形成するために等方性エッチングが欠かせない。しかし、等方性エッチングは原理上、エッチングの停止位置を厳密に制御することが困難である。エッチング停止位置のばらつきによって生じる等方性エッチング距離の差異は、片持梁構造の長さの差異となり、IIB加工後の立体構造の高さや位置などの形状ばらつきの原因となることがわかる。このようなばらつきの課題は、ここで列挙したプローブや真空電子源やシリコンフォトニクスへの応用に限る課題ではない。 As shown in the above example, isotropic etching is indispensable for IIB technology to form a cantilever structure. However, it is difficult in principle for isotropic etching to precisely control the etching stop position. It can be seen that the difference in the isotropic etching distance caused by the variation in the etching stop position becomes the difference in the length of the cantilever structure, which causes the variation in shape such as the height and position of the three-dimensional structure after IIB processing. Such a problem of variation is not limited to the applications listed here, such as probes, vacuum electron sources, and silicon photonics.
[課題1:位置制御性]
 課題の一般的な説明を図6に従って行う。図6は、図5の(C)、(D)に関し、イオン照射前(A)、イオン照射後(B)の各断面図を引用して、湾曲構造の位置制御性についての問題点を説明するための図である。
[Problem 1: Position controllability]
A general description of the problem is given according to FIG. FIG. 6 illustrates the problems regarding the position controllability of the curved structure with reference to the cross-sectional views before (A) and after (I) the ion irradiation with respect to (C) and (D) in FIG. It is a figure for doing.
 上記のようなエッチング停止位置(図6(A)に示す「周縁面21」)のばらつきは、IIBプロセスにおいては、湾曲加工の支持点の位置ばらつきとして影響する。
 IIB加工は、片持ち梁構造の自由端側が大きく変位し、固定端は変位しないという変形加工である。そのため、イオン注入条件を精密に制御して固定端から自由端に至る梁の部分の変位を精密制御したとしても、等方性エッチングの静止位置ばらつきが影響した固定端位置が、最終的に立体湾曲加工された自由端の位置を定義付けるためである。
The variation in the etching stop position (“peripheral surface 21” shown in FIG. 6A) as described above affects the variation in the position of the support point for the bending process in the IIB process.
The IIB processing is a deformation processing in which the free end side of the cantilever structure is greatly displaced and the fixed end is not displaced. Therefore, even if the ion implantation conditions are precisely controlled and the displacement of the beam portion from the fixed end to the free end is precisely controlled, the fixed end position that is affected by the variation in the stationary position of the isotropic etching eventually becomes three-dimensional. This is to define the position of the curved free end.
 等方性エッチングに起因するIIB加工構造の位置ばらつきにはもう一つの要因が絡む。等方性エッチングの様子をウェハ表面から見た時(図7(A)参照)に、片持ち梁構造の曲がり始める位置付近直下の支持層は、両脇からエッチャントに侵食されて岬のような構造を残しながら除去されていく。 Another factor is involved in the positional variation of the IIB processed structure caused by isotropic etching. When the state of isotropic etching is viewed from the wafer surface (see FIG. 7A), the support layer just below the position where the cantilever structure starts to bend is eroded by the etchant from both sides and looks like a cape. It is removed while leaving the structure.
 この岬のような形状の先端がナノメートルオーダーの鋭利な形状を有する状態でエッチングを停止し、その後IIB加工を施すと、片持ち梁構造が面的に支持されるのではなく点的に支持されるため、変形工程が極めて不安定になる。この岬形状の頂点の位置は理想的には厳密に片持ち梁構造の中心に位置し、イオン注入の角度をウェハに対して厳密に垂直に保てることができれば影響はないが、どちらかが僅かにでもズレると、たちまち片持ち梁構造の湾曲加工は捻れて所望の形状は得られない。立体構造が所望した構造と異なる構造になるということは、その結果として立体化された片持ち梁構造がばらつくことになる。 When etching is stopped with this cape-shaped tip having a sharp shape on the order of nanometers, and then subjected to IIB processing, the cantilever structure is not supported in a plane but in a point support Therefore, the deformation process becomes extremely unstable. The apex of this cape shape is ideally located exactly in the center of the cantilever structure, and there is no effect if the ion implantation angle can be kept strictly perpendicular to the wafer, but either one is slightly If it is shifted, the bending process of the cantilever beam structure is twisted and the desired shape cannot be obtained. If the three-dimensional structure is different from the desired structure, the three-dimensional cantilever structure varies as a result.
 この現象を抑えるためには、両脇からの侵食距離を十分長くして岬のような形状をなくすか、予め岬のような形状が形成されないように等方性エッチングのためのマスキングの設計を工夫する方法がある。マスキングの工夫とは、片持梁構造の両脇からエッチャントが侵食しないように、片持梁構造の自由端になる位置から平行にエッチャントが侵食する方法である。 In order to suppress this phenomenon, the erosion distance from both sides should be made sufficiently long to eliminate the cape-like shape, or the masking design for isotropic etching should be designed so that the cape-like shape is not formed in advance. There is a way to devise. The masking technique is a method in which the etchant erodes in parallel from the position where it becomes the free end of the cantilever structure so that the etchant does not erode from both sides of the cantilever structure.
 図8にマスキングの工夫の例を示す。マスキングの窓領域を片持ち梁構造の先端付近に設計すると、等方性エッチングによって横方向エッチングを進行すると岬のような構造は形成されない。しかし、その代償としてエッチング時間が長くなり、結果エッチング領域が大きくなるためデバイスのフットプリントが大きくなる。 Figure 8 shows an example of masking techniques. If the masking window region is designed near the tip of the cantilever structure, a cape-like structure will not be formed if lateral etching is performed by isotropic etching. However, at the cost of this, the etching time becomes longer, resulting in a larger etching area and a larger device footprint.
 例えば、前述のシリコンフォトニクス応用の例の場合、長さ5μmの片持ち梁構造を得る場合には、横方向に長さ5μmの等方性エッチングを必要とするため、およそ25μmの面積を占有することになるつまり、曲げ加工を行いたいモノよりもかなり大きなフットプリントが必要になるということを意味し、その結果として狭いピッチでIIB加工物を配置することが制限される。 For example, in the case of the above-mentioned silicon photonics application example, in order to obtain a cantilever structure having a length of 5 μm, an isotropic etching having a length of 5 μm is required in the lateral direction, and therefore occupies an area of about 25 μm 2. This means that a much larger footprint is required than the object to be bent, and as a result, the placement of IIB workpieces at a narrow pitch is limited.
 このように等方性エッチングは、深さ方向だけでなく平面方向にもエッチングが進行する。そのため、ある方向に一列に片持ち梁構造を並べる場合には、隣同士を近接して固定端位置を揃えたデザインで集積度を高めることが可能であるが、三角格子状や正方格子状のように二次元平面に片持ち梁構造を配置する場合には、各々の平面エッチング領域が干渉して固定端位置を大きく制限する。 In this way, isotropic etching proceeds not only in the depth direction but also in the plane direction. Therefore, when arranging cantilever structures in a line in a certain direction, it is possible to increase the degree of integration with a design in which adjacent positions are close to each other and the fixed end positions are aligned. Thus, when a cantilever structure is arranged on a two-dimensional plane, each plane etching region interferes to greatly limit the fixed end position.
[課題2:デザインの制約]
 ここで、図9を用いてデザイン上の集積密度の制約について具体例を示し説明する。図9(A)は、薄膜部材30に片持ち梁構造40を形成した状態の上面図である。前述の図8に示した岬のような構造を回避するデザインが採用されている。所望の立体構造の長さをLとし、そのために薄膜部材30に長さLの片持ち梁構造を形成した状態を示す。破線で示すマスキングの窓領域とは、片持ち梁構造形成のための等方性エッチング用のマスキング層の窓の部分を示している。このマスキング窓領域を始点として等方性エッチングは平面的に進行する。
[Issue 2: Design restrictions]
Here, a specific example of the limitation on the integration density in the design will be described with reference to FIG. FIG. 9A is a top view of a state where the cantilever structure 40 is formed on the thin film member 30. A design that avoids the cape-like structure shown in FIG. 8 is adopted. The length of the desired three-dimensional structure is L, and a state where a cantilever beam structure having a length L is formed on the thin film member 30 is shown. A masking window region indicated by a broken line indicates a window portion of a masking layer for isotropic etching for forming a cantilever structure. The isotropic etching proceeds planarly starting from this masking window region.
 この例の場合は長さLの片持ち梁の形成を行うために、マスキング窓領域を始点として長さLのエッチングが平面的に進行している。そしてその平面的に見たエッチング領域の停止線を周縁面21として描いている。
 なお、図9では片持梁構造40は矩形で描いているが、無論、三角形、円、その他の二次元図形でもよい。しかし、ここでは簡略化するために、矩形の片持ち梁構造で説明を続ける。
In the case of this example, in order to form a cantilever beam having a length L, etching of a length L proceeds in a plane starting from the masking window region. The stop line of the etching region viewed in plan is drawn as the peripheral surface 21.
In FIG. 9, the cantilever structure 40 is drawn in a rectangle, but may of course be a triangle, a circle, or another two-dimensional figure. However, for the sake of simplicity, the description will be continued with a rectangular cantilever structure.
 薄膜部材30のうち、片持ち梁構造40以外の部分の長さをMと示している。この領域は作製した立体構造を支持する領域として後に必要な部分となる。当然Mの形状は応用デバイスによって異なる。しかし、ここでは議論の簡略化のために矩形として描いている。
 もっともこのMで示す領域は、長さだけでなく幅も重要なパラメータとなるが、やはり議論の簡略化のために幅に関しては省略する。加えて、応用デバイスにもよるが、長さMで示される領域は、配線の取り回しのために必要な領域も含めて考慮してもよい。とにかく、片持梁構造40を形成するためには、必ず支持部分がある程度の領域を占めることを考慮しなければならない。
The length of the thin film member 30 other than the cantilever structure 40 is indicated by M. This region becomes a necessary part later as a region for supporting the produced three-dimensional structure. Of course, the shape of M differs depending on the application device. However, it is drawn here as a rectangle for simplicity of discussion.
However, in the region indicated by M, not only the length but also the width is an important parameter, but the width is omitted for the sake of simplicity of discussion. In addition, although it depends on the application device, the region indicated by the length M may be considered including the region necessary for wiring. In any case, in order to form the cantilever structure 40, it must be considered that the supporting portion occupies a certain area.
 次に、図9(A)の構造を同一基板内に複数個配列して同じ立体構造をアレイ化する場合の集積密度について考察する。同じ立体構造を配列するためには、片持ち梁の長さLが同じになるように平面エッチング領域を含めた配列法を設計することがポイントとなる。 Next, the integration density in the case where the same three-dimensional structure is arrayed by arranging a plurality of the structures in FIG. 9A on the same substrate will be considered. In order to arrange the same three-dimensional structure, it is important to design an arrangement method including a planar etching region so that the length L of the cantilever is the same.
 はじめに一次元の配列について考える。片持ち梁構造を1次元配列する場合は、間隔gをLよりも小さくしても平面エッチング領域の干渉は問題にならない場合がある。それは図9(B)に示すような場合で、片持ち梁構造の曲がり始める位置を揃えて配列する方法である。この場合、各エッチング領域を合併した領域の周縁が、実際のエッチングプロセスで形成される周縁面21となる。曲がり始める位置を揃えて配列したため、全ての片持ち梁に対して周縁面21が先端から長さLの位置に揃う。 First, consider a one-dimensional array. When the cantilever beam structure is arranged one-dimensionally, even if the interval g is smaller than L, interference in the planar etching region may not be a problem. That is a method of arranging the positions where the cantilever structure starts to be bent in the case shown in FIG. 9B. In this case, the peripheral edge of the region where the respective etching regions are merged becomes the peripheral surface 21 formed by an actual etching process. Since the positions where the bending starts are aligned, the peripheral surface 21 is aligned at a position of length L from the tip with respect to all the cantilevers.
 つまり、曲がり始める位置を揃えて配列する方法では平面エッチング領域の干渉は問題にならない。従って、極めて小さな間隔で配列することが可能となる。この場合、間隔gはフォトリソグラフィの解像限界まで小さくすることが可能である。非特許文献7に示されている真空電子源の配列や、非特許文献6に示されているシリコン細線導波路の配列が図9(B)の例である。 That is, in the method of arranging the positions where the bends start to be aligned, interference in the planar etching region does not matter. Therefore, it is possible to arrange them at extremely small intervals. In this case, the interval g can be reduced to the resolution limit of photolithography. The arrangement of the vacuum electron source shown in Non-Patent Document 7 and the arrangement of the silicon wire waveguides shown in Non-Patent Document 6 are examples of FIG. 9B.
 さらに上記の配列法を環状にすると、図9(C)に示すような同心円状の配列が可能となる。同心円状に配列する場合も、各エッチング領域を合併した領域の周縁が片持ち梁構造40の先端から長さLの位置に揃う。
 このような配列は、例えばシリコンフォトニクス応用では光渦(又はOAM(Orbital Angular Momentum):軌道角運動量)を利用した多重化方式において螺旋状の等位相面を有する光波を生成するために有用である。立体湾曲光導波路で形成される光出射端を同心円状に配列し、各々から位相を制御した光波を空間へ出射させることができるためである。
Further, when the above arrangement method is made circular, a concentric arrangement as shown in FIG. 9C becomes possible. Also in the case of concentric arrangement, the periphery of the region where the etching regions are merged is aligned at a position of length L from the tip of the cantilever structure 40.
Such an arrangement is useful for generating a light wave having a helical equiphase surface in a multiplexing method using optical vortices (or OAM (Orbital Angular Momentum)) in silicon photonics applications, for example. . This is because the light emitting ends formed by the three-dimensional curved optical waveguides are arranged concentrically, and light waves whose phases are controlled can be emitted from each to the space.
 ところが、片持ち梁構造の曲がり始める位置を揃えずに配列する場合には、その配列間隔は大きな制約を受ける。例えば図9(D)に示すように、隣り合う片持ち梁構造の間隔gを片持ち梁長さLよりも小さくしたいという要求と、先端の位置をX軸方向にシフトしながら配列したいという要求は両立できない。この場合、平面エッチング領域を合併した周縁面21(太線)が実質的に等方性エッチングの周縁面を形成するため、図示された3本の片持ち梁構造の曲がり始める位置は、周縁面21(太線)の位置となる。 However, if the cantilever structure is arranged without aligning the positions where it starts to bend, the arrangement interval is greatly restricted. For example, as shown in FIG. 9D, there is a request to make the interval g between adjacent cantilever structures smaller than the cantilever length L, and a request to arrange the tip positions while shifting the position in the X-axis direction. Are incompatible. In this case, since the peripheral surface 21 (thick line) combined with the planar etching region substantially forms the peripheral surface of isotropic etching, the position where the three cantilever structures shown in FIG. (Bold line) position.
 すると、上から二番目の片持ち梁構造は、先端からの長さKの位置に周縁面21が形成される。無論、KはLよりも大きい。同様に上から三番目の片持ち梁構造は長さJ(JはKよりも大きい)となる。つまり、隣り合う片持ち梁構造の間隔gを片持ち梁長さLよりも小さくしたいという要求と、先端の位置をX軸方向にシフトしながら配列したいという要求がある際には、片持梁構造の長さを同じLにすることは不可能である。 Then, the peripheral surface 21 is formed in the position of the length K from the front-end | tip in the 2nd cantilever structure from the top. Of course, K is larger than L. Similarly, the third cantilever structure from the top has a length J (J is larger than K). That is, when there is a request to make the gap g between adjacent cantilever structures smaller than the cantilever length L and a request to arrange the tip positions while shifting in the X-axis direction, It is impossible to make the length of the structure the same L.
 この問題を回避して片持ち梁構造の曲がり始める位置を揃えずに一次元配列するためには、図9(E)に示すように隣り合う片持ち梁構造の間隔gを片持ち梁長さLよりも大きくして平面エッチング領域の干渉を回避するしかない。しかしそれでは立体構造は所望の集積密度を得ることができない。 In order to avoid this problem and to arrange one-dimensionally without aligning the positions where the cantilever beam starts to bend, as shown in FIG. 9E, the interval g between adjacent cantilever beam structures is set to the cantilever length. It must be larger than L to avoid interference in the planar etching region. However, the three-dimensional structure cannot obtain a desired integration density.
 このようなデザインの制約を二次元配列に拡張して考察する。はじめに、図9(B)の一次元配列をX軸時方向に複数個並べる配列方法を図10(A)に示す。この場合はX方向の間隔gは、g>2L+Mとなる。すなわち、所望の片持梁構造の2倍の長さに支持領域の長さMを加えた距離の間隔が必要である。 拡 張 Consider such design constraints by extending them to a two-dimensional array. First, FIG. 10A shows a method of arranging a plurality of one-dimensional arrays in FIG. 9B in the X-axis time direction. In this case, the gap g in the X direction is g> 2L + M. That is, a distance of a distance obtained by adding the length M of the support region to twice the length of the desired cantilever structure is necessary.
 もっとも、このような図10(A)に示した2次元配列デザインは、工夫次第で簡単にデバイスの集積密度を2倍に向上することができる。図10(B)に示すように、片持梁構造の向きを、紙面右向きと紙面左向きのものを交互に配列すると、g>2L+Mとなる間隔gの中に二本の片持ち梁構造を形成することができる。このような配列を用いれば、実効的な間隔gはg>(2L+M)/2となる。しかし、このような工夫を施してもなお、gをL未満に設計することは不可能である。加えて、片持梁構造の向きが互い違いに異なるということはデザイン上の新たな課題となる。 However, such a two-dimensional array design shown in FIG. 10A can easily double the device integration density depending on the device. As shown in FIG. 10B, two cantilever structures are formed in the interval g where g> 2L + M when the cantilever beam structures are alternately arranged in the right direction and the left direction. can do. If such an arrangement is used, the effective interval g is g> (2L + M) / 2. However, even if such a device is applied, it is impossible to design g to be less than L. In addition, it is a new design issue that the direction of the cantilever structure is staggered.
 図10(A)に示した正方格子の配列において、格子に対して片持ち梁構造を斜めに配置すれば、X軸方向の間隔を短縮することが可能である。例えば、30度傾けることにより、図10(C)に示すように、
Figure JPOXMLDOC01-appb-I000001

倍の短縮ができる。しかし、Y軸方向の間隔は拡大しg>(2L+M)/2の間隔となる。同様に、図10(D)に示すように格子に対して片持ち梁構造を45度斜めに配置すればX軸方向の間隔はさらに短縮できるが、同時にY軸方向の間隔も拡大する。なお、この場合、X・Y方向ともに
Figure JPOXMLDOC01-appb-I000002

の間隔が必要となる。
In the square lattice arrangement shown in FIG. 10A, if the cantilever structure is arranged obliquely with respect to the lattice, the interval in the X-axis direction can be shortened. For example, by tilting 30 degrees, as shown in FIG.
Figure JPOXMLDOC01-appb-I000001

Can be doubled. However, the interval in the Y-axis direction is increased to an interval g> (2L + M) / 2. Similarly, as shown in FIG. 10D, if the cantilever structure is arranged at an angle of 45 degrees with respect to the lattice, the interval in the X-axis direction can be further shortened, but at the same time, the interval in the Y-axis direction is increased. In this case, both X and Y directions
Figure JPOXMLDOC01-appb-I000002

Is required.
 なお、これらの場合も、図10(A)と図10(B)の関係にあるように、片持梁構造の向きを紙面右向きと紙面左向きのものを交互に配列することで簡単にデバイスの集積密度を2倍に向上することができる。その場合の実効的な間隔gは、図10(C)のX軸方向が
Figure JPOXMLDOC01-appb-I000003

Y軸方向がg>(2L+M)/4に、図10(D)のX及びY軸方向がともに
Figure JPOXMLDOC01-appb-I000004

に短縮できる。
 しかし、片持梁構造の向きが互い違いに異なるということはデザイン上の新たな課題となる。
In these cases, as shown in FIGS. 10A and 10B, the cantilever structure can be easily arranged by alternately arranging the right and left directions of the cantilever structure. The integration density can be doubled. In this case, the effective interval g is the X-axis direction of FIG.
Figure JPOXMLDOC01-appb-I000003

Y axis direction is g> (2L + M) / 4, and both X and Y axis directions in FIG.
Figure JPOXMLDOC01-appb-I000004

Can be shortened.
However, it is a new design issue that the direction of the cantilever structure is staggered.
 同様に、三角格子状に立体構造を配列する場合を図10(E)に示す。この場合、片持ち梁構造の間隔gは、格子点を結ぶ三角形の一辺の長さに相当しおよそg>2Lの条件となる。なお、この場合も、図10(A)と図10(B)の関係にあるように、片持梁構造の向きを紙面右向きと紙面左向きのものを交互に配列することで簡単にデバイスの集積密度を2倍に向上することができ、実効的にはg>Lまで短縮することができる。
 しかし、片持梁構造の向きが互い違いに異なるということは、デザイン上の新たな課題となる。
Similarly, FIG. 10E illustrates the case where a three-dimensional structure is arranged in a triangular lattice shape. In this case, the gap g of the cantilever structure corresponds to the length of one side of the triangle connecting the lattice points, and the condition is approximately g> 2L. Also in this case, as shown in FIG. 10A and FIG. 10B, the cantilever structure can be easily integrated by alternately arranging the cantilever structures facing right and left. The density can be increased by a factor of 2, and can be effectively reduced to g> L.
However, it is a new design issue that the direction of the cantilever structure is staggered.
(電気測定用プローブアレイの場合)
 高さ50μmの電気測定用プローブを、IIB技術を用いて作製する具体例を示す。この場合、片持ち梁構造の長さLは50μm必要となる。また、支えの領域Mは、配線の取り回しも含めて10μm程度を想定する。これを図9(B)のように一次元的に配列すると、Lの長さに関係なく間隔gは小さくできるので、例えばgは5μm以下の挟ピッチも可能で、非常に高密度な一次元プローブアレイを形成することが可能である。
(For electrical measurement probe arrays)
A specific example of producing an electrical measurement probe having a height of 50 μm using the IIB technique will be described. In this case, the length L of the cantilever structure is required to be 50 μm. Further, the support region M is assumed to be about 10 μm including wiring. If this is arranged one-dimensionally as shown in FIG. 9B, the interval g can be reduced regardless of the length of L. For example, g can have a pinching pitch of 5 μm or less. It is possible to form a probe array.
 一方、二次元アレイ化を考えると、図10(C)の場合はX方向の間隔がおよそ95μm、Y方向の間隔がおよそ55μmとなる。同様に図10(D)の場合はX方向及びY方向の間隔はおよそ78μmとなる。同様に図10(E)の三角格子状にアレイ化すると100μm以上の間隔となる。これらの値は、既存の電気測定用プローブアレイに比べて、同等か僅かに小さいだけである。
 なお、図10(A)と図10(B)の関係にあるように、片持梁構造の向きを紙面右向きと紙面左向きのものを交互に配列することで簡単にデバイスの集積密度を2倍に向上することができる。
 しかしその場合には、配線の取り回しが複雑になることが新たな課題となる。
On the other hand, considering a two-dimensional array, in the case of FIG. 10C, the interval in the X direction is approximately 95 μm and the interval in the Y direction is approximately 55 μm. Similarly, in the case of FIG. 10D, the interval in the X direction and the Y direction is approximately 78 μm. Similarly, when the array is formed in the triangular lattice shape of FIG. 10E, an interval of 100 μm or more is obtained. These values are equivalent or slightly smaller than existing electrical measurement probe arrays.
As shown in the relationship between FIGS. 10A and 10B, the cantilever structure can be easily arranged in the right direction on the paper and the left direction on the paper alternately to double the integration density of the device. Can be improved.
However, in that case, it becomes a new problem that wiring is complicated.
 すなわち、電気測定用のプローブアレイを、IIB技術を用いて作製すると、先に述べたようにタングステンなどの耐摩耗性が高い材料を用いてプローブアレイを形成できるというメリットに加えて、従来技術と比較してアレイ化した時に高密度な配置が可能になるというメリットがある。しかし、IIB技術によって達成できる高密度化のアドバンテージは僅かであるため、積極的に新技術であるIIB法を採用する理由にはならない。もし、上述のようなデザインの制約がなければ、従来技術と比べて飛躍的に集積密度を向上することができるため、ウェハテストなどの各種検査を飛躍的に高効率化できるプローブアレイを開発することができる。 That is, when a probe array for electrical measurement is manufactured using IIB technology, in addition to the advantage that a probe array can be formed using a material having high wear resistance such as tungsten as described above, There is an advantage that a high-density arrangement becomes possible when arrayed in comparison. However, since the advantage of high density that can be achieved by the IIB technology is small, there is no reason to actively adopt the new technology IIB method. If there is no design restriction as described above, the integration density can be improved dramatically compared to the conventional technology, so a probe array that can dramatically improve the efficiency of various inspections such as wafer tests will be developed. be able to.
(真空電子源の場合)
 高さ1μmの真空電子源を、IIB技術を用いて作製する具体例を示す。この場合、片持ち梁構造の長さLは1μmで、支えの領域と配線の引き回しを考慮した長さMは2μmと想定する。これを2次元配列するとき、図10(C)の場合はX方向の間隔がおよそ3.5μm、Y方向の間隔がおよそ2.0μmとなる。同様に図10(D)の場合はX方向及びY方向の間隔は、およそ2.8μmとなる。同様に図10(E)の三角格子状にアレイ化する場合は、およそ2.0μm以上の間隔となる。
(For vacuum electron source)
A specific example of manufacturing a vacuum electron source having a height of 1 μm by using IIB technology will be described. In this case, the length L of the cantilever structure is assumed to be 1 μm, and the length M considering the support area and the wiring routing is assumed to be 2 μm. When these are two-dimensionally arranged, in the case of FIG. 10C, the interval in the X direction is approximately 3.5 μm, and the interval in the Y direction is approximately 2.0 μm. Similarly, in the case of FIG. 10D, the interval between the X direction and the Y direction is approximately 2.8 μm. Similarly, in the case of arraying in the triangular lattice shape of FIG. 10E, the interval is approximately 2.0 μm or more.
 なお、図10(A)と図10(B)の関係にあるように、片持梁構造の向きを紙面右向きと紙面左向きのものを交互に配列することで簡単にデバイスの集積密度を2倍に向上することができる。しかも、真空電子源応用の場合には、各片持ち梁構造を10個から100個単位で電気的に接続して利用するアレイ配列が一般的であるため、配線の取り回しの心配はいらない。現に、非特許文献7ではそのような真空電子源アレイが開示されている。 As shown in the relationship between FIGS. 10A and 10B, the cantilever structure can be easily arranged in the right direction on the paper and the left direction on the paper alternately to double the integration density of the device. Can be improved. Moreover, in the case of a vacuum electron source application, since an array arrangement in which each cantilever structure is electrically connected in units of 10 to 100 is generally used, there is no need to worry about wiring. In fact, Non-Patent Document 7 discloses such a vacuum electron source array.
 しかし、撮像へ応用される真空電子源アレイに関しては、空間的な均一性が重要である。つまり、X方向とY方向の間隔が同一であることが望ましい。その条件を満たすためには、図10(E)の三角格子状にアレイ化する方法が最適であるといえる。しかし、高さ1μmのエミッタに対して、その高さの2倍以上の間隔が必要になり、エミッタアレイとしては集積密度が小さなデバイスとなってしまう。
 すなわち、真空電子源アレイを、IIB技術を用いて作製すると、LSI製造プロセスに準じた工程によって、高融点金属材料のエミッタを作製することが可能になるが、集積密度の面では課題が生じるといえる。
However, spatial uniformity is important for vacuum electron source arrays applied to imaging. That is, it is desirable that the distance between the X direction and the Y direction is the same. In order to satisfy the condition, the method of arraying in a triangular lattice shape in FIG. 10E is optimal. However, an interval of at least twice the height is required for an emitter having a height of 1 μm, and the emitter array becomes a device with a low integration density.
That is, when the vacuum electron source array is manufactured using the IIB technology, it becomes possible to manufacture an emitter of a refractory metal material by a process according to the LSI manufacturing process, but there is a problem in terms of integration density. I can say that.
(シリコンフォトニクスの場合)
 曲率半径3μmのシリコンフォトニクス用垂直光カプラなどを、IIB技術を用いて作製する具体例を示す。この場合、片持ち梁構造の長さLは5μm必要となる。支えの部分と配線の引き回しに必要な領域としての長さMは、5μmと想定する。
 これを2次元配列するとき、図10(C)の場合はX方向の間隔がおよそ13μm、Y方向の間隔がおよそ7.5μmとなる。同様に図10(D)の場合はX方向及びY方向の間隔はおよそ10.6μmとなる。同様に図10(E)の三角格子状にアレイ化する場合は、およそ10μm以上の間隔となる。これらの値は、従来技術である回折格子型結合器に比べて遜色のない値で、従来技術の置き換えとしては十分な集積密度を有しているといえる。
(Silicon photonics)
A specific example of manufacturing a vertical photocoupler for silicon photonics having a curvature radius of 3 μm using the IIB technology will be described. In this case, the length L of the cantilever structure is required to be 5 μm. It is assumed that the length M as an area necessary for routing of the support portion and the wiring is 5 μm.
When these are two-dimensionally arranged, in the case of FIG. 10C, the interval in the X direction is approximately 13 μm and the interval in the Y direction is approximately 7.5 μm. Similarly, in the case of FIG. 10D, the distance between the X direction and the Y direction is approximately 10.6 μm. Similarly, when the array is formed in the triangular lattice shape of FIG. 10E, the interval is approximately 10 μm or more. These values are comparable to those of the conventional diffraction grating type coupler, and can be said to have sufficient integration density as a replacement for the prior art.
 しかし、シリコンフォトニクスの発展を考えると、更なる高密度化が実現できることが望ましい。すでに、光ファイバの分野ではフューモードファイバ、マルチモードファイバ、マルチコアファイバ、フューモードマルチコアファイバやマルチモードマルチコアファイバなどの空間多重に特化した光ファイバの開発が進んでいる。発光デバイスの分野でも、レーザーダイオードや面発光レーザーのアレイ化技術が確立されている。
 また、MEMSミラーや液晶を利用した空間変調器などのアレイ型光制御デバイスの研究開発が盛んである。つまり、各種光デバイスは二次元空間での集積密度を高める方向でデバイス開発が行われているといえる。
However, considering the development of silicon photonics, it is desirable to achieve higher density. In the field of optical fibers, development of optical fibers specialized for spatial multiplexing such as fumode fibers, multimode fibers, multicore fibers, fumode multicore fibers, and multimode multicore fibers has already been advanced. In the field of light emitting devices, laser diode and surface emitting laser array technology has been established.
Research and development of array type light control devices such as MEMS modulators and spatial modulators using liquid crystals are also active. In other words, it can be said that various optical devices are being developed in the direction of increasing the integration density in a two-dimensional space.
 その中で、シリコンフォトニクスは、光回路の集積密度は非常に高いという特徴を持つものの、外部と光信号をやり取りするための光入出力ポートのフットプリントが従来の回折格子型結合器では10μm角以上と大きいため、光入出力ポートが集積密度を向上する上でボトルネックとなっている。例えば、フューモードファイバの場合は、直径17μm程度のコアの中に3から4個のモードが存在する。そのため、フューモードファイバに対応する光入出力ポートのフットプリントは10μm角では大きすぎる。 Among them, although silicon photonics has the feature that the integration density of the optical circuit is very high, the footprint of the optical input / output port for exchanging optical signals with the outside is 10 μm square in the conventional diffraction grating type coupler. Because of the large size, the optical input / output port is a bottleneck in improving the integration density. For example, in the case of a fu mode fiber, there are 3 to 4 modes in a core having a diameter of about 17 μm. Therefore, the footprint of the optical input / output port corresponding to the fu mode fiber is too large at 10 μm square.
 また、立体湾曲光導波路を垂直方向への光出力ポートとして利用する場合、出射位置の間隔を光の波長の半分程度まで縮小できると、光の干渉効果を利用したデバイスとして優れた特性を得られる。例えば光通信で利用される1.55μm帯域を想定すると、垂直光出力ポートのピッチを1.55μmから0.775μm程度の間に作製することができれば、ライダー(LIDAR:Light Detection and Ranging、又はLaser Imaging Detection and Ranging)素子などへの応用で優位となる。 In addition, when a solid curved optical waveguide is used as a light output port in the vertical direction, if the interval between the emission positions can be reduced to about half of the wavelength of light, excellent characteristics can be obtained as a device utilizing the light interference effect. . For example, assuming a 1.55 μm band used in optical communication, if the pitch of the vertical light output port can be made between 1.55 μm and 0.775 μm, a rider (LIDAR: Light Detection and Ranging, or Laser) Imaging Detection and Ranging) and other applications.
 ここまでに示した位置制御性と集積化の問題点は、薄膜部材として具体例を挙げたプローブアレイや真空電子源やシリコンフォトニクス応用だけではなく他の応用にも当てはまる。つまり、これらの上記各問題点は、材料系や目的にかかわらない、IIB技術による薄膜部材の湾曲加工に共通する問題点である。 The problems of position controllability and integration shown so far apply not only to probe arrays, vacuum electron sources, and silicon photonics applications, but also to other applications as specific examples of thin film members. That is, each of the above-mentioned problems is a problem common to the bending process of the thin film member by the IIB technology regardless of the material system or the purpose.
[発明が解決しようとする課題]
 以上の問題点は全て、等方性エッチング等の停止位置がIIB加工の曲がり始め端位置と同一であることが原因であることが判明した。
 したがって、本発明は、これらの問題点を全て克服するため、等方性エッチング等エッチングの停止位置とIIB加工の曲がり始め位置が異なるような薄膜部材の湾曲加工方法を実現することを課題とする。
[Problems to be solved by the invention]
It has been found that all of the above problems are caused by the fact that the stop position of isotropic etching or the like is the same as the start position of the IIB processing bend.
Therefore, in order to overcome all of these problems, it is an object of the present invention to realize a thin film member bending method in which an etching stop position such as isotropic etching is different from an IIB processing bending start position. .
 上記課題を解決するための手段は次のとおりである。
(1)基板上に支持層形成用出発層及び薄膜部材形成用出発層を積層する工程と、該薄膜部材形成用出発層をパタン化して薄膜部材を形成する工程と、該薄膜部材の上に直接もしくは位置制御層支持層形成用出発層を介して、該薄膜部材の片持ち梁構造がイオンを照射することにより曲がり始める位置を決定する位置制御層を形成する工程と、該薄膜部材の下の該支持層形成用出発層の一部もしくは、該支持層形成用出発層の一部及び位置制御層支持層形成用出発層の一部を、支持層の周縁面、もしくは支持層の周縁面及び位置制御層支持層の端面が、該位置制御層の先端の下方延長線上もしくはそれより内側にあるように除去して、該薄膜部材に先端自由端を有する片持ち梁構造を形成する工程と、該位置制御層をマスクとして該片持ち梁構造の一部にイオンを照射し、該片持ち梁構造の一部を湾曲させる工程と、を含む薄膜部材の湾曲加工方法。
(2)基板上に支持層形成用出発層及び薄膜部材形成用出発層を積層する工程と、該薄膜部材形成用出発層をパタン化して薄膜部材を形成する工程と、該薄膜部材の上に直接もしくは位置制御層支持層形成用出発層を介して、該薄膜部材の片持ち梁構造がイオンを照射することにより曲がり始める位置を決定する位置制御層を異方性エッチングにより形成する工程と、該薄膜部材の下の該支持層形成用出発層の一部もしくは、該支持層形成用出発層の一部及び位置制御層支持層形成用出発層の一部を、支持層の周縁面、もしくは支持層の周縁面及び位置制御層支持層の端面が、該位置制御層の先端の下方延長線上もしくはそれより内側にあるように等方性エッチングにより除去して、該薄膜部材に先端自由端を有する片持ち梁構造を形成する工程と、該位置制御層をマスクとして該片持ち梁構造の一部にイオンを照射し、該片持ち梁構造の一部を湾曲させる工程と、を含む薄膜部材の湾曲加工方法。
(3)上記片持ち梁構造は、電気測定用プローブを構成していることを特徴とする上記(1)又は(2)に記載の薄膜部材の湾曲加工方法。
(4)上記片持ち梁構造は、電界放出素子のエミッタを構成していることを特徴とする上記(1)又は(2)に記載の薄膜部材の湾曲加工方法。
(5)上記片持ち梁構造は、光導波路を構成していることを特徴とする上記(1)又は(2)に記載の薄膜部材の湾曲加工方法。
(6)基板上に支持層形成用出発層及び光導波路形成用出発層を積層する工程と、該光導波路形成用出発層をパタン化して光導波路を形成する工程と、該光導波路の上に直接もしくは位置制御層支持層を介して、該光導波路の片持ち梁構造がイオンを照射することにより曲がり始める位置を決定する位置制御層を異方性エッチングにより形成する工程と、該光導波路の下の該支持層形成用出発層の一部もしくは、該支持層形成用出発層の一部及び位置制御層支持層形成用出発層の一部を、支持層の周縁面、もしくは支持層の周縁面及び位置制御層支持層の端面が、該位置制御層の先端の下方延長線上もしくはそれより内側にあるように等方性エッチングにより除去して、該光導波路に先端自由端を有する片持ち梁構造を形成する工程と、該位置制御層をマスクとして該片持ち梁構造の一部にイオンを照射し、該片持ち梁構造の一部を湾曲させて垂直光カプラとする工程と、を含む光導波路の湾曲加工方法。
(7)上記基板は、シリコン光集積回路基板であることを特徴とする上記(5)に記載の光導波路の湾曲加工方法。
(8)上記光導波路は、シリコンを主成分とする光導波路であることを特徴とする上記(6)又は(7)に記載の光導波路の湾曲加工方法。
(9)上記位置制御層の構成材料は、タングステン又は炭素であることを特徴とする上記(8)に記載の光導波路の湾曲加工方法。
(10)上記光導波路の上記片持ち梁構造は、該片持ち梁構造の長さよりも小さな間隔で二次元アレイ配置されていることを特徴とする上記(6)ないし(9)のいずれかに記載の光導波路の湾曲加工方法。
(11)上記片持ち梁構造の先端自由端は、それぞれ正方格子の各頂点に配置されていることを特徴とする上記(10)に記載の光導波路の湾曲加工方法。
(12)上記片持ち梁構造の先端自由端は、それぞれ三角格子の各頂点に配置されているであることを特徴とする上記(10)に記載の光導波路の湾曲加工方法。
(13)上記光導波路の上記片持ち梁構造は、該光導波路の伝搬光の波長よりも小さな間隔で二次元アレイ配置されていることを特徴とする上記(6)ないし(9)のいずれかに記載の光導波路の湾曲加工方法。
(14)上記片持ち梁構造の一部を湾曲させて垂直光カプラとする工程は、上記片持ち梁構造の一部を上方向に湾曲させて垂直光カプラとする工程であることを特徴とする上記(6)に記載の光導波路の湾曲加工方法。
(15)さらに、上方向に湾曲された垂直光カプラをクラッド層で埋める工程と、該クラッド層上に第2の支持層形成用出発層及び第2の光導波路形成用出発層を積層する工程と、該第2の光導波路形成用出発層をパタン化して第2の光導波路を形成する工程と、該第2の光導波路の上に直接もしくは第2の位置制御層支持層を介して、該第2の光導波路の第2の片持ち梁構造がイオンを照射することにより曲がり始める位置を決定する第2の位置制御層を異方性エッチングにより形成する工程と、該第2の光導波路の下の該第2の支持層形成用出発層の一部もしくは、該第2の支持層形成用出発層の一部及び第2の位置制御層支持層形成用出発層の一部を、第2の支持層の周縁面、もしくは第2の支持層の周縁面及び第2の位置制御層支持層の端面が、該位置制御層の先端の下方延長線上もしくはそれより内側にあるように等方性エッチングにより除去して、該光導波路に先端自由端を有する片持ち梁構造を形成する工程と、該第2の位置制御層をマスクとして該第2の片持ち梁構造の一部にイオンを照射し、該第2の片持ち梁構造の一部を下方向に湾曲させて上記垂直光カプラと光接続する第2の垂直光カプラとする工程と、を含む上記(14)に記載の光導波路の湾曲加工方法。
Means for solving the above problems are as follows.
(1) A step of laminating a starting layer for forming a support layer and a starting layer for forming a thin film member on a substrate, a step of patterning the starting layer for forming a thin film member to form a thin film member, Forming a position control layer for determining a position at which the cantilever structure of the thin film member starts to bend by irradiating ions directly or via a starting layer for forming the position control layer support layer; A part of the starting layer for forming the supporting layer, a part of the starting layer for forming the supporting layer and a part of the starting layer for forming the position control layer, the peripheral surface of the supporting layer, or the peripheral surface of the supporting layer And a step of removing the end face of the position control layer support layer so as to be on or inside the lower extension line of the tip of the position control layer to form a cantilever structure having a tip free end on the thin film member; The cantilever beam using the position control layer as a mask Irradiated with ions in a part of the concrete, the bending processing method of a thin film member including a step of bending a portion of the cantilever structure.
(2) A step of laminating a starting layer for forming a support layer and a starting layer for forming a thin film member on a substrate, a step of forming a thin film member by patterning the starting layer for forming a thin film member, and on the thin film member Forming a position control layer by anisotropic etching, which determines a position at which the cantilever structure of the thin film member begins to bend when irradiated with ions, directly or through a starting layer for forming a position control layer support layer; A part of the starting layer for forming the support layer under the thin film member, or a part of the starting layer for forming the supporting layer and a part of the starting layer for forming the position control layer supporting layer, the peripheral surface of the supporting layer, or The peripheral surface of the support layer and the end surface of the position control layer support layer are removed by isotropic etching so that the end surface of the position control layer is on or inside the lower extension line of the tip of the position control layer, and the free end of the tip is formed on the thin film member. Form a cantilever structure with Degree and, partially irradiated with ions of the cantilever structure the position control layer as a mask, curving a thin film member including a step of bending a portion of the cantilever structure.
(3) The method for bending a thin film member according to (1) or (2), wherein the cantilever structure constitutes an electrical measurement probe.
(4) The method for bending a thin film member according to (1) or (2), wherein the cantilever structure constitutes an emitter of a field emission device.
(5) The method for bending a thin film member according to (1) or (2), wherein the cantilever structure constitutes an optical waveguide.
(6) A step of laminating a starting layer for forming a support layer and a starting layer for forming an optical waveguide on a substrate, a step of patterning the starting layer for forming an optical waveguide to form an optical waveguide, and on the optical waveguide Forming a position control layer by anisotropic etching to determine a position at which the cantilever structure of the optical waveguide starts to bend by irradiating ions directly or via the position control layer support layer; and A part of the starting layer for forming the supporting layer below, a part of the starting layer for forming the supporting layer and a part of the starting layer for forming the position control layer supporting layer, the peripheral surface of the supporting layer, or the peripheral edge of the supporting layer A cantilever having a free end on the optical waveguide by removing the surface and the end face of the position control layer support layer by isotropic etching so that the end face of the position control layer is on or below the extension line of the tip of the position control layer. Forming the structure; and Part irradiated with ions of the cantilever structure of the control layer as a mask, curved method of processing an optical waveguide including a step, a to the vertical optical coupler by bending a portion of the cantilever structure.
(7) The method for bending an optical waveguide according to (5), wherein the substrate is a silicon optical integrated circuit substrate.
(8) The method for bending an optical waveguide according to (6) or (7), wherein the optical waveguide is an optical waveguide mainly composed of silicon.
(9) The method for bending an optical waveguide according to (8), wherein the constituent material of the position control layer is tungsten or carbon.
(10) In any one of the above (6) to (9), the cantilever structure of the optical waveguide is arranged in a two-dimensional array at an interval smaller than the length of the cantilever structure. A method of bending an optical waveguide as described.
(11) The method for bending an optical waveguide according to (10), wherein the free end of the cantilever structure is disposed at each vertex of a square lattice.
(12) The method of bending an optical waveguide according to (10), wherein the free end of the tip of the cantilever structure is disposed at each vertex of a triangular lattice.
(13) Any one of the above (6) to (9), wherein the cantilever structure of the optical waveguide is two-dimensionally arranged at an interval smaller than the wavelength of the propagation light of the optical waveguide. A method for bending an optical waveguide according to claim 1.
(14) The step of bending a portion of the cantilever structure to form a vertical optical coupler is a step of bending a portion of the cantilever structure upward to form a vertical optical coupler. The method for bending an optical waveguide according to (6) above.
(15) Further, a step of filling the vertical optical coupler curved upward with a clad layer, and a step of laminating a second support layer forming start layer and a second optical waveguide forming start layer on the clad layer Patterning the second optical waveguide forming starting layer to form a second optical waveguide, and directly on the second optical waveguide or via the second position control layer support layer, Forming a second position control layer by anisotropic etching to determine a position at which the second cantilever structure of the second optical waveguide starts to bend when irradiated with ions; and the second optical waveguide. A part of the starting layer for forming the second support layer below or a part of the starting layer for forming the second supporting layer and a part of the starting layer for forming the second position control layer, The peripheral surface of the second support layer, or the peripheral surface of the second support layer and the second position control layer Removing the end face of the position control layer by isotropic etching so that the end face is on or inside the lower extension line of the tip of the position control layer, and forming a cantilever structure having a tip free end in the optical waveguide; Using the second position control layer as a mask, a part of the second cantilever structure is irradiated with ions, and a part of the second cantilever structure is bent downward to form the vertical optical coupler. The method for bending an optical waveguide according to (14), including a step of forming a second vertical optical coupler for optical connection.
 本発明によれば、IIB技術による薄膜部材の湾曲加工において、薄膜部材の上に直接もしくは位置制御層支持層形成用出発層を介して、薄膜部材の片持ち梁構造がイオンを照射することにより曲がり始める位置を決定する位置制御層を形成する工程を採用したため、従来のように横方向エッチング等によって定められた支持層の周縁面から片持ち梁構造を曲げ加工する場合に比し、位置制御性を飛躍的に向上できる。
 さらに、複数個の片持ち梁構造を互いに近接して配置することができるため、加工された片持ち梁構造の高集積化も達成することができる。
According to the present invention, in the bending process of the thin film member by the IIB technique, the cantilever structure of the thin film member is irradiated with ions directly on the thin film member or via the starting layer for forming the position control layer support layer. Since the process of forming a position control layer that determines the position at which to start bending is adopted, position control is performed compared to the case where the cantilever structure is bent from the peripheral surface of the support layer that has been determined by, for example, lateral etching as in the past. Can dramatically improve performance.
Furthermore, since a plurality of cantilever structures can be arranged close to each other, high integration of the processed cantilever structures can also be achieved.
本発明に係る薄膜部材の湾曲加工方法を模式的に示す図面である。It is drawing which shows typically the bending method of the thin film member which concerns on this invention. 本発明に係る薄膜部材の湾曲加工方法に関し、イオン照射後のSEM像(A)及びタングステン除去後のSEM像(B)である。It is the SEM image (A) after ion irradiation, and the SEM image (B) after tungsten removal regarding the bending method of the thin film member which concerns on this invention. 本発明に係る薄膜部材の湾曲加工の問題点の解決を模式的に示す図面である。It is drawing which shows typically the solution of the problem of the bending process of the thin film member which concerns on this invention. 立体湾曲光回路の形成に適用した本発明に係る薄膜部材の湾曲加工方法を模式的に示す図面である。It is drawing which shows typically the bending method of the thin film member based on this invention applied to formation of a three-dimensional curved optical circuit. 従来の薄膜部材の湾曲加工方法を模式的に示す図面である。It is drawing which shows typically the bending method of the conventional thin film member. 従来の薄膜部材の湾曲加工の問題点を説明する図面である。It is drawing explaining the problem of the bending process of the conventional thin film member. 従来の薄膜部材の湾曲加工の問題点を説明する図面であり、(A)は上面図、(B)は断面図である。It is drawing explaining the problem of the bending process of the conventional thin film member, (A) is a top view, (B) is sectional drawing. 従来の薄膜部材の湾曲加工の問題点を説明する図面であり、(A)は上面図、(B)は断面図である。It is drawing explaining the problem of the bending process of the conventional thin film member, (A) is a top view, (B) is sectional drawing. 従来の薄膜部材の湾曲加工の問題点を説明する図面である。It is drawing explaining the problem of the bending process of the conventional thin film member. 従来の薄膜部材の湾曲加工の問題点を説明する図面である。It is drawing explaining the problem of the bending process of the conventional thin film member.
(本発明の要点)
 本発明の要点は、片持梁構造から見て照射イオンが飛来する方向に新たに、飛来イオンを遮蔽して、かつ等方性エッチング等の横方向エッチングの終点位置とは異なる位置にIIB加工の曲がり始め位置を定義できるような位置制御層を付加することである。
 位置制御層に求められる条件は、A:等方性エッチングよりも制御性が高い異方性エッチングで加工されていること、B:先端が横方向エッチング停止位置と同一面内にあるか、それよりも片持ち梁の先端にむけて伸延した位置にあること、C:照射イオンが貫通しないこと、D:それ自体がIIB加工されて変形しないことの4つの条件を満たすことが望ましい。
(Key points of the present invention)
The main point of the present invention is that the irradiated ions are newly shielded in the direction in which the irradiated ions fly as viewed from the cantilever structure, and IIB processing is performed at a position different from the end point position of the lateral etching such as isotropic etching. This is to add a position control layer that can define the position at which the bending starts.
The conditions required for the position control layer are: A: processed by anisotropic etching with higher controllability than isotropic etching, B: whether the tip is in the same plane as the lateral etching stop position, or It is desirable to satisfy the following four conditions: the position extended toward the tip of the cantilever, C: irradiation ions do not penetrate, and D: IIB is not deformed by itself.
 しかし、位置制御層は上記全ての条件を満たす必要はなく、Cに関しては多少貫通するイオンがあったとしてもエネルギーが大きく低下していれば実質的に影響がなくなる場合もあり、Dに関しては変位が僅かであれば変形しても実質的に影響はない。ただし、条件A及びBは厳密に満たす必要があり、本発明の要である。 However, the position control layer does not have to satisfy all of the above conditions, and even if there are some ions penetrating through C, the energy may be substantially reduced if the energy is greatly reduced. If it is slight, even if it is deformed, there is substantially no influence. However, conditions A and B must be strictly met, and are essential to the present invention.
(本発明の実施形態)
 図1(A)ないし(H)は、本発明に係る薄膜部材の湾曲加工方法を模式的に示す図面である。以下、その工程を順次説明する。
(Embodiment of the present invention)
1A to 1H are drawings schematically showing a method of bending a thin film member according to the present invention. Hereinafter, the steps will be sequentially described.
(1)基板10の上に支持層形成用出発層20’を形成し、その上に薄膜部材形成用出発層30’を形成する。(図1(A))
 図1(A)では、支持層形成用出発層20’は基板全面に必要であるように描いているが、必要なのは片持ち梁40をなす領域だけである。それ以外の領域では薄膜部材形成用出発層30’の下に支持層形成用出発層20’が形成されていなくてもよい。支持層形成用出発層20’は、薄膜部材形成用出発層30’の一部を片持ち梁構造40に成形するために必要な層である。
(1) A support layer forming starting layer 20 ′ is formed on the substrate 10, and a thin film member forming starting layer 30 ′ is formed thereon. (Fig. 1 (A))
In FIG. 1A, the support layer forming starting layer 20 ′ is drawn as necessary over the entire surface of the substrate, but only the region forming the cantilever 40 is necessary. In other regions, the support layer forming start layer 20 ′ may not be formed under the thin film member forming start layer 30 ′. The support layer forming starting layer 20 ′ is a layer necessary for forming a part of the thin film member forming starting layer 30 ′ into the cantilever structure 40.
(2)薄膜部材形成用出発層30’がパタン化されて、薄膜部材30が形成される。(図1(B))
 パタン化した薄膜部材30の平面形状は、最終的な作製目的構造体による。例えば、最終的な作製目的構造体が、電界放出素子のエミッタである場合には、先端が鋭利な三角形をした平面パタンとなり、最終的な作製目的構造体が、立体湾曲型シリコン細線導波路である場合には、幅がサブミクロンオーダーの細長い構造となる。これらの例以外にも様々な用途が考えられるが、いずれの場合でも断面図を一般化して描くと図1(B)のようになる。
(2) The thin film member forming starting layer 30 ′ is patterned to form the thin film member 30. (Fig. 1 (B))
The planar shape of the patterned thin film member 30 depends on the final production target structure. For example, when the final fabrication target structure is an emitter of a field emission device, a planar pattern having a sharp triangular tip is formed, and the final fabrication target structure is a three-dimensionally curved silicon wire waveguide. In some cases, the width is an elongated structure with a submicron order. In addition to these examples, various applications are conceivable. In either case, a generalized cross-sectional view is as shown in FIG.
(3)パタン化した薄膜部材30を、位置制御層支持層形成用出発層60’で埋め込む。(図1(C))
 図1(C)では、位置制御層支持層形成用出発層60’の上部は平坦に描いているが、薄膜部材30の形状を反映した凹凸が生じていても差し支えない。
 なお、この後の図1(E)のように位置制御層50を形成するための加工方法が、実質的に薄膜部材30に痕跡を残すような加工方法でない場合においては、位置制御層支持層形成用出発層60’の形成を省略することができる。
(3) The patterned thin film member 30 is embedded in the position control layer support layer forming starting layer 60 ′. (Figure 1 (C))
In FIG. 1C, the upper portion of the position control layer support layer forming starting layer 60 ′ is drawn flat, but irregularities reflecting the shape of the thin film member 30 may be generated.
If the processing method for forming the position control layer 50 is not a processing method that substantially leaves a trace on the thin film member 30 as shown in FIG. 1E, the position control layer support layer The formation of the forming starting layer 60 ′ can be omitted.
(4)位置制御層形成用出発層50’を成膜する。(図1(D))
(5)位置制御層形成用出発層50’を加工して位置制御層50を形成する。(図1(E))
 位置制御層50の先端51のエッジが、その後イオン照射がなされた時に片持ち梁構造が曲がり始める位置を決める役割を担う。このために、先端51は片持ち梁構造40の先端自由端41よりも横方向内方に引っ込んだ位置にある必要がある。
 位置制御層50の平面形状は、パタン化した薄膜部材30の平面形状及び最終的な作成目的構造体によるが、いずれの場合でも断面図を一般化して描くと図1(E)のようになる。
(4) A position control layer forming starting layer 50 ′ is formed. (Figure 1 (D))
(5) The position control layer 50 is formed by processing the position control layer forming starting layer 50 ′. (Figure 1 (E))
The edge of the tip 51 of the position control layer 50 plays a role of determining a position where the cantilever structure starts to bend when ion irradiation is performed thereafter. For this purpose, the tip 51 needs to be in a position retracted inward in the lateral direction from the tip free end 41 of the cantilever structure 40.
The planar shape of the position control layer 50 depends on the planar shape of the patterned thin film member 30 and the final structure to be created. In either case, a generalized cross-sectional view is as shown in FIG. .
(6)片持ち梁構造40を形成する。(図1(F))
 薄膜部材30の曲げ加工したい部分の直下にある支持層形成用出発層20’と、曲げ加工したい部分の直上にある位置制御層支持層形成用出発層60’を等方性エッチングで除去し、その周縁面21が薄膜部材30の先端自由端41よりも横方向内方に引っ込んだ位置にある支持層20となし、その上の薄膜部材30を加工対象の薄膜部材とする。
(6) The cantilever structure 40 is formed. (Fig. 1 (F))
The isotropic etching is performed to remove the starting layer 20 ′ for supporting layer formation immediately below the portion to be bent of the thin film member 30 and the starting layer 60 ′ for forming position control layer supporting layer immediately above the portion to be bent, The peripheral surface 21 is the support layer 20 in a position retracted inward in the lateral direction from the free end 41 of the thin film member 30, and the thin film member 30 thereon is a thin film member to be processed.
 図1(F)では、位置制御層50も薄膜部材30と同様に片持ち梁構造をなしているように描いているが、位置制御層支持層60の端面61は、位置制御層50の先端51と同じ位置にあったとしても位置制御層50の機能は妨げられない。
 また、支持層20の周縁面21は、位置制御層50の先端51の下方延長線上か、それよりも横方向内方に引っ込んだ位置にある必要がある。
In FIG. 1F, the position control layer 50 is also drawn so as to have a cantilever structure like the thin film member 30, but the end surface 61 of the position control layer support layer 60 is the tip of the position control layer 50. Even if it is in the same position as 51, the function of the position control layer 50 is not hindered.
Moreover, the peripheral surface 21 of the support layer 20 needs to be in the position extended on the downward extension line of the front-end | tip 51 of the position control layer 50, or inward in the horizontal direction.
 位置制御層支持層形成用出発層60’の材料は、その後図1(F)に示すような形状に加工可能な材料の範囲で選択できる。つまり、位置制御層支持層形成用出発層60’を除去するが、位置制御層50及び薄膜部材30は侵されないという加工が成り立つ範囲で選択できる。
 工程数を少なくして、作製を容易にするという観点からは、位置制御層支持層形成用出発層60’は、支持層形成用出発層20’と同種類か同系統の材料とするのが望ましい。そうすると、図1(E)から図1(F)に形成するためのエッチングを一つの工程に集約することが可能となる。
The material of the starting layer 60 ′ for forming the position control layer support layer can be selected within the range of materials that can be processed into a shape as shown in FIG. In other words, the position control layer support layer forming starting layer 60 ′ is removed, but the position control layer 50 and the thin film member 30 can be selected within a range in which processing is not affected.
From the viewpoint of facilitating the production by reducing the number of steps, the position control layer support layer forming starting layer 60 ′ is made of the same type or the same material as the support layer forming starting layer 20 ′. desirable. Then, the etching for forming the structure shown in FIGS. 1E to 1F can be integrated into one process.
 例えば、位置制御層支持層形成用出発層60’と支持層形成用出発層20’がともに二酸化シリコン(石英)である場合にはフッ酸で除去可能で、薄膜部材30がシリコンやモリブデン、タングステン、タンタル、テクネチウム、レニウム、コバルト、ニッケル、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銅、銀、金、鉛、ゲルマニウムなどの金属や、タングステンシリサイド、モリブデンシリサイド、タンタルシリサイド、チタンシリサイド、コバルトシリサイド、クロムシリサイド、ニッケルシリサイドなどのシリコン化合物や、炭素、炭化シリコン、炭化タンタル、炭化チタン、炭化モリブデン、炭化ニオブ、炭化ハフニウム、炭化タングステン、炭化バナジウム、ダイヤモンドライクカーボンなどの炭素系材料や、窒化チタン、窒化アルミニウム、窒化シリコン、窒化タンタル、窒化ホウ素、窒化クロム、窒化ジルコニウムなどの窒化物や、酸化インジウム錫、酸化亜鉛アルミニウム、酸化亜鉛、酸化インジウムガリウム亜鉛などの透明導電膜で、かつ位置制御材50がシリコンやモリブデン、タングステン、タンタル、テクネチウム、レニウム、コバルト、ニッケル、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銅、銀、金、鉛、ゲルマニウムなどの金属やそれらの合金や、タングステンシリサイド、モリブデンシリサイド、タンタルシリサイド、チタンシリサイド、コバルトシリサイド、クロムシリサイド、ニッケルシリサイドなどのシリコン化合物や、炭素、炭化シリコン、炭化タンタル、炭化チタン、炭化モリブデン、炭化ニオブ、炭化ハフニウム、炭化タングステン、炭化バナジウム、ダイヤモンドライクカーボン、フォトレジスト、ポリイミドなどの炭素系材料や、窒化チタン、窒化アルミニウム、窒化シリコン、窒化タンタル、窒化ホウ素、窒化クロム、窒化ジルコニウムなどの窒化物や、酸化インジウム錫、酸化亜鉛アルミニウム、酸化亜鉛、酸化インジウムガリウム亜鉛などの透明導電膜であれば、ほとんど侵されずに片持ち梁構造40を形成可能である。 For example, when both the position control layer support layer forming start layer 60 ′ and the support layer forming start layer 20 ′ are made of silicon dioxide (quartz), they can be removed with hydrofluoric acid, and the thin film member 30 can be made of silicon, molybdenum, tungsten, or the like. , Tantalum, technetium, rhenium, cobalt, nickel, ruthenium, osmium, rhodium, iridium, palladium, platinum, copper, silver, gold, lead, germanium and other metals, tungsten silicide, molybdenum silicide, tantalum silicide, titanium silicide, cobalt Silicon compounds such as silicide, chromium silicide, nickel silicide, and carbon such as carbon, silicon carbide, tantalum carbide, titanium carbide, molybdenum carbide, niobium carbide, hafnium carbide, tungsten carbide, vanadium carbide, diamond-like carbon Materials, nitrides such as titanium nitride, aluminum nitride, silicon nitride, tantalum nitride, boron nitride, chromium nitride and zirconium nitride, and transparent conductive films such as indium tin oxide, zinc aluminum oxide, zinc oxide and indium gallium zinc oxide And the position control material 50 is a metal such as silicon, molybdenum, tungsten, tantalum, technetium, rhenium, cobalt, nickel, ruthenium, osmium, rhodium, iridium, palladium, platinum, copper, silver, gold, lead, germanium, or the like Alloys such as tungsten silicide, molybdenum silicide, tantalum silicide, titanium silicide, cobalt silicide, chromium silicide, nickel silicide and other silicon compounds, carbon, silicon carbide, tantalum carbide, titanium carbide, carbonized Carbon-based materials such as ribden, niobium carbide, hafnium carbide, tungsten carbide, vanadium carbide, diamond-like carbon, photoresist, polyimide, titanium nitride, aluminum nitride, silicon nitride, tantalum nitride, boron nitride, chromium nitride, zirconium nitride, etc. The cantilever structure 40 can be formed with almost no erosion of a transparent conductive film such as a nitride of the above, or indium tin oxide, zinc aluminum oxide, zinc oxide, or indium gallium zinc oxide.
(7)イオン照射を施すことにより、片持ち梁構造40が湾曲加工される。(図1(G))
 片持ち梁構造が曲がり始める位置は、位置制御層50の先端51の下方延長線方向に伸ばして片持ち梁構造40と交差する位置となる。ただし、イオン照射を基板に対して垂直方向から行った場合であるが、イオン入射角度が垂直以外の場合でも、位置制御層50の先端51が庇となり、位置制御可能である。
(7) The cantilever structure 40 is bent by ion irradiation. (Fig. 1 (G))
The position where the cantilever structure starts to bend is a position where the cantilever structure 40 intersects with the cantilever structure 40 extending in the direction of the downward extension of the tip 51 of the position control layer 50. However, although ion irradiation is performed from a direction perpendicular to the substrate, the tip 51 of the position control layer 50 becomes a wrinkle and position control is possible even when the ion incident angle is not vertical.
 位置制御層50は、照射イオンが貫通しないように遮蔽する役割が必要である。イオンが遮蔽されるとは、言い換えるとイオンの投影飛程が膜厚よりも小さくなることである。
 つまり、イオンの投影飛程が小さくなる材料を選べばよく、近似的には高密度な材料ほどイオン投影飛程が小さくなり、遮蔽性能が高くなる。例えば、炭素、シリコン、クロム、モリブデン、タングステンの順に遮蔽性能は高くなり位置制御層50として望ましい。
The position control layer 50 needs to have a role to shield the irradiation ions from penetrating. In other words, the ions are shielded when the projected range of ions is smaller than the film thickness.
In other words, a material with a small ion projection range may be selected. Approximately, a higher density material has a smaller ion projection range and higher shielding performance. For example, the shielding performance increases in the order of carbon, silicon, chromium, molybdenum, and tungsten, which is desirable as the position control layer 50.
 位置制御層50の条件は、イオン照射によって変形しないことが望ましい。このため、変形しにくい材料と膜厚が選定される。IIB加工において、変形しにくい材料と膜厚とはどのようなものか。それを示すために、まずはIIB加工のしやすさについてまとめる。
 IIB加工において、片持ち梁構造を基板に対して上方向に曲げるか、下方向に曲げるかを決めるパラメータとなっているのは、照射イオンの運動エネルギーである。イオンは加速エネルギーを大きくするほど、片持ち梁構造の内部に深く進入する。イオンが片持ち梁構造の内部に侵入してからやがて運動エネルギーを失い膜中で停止するまでの間に、数多くの原子との衝突が起こる。その過程で生成されるのが反跳原子であり、反跳原子が生成された結果として、空孔や格子間原子などの格子欠陥が生じる。
It is desirable that the position control layer 50 is not deformed by ion irradiation. For this reason, the material and film thickness which are hard to deform | transform are selected. In IIB processing, what are the materials and film thickness that are difficult to deform? In order to show that, first, the ease of IIB processing is summarized.
In IIB processing, the kinetic energy of irradiated ions is a parameter that determines whether the cantilever structure is bent upward or downward with respect to the substrate. Ions penetrate deeper into the cantilever structure as the acceleration energy increases. Collisions with many atoms occur from when ions enter the cantilever structure until they lose kinetic energy and stop in the film. In the process, recoil atoms are generated, and as a result of the recoil atoms being generated, lattice defects such as vacancies and interstitial atoms are generated.
 特許文献1ないし4及び非特許文献5ないし7に開示されている情報をまとめると、IIB加工において片持ち梁構造を基板に対して上方向に曲げる場合に最適なエネルギーは、片持ち梁構造を形成する膜の深さ方向に対して反跳原子の分布のピーク位置がおよそ表面から30%の位置に有ることが示されている。また、反跳原子分布のピーク位置の深さが10%から20%の条件の場合には、上方向に曲がるが、単位照射量当たりの湾曲量が小さいため多くの照射量を要すること、20%から30%の条件は最適ではないものの十分に実用的な上方向の曲げ加工が実施できること、30%から40%では照射が深くなりすぎて下方向に曲げる力も出てきて、その結果として上方向に曲がる量が小さくなること、40%から60%を超えると、下方向に曲げる力のほうが上方向に曲げる力よりも優位になってくることが示されている。 Summarizing the information disclosed in Patent Documents 1 to 4 and Non-Patent Documents 5 to 7, the optimum energy for bending the cantilever structure upward with respect to the substrate in IIB processing is the cantilever structure. It is shown that the peak position of the recoil atom distribution is approximately 30% from the surface with respect to the depth direction of the film to be formed. In addition, when the depth of the peak position of the recoil atom distribution is 10% to 20%, the curve bends upward, but a large amount of irradiation is required because the amount of bending per unit dose is small. % To 30% is not optimal, but a sufficiently practical upward bending process can be carried out. From 30% to 40%, the irradiation becomes too deep and a downward bending force is produced. It is shown that when the amount of bending in the direction is reduced, and when it exceeds 40% to 60%, the downward bending force is superior to the upward bending force.
 これらの現象を、反跳原子密度ではなくイオンの平均投影飛程に置き換えると、以下のようになる。まず、最も良く上方向に曲がる条件は、平均投影飛程が片持ち梁構造に対して深さ50%になる条件である。平均投影飛程が20%から30%の間では上方向に曲がりはするが、単位照射量当たりの湾曲量が小さいため多くの照射量を要する条件となり、平均投影飛程が30%から50%の条件は最適ではないものの十分に実用的な上方向の曲げ加工が実施できる条件となる。一方、平均投影飛程が50%を超えて60%、70%と大きくなるに従って下方向に曲げる力が優位になってくる条件となる。 Replacing these phenomena with the average projected range of ions instead of the recoil atom density, it becomes as follows. First, the best condition for bending upward is that the average projected range is 50% deep with respect to the cantilever structure. If the average projection range is between 20% and 30%, it will bend upward, but since the amount of curvature per unit dose is small, it will be a condition that requires a large dose, and the average projection range will be between 30% and 50%. Although this condition is not optimal, it is a condition that allows a sufficiently practical upward bending process. On the other hand, as the average projection range exceeds 50% and becomes as large as 60% and 70%, it becomes a condition that the downward bending force becomes dominant.
 以上より、IIB加工において変形しにくい条件とは、ひとつは、片持ち梁構造に対して表面から深さ10%未満に反跳原子密度のピーク位置がくるイオン照射条件、言い換えると片持ち梁構造に対して表面から深さ20%未満に平均投影飛程がくるイオン照射条件であると言える。また、もう一つは、片持ち梁構造に対して表面から深さ40%から60%の間に反跳原子密度のピーク位置がきて、かつ上方向に曲げる力と下方向に曲げる力が等しくなるイオン照射条件、言い換えると片持ち梁構造に対して表面から深さ40%から60%の間に平均投影飛程がきて、かつ上方向に曲げる力と下方向に曲げる力が等しくなるイオン照射条件であると言える。 From the above, one of the conditions that are difficult to deform in IIB processing is that the ion irradiation condition where the peak position of recoil atom density is less than 10% deep from the surface relative to the cantilever structure, in other words, the cantilever structure. On the other hand, it can be said that this is an ion irradiation condition in which the average projected range is less than 20% from the surface. The other is that the peak position of recoil atom density is between 40% and 60% deep from the surface with respect to the cantilever structure, and the upward bending force and the downward bending force are equal. Ion irradiation conditions in which the average projected range is between 40% and 60% deep from the surface with respect to the cantilever structure, and the upward bending force and the downward bending force are equal. It can be said that it is a condition.
(シリコンフォトニクス応用の具体例)
 シリコンフォトニクス応用において、厚さ220nmのシリコン細線光導波路を各種イオンで湾曲加工する場合の位置制御材50の膜厚についてSRIMコード(http://www.srim.org/)を用いて計算した結果を示す。
 まず、照射イオンの最適な運動エネルギーを、平均投影飛程が膜厚の50%の位置、つまり深さ110nmになる場合として計算すると、例えば、原子番号が小さい順に、シリコンイオンの場合約80keV、燐イオンの場合約85keV、アルゴンイオンの場合約110keV、砒素イオンの場合約170keV、クリプトンイオンの場合約200keV、インジウムイオンの場合約250keV、アンチモンイオンの場合約250keV、キセノンイオンの場合約270keVとなる。
(Specific examples of silicon photonics applications)
Results of calculation using SRIM code (http://www.srim.org/) about the film thickness of the position control material 50 when bending a 220 nm-thick silicon wire optical waveguide with various ions in silicon photonics applications Indicates.
First, when the optimum kinetic energy of irradiated ions is calculated when the average projected range is 50% of the film thickness, that is, when the depth is 110 nm, for example, in the order of the atomic number, in the case of silicon ions, about 80 keV, About 85 keV for phosphorus ions, about 110 keV for argon ions, about 170 keV for arsenic ions, about 200 keV for krypton ions, about 250 keV for indium ions, about 250 keV for antimony ions, and about 270 keV for xenon ions. .
 次に、位置制御層50の条件として、上記計算されたイオン注入の運動エネルギーにおける平均投影飛程が膜厚の15%以下の位置になる膜厚を幾つかの材料で計算すると、例えば、密度が小さい順に、フォトレジストの場合約1300nmから約1450nm、エポキシ樹脂の場合約1030nmから約1120nm、炭素の場合約570nmから約670nm、シリコンの場合約740nmから約780nm、ニオブの場合約310nmから約330nm、モリブデンの場合約270nmから約290nm、タングステンの場合約190nmから約210nmが最低でも必要な膜厚であることが計算より示される。
 もちろん、照射イオンの運動エネルギーを最適値よりも小さく設定して照射量が大きくなっても構わないという条件でIIB加工が施される場合には、選定した運動エネルギーに応じて、位置制御層50に要求される最小膜厚値は上記の計算結果よりも小さくできる。
Next, as a condition of the position control layer 50, when the film thickness at which the average projected range in the calculated kinetic energy of ion implantation is 15% or less of the film thickness is calculated with several materials, for example, density From about 1300 nm to about 1450 nm for photoresist, from about 1030 nm to about 1120 nm for epoxy resin, from about 570 nm to about 670 nm for carbon, from about 740 nm to about 780 nm for silicon, and from about 310 nm to about 330 nm for niobium. Calculations show that the minimum required film thickness is about 270 nm to about 290 nm for molybdenum and about 190 nm to about 210 nm for tungsten.
Of course, in the case where IIB processing is performed under the condition that the irradiation energy may be increased by setting the kinetic energy of the irradiation ions smaller than the optimum value, the position control layer 50 is selected according to the selected kinetic energy. The minimum required film thickness can be made smaller than the above calculation result.
(真空電子源応用の具体例)
 同様に、真空電子源において、厚さ20nmのタングステン薄膜を各種イオンで湾曲加工する場合の位置制御材50の膜厚についてSRIMコード(http://www.srim.org/)を用いて計算した結果を示す。
 まず、照射イオンの最適な運動エネルギーを、平均投影飛程が膜厚の50%の位置、つまり深さ10nmになる場合として計算すると、例えば、原子番号が小さい順に、シリコンイオンの場合約25keV、燐イオンの場合約25keV、アルゴンイオンの場合約30keV、砒素イオンの場合約50keV、クリプトンイオンの場合約55keV、インジウムイオンの場合約65keV、アンチモンイオンの場合約70keV、キセノンイオンの場合約80keVとなる。
(Specific examples of vacuum electron source applications)
Similarly, the thickness of the position control material 50 in the case of bending a tungsten thin film having a thickness of 20 nm with various ions in a vacuum electron source was calculated using the SRIM code (http://www.srim.org/). Results are shown.
First, the optimal kinetic energy of irradiated ions is calculated when the average projected range is 50% of the film thickness, that is, when the depth is 10 nm. For example, in the case of silicon ions in the order of decreasing atomic number, about 25 keV, About 25 keV for phosphorus ions, about 30 keV for argon ions, about 50 keV for arsenic ions, about 55 keV for krypton ions, about 65 keV for indium ions, about 70 keV for antimony ions, and about 80 keV for xenon ions. .
 次に、位置制御層50の条件として、上記計算されたイオン注入の運動エネルギーにおける平均投影飛程が膜厚の15%以下の位置になる膜厚を幾つかの材料で計算すると、例えば、密度が小さい順に、フォトレジストの場合約420nmから約560nm、エポキシ樹脂の場合約340nmから約450nm、炭素の場合約190nmから約250nm、シリコンの場合約240nmから約290nm、ニオブの場合約110nmから約120nm、モリブデンの場合約95nmから約100nm、タングステンの場合約70nmが最低でも必要な膜厚であることが分かる。
 もちろん、照射イオンの運動エネルギーを最適値よりも小さく設定して照射量が大きくなっても構わないという条件でIIB加工が施される場合には、選定した運動エネルギーに応じて、位置制御層50に要求される最小膜厚値は上記の計算結果よりも小さくできる。
Next, as a condition of the position control layer 50, when the film thickness at which the average projected range in the calculated kinetic energy of ion implantation is 15% or less of the film thickness is calculated with several materials, for example, density From about 420 nm to about 560 nm for photoresist, about 340 nm to about 450 nm for epoxy resin, about 190 nm to about 250 nm for carbon, about 240 nm to about 290 nm for silicon, and about 110 nm to about 120 nm for niobium. It can be seen that the required film thickness is about 95 nm to about 100 nm for molybdenum and about 70 nm for tungsten.
Of course, in the case where IIB processing is performed under the condition that the irradiation energy may be increased by setting the kinetic energy of the irradiation ions smaller than the optimum value, the position control layer 50 is selected according to the selected kinetic energy. The minimum required film thickness can be made smaller than the above calculation result.
(プローブアレイ応用の具体例)
 同様に、電気測定用プローブアレイにおいて、厚さ100nmのタングステン薄膜を各種イオンで湾曲加工する場合の位置制御材50の膜厚についてSRIMコード(http://www.srim.org/)を用いて計算した結果を示す。
 まず、照射イオンの最適な運動エネルギーを、平均投影飛程が膜厚の50%の位置、つまり深さ50nmになる場合として計算すると、例えば、原子番号が小さい順に、シリコンイオンの場合約140keV、燐イオンの場合約150keV、アルゴンイオンの場合約180keV、砒素イオンの場合約300keV、クリプトンイオンの場合約325keV、インジウムイオンの場合約450keV、アンチモンイオンの場合約450keV、キセノンイオンの場合約500keVとなる。
(Specific examples of probe array applications)
Similarly, in the probe array for electrical measurement, the SRIM code (http://www.srim.org/) is used for the film thickness of the position control member 50 when a tungsten thin film having a thickness of 100 nm is bent with various ions. The calculated result is shown.
First, when the optimum kinetic energy of irradiated ions is calculated when the average projected range is 50% of the film thickness, that is, when the depth is 50 nm, for example, in the order of the atomic number, in the case of silicon ions, about 140 keV, About 150 keV for phosphorus ions, about 180 keV for argon ions, about 300 keV for arsenic ions, about 325 keV for krypton ions, about 450 keV for indium ions, about 450 keV for antimony ions, and about 500 keV for xenon ions. .
 次に、位置制御層50の条件として、上記計算されたイオン注入の運動エネルギーにおける平均投影飛程が膜厚の15%以下の位置になる膜厚を幾つかの材料で計算すると、例えば、密度が小さい順に、フォトレジストの場合約2200nmから約2500nm、エポキシ樹脂の場合約1800nmから約2100nm、炭素の場合約950nmから約1150nm、シリコンの場合約1250nmから約1350nm、ニオブの場合約530nmから約560nm、モリブデンの場合約450nmから約480nm、タングステンの場合約320nmから340nmが最低でも必要な膜厚であることがわかる。
 もちろん、照射イオンの運動エネルギーを最適値よりも小さく設定して照射量が大きくなっても構わないという条件でIIB加工が施される場合には、選定した運動エネルギーに応じて、位置制御層50に要求される最小膜厚値は上記の計算結果よりも小さくできる。
Next, as a condition of the position control layer 50, when the film thickness at which the average projected range in the calculated kinetic energy of ion implantation is 15% or less of the film thickness is calculated with several materials, for example, density From about 2200 nm to about 2500 nm for photoresist, from about 1800 nm to about 2100 nm for epoxy resin, from about 950 nm to about 1150 nm for carbon, from about 1250 nm to about 1350 nm for silicon, and from about 530 nm to about 560 nm for niobium. It can be seen that the minimum required film thickness is about 450 nm to about 480 nm for molybdenum and about 320 nm to 340 nm for tungsten.
Of course, in the case where IIB processing is performed under the condition that the irradiation energy may be increased by setting the kinetic energy of the irradiation ions smaller than the optimum value, the position control layer 50 is selected according to the selected kinetic energy. The minimum required film thickness can be made smaller than the above calculation result.
 位置制御層50を半導体プロセスに利用される材料の中で選択すると、モリブデンやタングステンが比較的小さい膜厚でその機能を果たしやすいので便利である。
 一方で、炭素、フォトレジスト、ポリイミドなどのカーボン系材料は、単位厚さ当たりのイオン遮蔽性能は低いが、容易に1μmオーダーの厚い膜を形成可能であるため、これらも又は位置制御層の材料として望ましい。カーボン系材料は酸素アッシングで簡便に除去可能である点もプロセスを簡便にする要因である。
When the position control layer 50 is selected from materials used for semiconductor processes, it is convenient because molybdenum and tungsten can easily perform their functions with a relatively small film thickness.
On the other hand, carbon-based materials such as carbon, photoresist and polyimide have low ion shielding performance per unit thickness, but can easily form a thick film on the order of 1 μm. As desirable. The fact that carbon-based materials can be easily removed by oxygen ashing is another factor that simplifies the process.
(8)イオン照射を継続して施した場合には、さらに多くのイオンが注入されて、片持ち梁構造40が垂直に曲げ加工される。(図1(H))
 本発明に係る薄膜部材の湾曲加工方法に使用するイオンとしては、特に原理的な制約は無い。イオン注入装置を用いる場合には、リン、硼素、砒素、インジウム、アンチモン、弗化硼素、アルミニウム、窒素、アルゴン、弗化シリコン、シリコン、水素化硼素、水素化炭素などが一般的に備わっているため容易に利用できる。
 集束イオンビーム(FIB)装置を用いる場合にはガリウムが一般的に備わっているため容易に利用できる。
(8) When ion irradiation is continuously performed, more ions are implanted, and the cantilever structure 40 is bent vertically. (Fig. 1 (H))
There are no fundamental restrictions on the ions used in the method of bending a thin film member according to the present invention. When using an ion implantation apparatus, phosphorus, boron, arsenic, indium, antimony, boron fluoride, aluminum, nitrogen, argon, silicon fluoride, silicon, boron hydride, carbon hydride, etc. are generally provided. Therefore it can be easily used.
When a focused ion beam (FIB) apparatus is used, gallium is generally provided so that it can be easily used.
 その他にも、半導体産業ではあまり利用されていないイオン種であっても、水素、ヘリウム、炭素、酸素、フッ素、ネオン、マグネシウム、硫黄、塩素、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ゲルマニウム、クリプトン、ルビジウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、パラジウム、銀、カドミウム、錫、ヨウ素、キセノン、ハフニウム、タングステン、イリジウム、白金、金、鉛、ビスマス、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、ガドリニウム、テルビウム、ジスプロシウム、エルビウム、ツリウム、イッテルビウムなどはイオン照射技術として確立されているため容易に利用できる。 In addition, hydrogen, helium, carbon, oxygen, fluorine, neon, magnesium, sulfur, chlorine, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, even ionic species that are not widely used in the semiconductor industry , Nickel, copper, zinc, germanium, krypton, rubidium, zirconium, niobium, molybdenum, ruthenium, palladium, silver, cadmium, tin, iodine, xenon, hafnium, tungsten, iridium, platinum, gold, lead, bismuth, cerium, praseodymium , Neodymium, samarium, eurobium, gadolinium, terbium, dysprosium, erbium, thulium, ytterbium and the like have been established as ion irradiation techniques and can be easily used.
 イオン種は上記から選定されたいずれか1種で実施されるのが曲げ可能の制御性の観点からは望ましい。しかし、IIB技術の原理上、複数種のイオンが混合されている場合でも高い精度で加工することは可能である。そのため、質量分析器を省略した安価な構成のイオン照射装置でも実施可能である。 It is desirable from the viewpoint of controllability that bending can be performed with any one of the ion species selected from the above. However, due to the principle of IIB technology, it is possible to process with high accuracy even when a plurality of types of ions are mixed. Therefore, the present invention can also be implemented with an inexpensive ion irradiation apparatus that omits the mass analyzer.
(実施形態のポイント)
 位置制御層50の先端51の位置決めが重要である。位置制御層50の加工を異方性エッチングで実施すると、従来法の等方性エッチングに比較して、高い位置決め精度を得ることができる。
 RIE(Reactive Ion Etching)、イオンミリング等のドライエッチングプロセスは、異方的に垂直に薄膜をエッチング可能であるため、フォトレジストに形成した微細パタンを正確に薄膜に転写可能である。
 一方、ウェットエッチングの場合は、薬液が染みこむ効果によって等方的にエッチング加工が進行するためフォトレジストに形成した微細パタンをそのまま薄膜に転写することは不可能である。
(Point of embodiment)
The positioning of the tip 51 of the position control layer 50 is important. When the processing of the position control layer 50 is performed by anisotropic etching, higher positioning accuracy can be obtained as compared with the isotropic etching of the conventional method.
In dry etching processes such as RIE (Reactive Ion Etching) and ion milling, a thin film can be etched anisotropically and vertically, so that a fine pattern formed in a photoresist can be accurately transferred to the thin film.
On the other hand, in the case of wet etching, it is impossible to transfer the fine pattern formed on the photoresist as it is to the thin film because the etching process isotropically proceeds due to the effect of the chemical solution soaking.
(本発明の特徴点)
 図1(F)に示すように片持ち梁構造40から見てイオンが飛来する方向に、片持ち梁構造が曲がり始める位置を決めるための位置制御層50が、少なくともイオン照射を行う時点で存在しているということである。この位置制御層50は、片持ち梁構造40を曲げ加工のためのイオン照射が施された際に、変形することがないような形態を選ぶと、位置制御層50の先端51から片持ち梁構造40に下ろした延長線の位置が、片持ち梁構造40が曲がり始める位置を決定する。
(Features of the present invention)
As shown in FIG. 1 (F), the position control layer 50 for determining the position where the cantilever structure starts to bend in the direction in which the ions fly as viewed from the cantilever structure 40 exists at least at the time of ion irradiation. That is. When the position control layer 50 is selected so as not to be deformed when the cantilever structure 40 is subjected to ion irradiation for bending processing, the cantilever structure 40 is selected from the tip 51 of the position control layer 50. The position of the extended line down to the structure 40 determines the position where the cantilever structure 40 begins to bend.
 後述の本発明における曲げ加工原理から明らかなように、位置制御層50は単層膜である必要はない。また同様に後述の本発明における曲げ加工原理から明らかなように、位置制御層50を支持する位置制御層支持層60はなくてもよい。 As is apparent from the bending principle in the present invention described later, the position control layer 50 does not have to be a single layer film. Similarly, the position control layer support layer 60 for supporting the position control layer 50 may be omitted as is apparent from the bending principle in the present invention described later.
(実施例)
 図1にしたがって、シリコンフォトニクス用途の立体湾曲光導波路の作製例を説明する。
(1)基板10を単結晶シリコン、支持層形成用出発層20’を厚さ2μmのシリコン熱酸化膜、薄膜部材形成用出発層30’を厚さ220nmの単結晶シリコンとするSOIウェハを用意する。(図1(A))
(2)厚さ220nmの単結晶シリコンをフォトリソグラフィとRIEによってパタニングしてシリコン光回路(薄膜部材30)を作製する。(図1(B))
(3)シリコン光回路上にクラッド層として厚さ約2μmのSiO層をCVD法で成膜した。この状態でシリコン光回路が完成する。クラッド層が位置制御層支持層形成用出発層60’に対応する。(図1(C))
(4)位置制御層形成用出発層50’として膜厚200nmのタングステンをスパッタ法で製膜する。(図1(D))
(5)膜厚200nmのタングステンをフォトリソグラフィとRIEによってパタニングして位置制御層50を形成する。(図1(E))
(6)緩衝フッ酸溶液にて位置制御層支持層形成用出発層60’であるSiO層と支持層形成用出発層20’であるSiO層を横方向エッチングして、シリコン光回路の末端部を片持ち梁構造40として形成する。(図1(F))
(7)加速エネルギー80kevのシリコンイオンビームを照射して、片持ち梁構造のシリコン光回路の末端部を、基板垂直上方向に湾曲加工する。(図1(G)、(H))
 なお、シリコンイオンビームの照射を工夫することにより、必要に応じて片持ち梁構造のシリコン光回路の末端部を、基板垂直下方向に湾曲加工することもできる。
 これは例えば、シリコン光回路を複数個積層したようなとき、上層にあるシリコン光回路の末端部を下方向に湾曲して活用するような構造に適用される。
(Example)
An example of manufacturing a three-dimensional curved optical waveguide for silicon photonics will be described with reference to FIG.
(1) An SOI wafer is prepared in which the substrate 10 is single crystal silicon, the support layer forming start layer 20 ′ is a 2 μm thick silicon thermal oxide film, and the thin film member forming start layer 30 ′ is 220 nm thick single crystal silicon. To do. (Fig. 1 (A))
(2) A silicon optical circuit (thin film member 30) is produced by patterning single crystal silicon having a thickness of 220 nm by photolithography and RIE. (Fig. 1 (B))
(3) A SiO 2 layer having a thickness of about 2 μm was formed as a cladding layer on the silicon optical circuit by the CVD method. In this state, the silicon optical circuit is completed. The cladding layer corresponds to the starting layer 60 ′ for forming the position control layer support layer. (Figure 1 (C))
(4) Tungsten having a film thickness of 200 nm is deposited by sputtering as the starting layer 50 ′ for forming the position control layer. (Figure 1 (D))
(5) The position control layer 50 is formed by patterning tungsten having a thickness of 200 nm by photolithography and RIE. (Figure 1 (E))
(6) a SiO 2 layer is 'and a is SiO 2 layer supporting layer forming starting layer 20' Position control layer supporting layer forming starting layer 60 with a buffer hydrofluoric acid solution to lateral etching, the silicon optical circuit The end portion is formed as a cantilever structure 40. (Fig. 1 (F))
(7) Irradiate a silicon ion beam with an acceleration energy of 80 kev to bend the end portion of the silicon optical circuit having a cantilever structure in the vertical upward direction of the substrate. (Fig. 1 (G), (H))
It should be noted that by devising the irradiation of the silicon ion beam, the end portion of the silicon optical circuit having a cantilever structure can be curved in the downward direction perpendicular to the substrate, if necessary.
This is applied to a structure in which, for example, when a plurality of silicon optical circuits are stacked, the end portion of the silicon optical circuit in the upper layer is bent downward and utilized.
 以上の実施例では、位置制御層50に膜厚200nmのタングステンを用いているが、膜厚2450nm以上のフォトレジスト、膜厚1120nm以上のエポキシ樹脂、膜厚約670nm以上の炭素、膜厚約780nm以上のシリコン、膜厚約330nm以上のニオブ、膜厚約290nm以上のモリブデン、膜厚約210nm以上のタングステンをはじめとする、該イオン注入処理で変形が生じない条件を満たした材料で置き換えることが可能である。 In the above embodiment, tungsten having a thickness of 200 nm is used for the position control layer 50. However, a photoresist having a thickness of 2450 nm or more, an epoxy resin having a thickness of 1120 nm or more, carbon having a thickness of about 670 nm or more, and a thickness of about 780 nm. Replacement with a material that satisfies the conditions that do not cause deformation in the ion implantation process, such as silicon, niobium with a thickness of about 330 nm or more, molybdenum with a thickness of about 290 nm or more, and tungsten with a thickness of about 210 nm or more. Is possible.
 図2(A)にイオン照射後のSEM像を示す。シリコン光導波路が湾曲加工されているが、その片持ち梁構造が曲がり始めている位置が、位置制御層であるタングステン薄膜のエッジ位置で定まっていることがわかる。
 その後、タングステンで作製した位置制御層50が不要である場合は、硫酸溶液などの酸によるウェットエッチングで選択的に除去する。
FIG. 2A shows an SEM image after ion irradiation. Although the silicon optical waveguide is curved, it can be seen that the position where the cantilever structure starts to bend is determined by the edge position of the tungsten thin film which is the position control layer.
Thereafter, if the position control layer 50 made of tungsten is unnecessary, it is selectively removed by wet etching with an acid such as a sulfuric acid solution.
 図2(B)に、タングステン除去後のSEM像を示す。
 先端が湾曲加工されたシリコン光導波路があらわになっており、その片持ち梁構造が曲がり始めている位置が、従来技術では支持層の周縁面で定まっていたが、本実施例においてはそれよりも左側の位置から曲がり始めていることが確認できる。
 図2(A)のSEM像と比較すると、この曲がり始めている位置は、元々タングステン薄膜のエッジがあった位置と揃っていることがわかる。
FIG. 2B shows an SEM image after removing tungsten.
A silicon optical waveguide with a curved tip is revealed, and the position where the cantilever beam structure begins to bend is determined by the peripheral surface of the support layer in the prior art, but in this embodiment it is more than that. It can be confirmed that the turn starts from the left side position.
Compared with the SEM image of FIG. 2A, it can be seen that the position where the bending starts is aligned with the position where the edge of the tungsten thin film originally existed.
 従来のIIB技術では、位置制御の面内均一性や再現性が低いウェットエッチングで決まる周縁面が湾曲加工の位置を決めていたため、研究室レベルのデバイス実証で使える技術であっても、量産化が困難な技術であった。
 本発明はその課題を克服し、位置制御の面内均一性や再現性が高いドライエッチングで決まる位置制御層の周縁面が湾曲加工の位置を決めるプロセスを可能にした。
In the conventional IIB technology, the peripheral surface determined by wet etching, which has low in-plane uniformity and reproducibility of position control, determines the position of the curved process, so even if it can be used for lab-level device demonstration, mass production It was a difficult technology.
The present invention overcomes this problem and enables a process in which the peripheral surface of the position control layer determined by dry etching, which has high in-plane uniformity and reproducibility of position control, determines the position of the bending process.
 さらに本発明によれば、複数個の片持ち梁構造を互いに近接して配置することができるため、加工された片持ち梁構造の高集積化も達成することができる。
 図3に示す模式図を用いて高集積化の効果を説明する。
 図3(A)は、本発明によって薄膜部材30に片持ち梁構造40を形成した状態の上面図である。所望の立体構造の長さをLとし、そのために薄膜部材30に長さL+αの片持ち梁構造を形成した状態を示す。実線で示す先端51は、図3(B)に示す断面図の位置制御層50のエッジ部分を示す。
 この構造に対してイオン照射を施すことにより、片持ち梁構造40が湾曲加工される。片持ち梁構造40が曲がり始める位置は、位置制御層50の先端51の下方延長線方向に伸ばして片持ち梁構造40と交差する位置となる。つまり図3(A)に長さLとして示した部分が立体湾曲加工を施される部分となる。
Furthermore, according to the present invention, since a plurality of cantilever structures can be arranged close to each other, high integration of the processed cantilever structures can also be achieved.
The effect of high integration will be described with reference to the schematic diagram shown in FIG.
FIG. 3A is a top view of a state in which the cantilever structure 40 is formed on the thin film member 30 according to the present invention. The length of the desired three-dimensional structure is L, and a state where a cantilever structure of length L + α is formed on the thin film member 30 for that purpose is shown. A tip 51 indicated by a solid line indicates an edge portion of the position control layer 50 in the cross-sectional view shown in FIG.
By subjecting this structure to ion irradiation, the cantilever structure 40 is bent. The position where the cantilever structure 40 begins to bend is a position where it extends in the direction of the downward extension of the tip 51 of the position control layer 50 and intersects the cantilever structure 40. That is, the portion indicated as the length L in FIG. 3A is the portion to be subjected to the solid bending process.
 まず重要なことは、本発明を採用すれば、前述の図7に示した岬のような構造を回避するデザインは不要になるという点である。従って、支持層20及び位置制御層支持層60を等方性エッチングで除去する工程では、所望の立体構造の長さLに相当する距離の横方向エッチングが行われることはない。そしてその短縮された平面的エッチング領域の停止線を周縁面21として描いている。なお、図3では片持梁構造40は矩形で描いているが、三角形、円、その他の二次元図形でもよい。 First of all, if the present invention is adopted, a design that avoids the structure like the cape shown in FIG. 7 is not necessary. Therefore, in the step of removing the support layer 20 and the position control layer support layer 60 by isotropic etching, the lateral etching at a distance corresponding to the length L of the desired three-dimensional structure is not performed. A stop line of the shortened planar etching region is drawn as the peripheral surface 21. In FIG. 3, the cantilever structure 40 is drawn as a rectangle, but it may be a triangle, a circle, or another two-dimensional figure.
 また、前述の図9と図10では薄膜部材30のうち、片持ち梁構造40以外の部分(作製した立体構造を支持する領域として必要な部分)の長さをMと示し、この部分も含めて平面エッチング領域と干渉しないようにすることが重要な設計項目となっていたが、本発明を用いるとこのような平面エッチング領域の干渉はある程度まで許容されるため、ここでの説明では前述の図9と図10で示すところの長さMの部分に関しては省略する。
 このような図3(A)の構造を同一基板内に複数個配列して同じ立体構造をアレイ化する場合の集積密度について考える。
In FIGS. 9 and 10, the length of the thin film member 30 other than the cantilever structure 40 (the portion necessary as a region for supporting the produced three-dimensional structure) is indicated by M, and this portion is also included. In order to avoid interference with the planar etching region, it has been an important design item. However, when the present invention is used, such interference in the planar etching region is allowed to some extent. The portion of the length M shown in FIGS. 9 and 10 is omitted.
Consider the integration density in the case where a plurality of such structures in FIG. 3A are arranged on the same substrate to form the same three-dimensional structure.
 2つの片持ち梁の平面エッチング領域の干渉について図3(C)を用いて考察する。片持ち梁構造の曲がり始める位置を揃えずに間隔g<Lで配列した場合、平面エッチング領域は図9に比べて縮小しているため干渉は起こらない。そのため、互いに隣り合う片持ち梁は同じ長さLの部分だけが曲げ加工される。
 さらに間隔gを小さくして、平面エッチング領域が干渉する距離になった場合には、図9(D)に示すように隣り合う片持ち梁構造の長さは、一方がL+α、他方がL+β、(αはβよりも小さい)のように異なってくる。ところが、片持ち梁構造40が曲がり始める位置は、位置制御層50の先端51の下方延長線方向に伸ばして片持ち梁構造40と交差する位置となるため、このように片持ち梁の長さが異なる場合であっても、隣り合う片持ち梁構造の内、湾曲加工される長さは同じLとすることができる。これが本発明によるIIB技術の欠点であった集積化デザインの制約を打ち破るエッセンスである。以下、これを正方格子と三角格子に展開する。
The interference between the planar etching regions of the two cantilevers will be considered with reference to FIG. When the cantilever structure is arranged at the interval g <L without aligning the positions at which the bend starts, interference does not occur because the planar etching region is reduced compared to FIG. Therefore, only cantilever beams adjacent to each other are bent at the same length L.
When the distance g is further reduced and the distance between the planar etching regions interferes, as shown in FIG. 9D, the lengths of adjacent cantilever structures are L + α on one side, L + β on the other side, (Α is smaller than β). However, the position where the cantilever beam structure 40 begins to bend is a position where it extends in the direction of the downward extension of the tip 51 of the position control layer 50 and intersects with the cantilever beam structure 40. Even if they are different from each other, the curved lengths of adjacent cantilever structures can be the same L. This is an essence that overcomes the limitations of integrated design, which was a drawback of the IIB technology according to the present invention. Hereinafter, this is expanded into a square lattice and a triangular lattice.
 正方格子に配列する例を図3(E)に示す。図3(E)では、片持ち梁構造の先端自由端は、それぞれ正方格子の各頂点に配置されている。
 X軸・Y軸方向ともに、間隔gを容易にg<Lに縮小することができることがわかる。
 同様に図3(F)に示すように三角格子に配列する場合でも、間隔gを容易にg<Lに縮小することができることがわかる。図3(F)では、片持ち梁構造の先端自由端は、それぞれ三角格子の各頂点に配置されている。
 さらには、本数を制限すれば図3(G)に示すように間隔gをg<L/2となるまで縮小することも可能である。このような挟ピッチの二次元配列は、従来技術では不可能である。
An example of arrangement in a square lattice is shown in FIG. In FIG. 3E, the free end of the tip of the cantilever structure is arranged at each vertex of the square lattice.
It can be seen that the interval g can be easily reduced to g <L in both the X-axis and Y-axis directions.
Similarly, as shown in FIG. 3 (F), it can be seen that the gap g can be easily reduced to g <L even when arranged in a triangular lattice. In FIG. 3F, the free end of the cantilever structure is arranged at each vertex of the triangular lattice.
Furthermore, if the number is limited, the interval g can be reduced to g <L / 2 as shown in FIG. Such a two-dimensional arrangement with a narrow pitch is not possible with the prior art.
 高さ50μmの電気測定用プローブを、IIB技術を用いて作製する例に本発明を適用する。この場合、片持ち梁構造の長さLは50μm必要となる。これを図3(E)のように配列するとX方向及びY方向の間隔はおよそ50μm未満となる。同様に図3(F)の三角格子状にアレイ化するとおよそ50μm未満の間隔となる。同様に図3(G)の三角格子状にアレイ化するとおよそ25μm未満の間隔となる。これらの値は、既存の電気測定用プローブアレイに比べて小さな値でIIB技術を導入することにより微細集積化のメリットも得られることとなる。 The present invention is applied to an example in which an electrical measurement probe having a height of 50 μm is manufactured using IIB technology. In this case, the length L of the cantilever structure is required to be 50 μm. If this is arranged as shown in FIG. 3E, the distance between the X direction and the Y direction is less than about 50 μm. Similarly, when the array is formed in the triangular lattice shape of FIG. 3F, the interval is less than about 50 μm. Similarly, when the array is formed in the triangular lattice shape of FIG. 3G, the interval is less than about 25 μm. These values are smaller than those of the existing electrical measurement probe array, and the merit of fine integration can be obtained by introducing the IIB technology.
 高さ1μmの真空電子源を、IIB技術を用いて作製する例に本発明を適用する。この場合、片持ち梁構造の長さLは1μm必要となる。これを2次元配列すると、図3(E)のように配列するとX方向及びY方向の間隔はおよそ1μm未満となる。同様に図3(F)の三角格子状にアレイ化するとおよそ1μm未満の間隔となる。同様に図3(G)の三角格子状にアレイ化するとおよそ0.5μm未満の間隔となる。これらの値は、既存の真空電子源アレイに比べて小さく、真空電子源アレイの製造にIIB技術を導入することで、大幅な高密度化のメリットも得られるといえる。 The present invention is applied to an example in which a vacuum electron source having a height of 1 μm is manufactured using IIB technology. In this case, the length L of the cantilever structure is 1 μm. If this is arranged two-dimensionally, the arrangement in the X direction and the Y direction will be less than about 1 μm if arranged as shown in FIG. Similarly, when the array is formed in the triangular lattice shape of FIG. 3F, the interval is less than about 1 μm. Similarly, when the array is formed in the triangular lattice shape of FIG. 3G, the interval is less than about 0.5 μm. These values are smaller than those of the existing vacuum electron source array, and it can be said that the introduction of the IIB technology in the manufacture of the vacuum electron source array can also provide a merit of significant increase in density.
 曲率半径3μmのシリコンフォトニクス用垂直光カプラなどを、IIB技術を用いて作製する例に本発明を適用する。この場合、片持ち梁構造の長さLは5μm必要となる。これを2次元配列するとき、図3(E)のように配列するとX方向及びY方向の間隔はおよそ5μm未満となる。同様に図3(F)の三角格子状にアレイ化するとおよそ5μmの間隔となる。一方、図3(G)のように個数を制限した三角格子状にアレイ化すると、2.5μm未満の間隔が可能となる。 The present invention is applied to an example in which a vertical photocoupler for silicon photonics having a curvature radius of 3 μm is manufactured using IIB technology. In this case, the length L of the cantilever structure is required to be 5 μm. When the two-dimensional array is arranged as shown in FIG. 3E, the interval in the X direction and the Y direction is less than about 5 μm. Similarly, when arrayed in the triangular lattice shape of FIG. On the other hand, when an array is formed in a triangular lattice with a limited number as shown in FIG. 3G, an interval of less than 2.5 μm is possible.
 これらの値は、従来のシリコン光結合器では到底達成できない値である。そのため、フューモードファイバ、マルチモードファイバ、マルチコアファイバ、フューモードマルチコアファイバやマルチモードマルチコアファイバ、レーザーダイオードアレイ、面発光レーザーアレイ、MEMSミラー、空間位相変調器などのような空間的に複数の光伝搬モードが集積された光デバイスとの光結合を行う場合に有効で、飛躍的なデバイスの小型化が実現できる。 These values are values that cannot be achieved with conventional silicon optical couplers. Therefore, spatially multiple light propagation such as fumode fiber, multimode fiber, multicore fiber, fumode multicore fiber or multimode multicore fiber, laser diode array, surface emitting laser array, MEMS mirror, spatial phase modulator, etc. This is effective when optical coupling is performed with an optical device in which modes are integrated, and a dramatic reduction in device size can be realized.
 図3(G)の配列法は、究極には0.5μm程度の挟ピッチ化が可能である。その場合、干渉デバイス応用で大きなメリットがある。例えば光通信で利用される1.55μm帯域を想定すると、垂直光出力ポートの間隔を0.5μm程度とすることの意味は、光源のピッチを波長の半分程度に作製できるという事を意味し、ライダー(LIDAR:Light Detection and Ranging又はLaser Imaging Detection and Ranging)素子などへの応用で飛躍的な技術革新を可能となる。 3) The arrangement method shown in FIG. 3G can ultimately achieve a pinching pitch of about 0.5 μm. In that case, there is a great merit in the application of interference devices. For example, assuming a 1.55 μm band used in optical communication, the meaning of setting the interval between vertical light output ports to about 0.5 μm means that the pitch of the light source can be made about half of the wavelength, Application to a rider (LIDAR: Light Detection and Ranging) or Laser ImagingDetectDetection and Ranging) will enable dramatic technological innovation.
(立体湾曲光回路)
 立体湾曲光導波路への応用の場合には、図4に示すように下方向に曲げ加工を施して、下層に既に形成されている上方向に立体湾曲されたシリコン光導波路と合わせて、下層のシリコン光回路と上層のシリコン光回路を光接続するために利用することもできる。
 図4を参照して詳細に説明する。
 本発明にしたがって上方向に立体湾曲された垂直光カプラを有するシリコン光導波路をクラッド層70で埋めて下層のシリコン光回路を得る。
 次に、その上に支持層形成用出発層及び光導波路形成用出発層を積層し、光導波路形成用出発層をパタン化して光導波路を形成し、光導波路の上に直接もしくは位置制御層支持層を介して、光導波路の片持ち梁構造がイオンを照射することにより曲がり始める位置を決定する位置制御層を異方性エッチングにより形成し、光導波路の下の支持層形成用出発層の一部もしくは、支持層形成用出発層の一部及び位置制御層支持層形成用出発層の一部を、支持層の周縁面、もしくは支持層の周縁面及び位置制御層支持層の端面が、位置制御層の先端の下方延長線上もしくはそれより内側にあるように等方性エッチングにより除去して、光導波路に先端自由端41を有する片持ち梁構造40を形成する。(図4(A))
(3D curved optical circuit)
In the case of application to a three-dimensionally curved optical waveguide, bending is performed in a downward direction as shown in FIG. It can also be used to optically connect the silicon optical circuit and the upper silicon optical circuit.
This will be described in detail with reference to FIG.
In accordance with the present invention, a silicon optical waveguide having a vertical optical coupler that is three-dimensionally curved upward is filled with a cladding layer 70 to obtain a lower layer silicon optical circuit.
Next, a start layer for forming a support layer and a start layer for forming an optical waveguide are laminated thereon, and an optical waveguide is formed by patterning the start layer for forming an optical waveguide, and is supported directly or on the position control layer on the optical waveguide. A position control layer for determining a position where the cantilever structure of the optical waveguide starts to bend by irradiating ions through the layer is formed by anisotropic etching, and one of the starting layers for forming the support layer under the optical waveguide is formed. Or a part of the starting layer for forming the support layer and a part of the starting layer for forming the position control layer, the peripheral surface of the support layer, or the peripheral surface of the support layer and the end surface of the position control layer supporting layer are positioned. The cantilever structure 40 having the tip free end 41 is formed in the optical waveguide by removing by isotropic etching so as to be on the lower extension line of the tip of the control layer or on the inner side thereof. (Fig. 4 (A))
 次に、位置制御層50をマスクとして片持ち梁構造40の一部にイオンを照射し、片持ち梁構造の一部を下方向に湾曲させて第2の垂直光カプラとする。(図4(B))
 この際、下層の垂直光カプラ及び上層の第2の垂直光カプラが光接続するように対向して配置する。
 最後に、位置制御層50を除去した後、クラッド層70で埋めることより、層間接続された立体湾曲光回路が得られる。(図4(C))
 このような上下層の光回路の接続を形成する際には、本特許による高精度な位置制御技術がなければ実現し得ない。
Next, a part of the cantilever structure 40 is irradiated with ions using the position control layer 50 as a mask, and a part of the cantilever structure is bent downward to form a second vertical optical coupler. (Fig. 4 (B))
At this time, the lower vertical optical coupler in the lower layer and the second vertical optical coupler in the upper layer are arranged to face each other so as to be optically connected.
Finally, by removing the position control layer 50 and filling with the clad layer 70, an inter-layer connected solid curved optical circuit is obtained. (Fig. 4 (C))
Such connection between the upper and lower optical circuits cannot be realized without the highly accurate position control technique according to this patent.
 以上、本明細書に開示した実施形態並びに実施例は、本発明に係る、薄膜部材の湾曲加工方法の理解を容易にするために例示したものであって、本発明はこれに限定されるものではない。
 すなわち、本発明は、特許請求の範囲を逸脱しない限り、薄膜部材の湾曲加工方法の実施に当たって、適宜の設計変更が可能であることは言うまでもないことである。
As described above, the embodiments and examples disclosed in this specification are illustrated for facilitating the understanding of the method of bending a thin film member according to the present invention, and the present invention is not limited thereto. is not.
That is, it is needless to say that the present invention can be appropriately changed in design when performing the method of bending a thin film member without departing from the scope of the claims.
10  基板
20  支持層
20’ 支持層形成用出発層
21  周縁面
30  薄膜部材
30’ 薄膜部材形成用出発層
40  片持ち梁構造
41  先端自由端
50  位置制御層
50’ 位置制御層形成用出発層
51  先端
60  位置制御層支持層
60’ 位置制御層支持層形成用出発層
61  端面
70  クラッド層
DESCRIPTION OF SYMBOLS 10 Substrate 20 Support layer 20 'Starting layer 21 for supporting layer formation Peripheral surface 30 Thin film member 30' Starting layer 40 for forming thin film member Cantilever structure 41 Free tip end 50 Position control layer 50 'Starting layer 51 for position control layer formation Tip 60 Position control layer support layer 60 ′ Position control layer support layer forming starting layer 61 End face 70 Clad layer

Claims (15)

  1.  基板上に支持層形成用出発層及び薄膜部材形成用出発層を積層する工程と、該薄膜部材形成用出発層をパタン化して薄膜部材を形成する工程と、該薄膜部材の上に直接もしくは位置制御層支持層形成用出発層を介して、該薄膜部材の片持ち梁構造がイオンを照射することにより曲がり始める位置を決定する位置制御層を形成する工程と、該薄膜部材の下の該支持層形成用出発層の一部もしくは、該支持層形成用出発層の一部及び位置制御層支持層形成用出発層の一部を、支持層の周縁面、もしくは支持層の周縁面及び位置制御層支持層の端面が、該位置制御層の先端の下方延長線上もしくはそれより内側にあるように除去して、該薄膜部材に先端自由端を有する片持ち梁構造を形成する工程と、該位置制御層をマスクとして該片持ち梁構造の一部にイオンを照射し、該片持ち梁構造の一部を湾曲させる工程と、を含む薄膜部材の湾曲加工方法。 A step of laminating a starting layer for forming a support layer and a starting layer for forming a thin film member on a substrate; a step of patterning the starting layer for forming a thin film member to form a thin film member; and a direct or position on the thin film member Forming a position control layer for determining a position where the cantilever structure of the thin film member starts to bend by irradiating ions through the starting layer for forming the control layer support layer; and the support under the thin film member A part of the starting layer for layer formation or a part of the starting layer for forming the supporting layer and a part of the starting layer for forming the supporting layer are arranged on the peripheral surface of the supporting layer or the peripheral surface of the supporting layer and the position control. Removing the end face of the layer support layer so as to be on or inside the lower extension line of the tip of the position control layer to form a cantilever structure having a tip free end on the thin film member; The cantilever beam structure using the control layer as a mask Part irradiated with ions, curving a thin film member including a step of bending a portion of the cantilever structure.
  2.  基板上に支持層形成用出発層及び薄膜部材形成用出発層を積層する工程と、該薄膜部材形成用出発層をパタン化して薄膜部材を形成する工程と、該薄膜部材の上に直接もしくは位置制御層支持層形成用出発層を介して、該薄膜部材の片持ち梁構造がイオンを照射することにより曲がり始める位置を決定する位置制御層を異方性エッチングにより形成する工程と、該薄膜部材の下の該支持層形成用出発層の一部もしくは、該支持層形成用出発層の一部及び位置制御層支持層形成用出発層の一部を、支持層の周縁面、もしくは支持層の周縁面及び位置制御層支持層の端面が、該位置制御層の先端の下方延長線上もしくはそれより内側にあるように等方性エッチングにより除去して、該薄膜部材に先端自由端を有する片持ち梁構造を形成する工程と、該位置制御層をマスクとして該片持ち梁構造の一部にイオンを照射し、該片持ち梁構造の一部を湾曲させる工程と、を含む薄膜部材の湾曲加工方法。 A step of laminating a starting layer for forming a support layer and a starting layer for forming a thin film member on a substrate; a step of patterning the starting layer for forming a thin film member to form a thin film member; and a direct or position on the thin film member Forming a position control layer by anisotropic etching for determining a position at which the cantilever structure of the thin film member begins to bend by irradiating ions through the starting layer for forming the control layer support layer; and the thin film member A part of the starting layer for forming the supporting layer below, a part of the starting layer for forming the supporting layer and a part of the starting layer for forming the position control layer, the peripheral surface of the supporting layer, or the supporting layer The cantilever having a free end at the tip is removed by isotropic etching so that the peripheral surface and the end face of the position control layer support layer are on or below the extension line of the tip of the position control layer. Process for forming beam structure , Part irradiated with ions of the cantilever structure the position control layer as a mask, curving a thin film member including a step of bending a portion of the cantilever structure.
  3.  上記片持ち梁構造は、電気測定用プローブを構成していることを特徴とする請求項1又は請求項2に記載の薄膜部材の湾曲加工方法。 3. The method for bending a thin film member according to claim 1, wherein the cantilever structure constitutes an electrical measurement probe.
  4.  上記片持ち梁構造は、電界放出素子のエミッタを構成していることを特徴とする請求項1又は請求項2に記載の薄膜部材の湾曲加工方法。 3. The method of bending a thin film member according to claim 1 or 2, wherein the cantilever structure constitutes an emitter of a field emission device.
  5.  上記片持ち梁構造は、光導波路を構成していることを特徴とする請求項1又は請求項2に記載の薄膜部材の湾曲加工方法。 The method for bending a thin film member according to claim 1 or 2, wherein the cantilever structure constitutes an optical waveguide.
  6.  基板上に支持層形成用出発層及び光導波路形成用出発層を積層する工程と、該光導波路形成用出発層をパタン化して光導波路を形成する工程と、該光導波路の上に直接もしくは位置制御層支持層を介して、該光導波路の片持ち梁構造がイオンを照射することにより曲がり始める位置を決定する位置制御層を異方性エッチングにより形成する工程と、該光導波路の下の該支持層形成用出発層の一部もしくは、該支持層形成用出発層の一部及び位置制御層支持層形成用出発層の一部を、支持層の周縁面、もしくは支持層の周縁面及び位置制御層支持層の端面が、該位置制御層の先端の下方延長線上もしくはそれより内側にあるように等方性エッチングにより除去して、該光導波路に先端自由端を有する片持ち梁構造を形成する工程と、該位置制御層をマスクとして該片持ち梁構造の一部にイオンを照射し、該片持ち梁構造の一部を湾曲させて垂直光カプラとする工程と、を含む光導波路の湾曲加工方法。 A step of laminating a starting layer for forming a support layer and a starting layer for forming an optical waveguide on a substrate; a step of patterning the starting layer for forming an optical waveguide to form an optical waveguide; and a direct or position on the optical waveguide. Forming a position control layer by anisotropic etching to determine a position at which the cantilever structure of the optical waveguide starts to bend by irradiating ions through the control layer support layer; and under the optical waveguide, A part of the starting layer for forming the support layer or a part of the starting layer for forming the supporting layer and a part of the starting layer for forming the position control layer are arranged on the peripheral surface of the supporting layer or the peripheral surface and the position of the supporting layer. The end face of the control layer support layer is removed by isotropic etching so that it is on the lower extension line of the tip of the position control layer or inside thereof, thereby forming a cantilever structure having a tip free end in the optical waveguide. And the position system Layer ion is irradiated to a portion of the cantilever structure as a mask, curved method of processing an optical waveguide including a step, a to the vertical optical coupler by bending a portion of the cantilever structure.
  7.  上記基板は、シリコン光集積回路基板であることを特徴とする請求項6に記載の光導波路の湾曲加工方法。 The method for bending an optical waveguide according to claim 6, wherein the substrate is a silicon optical integrated circuit substrate.
  8.  上記光導波路は、シリコンを主成分とする光導波路であることを特徴とする請求項6又は請求項7に記載の光導波路の湾曲加工方法。 The method of bending an optical waveguide according to claim 6 or 7, wherein the optical waveguide is an optical waveguide mainly composed of silicon.
  9.  上記位置制御層の構成材料は、タングステン又は炭素であることを特徴とする請求項8に記載の光導波路の湾曲加工方法。 The method for bending an optical waveguide according to claim 8, wherein the constituent material of the position control layer is tungsten or carbon.
  10.  上記光導波路の上記片持ち梁構造は、該片持ち梁構造の長さよりも小さな間隔で複数個二次元アレイ配置されていることを特徴とする請求項6ないし請求項9のいずれか1項に記載の光導波路の湾曲加工方法。 10. A plurality of two-dimensional arrays of the cantilever structure of the optical waveguide are arranged at intervals smaller than the length of the cantilever structure. A method of bending an optical waveguide as described.
  11.  上記片持ち梁構造の先端自由端は、それぞれ正方格子の各頂点に配置されていることを特徴とする請求項10に記載の光導波路の湾曲加工方法。 11. The method of bending an optical waveguide according to claim 10, wherein the free end of the cantilever structure is arranged at each vertex of a square lattice.
  12.  上記片持ち梁構造の先端自由端は、それぞれ三角格子の各頂点に配置されていることを特徴とする請求項10に記載の光導波路の湾曲加工方法。 11. The method of bending an optical waveguide according to claim 10, wherein the free ends of the cantilever structure are arranged at the respective apexes of the triangular lattice.
  13.  上記光導波路の上記片持ち梁構造は、該光導波路の伝搬光の波長よりも小さな間隔で複数個二次元アレイ配置されていることを特徴とする請求項6ないし請求項9のいずれか1項に記載の光導波路の湾曲加工方法。 10. The plurality of two-dimensional arrays of the cantilever structures of the optical waveguide are arranged at intervals smaller than the wavelength of propagating light of the optical waveguide. A method for bending an optical waveguide according to claim 1.
  14.  上記片持ち梁構造の一部を湾曲させて垂直光カプラとする工程は、上記片持ち梁構造の一部を上方向に湾曲させて垂直光カプラとする工程であることを特徴とする請求項6に記載の光導波路の湾曲加工方法。 The step of bending a part of the cantilever structure to form a vertical optical coupler is a process of bending a part of the cantilever structure upward to form a vertical optical coupler. 7. A method for bending an optical waveguide according to item 6.
  15.  さらに、上方向に湾曲された垂直光カプラをクラッド層で埋める工程と、該クラッド層上に第2の支持層形成用出発層及び第2の光導波路形成用出発層を積層する工程と、該第2の光導波路形成用出発層をパタン化して第2の光導波路を形成する工程と、該第2の光導波路の上に直接もしくは第2の位置制御層支持層を介して、該第2の光導波路の第2の片持ち梁構造がイオンを照射することにより曲がり始める位置を決定する第2の位置制御層を異方性エッチングにより形成する工程と、該第2の光導波路の下の該第2の支持層形成用出発層の一部もしくは、該第2の支持層形成用出発層の一部及び第2の位置制御層支持層形成用出発層の一部を、第2の支持層の周縁面、もしくは第2の支持層の周縁面及び第2の位置制御層支持層の端面が、該位置制御層の先端の下方延長線上もしくはそれより内側にあるように等方性エッチングにより除去して、該光導波路に先端自由端を有する片持ち梁構造を形成する工程と、該第2の位置制御層をマスクとして該第2の片持ち梁構造の一部にイオンを照射し、該第2の片持ち梁構造の一部を下方向に湾曲させて上記垂直光カプラと光接続する第2の垂直光カプラとする工程と、を含む請求項14に記載の光導波路の湾曲加工方法。 A step of filling an upwardly curved vertical optical coupler with a clad layer; a step of laminating a second support layer forming start layer and a second optical waveguide forming start layer on the clad layer; and Patterning the second optical waveguide forming starting layer to form a second optical waveguide, and the second optical waveguide directly on the second optical waveguide or via the second position control layer support layer Forming a second position control layer by anisotropic etching for determining a position where the second cantilever structure of the optical waveguide starts to bend by irradiating ions; and under the second optical waveguide, A part of the starting layer for forming the second support layer or a part of the starting layer for forming the second supporting layer and a part of the starting layer for forming the second position control layer supporting layer are used as the second support. The peripheral surface of the layer, or the peripheral surface of the second support layer and the edge of the second position control layer support layer Is removed by isotropic etching so as to be on or inside the lower extension line of the tip of the position control layer to form a cantilever structure having a tip free end in the optical waveguide; and Using the position control layer of 2 as a mask, a part of the second cantilever structure is irradiated with ions, and a part of the second cantilever structure is bent downward to make optical connection with the vertical optical coupler. The method for bending an optical waveguide according to claim 14, further comprising a step of forming a second vertical optical coupler.
PCT/JP2017/003980 2016-02-25 2017-02-03 Method for bending thin film member WO2017145706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501107A JP6741921B2 (en) 2016-02-25 2017-02-03 Bending method for thin film member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-033779 2016-02-25
JP2016033779 2016-02-25

Publications (1)

Publication Number Publication Date
WO2017145706A1 true WO2017145706A1 (en) 2017-08-31

Family

ID=59686392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003980 WO2017145706A1 (en) 2016-02-25 2017-02-03 Method for bending thin film member

Country Status (2)

Country Link
JP (1) JP6741921B2 (en)
WO (1) WO2017145706A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076991A (en) * 2018-11-09 2020-05-21 株式会社東芝 Optical device
CN113023667A (en) * 2021-03-04 2021-06-25 中国科学院物理研究所 Three-dimensional micro-nano bending structure and method for preparing same by using electron beam
US12048092B2 (en) 2019-05-06 2024-07-23 3M Innovative Properties Company Patterned conductive article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273522A (en) * 1995-03-29 1996-10-18 Samsung Display Devices Co Ltd Microchip for electric field effect electron emission and its preparation
JP2009252689A (en) * 2008-04-10 2009-10-29 National Institute Of Advanced Industrial & Technology Manufacturing method of emitter for field emission element
US20110109952A1 (en) * 2009-11-10 2011-05-12 International Business Machines Corporation Nonvolatile nano-electromechanical system device
JP2011140072A (en) * 2010-01-05 2011-07-21 National Institute Of Advanced Industrial Science & Technology Method of bending thin-film member
US8442368B1 (en) * 2010-01-22 2013-05-14 The Ohio State University Research Foundation Cantilever couplers for intra-chip coupling to photonic integrated circuits

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273522A (en) * 1995-03-29 1996-10-18 Samsung Display Devices Co Ltd Microchip for electric field effect electron emission and its preparation
JP2009252689A (en) * 2008-04-10 2009-10-29 National Institute Of Advanced Industrial & Technology Manufacturing method of emitter for field emission element
US20110109952A1 (en) * 2009-11-10 2011-05-12 International Business Machines Corporation Nonvolatile nano-electromechanical system device
JP2011140072A (en) * 2010-01-05 2011-07-21 National Institute Of Advanced Industrial Science & Technology Method of bending thin-film member
US8442368B1 (en) * 2010-01-22 2013-05-14 The Ohio State University Research Foundation Cantilever couplers for intra-chip coupling to photonic integrated circuits

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076991A (en) * 2018-11-09 2020-05-21 株式会社東芝 Optical device
US11422235B2 (en) 2018-11-09 2022-08-23 Kabushiki Kaisha Toshiba Optical device
US12048092B2 (en) 2019-05-06 2024-07-23 3M Innovative Properties Company Patterned conductive article
US12133327B2 (en) 2019-05-06 2024-10-29 3M Innovative Properties Company Patterned article including electrically conductive elements
CN113023667A (en) * 2021-03-04 2021-06-25 中国科学院物理研究所 Three-dimensional micro-nano bending structure and method for preparing same by using electron beam
CN113023667B (en) * 2021-03-04 2023-11-10 中国科学院物理研究所 Three-dimensional micro-nano bending structure and method for preparing same by utilizing electron beam

Also Published As

Publication number Publication date
JPWO2017145706A1 (en) 2018-12-27
JP6741921B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
Prather et al. Photonic crystals
Zhou et al. High-efficiency shallow-etched grating on GaAs membranes for quantum photonic applications
JP5641391B2 (en) A method of manufacturing a multi-beam deflector array apparatus having electrodes, a multi-beam deflector array apparatus, and an irradiation lithography system.
US5894058A (en) Ultra-fine microfabrication method using a fast atomic energy beam
JP6436089B2 (en) Method for manufacturing curved grating
JP4564929B2 (en) Method for forming a three-dimensional photonic crystal
WO2017145706A1 (en) Method for bending thin film member
TW202002314A (en) Method for communication
WO2007052273A2 (en) Novel material and process for integrated ion chip
TW201207455A (en) Optical grating coupler
JP2014063866A (en) Method for processing silicon substrate and method for manufacturing charged particle beam lens
US20200088762A1 (en) Diamond probe hosting an atomic sized defect
JP2014137496A (en) Semiconductor sharp front edge structure, manufacturing method thereof, spot size converter and non-reflective termination
KR20240046540A (en) Electrostatic devices that affect a beam of charged particles
JP3829150B2 (en) Photonic crystal optical resonator
JP2004144730A (en) Cantilevered near-field probe structure and its manufacturing method
JP4271703B2 (en) Near-field probe using SOI substrate and manufacturing method thereof
Prather Photonic crystals: An engineering perspective
JP6792384B2 (en) Optical module
US20050115922A1 (en) Method of manufacturing optical fiber probe and for finishing micro material
JP2005123264A (en) Deflector array, its manufacturing method, and charged particle line exposure device using the same
JP2013255974A (en) Microstructure and method of manufacturing the same
JPH10313008A (en) Forming method of fine pattern and electric element having the same
Chien et al. Controlling the etch selectivity of silicon using low-RF power HBr reactive ion etching
US20230273370A1 (en) Optical isolator integrated with optical devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501107

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756148

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756148

Country of ref document: EP

Kind code of ref document: A1