WO2017038723A1 - Xanthine oxidase inhibitor - Google Patents
Xanthine oxidase inhibitor Download PDFInfo
- Publication number
- WO2017038723A1 WO2017038723A1 PCT/JP2016/075084 JP2016075084W WO2017038723A1 WO 2017038723 A1 WO2017038723 A1 WO 2017038723A1 JP 2016075084 W JP2016075084 W JP 2016075084W WO 2017038723 A1 WO2017038723 A1 WO 2017038723A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tetrapyrrole
- uric acid
- xod
- agent
- formula
- Prior art date
Links
- 0 Cc1c(C=O)[n]c(C(*)=O)c1CCC(O)=O Chemical compound Cc1c(C=O)[n]c(C(*)=O)c1CCC(O)=O 0.000 description 3
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/409—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/555—Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
Definitions
- the present invention relates to a novel xanthine oxidase inhibitor.
- Non-Patent Document 1 a state in which the serum uric acid level is higher than usual is called hyperuricemia, but gout caused by this state causes uric acid to form stones in the joint fluid, causing inflammation, and the base of the thumb, ankle, foot It is known as a disease accompanied by severe pain in the upper, knee, and Achilles (Non-Patent Document 1).
- Hyperuricemia is a cause of urate deposition such as kidney damage and urolithiasis, and is defined as hyperuricemia when the serum uric acid level exceeds 7.0 mg / dL regardless of age and sex. .
- the frequency of hyperuricemia in adult males is estimated to be 21.5-26.2%, reaching 30% after 30 years of age, which is a problem.
- the frequency of hyperuricemia is 1.3% under 50 years old and 3.7% after 50 years old, which is lower than that of men, but in the case of women, the serum uric acid level is 7. Even if it is 0 mg / dL or less, it is said that the risk of lifestyle-related diseases increases as the serum uric acid level rises, and it has been pointed out that it may be accompanied by an increase in the relative risk of total death.
- Hyperuricemia is classified into disease types, and is roughly classified into “uric acid production excess type”, “uric acid excretion reduced type”, and “mixed type”.
- probenecid and benzbromarone are examples of uric acid excretion promoters, and allopurinol is representative of uric acid production inhibitors.
- febuxostat can be prescribed from May 2011 as a uric acid production inhibitor.
- Drug selection according to the type of disease is in the basic principle, but if there is a history or complication of urinary calculi, it is necessary to select a uric acid production inhibitor even if it is a “uric acid excretion reduced type”.
- This uric acid production inhibitor is a substance that inhibits the activity of an enzyme that generates uric acid from xanthine, a metabolite of purine in vivo (xanthine oxidase (XOD), hereinafter also referred to as XOD).
- Serum uric acid level is reduced / suppressed by inhibiting the production of.
- these drugs can be expected to have a high serum uric acid level reducing effect, but side effects such as severe renal function and liver dysfunction must also be considered.
- Treatment has been addressed by improving lifestyle, ingesting foods rich in purines, and avoiding excessive intake of alcohols and calories. (Non-Patent Document 2).
- the object of the present invention is to provide a new technical means for effectively inhibiting the activity of XOD.
- XOD can be effectively inhibited using a tetrapyrrole-containing decomposition product or extract thereof or a specific compound derived therefrom.
- a xanthine oxidase inhibitor comprising a compound represented by formula (I) or an orally acceptable salt thereof: (Wherein R is OH or H).
- the xanthine oxidase inhibitor according to (1) which is obtained by containing a decomposition product of tetrapyrrole-containing product or an extract thereof.
- the agent according to (1) or (2) which is in the form of a single oral intake unit.
- the agent according to any one of (1) to (3) which is a blood uric acid lowering agent.
- the agent according to any one of (1) to (5) which is a therapeutic agent for hyperuricemia.
- the agent according to any one of (1) to (6) which is a composition.
- the agent according to any one of (1) to (7) which is a food or drink or a pharmaceutical product.
- Compound represented by formula (Ia) or an orally acceptable salt thereof: (10) A method for producing a xanthine oxidase inhibitor, which comprises blending a tetrapyrrole-containing decomposition product or an extract thereof into the agent.
- the tetrapyrrole-containing material is at least one selected from the group consisting of erythrocytes, hemoglobin, hemin, protoporphyrin, hematoporphyrin, bilirubin and chlorophyllin.
- the decomposition of the tetrapyrrole-containing material is performed by at least one reaction selected from the group consisting of an oxidation reaction, a reduction reaction, and an enzyme reaction.
- the xanthine oxidase inhibitor comprises a compound represented by formula (I) or an orally acceptable salt thereof: (Wherein R is OH or H).
- a disease caused by excessive production or decreased excretion of uric acid comprising ingesting an effective amount of a compound represented by formula (I) or an orally acceptable salt thereof into a subject in need thereof How to treat the condition: (Wherein R is OH or H).
- XOD can be effectively inhibited.
- the present invention can be advantageously used to effectively reduce blood uric acid in subjects such as hyperuricemia.
- the present invention can be advantageously used to treat diseases or conditions resulting from excessive production of uric acid or decreased excretion.
- 2 is a chart showing an elution profile obtained by subjecting an erythrocyte enzyme degradation product to an ODS-A column of reverse phase resin and gradient elution with an acetonitrile-TFA system. The arrow indicates a peak having XOD inhibitory activity.
- 3 is a chart showing an elution profile obtained by subjecting the peak fraction having XOD inhibitory activity in FIG. 2 to a reverse phase ODS-120T and performing a gradient elution with a methanol-TFA system. The peak having the highest inhibitory activity was designated as P1, and the peak having the second highest inhibitory activity was designated as P2.
- FIG. 3 shows XOD inhibitory activity curves of P1 derived from hemin-hydrogen peroxide reactant, P1 obtained by organic synthesis (hereinafter also referred to as synthetic P1), and allopurinol.
- FIG. 4 is a chart in which P1 after reverse phase chromatography in FIG. 3 is adsorbed to an anion exchange resin GigaCap Q-650M (manufactured by Tosoh Corporation) under conditions of 50 mM Tris-HCl pH 9 and eluted with a sodium chloride gradient. The absorption spectra of P1 and P2 derived from hemin-hydrogen peroxide reactant are shown.
- the LC / MS analysis (negative mode) result of P1 derived from erythrocyte enzymatic degradation product and the LC / MS analysis (negative mode) result of P1 and P2 derived from hemin-hydrogen peroxide reaction are shown.
- the LC / MS analysis result of P2 derived from hemin-hydrogen peroxide reactant and the estimation of the structure of P2 are shown.
- the 1 H-NMR and 13 C-NMR results of P1 derived from a hemin-hydrogen peroxide reactant are shown.
- the chart of reverse phase chromatography of P1 derived from erythrocyte enzyme degradation product, purified product of erythrocyte enzyme degradation product by activated carbon (activated carbon 1) or a mixture thereof is shown.
- the LC / MS analysis (negative mode) result of the synthesis P1 is shown.
- the result of 1 H-NMR of Synthesis P1 is shown. It is a graph which shows the serum uric acid level change of the mouse
- agent of the present invention is characterized in that it contains a tetrapyrrole-containing decomposition product or an extract thereof.
- tetrapyrrole means a compound containing four pyrrole rings, and includes linear and cyclic compounds.
- linear tetrapyrrole examples include villin (bilirubin, biliverdin, urobilinogen, urobilin, stercobilin, phytochrome, phycobilin, etc.).
- Examples of the cyclic tetrapyrrole include porphyrins (ethioporphyrin, mesoporphyrin, protoporphyrin, deuteroporphyrin, hematoporphyrin, coproporphyrin, uroporphyrin, pyroporphyrin, philoporphyrin, rhodoporphyrin, phytoporphyrin, etc.) and chlorins. .
- the porphyrin includes an intramolecular metal complex into which a metal atom such as iron, copper, magnesium or cobalt is introduced.
- a metal atom such as iron, copper, magnesium or cobalt
- the tetrapyrrole-containing material of the present invention may be tetrapyrrole itself or a composition containing tetrapyrrole.
- the tetrapyrrole-containing product is preferably red blood cells, hemoglobin, chloroplasts, hemin, protoporphyrin, hematoporphyrin, bilirubin, chlorophyll, chlorophyllin, and more preferably red blood cells, hemoglobin, hemin, hematoporphyrin or It is chlorophyllin.
- the origin of the tetrapyrrole-containing material is not particularly limited as long as the effects of the present invention are not hindered.
- Animals having blood such as mammals, birds, reptiles, fish, amphibians and other vertebrates, or plants and algae having chloroplasts.
- mammals, and more preferred are livestock animals such as pigs, cows, horses, sheep and goats.
- the tetrapyrrole-containing material may be obtained from a natural product, or a commercially available product may be used. Further, the tetrapyrrole-containing material may be subjected to a decomposition treatment as it is, or may be subjected to a decomposition treatment after performing a drying treatment such as spray drying, concentration drying, freeze drying and the like.
- the decomposition of the tetrapyrrole-containing material is preferably performed by at least one reaction selected from the group consisting of an oxidation reaction, a reduction reaction and an enzyme reaction.
- the oxidation reaction of the tetrapyrrole-containing material can be carried out by reacting the tetrapyrrole-containing material with an oxidizing agent such as hydrogen peroxide, hypochlorous acid or permanganate. More specifically, the oxidation reaction may be carried out at 45 to 60 ° C. for 1 to 16 hours by mixing a tetrapyrrole-containing material (in terms of dry matter) and an oxidizing agent in a molar ratio of 1:10 to 1: 500. preferable.
- an oxidizing agent such as hydrogen peroxide, hypochlorous acid or permanganate. More specifically, the oxidation reaction may be carried out at 45 to 60 ° C. for 1 to 16 hours by mixing a tetrapyrrole-containing material (in terms of dry matter) and an oxidizing agent in a molar ratio of 1:10 to 1: 500. preferable.
- the tetrapyrrole-containing product is reduced by using a reducing agent such as cysteine (Cys), glutathione (GST), dithiothreitol (DTT), ascorbic acid (vitamin C), tocophenol (vitamin E) and the like. It can be carried out by reacting. More specifically, the reduction reaction may be carried out at 45 to 60 ° C. for 1 to 16 hours by mixing a tetrapyrrole-containing material (in terms of dry matter) and a reducing agent in a molar ratio of 1: 1 to 1: 100. preferable.
- a reducing agent such as cysteine (Cys), glutathione (GST), dithiothreitol (DTT), ascorbic acid (vitamin C), tocophenol (vitamin E) and the like. It can be carried out by reacting. More specifically, the reduction reaction may be carried out at 45 to 60 ° C. for 1 to 16 hours by mixing a tetrapyrrole-containing material (
- iron ions such as iron (II) chloride and iron (III) chloride to the reaction system from the viewpoint of promoting the reaction.
- the enzyme used in the enzyme reaction of the tetrapyrrole-containing material is not particularly limited as long as the effect of the present invention is not hindered, but a proteolytic enzyme (protease) is preferable.
- proteases include endo-type proteases or exo-type proteases, and such proteases may be alkaline proteases.
- protease examples include Alcalase (trademark), Esperase (trademark), Neutrase (trademark) (manufactured by Novozymes), Orientase (trademark) 90N, Orientase (trademark) 22BF (manufactured by HIBI), Samoaase ( (Trademark) PC10F, protease P “Amano” 3SD (manufactured by Amano Pharmaceutical Co., Ltd.), Multifect (trademark) PR6L, Multifect (trademark) PR7L (manufactured by Danisco Japan Co., Ltd.), and the like, preferably alcalase and multifect PR6L . More specifically, the enzyme reaction is preferably carried out at 45 to 60 ° C. for 1 to 16 hours by mixing a tetrapyrrole-containing material (in terms of dry matter) and the enzyme at a weight ratio of 100: 1 to 100: 10.
- the tetrapyrrole containing material or extract thereof of the present invention contains a compound of the formula (I) or an orally acceptable salt thereof.
- the agent of the present invention comprises a compound of formula (I) or an orally acceptable salt thereof. (Wherein R is OH or H)
- the compound of the invention consists of a compound of formula (Ia) and / or a compound of formula (Ib).
- the orally acceptable salt of the compound of formula (I) is not particularly limited, and examples thereof include inorganic acid salts, inorganic base salts, organic acid salts, and organic base salts.
- the compound of formula (I) or an orally acceptable salt thereof absorbs moisture by attaching it to the atmosphere or recrystallizes, and adsorbs water or becomes a hydrate.
- the present invention also includes such various hydrates, solvates and polymorphic compounds.
- the compound of the formula (I) may be incorporated into the agent in the form of a prodrug, and the present invention includes such an embodiment.
- Suitable prodrugs include, for example, a nitrogen atom, a carboxyl group or an aldehyde group in formula (I), or a compound of formula (Ia) and / or formula (Ib), imine, nitrile, hydroxyl, amide, ester, carbamoyl. , Compounds converted or modified into acid anhydrides, and the like.
- the extract of the present invention includes, for example, an extract of a decomposition product of tetrapyrrole-containing product using an aqueous medium (such as ethanol, water, or a mixture thereof), and is preferably an ethanol extract.
- an aqueous medium such as ethanol, water, or a mixture thereof
- a tetrapyrrole-containing material in terms of dry matter
- an aqueous medium are mixed at a weight ratio of 5: 1 to 1: 5, and extraction is performed at 20 to 65 ° C. for 0.5 to 3 hours. Is preferred.
- purification treatment In the production of the agent of the present invention, purification treatment, concentration treatment, sterilization treatment, etc. are performed as desired for the decomposition product of tetrapyrrole-containing product or extract thereof, or the compound of formula (I) or an orally acceptable salt thereof. May be.
- the purification treatment include adsorption treatment with a porous substance such as activated carbon, synthetic adsorption resin, silica gel, filtration treatment with a nanofilter (NF membrane), ultrafiltration membrane, etc., dialysis treatment (electrodialysis, etc.), and centrifugation. Processing and the like.
- concentration treatment include ultrafiltration treatment, reduced pressure concentration treatment, lyophilization treatment, and the like.
- the purification treatment or concentration treatment is preferable for separating, decomposing or removing inactive components and increasing the concentration of the compound of formula (I) or an orally acceptable salt thereof.
- purification process, a concentration process, or a sterilization process etc. are preferable also when the pigment
- the activated carbon used for the purification treatment is preferably derived from wood flour, preferably in powder form, and most frequently having a pore diameter of 1 to 30 nm. The most frequent pore diameter of activated carbon can be measured by a nitrogen gas adsorption method.
- the amount of activated carbon used can be 0.1-20% of the decomposition product of tetrapyrrole-containing product or extract thereof, or the compound of formula (I) or an orally acceptable salt thereof, preferably 0. 4 to 1.25%.
- activated carbon was added to a tetrapyrrole-containing decomposition product or extract thereof or a compound of formula (I) or an orally acceptable salt thereof adjusted to pH 2 to 5.
- alkaline buffer having a pH of 9 to 11 It is preferable to elute with a solution or 0.05 to 0.15 M sodium hydroxide solution.
- the amount of the alkaline buffer or sodium hydroxide solution should be 0.01 to 100 times the amount of tetrapyrrole-containing degradation product or extract thereof, or the compound of formula (I) or orally acceptable salt thereof. The amount is preferably 0.1 to 10 times.
- the synthetic adsorption resin is preferably a styrene-divinylbenzene system, and most preferably has a pore diameter of 5 to 100 nm.
- the most frequent pore diameter of the synthetic adsorption resin can be measured by a mercury intrusion method.
- the amount of the synthetic adsorption resin to be used can be 10 times to 1/50 of the tetrapyrrole-containing decomposition product or extract thereof, or the compound of formula (I) or an orally acceptable salt thereof. The amount is preferably equivalent to 1/10.
- the nanofilter used in the purification treatment can have a molecular weight cut-off of 150 to 800, preferably 150-500.
- the tetrapyrrole-containing product decomposition product or the extract thereof may be solidified or pulverized by, for example, freeze drying or spray drying. Each treatment described above is carried out at any stage in the production of the tetrapyrrole-containing decomposition product or extract thereof, the compound of formula (I), or an orally acceptable salt thereof, as long as the effects of the present invention are not hindered. Also good.
- the agent of the present invention may be prepared using a decomposition product of tetrapyrrole-containing product or an extract thereof, a compound of formula (I) or an orally acceptable salt thereof as it is, and orally acceptable. You may mix
- Such orally acceptable additives are not particularly limited, but include solvents, solubilizers, lubricants, emulsifiers, isotonic agents, stabilizers, preservatives, preservatives, surfactants, regulators, Chelating agents, pH adjusters, buffers, excipients, binders, preservatives, thickeners, colorants, fragrances, fragrances, wetting agents, sweeteners, or antioxidants.
- the pH of the agent of the present invention is not particularly limited, but can be pH 1 to 14, preferably pH 3 to 11, more preferably pH 4 to 10.
- the agent of the present invention is not particularly limited as long as the effect of the present invention is not hindered.
- it is solid, powder, granule, capsule, block, liquid (eg, solution, suspension, emulsion). , Any form of slurry, gel, paste, or paste.
- Specific dosage forms include solid preparations such as tablets, powders, fine granules, granules, capsules, pills, sustained release agents, drinks, and jelly preparations.
- the agent of the present invention is preferably composed of a single oral intake unit form.
- the agent of the present invention may contain 1 to 5000 mg, more preferably 10 to 1000 mg, of a tetrapyrrole-containing decomposition product or an extract thereof in terms of dry mass as a single oral intake.
- the agent of the present invention is preferably 0.01 to 300 mg, more preferably 0. 0, in terms of dry mass of the compound of formula (I) or an orally acceptable salt thereof as a single oral intake. 1-100 mg may be contained.
- the packaging form is not particularly limited, and examples thereof include a pack or a container.
- component display, dose / use display, etc. may be attached to the surface of the package. Suitable examples of such packaging forms include supplements, drinks or pharmaceutical preparations.
- the agent of the present invention can be advantageously used for lowering blood uric acid or reducing uric acid level, or suppressing increase in blood uric acid level or uric acid production. Therefore, according to one embodiment, the agent of the present invention is preferably provided as a blood uric acid lowering agent, more preferably a serum uric acid level lowering agent. According to another aspect, the agent of the present invention is provided as a therapeutic agent for a disease or condition caused by excessive production of uric acid or decreased excretion. According to another aspect, the agent of the present invention is provided as a therapeutic agent for hyperuricemia.
- the agent of the present invention reduces blood uric acid, thereby causing gout based on hyperuricemia, urolithiasis, renal dysfunction (preferably chronic kidney disease, chronic glomerulonephritis), cardiovascular disease It can be advantageously used for treatment of various diseases such as (preferably coronary artery disease, ischemic heart disease), hypertension, metabolic syndrome, malignant tumor, etc., or reduction or improvement of disease state.
- diseases such as (preferably coronary artery disease, ischemic heart disease), hypertension, metabolic syndrome, malignant tumor, etc., or reduction or improvement of disease state.
- the agent of the present invention is hyperuricemia, gout based on hyperuricemia, urolithiasis, renal dysfunction (preferably chronic kidney disease, chronic glomerulonephritis), cardiovascular disease (preferably, Coronary artery disease, ischemic heart disease), hypertension, metabolic syndrome, treatment of various diseases such as malignant tumor, or reduction or improvement of the disease state can be displayed and provided.
- the “treatment” of the present invention includes not only treating an established pathological condition but also preventing a pathological condition that may be established in the future.
- the “treatment” of the present invention includes not only a medical act but also an act of improving or preventing a disease state or a condition that has already occurred or that may occur in the future by causing a food or drink described below to be ingested. Preferably included.
- the agent of the present invention can be provided in the form of a composition in which a plurality of components are blended. Therefore, according to one embodiment of the present invention, blood uric acid for xanthine oxidase inhibition comprising a tetrapyrrole-containing degradation product or extract thereof or a compound of formula (I) or an orally acceptable salt thereof Compositions are provided for reducing, for treating a disease or condition resulting from overproduction or decreased excretion of uric acid, or for treating hyperuricemia.
- the agent of the present invention may be a food or drink or a medicine as long as it contains a tetrapyrrole-containing decomposition product or extract thereof, or a compound of formula (I) or an orally acceptable salt thereof. Therefore, according to another aspect, the agent of the present invention is for inhibiting xanthine oxidase, comprising a tetrapyrrole-containing degradation product or extract thereof or a compound of formula (I) or an orally acceptable salt thereof, A food / beverage composition or a pharmaceutical composition for lowering blood uric acid, for treating a disease or condition caused by excessive production or decreased excretion of uric acid, or for treating hyperuricemia.
- the food and drink of the present invention is not particularly limited, but for example, instant foods such as instant noodles, retort foods, canned foods, microwave foods, instant soups and miso soups, freeze-dried foods; soft drinks, fruit juice drinks, vegetable drinks Beverages such as soy milk drinks, coffee drinks, tea drinks, powdered drinks, concentrated drinks, alcoholic drinks; flour products such as bread, pasta, noodles, cake mixes, bread crumbs; rice cakes, caramel, chewing gum, chocolate, cookies, biscuits, Cakes, pies, snacks, crackers, Japanese confectionery, dessert confectionery, etc .; sauces, tomato processed seasonings, flavor seasonings, cooking mixes, sauces, dressings, soups, curry and stew seasonings Oils and fats such as processed fats and oils, butter, margarine, mayonnaise; milk beverages, yogurts, lactic acid bacteria beverages, ice Reem class, cream, and the like of dairy products; agricultural canning, jam, marmalade class, agricultural processed products of serial and the like; ham, bacon
- the foods and drinks of the present invention include health foods, functional foods (for example, foods for specified health use, nutritional functional foods or functional labeling foods), nutritional supplements, foods for the sick, infant formulas, pregnant women, This includes milk powder for lactating women and food for those who have difficulty swallowing.
- the food and drink of the present invention is used for xanthine oxidase inhibition, blood uric acid reduction, uric acid overproduction or treatment of diseases or conditions caused by reduced excretion, or hyperuricemia treatment May be attached.
- the medicament of the present invention is also used for treatment of diseases or conditions caused by xanthine oxidase inhibition, blood uric acid reduction, excessive production or excretion of uric acid, or hyperuricemia. It may be a display.
- Such pharmaceuticals can be prepared according to the description regarding the above-mentioned agents.
- a method for inhibiting xanthine oxidase comprising an effective amount of a tetrapyrrole-containing degradation product or extract thereof, a compound of formula (I) or an orally acceptable salt thereof,
- a method comprising ingesting a subject in need thereof.
- the above method is provided as a method for reducing blood uric acid.
- the above method is provided as a method for treating a disease or condition caused by excessive production of uric acid or decreased excretion.
- the above method is provided as a method for treating hyperuricemia.
- it excludes medical practice, and this act is also called non-therapeutic act.
- the said method of this invention can be implemented according to description of the agent of this invention.
- the ingestion method of the agent of the present invention is not particularly limited as long as the effect of the present invention is not hindered, but is preferably taken orally.
- the subject in the present invention is a mammal, for example, a rodent, a dog, a cat, a cow, a primate, etc., preferably a human.
- the serum uric acid level in the subject is not particularly limited, but it is preferably a high level in view of improvement of hyperuricemia due to a reduction in uric acid level.
- Such a serum uric acid level is preferably in a state exceeding 7.0 mg / dL.
- the subject may be a healthy person.
- the effective amount of tetrapyrrole-containing degradation product or extract thereof or the compound of formula (I) or orally acceptable amount thereof is not particularly limited as long as it does not interfere with the effect of the present invention. It is appropriately determined by those skilled in the art according to sex, age, symptoms, condition and the like.
- the agent of the present invention contains, as an effective amount, a tetrapyrrole-containing decomposition product or an extract thereof in terms of dry mass, 0.05 to 100 mg / kg body weight / day, preferably 0.5 to 25 mg / kg body weight / day. It can be.
- the agent of the present invention contains, for example, an effective amount of the compound of formula (I) or an orally acceptable salt thereof in the range of 0.01 to 15 mg / kg body weight / day, preferably 0. 1 to 5 mg / kg body weight / day.
- the intake plan in the present invention can be appropriately set by those skilled in the art according to the species, age, sex, symptom, and state of the subject as long as the effects of the present invention are not hindered.
- the number of daily intakes is, for example, 1 to 6 times a day, and preferably 3 times a day.
- a tetrapyrrole-containing degradation product or an extract thereof, a compound of formula (I), or an orally acceptable salt thereof in the manufacture of a xanthine oxidase inhibitor.
- a tetrapyrrole-containing degradation product or an extract thereof, a compound of formula (I) or an orally acceptable salt thereof in the manufacture of a blood uric acid lowering agent.
- a tetrapyrrole-containing degradation product or an extract thereof or a compound of formula (I) in the manufacture of a therapeutic agent for a disease or condition caused by excessive production of uric acid or decreased excretion Alternatively, the use of an orally acceptable salt thereof is provided.
- a tetrapyrrole-containing degradation product or an extract thereof, or a compound of formula (I) or an orally acceptable salt thereof in the manufacture of a therapeutic agent for hyperuricemia. Use is provided.
- a tetrapyrrole-containing degradation product or extract thereof, or a compound of formula (I) or an orally acceptable salt thereof as a xanthine oxidase inhibitor.
- a tetrapyrrole-containing degradation product or an extract thereof or a compound of formula (I) or an orally acceptable salt thereof as a blood uric acid lowering agent. Is done.
- a tetrapyrrole-containing decomposition product or an extract thereof, a compound of formula (I) or a compound as a therapeutic agent for a disease or condition caused by excessive production or decreased excretion of uric acid Use of the orally acceptable salt is provided.
- use of a tetrapyrrole-containing degradation product or an extract thereof or a compound of formula (I) or an orally acceptable salt thereof as a therapeutic agent for hyperuricemia is provided.
- the use of the invention is a non-therapeutic use.
- the xanthine is characterized in that a tetrapyrrole-containing decomposition product or extract thereof, or a compound of formula (I) or an orally acceptable salt thereof is blended in the agent.
- a method for producing an oxidase inhibitor is provided.
- the product comprising a decomposition product of tetrapyrrole or an extract thereof, or a compound of formula (I) or an orally acceptable salt thereof is characterized by comprising:
- a method for producing a blood uric acid lowering agent is provided.
- the product comprising a decomposition product of tetrapyrrole or an extract thereof, or a compound of formula (I) or an orally acceptable salt thereof is characterized by comprising: A method for producing a therapeutic agent for a disease or condition resulting from excessive production of uric acid or decreased excretion is provided.
- the product comprising a decomposition product of tetrapyrrole or an extract thereof, or a compound of formula (I) or an orally acceptable salt thereof is characterized by comprising: A method for producing a therapeutic agent for hyperuricemia is provided.
- a tetrapyrrole-containing degradation product or extract thereof a compound of formula (I) or an orally acceptable salt thereof for xanthine oxidase inhibition.
- a tetrapyrrole-containing degradation product or extract thereof or a compound of formula (I) or an orally acceptable salt thereof for reducing blood uric acid there is provided.
- Tetrapyrrole-containing degradation products or extracts thereof, or compounds of formula (I) or orally acceptable salts thereof Tetrapyrrole-containing degradation products or extracts thereof, or compounds of formula (I) or orally acceptable salts thereof.
- a tetrapyrrole-containing degradation product or an extract thereof, a compound of formula (I) or a compound for the treatment of hyperuricemia or reduction of the risk of hyperuricemia Its orally acceptable salt is provided. Any of these embodiments can be carried out in accordance with the description relating to the agent and method of the present invention.
- JIS Japanese Industrial Standards
- Test Example 1 Red blood cell powder was used as a raw material for preparing a tetrapyrrole-containing product degradation product (porcine erythrocyte enzyme degradation product) .
- the erythrocyte powder was obtained by centrifuging pig blood to obtain erythrocytes and spray-drying the erythrocytes.
- Preparation of the erythrocyte enzymatic degradation product was carried out as follows with reference to the method for producing heme iron complex (Japanese Patent Laid-Open No. 4-013680).
- the erythrocyte enzymatic degradation product was adjusted to various pH by adding hydrochloric acid, and then the XOD inhibitory activity was measured in vitro.
- In vitro XOD inhibitory activity was measured with reference to the method of Masuda et al. (Juniai Women's Junior College Bulletin, No. 41, 2008). Specifically, the inhibitory activity was determined from the amount of change in uric acid produced by adding xanthine as a substrate to xanthine oxidase (XOD).
- 10 ⁇ L of the erythrocyte enzymatic degradation product was added to 240 ⁇ L of 0.1 M phosphate buffer (pH 7.4).
- Test Example 2 Preparation of tetrapyrrole-containing degradation product (bovine erythrocyte enzyme degradation product) Bovine blood-derived hemoglobin powder (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of porcine-derived erythrocyte powder in the same manner as in Test Example 1. An erythrocyte enzymatic degradation product was obtained.
- Test Example 3 Preparation of a decomposition product of tetrapyrrole-containing product (enzyme reaction product of a mixture of hemin and albumin)
- hemoglobin is composed of heme and globin
- XOD can also be obtained by enzymatic reaction of a mixture of proteins other than heme and globin. It was confirmed whether it showed inhibitory activity.
- hemin was used as hem. After mixing hemin (manufactured by Kodak) and bovine-derived albumin (manufactured by Wako Pure Chemical Industries) at a ratio of about 1:10, protease was added and reacted in the same manner as in Test Example 1, and the mixture of hemin and albumin An enzyme reaction product was obtained.
- the enzyme reaction product of the mixture of hemin and albumin was adjusted to pH 4, and then the XOD inhibitory activity was measured in vitro by the same method as in Test Example 1. As a result, 23.7% XOD inhibitory activity was observed (Table 1).
- Test Example 4 Preparation of tetrapyrrole-containing degradation product (reaction product of hemin and various reducing agents)
- the XOD inhibitor in the erythrocyte enzyme degradation product is a degradation product of heme (hemin) present in hemoglobin and myoglobin from the above examination.
- the possibility was suggested. Therefore, cysteine (Cys) (manufactured by Wako Pure Chemical Industries, Ltd.), glutathione (GSH) (manufactured by Wako Pure Chemical Industries, Ltd.) to a final concentration of 100 ⁇ mol / mL with respect to a hemin (manufactured by Kodak) solution having a final concentration of 10 ⁇ mol / mL.
- a reducing agent such as dithiothreitol (DTT) (manufactured by Wako Pure Chemical Industries, Ltd.) is added, adjusted to pH 10 with a 0.1 M sodium hydroxide (manufactured by Wako Pure Chemical Industries) solution, and reacted at 60 ° C. overnight. The reaction product was obtained.
- DTT dithiothreitol
- the reaction product of hemin and various reducing agents was adjusted to pH 4 and then the XOD inhibitory activity was measured in vitro by the same method as in Test Example 1. As a result, XOD inhibitory activity could be detected in all the reaction products (Table 1). Moreover, the peak which has XOD inhibitory activity on the reverse phase chromatography of these reaction products overlapped with the peak which has XOD inhibitory activity derived from the erythrocyte enzyme degradation product. Therefore, it was suggested that the substance showing XOD inhibitory activity in the reaction product is the same substance as the XOD inhibitor derived from the erythrocyte enzyme degradation product.
- Test Example 5 Preparation of decomposition product of tetrapyrrole-containing product (reaction product of tetrapyrrole compound and cysteine)
- reaction product of tetrapyrrole compound and cysteine reaction product of tetrapyrrole compound and cysteine
- iron-free protoporphyrin manufactured by Tokyo Kasei Kogyo
- heme heme
- bilirubin manufactured by Tokyo Kasei Kogyo Co., Ltd.
- cysteine is added to a final concentration of 10 ⁇ mol / mL protoporphyrin solution, final concentration of 10 ⁇ mol / mL hematoporphyrin or final concentration of 10 ⁇ mol / mL bilirubin to a final concentration of 100 ⁇ mol / mL.
- the pH was adjusted to 10 with 1 M sodium hydroxide solution and reacted at 60 ° C. overnight to obtain a reaction product.
- iron (II) chloride manufactured by Wako Pure Chemical Industries, Ltd. was added to the reaction product of protoporphyrin or bilirubin and cysteine so as to have a final concentration of 10 ⁇ mol / mL, adjusted to pH 10, and then reacted at 60 ° C. overnight. Then, an iron (II) chloride addition reaction product was obtained.
- the reaction product of the tetrapyrrole compound and cysteine was adjusted to pH 4 by adding hydrochloric acid, and then the XOD inhibitory activity was measured in vitro in the same manner as in Test Example 1. As a result, XOD inhibitory activity could be detected in all the reaction products (Table 1).
- the reaction product added with iron (II) chloride after adjusting the pH to 4 by adding hydrochloric acid, the XOD inhibitory activity was measured in vitro in the same manner as in Test Example 1.
- the reaction product added with iron chloride (II) was able to further increase the XOD inhibitory activity by about 10% as compared with the reaction product not added with iron chloride (II) (Table 1). This suggests that the presence of iron may increase the production rate of XOD inhibitors.
- Test Example 6 Preparation of decomposition product of tetrapyrrole-containing product (reaction product of hemin and hydrogen peroxide) Reaction product of hemin and hydrogen peroxide instead of the reaction product of hemin and reducing agent (hereinafter referred to as hemin-peroxidation) It was investigated whether XOD inhibitory activity could be detected in the hydrogen reactant).
- the reaction method of hemin and hydrogen peroxide was referred to the method of Iwata (Oka University Medical Bulletin, 4: 31-36, 1993). Specifically, first, 1/40 amount of 28% ammonia (manufactured by Wako Pure Chemical Industries, Ltd.) was added to a hemin 10 mg / mL solution to dissolve hemin.
- the hemin-hydrogen peroxide reactant was adjusted to pH 4 by adding hydrochloric acid, and then the XOD inhibitory activity was measured in vitro by the same method as in Test Example 1. As a result, the XOD inhibitory activity of the reaction product was 87.5% (Table 1).
- Test Example 7 Preparation of tetrapyrrole-containing decomposition product (reaction product of chlorophyllin and hydrogen peroxide) between chlorophyllin, which is a tetrapyrrole compound involved in photosynthesis organisms such as plants, phytoplankton and algae, and hydrogen peroxide It was examined whether the reaction product could detect XOD inhibitory activity. It was prepared by the same preparation method as the reaction product of hemin and hydrogen peroxide described in Test Example 6 except that iron chlorophyllin Na (iron chlorophyll) (manufactured by Japanese chlorophyll) was used instead of hemin.
- the reaction product of chlorophyllin and hydrogen peroxide was adjusted to pH 4 by adding hydrochloric acid, and then the XOD inhibitory activity was measured in vitro in the same manner as in Test Example 1. As a result, the XOD inhibitory activity of the reaction product was 24.2% (Table 1).
- Test Example 8 Isolation of XOD inhibitor from tetrapyrrole-containing product (red blood cell enzyme degradation product or hemin-hydrogen peroxide reactant) XOD inhibitory activity was confirmed in the red blood cell enzyme degradation product. was used to isolate an XOD inhibitor.
- the erythrocyte enzymatic degradation product obtained in Test Example 1 was adjusted to pH 4, and 5-fold amount of 2-propanol was added to extract an XOD inhibitor. This 2-propanol-extracted fraction was applied to an ODS-A column (manufactured by YMC) with a reverse phase resin and was eluted with a gradient using an acetonitrile-trifluoroacetic acid (TFA) system (FIG. 2).
- TFA acetonitrile-trifluoroacetic acid
- the peak fraction indicated by the arrow detected at 313 nm had a clear XOD inhibitory activity. In the other peaks, almost no XOD inhibitory activity was detected. Further, the peak fraction having the inhibitory activity was subjected to reverse phase ODS-120T (manufactured by Tosoh Corporation) and eluted with a gradient using methanol-TFA system (FIG. 3). As a result, three peaks were obtained at a detection wavelength of 313 nm. As a result of measuring the XOD inhibitory activity with respect to these peaks, the first and second peak fractions showed XOD inhibitory activity.
- the peak fraction in which the XOD inhibitory activity was confirmed was collected and used as a solution in which the absorbance value at 313 nm was adjusted to about 1.
- the peak showing 63% XOD inhibitory activity was taken as the P1 peak
- the peak showing 48% XOD inhibitory activity was taken as the P2 peak (FIG. 3).
- hemin-hydrogen peroxide hemin-hydrogen peroxide reactant of Test Example 6
- Reactant-derived P1 and P2 The absorption spectra of hemin-hydrogen peroxide reactant-derived P1 and P2 were measured with a spectrophotometer (DU7400, manufactured by Beckman). As a result, the maximum absorption wavelengths were around 308 nm and 322 nm, respectively, and the spectra were similar (FIG. 6). -1).
- the obtained hemin-hydrogen peroxide reactant-derived P1 was lyophilized and then dissolved in distilled water so that the P1 concentration was 0.7 mg / mL, and XOD was inhibited in vitro in the same manner as in Test Example 1. Activity was measured. As a result, the 50% inhibitory concentration (IC 50 value) of P1 derived from the hemin-hydrogen peroxide reactant was 2.45 ⁇ g / mL. (Fig. 4) As described above, the XOD inhibitor can be separated using reverse phase chromatography, but can also be separated and purified using an ion exchange resin after reverse phase chromatography.
- Test Example 9 Molecular weight / structure analysis of XOD inhibitor derived from tetrapyrrole-containing product (red blood cell enzyme degradation product or hemin-hydrogen peroxide reaction product)
- the molecular weight and structure of the origin P1 and the hemin-hydrogen peroxide reactant-derived P1 and P2 were predicted by LC / MS (Synapt G2-S type, manufactured by Waters).
- the molecular weights of P1 and P2 can be estimated, and the hemin-hydrogen peroxide reactant-derived P1 and the erythrocyte enzyme degradation product-derived P1 are eluted by the reverse phase ODS-120T (manufactured by Tosoh) shown in Test Example 8.
- P1 has a molecular weight of 225 (FIG. 6-2) and has a structure having a methyl group, an aldehyde group, a carboxyl group, and propionic acid in the pyrrole ring. From the structure, it was confirmed that it was composed of a part of the porphyrin ring structure (FIG. 6-4). Since P2 is derived from the same hemin-hydrogen peroxide reactant as P1, and the absorption spectrum is similar, P2 was predicted to be an isomer similar to P1. Therefore, the molecular weight and structure were estimated from the LC / MS data of P2.
- the molecular weight of P2 was estimated to be 209 from the LC / MS (negative mode) results (FIG. 6-2). From the LC / MS (positive mode) results, P2 was fragmented during ionization (a) to (f), and the molecular weight of each fragment ion coincided with the molecular weight of the predicted structure when fragmented. (Fig. 6-3). From these results, the P2 structure was estimated. The P1 and P2 structures are shown below. As is clear from the above chemical formula, XOD inhibitors P1 and P2 do not have a purine skeleton.
- allopurinol a therapeutic drug for hyperuricemia
- side effects such as nephrotoxicity
- the XOD inhibitor P1 and / or P2 is very useful in the reduction of blood uric acid and the treatment of hyperuricemia.
- Test Example 10 Method for producing XOD inhibitor from tetrapyrrole-containing product degradation product (erythrocyte enzyme degradation product)
- Test Example 10-1 Purification method of activated carbon for XOD inhibitor XOD inhibitor is efficiently purified from the erythrocyte enzyme degradation product using activated carbon for food production or pharmaceutical production used for decolorization or deodorization. It was possible to produce a raw material for the agent of the present invention in which the content of the inhibitory substance was increased. First, about 1.2%, 0.6% or 0.48% amount of activated carbon was added to the erythrocyte enzyme degradation product of Test Example 1 adjusted to pH 4, and the XOD inhibitor was added. After adsorbing, the activated carbon was recovered.
- the recovered activated carbon is washed with an equal amount of water to the erythrocyte enzyme degradation product and then eluted with an alkaline buffer of pH 9 or pH 10.5 or 0.07M sodium hydroxide solution to effectively purify the XOD inhibitor.
- concentration of P1 could be increased.
- the activated carbon used in the study was activated carbon 1 (Shirakaba P), activated carbon 2 (Shirakaba A) (above, most frequently around pore size 2.2 nm, wood-derived / steam activated carbon), activated carbon 3 (FP-3 (manufacturer)) (Most frequent pore diameter near 1.7 nm, derived from coconut shell / steam activated charcoal), activated carbon 4 (FP-6 (manufacturer temporary name)) (most frequent pore diameter near 3.3 nm, derived from wood / zinc chloride activated charcoal) , Nippon Enviro Chemicals Co., Ltd.) and activated carbon 5 (Dia Hope 6ED (derived from wood / zinc chloride activated charcoal) (Calgon Carbon Japan Co., Ltd.)).
- activated carbon 4 had the highest adsorption ability of the XOD inhibitor among them, and then activated carbon 5, and activated carbon 1 and activated carbon 2 had less dye elution.
- activated carbon 1 can increase the specific activity of XOD inhibition 62.8 times by eluting the XOD inhibitor with 50 mM Tris-HCl buffer pH 9.0, which is equivalent to the erythrocyte enzyme degradation product. did it.
- activated carbon 4 and activated carbon 2 when eluted with 1/10 amount of 100 mM sodium carbonate buffer pH 10.5 of the erythrocyte enzyme degradation product, activated carbon 2 increased the specific activity of XOD inhibition by 67.7 times, and activated carbon 4 In the case of activated carbon 4 using 70 mM sodium hydroxide, the specific activity of inhibition could be increased about 110 times (Table 2).
- the inhibitory activity yield indicates the ratio of the XOD inhibition rate after purification, assuming that the XOD inhibition rate of the erythrocyte enzyme degradation product before purification is 100%.
- the purified product by activated carbon 4 was darker than the purified product by activated carbon 2, but the specific activity of XOD inhibition was high.
- This activated carbon purification method from erythrocyte enzymatic degradation products requires very little activated carbon to be used at 1.25% or less of the reaction volume and requires no solvent for elution, so it is very low cost and has low environmental impact. It was considered a manufacturing method.
- the liquid obtained by this purification method using activated carbon can be dried, powdered and solubilized, and can be used as a raw material for oral preparations.
- Test Example 10-2 Extraction Method of XOD Inhibitory Substance with Hot Ethanol
- concentration could be increased.
- the salt concentration was reduced to about 36%, and the XOD inhibition specific activity could be increased nearly 3 times (Table 3).
- Table 3 the remaining amount of salt indicates the ratio of the salinity concentration in the solid content after extraction when the salinity concentration in the solid content before ethanol extraction is defined as 100%.
- the salt concentration was measured with a salinometer (LAQUATwin B-721, manufactured by Horiba, Ltd.) after dissolving the dried hot ethanol extract in water. With hot ethanol extraction, pigment and odor could be reduced at the same time.
- This hot ethanol extract can be powdered and solubilized, and can be used as a raw material for oral preparations.
- Test Example 10-3 Purification method using XNF inhibitor NF filter membrane XOD inhibitors P1 and P2 are substances having molecular weights of 225 and 209, respectively. Therefore, it was possible to increase the concentration of the XOD inhibitor by efficiently purifying the XOD inhibitor by using a filtration membrane having an appropriate fractional molecular weight.
- a filtration membrane As the filtration membrane, four types of NF membrane (nanofilter) (Muromachi Chemical) were used.
- the NF membrane used was NF membrane 1 (NFX (fraction molecular weight 150-300)), NF membrane 2 (NFW (fraction molecular weight 300-500)), NF membrane 3 (NFG (fraction molecular weight 600-800)) NF membrane 4 (NF270 (fraction molecular weight 200-400)).
- the porcine erythrocyte enzymatic degradation product of Test Example 1 was adjusted to pH 4 and permeated.
- the XOD inhibition specific activity can be increased in any of the membranes, in particular, the solid content can be reduced to about 1% in the NF membrane 1, and the XOD inhibition specific activity can be increased by 58.7 times (Table 4).
- the liquid obtained by this NF filtration membrane method can be powdered and solubilized, and can be used as a raw material for oral preparations.
- Test Example 10-4 Purification Method of XOD Inhibitory Substance with Synthetic Adsorption Resin The concentration of XOD inhibitor could be increased by efficiently purifying the XOD inhibitory substance from the erythrocyte enzyme degradation product using the synthetic adsorption resin.
- synthetic adsorption resin 1 diaion HP20 (styrene-divinylbenzene system, most frequent pore diameter 58 nm)
- synthetic adsorption resin 2 HP20SS (styrene-divinylbenzene system, most frequent pore diameter 58 nm)
- Synthetic adsorption resin 3 SP850 (styrene-divinylbenzene system, most frequent pore diameter 9 nm)
- synthetic adsorption resin 4 HP2MGL (aliphatic ester system, most frequent pore diameter 48 nm)
- the XOD inhibitory specific activity could be increased 13.6 times (Table 1). 5).
- the purification method using synthetic adsorption resin was able to significantly reduce salt, pigment and odor.
- the liquid purified by the synthetic adsorption resin can be powdered and solubilized and can be used as a raw material for oral preparations.
- Test Example 11 Production Method of XOD Inhibitory Substance by Organic Synthesis
- the XOD inhibitory substance was not only obtained from the reaction product of biological organic matter such as the above-mentioned erythrocyte enzyme degradation product or heme, but also could be synthesized organically.
- XOD inhibitor P1 was synthesized by the following synthesis schemes (A) to (F).
- synthesis P1 The structure of P1 obtained by organic synthesis (hereinafter also referred to as synthesis P1) was confirmed by LC / MS 1200A (manufactured by Agilent Technologies) and 1 H-NMR Mercury Plus 400 MHz (manufactured by Varian). In LC / MS analysis (negative mode), a signal of molecular ion m / z 224 of P1 was detected (FIG. 8), and a proton signal consistent with the P1 structure was obtained in 1 H-NMR (FIG. 9). The solvent used in 1 H-NMR was deuterated DMSO. From the above, it was confirmed that the synthesized P1 had the same structure as the hemin-hydrogen peroxide-derived P1.
- Test Example 12 Measurement of inhibitory activity of XOD inhibitor obtained by organic synthesis
- XOD inhibitory activity of synthetic P1 purity 95% or more obtained in Test Example 11
- the inhibitory activity curve was hemin-peroxidation.
- the inhibitory activity behavior similar to that of hydrogen-derived P1 was shown (FIG. 4).
- the IC 50 value of synthetic P1 was 1.56 ⁇ g / mL, which was about 27-fold inhibitory activity compared to the IC 50 value of allopurinol of 42.8 ⁇ g / mL (Table 6).
- Test Example 13 In vivo evaluation of XOD inhibitor obtained by organic synthesis In vivo evaluation of synthetic P1 in a hyperuricemia model rat was performed. Specifically, the effect of reducing blood uric acid was tested using hyperuricemia model rats in which blood uric acid levels were increased by intraperitoneal administration of potassium oxonate to rats. In the test, potassium oxonate was intraperitoneally administered to 5-week-old male rats three times 1 hour before the start of the test, 1 hour after the start, and 3 hours after the start so that the weight of the rat was 250 mg / kg of the body weight of the rat ( Potassium oxonate group).
- the potassium oxonate + synthetic P1 group was significantly compared with the potassium oxonate group at 0.5 to 8 hours after administration (1, 4, 6, 8 hours after administration: P ⁇ 0 .01, 0.5, 2, 3 hours after administration: P ⁇ 0.05) was observed to suppress the accumulation of uric acid in the blood (FIG. 10).
- AUC area under the curve
- serum uric acid levels up to 6 hours after administration of synthetic P1 in this study (FIG. 11).
- the accumulation of uric acid can be confirmed significantly ( P ⁇ 0.01) compared to the control group, but the potassium oxonate + synthetic P1 group significantly suppresses the accumulation of uric acid ( P ⁇ 0.01). (FIG. 11). From these results, it was confirmed that the XOD inhibitor P1 is highly effective in vivo even through the digestive tract by oral administration.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
The present invention provides a novel xanthine oxidase inhibitor. More specifically, the present invention provides a xanthine oxidase inhibitor comprising a compound represented by formula (I) or an orally acceptable salt thereof.
(wherein R represents OH or H).
Description
本特許出願は、2015年8月28日に出願された日本国特許出願2015-169753号に基づく優先権の主張を伴うものであり、かかる先の特許出願における全開示内容は、引用することにより本明細書の一部とされる。
This patent application is accompanied by a claim of priority based on Japanese Patent Application No. 2015-169753 filed on Aug. 28, 2015, and the entire disclosure in such earlier patent application is incorporated by reference. It is made a part of this specification.
本発明は、新規なキサンチンオキシダーゼ阻害剤に関する。
The present invention relates to a novel xanthine oxidase inhibitor.
近年、食の欧米化やアルコール摂取量の増加と共に生活習慣病の増加が懸念されている。その中で、通常より血清尿酸値が高い状態を高尿酸血症というが、この状態が原因で引き起こされる痛風は、関節液中に尿酸が結石化して炎症を起こし、親指の付け根、足首、足の甲、膝、アキレス健などに激しい痛みを伴う疾患として知られている(非特許文献1)。
In recent years, there has been a concern that lifestyle-related diseases will increase along with the westernization of food and the increase in alcohol intake. Among them, a state in which the serum uric acid level is higher than usual is called hyperuricemia, but gout caused by this state causes uric acid to form stones in the joint fluid, causing inflammation, and the base of the thumb, ankle, foot It is known as a disease accompanied by severe pain in the upper, knee, and Achilles (Non-Patent Document 1).
国民生活基準調査(2004年)によると、痛風患者数は87万人を超えており、1986年と比べ3.4倍に急増している。また、高尿酸血症は、腎障害、尿路結石などの尿酸塩沈着症の原因となり、年齢・性別は問わず血清尿酸値が7.0mg/dLを超えると高尿酸血症と定義される。近年の調査によると、成人男性における高尿酸血症の頻度は21.5~26.2%とされ30歳以降で30%に達していると推定され、問題となっている。また、女性の場合、高尿酸血症の頻度は50歳未満で1.3%、50歳以降で3.7%と男性に比べ低頻度であるが、女性の場合、血清尿酸値が7.0mg/dL以下であっても、血清尿酸値の上昇とともに生活習慣病のリスクが高まるとされ、総死亡の相対危険度の上昇を伴う可能性が指摘されている。
According to the National Living Standards Survey (2004), the number of gout patients exceeds 870,000, which is a 3.4-fold increase compared to 1986. Hyperuricemia is a cause of urate deposition such as kidney damage and urolithiasis, and is defined as hyperuricemia when the serum uric acid level exceeds 7.0 mg / dL regardless of age and sex. . According to recent surveys, the frequency of hyperuricemia in adult males is estimated to be 21.5-26.2%, reaching 30% after 30 years of age, which is a problem. In the case of women, the frequency of hyperuricemia is 1.3% under 50 years old and 3.7% after 50 years old, which is lower than that of men, but in the case of women, the serum uric acid level is 7. Even if it is 0 mg / dL or less, it is said that the risk of lifestyle-related diseases increases as the serum uric acid level rises, and it has been pointed out that it may be accompanied by an increase in the relative risk of total death.
高尿酸血症には病型の分類があり、「尿酸生産過剰型」、「尿酸排泄低下型」、「混合型」に大別される。薬物治療において、尿酸排泄促進薬としてはプロベネシド、ベンズブロマロンなどがあり、尿酸生成抑制薬としては代表としてアロプリノールがある。また、同じく尿酸生成抑制薬として2011年5月よりフェブキソスタットが処方可能となった。病型に合わせた薬剤選択が基本原則にあるが、尿路結石の既往ないし合併がある場合は「尿酸排泄低下型」であっても尿酸生成抑制薬を選択する必要がある。この尿酸生成抑制薬は、生体内ではプリン体の代謝産物であるキサンチンから尿酸を生成する酵素(キサンチンオキシダーゼ(xanthine oxidase:XOD)、以下、XODともいう)の活性を阻害する物質であり、尿酸の生成を抑制することによって血清尿酸値を低減・抑制する。しかしながら、これらの薬物では高い血清尿酸値の減少効果が期待できるが、重篤な腎機能および肝機能障害等の副作用も考慮しなければならない。現時点で薬物治療が必要としないレベルの無症状の高尿酸血症の患者においては、生活習慣の改善とプリン体の多い食品の摂取、アルコール類やカロリーの過剰摂取を避ける指導等で対処されている(非特許文献2)。
Hyperuricemia is classified into disease types, and is roughly classified into “uric acid production excess type”, “uric acid excretion reduced type”, and “mixed type”. In drug therapy, probenecid and benzbromarone are examples of uric acid excretion promoters, and allopurinol is representative of uric acid production inhibitors. Similarly, febuxostat can be prescribed from May 2011 as a uric acid production inhibitor. Drug selection according to the type of disease is in the basic principle, but if there is a history or complication of urinary calculi, it is necessary to select a uric acid production inhibitor even if it is a “uric acid excretion reduced type”. This uric acid production inhibitor is a substance that inhibits the activity of an enzyme that generates uric acid from xanthine, a metabolite of purine in vivo (xanthine oxidase (XOD), hereinafter also referred to as XOD). Serum uric acid level is reduced / suppressed by inhibiting the production of. However, these drugs can be expected to have a high serum uric acid level reducing effect, but side effects such as severe renal function and liver dysfunction must also be considered. In patients with asymptomatic hyperuricemia at a level that does not require drug treatment at the present time, treatment has been addressed by improving lifestyle, ingesting foods rich in purines, and avoiding excessive intake of alcohols and calories. (Non-Patent Document 2).
高尿酸血症の状態は将来的に重篤な疾患に発展していく可能性があり、生活習慣の改善等の努力は言うまでもないが、血清尿酸値の低減作用を有する機能性物質が含まれる食品や尿酸値低減剤の摂取によって、より積極的に血清尿酸値をコントロールできる素材が求められている。これまでの特許文献、学術論文等において血清尿酸値低減作用があるとされている物質の多くは植物由来で、ポリフェノール類が殆どである。その尿酸値低減作用はポリフェノール類によるXOD阻害効果による。例外的に動物由来のアンセリン類に尿酸値低減作用があるとされているが、その作用機序はXOD阻害の場合とは異なり不明確な面もある。特に、天然物由来のXOD阻害物質で医薬品のアロプリノールの活性を超えた報告はない。
The state of hyperuricemia may develop into a serious disease in the future, and it goes without saying that efforts such as improving lifestyles are included, but functional substances having an action to reduce serum uric acid levels are included There is a demand for materials that can more actively control serum uric acid levels by ingesting foods and uric acid level reducing agents. Many of the substances that have been reported to have a serum uric acid level reducing action in patent documents and academic papers so far are derived from plants, and most are polyphenols. The action of reducing uric acid level is due to the effect of XOD inhibition by polyphenols. Exceptionally, animal-derived anserines are said to have a uric acid level-reducing action, but the mechanism of action is unclear unlike XOD inhibition. In particular, there is no report that exceeds the activity of pharmaceutical allopurinol with XOD inhibitors derived from natural products.
また、テトラピロール含有物分解産物またはその抽出物と、XOD阻害活性作用との関係についても何ら報告されていない。
In addition, there is no report on the relationship between the degradation product of tetrapyrrole-containing product or its extract and the XOD inhibitory activity.
本発明は、XODの活性を効果的に阻害する新たな技術的手段を提供することをその目的としている。
The object of the present invention is to provide a new technical means for effectively inhibiting the activity of XOD.
本発明者らは、今般、テトラピロール含有物分解産物もしくはその抽出物またはそれら由来の特定化合物を用いて、XODを効果的に阻害しうることを見出した。
The present inventors have now found that XOD can be effectively inhibited using a tetrapyrrole-containing decomposition product or extract thereof or a specific compound derived therefrom.
本発明によれば、以下の発明が提供される。
(1)式(I)で表される化合物またはその経口上許容可能な塩を含んでなる、キサンチンオキシダーゼ阻害剤:
(式中、Rは、OHまたはHである)。
(2)テトラピロール含有物分解産物またはその抽出物を含有させて得られたものである、(1)に記載のキサンチンオキシダーゼ阻害剤。
(3)1回の経口摂取量単位の形態である、(1)または(2)に記載の剤。
(4)血中尿酸低下剤である、(1)~(3)のいずれか一つに記載の剤。
(5)尿酸の過剰生成または排泄低下に起因する疾患または状態の治療剤である、(1)~(4)のいずれか一つに記載の剤。
(6)高尿酸血症の治療剤である、(1)~(5)のいずれかに記載の剤。
(7)組成物である、(1)~(6)のいずれか一つに記載の剤。
(8)飲食品または医薬品である、(1)~(7)のいずれか一つに記載の剤。
(9)式(Ia)で表される化合物またはその経口上許容可能な塩:
(10)テトラピロール含有物分解産物またはその抽出物を剤中に配合することを特徴とする、キサンチンオキシダーゼ阻害剤の製造方法。
(11)上記テトラピロール含有物が、赤血球、ヘモグロビン、ヘミン、プロトポルフィリン、ヘマトポルフィリン、ビリルビンおよびクロロフィリンからなる群から選択される少なくとも一つのものである、(10)に記載の方法。
(12)上記テトラピロール含有物の分解が、酸化反応、還元反応および酵素反応からなる群から選択される少なくとも一つの反応により行われる、(10)または(11)に記載の方法。
(13)上記キサンチンオキシダーゼ阻害剤が、式(I)で表される化合物またはその経口上許容可能な塩を含んでなる、(10)に記載の方法:
(式中、Rは、OHまたはHである)。
(14)キサンチンオキシダーゼ阻害剤の製造における、テトラピロール含有物分解産物またはその抽出物の使用。
(15)前記キサンチンオキシダーゼ阻害剤が、式(I)で表される化合物またはその経口上許容可能な塩を含んでなる、(14)に記載の使用:
(式中、Rは、OHまたはHである)。
(16)前記キサンチンオキシダーゼ阻害剤が、尿酸の過剰生成または排泄低下に起因する疾患または状態の治療剤である、(14)または(15)に記載の使用。
(17)式(I)で表される化合物またはその経口上許容可能な塩の有効量を、それを必要とする対象に摂取させることを含む、尿酸の過剰生成または排泄低下に起因する疾患または状態の治療方法:
(式中、Rは、OHまたはHである)。
(18)キサンチンオキシダーゼ阻害のため、または尿酸の過剰生成もしくは排泄低下に起因する疾患もしくは状態の治療のための、式(I)で表される化合物またはその経口上許容可能な塩:
(式中、Rは、OHまたはHである)。
According to the present invention, the following inventions are provided.
(1) A xanthine oxidase inhibitor comprising a compound represented by formula (I) or an orally acceptable salt thereof:
(Wherein R is OH or H).
(2) The xanthine oxidase inhibitor according to (1), which is obtained by containing a decomposition product of tetrapyrrole-containing product or an extract thereof.
(3) The agent according to (1) or (2), which is in the form of a single oral intake unit.
(4) The agent according to any one of (1) to (3), which is a blood uric acid lowering agent.
(5) The agent according to any one of (1) to (4), which is a therapeutic agent for a disease or condition caused by excessive production of uric acid or decreased excretion.
(6) The agent according to any one of (1) to (5), which is a therapeutic agent for hyperuricemia.
(7) The agent according to any one of (1) to (6), which is a composition.
(8) The agent according to any one of (1) to (7), which is a food or drink or a pharmaceutical product.
(9) Compound represented by formula (Ia) or an orally acceptable salt thereof:
(10) A method for producing a xanthine oxidase inhibitor, which comprises blending a tetrapyrrole-containing decomposition product or an extract thereof into the agent.
(11) The method according to (10), wherein the tetrapyrrole-containing material is at least one selected from the group consisting of erythrocytes, hemoglobin, hemin, protoporphyrin, hematoporphyrin, bilirubin and chlorophyllin.
(12) The method according to (10) or (11), wherein the decomposition of the tetrapyrrole-containing material is performed by at least one reaction selected from the group consisting of an oxidation reaction, a reduction reaction, and an enzyme reaction.
(13) The method according to (10), wherein the xanthine oxidase inhibitor comprises a compound represented by formula (I) or an orally acceptable salt thereof:
(Wherein R is OH or H).
(14) Use of a tetrapyrrole-containing decomposition product or an extract thereof in the production of a xanthine oxidase inhibitor.
(15) The use according to (14), wherein the xanthine oxidase inhibitor comprises a compound represented by formula (I) or an orally acceptable salt thereof:
(Wherein R is OH or H).
(16) The use according to (14) or (15), wherein the xanthine oxidase inhibitor is a therapeutic agent for a disease or condition caused by excessive production or decreased excretion of uric acid.
(17) A disease caused by excessive production or decreased excretion of uric acid, comprising ingesting an effective amount of a compound represented by formula (I) or an orally acceptable salt thereof into a subject in need thereof How to treat the condition:
(Wherein R is OH or H).
(18) A compound represented by formula (I) or an orally acceptable salt thereof for inhibiting xanthine oxidase or treating a disease or condition caused by excessive production or decreased excretion of uric acid:
(Wherein R is OH or H).
(1)式(I)で表される化合物またはその経口上許容可能な塩を含んでなる、キサンチンオキシダーゼ阻害剤:
(2)テトラピロール含有物分解産物またはその抽出物を含有させて得られたものである、(1)に記載のキサンチンオキシダーゼ阻害剤。
(3)1回の経口摂取量単位の形態である、(1)または(2)に記載の剤。
(4)血中尿酸低下剤である、(1)~(3)のいずれか一つに記載の剤。
(5)尿酸の過剰生成または排泄低下に起因する疾患または状態の治療剤である、(1)~(4)のいずれか一つに記載の剤。
(6)高尿酸血症の治療剤である、(1)~(5)のいずれかに記載の剤。
(7)組成物である、(1)~(6)のいずれか一つに記載の剤。
(8)飲食品または医薬品である、(1)~(7)のいずれか一つに記載の剤。
(9)式(Ia)で表される化合物またはその経口上許容可能な塩:
(11)上記テトラピロール含有物が、赤血球、ヘモグロビン、ヘミン、プロトポルフィリン、ヘマトポルフィリン、ビリルビンおよびクロロフィリンからなる群から選択される少なくとも一つのものである、(10)に記載の方法。
(12)上記テトラピロール含有物の分解が、酸化反応、還元反応および酵素反応からなる群から選択される少なくとも一つの反応により行われる、(10)または(11)に記載の方法。
(13)上記キサンチンオキシダーゼ阻害剤が、式(I)で表される化合物またはその経口上許容可能な塩を含んでなる、(10)に記載の方法:
(14)キサンチンオキシダーゼ阻害剤の製造における、テトラピロール含有物分解産物またはその抽出物の使用。
(15)前記キサンチンオキシダーゼ阻害剤が、式(I)で表される化合物またはその経口上許容可能な塩を含んでなる、(14)に記載の使用:
(16)前記キサンチンオキシダーゼ阻害剤が、尿酸の過剰生成または排泄低下に起因する疾患または状態の治療剤である、(14)または(15)に記載の使用。
(17)式(I)で表される化合物またはその経口上許容可能な塩の有効量を、それを必要とする対象に摂取させることを含む、尿酸の過剰生成または排泄低下に起因する疾患または状態の治療方法:
(18)キサンチンオキシダーゼ阻害のため、または尿酸の過剰生成もしくは排泄低下に起因する疾患もしくは状態の治療のための、式(I)で表される化合物またはその経口上許容可能な塩:
(1) A xanthine oxidase inhibitor comprising a compound represented by formula (I) or an orally acceptable salt thereof:
(2) The xanthine oxidase inhibitor according to (1), which is obtained by containing a decomposition product of tetrapyrrole-containing product or an extract thereof.
(3) The agent according to (1) or (2), which is in the form of a single oral intake unit.
(4) The agent according to any one of (1) to (3), which is a blood uric acid lowering agent.
(5) The agent according to any one of (1) to (4), which is a therapeutic agent for a disease or condition caused by excessive production of uric acid or decreased excretion.
(6) The agent according to any one of (1) to (5), which is a therapeutic agent for hyperuricemia.
(7) The agent according to any one of (1) to (6), which is a composition.
(8) The agent according to any one of (1) to (7), which is a food or drink or a pharmaceutical product.
(9) Compound represented by formula (Ia) or an orally acceptable salt thereof:
(11) The method according to (10), wherein the tetrapyrrole-containing material is at least one selected from the group consisting of erythrocytes, hemoglobin, hemin, protoporphyrin, hematoporphyrin, bilirubin and chlorophyllin.
(12) The method according to (10) or (11), wherein the decomposition of the tetrapyrrole-containing material is performed by at least one reaction selected from the group consisting of an oxidation reaction, a reduction reaction, and an enzyme reaction.
(13) The method according to (10), wherein the xanthine oxidase inhibitor comprises a compound represented by formula (I) or an orally acceptable salt thereof:
(14) Use of a tetrapyrrole-containing decomposition product or an extract thereof in the production of a xanthine oxidase inhibitor.
(15) The use according to (14), wherein the xanthine oxidase inhibitor comprises a compound represented by formula (I) or an orally acceptable salt thereof:
(16) The use according to (14) or (15), wherein the xanthine oxidase inhibitor is a therapeutic agent for a disease or condition caused by excessive production or decreased excretion of uric acid.
(17) A disease caused by excessive production or decreased excretion of uric acid, comprising ingesting an effective amount of a compound represented by formula (I) or an orally acceptable salt thereof into a subject in need thereof How to treat the condition:
(18) A compound represented by formula (I) or an orally acceptable salt thereof for inhibiting xanthine oxidase or treating a disease or condition caused by excessive production or decreased excretion of uric acid:
本発明によれば、XODを効果的に阻害することができる。また、本発明は、高尿酸血症等の対象において血中尿酸を効果的に低下させる上で有利に利用することができる。さらに、本発明は、尿酸の過剰生成または排泄低下に起因する疾患または状態を治療する上で有利に利用することができる。
According to the present invention, XOD can be effectively inhibited. In addition, the present invention can be advantageously used to effectively reduce blood uric acid in subjects such as hyperuricemia. Furthermore, the present invention can be advantageously used to treat diseases or conditions resulting from excessive production of uric acid or decreased excretion.
剤
本発明の剤は、テトラピロール含有物分解産物またはその抽出物を配合していることを一つの特徴としている。 Agent The agent of the present invention is characterized in that it contains a tetrapyrrole-containing decomposition product or an extract thereof.
本発明の剤は、テトラピロール含有物分解産物またはその抽出物を配合していることを一つの特徴としている。 Agent The agent of the present invention is characterized in that it contains a tetrapyrrole-containing decomposition product or an extract thereof.
本発明において、テトラピロールは、4個のピロール環を含む化合物を意味し、直鎖状のものおよび環状のものを包含する。
In the present invention, tetrapyrrole means a compound containing four pyrrole rings, and includes linear and cyclic compounds.
直鎖状のテトラピロールとしては、ビリン(ビリルビン、ビリベルジン、ウロビリノーゲン、ウロビリン、ステルコビリン、フィトクロム、フィコビリン等)が挙げられる。
Examples of the linear tetrapyrrole include villin (bilirubin, biliverdin, urobilinogen, urobilin, stercobilin, phytochrome, phycobilin, etc.).
環状のテトラピロールとしては、ポルフィリン(エチオポルフィリン、メソポルフィリン、プロトポルフィリン、ジューテロポルフィリン、ヘマトポルフィリン、コプロポルフィリン、ウロポルフィリン、ピロポルフィリン、フィロポルフィリン、ロドポルフィリン、フィトポルフィリン等)、クロリン類が挙げられる。
Examples of the cyclic tetrapyrrole include porphyrins (ethioporphyrin, mesoporphyrin, protoporphyrin, deuteroporphyrin, hematoporphyrin, coproporphyrin, uroporphyrin, pyroporphyrin, philoporphyrin, rhodoporphyrin, phytoporphyrin, etc.) and chlorins. .
また、上記ポルフィリンには、鉄、銅、マグネシウム、コバルト等の金属原子が導入された分子内金属錯体も含まれる。例えば、ヘム、ヘマチン、ヘミン、クロロフィル、ビタミンB12、鉄クロロフィリン、鉄クロロフィリンナトリウム、銅クロロフィリン、銅クロロフィリンナトリウム、マグネシウムクロロフィリン等である。
The porphyrin includes an intramolecular metal complex into which a metal atom such as iron, copper, magnesium or cobalt is introduced. For example, heme, hematin, hemin, chlorophyll, vitamin B12, iron chlorophyllin, iron chlorophyllin sodium, copper chlorophyllin, copper chlorophyllin sodium, magnesium chlorophyllin and the like.
本発明のテトラピロール含有物は、テトラピロール自体であってもよく、テトラピロールを含有する組成物であってもよい。具体的には、テトラピロール含有物は、好ましくは赤血球、ヘモグロビン、葉緑体、ヘミン、プロトポルフィリン、ヘマトポルフィリン、ビリルビン、クロロフィル、クロロフィリン等であり、より好ましくは赤血球、ヘモグロビン、ヘミン、ヘマトポルフィリンまたはクロロフィリンである。
The tetrapyrrole-containing material of the present invention may be tetrapyrrole itself or a composition containing tetrapyrrole. Specifically, the tetrapyrrole-containing product is preferably red blood cells, hemoglobin, chloroplasts, hemin, protoporphyrin, hematoporphyrin, bilirubin, chlorophyll, chlorophyllin, and more preferably red blood cells, hemoglobin, hemin, hematoporphyrin or It is chlorophyllin.
テトラピロール含有物の由来は、本発明の効果を妨げない限り特に限定されず、哺乳類、鳥類、は虫類、魚類、両生類等の脊椎動物等の血液を有する動物、又は葉緑体を有する植物および藻類が挙げられるが、好ましくは哺乳類であり、より好ましくはブタ、ウシ、ウマ、ヒツジ、ヤギ等の家畜動物である。
The origin of the tetrapyrrole-containing material is not particularly limited as long as the effects of the present invention are not hindered. Animals having blood such as mammals, birds, reptiles, fish, amphibians and other vertebrates, or plants and algae having chloroplasts. Preferred are mammals, and more preferred are livestock animals such as pigs, cows, horses, sheep and goats.
また、テトラピロール含有物は、天然物から取得してもよく、市販品を用いてもよい。また、テトラピロール含有物はそのまま分解処理してもよく、噴霧乾燥、濃縮乾燥、凍結乾燥等の乾燥処理を行った後に分解処理に供してもよい。
Moreover, the tetrapyrrole-containing material may be obtained from a natural product, or a commercially available product may be used. Further, the tetrapyrrole-containing material may be subjected to a decomposition treatment as it is, or may be subjected to a decomposition treatment after performing a drying treatment such as spray drying, concentration drying, freeze drying and the like.
テトラピロール含有物の分解は、好ましくは酸化反応、還元反応および酵素反応からなる群から選択される少なくとも一つの反応により行うことが好ましい。
The decomposition of the tetrapyrrole-containing material is preferably performed by at least one reaction selected from the group consisting of an oxidation reaction, a reduction reaction and an enzyme reaction.
上記テトラピロール含有物の酸化反応は、上記テトラピロール含有物を過酸化水素、次亜塩素酸、過マンガン酸塩等の酸化剤と反応させることにより実施することができる。より具体的には、酸化反応は、テトラピロール含有物(乾物換算)と、酸化剤とをモル比1:10~1:500で混合し、45~60℃で1~16時間実施することが好ましい。
The oxidation reaction of the tetrapyrrole-containing material can be carried out by reacting the tetrapyrrole-containing material with an oxidizing agent such as hydrogen peroxide, hypochlorous acid or permanganate. More specifically, the oxidation reaction may be carried out at 45 to 60 ° C. for 1 to 16 hours by mixing a tetrapyrrole-containing material (in terms of dry matter) and an oxidizing agent in a molar ratio of 1:10 to 1: 500. preferable.
テトラピロール含有物の還元反応は、上記テトラピロール含有物をシステイン(Cys)、グルタチオン(GST)、ジチオスレイトール(DTT)、アスコルビン酸(ビタミンC)、トコフェノール(ビタミンE)等の還元剤と反応させることにより実施することができる。より具体的には、還元反応は、テトラピロール含有物(乾物換算)と、還元剤とをモル比1:1~1:100で混合し、45~60℃で1~16時間実施することが好ましい。
The tetrapyrrole-containing product is reduced by using a reducing agent such as cysteine (Cys), glutathione (GST), dithiothreitol (DTT), ascorbic acid (vitamin C), tocophenol (vitamin E) and the like. It can be carried out by reacting. More specifically, the reduction reaction may be carried out at 45 to 60 ° C. for 1 to 16 hours by mixing a tetrapyrrole-containing material (in terms of dry matter) and a reducing agent in a molar ratio of 1: 1 to 1: 100. preferable.
また、テトラピロール含有物の酸化または還元反応では、反応促進の観点から、塩化鉄(II)、塩化鉄(III)等の鉄イオンを反応系中に添加することが好ましい。
In addition, in the oxidation or reduction reaction of the tetrapyrrole-containing material, it is preferable to add iron ions such as iron (II) chloride and iron (III) chloride to the reaction system from the viewpoint of promoting the reaction.
また、テトラピロール含有物の酵素反応において使用される酵素は、本発明の効果を妨げない限り特に限定されないが、タンパク質分解酵素(プロテアーゼ)が好ましい。かかるプロテアーゼとしては、エンド型プロテアーゼまたはエキソ型プロテアーゼが挙げられ、また、かかるプロテアーゼはアルカリ性プロテアーゼであってよい。上記プロテアーゼとして、具体的には、アルカラーゼ(商標)、エスペラーゼ(商標)、ニュートラーゼ(商標)(Novozymes社製)、オリエンターゼ(商標)90N、オリエンターゼ(商標)22BF(エイチビィアイ製)、サモアーゼ(商標)PC10F、プロテアーゼP「アマノ」3SD(天野製薬製)、マルチフェクト(商標) PR6L、マルチフェクト(商標)PR7L(ダニスコジャパン社製)が挙げられるが、好ましくは、アルカラーゼ、マルチフェクトPR6Lである。より具体的には、酵素反応は、テトラピロール含有物(乾物換算)と、酵素とを重量比100:1~100:10で混合し45~60℃で1~16時間実施することが好ましい。
The enzyme used in the enzyme reaction of the tetrapyrrole-containing material is not particularly limited as long as the effect of the present invention is not hindered, but a proteolytic enzyme (protease) is preferable. Such proteases include endo-type proteases or exo-type proteases, and such proteases may be alkaline proteases. Specific examples of the protease include Alcalase (trademark), Esperase (trademark), Neutrase (trademark) (manufactured by Novozymes), Orientase (trademark) 90N, Orientase (trademark) 22BF (manufactured by HIBI), Samoaase ( (Trademark) PC10F, protease P “Amano” 3SD (manufactured by Amano Pharmaceutical Co., Ltd.), Multifect (trademark) PR6L, Multifect (trademark) PR7L (manufactured by Danisco Japan Co., Ltd.), and the like, preferably alcalase and multifect PR6L . More specifically, the enzyme reaction is preferably carried out at 45 to 60 ° C. for 1 to 16 hours by mixing a tetrapyrrole-containing material (in terms of dry matter) and the enzyme at a weight ratio of 100: 1 to 100: 10.
また、本発明のテトラピロール含有物またはその抽出物は、式(I)の化合物またはその経口上許容可能な塩を含有していることが好ましい。したがって、好ましい態様によれば、本発明の剤は、式(I)の化合物またはその経口上許容可能な塩を含んでなる。
(式中、Rは、OHまたはHである)
Moreover, it is preferable that the tetrapyrrole containing material or extract thereof of the present invention contains a compound of the formula (I) or an orally acceptable salt thereof. Thus, according to a preferred embodiment, the agent of the present invention comprises a compound of formula (I) or an orally acceptable salt thereof.
(Wherein R is OH or H)
さらに別の好ましい態様によれば、本発明の化合物は、式(Ia)の化合物および/または式(Ib)の化合物からなる。
According to yet another preferred embodiment, the compound of the invention consists of a compound of formula (Ia) and / or a compound of formula (Ib).
本発明において、式(I)の化合物の経口上許容可能な塩としては、特に限定されないが、無機酸塩、無機塩基塩、有機酸塩、有機塩基塩等が挙げられる。
In the present invention, the orally acceptable salt of the compound of formula (I) is not particularly limited, and examples thereof include inorganic acid salts, inorganic base salts, organic acid salts, and organic base salts.
また、式(I)の化合物またはその経口上許容可能な塩は、大気中に放置したりまたは再結晶をすることにより、水分を吸収し、吸着水が付いたり、水和物となったりする場合があり、本発明は、そのような各種の水和物、溶媒和物および結晶多形の化合物も包含する。
In addition, the compound of formula (I) or an orally acceptable salt thereof absorbs moisture by attaching it to the atmosphere or recrystallizes, and adsorbs water or becomes a hydrate. In some cases, the present invention also includes such various hydrates, solvates and polymorphic compounds.
また、式(I)の化合物は、プロドラッグの形態にて剤中に配合してもよく、本発明はかかる態様も包含する。好適なプロドラッグとしては、例えば、式(I)、または式(Ia)および/もしくは式(Ib)の化合物における窒素原子、カルボキシル基またはアルデヒド基が、イミン、ニトリル、ヒドロキシル、アミド、エステル、カルバモイル、酸無水物等に変換又は修飾された化合物等が挙げられる。
In addition, the compound of the formula (I) may be incorporated into the agent in the form of a prodrug, and the present invention includes such an embodiment. Suitable prodrugs include, for example, a nitrogen atom, a carboxyl group or an aldehyde group in formula (I), or a compound of formula (Ia) and / or formula (Ib), imine, nitrile, hydroxyl, amide, ester, carbamoyl. , Compounds converted or modified into acid anhydrides, and the like.
また、本発明の抽出物は、例えば、水性媒体(エタノール、水、またはそれらの混合物等)によるテトラピロール含有物分解産物の抽出物が挙げられるが、好ましくはエタノール抽出物である。好適な抽出条件としては、テトラピロール含有物(乾物換算)と、水性媒体とを重量比5:1~1:5で混合し、20~65℃で0.5~3時間抽出を実施することが好ましい。
The extract of the present invention includes, for example, an extract of a decomposition product of tetrapyrrole-containing product using an aqueous medium (such as ethanol, water, or a mixture thereof), and is preferably an ethanol extract. As suitable extraction conditions, a tetrapyrrole-containing material (in terms of dry matter) and an aqueous medium are mixed at a weight ratio of 5: 1 to 1: 5, and extraction is performed at 20 to 65 ° C. for 0.5 to 3 hours. Is preferred.
本発明の剤の製造においては、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩について、精製処理、濃縮処理または滅菌処理等を所望により実施してもよい。上記精製処理の例としては、活性炭、合成吸着樹脂、シリカゲル等の多孔質物質による吸着処理、ナノフィルター(NF膜)、限外濾過膜等による濾過処理、透析処理(電気透析等)、遠心分離処理等が挙げられる。また、濃縮処理の例としては、限外濾過処理、減圧濃縮処理、凍結乾燥処理等が挙げられる。
上記精製処理または濃縮処理は、非活性成分を分離、分解または除去し、式(I)の化合物またはその経口上許容可能な塩の含有濃度を上昇させる上で好ましい。また、上記精製処理、濃縮処理または滅菌処理等は、テトラピロール含有物分解産物の色素または臭気を大幅に低減することができる上でも好ましい。
かかる観点から、精製処理に用いる活性炭としては、木粉由来のもので粉末状が好ましく、最頻度細孔径が1~30nmであるものが好ましい。活性炭の最頻度細孔径は、窒素ガス吸着法により測定することができる。また、用いる活性炭の量は、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の0.1~20%とすることができ、好ましくは0.4~1.25%である。活性炭を用いる精製処理の好適な条件としては、pH2~5に調整した、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩に対し活性炭を添加した後に回収し、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の0.3~60倍量の水で洗浄した後、pH9~11のアルカリ性緩衝液や0.05~0.15Mの水酸化ナトリウム溶液で溶出することが好ましい。上記アルカリ性緩衝液または水酸化ナトリウム溶液の量は、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の0.01~100倍量とすることができ、好ましくは0.1~10倍量である。また、上記合成吸着樹脂としては、スチレン-ジビニルベンゼン系が好ましく、最頻度細孔径が5~100nmであるものが好ましい。合成吸着樹脂の最頻度細孔径は、水銀圧入法により測定することができる。また、用いる合成吸着樹脂の量は、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の10倍量量~1/50量とすることができ、好ましくは等量~1/10量である。
また、非活性成分の分離もしくは除去、またはテトラピロール含有物分解産物の色素もしくは臭気低減の観点から、精製処理に用いる上記ナノフィルターとしては、分画分子量150~800とすることができ、好ましくは150~500である。
また、本発明の剤の製造においては、例えば、凍結乾燥法またはスプレードライ法によってテトラピロール含有物分解産物またはその抽出物を固形化処理または粉末化処理してもよい。
なお、上記各処理は、本発明の効果を妨げない限り、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の製造におけるいずれの段階で行ってもよい。 In the production of the agent of the present invention, purification treatment, concentration treatment, sterilization treatment, etc. are performed as desired for the decomposition product of tetrapyrrole-containing product or extract thereof, or the compound of formula (I) or an orally acceptable salt thereof. May be. Examples of the purification treatment include adsorption treatment with a porous substance such as activated carbon, synthetic adsorption resin, silica gel, filtration treatment with a nanofilter (NF membrane), ultrafiltration membrane, etc., dialysis treatment (electrodialysis, etc.), and centrifugation. Processing and the like. Examples of the concentration treatment include ultrafiltration treatment, reduced pressure concentration treatment, lyophilization treatment, and the like.
The purification treatment or concentration treatment is preferable for separating, decomposing or removing inactive components and increasing the concentration of the compound of formula (I) or an orally acceptable salt thereof. Moreover, the said refinement | purification process, a concentration process, or a sterilization process etc. are preferable also when the pigment | dye or odor of a tetrapyrrole containing product decomposition product can be reduced significantly.
From this point of view, the activated carbon used for the purification treatment is preferably derived from wood flour, preferably in powder form, and most frequently having a pore diameter of 1 to 30 nm. The most frequent pore diameter of activated carbon can be measured by a nitrogen gas adsorption method. The amount of activated carbon used can be 0.1-20% of the decomposition product of tetrapyrrole-containing product or extract thereof, or the compound of formula (I) or an orally acceptable salt thereof, preferably 0. 4 to 1.25%. As a suitable condition for the purification treatment using activated carbon, activated carbon was added to a tetrapyrrole-containing decomposition product or extract thereof or a compound of formula (I) or an orally acceptable salt thereof adjusted topH 2 to 5. It is recovered later, washed with 0.3 to 60 times the amount of tetrapyrrole-containing decomposition product or extract thereof or the compound of formula (I) or orally acceptable salt thereof, and then an alkaline buffer having a pH of 9 to 11 It is preferable to elute with a solution or 0.05 to 0.15 M sodium hydroxide solution. The amount of the alkaline buffer or sodium hydroxide solution should be 0.01 to 100 times the amount of tetrapyrrole-containing degradation product or extract thereof, or the compound of formula (I) or orally acceptable salt thereof. The amount is preferably 0.1 to 10 times. The synthetic adsorption resin is preferably a styrene-divinylbenzene system, and most preferably has a pore diameter of 5 to 100 nm. The most frequent pore diameter of the synthetic adsorption resin can be measured by a mercury intrusion method. The amount of the synthetic adsorption resin to be used can be 10 times to 1/50 of the tetrapyrrole-containing decomposition product or extract thereof, or the compound of formula (I) or an orally acceptable salt thereof. The amount is preferably equivalent to 1/10.
In addition, from the viewpoint of separation or removal of inactive components, or reduction of pigments or odors of tetrapyrrole-containing product decomposition products, the nanofilter used in the purification treatment can have a molecular weight cut-off of 150 to 800, preferably 150-500.
In the production of the agent of the present invention, the tetrapyrrole-containing product decomposition product or the extract thereof may be solidified or pulverized by, for example, freeze drying or spray drying.
Each treatment described above is carried out at any stage in the production of the tetrapyrrole-containing decomposition product or extract thereof, the compound of formula (I), or an orally acceptable salt thereof, as long as the effects of the present invention are not hindered. Also good.
上記精製処理または濃縮処理は、非活性成分を分離、分解または除去し、式(I)の化合物またはその経口上許容可能な塩の含有濃度を上昇させる上で好ましい。また、上記精製処理、濃縮処理または滅菌処理等は、テトラピロール含有物分解産物の色素または臭気を大幅に低減することができる上でも好ましい。
かかる観点から、精製処理に用いる活性炭としては、木粉由来のもので粉末状が好ましく、最頻度細孔径が1~30nmであるものが好ましい。活性炭の最頻度細孔径は、窒素ガス吸着法により測定することができる。また、用いる活性炭の量は、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の0.1~20%とすることができ、好ましくは0.4~1.25%である。活性炭を用いる精製処理の好適な条件としては、pH2~5に調整した、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩に対し活性炭を添加した後に回収し、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の0.3~60倍量の水で洗浄した後、pH9~11のアルカリ性緩衝液や0.05~0.15Mの水酸化ナトリウム溶液で溶出することが好ましい。上記アルカリ性緩衝液または水酸化ナトリウム溶液の量は、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の0.01~100倍量とすることができ、好ましくは0.1~10倍量である。また、上記合成吸着樹脂としては、スチレン-ジビニルベンゼン系が好ましく、最頻度細孔径が5~100nmであるものが好ましい。合成吸着樹脂の最頻度細孔径は、水銀圧入法により測定することができる。また、用いる合成吸着樹脂の量は、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の10倍量量~1/50量とすることができ、好ましくは等量~1/10量である。
また、非活性成分の分離もしくは除去、またはテトラピロール含有物分解産物の色素もしくは臭気低減の観点から、精製処理に用いる上記ナノフィルターとしては、分画分子量150~800とすることができ、好ましくは150~500である。
また、本発明の剤の製造においては、例えば、凍結乾燥法またはスプレードライ法によってテトラピロール含有物分解産物またはその抽出物を固形化処理または粉末化処理してもよい。
なお、上記各処理は、本発明の効果を妨げない限り、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の製造におけるいずれの段階で行ってもよい。 In the production of the agent of the present invention, purification treatment, concentration treatment, sterilization treatment, etc. are performed as desired for the decomposition product of tetrapyrrole-containing product or extract thereof, or the compound of formula (I) or an orally acceptable salt thereof. May be. Examples of the purification treatment include adsorption treatment with a porous substance such as activated carbon, synthetic adsorption resin, silica gel, filtration treatment with a nanofilter (NF membrane), ultrafiltration membrane, etc., dialysis treatment (electrodialysis, etc.), and centrifugation. Processing and the like. Examples of the concentration treatment include ultrafiltration treatment, reduced pressure concentration treatment, lyophilization treatment, and the like.
The purification treatment or concentration treatment is preferable for separating, decomposing or removing inactive components and increasing the concentration of the compound of formula (I) or an orally acceptable salt thereof. Moreover, the said refinement | purification process, a concentration process, or a sterilization process etc. are preferable also when the pigment | dye or odor of a tetrapyrrole containing product decomposition product can be reduced significantly.
From this point of view, the activated carbon used for the purification treatment is preferably derived from wood flour, preferably in powder form, and most frequently having a pore diameter of 1 to 30 nm. The most frequent pore diameter of activated carbon can be measured by a nitrogen gas adsorption method. The amount of activated carbon used can be 0.1-20% of the decomposition product of tetrapyrrole-containing product or extract thereof, or the compound of formula (I) or an orally acceptable salt thereof, preferably 0. 4 to 1.25%. As a suitable condition for the purification treatment using activated carbon, activated carbon was added to a tetrapyrrole-containing decomposition product or extract thereof or a compound of formula (I) or an orally acceptable salt thereof adjusted to
In addition, from the viewpoint of separation or removal of inactive components, or reduction of pigments or odors of tetrapyrrole-containing product decomposition products, the nanofilter used in the purification treatment can have a molecular weight cut-off of 150 to 800, preferably 150-500.
In the production of the agent of the present invention, the tetrapyrrole-containing product decomposition product or the extract thereof may be solidified or pulverized by, for example, freeze drying or spray drying.
Each treatment described above is carried out at any stage in the production of the tetrapyrrole-containing decomposition product or extract thereof, the compound of formula (I), or an orally acceptable salt thereof, as long as the effects of the present invention are not hindered. Also good.
また、本発明の剤は、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩をそのまま用いて調製してもよく、また、経口上許容可能な添加剤をさらに配合してもよい。かかる経口上許容可能な添加剤としては、特に限定されないが、溶剤、溶解補助剤、滑沢剤、乳化剤、等張化剤、安定化剤、保存剤、防腐剤、界面活性剤、調整剤、キレート剤、pH調整剤、緩衝剤、賦形剤、結合剤、防腐剤、増粘剤、着色剤、香料、芳香剤、湿潤剤、甘味料、または酸化防止剤が挙げられる。
また、本発明の剤のpHは、特に限定されないが、pH1~14とすることができ、好ましくはpH3~11、より好ましくはpH4~10である。 Further, the agent of the present invention may be prepared using a decomposition product of tetrapyrrole-containing product or an extract thereof, a compound of formula (I) or an orally acceptable salt thereof as it is, and orally acceptable. You may mix | blend an additive further. Such orally acceptable additives are not particularly limited, but include solvents, solubilizers, lubricants, emulsifiers, isotonic agents, stabilizers, preservatives, preservatives, surfactants, regulators, Chelating agents, pH adjusters, buffers, excipients, binders, preservatives, thickeners, colorants, fragrances, fragrances, wetting agents, sweeteners, or antioxidants.
The pH of the agent of the present invention is not particularly limited, but can bepH 1 to 14, preferably pH 3 to 11, more preferably pH 4 to 10.
また、本発明の剤のpHは、特に限定されないが、pH1~14とすることができ、好ましくはpH3~11、より好ましくはpH4~10である。 Further, the agent of the present invention may be prepared using a decomposition product of tetrapyrrole-containing product or an extract thereof, a compound of formula (I) or an orally acceptable salt thereof as it is, and orally acceptable. You may mix | blend an additive further. Such orally acceptable additives are not particularly limited, but include solvents, solubilizers, lubricants, emulsifiers, isotonic agents, stabilizers, preservatives, preservatives, surfactants, regulators, Chelating agents, pH adjusters, buffers, excipients, binders, preservatives, thickeners, colorants, fragrances, fragrances, wetting agents, sweeteners, or antioxidants.
The pH of the agent of the present invention is not particularly limited, but can be
本発明の剤は、本発明の効果を妨げない限り特に限定されないが、例えば、固形状、粉末状、顆粒状、カプセル状、ブロック状、液状(例えば、溶液、懸濁液、乳濁液)、スラリー状、ゲル状、糊状、またはペースト状のいずれの形態であってもよい。具体的な剤型としては、錠剤、散剤、細粒剤、顆粒剤、カプセル剤、丸剤、徐放剤等の固形製剤、ドリンク剤、ゼリー剤が挙げられる。
The agent of the present invention is not particularly limited as long as the effect of the present invention is not hindered. For example, it is solid, powder, granule, capsule, block, liquid (eg, solution, suspension, emulsion). , Any form of slurry, gel, paste, or paste. Specific dosage forms include solid preparations such as tablets, powders, fine granules, granules, capsules, pills, sustained release agents, drinks, and jelly preparations.
また、本発明の剤は、1回の経口摂取量単位の形態から構成されることが好ましい。本発明の剤は、1回の経口摂取量として、テトラピロール含有物分解産物またはその抽出物を、乾燥質量換算で、好ましくは1~5000mg、より好ましくは10~1000mg含有していてもよい。また、本発明の剤は、1回の経口摂取量として、式(I)の化合物またはその経口上許容可能な塩を、乾燥質量換算で、好ましくは0.01~300mg、より好ましくは0.1~100mg含有していてもよい。
In addition, the agent of the present invention is preferably composed of a single oral intake unit form. The agent of the present invention may contain 1 to 5000 mg, more preferably 10 to 1000 mg, of a tetrapyrrole-containing decomposition product or an extract thereof in terms of dry mass as a single oral intake. In addition, the agent of the present invention is preferably 0.01 to 300 mg, more preferably 0. 0, in terms of dry mass of the compound of formula (I) or an orally acceptable salt thereof as a single oral intake. 1-100 mg may be contained.
また、本発明の剤は包装形態で提供することが好ましい。包装形態としては、特に限定されず、パックまたは容器等が挙げられる。また、包装の表面には成分表示、用量・用法表示等を付していてもよい。かかる包装形態の好適な例としてはサプリメント、ドリンク剤または医薬製剤等が挙げられる。
Moreover, it is preferable to provide the agent of the present invention in a package form. The packaging form is not particularly limited, and examples thereof include a pack or a container. In addition, component display, dose / use display, etc. may be attached to the surface of the package. Suitable examples of such packaging forms include supplements, drinks or pharmaceutical preparations.
また、本発明の剤は、血中尿酸を低下または尿酸値を低減させ、または血中尿酸値上昇もしくは尿酸生成を抑制する上で有利に利用することができる。したがって、一つの態様によれば、本発明の剤は、好ましくは血中尿酸の低下剤、より好ましくは血清尿酸値の低下剤として提供される。また、別の態様によれば、本発明の剤は、尿酸の過剰生成または排泄低下に起因する疾患または状態の治療剤として提供される。また、別の態様によれば、本発明の剤は高尿酸血症の治療剤として提供される。また、本発明の剤は、血中尿酸を低下させることにより、高尿酸血症に基づく痛風、尿路結石、腎機能障害(好ましくは、慢性腎臓病、慢性糸球体腎炎)、心血管系疾患(好ましくは、冠動脈疾患、虚血性心疾患)、高血圧、メタボリックシンドローム、悪性腫瘍等の各種疾患の治療、もしくは病状の低下または改善に有利に利用することができる。したがって、本発明の剤は、高尿酸血症、高尿酸血症に基づく痛風、尿路結石、腎機能障害(好ましくは、慢性腎臓病、慢性糸球体腎炎)、心血管系疾患(好ましくは、冠動脈疾患、虚血性心疾患)、高血圧、メタボリックシンドローム、悪性腫瘍等の各種疾患の治療、または病状の低下もしくは改善を表示して提供することができる。なお、本発明の「治療」は、確立された病態を治療することだけでなく、将来確立される可能性のある病態を予防することをも包含する。また、本発明の「治療」は、医療行為のみならず、後述する飲食品を対象に摂取させることにより、既に発生したかまたは将来発生する可能性のある病態または状態を改善または予防する行為も好ましくは包含する。
Further, the agent of the present invention can be advantageously used for lowering blood uric acid or reducing uric acid level, or suppressing increase in blood uric acid level or uric acid production. Therefore, according to one embodiment, the agent of the present invention is preferably provided as a blood uric acid lowering agent, more preferably a serum uric acid level lowering agent. According to another aspect, the agent of the present invention is provided as a therapeutic agent for a disease or condition caused by excessive production of uric acid or decreased excretion. According to another aspect, the agent of the present invention is provided as a therapeutic agent for hyperuricemia. In addition, the agent of the present invention reduces blood uric acid, thereby causing gout based on hyperuricemia, urolithiasis, renal dysfunction (preferably chronic kidney disease, chronic glomerulonephritis), cardiovascular disease It can be advantageously used for treatment of various diseases such as (preferably coronary artery disease, ischemic heart disease), hypertension, metabolic syndrome, malignant tumor, etc., or reduction or improvement of disease state. Therefore, the agent of the present invention is hyperuricemia, gout based on hyperuricemia, urolithiasis, renal dysfunction (preferably chronic kidney disease, chronic glomerulonephritis), cardiovascular disease (preferably, Coronary artery disease, ischemic heart disease), hypertension, metabolic syndrome, treatment of various diseases such as malignant tumor, or reduction or improvement of the disease state can be displayed and provided. The “treatment” of the present invention includes not only treating an established pathological condition but also preventing a pathological condition that may be established in the future. In addition, the “treatment” of the present invention includes not only a medical act but also an act of improving or preventing a disease state or a condition that has already occurred or that may occur in the future by causing a food or drink described below to be ingested. Preferably included.
また、本発明の剤は、複数の成分が配合された組成物の形態で提供することができる。したがって、本発明の一つの態様によれば、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩を含んでなる、キサンチンオキシダーゼ阻害用、血中尿酸低下用、尿酸の過剰生成もしくは排泄低下に起因する疾患もしくは状態の治療用、または高尿酸血症治療用の組成物が提供される。
Also, the agent of the present invention can be provided in the form of a composition in which a plurality of components are blended. Therefore, according to one embodiment of the present invention, blood uric acid for xanthine oxidase inhibition comprising a tetrapyrrole-containing degradation product or extract thereof or a compound of formula (I) or an orally acceptable salt thereof Compositions are provided for reducing, for treating a disease or condition resulting from overproduction or decreased excretion of uric acid, or for treating hyperuricemia.
本発明の剤は、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩を含んでなる限りにおいては、飲食品または医薬品であってもよい。したがって、別の態様によれば、本発明の剤は、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩を含んでなる、キサンチンオキシダーゼ阻害用、血中尿酸低下用、尿酸の過剰生成もしくは排泄低下に起因する疾患もしくは状態の治療用、または高尿酸血症治療用の飲食品組成物または医薬組成物である。
The agent of the present invention may be a food or drink or a medicine as long as it contains a tetrapyrrole-containing decomposition product or extract thereof, or a compound of formula (I) or an orally acceptable salt thereof. Therefore, according to another aspect, the agent of the present invention is for inhibiting xanthine oxidase, comprising a tetrapyrrole-containing degradation product or extract thereof or a compound of formula (I) or an orally acceptable salt thereof, A food / beverage composition or a pharmaceutical composition for lowering blood uric acid, for treating a disease or condition caused by excessive production or decreased excretion of uric acid, or for treating hyperuricemia.
本発明の飲食品としては、特に限定されないが、例えば、即席麺、レトルト食品、缶詰、電子レンジ食品、即席スープ・みそ汁類、フリーズドライ食品等の即席食品類;清涼飲料、果汁飲料、野菜飲料、豆乳飲料、コーヒー飲料、茶飲料、粉末飲料、濃縮飲料、アルコール飲料等の飲料類;パン、パスタ、麺、ケーキミックス、パン粉等の小麦粉製品;飴、キャラメル、チューイングガム、チョコレート、クッキー、ビスケット、ケーキ、パイ、スナック、クラッカー、和菓子、デザート菓子等の菓子類;ソース、トマト加工調味料、風味調味料、調理ミックス、たれ類、ドレッシング類、つゆ類、カレー・シチューの素類等の調味料;加工油脂、バター、マーガリン、マヨネーズ等の油脂類;乳飲料、ヨーグルト類、乳酸菌飲料、アイスクリーム類、クリーム類等の乳製品;農産缶詰、ジャム・マーマレード類、シリアル等の農産加工品;ハム、ベーコン、ソーセージ、焼き豚等の畜肉加工食品:冷凍食品等が挙げられる。
The food and drink of the present invention is not particularly limited, but for example, instant foods such as instant noodles, retort foods, canned foods, microwave foods, instant soups and miso soups, freeze-dried foods; soft drinks, fruit juice drinks, vegetable drinks Beverages such as soy milk drinks, coffee drinks, tea drinks, powdered drinks, concentrated drinks, alcoholic drinks; flour products such as bread, pasta, noodles, cake mixes, bread crumbs; rice cakes, caramel, chewing gum, chocolate, cookies, biscuits, Cakes, pies, snacks, crackers, Japanese confectionery, dessert confectionery, etc .; sauces, tomato processed seasonings, flavor seasonings, cooking mixes, sauces, dressings, soups, curry and stew seasonings Oils and fats such as processed fats and oils, butter, margarine, mayonnaise; milk beverages, yogurts, lactic acid bacteria beverages, ice Reem class, cream, and the like of dairy products; agricultural canning, jam, marmalade class, agricultural processed products of serial and the like; ham, bacon, sausage, meat processed foods such as roast pork: frozen food, and the like.
本発明の飲食品には、健康食品、機能性食品(例えば、特定保健用食品、栄養機能食品または機能性表示食品を含む)、栄養補助食品、病者用食品、乳児用調製粉乳、妊産婦、授乳婦用粉乳、嚥下困難者用食品も包含される。また、本発明の飲食品には、キサンチンオキシダーゼ阻害、血中尿酸低下、尿酸の過剰生成もしくは排泄低下に起因する疾患もしくは状態の治療、または高尿酸血症治療のために用いられるものである旨の表示を付してもよい。
The foods and drinks of the present invention include health foods, functional foods (for example, foods for specified health use, nutritional functional foods or functional labeling foods), nutritional supplements, foods for the sick, infant formulas, pregnant women, This includes milk powder for lactating women and food for those who have difficulty swallowing. In addition, the food and drink of the present invention is used for xanthine oxidase inhibition, blood uric acid reduction, uric acid overproduction or treatment of diseases or conditions caused by reduced excretion, or hyperuricemia treatment May be attached.
また、本発明の医薬品もまた、キサンチンオキシダーゼ阻害、血中尿酸低下、尿酸の過剰生成もしくは排泄低下に起因する疾患もしくは状態の治療、または高尿酸血症治療のために用いられるものである旨の表示を付したものであってもよい。かかる医薬品は上述の剤に関する記載に準じて調製することができる。
Further, the medicament of the present invention is also used for treatment of diseases or conditions caused by xanthine oxidase inhibition, blood uric acid reduction, excessive production or excretion of uric acid, or hyperuricemia. It may be a display. Such pharmaceuticals can be prepared according to the description regarding the above-mentioned agents.
また、本発明の別の態様によれば、キサンチンオキシダーゼ阻害方法であって、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の有効量を、それを必要とする対象に摂取させることを含んでなる方法が提供される。また、本発明の好ましい別の態様によれば、上記方法は、血中尿酸の低下方法として提供される。また、本発明の好ましい別の態様によれば、上記方法は、尿酸の過剰生成もしくは排泄低下に起因する疾患もしくは状態の治療方法として提供される。本発明のさらに好ましい別の態様によれば、上記方法は、高尿酸血症の治療方法として提供される。また、本発明の別の好ましい態様によれば、医療行為を除くものであり、該行為は非治療的行為ともいう。本発明の上記方法は、本発明の剤の記載に準じて実施することができる。
Further, according to another aspect of the present invention, there is provided a method for inhibiting xanthine oxidase, comprising an effective amount of a tetrapyrrole-containing degradation product or extract thereof, a compound of formula (I) or an orally acceptable salt thereof, A method is provided comprising ingesting a subject in need thereof. According to another preferable aspect of the present invention, the above method is provided as a method for reducing blood uric acid. Moreover, according to another preferable aspect of the present invention, the above method is provided as a method for treating a disease or condition caused by excessive production of uric acid or decreased excretion. According to still another preferred aspect of the present invention, the above method is provided as a method for treating hyperuricemia. Moreover, according to another preferable aspect of this invention, it excludes medical practice, and this act is also called non-therapeutic act. The said method of this invention can be implemented according to description of the agent of this invention.
本発明の剤の摂取方法は、本発明の効果を妨げない限り特に限定されないが、好ましくは経口摂取とされる。
The ingestion method of the agent of the present invention is not particularly limited as long as the effect of the present invention is not hindered, but is preferably taken orally.
本発明における対象は、哺乳動物、例えば、げっ歯類、イヌ、ネコ、ウシ、霊長類等であり、好ましくはヒトである。
また、対象における血清尿酸値は、特に限定されないが、尿酸値低減による高尿酸血症の改善を勘案すれば、高レベルであることが好ましい。かかる血清尿酸値は好ましくは7.0mg/dLを超える状態である。
また、本発明の別の態様によれば、対象は健常者であってもよい。 The subject in the present invention is a mammal, for example, a rodent, a dog, a cat, a cow, a primate, etc., preferably a human.
In addition, the serum uric acid level in the subject is not particularly limited, but it is preferably a high level in view of improvement of hyperuricemia due to a reduction in uric acid level. Such a serum uric acid level is preferably in a state exceeding 7.0 mg / dL.
According to another aspect of the present invention, the subject may be a healthy person.
また、対象における血清尿酸値は、特に限定されないが、尿酸値低減による高尿酸血症の改善を勘案すれば、高レベルであることが好ましい。かかる血清尿酸値は好ましくは7.0mg/dLを超える状態である。
また、本発明の別の態様によれば、対象は健常者であってもよい。 The subject in the present invention is a mammal, for example, a rodent, a dog, a cat, a cow, a primate, etc., preferably a human.
In addition, the serum uric acid level in the subject is not particularly limited, but it is preferably a high level in view of improvement of hyperuricemia due to a reduction in uric acid level. Such a serum uric acid level is preferably in a state exceeding 7.0 mg / dL.
According to another aspect of the present invention, the subject may be a healthy person.
また、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能の有効量は、本発明の効果を妨げない限り特に限定されず、純度、対象の種類、性質、性別、年齢、症状、状態等に応じて当業者によって、適宜決定される。本発明の剤は、有効量として、テトラピロール含有物分解産物またはその抽出物を、乾燥質量換算で、0.05~100mg/体重kg/日、好ましくは0.5~25mg/体重kg/日とすることができる。また、本発明の剤は、例えば、有効量として、式(I)の化合物またはその経口上許容可能な塩を、乾燥質量換算で、0.01~15mg/体重kg/日、好ましくは0.1~5mg/体重kg/日とすることができる。
In addition, the effective amount of tetrapyrrole-containing degradation product or extract thereof or the compound of formula (I) or orally acceptable amount thereof is not particularly limited as long as it does not interfere with the effect of the present invention. It is appropriately determined by those skilled in the art according to sex, age, symptoms, condition and the like. The agent of the present invention contains, as an effective amount, a tetrapyrrole-containing decomposition product or an extract thereof in terms of dry mass, 0.05 to 100 mg / kg body weight / day, preferably 0.5 to 25 mg / kg body weight / day. It can be. In addition, the agent of the present invention contains, for example, an effective amount of the compound of formula (I) or an orally acceptable salt thereof in the range of 0.01 to 15 mg / kg body weight / day, preferably 0. 1 to 5 mg / kg body weight / day.
本発明における摂取計画は、本発明の効果を妨げない限り、対象の種、年齢、性別、症状、状態に応じて当業者が適宜設定することができる。また、本発明における上記1日の摂取の回数は、例えば、1日1~6回であり、好ましくは1日3回である。
The intake plan in the present invention can be appropriately set by those skilled in the art according to the species, age, sex, symptom, and state of the subject as long as the effects of the present invention are not hindered. In the present invention, the number of daily intakes is, for example, 1 to 6 times a day, and preferably 3 times a day.
また、本発明の別の態様によれば、キサンチンオキシダーゼ阻害剤の製造における、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の使用が提供される。また、本発明のさらに別の態様によれば、血中尿酸低下剤の製造における、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の使用が提供される。また、本発明のさらに別の態様によれば、尿酸の過剰生成または排泄低下に起因する疾患または状態の治療剤の製造における、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の使用が提供される。また、本発明のさらに別の態様によれば、高尿酸血症の治療剤の製造における、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の使用が提供される。
According to another aspect of the present invention, there is provided use of a tetrapyrrole-containing degradation product or an extract thereof, a compound of formula (I), or an orally acceptable salt thereof in the manufacture of a xanthine oxidase inhibitor. The According to still another aspect of the present invention, there is provided use of a tetrapyrrole-containing degradation product or an extract thereof, a compound of formula (I) or an orally acceptable salt thereof in the manufacture of a blood uric acid lowering agent. Provided. According to still another aspect of the present invention, a tetrapyrrole-containing degradation product or an extract thereof or a compound of formula (I) in the manufacture of a therapeutic agent for a disease or condition caused by excessive production of uric acid or decreased excretion Alternatively, the use of an orally acceptable salt thereof is provided. According to still another aspect of the present invention, a tetrapyrrole-containing degradation product or an extract thereof, or a compound of formula (I) or an orally acceptable salt thereof in the manufacture of a therapeutic agent for hyperuricemia. Use is provided.
また、本発明の別の態様によれば、キサンチンオキシダーゼ阻害剤としての、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の使用が提供される。また、本発明のさらに別の態様によれば、血中尿酸低下剤としての、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の使用が提供される。また、本発明のさらに別の態様によれば、尿酸の過剰生成または排泄低下に起因する疾患または状態の治療剤としての、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の使用が提供される。また、本発明のさらに別の態様によれば、高尿酸血症の治療剤としての、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩の使用が提供される。本発明の一つの好ましい別の態様によれば、本発明の使用は、非治療的使用とされる。
According to another aspect of the present invention, there is provided use of a tetrapyrrole-containing degradation product or extract thereof, or a compound of formula (I) or an orally acceptable salt thereof as a xanthine oxidase inhibitor. . According to still another aspect of the present invention, there is provided use of a tetrapyrrole-containing degradation product or an extract thereof or a compound of formula (I) or an orally acceptable salt thereof as a blood uric acid lowering agent. Is done. According to still another aspect of the present invention, a tetrapyrrole-containing decomposition product or an extract thereof, a compound of formula (I) or a compound as a therapeutic agent for a disease or condition caused by excessive production or decreased excretion of uric acid Use of the orally acceptable salt is provided. According to still another aspect of the present invention, use of a tetrapyrrole-containing degradation product or an extract thereof or a compound of formula (I) or an orally acceptable salt thereof as a therapeutic agent for hyperuricemia Is provided. According to one preferred alternative embodiment of the invention, the use of the invention is a non-therapeutic use.
また、本発明の別の態様によれば、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩を剤中に配合することを特徴とする、キサンチンオキシダーゼ阻害剤の製造方法が提供される。また、本発明のさらに別の態様によれば、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩を剤中に配合することを特徴とする、血中尿酸低下剤の製造方法が提供される。また、本発明のさらに別の態様によれば、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩を剤中に配合することを特徴とする、尿酸の過剰生成または排泄低下に起因する疾患または状態の治療剤の製造方法が提供される。また、本発明のさらに別の態様によれば、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩を剤中に配合することを特徴とする、高尿酸血症の治療剤の製造方法が提供される。
According to another aspect of the present invention, the xanthine is characterized in that a tetrapyrrole-containing decomposition product or extract thereof, or a compound of formula (I) or an orally acceptable salt thereof is blended in the agent. A method for producing an oxidase inhibitor is provided. According to still another aspect of the present invention, the product comprising a decomposition product of tetrapyrrole or an extract thereof, or a compound of formula (I) or an orally acceptable salt thereof is characterized by comprising: A method for producing a blood uric acid lowering agent is provided. According to still another aspect of the present invention, the product comprising a decomposition product of tetrapyrrole or an extract thereof, or a compound of formula (I) or an orally acceptable salt thereof is characterized by comprising: A method for producing a therapeutic agent for a disease or condition resulting from excessive production of uric acid or decreased excretion is provided. According to still another aspect of the present invention, the product comprising a decomposition product of tetrapyrrole or an extract thereof, or a compound of formula (I) or an orally acceptable salt thereof is characterized by comprising: A method for producing a therapeutic agent for hyperuricemia is provided.
また、本発明の別の態様によれば、キサンチンオキシダーゼ阻害のための、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩が提供される。また、本発明のさらに別の態様によれば、血中尿酸の低下のための、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩が提供される。また、本発明のさらに別の態様によれば、尿酸の過剰生成もしくは排泄低下に起因する疾患もしくは状態の治療、または尿酸の過剰生成もしくは排泄低下に起因する疾患もしくは状態のリスクの低減のための、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩が提供される。また、本発明のさらに別の態様によれば、高尿酸血症の治療または高尿酸血症のリスクの低減のための、テトラピロール含有物分解産物もしくはその抽出物または式(I)の化合物もしくはその経口上許容可能な塩が提供される。かかる態様はいずれも、本発明の剤および方法に関する記載に準じて実施することができる。
Also, according to another aspect of the present invention, there is provided a tetrapyrrole-containing degradation product or extract thereof, a compound of formula (I) or an orally acceptable salt thereof for xanthine oxidase inhibition. According to still another aspect of the present invention, there is provided a tetrapyrrole-containing degradation product or extract thereof or a compound of formula (I) or an orally acceptable salt thereof for reducing blood uric acid. The According to yet another aspect of the present invention, for the treatment of a disease or condition resulting from excessive production or decreased excretion of uric acid, or for reducing the risk of a disease or condition resulting from excessive production or decreased excretion of uric acid. , Tetrapyrrole-containing degradation products or extracts thereof, or compounds of formula (I) or orally acceptable salts thereof. According to still another aspect of the present invention, a tetrapyrrole-containing degradation product or an extract thereof, a compound of formula (I) or a compound for the treatment of hyperuricemia or reduction of the risk of hyperuricemia Its orally acceptable salt is provided. Any of these embodiments can be carried out in accordance with the description relating to the agent and method of the present invention.
上記使用、製造方法の態様はいずれも、本発明の剤および方法に関する記載に準じて実施することができる。
Any of the above aspects of use and production method can be carried out in accordance with the description of the agent and method of the present invention.
以下、実施例により本発明をより具体的に説明するが、本発明の技術範囲はこれらの例示に限定されるものではない。なお、特に指摘されない限り、本発明で用いられる全てのパーセンテージおよび比率は質量による。また、特に指摘されない限り、本明細書に記載の単位および測定方法は日本工業規格(JIS)による。
Hereinafter, the present invention will be described more specifically by way of examples. However, the technical scope of the present invention is not limited to these examples. Unless otherwise indicated, all percentages and ratios used in the present invention are by weight. Unless otherwise indicated, the units and measurement methods described in this specification are based on Japanese Industrial Standards (JIS).
試験例1:テトラピロール含有物分解産物(ブタ赤血球酵素分解産物)の調製
原料として、赤血球パウダーを用いた。上記赤血球パウダーは、ブタの血液を遠心分離することで赤血球を得、該赤血球を噴霧乾燥させることで得られた。
赤血球酵素分解産物の調製はヘム鉄複合物の製造方法(特開平4-013680)を参考に以下のように行った。まず赤血球パウダーにその約7倍量の蒸留水を添加し溶解させた後、水酸化ナトリウムを適宜添加しpH9.5±0.5に調整しながら、微生物由来のエンド型プロテアーゼ(アルカラーゼ)(Novozymes社製)を赤血球パウダーの約10%量添加し、55±1℃で1時間以上酵素反応させた。さらに、上記酵素反応液を分画分子量10000以下の限外濾過膜で処理することで、高分子量の物質を除き、赤血球酵素分解産物を得た。 Test Example 1: Red blood cell powder was used as a raw material for preparing a tetrapyrrole-containing product degradation product (porcine erythrocyte enzyme degradation product) . The erythrocyte powder was obtained by centrifuging pig blood to obtain erythrocytes and spray-drying the erythrocytes.
Preparation of the erythrocyte enzymatic degradation product was carried out as follows with reference to the method for producing heme iron complex (Japanese Patent Laid-Open No. 4-013680). First, about 7 times the amount of distilled water is added to red blood cell powder and dissolved, then sodium hydroxide is added as appropriate to adjust the pH to 9.5 ± 0.5, and a microorganism-derived endo-type protease (alkalase) (Novozymes) About 10% of red blood cell powder was added, and the enzyme reaction was carried out at 55 ± 1 ° C. for 1 hour or longer. Furthermore, the enzyme reaction solution was treated with an ultrafiltration membrane having a molecular weight cut-off of 10,000 or less, thereby removing high molecular weight substances and obtaining erythrocyte enzyme degradation products.
原料として、赤血球パウダーを用いた。上記赤血球パウダーは、ブタの血液を遠心分離することで赤血球を得、該赤血球を噴霧乾燥させることで得られた。
赤血球酵素分解産物の調製はヘム鉄複合物の製造方法(特開平4-013680)を参考に以下のように行った。まず赤血球パウダーにその約7倍量の蒸留水を添加し溶解させた後、水酸化ナトリウムを適宜添加しpH9.5±0.5に調整しながら、微生物由来のエンド型プロテアーゼ(アルカラーゼ)(Novozymes社製)を赤血球パウダーの約10%量添加し、55±1℃で1時間以上酵素反応させた。さらに、上記酵素反応液を分画分子量10000以下の限外濾過膜で処理することで、高分子量の物質を除き、赤血球酵素分解産物を得た。 Test Example 1: Red blood cell powder was used as a raw material for preparing a tetrapyrrole-containing product degradation product (porcine erythrocyte enzyme degradation product) . The erythrocyte powder was obtained by centrifuging pig blood to obtain erythrocytes and spray-drying the erythrocytes.
Preparation of the erythrocyte enzymatic degradation product was carried out as follows with reference to the method for producing heme iron complex (Japanese Patent Laid-Open No. 4-013680). First, about 7 times the amount of distilled water is added to red blood cell powder and dissolved, then sodium hydroxide is added as appropriate to adjust the pH to 9.5 ± 0.5, and a microorganism-derived endo-type protease (alkalase) (Novozymes) About 10% of red blood cell powder was added, and the enzyme reaction was carried out at 55 ± 1 ° C. for 1 hour or longer. Furthermore, the enzyme reaction solution was treated with an ultrafiltration membrane having a molecular weight cut-off of 10,000 or less, thereby removing high molecular weight substances and obtaining erythrocyte enzyme degradation products.
上記赤血球酵素分解産物について塩酸を添加し各種pHへ調整後、in vitroでXOD阻害活性を測定した。
in vitro XOD阻害活性は、増田等の方法(仁愛女子短期大学研究紀要, 第41号 平成20年)を参考に測定した。具体的には、キサンチンオキシダーゼ(xanthine oxidase:XOD)に、基質としてキサンチンを加えることにより生成する尿酸の変化量より阻害活性を求めた。
まず、0.1Mリン酸緩衝液(pH7.4) 240μLに上記赤血球酵素分解産物10μLを添加した。コントロール(XOD阻害物質無し)としては0.1Mリン酸緩衝液(pH7.4) 10μLを添加した。次に0.1Mリン酸緩衝液(pH7.4)で溶解した0.24U/mL ウシバターミルク由来XOD(オリエンタル酵母工業製)を50μL添加して撹拌後、1分間静置した。そこに0.1Mリン酸緩衝液(pH7.4)で溶解した0.1mMキサンチン(和光純薬工業製)溶液300μLを添加し、即座に分光光度計(DU7400、Beckman社製)を用い波長295nmについて基質添加後(0分後)および1分後の吸光値を測定した。測定および使用した試液は全て室温のものを用いた。得られた吸光値から0→1分間のΔABSを求め、下記に示す式で試料の阻害活性を算出した。これらの反応は全てセル内で行った。なお、この測定系における0.7mg/mLアロプリノール(和光純薬工業製)(0.1Mリン酸緩衝液(pH 7.4)に溶解)の阻害活性は99%以上を示した。
式)A:試料ΔABS (0-1min)
B:コントロールΔABS (0-1min)
阻害活性%=100-{A/B×100} The erythrocyte enzymatic degradation product was adjusted to various pH by adding hydrochloric acid, and then the XOD inhibitory activity was measured in vitro.
In vitro XOD inhibitory activity was measured with reference to the method of Masuda et al. (Juniai Women's Junior College Bulletin, No. 41, 2008). Specifically, the inhibitory activity was determined from the amount of change in uric acid produced by adding xanthine as a substrate to xanthine oxidase (XOD).
First, 10 μL of the erythrocyte enzymatic degradation product was added to 240 μL of 0.1 M phosphate buffer (pH 7.4). As a control (no XOD inhibitor), 10 μL of 0.1 M phosphate buffer (pH 7.4) was added. Next, 50 μL of 0.24 U / mL bovine buttermilk-derived XOD (manufactured by Oriental Yeast Co., Ltd.) dissolved in 0.1 M phosphate buffer (pH 7.4) was added and stirred for 1 minute. Thereto was added 300 μL of 0.1 mM xanthine (manufactured by Wako Pure Chemical Industries) dissolved in 0.1 M phosphate buffer (pH 7.4), and a wavelength of 295 nm was immediately used using a spectrophotometer (DU7400, manufactured by Beckman). The absorbance values after addition of the substrate (after 0 minutes) and after 1 minute were measured. All the test solutions used for measurement and use were those at room temperature. ΔABS for 0 → 1 minute was determined from the obtained absorbance value, and the inhibitory activity of the sample was calculated by the following formula. All these reactions were carried out in the cell. The inhibitory activity of 0.7 mg / mL allopurinol (manufactured by Wako Pure Chemical Industries) (dissolved in 0.1 M phosphate buffer (pH 7.4)) in this measurement system was 99% or more.
Formula) A: Sample ΔABS (0-1 min)
B: Control ΔABS (0-1 min)
Inhibitory activity% = 100− {A / B × 100}
in vitro XOD阻害活性は、増田等の方法(仁愛女子短期大学研究紀要, 第41号 平成20年)を参考に測定した。具体的には、キサンチンオキシダーゼ(xanthine oxidase:XOD)に、基質としてキサンチンを加えることにより生成する尿酸の変化量より阻害活性を求めた。
まず、0.1Mリン酸緩衝液(pH7.4) 240μLに上記赤血球酵素分解産物10μLを添加した。コントロール(XOD阻害物質無し)としては0.1Mリン酸緩衝液(pH7.4) 10μLを添加した。次に0.1Mリン酸緩衝液(pH7.4)で溶解した0.24U/mL ウシバターミルク由来XOD(オリエンタル酵母工業製)を50μL添加して撹拌後、1分間静置した。そこに0.1Mリン酸緩衝液(pH7.4)で溶解した0.1mMキサンチン(和光純薬工業製)溶液300μLを添加し、即座に分光光度計(DU7400、Beckman社製)を用い波長295nmについて基質添加後(0分後)および1分後の吸光値を測定した。測定および使用した試液は全て室温のものを用いた。得られた吸光値から0→1分間のΔABSを求め、下記に示す式で試料の阻害活性を算出した。これらの反応は全てセル内で行った。なお、この測定系における0.7mg/mLアロプリノール(和光純薬工業製)(0.1Mリン酸緩衝液(pH 7.4)に溶解)の阻害活性は99%以上を示した。
式)A:試料ΔABS (0-1min)
B:コントロールΔABS (0-1min)
阻害活性%=100-{A/B×100} The erythrocyte enzymatic degradation product was adjusted to various pH by adding hydrochloric acid, and then the XOD inhibitory activity was measured in vitro.
In vitro XOD inhibitory activity was measured with reference to the method of Masuda et al. (Juniai Women's Junior College Bulletin, No. 41, 2008). Specifically, the inhibitory activity was determined from the amount of change in uric acid produced by adding xanthine as a substrate to xanthine oxidase (XOD).
First, 10 μL of the erythrocyte enzymatic degradation product was added to 240 μL of 0.1 M phosphate buffer (pH 7.4). As a control (no XOD inhibitor), 10 μL of 0.1 M phosphate buffer (pH 7.4) was added. Next, 50 μL of 0.24 U / mL bovine buttermilk-derived XOD (manufactured by Oriental Yeast Co., Ltd.) dissolved in 0.1 M phosphate buffer (pH 7.4) was added and stirred for 1 minute. Thereto was added 300 μL of 0.1 mM xanthine (manufactured by Wako Pure Chemical Industries) dissolved in 0.1 M phosphate buffer (pH 7.4), and a wavelength of 295 nm was immediately used using a spectrophotometer (DU7400, manufactured by Beckman). The absorbance values after addition of the substrate (after 0 minutes) and after 1 minute were measured. All the test solutions used for measurement and use were those at room temperature. ΔABS for 0 → 1 minute was determined from the obtained absorbance value, and the inhibitory activity of the sample was calculated by the following formula. All these reactions were carried out in the cell. The inhibitory activity of 0.7 mg / mL allopurinol (manufactured by Wako Pure Chemical Industries) (dissolved in 0.1 M phosphate buffer (pH 7.4)) in this measurement system was 99% or more.
Formula) A: Sample ΔABS (0-1 min)
B: Control ΔABS (0-1 min)
Inhibitory activity% = 100− {A / B × 100}
試験例1の赤血球酵素分解産物によるXOD阻害活性の測定結果を表1および図1に示す。その結果、赤血球酵素分解産物のXOD阻害活性はpHにより変動し、pH10における阻害活性は31.5%であったが、pH4では62.4%を示した(図1、表1)。
The measurement results of the XOD inhibitory activity of the erythrocyte enzyme degradation product of Test Example 1 are shown in Table 1 and FIG. As a result, the XOD inhibitory activity of the erythrocyte enzyme degradation product varied depending on the pH, and the inhibitory activity at pH 10 was 31.5%, but at pH 4, it was 62.4% (FIG. 1, Table 1).
試験例2:テトラピロール含有物分解産物(ウシ赤血球酵素分解産物)の調製
ブタ由来赤血球パウダーの替わりにウシ血液由来ヘモグロビンパウダー(和光純薬工業製)を用い、試験例1と同様の方法でウシ赤血球酵素分解産物を得た。 Test Example 2: Preparation of tetrapyrrole-containing degradation product (bovine erythrocyte enzyme degradation product) Bovine blood-derived hemoglobin powder (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of porcine-derived erythrocyte powder in the same manner as in Test Example 1. An erythrocyte enzymatic degradation product was obtained.
ブタ由来赤血球パウダーの替わりにウシ血液由来ヘモグロビンパウダー(和光純薬工業製)を用い、試験例1と同様の方法でウシ赤血球酵素分解産物を得た。 Test Example 2: Preparation of tetrapyrrole-containing degradation product (bovine erythrocyte enzyme degradation product) Bovine blood-derived hemoglobin powder (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of porcine-derived erythrocyte powder in the same manner as in Test Example 1. An erythrocyte enzymatic degradation product was obtained.
さらに、上記ウシ赤血球酵素分解産物に塩酸を添加しpH4へ調整後、試験例1と同様の方法で、in vitroでXOD阻害活性を測定した。
その結果、54.6%のXOD阻害活性が認められた(表1)。
したがって、赤血球酵素分解産物のXOD阻害活性は生物種固有のものではないと推測された。 Furthermore, after adding hydrochloric acid to the bovine erythrocyte enzymatic degradation product to adjust topH 4, XOD inhibitory activity was measured in vitro by the same method as in Test Example 1.
As a result, 54.6% XOD inhibitory activity was observed (Table 1).
Therefore, it was speculated that the XOD inhibitory activity of the erythrocyte enzymatic degradation product is not unique to the species.
その結果、54.6%のXOD阻害活性が認められた(表1)。
したがって、赤血球酵素分解産物のXOD阻害活性は生物種固有のものではないと推測された。 Furthermore, after adding hydrochloric acid to the bovine erythrocyte enzymatic degradation product to adjust to
As a result, 54.6% XOD inhibitory activity was observed (Table 1).
Therefore, it was speculated that the XOD inhibitory activity of the erythrocyte enzymatic degradation product is not unique to the species.
試験例3:テトラピロール含有物分解産物(ヘミンとアルブミンの混合物の酵素反応物)の調製
ヘモグロビンはヘムとグロビンで構成されているが、ヘムとグロビン以外のタンパク質の混合物を酵素反応させてもXOD阻害活性を示すか確認した。
ここでは、ヘムとしてヘミンを用いた。ヘミン(Kodak社製)とウシ由来アルブミン(和光純薬工業製)を約1:10の割合で混合した後、試験例1と同様の方法でプロテアーゼを添加し反応させ、ヘミンとアルブミンの混合物の酵素反応物を得た。 Test Example 3: Preparation of a decomposition product of tetrapyrrole-containing product (enzyme reaction product of a mixture of hemin and albumin) Although hemoglobin is composed of heme and globin, XOD can also be obtained by enzymatic reaction of a mixture of proteins other than heme and globin. It was confirmed whether it showed inhibitory activity.
Here, hemin was used as hem. After mixing hemin (manufactured by Kodak) and bovine-derived albumin (manufactured by Wako Pure Chemical Industries) at a ratio of about 1:10, protease was added and reacted in the same manner as in Test Example 1, and the mixture of hemin and albumin An enzyme reaction product was obtained.
ヘモグロビンはヘムとグロビンで構成されているが、ヘムとグロビン以外のタンパク質の混合物を酵素反応させてもXOD阻害活性を示すか確認した。
ここでは、ヘムとしてヘミンを用いた。ヘミン(Kodak社製)とウシ由来アルブミン(和光純薬工業製)を約1:10の割合で混合した後、試験例1と同様の方法でプロテアーゼを添加し反応させ、ヘミンとアルブミンの混合物の酵素反応物を得た。 Test Example 3: Preparation of a decomposition product of tetrapyrrole-containing product (enzyme reaction product of a mixture of hemin and albumin) Although hemoglobin is composed of heme and globin, XOD can also be obtained by enzymatic reaction of a mixture of proteins other than heme and globin. It was confirmed whether it showed inhibitory activity.
Here, hemin was used as hem. After mixing hemin (manufactured by Kodak) and bovine-derived albumin (manufactured by Wako Pure Chemical Industries) at a ratio of about 1:10, protease was added and reacted in the same manner as in Test Example 1, and the mixture of hemin and albumin An enzyme reaction product was obtained.
上記ヘミンとアルブミンの混合物の酵素反応物についてpH4へ調整後、試験例1と同様の方法で、in vitroでXOD阻害活性を測定した。
その結果、23.7%のXOD阻害活性が認められた(表1)。 The enzyme reaction product of the mixture of hemin and albumin was adjusted topH 4, and then the XOD inhibitory activity was measured in vitro by the same method as in Test Example 1.
As a result, 23.7% XOD inhibitory activity was observed (Table 1).
その結果、23.7%のXOD阻害活性が認められた(表1)。 The enzyme reaction product of the mixture of hemin and albumin was adjusted to
As a result, 23.7% XOD inhibitory activity was observed (Table 1).
試験例4:テトラピロール含有物分解産物(ヘミンと各種還元剤との反応物)の調製
赤血球酵素分解産物中のXOD阻害物質は、上記検討からヘモグロビンおよびミオグロビンに存在するヘム(ヘミン)の分解産物の可能性が示唆された。
そこで、終濃度10μmol/mLのヘミン(Kodak社製)溶液に対し、終濃度100μmol/mLとなるようにシステイン(Cys)(和光純薬工業製)、グルタチオン(GSH)(和光純薬工業製)またはジチオスレイトール(DTT)(和光純薬工業製)等の還元剤を加え、0.1Mの水酸化ナトリウム(和光純薬工業製)溶液にてpH10に調整後、60℃で一晩反応させ、反応物を得た。 Test Example 4: Preparation of tetrapyrrole-containing degradation product (reaction product of hemin and various reducing agents) The XOD inhibitor in the erythrocyte enzyme degradation product is a degradation product of heme (hemin) present in hemoglobin and myoglobin from the above examination. The possibility was suggested.
Therefore, cysteine (Cys) (manufactured by Wako Pure Chemical Industries, Ltd.), glutathione (GSH) (manufactured by Wako Pure Chemical Industries, Ltd.) to a final concentration of 100 μmol / mL with respect to a hemin (manufactured by Kodak) solution having a final concentration of 10 μmol / mL. Alternatively, a reducing agent such as dithiothreitol (DTT) (manufactured by Wako Pure Chemical Industries, Ltd.) is added, adjusted topH 10 with a 0.1 M sodium hydroxide (manufactured by Wako Pure Chemical Industries) solution, and reacted at 60 ° C. overnight. The reaction product was obtained.
赤血球酵素分解産物中のXOD阻害物質は、上記検討からヘモグロビンおよびミオグロビンに存在するヘム(ヘミン)の分解産物の可能性が示唆された。
そこで、終濃度10μmol/mLのヘミン(Kodak社製)溶液に対し、終濃度100μmol/mLとなるようにシステイン(Cys)(和光純薬工業製)、グルタチオン(GSH)(和光純薬工業製)またはジチオスレイトール(DTT)(和光純薬工業製)等の還元剤を加え、0.1Mの水酸化ナトリウム(和光純薬工業製)溶液にてpH10に調整後、60℃で一晩反応させ、反応物を得た。 Test Example 4: Preparation of tetrapyrrole-containing degradation product (reaction product of hemin and various reducing agents) The XOD inhibitor in the erythrocyte enzyme degradation product is a degradation product of heme (hemin) present in hemoglobin and myoglobin from the above examination. The possibility was suggested.
Therefore, cysteine (Cys) (manufactured by Wako Pure Chemical Industries, Ltd.), glutathione (GSH) (manufactured by Wako Pure Chemical Industries, Ltd.) to a final concentration of 100 μmol / mL with respect to a hemin (manufactured by Kodak) solution having a final concentration of 10 μmol / mL. Alternatively, a reducing agent such as dithiothreitol (DTT) (manufactured by Wako Pure Chemical Industries, Ltd.) is added, adjusted to
上記ヘミンと各種還元剤との反応物についてpH4に調整後、試験例1と同様の方法で、in vitroでXOD阻害活性を測定した。
その結果、全ての反応物においてXOD阻害活性を検出することができた(表1)。また、これら反応物の逆相クロマトグラフィー上のXOD阻害活性を有するピークは赤血球酵素分解産物由来のXOD阻害活性を有するピークと溶出位置が重なった。したがって、上記反応物においてXOD阻害活性を示している物質は、赤血球酵素分解産物由来のXOD阻害物質と同一の物質であることが示唆された。 The reaction product of hemin and various reducing agents was adjusted topH 4 and then the XOD inhibitory activity was measured in vitro by the same method as in Test Example 1.
As a result, XOD inhibitory activity could be detected in all the reaction products (Table 1). Moreover, the peak which has XOD inhibitory activity on the reverse phase chromatography of these reaction products overlapped with the peak which has XOD inhibitory activity derived from the erythrocyte enzyme degradation product. Therefore, it was suggested that the substance showing XOD inhibitory activity in the reaction product is the same substance as the XOD inhibitor derived from the erythrocyte enzyme degradation product.
その結果、全ての反応物においてXOD阻害活性を検出することができた(表1)。また、これら反応物の逆相クロマトグラフィー上のXOD阻害活性を有するピークは赤血球酵素分解産物由来のXOD阻害活性を有するピークと溶出位置が重なった。したがって、上記反応物においてXOD阻害活性を示している物質は、赤血球酵素分解産物由来のXOD阻害物質と同一の物質であることが示唆された。 The reaction product of hemin and various reducing agents was adjusted to
As a result, XOD inhibitory activity could be detected in all the reaction products (Table 1). Moreover, the peak which has XOD inhibitory activity on the reverse phase chromatography of these reaction products overlapped with the peak which has XOD inhibitory activity derived from the erythrocyte enzyme degradation product. Therefore, it was suggested that the substance showing XOD inhibitory activity in the reaction product is the same substance as the XOD inhibitor derived from the erythrocyte enzyme degradation product.
試験例5:テトラピロール含有物分解産物(テトラピロール化合物とシステインとの反応物)の調製
また、鉄を含まないプロトポルフィリン(東京化成工業製)、ヘム(ヘミン)とは別のテトラピロール化合物であるヘマトポルフィリン(Sigma-Aldrich社製)、およびヘムの分解中間体であるビリルビン(東京化成工業製)にシステインを作用させ反応物を得た。具体的には、終濃度10μmol/mLのプロトポルフィリン溶液、終濃度10μmol/mLのヘマトポルフィリンまたは終濃度10μmol/mLのビリルビンに対し終濃度100μmol/mLとなるようにシステイン(Cys)を加え、0.1Mの水酸化ナトリウム溶液にてpH10に調整後、60℃で一晩反応させ、反応物を得た。
さらに、プロトポルフィリンまたはビリルビンとシステインとの反応物に終濃度10μmol/mLとなるように塩化鉄(II)(和光純薬工業製)を添加し、pH10に調整後、60℃で一晩反応させ、塩化鉄(II)添加反応物を得た。 Test Example 5: Preparation of decomposition product of tetrapyrrole-containing product (reaction product of tetrapyrrole compound and cysteine) In addition to iron-free protoporphyrin (manufactured by Tokyo Kasei Kogyo) and heme (hemin), a different tetrapyrrole compound Cysteine was allowed to act on certain hematoporphyrin (manufactured by Sigma-Aldrich) and bilirubin (manufactured by Tokyo Kasei Kogyo Co., Ltd.), a heme degradation intermediate, to obtain a reaction product. Specifically, cysteine (Cys) is added to a final concentration of 10 μmol / mL protoporphyrin solution, final concentration of 10 μmol / mL hematoporphyrin or final concentration of 10 μmol / mL bilirubin to a final concentration of 100 μmol / mL. The pH was adjusted to 10 with 1 M sodium hydroxide solution and reacted at 60 ° C. overnight to obtain a reaction product.
Furthermore, iron (II) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the reaction product of protoporphyrin or bilirubin and cysteine so as to have a final concentration of 10 μmol / mL, adjusted topH 10, and then reacted at 60 ° C. overnight. Then, an iron (II) chloride addition reaction product was obtained.
また、鉄を含まないプロトポルフィリン(東京化成工業製)、ヘム(ヘミン)とは別のテトラピロール化合物であるヘマトポルフィリン(Sigma-Aldrich社製)、およびヘムの分解中間体であるビリルビン(東京化成工業製)にシステインを作用させ反応物を得た。具体的には、終濃度10μmol/mLのプロトポルフィリン溶液、終濃度10μmol/mLのヘマトポルフィリンまたは終濃度10μmol/mLのビリルビンに対し終濃度100μmol/mLとなるようにシステイン(Cys)を加え、0.1Mの水酸化ナトリウム溶液にてpH10に調整後、60℃で一晩反応させ、反応物を得た。
さらに、プロトポルフィリンまたはビリルビンとシステインとの反応物に終濃度10μmol/mLとなるように塩化鉄(II)(和光純薬工業製)を添加し、pH10に調整後、60℃で一晩反応させ、塩化鉄(II)添加反応物を得た。 Test Example 5: Preparation of decomposition product of tetrapyrrole-containing product (reaction product of tetrapyrrole compound and cysteine) In addition to iron-free protoporphyrin (manufactured by Tokyo Kasei Kogyo) and heme (hemin), a different tetrapyrrole compound Cysteine was allowed to act on certain hematoporphyrin (manufactured by Sigma-Aldrich) and bilirubin (manufactured by Tokyo Kasei Kogyo Co., Ltd.), a heme degradation intermediate, to obtain a reaction product. Specifically, cysteine (Cys) is added to a final concentration of 10 μmol / mL protoporphyrin solution, final concentration of 10 μmol / mL hematoporphyrin or final concentration of 10 μmol / mL bilirubin to a final concentration of 100 μmol / mL. The pH was adjusted to 10 with 1 M sodium hydroxide solution and reacted at 60 ° C. overnight to obtain a reaction product.
Furthermore, iron (II) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the reaction product of protoporphyrin or bilirubin and cysteine so as to have a final concentration of 10 μmol / mL, adjusted to
上記テトラピロール化合物とシステインとの反応物について塩酸を加えてpH4に調整した後、試験例1と同様の方法で、in vitroでXOD阻害活性を測定した。
その結果、全ての反応物においてXOD阻害活性を検出することができた(表1)。
また、上記塩化鉄(II)添加反応物に関しても、塩酸を加えてpH4に調整した後、試験例1と同様の方法で、in vitroでXOD阻害活性を測定した。
その結果、塩化鉄(II)添加反応物は塩化鉄(II)を添加していない反応物に比して更にXOD阻害活性を10%程度高めることができた(表1)。このことから、鉄の存在がXOD阻害物質の生成率を高めている可能性が示唆された。 The reaction product of the tetrapyrrole compound and cysteine was adjusted topH 4 by adding hydrochloric acid, and then the XOD inhibitory activity was measured in vitro in the same manner as in Test Example 1.
As a result, XOD inhibitory activity could be detected in all the reaction products (Table 1).
In addition, with respect to the reaction product added with iron (II) chloride, after adjusting the pH to 4 by adding hydrochloric acid, the XOD inhibitory activity was measured in vitro in the same manner as in Test Example 1.
As a result, the reaction product added with iron chloride (II) was able to further increase the XOD inhibitory activity by about 10% as compared with the reaction product not added with iron chloride (II) (Table 1). This suggests that the presence of iron may increase the production rate of XOD inhibitors.
その結果、全ての反応物においてXOD阻害活性を検出することができた(表1)。
また、上記塩化鉄(II)添加反応物に関しても、塩酸を加えてpH4に調整した後、試験例1と同様の方法で、in vitroでXOD阻害活性を測定した。
その結果、塩化鉄(II)添加反応物は塩化鉄(II)を添加していない反応物に比して更にXOD阻害活性を10%程度高めることができた(表1)。このことから、鉄の存在がXOD阻害物質の生成率を高めている可能性が示唆された。 The reaction product of the tetrapyrrole compound and cysteine was adjusted to
As a result, XOD inhibitory activity could be detected in all the reaction products (Table 1).
In addition, with respect to the reaction product added with iron (II) chloride, after adjusting the pH to 4 by adding hydrochloric acid, the XOD inhibitory activity was measured in vitro in the same manner as in Test Example 1.
As a result, the reaction product added with iron chloride (II) was able to further increase the XOD inhibitory activity by about 10% as compared with the reaction product not added with iron chloride (II) (Table 1). This suggests that the presence of iron may increase the production rate of XOD inhibitors.
試験例6:テトラピロール含有物分解産物(ヘミンと過酸化水素との反応物)の調製
ヘミンと還元剤との反応物ではなく、ヘミンと過酸化水素との反応物(以後、ヘミン-過酸化水素反応物という)においてもXOD阻害活性が検出できるか検討した。
ヘミンと過酸化水素との反応方法は廣田の方法(岡大医短紀要,4:31~36,1993)を参考にした。具体的には、まず、ヘミン10mg/mL溶液に、28%アンモニア(和光純薬工業製)を1/40量添加しヘミンを溶解した。その溶液を60℃で加熱しながら、その溶液にヘミン溶液の半分量の終濃度15%過酸化水素水(和光純薬工業製)(28%アンモニアを1/33量含む)を少しずつ添加後、60℃で1時間反応させた。反応後室温まで冷却し反応物を得た。 Test Example 6: Preparation of decomposition product of tetrapyrrole-containing product (reaction product of hemin and hydrogen peroxide) Reaction product of hemin and hydrogen peroxide instead of the reaction product of hemin and reducing agent (hereinafter referred to as hemin-peroxidation) It was investigated whether XOD inhibitory activity could be detected in the hydrogen reactant).
The reaction method of hemin and hydrogen peroxide was referred to the method of Iwata (Oka University Medical Bulletin, 4: 31-36, 1993). Specifically, first, 1/40 amount of 28% ammonia (manufactured by Wako Pure Chemical Industries, Ltd.) was added to a hemin 10 mg / mL solution to dissolve hemin. While heating the solution at 60 ° C., a final concentration of 15% hydrogen peroxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) that is half the amount of hemin solution (containing 1/33 amount of 28% ammonia) was added little by little to the solution. And reacted at 60 ° C. for 1 hour. After the reaction, the reaction product was cooled to room temperature.
ヘミンと還元剤との反応物ではなく、ヘミンと過酸化水素との反応物(以後、ヘミン-過酸化水素反応物という)においてもXOD阻害活性が検出できるか検討した。
ヘミンと過酸化水素との反応方法は廣田の方法(岡大医短紀要,4:31~36,1993)を参考にした。具体的には、まず、ヘミン10mg/mL溶液に、28%アンモニア(和光純薬工業製)を1/40量添加しヘミンを溶解した。その溶液を60℃で加熱しながら、その溶液にヘミン溶液の半分量の終濃度15%過酸化水素水(和光純薬工業製)(28%アンモニアを1/33量含む)を少しずつ添加後、60℃で1時間反応させた。反応後室温まで冷却し反応物を得た。 Test Example 6: Preparation of decomposition product of tetrapyrrole-containing product (reaction product of hemin and hydrogen peroxide) Reaction product of hemin and hydrogen peroxide instead of the reaction product of hemin and reducing agent (hereinafter referred to as hemin-peroxidation) It was investigated whether XOD inhibitory activity could be detected in the hydrogen reactant).
The reaction method of hemin and hydrogen peroxide was referred to the method of Iwata (Oka University Medical Bulletin, 4: 31-36, 1993). Specifically, first, 1/40 amount of 28% ammonia (manufactured by Wako Pure Chemical Industries, Ltd.) was added to a hemin 10 mg / mL solution to dissolve hemin. While heating the solution at 60 ° C., a final concentration of 15% hydrogen peroxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) that is half the amount of hemin solution (containing 1/33 amount of 28% ammonia) was added little by little to the solution. And reacted at 60 ° C. for 1 hour. After the reaction, the reaction product was cooled to room temperature.
上記ヘミン-過酸化水素反応物について、塩酸を加えてpH4に調整した後、試験例1と同様の方法で、in vitroでXOD阻害活性を測定した。
その結果、上記反応物のXOD阻害活性は87.5%を示した(表1)。 The hemin-hydrogen peroxide reactant was adjusted topH 4 by adding hydrochloric acid, and then the XOD inhibitory activity was measured in vitro by the same method as in Test Example 1.
As a result, the XOD inhibitory activity of the reaction product was 87.5% (Table 1).
その結果、上記反応物のXOD阻害活性は87.5%を示した(表1)。 The hemin-hydrogen peroxide reactant was adjusted to
As a result, the XOD inhibitory activity of the reaction product was 87.5% (Table 1).
試験例7:テトラピロール含有物分解産物(クロロフィリンと過酸化水素との反応物)の調製
植物、植物プランクトンおよび藻類等の光合成を行う生物に関与するテトラピロール化合物であるクロロフィリンと過酸化水素との反応物もXOD阻害活性を検出できるか検討した。
ヘミンに代えて鉄クロロフィリンNa(鉄葉緑素)(日本葉緑素製)を用いる以外は、上記試験例6に記載の、ヘミンと過酸化水素との反応物と同様の調製方法で調製した。 Test Example 7: Preparation of tetrapyrrole-containing decomposition product (reaction product of chlorophyllin and hydrogen peroxide) between chlorophyllin, which is a tetrapyrrole compound involved in photosynthesis organisms such as plants, phytoplankton and algae, and hydrogen peroxide It was examined whether the reaction product could detect XOD inhibitory activity.
It was prepared by the same preparation method as the reaction product of hemin and hydrogen peroxide described in Test Example 6 except that iron chlorophyllin Na (iron chlorophyll) (manufactured by Japanese chlorophyll) was used instead of hemin.
植物、植物プランクトンおよび藻類等の光合成を行う生物に関与するテトラピロール化合物であるクロロフィリンと過酸化水素との反応物もXOD阻害活性を検出できるか検討した。
ヘミンに代えて鉄クロロフィリンNa(鉄葉緑素)(日本葉緑素製)を用いる以外は、上記試験例6に記載の、ヘミンと過酸化水素との反応物と同様の調製方法で調製した。 Test Example 7: Preparation of tetrapyrrole-containing decomposition product (reaction product of chlorophyllin and hydrogen peroxide) between chlorophyllin, which is a tetrapyrrole compound involved in photosynthesis organisms such as plants, phytoplankton and algae, and hydrogen peroxide It was examined whether the reaction product could detect XOD inhibitory activity.
It was prepared by the same preparation method as the reaction product of hemin and hydrogen peroxide described in Test Example 6 except that iron chlorophyllin Na (iron chlorophyll) (manufactured by Japanese chlorophyll) was used instead of hemin.
上記クロロフィリンと過酸化水素との反応物について、塩酸を加えてpH4に調整した後、試験例1と同様の方法で、in vitroでXOD阻害活性を測定した。
その結果、上記反応物のXOD阻害活性は24.2%を示した(表1)。
The reaction product of chlorophyllin and hydrogen peroxide was adjusted to pH 4 by adding hydrochloric acid, and then the XOD inhibitory activity was measured in vitro in the same manner as in Test Example 1.
As a result, the XOD inhibitory activity of the reaction product was 24.2% (Table 1).
その結果、上記反応物のXOD阻害活性は24.2%を示した(表1)。
As a result, the XOD inhibitory activity of the reaction product was 24.2% (Table 1).
試験例8:テトラピロール含有物分解産物(赤血球酵素分解産物またはヘミン-過酸化水素反応物)からのXOD阻害物質の単離
赤血球酵素分解産物にXOD阻害活性が確認されたことから、各種クロマトグラフィーを用いてXOD阻害物質の単離を行った。
まず、試験例1で得られた赤血球酵素分解産物をpH4に調整後、5倍量の2-プロパノールを添加しXOD阻害物質を抽出した。この2-プロパノール抽出画分を逆相系樹脂のODS-Aカラム(ワイエムシィ製)に供し、アセトニトリル-トリフルオロ酢酸(TFA)系でグラージェント溶出させた(図2)。その結果、図2で示すように、313nmで検出した矢印で示されるピークの画分に明確なXOD阻害活性を有していた。他のピークではXOD阻害活性は殆ど検出されなかった。さらに、上記阻害活性を有するピーク画分を逆相系のODS-120T(東ソー製)に供し、メタノール-TFA系でグラージェント溶出させた(図3)。その結果、313nmの検出波長で3つのピークが得られた。これらピークに関してXOD阻害活性を測定した結果、最初と二番目のピークの画分でXOD阻害活性が示された。XOD阻害活性が確認されたピーク画分を回収し、313nmの吸光値を約1に調整した溶液とした。上記溶液において、63%のXOD阻害活性を示したピークをP1ピーク、48%のXOD阻害活性を示したピークをP2ピークとした(図3)。P1ピークについて画分を分取し、ODS-120Tにて再精製し、赤血球酵素分解産物から精製したXOD阻害物質P1を得た(以下、赤血球酵素分解産物由来P1という)。また、同様の単離方法で、試験例6のヘミン-過酸化水素反応物からも上記の赤血球酵素分解産物由来P1およびP2と同等の物質を得ることができた(以下、ヘミン-過酸化水素反応物由来P1およびP2という)。ヘミン-過酸化水素反応物由来P1およびP2について分光光度計(DU7400、Beckman社製)により吸収スペクトルを測定した結果、各最大吸収波長は308nmおよび322nm付近で、スペクトルは類似していた(図6-1)。
得られたヘミン-過酸化水素反応物由来P1について、凍結乾燥後、P1濃度が0.7mg/mLとなるように蒸留水に溶解し、試験例1と同様の方法で、in vitroでXOD阻害活性を測定した。
その結果、ヘミン-過酸化水素反応物由来P1の50%阻害濃度(IC50値)は2.45μg/mLであった。(図4)
上述のように、XOD阻害物質は逆相クロマトグラフィーを用いて分取することが可能ではあるが、逆相クロマトグラフィーの後にイオン交換樹脂を用いても分取精製することができた。ODS-120T逆相クロマトグラフィー後に得られたP1について陰イオン交換樹脂GigaCap Q-650M(東ソー製)に50mM Tris-HCl pH9の条件下で吸着させ、塩化ナトリウムのグラージェントによりP1を溶出させ分取することができた(図5)。 Test Example 8: Isolation of XOD inhibitor from tetrapyrrole-containing product (red blood cell enzyme degradation product or hemin-hydrogen peroxide reactant) XOD inhibitory activity was confirmed in the red blood cell enzyme degradation product. Was used to isolate an XOD inhibitor.
First, the erythrocyte enzymatic degradation product obtained in Test Example 1 was adjusted topH 4, and 5-fold amount of 2-propanol was added to extract an XOD inhibitor. This 2-propanol-extracted fraction was applied to an ODS-A column (manufactured by YMC) with a reverse phase resin and was eluted with a gradient using an acetonitrile-trifluoroacetic acid (TFA) system (FIG. 2). As a result, as shown in FIG. 2, the peak fraction indicated by the arrow detected at 313 nm had a clear XOD inhibitory activity. In the other peaks, almost no XOD inhibitory activity was detected. Further, the peak fraction having the inhibitory activity was subjected to reverse phase ODS-120T (manufactured by Tosoh Corporation) and eluted with a gradient using methanol-TFA system (FIG. 3). As a result, three peaks were obtained at a detection wavelength of 313 nm. As a result of measuring the XOD inhibitory activity with respect to these peaks, the first and second peak fractions showed XOD inhibitory activity. The peak fraction in which the XOD inhibitory activity was confirmed was collected and used as a solution in which the absorbance value at 313 nm was adjusted to about 1. In the above solution, the peak showing 63% XOD inhibitory activity was taken as the P1 peak, and the peak showing 48% XOD inhibitory activity was taken as the P2 peak (FIG. 3). Fractions were collected for the P1 peak and repurified with ODS-120T to obtain XOD inhibitor P1 purified from the erythrocyte enzyme degradation product (hereinafter referred to as P1 derived from erythrocyte enzyme degradation product). Further, by the same isolation method, a substance equivalent to P1 and P2 derived from the erythrocyte enzyme degradation product was obtained from the hemin-hydrogen peroxide reactant of Test Example 6 (hereinafter referred to as hemin-hydrogen peroxide). Reactant-derived P1 and P2). The absorption spectra of hemin-hydrogen peroxide reactant-derived P1 and P2 were measured with a spectrophotometer (DU7400, manufactured by Beckman). As a result, the maximum absorption wavelengths were around 308 nm and 322 nm, respectively, and the spectra were similar (FIG. 6). -1).
The obtained hemin-hydrogen peroxide reactant-derived P1 was lyophilized and then dissolved in distilled water so that the P1 concentration was 0.7 mg / mL, and XOD was inhibited in vitro in the same manner as in Test Example 1. Activity was measured.
As a result, the 50% inhibitory concentration (IC 50 value) of P1 derived from the hemin-hydrogen peroxide reactant was 2.45 μg / mL. (Fig. 4)
As described above, the XOD inhibitor can be separated using reverse phase chromatography, but can also be separated and purified using an ion exchange resin after reverse phase chromatography. P1 obtained after ODS-120T reverse phase chromatography was adsorbed on an anion exchange resin GigaCap Q-650M (manufactured by Tosoh Corporation) under the condition of 50 mM Tris-HCl pH9, and P1 was eluted with a sodium chloride gradient for fractionation. (Fig. 5).
赤血球酵素分解産物にXOD阻害活性が確認されたことから、各種クロマトグラフィーを用いてXOD阻害物質の単離を行った。
まず、試験例1で得られた赤血球酵素分解産物をpH4に調整後、5倍量の2-プロパノールを添加しXOD阻害物質を抽出した。この2-プロパノール抽出画分を逆相系樹脂のODS-Aカラム(ワイエムシィ製)に供し、アセトニトリル-トリフルオロ酢酸(TFA)系でグラージェント溶出させた(図2)。その結果、図2で示すように、313nmで検出した矢印で示されるピークの画分に明確なXOD阻害活性を有していた。他のピークではXOD阻害活性は殆ど検出されなかった。さらに、上記阻害活性を有するピーク画分を逆相系のODS-120T(東ソー製)に供し、メタノール-TFA系でグラージェント溶出させた(図3)。その結果、313nmの検出波長で3つのピークが得られた。これらピークに関してXOD阻害活性を測定した結果、最初と二番目のピークの画分でXOD阻害活性が示された。XOD阻害活性が確認されたピーク画分を回収し、313nmの吸光値を約1に調整した溶液とした。上記溶液において、63%のXOD阻害活性を示したピークをP1ピーク、48%のXOD阻害活性を示したピークをP2ピークとした(図3)。P1ピークについて画分を分取し、ODS-120Tにて再精製し、赤血球酵素分解産物から精製したXOD阻害物質P1を得た(以下、赤血球酵素分解産物由来P1という)。また、同様の単離方法で、試験例6のヘミン-過酸化水素反応物からも上記の赤血球酵素分解産物由来P1およびP2と同等の物質を得ることができた(以下、ヘミン-過酸化水素反応物由来P1およびP2という)。ヘミン-過酸化水素反応物由来P1およびP2について分光光度計(DU7400、Beckman社製)により吸収スペクトルを測定した結果、各最大吸収波長は308nmおよび322nm付近で、スペクトルは類似していた(図6-1)。
得られたヘミン-過酸化水素反応物由来P1について、凍結乾燥後、P1濃度が0.7mg/mLとなるように蒸留水に溶解し、試験例1と同様の方法で、in vitroでXOD阻害活性を測定した。
その結果、ヘミン-過酸化水素反応物由来P1の50%阻害濃度(IC50値)は2.45μg/mLであった。(図4)
上述のように、XOD阻害物質は逆相クロマトグラフィーを用いて分取することが可能ではあるが、逆相クロマトグラフィーの後にイオン交換樹脂を用いても分取精製することができた。ODS-120T逆相クロマトグラフィー後に得られたP1について陰イオン交換樹脂GigaCap Q-650M(東ソー製)に50mM Tris-HCl pH9の条件下で吸着させ、塩化ナトリウムのグラージェントによりP1を溶出させ分取することができた(図5)。 Test Example 8: Isolation of XOD inhibitor from tetrapyrrole-containing product (red blood cell enzyme degradation product or hemin-hydrogen peroxide reactant) XOD inhibitory activity was confirmed in the red blood cell enzyme degradation product. Was used to isolate an XOD inhibitor.
First, the erythrocyte enzymatic degradation product obtained in Test Example 1 was adjusted to
The obtained hemin-hydrogen peroxide reactant-derived P1 was lyophilized and then dissolved in distilled water so that the P1 concentration was 0.7 mg / mL, and XOD was inhibited in vitro in the same manner as in Test Example 1. Activity was measured.
As a result, the 50% inhibitory concentration (IC 50 value) of P1 derived from the hemin-hydrogen peroxide reactant was 2.45 μg / mL. (Fig. 4)
As described above, the XOD inhibitor can be separated using reverse phase chromatography, but can also be separated and purified using an ion exchange resin after reverse phase chromatography. P1 obtained after ODS-120T reverse phase chromatography was adsorbed on an anion exchange resin GigaCap Q-650M (manufactured by Tosoh Corporation) under the condition of 50 mM Tris-HCl pH9, and P1 was eluted with a sodium chloride gradient for fractionation. (Fig. 5).
試験例9:テトラピロール含有物分解産物(赤血球酵素分解産物、またはヘミン-過酸化水素反応物)由来のXOD阻害物質の分子量・構造解析
試験例8の各種クロマトグラフィーで得られた赤血球酵素分解産物由来P1、へミン-過酸化水素反応物由来P1およびP2についてLC/MS(SynaptG2-S型, Waters社製)による分子量および構造の予測を行った。
その結果、P1およびP2の分子量が推測でき、ヘミン-過酸化水素反応物由来P1と赤血球酵素分解産物由来P1とは、試験例8に示す逆相系ODS-120T(東ソー製)によるピークの溶出時間が一致した上に、LC/MS解析(ネガティブモード)によるP1の分子イオンm/z 224とその他のフラグメントイオンのシグナルがほぼ一致していることが確認された。これらから、赤血球酵素分解産物由来P1とヘミン-過酸化水素反応物由来P1は同一物質であることが確認された(図6-2)。
更にヘミン-過酸化水素反応物由来P1については1H-NMR、13C-NMRおよび差NOE測定による構造解析を行った(AVANCE500型, BRUKER社製)。なお、1H-NMR、13C-NMRで用いた溶媒は重メタノールであった。LC/MS(ネガティブモード)およびNMRの結果から、P1は分子量225であり(図6-2)、ピロール環にメチル基、アルデヒド基、カルボキシル基、プロピオン酸を有する構造であることが分かった。その構造からポルフィリン環構造の一部で構成されていることが確認された(図6-4)。P2については、P1と同じヘミン-過酸化水素反応物由来であり、吸収スペクトルも類似していることから、P2はP1に類似した異性体であることが予測された。
そこで、P2のLC/MSのデータから分子量および構造の推定を行った。先ず、LC/MS(ネガティブモード)の結果よりP2の分子量は209と推定された(図6-2)。また、LC/MS(ポジティブモード)の結果より、P2はイオン化の際 (a)~(f)にフラグメント化しており、各フラグメントイオンの分子量とフラグメント化された場合の予測構造の分子量が一致した(図6-3)。これらの結果よりP2構造が推定された。P1およびP2構造を下記に示す。
上記化学式から明らかなように、XOD阻害物質P1およびP2はプリン骨格を有していない。これに対し、高尿酸血症治療薬のアロプリノールはプリン骨格を有していることにより、プリン代謝に関与する副作用(腎毒性等)が発現する場合がある。この点からも、XOD阻害物質P1および/またはP2は血中尿酸の低下や高尿酸血症の治療において非常に有益なものとなると考えられる。
Test Example 9: Molecular weight / structure analysis of XOD inhibitor derived from tetrapyrrole-containing product (red blood cell enzyme degradation product or hemin-hydrogen peroxide reaction product) The molecular weight and structure of the origin P1 and the hemin-hydrogen peroxide reactant-derived P1 and P2 were predicted by LC / MS (Synapt G2-S type, manufactured by Waters).
As a result, the molecular weights of P1 and P2 can be estimated, and the hemin-hydrogen peroxide reactant-derived P1 and the erythrocyte enzyme degradation product-derived P1 are eluted by the reverse phase ODS-120T (manufactured by Tosoh) shown in Test Example 8. In addition to the coincidence of time, it was confirmed that the signals of the molecular ion m / z 224 of P1 and other fragment ions almost coincided by LC / MS analysis (negative mode). From these, it was confirmed that P1 derived from erythrocyte enzymatic degradation product and P1 derived from hemin-hydrogen peroxide reactant are the same substance (FIG. 6-2).
Further, P1 derived from the hemin-hydrogen peroxide reactant was subjected to structural analysis by 1 H-NMR, 13 C-NMR and differential NOE measurement (AVANCE 500 type, manufactured by BRUKER). The solvent used in 1 H-NMR and 13 C-NMR was deuterated methanol. From the results of LC / MS (negative mode) and NMR, it was found that P1 has a molecular weight of 225 (FIG. 6-2) and has a structure having a methyl group, an aldehyde group, a carboxyl group, and propionic acid in the pyrrole ring. From the structure, it was confirmed that it was composed of a part of the porphyrin ring structure (FIG. 6-4). Since P2 is derived from the same hemin-hydrogen peroxide reactant as P1, and the absorption spectrum is similar, P2 was predicted to be an isomer similar to P1.
Therefore, the molecular weight and structure were estimated from the LC / MS data of P2. First, the molecular weight of P2 was estimated to be 209 from the LC / MS (negative mode) results (FIG. 6-2). From the LC / MS (positive mode) results, P2 was fragmented during ionization (a) to (f), and the molecular weight of each fragment ion coincided with the molecular weight of the predicted structure when fragmented. (Fig. 6-3). From these results, the P2 structure was estimated. The P1 and P2 structures are shown below.
As is clear from the above chemical formula, XOD inhibitors P1 and P2 do not have a purine skeleton. In contrast, allopurinol, a therapeutic drug for hyperuricemia, has a purine skeleton, which may cause side effects (such as nephrotoxicity) involved in purine metabolism. From this point of view, it is considered that the XOD inhibitor P1 and / or P2 is very useful in the reduction of blood uric acid and the treatment of hyperuricemia.
試験例8の各種クロマトグラフィーで得られた赤血球酵素分解産物由来P1、へミン-過酸化水素反応物由来P1およびP2についてLC/MS(SynaptG2-S型, Waters社製)による分子量および構造の予測を行った。
その結果、P1およびP2の分子量が推測でき、ヘミン-過酸化水素反応物由来P1と赤血球酵素分解産物由来P1とは、試験例8に示す逆相系ODS-120T(東ソー製)によるピークの溶出時間が一致した上に、LC/MS解析(ネガティブモード)によるP1の分子イオンm/z 224とその他のフラグメントイオンのシグナルがほぼ一致していることが確認された。これらから、赤血球酵素分解産物由来P1とヘミン-過酸化水素反応物由来P1は同一物質であることが確認された(図6-2)。
更にヘミン-過酸化水素反応物由来P1については1H-NMR、13C-NMRおよび差NOE測定による構造解析を行った(AVANCE500型, BRUKER社製)。なお、1H-NMR、13C-NMRで用いた溶媒は重メタノールであった。LC/MS(ネガティブモード)およびNMRの結果から、P1は分子量225であり(図6-2)、ピロール環にメチル基、アルデヒド基、カルボキシル基、プロピオン酸を有する構造であることが分かった。その構造からポルフィリン環構造の一部で構成されていることが確認された(図6-4)。P2については、P1と同じヘミン-過酸化水素反応物由来であり、吸収スペクトルも類似していることから、P2はP1に類似した異性体であることが予測された。
そこで、P2のLC/MSのデータから分子量および構造の推定を行った。先ず、LC/MS(ネガティブモード)の結果よりP2の分子量は209と推定された(図6-2)。また、LC/MS(ポジティブモード)の結果より、P2はイオン化の際 (a)~(f)にフラグメント化しており、各フラグメントイオンの分子量とフラグメント化された場合の予測構造の分子量が一致した(図6-3)。これらの結果よりP2構造が推定された。P1およびP2構造を下記に示す。
As a result, the molecular weights of P1 and P2 can be estimated, and the hemin-hydrogen peroxide reactant-derived P1 and the erythrocyte enzyme degradation product-derived P1 are eluted by the reverse phase ODS-120T (manufactured by Tosoh) shown in Test Example 8. In addition to the coincidence of time, it was confirmed that the signals of the molecular ion m / z 224 of P1 and other fragment ions almost coincided by LC / MS analysis (negative mode). From these, it was confirmed that P1 derived from erythrocyte enzymatic degradation product and P1 derived from hemin-hydrogen peroxide reactant are the same substance (FIG. 6-2).
Further, P1 derived from the hemin-hydrogen peroxide reactant was subjected to structural analysis by 1 H-NMR, 13 C-NMR and differential NOE measurement (
Therefore, the molecular weight and structure were estimated from the LC / MS data of P2. First, the molecular weight of P2 was estimated to be 209 from the LC / MS (negative mode) results (FIG. 6-2). From the LC / MS (positive mode) results, P2 was fragmented during ionization (a) to (f), and the molecular weight of each fragment ion coincided with the molecular weight of the predicted structure when fragmented. (Fig. 6-3). From these results, the P2 structure was estimated. The P1 and P2 structures are shown below.
試験例10:テトラピロール含有物分解産物(赤血球酵素分解産物)からのXOD阻害物質の製造法
試験例10-1:XOD阻害物質の活性炭による精製法
脱色や脱臭等で使われている食品製造用または医薬品製造用の活性炭を用い、赤血球酵素分解産物からXOD阻害物質を効率良く精製し、XOD阻害物質の含有量を高めた本発明の剤の原料を製造することができた。
まず、pH4に調整した、試験例1の赤血球酵素分解産物に対し、その赤血球酵素分解産物の約1.2%、0.6%または0.48%量の活性炭を添加し、XOD阻害物質を吸着させた後、活性炭を回収した。回収した活性炭を赤血球酵素分解産物と等量の水で洗浄した後、pH9若しくはpH10.5のアルカリ性緩衝液や0.07Mの水酸化ナトリウム溶液で溶出することにより、効果的にXOD阻害物質を精製しP1の濃度を高めることができた。検討に使用した活性炭は、活性炭1(白鷺P)、活性炭2(白鷺A)(以上、最頻度細孔径2.2nm付近、木質由来・水蒸気賦活炭)、活性炭3(FP-3(メーカー仮称))(最頻度細孔径1.7nm付近、ヤシ殻由来・水蒸気賦活炭)、活性炭4(FP-6(メーカー仮称))(最頻度細孔径3.3nm付近、木質由来・塩化亜鉛賦活炭)(以上、日本エンバイロケミカルズ社製)、活性炭5(ダイアホープ6ED(木質由来・塩化亜鉛賦活炭)(カルゴンカーボンジャパン社製))であった。検討の結果、この中で最もXOD阻害物質の吸着能が高かったのは活性炭4で、次いで活性炭5であり、活性炭1および活性炭2は色素の溶出が少なかった。これらの活性炭のうち、活性炭1は赤血球酵素分解産物と等量の50mMトリス-塩酸緩衝液pH9.0でXOD阻害物質を溶出させたところ、XOD阻害の比活性を62.8倍に高めることができた。活性炭4および活性炭2に関しては、赤血球酵素分解産物の1/10量の100mM炭酸ナトリウム緩衝液pH10.5にて溶出させたところ、活性炭2ではXOD阻害の比活性を67.7倍に、活性炭4では75倍に高めることができ、70mM水酸化ナトリウムを用いた活性炭4の場合は、阻害の比活性を約110倍に高めることが可能であった(表2)。なお、表2において、阻害活性収率とは、精製前の赤血球酵素分解産物のXOD阻害率を100%とした場合、精製後のXOD阻害率の比率を示す。活性炭4による精製物は、活性炭2による精製物に比べ色は濃いものの、XOD阻害の比活性は高かった。この活性炭による赤血球酵素分解産物からの精製法は使用する活性炭量が反応液量の1.25%以下と非常に少なくてすみ、溶出に溶媒も不要なため、非常に低コストで低環境負荷の製造法であると考えられた。この活性炭による精製法により得た液は乾燥させ粉末化・可溶化が可能であり、経口剤の原料として利用できる。 Test Example 10: Method for producing XOD inhibitor from tetrapyrrole-containing product degradation product (erythrocyte enzyme degradation product)
Test Example 10-1: Purification method of activated carbon for XOD inhibitor XOD inhibitor is efficiently purified from the erythrocyte enzyme degradation product using activated carbon for food production or pharmaceutical production used for decolorization or deodorization. It was possible to produce a raw material for the agent of the present invention in which the content of the inhibitory substance was increased.
First, about 1.2%, 0.6% or 0.48% amount of activated carbon was added to the erythrocyte enzyme degradation product of Test Example 1 adjusted topH 4, and the XOD inhibitor was added. After adsorbing, the activated carbon was recovered. The recovered activated carbon is washed with an equal amount of water to the erythrocyte enzyme degradation product and then eluted with an alkaline buffer of pH 9 or pH 10.5 or 0.07M sodium hydroxide solution to effectively purify the XOD inhibitor. The concentration of P1 could be increased. The activated carbon used in the study was activated carbon 1 (Shirakaba P), activated carbon 2 (Shirakaba A) (above, most frequently around pore size 2.2 nm, wood-derived / steam activated carbon), activated carbon 3 (FP-3 (manufacturer)) (Most frequent pore diameter near 1.7 nm, derived from coconut shell / steam activated charcoal), activated carbon 4 (FP-6 (manufacturer temporary name)) (most frequent pore diameter near 3.3 nm, derived from wood / zinc chloride activated charcoal) , Nippon Enviro Chemicals Co., Ltd.) and activated carbon 5 (Dia Hope 6ED (derived from wood / zinc chloride activated charcoal) (Calgon Carbon Japan Co., Ltd.)). As a result of the examination, activated carbon 4 had the highest adsorption ability of the XOD inhibitor among them, and then activated carbon 5, and activated carbon 1 and activated carbon 2 had less dye elution. Among these activated carbons, activated carbon 1 can increase the specific activity of XOD inhibition 62.8 times by eluting the XOD inhibitor with 50 mM Tris-HCl buffer pH 9.0, which is equivalent to the erythrocyte enzyme degradation product. did it. Regarding activated carbon 4 and activated carbon 2, when eluted with 1/10 amount of 100 mM sodium carbonate buffer pH 10.5 of the erythrocyte enzyme degradation product, activated carbon 2 increased the specific activity of XOD inhibition by 67.7 times, and activated carbon 4 In the case of activated carbon 4 using 70 mM sodium hydroxide, the specific activity of inhibition could be increased about 110 times (Table 2). In Table 2, the inhibitory activity yield indicates the ratio of the XOD inhibition rate after purification, assuming that the XOD inhibition rate of the erythrocyte enzyme degradation product before purification is 100%. The purified product by activated carbon 4 was darker than the purified product by activated carbon 2, but the specific activity of XOD inhibition was high. This activated carbon purification method from erythrocyte enzymatic degradation products requires very little activated carbon to be used at 1.25% or less of the reaction volume and requires no solvent for elution, so it is very low cost and has low environmental impact. It was considered a manufacturing method. The liquid obtained by this purification method using activated carbon can be dried, powdered and solubilized, and can be used as a raw material for oral preparations.
試験例10-1:XOD阻害物質の活性炭による精製法
脱色や脱臭等で使われている食品製造用または医薬品製造用の活性炭を用い、赤血球酵素分解産物からXOD阻害物質を効率良く精製し、XOD阻害物質の含有量を高めた本発明の剤の原料を製造することができた。
まず、pH4に調整した、試験例1の赤血球酵素分解産物に対し、その赤血球酵素分解産物の約1.2%、0.6%または0.48%量の活性炭を添加し、XOD阻害物質を吸着させた後、活性炭を回収した。回収した活性炭を赤血球酵素分解産物と等量の水で洗浄した後、pH9若しくはpH10.5のアルカリ性緩衝液や0.07Mの水酸化ナトリウム溶液で溶出することにより、効果的にXOD阻害物質を精製しP1の濃度を高めることができた。検討に使用した活性炭は、活性炭1(白鷺P)、活性炭2(白鷺A)(以上、最頻度細孔径2.2nm付近、木質由来・水蒸気賦活炭)、活性炭3(FP-3(メーカー仮称))(最頻度細孔径1.7nm付近、ヤシ殻由来・水蒸気賦活炭)、活性炭4(FP-6(メーカー仮称))(最頻度細孔径3.3nm付近、木質由来・塩化亜鉛賦活炭)(以上、日本エンバイロケミカルズ社製)、活性炭5(ダイアホープ6ED(木質由来・塩化亜鉛賦活炭)(カルゴンカーボンジャパン社製))であった。検討の結果、この中で最もXOD阻害物質の吸着能が高かったのは活性炭4で、次いで活性炭5であり、活性炭1および活性炭2は色素の溶出が少なかった。これらの活性炭のうち、活性炭1は赤血球酵素分解産物と等量の50mMトリス-塩酸緩衝液pH9.0でXOD阻害物質を溶出させたところ、XOD阻害の比活性を62.8倍に高めることができた。活性炭4および活性炭2に関しては、赤血球酵素分解産物の1/10量の100mM炭酸ナトリウム緩衝液pH10.5にて溶出させたところ、活性炭2ではXOD阻害の比活性を67.7倍に、活性炭4では75倍に高めることができ、70mM水酸化ナトリウムを用いた活性炭4の場合は、阻害の比活性を約110倍に高めることが可能であった(表2)。なお、表2において、阻害活性収率とは、精製前の赤血球酵素分解産物のXOD阻害率を100%とした場合、精製後のXOD阻害率の比率を示す。活性炭4による精製物は、活性炭2による精製物に比べ色は濃いものの、XOD阻害の比活性は高かった。この活性炭による赤血球酵素分解産物からの精製法は使用する活性炭量が反応液量の1.25%以下と非常に少なくてすみ、溶出に溶媒も不要なため、非常に低コストで低環境負荷の製造法であると考えられた。この活性炭による精製法により得た液は乾燥させ粉末化・可溶化が可能であり、経口剤の原料として利用できる。 Test Example 10: Method for producing XOD inhibitor from tetrapyrrole-containing product degradation product (erythrocyte enzyme degradation product)
Test Example 10-1: Purification method of activated carbon for XOD inhibitor XOD inhibitor is efficiently purified from the erythrocyte enzyme degradation product using activated carbon for food production or pharmaceutical production used for decolorization or deodorization. It was possible to produce a raw material for the agent of the present invention in which the content of the inhibitory substance was increased.
First, about 1.2%, 0.6% or 0.48% amount of activated carbon was added to the erythrocyte enzyme degradation product of Test Example 1 adjusted to
なお、上記活性炭による精製物におけるXOD阻害活性が、赤血球酵素分解産物中のXOD阻害物質由来か検証した。検証は試験例8で得られた赤血球酵素分解産物由来P1と赤血球酵素分解産物の活性炭(活性炭1)による精製物を用いた。これら試料を単独若しくは混合物で逆相クロマトグラフィーに供し、ピークの重なりを確認した。その結果、赤血球酵素分解産物由来P1と赤血球酵素分解産物の活性炭による精製物中のピークの1つが重なり、面積値の増加が認められた(図7)。したがって、赤血球酵素分解産物の活性炭による精製物におけるXOD阻害活性はP1由来であることが確認された。
In addition, it verified whether the XOD inhibitory activity in the refined | purified material by the said activated carbon originates in the XOD inhibitory substance in an erythrocyte enzyme degradation product. For the verification, the product derived from the erythrocyte enzyme degradation product P1 obtained in Test Example 8 and the purified product of the erythrocyte enzyme degradation product by activated carbon (activated carbon 1) were used. These samples were subjected to reverse phase chromatography alone or as a mixture to confirm peak overlap. As a result, P1 derived from the erythrocyte enzyme degradation product and one of the peaks in the purified product of the erythrocyte enzyme degradation product by activated carbon overlapped, and an increase in area value was observed (FIG. 7). Therefore, it was confirmed that the XOD inhibitory activity in the purified product of the erythrocyte enzymatic degradation product by activated carbon is derived from P1.
試験例10-2:XOD阻害物質の熱エタノールによる抽出法
赤血球酵素分解産物pH4の乾燥品から、熱エタノールを用いてXOD阻害物質を効率良く抽出することにより、その濃度を高めることができた。
まず、試験例1の赤血球酵素分解産物の乾燥品に対し2~5倍量の85~90%のエタノールを添加後、室温または65℃に加熱し、この液を常温に戻すことによって、不必要な固形分を析出させた。遠心分離により固形分を除去し、熱エタノール抽出液とした。
熱エタノール抽出液を乾燥しエタノールを除去した後、XOD阻害活性を測定した。赤血球酵素分解産物の2倍量の90%熱エタノールで抽出した場合、塩分濃度を元の36%程度まで低下させ、XOD阻害比活性を3倍近くに高めることができた(表3)。なお、表3において、塩分残量とは、エタノール抽出前の固形分中の塩分濃度を100%とした場合、抽出後の固形分中の塩分濃度の比率を示す。また、塩分濃度は、乾燥させた熱エタノール抽出液を水に溶解した後、塩分計(LAQUAtwin B-721、堀場製作所社製)にて測定した。熱エタノール抽出により、同時に色素および臭気も低減することができた。この熱エタノール抽出液は粉末化・可溶化が可能であり、経口剤の原料として利用できる。 Test Example 10-2: Extraction Method of XOD Inhibitory Substance with Hot Ethanol By efficiently extracting XOD inhibitory substance from dry product of erythrocyte enzymedegradation product pH 4 with hot ethanol, its concentration could be increased.
First, after adding 2 to 5 times the amount of 85 to 90% ethanol to the dried product of the erythrocyte enzyme degradation product of Test Example 1, heating to room temperature or 65 ° C and returning this solution to room temperature is unnecessary. Solids were precipitated. The solid content was removed by centrifugation to obtain a hot ethanol extract.
The hot ethanol extract was dried to remove ethanol, and then the XOD inhibitory activity was measured. When extracted with 90% hot ethanol twice the amount of the erythrocyte enzymatic degradation product, the salt concentration was reduced to about 36%, and the XOD inhibition specific activity could be increased nearly 3 times (Table 3). In Table 3, the remaining amount of salt indicates the ratio of the salinity concentration in the solid content after extraction when the salinity concentration in the solid content before ethanol extraction is defined as 100%. The salt concentration was measured with a salinometer (LAQUATwin B-721, manufactured by Horiba, Ltd.) after dissolving the dried hot ethanol extract in water. With hot ethanol extraction, pigment and odor could be reduced at the same time. This hot ethanol extract can be powdered and solubilized, and can be used as a raw material for oral preparations.
赤血球酵素分解産物pH4の乾燥品から、熱エタノールを用いてXOD阻害物質を効率良く抽出することにより、その濃度を高めることができた。
まず、試験例1の赤血球酵素分解産物の乾燥品に対し2~5倍量の85~90%のエタノールを添加後、室温または65℃に加熱し、この液を常温に戻すことによって、不必要な固形分を析出させた。遠心分離により固形分を除去し、熱エタノール抽出液とした。
熱エタノール抽出液を乾燥しエタノールを除去した後、XOD阻害活性を測定した。赤血球酵素分解産物の2倍量の90%熱エタノールで抽出した場合、塩分濃度を元の36%程度まで低下させ、XOD阻害比活性を3倍近くに高めることができた(表3)。なお、表3において、塩分残量とは、エタノール抽出前の固形分中の塩分濃度を100%とした場合、抽出後の固形分中の塩分濃度の比率を示す。また、塩分濃度は、乾燥させた熱エタノール抽出液を水に溶解した後、塩分計(LAQUAtwin B-721、堀場製作所社製)にて測定した。熱エタノール抽出により、同時に色素および臭気も低減することができた。この熱エタノール抽出液は粉末化・可溶化が可能であり、経口剤の原料として利用できる。 Test Example 10-2: Extraction Method of XOD Inhibitory Substance with Hot Ethanol By efficiently extracting XOD inhibitory substance from dry product of erythrocyte enzyme
First, after adding 2 to 5 times the amount of 85 to 90% ethanol to the dried product of the erythrocyte enzyme degradation product of Test Example 1, heating to room temperature or 65 ° C and returning this solution to room temperature is unnecessary. Solids were precipitated. The solid content was removed by centrifugation to obtain a hot ethanol extract.
The hot ethanol extract was dried to remove ethanol, and then the XOD inhibitory activity was measured. When extracted with 90% hot ethanol twice the amount of the erythrocyte enzymatic degradation product, the salt concentration was reduced to about 36%, and the XOD inhibition specific activity could be increased nearly 3 times (Table 3). In Table 3, the remaining amount of salt indicates the ratio of the salinity concentration in the solid content after extraction when the salinity concentration in the solid content before ethanol extraction is defined as 100%. The salt concentration was measured with a salinometer (LAQUATwin B-721, manufactured by Horiba, Ltd.) after dissolving the dried hot ethanol extract in water. With hot ethanol extraction, pigment and odor could be reduced at the same time. This hot ethanol extract can be powdered and solubilized, and can be used as a raw material for oral preparations.
試験例10-3:XOD阻害物質のNF濾過膜を用いた精製法
XOD阻害物質P1、P2は分子量225、209の物質である。その為適切な分画分子量の濾過膜を使用することで、XOD阻害物質を効率良く精製することにより、その濃度を高めることができた。
濾過膜としては、NF膜(ナノフィルター)(室町ケミカル製)4種を用いた。用いたNF膜は、NF膜1(NFX(分画分子量150-300))、NF膜2(NFW(分画分子量300-500))、NF膜3(NFG(分画分子量600-800))、NF膜4(NF270(分画分子量200-400))である。上記NF膜を用い、試験例1のブタ赤血球酵素分解産物をpH4に調整後透過した。
その結果、何れの膜においてもXOD阻害比活性を高めることができ、特にNF膜1で固形分を1%程度まで減らすことができ、XOD阻害比活性を58.7倍高めることができた(表4)。また、何れの膜を用いた場合でも色素・臭気について大幅に低減できた。
このNF濾過膜法により得られた液は粉末化・可溶化が可能であり、経口剤の原料として利用できる。 Test Example 10-3: Purification method using XNF inhibitor NF filter membrane XOD inhibitors P1 and P2 are substances having molecular weights of 225 and 209, respectively. Therefore, it was possible to increase the concentration of the XOD inhibitor by efficiently purifying the XOD inhibitor by using a filtration membrane having an appropriate fractional molecular weight.
As the filtration membrane, four types of NF membrane (nanofilter) (Muromachi Chemical) were used. The NF membrane used was NF membrane 1 (NFX (fraction molecular weight 150-300)), NF membrane 2 (NFW (fraction molecular weight 300-500)), NF membrane 3 (NFG (fraction molecular weight 600-800)) NF membrane 4 (NF270 (fraction molecular weight 200-400)). Using the NF membrane, the porcine erythrocyte enzymatic degradation product of Test Example 1 was adjusted topH 4 and permeated.
As a result, the XOD inhibition specific activity can be increased in any of the membranes, in particular, the solid content can be reduced to about 1% in theNF membrane 1, and the XOD inhibition specific activity can be increased by 58.7 times ( Table 4). Moreover, it was possible to significantly reduce the pigment and odor when using any film.
The liquid obtained by this NF filtration membrane method can be powdered and solubilized, and can be used as a raw material for oral preparations.
XOD阻害物質P1、P2は分子量225、209の物質である。その為適切な分画分子量の濾過膜を使用することで、XOD阻害物質を効率良く精製することにより、その濃度を高めることができた。
濾過膜としては、NF膜(ナノフィルター)(室町ケミカル製)4種を用いた。用いたNF膜は、NF膜1(NFX(分画分子量150-300))、NF膜2(NFW(分画分子量300-500))、NF膜3(NFG(分画分子量600-800))、NF膜4(NF270(分画分子量200-400))である。上記NF膜を用い、試験例1のブタ赤血球酵素分解産物をpH4に調整後透過した。
その結果、何れの膜においてもXOD阻害比活性を高めることができ、特にNF膜1で固形分を1%程度まで減らすことができ、XOD阻害比活性を58.7倍高めることができた(表4)。また、何れの膜を用いた場合でも色素・臭気について大幅に低減できた。
このNF濾過膜法により得られた液は粉末化・可溶化が可能であり、経口剤の原料として利用できる。 Test Example 10-3: Purification method using XNF inhibitor NF filter membrane XOD inhibitors P1 and P2 are substances having molecular weights of 225 and 209, respectively. Therefore, it was possible to increase the concentration of the XOD inhibitor by efficiently purifying the XOD inhibitor by using a filtration membrane having an appropriate fractional molecular weight.
As the filtration membrane, four types of NF membrane (nanofilter) (Muromachi Chemical) were used. The NF membrane used was NF membrane 1 (NFX (fraction molecular weight 150-300)), NF membrane 2 (NFW (fraction molecular weight 300-500)), NF membrane 3 (NFG (fraction molecular weight 600-800)) NF membrane 4 (NF270 (fraction molecular weight 200-400)). Using the NF membrane, the porcine erythrocyte enzymatic degradation product of Test Example 1 was adjusted to
As a result, the XOD inhibition specific activity can be increased in any of the membranes, in particular, the solid content can be reduced to about 1% in the
The liquid obtained by this NF filtration membrane method can be powdered and solubilized, and can be used as a raw material for oral preparations.
試験例10-4:XOD阻害物質の合成吸着樹脂による精製法
赤血球酵素分解産物から合成吸着樹脂を用いてXOD阻害物質を効率良く精製することにより、その濃度を高めることができた。
合成吸着樹脂としては、合成吸着樹脂1(ダイアイオンHP20(スチレン-ジビニルベンゼン系、最頻度細孔径58nm))、合成吸着樹脂2(HP20SS(スチレン-ジビニルベンゼン系、最頻度細孔径58nm))、合成吸着樹脂3(SP850(スチレン-ジビニルベンゼン系、最頻度細孔径9nm))、合成吸着樹脂4(HP2MGL(脂肪族エステル系、最頻度細孔径48nm))(三菱化学製)を用いた。まず、試験例1の赤血球酵素分解産物の1/10量の樹脂をpH4に調整した試験例1の赤血球酵素分解産物に添加し、XOD阻害物質を吸着させた。この吸着後、樹脂を樹脂体積の10倍量以上の水で洗浄した後、樹脂体積の10倍量の0.01M 塩酸を含む40%エタノール溶液でXOD阻害物質を溶出した。溶出液を濃縮乾燥させてエタノールを除去した後、再溶解し、阻害活性を測定した。その結果、XOD阻害比活性を9~14倍に高めることができた(表5)。
また、pH9以上の緩衝液を用いてもXOD阻害物質を溶出させることができた。溶出において上記40%エタノール溶液をトリス-塩酸緩衝液pH9とする以外は上記方法と同様に合成吸着樹脂を用いて精製した場合、XOD阻害比活性を13.6倍に高めることができた(表5)。
合成吸着樹脂を用いた精製法でも塩、色素および臭気を大幅に低減することができた。
合成吸着樹脂により精製された液は粉末化・可溶化が可能であり、経口剤の原料として利用できる。 Test Example 10-4: Purification Method of XOD Inhibitory Substance with Synthetic Adsorption Resin The concentration of XOD inhibitor could be increased by efficiently purifying the XOD inhibitory substance from the erythrocyte enzyme degradation product using the synthetic adsorption resin.
As the synthetic adsorption resin, synthetic adsorption resin 1 (diaion HP20 (styrene-divinylbenzene system, most frequent pore diameter 58 nm)), synthetic adsorption resin 2 (HP20SS (styrene-divinylbenzene system, most frequent pore diameter 58 nm)), Synthetic adsorption resin 3 (SP850 (styrene-divinylbenzene system, mostfrequent pore diameter 9 nm)) and synthetic adsorption resin 4 (HP2MGL (aliphatic ester system, most frequent pore diameter 48 nm)) (manufactured by Mitsubishi Chemical) were used. First, 1/10 amount of resin of the erythrocyte enzyme degradation product of Test Example 1 was added to the erythrocyte enzyme degradation product of Test Example 1 adjusted to pH 4 to adsorb the XOD inhibitor. After this adsorption, the resin was washed with water at least 10 times the resin volume, and then the XOD inhibitor was eluted with a 40% ethanol solution containing 0.01 M hydrochloric acid 10 times the resin volume. The eluate was concentrated and dried to remove ethanol and then redissolved to measure the inhibitory activity. As a result, the XOD inhibition specific activity could be increased 9 to 14 times (Table 5).
Moreover, the XOD inhibitory substance could be eluted even using a buffer solution having a pH of 9 or higher. When purified using a synthetic adsorption resin in the same manner as above except that the 40% ethanol solution was changed to Tris-HCl buffer pH 9 for elution, the XOD inhibitory specific activity could be increased 13.6 times (Table 1). 5).
The purification method using synthetic adsorption resin was able to significantly reduce salt, pigment and odor.
The liquid purified by the synthetic adsorption resin can be powdered and solubilized and can be used as a raw material for oral preparations.
赤血球酵素分解産物から合成吸着樹脂を用いてXOD阻害物質を効率良く精製することにより、その濃度を高めることができた。
合成吸着樹脂としては、合成吸着樹脂1(ダイアイオンHP20(スチレン-ジビニルベンゼン系、最頻度細孔径58nm))、合成吸着樹脂2(HP20SS(スチレン-ジビニルベンゼン系、最頻度細孔径58nm))、合成吸着樹脂3(SP850(スチレン-ジビニルベンゼン系、最頻度細孔径9nm))、合成吸着樹脂4(HP2MGL(脂肪族エステル系、最頻度細孔径48nm))(三菱化学製)を用いた。まず、試験例1の赤血球酵素分解産物の1/10量の樹脂をpH4に調整した試験例1の赤血球酵素分解産物に添加し、XOD阻害物質を吸着させた。この吸着後、樹脂を樹脂体積の10倍量以上の水で洗浄した後、樹脂体積の10倍量の0.01M 塩酸を含む40%エタノール溶液でXOD阻害物質を溶出した。溶出液を濃縮乾燥させてエタノールを除去した後、再溶解し、阻害活性を測定した。その結果、XOD阻害比活性を9~14倍に高めることができた(表5)。
また、pH9以上の緩衝液を用いてもXOD阻害物質を溶出させることができた。溶出において上記40%エタノール溶液をトリス-塩酸緩衝液pH9とする以外は上記方法と同様に合成吸着樹脂を用いて精製した場合、XOD阻害比活性を13.6倍に高めることができた(表5)。
合成吸着樹脂を用いた精製法でも塩、色素および臭気を大幅に低減することができた。
合成吸着樹脂により精製された液は粉末化・可溶化が可能であり、経口剤の原料として利用できる。 Test Example 10-4: Purification Method of XOD Inhibitory Substance with Synthetic Adsorption Resin The concentration of XOD inhibitor could be increased by efficiently purifying the XOD inhibitory substance from the erythrocyte enzyme degradation product using the synthetic adsorption resin.
As the synthetic adsorption resin, synthetic adsorption resin 1 (diaion HP20 (styrene-divinylbenzene system, most frequent pore diameter 58 nm)), synthetic adsorption resin 2 (HP20SS (styrene-divinylbenzene system, most frequent pore diameter 58 nm)), Synthetic adsorption resin 3 (SP850 (styrene-divinylbenzene system, most
Moreover, the XOD inhibitory substance could be eluted even using a buffer solution having a pH of 9 or higher. When purified using a synthetic adsorption resin in the same manner as above except that the 40% ethanol solution was changed to Tris-
The purification method using synthetic adsorption resin was able to significantly reduce salt, pigment and odor.
The liquid purified by the synthetic adsorption resin can be powdered and solubilized and can be used as a raw material for oral preparations.
試験例11:有機合成によるXOD阻害物質の製造法
XOD阻害物質は上記の赤血球酵素分解産物やヘム等の生体有機物の反応物から得るだけでなく、有機合成することができた。
下記に示す合成スキーム(A)~(F)にてXOD阻害物質P1を合成した。
(A)まず、モノエチルコハク酸(化合物1)7.3gのテトラヒドロフラン溶液にカルボニルジイミダゾール(CDI, 9.7g)を加え1時間撹拌後、塩化マグネシウム(4.8g)、モノエチルマロン酸カリウム(8.5g)を添加し60℃で1時間反応させ、ジエチル 3-オキソヘキサンジオネート(化合物2)を得た。(B)化合物2(52.25g)と酢酸(100mL)の混合物に亜硝酸ナトリウム(17.46g)の水溶液(70mL)を添加した後、ターシャリーブチルアセトアセテート(45.37g)と酢酸(100mL)の混合物と亜鉛末(50g)および酢酸アンモニウム(50g)を添加し50~70℃で30分反応させ、4-ターシャリーブチル 2-エチル 3-(2-(エトキシカルボニル)エチル)-5-メチル-1H-ピロール-2,4-ジカルボキシレート(化合物3)を得た。(C)化合物3(10g)をN-メチルピロリドン(70mL)に添加し、4-トルエンスルホン酸(p-TSA, 10g)を加え、160℃で3時間反応させ、エチル 3-(2-(エトキシカルボニル)エチル)-5-メチル-1H-ピロール-2-カルボキシレート(化合物4)を得た。(D)化合物4(5.06g)にヨウ化水素酸(50mL)、無水酢酸(50mL)および次亜リン酸(10mL)の溶液にパラホルムアルデヒド(1.2g)を加え25分間反応させ、エチル 3-(2-(エトキシカルボニル)エチル)-4,5-ジメチル-1H-ピロール-2-カルボキシレート(化合物5)を得た。(E)化合物5(15g)のテトラヒドロフラン(536mL)、酢酸(135mL)および水(536mL)の溶液に硝酸セリウム(IV)アンモニウム (CAN, 120g)を加え、室温で2時間反応させ、エチル 3-(2-(エトキシカルボニル)エチル)-5-ホルミル-4-メチル-1H-ピロール-2-カルボキシレート(化合物6)を得た。(F)化合物6(3g)のTHF-H2O (5:1) 115mL溶液に、水酸化リチウム・一水和物(1.78g)を加え、N2存在下、70℃で4時間反応させ合成XOD阻害物質P1 3-(2-カルボキシエチル)-5-ホルミル-4-メチル-1H-ピロール-2-カルボン酸を得た。
XOD阻害物質P1の合成スキーム
Test Example 11: Production Method of XOD Inhibitory Substance by Organic Synthesis The XOD inhibitory substance was not only obtained from the reaction product of biological organic matter such as the above-mentioned erythrocyte enzyme degradation product or heme, but also could be synthesized organically.
XOD inhibitor P1 was synthesized by the following synthesis schemes (A) to (F).
(A) First, carbonyldiimidazole (CDI, 9.7 g) was added to a tetrahydrofuran solution of 7.3 g of monoethylsuccinic acid (Compound 1), stirred for 1 hour, magnesium chloride (4.8 g), potassium monoethylmalonate (8.5 g) was added and reacted at 60 ° C. for 1 hour to obtain diethyl 3-oxohexanedionate (Compound 2). (B) After adding an aqueous solution (70 mL) of sodium nitrite (17.46 g) to a mixture of Compound 2 (52.25 g) and acetic acid (100 mL), tertiary butyl acetoacetate (45.37 g) and acetic acid (100 mL) ), Zinc dust (50 g) and ammonium acetate (50 g) were added and reacted at 50 to 70 ° C. for 30 minutes to give 4-tertiarybutyl 2-ethyl 3- (2- (ethoxycarbonyl) ethyl) -5- Methyl-1H-pyrrole-2,4-dicarboxylate (Compound 3) was obtained. (C) Compound 3 (10 g) was added to N-methylpyrrolidone (70 mL), 4-toluenesulfonic acid (p-TSA, 10 g) was added, and the mixture was reacted at 160 ° C. for 3 hours to give ethyl 3- (2- ( Ethoxycarbonyl) ethyl) -5-methyl-1H-pyrrole-2-carboxylate (compound 4) was obtained. (D) Paraformaldehyde (1.2 g) was added to a solution of hydroiodic acid (50 mL), acetic anhydride (50 mL) and hypophosphorous acid (10 mL) to compound 4 (5.06 g) and reacted for 25 minutes. 3- (2- (Ethoxycarbonyl) ethyl) -4,5-dimethyl-1H-pyrrole-2-carboxylate (Compound 5) was obtained. (E) A solution of compound 5 (15 g) in tetrahydrofuran (536 mL), acetic acid (135 mL), and water (536 mL) was added cerium (IV) ammonium nitrate (CAN, 120 g), reacted at room temperature for 2 hours, and ethyl 3- (2- (Ethoxycarbonyl) ethyl) -5-formyl-4-methyl-1H-pyrrole-2-carboxylate (Compound 6) was obtained. (F) Lithium hydroxide monohydrate (1.78 g) was added to a solution of compound 6 (3 g) in THF-H 2 O (5: 1) (115 mL) and reacted at 70 ° C. for 4 hours in the presence ofN 2. A synthetic XOD inhibitor P1 3- (2-carboxyethyl) -5-formyl-4-methyl-1H-pyrrole-2-carboxylic acid was obtained.
Synthesis scheme of XOD inhibitor P1
XOD阻害物質は上記の赤血球酵素分解産物やヘム等の生体有機物の反応物から得るだけでなく、有機合成することができた。
下記に示す合成スキーム(A)~(F)にてXOD阻害物質P1を合成した。
(A)まず、モノエチルコハク酸(化合物1)7.3gのテトラヒドロフラン溶液にカルボニルジイミダゾール(CDI, 9.7g)を加え1時間撹拌後、塩化マグネシウム(4.8g)、モノエチルマロン酸カリウム(8.5g)を添加し60℃で1時間反応させ、ジエチル 3-オキソヘキサンジオネート(化合物2)を得た。(B)化合物2(52.25g)と酢酸(100mL)の混合物に亜硝酸ナトリウム(17.46g)の水溶液(70mL)を添加した後、ターシャリーブチルアセトアセテート(45.37g)と酢酸(100mL)の混合物と亜鉛末(50g)および酢酸アンモニウム(50g)を添加し50~70℃で30分反応させ、4-ターシャリーブチル 2-エチル 3-(2-(エトキシカルボニル)エチル)-5-メチル-1H-ピロール-2,4-ジカルボキシレート(化合物3)を得た。(C)化合物3(10g)をN-メチルピロリドン(70mL)に添加し、4-トルエンスルホン酸(p-TSA, 10g)を加え、160℃で3時間反応させ、エチル 3-(2-(エトキシカルボニル)エチル)-5-メチル-1H-ピロール-2-カルボキシレート(化合物4)を得た。(D)化合物4(5.06g)にヨウ化水素酸(50mL)、無水酢酸(50mL)および次亜リン酸(10mL)の溶液にパラホルムアルデヒド(1.2g)を加え25分間反応させ、エチル 3-(2-(エトキシカルボニル)エチル)-4,5-ジメチル-1H-ピロール-2-カルボキシレート(化合物5)を得た。(E)化合物5(15g)のテトラヒドロフラン(536mL)、酢酸(135mL)および水(536mL)の溶液に硝酸セリウム(IV)アンモニウム (CAN, 120g)を加え、室温で2時間反応させ、エチル 3-(2-(エトキシカルボニル)エチル)-5-ホルミル-4-メチル-1H-ピロール-2-カルボキシレート(化合物6)を得た。(F)化合物6(3g)のTHF-H2O (5:1) 115mL溶液に、水酸化リチウム・一水和物(1.78g)を加え、N2存在下、70℃で4時間反応させ合成XOD阻害物質P1 3-(2-カルボキシエチル)-5-ホルミル-4-メチル-1H-ピロール-2-カルボン酸を得た。
XOD inhibitor P1 was synthesized by the following synthesis schemes (A) to (F).
(A) First, carbonyldiimidazole (CDI, 9.7 g) was added to a tetrahydrofuran solution of 7.3 g of monoethylsuccinic acid (Compound 1), stirred for 1 hour, magnesium chloride (4.8 g), potassium monoethylmalonate (8.5 g) was added and reacted at 60 ° C. for 1 hour to obtain diethyl 3-oxohexanedionate (Compound 2). (B) After adding an aqueous solution (70 mL) of sodium nitrite (17.46 g) to a mixture of Compound 2 (52.25 g) and acetic acid (100 mL), tertiary butyl acetoacetate (45.37 g) and acetic acid (100 mL) ), Zinc dust (50 g) and ammonium acetate (50 g) were added and reacted at 50 to 70 ° C. for 30 minutes to give 4-tertiarybutyl 2-ethyl 3- (2- (ethoxycarbonyl) ethyl) -5- Methyl-1H-pyrrole-2,4-dicarboxylate (Compound 3) was obtained. (C) Compound 3 (10 g) was added to N-methylpyrrolidone (70 mL), 4-toluenesulfonic acid (p-TSA, 10 g) was added, and the mixture was reacted at 160 ° C. for 3 hours to give ethyl 3- (2- ( Ethoxycarbonyl) ethyl) -5-methyl-1H-pyrrole-2-carboxylate (compound 4) was obtained. (D) Paraformaldehyde (1.2 g) was added to a solution of hydroiodic acid (50 mL), acetic anhydride (50 mL) and hypophosphorous acid (10 mL) to compound 4 (5.06 g) and reacted for 25 minutes. 3- (2- (Ethoxycarbonyl) ethyl) -4,5-dimethyl-1H-pyrrole-2-carboxylate (Compound 5) was obtained. (E) A solution of compound 5 (15 g) in tetrahydrofuran (536 mL), acetic acid (135 mL), and water (536 mL) was added cerium (IV) ammonium nitrate (CAN, 120 g), reacted at room temperature for 2 hours, and ethyl 3- (2- (Ethoxycarbonyl) ethyl) -5-formyl-4-methyl-1H-pyrrole-2-carboxylate (Compound 6) was obtained. (F) Lithium hydroxide monohydrate (1.78 g) was added to a solution of compound 6 (3 g) in THF-H 2 O (5: 1) (115 mL) and reacted at 70 ° C. for 4 hours in the presence of
なお、有機合成で得られたP1(以下、合成P1ともいう)の構造をLC/MS 1200A(アジレント・テクノロジー社製)および1H-NMR Mercury Plus 400 MHz(バリアン社製)により確認した。LC/MS解析(ネガティブモード)においてP1の分子イオンm/z 224のシグナルが検出され(図8)、1H-NMRにおいてP1構造に矛盾しないプロトンのシグナルが得られた(図9)。なお、1H-NMRで用いた溶媒は重DMSOであった。以上より、合成P1はヘミン-過酸化水素由来P1と同一の構造を持つことが確認できた。
The structure of P1 obtained by organic synthesis (hereinafter also referred to as synthesis P1) was confirmed by LC / MS 1200A (manufactured by Agilent Technologies) and 1 H-NMR Mercury Plus 400 MHz (manufactured by Varian). In LC / MS analysis (negative mode), a signal of molecular ion m / z 224 of P1 was detected (FIG. 8), and a proton signal consistent with the P1 structure was obtained in 1 H-NMR (FIG. 9). The solvent used in 1 H-NMR was deuterated DMSO. From the above, it was confirmed that the synthesized P1 had the same structure as the hemin-hydrogen peroxide-derived P1.
試験例12:有機合成により得られたXOD阻害物質の阻害活性の測定
試験例11で得られた合成P1(純度95%以上)のXOD阻害活性を測定したところ、阻害活性曲線はヘミン-過酸化水素由来P1と同様の阻害活性挙動を示した(図4)。
合成P1のIC50値は1.56μg/mLでアロプリノールのIC50値42.8μg/mLに比べ約27倍の阻害活性を示した(表6)。 Test Example 12: Measurement of inhibitory activity of XOD inhibitor obtained by organic synthesis When XOD inhibitory activity of synthetic P1 (purity 95% or more) obtained in Test Example 11 was measured, the inhibitory activity curve was hemin-peroxidation. The inhibitory activity behavior similar to that of hydrogen-derived P1 was shown (FIG. 4).
The IC 50 value of synthetic P1 was 1.56 μg / mL, which was about 27-fold inhibitory activity compared to the IC 50 value of allopurinol of 42.8 μg / mL (Table 6).
試験例11で得られた合成P1(純度95%以上)のXOD阻害活性を測定したところ、阻害活性曲線はヘミン-過酸化水素由来P1と同様の阻害活性挙動を示した(図4)。
合成P1のIC50値は1.56μg/mLでアロプリノールのIC50値42.8μg/mLに比べ約27倍の阻害活性を示した(表6)。 Test Example 12: Measurement of inhibitory activity of XOD inhibitor obtained by organic synthesis When XOD inhibitory activity of synthetic P1 (purity 95% or more) obtained in Test Example 11 was measured, the inhibitory activity curve was hemin-peroxidation. The inhibitory activity behavior similar to that of hydrogen-derived P1 was shown (FIG. 4).
The IC 50 value of synthetic P1 was 1.56 μg / mL, which was about 27-fold inhibitory activity compared to the IC 50 value of allopurinol of 42.8 μg / mL (Table 6).
合成P1の高尿酸血症モデルラットにおけるin vivo評価を行った。
具体的には、ラットにオキソン酸カリウムを腹腔内投与することにより、血中尿酸値を上昇させた高尿酸血症モデルラットを用いて血中尿酸の低下効果を試験した。試験では、5週齢の雄ラットに試験開始1時間前、開始1時間後、開始3時間後の3回、オキソン酸カリウムをラットの体重に対し250mg/kgになるように腹腔内投与した(オキソン酸カリウム群)。1回目のオキソン酸カリウム投与の1時間後に試料(合成P1)をラットの体重に対し10mg/kgになるように経口投与した(オキソン酸カリウム+合成P1群)。採血は合成P1投与後、0、0.5、1、2、3、4、6、8、24時間に尾静脈から行った。血清尿酸値は尿酸Cテストワコー(和光純薬工業製)を用いて測定した。オキソン酸カリウム+合成P1群の結果を図10、図11に示す。データは、平均±標準誤差の値である。
その結果、オキソン酸カリウム群は未処理のコントロール群に比べ血中への尿酸の蓄積が認められるが、オキソン酸カリウム+合成P1群は、投与後0.5時間で顕著に血清尿酸値が低下し、投与後4時間までは尿酸の蓄積が殆どなく、投与後8時間までその効果が持続していた(図10)。各測定時間の血清尿酸値について、オキソン酸カリウム+合成P1群は、投与後0.5~8時間において、オキソン酸カリウム群に比べ有意(投与後1、4、6、8時間:P<0.01、投与後0.5、2、3時間:P<0.05)に血中への尿酸の蓄積を抑制していることが認められた(図10)。この試験における合成P1投与後6時間までの血清尿酸値についてAUC(曲線下面積)を比較した(図11)。オキソン酸カリウム群はコントロール群に比べ有意(P<0.01)に尿酸の蓄積が確認できるが、オキソン酸カリウム+合成P1群は顕著に(P<0.01)尿酸の蓄積を抑制していることが認められた(図11)。
これらの結果より、XOD阻害物質P1は経口投与によって消化管を介しても、生体内において高い効果が得られることが認められた。
Specifically, the effect of reducing blood uric acid was tested using hyperuricemia model rats in which blood uric acid levels were increased by intraperitoneal administration of potassium oxonate to rats. In the test, potassium oxonate was intraperitoneally administered to 5-week-old male rats three
As a result, accumulation of uric acid in the blood was observed in the potassium oxonate group compared to the untreated control group, but the serum uric acid level significantly decreased 0.5 hours after administration in the potassium oxonate + synthetic P1 group. However, there was almost no accumulation of uric acid until 4 hours after administration, and the effect was maintained until 8 hours after administration (FIG. 10). Regarding the serum uric acid level at each measurement time, the potassium oxonate + synthetic P1 group was significantly compared with the potassium oxonate group at 0.5 to 8 hours after administration (1, 4, 6, 8 hours after administration: P <0 .01, 0.5, 2, 3 hours after administration: P <0.05) was observed to suppress the accumulation of uric acid in the blood (FIG. 10). AUC (area under the curve) was compared for serum uric acid levels up to 6 hours after administration of synthetic P1 in this study (FIG. 11). In the potassium oxonate group, the accumulation of uric acid can be confirmed significantly ( P <0.01) compared to the control group, but the potassium oxonate + synthetic P1 group significantly suppresses the accumulation of uric acid ( P <0.01). (FIG. 11).
From these results, it was confirmed that the XOD inhibitor P1 is highly effective in vivo even through the digestive tract by oral administration.
Claims (18)
- テトラピロール含有物分解産物またはその抽出物を配合したものである、請求項1に記載のキサンチンオキシダーゼ阻害剤。 The xanthine oxidase inhibitor according to claim 1, which contains a tetrapyrrole-containing decomposition product or an extract thereof.
- 1回の経口摂取量単位の形態である、請求項1または2に記載の剤。 The agent according to claim 1 or 2, which is in the form of a single oral intake unit.
- 血中尿酸低下剤である、請求項1~3のいずれか一項に記載の剤。 The agent according to any one of claims 1 to 3, which is a blood uric acid lowering agent.
- 尿酸の過剰生成または排泄低下に起因する疾患または状態の治療剤である、請求項1~4のいずれか一項に記載の剤。 The agent according to any one of claims 1 to 4, which is a therapeutic agent for a disease or condition caused by excessive production of uric acid or decreased excretion.
- 高尿酸血症の治療剤である、請求項1~5のいずれか一項に記載の剤。 The agent according to any one of claims 1 to 5, which is a therapeutic agent for hyperuricemia.
- 組成物である、請求項1~6のいずれか一項に記載の剤。 The agent according to any one of claims 1 to 6, which is a composition.
- 飲食品または医薬品である、請求項1~7のいずれか一項に記載の剤。 The agent according to any one of claims 1 to 7, which is a food or drink or a medicine.
- テトラピロール含有物分解産物またはその抽出物を剤中に配合することを特徴とする、キサンチンオキシダーゼ阻害剤の製造方法。 A method for producing a xanthine oxidase inhibitor, comprising blending a tetrapyrrole-containing product decomposition product or an extract thereof into the agent.
- 前記テトラピロール含有物が、赤血球、ヘモグロビン、ヘミン、プロトポルフィリン、ヘマトポルフィリン、ビリルビンおよびクロロフィリンからなる群から選択される少なくとも一つのものである、請求項10に記載の方法。 The method according to claim 10, wherein the tetrapyrrole-containing material is at least one selected from the group consisting of erythrocytes, hemoglobin, hemin, protoporphyrin, hematoporphyrin, bilirubin and chlorophyllin.
- 前記テトラピロール含有物の分解が、酸化反応、還元反応および酵素反応からなる群から選択される少なくとも一つの反応により行われる、請求項10または11に記載の方法。 The method according to claim 10 or 11, wherein the decomposition of the tetrapyrrole-containing material is performed by at least one reaction selected from the group consisting of an oxidation reaction, a reduction reaction and an enzyme reaction.
- キサンチンオキシダーゼ阻害剤の製造における、テトラピロール含有物分解産物またはその抽出物の使用。 Use of tetrapyrrole-containing decomposition products or extracts thereof in the production of xanthine oxidase inhibitors.
- 前記キサンチンオキシダーゼ阻害剤が、尿酸の過剰生成または排泄低下に起因する疾患または状態の治療剤である、請求項14または15に記載の使用。 The use according to claim 14 or 15, wherein the xanthine oxidase inhibitor is a therapeutic agent for a disease or condition caused by excessive production of uric acid or decreased excretion.
- 式(I)で表される化合物またはその経口上許容可能な塩の有効量を、それを必要とする対象に摂取させることを含む、尿酸の過剰生成または排泄低下に起因する疾患または状態の治療方法:
- キサンチンオキシダーゼ阻害のため、または尿酸の過剰生成もしくは排泄低下に起因する疾患もしくは状態の治療のための、式(I)で表される化合物またはその経口上許容可能な塩:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017537867A JP6873904B2 (en) | 2015-08-28 | 2016-08-26 | Xanthine oxidase inhibitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015169753 | 2015-08-28 | ||
JP2015-169753 | 2015-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017038723A1 true WO2017038723A1 (en) | 2017-03-09 |
Family
ID=58187589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075084 WO2017038723A1 (en) | 2015-08-28 | 2016-08-26 | Xanthine oxidase inhibitor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6873904B2 (en) |
WO (1) | WO2017038723A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115236018A (en) * | 2022-06-30 | 2022-10-25 | 铜仁学院 | Functional tea processing technology and research method for inhibition of XOD activity by leaf water extract |
CN115553408A (en) * | 2022-10-19 | 2023-01-03 | 御露堂健康科技(北京)有限公司 | Uric acid-reducing beverage, formula and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5473768A (en) * | 1977-10-10 | 1979-06-13 | Rolland Sa A | Novel pyrrole derivatives*their manufacture and therapeutic composition containing them |
JPH0413680U (en) * | 1990-05-21 | 1992-02-04 |
-
2016
- 2016-08-26 WO PCT/JP2016/075084 patent/WO2017038723A1/en active Application Filing
- 2016-08-26 JP JP2017537867A patent/JP6873904B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5473768A (en) * | 1977-10-10 | 1979-06-13 | Rolland Sa A | Novel pyrrole derivatives*their manufacture and therapeutic composition containing them |
JPH0413680U (en) * | 1990-05-21 | 1992-02-04 |
Non-Patent Citations (2)
Title |
---|
TU,B. ET AL.: "Novel Linear Tetrapyrroles: Hydrogen Bonding in Diacetylenic Bilirubins", MONATSHEFTE FUR CHEMIE, vol. 135, 2004, pages 519 - 541, XP055367658 * |
WEESEPOEL,Y. ET AL.: "Preliminary UHPLC-PDA-ESI- MS screening of light-accelerated autoidation products of the tetrapyrrole biliverdin", FOOD CHEMISTRY, vol. 173, 15 April 2015 (2015-04-15), pages 624 - 628, XP029102189 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115236018A (en) * | 2022-06-30 | 2022-10-25 | 铜仁学院 | Functional tea processing technology and research method for inhibition of XOD activity by leaf water extract |
CN115553408A (en) * | 2022-10-19 | 2023-01-03 | 御露堂健康科技(北京)有限公司 | Uric acid-reducing beverage, formula and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017038723A1 (en) | 2018-06-14 |
JP6873904B2 (en) | 2021-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5334448B2 (en) | Glutathione production promoter and preventive / therapeutic agent for diseases caused by glutathione deficiency | |
AU2015275507A1 (en) | Cyclic dipeptide-containing composition | |
JP5128828B2 (en) | Anti-inflammatory and antioxidant | |
JP5403942B2 (en) | Glutathione production promoter and preventive / therapeutic agent for diseases caused by glutathione deficiency | |
US9597308B2 (en) | N-acetyl L-cysteine chelates and methods for making and using the same | |
JP6873904B2 (en) | Xanthine oxidase inhibitor | |
JP4520089B2 (en) | Rubrofusarin glycoside-containing composition | |
JP5872725B1 (en) | Dipeptidyl peptidase IV inhibitory composition derived from bonito | |
US20060029642A1 (en) | Methods and compositions for improved chromium complexes | |
JP2013192515A (en) | Oyster extract | |
JP5384697B2 (en) | Anti-inflammatory and antioxidant | |
JP5891970B2 (en) | New quercetin derivative | |
JP2007022989A (en) | Anti-fatigue agent | |
JP2010043036A (en) | Saccharometabolism promoter | |
JP4580447B2 (en) | Agaricus-containing composition | |
JP2008127355A (en) | Composition for relieving alcoholic drunkenness, and food and drink containing the same | |
JP5673091B2 (en) | New resveratrol derivatives | |
JP2008115087A (en) | Hepatic function ameliorating agent | |
CA2922396C (en) | N-acetyl l-cysteine chelates and methods for making and using the same | |
JP2020029529A (en) | Antioxidant | |
JP4840845B2 (en) | Novel ellagic acid derivatives and xanthine oxidase inhibitors | |
JP2006328010A (en) | Lipid metabolism-improving substance containing phlorotannin | |
JP2018135287A (en) | Agent for preventing, treating, and/or inhibiting symptom development of cerebrovascular accidents and/or dementia | |
JP2022129479A (en) | Liver function improvers and liver function-improving oral compositions | |
JP2022092966A (en) | Dipeptidyl peptidase-iv inhibitor and food with functional claims |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16841755 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017537867 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16841755 Country of ref document: EP Kind code of ref document: A1 |