[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017038202A1 - Phase adjustment unit and valve timing changing device - Google Patents

Phase adjustment unit and valve timing changing device Download PDF

Info

Publication number
WO2017038202A1
WO2017038202A1 PCT/JP2016/067893 JP2016067893W WO2017038202A1 WO 2017038202 A1 WO2017038202 A1 WO 2017038202A1 JP 2016067893 W JP2016067893 W JP 2016067893W WO 2017038202 A1 WO2017038202 A1 WO 2017038202A1
Authority
WO
WIPO (PCT)
Prior art keywords
driven
adjustment unit
axis
phase adjustment
side ring
Prior art date
Application number
PCT/JP2016/067893
Other languages
French (fr)
Japanese (ja)
Inventor
松本 崇
哲朗 連
Original Assignee
株式会社ミクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミクニ filed Critical 株式会社ミクニ
Publication of WO2017038202A1 publication Critical patent/WO2017038202A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
    • F16H13/08Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion with balls or with rollers acting in a similar manner

Definitions

  • the present invention relates to a phase adjusting unit that adjusts the relative rotational phase of two rotating bodies, and also uses the phase adjusting unit to change the opening / closing timing (valve timing) of an intake valve or an exhaust valve of an internal combustion engine in accordance with the operating situation.
  • the present invention relates to a valve timing changing device that changes the timing.
  • Conventional valve timing changing devices include a driving side rotating body including a sprocket that rotates in synchronization with an engine crankshaft, a driven side rotating body that rotates integrally with a camshaft, and a driven side relative to the rotation of the driving side rotating body.
  • a driving side rotating body including a sprocket that rotates in synchronization with an engine crankshaft, a driven side rotating body that rotates integrally with a camshaft, and a driven side relative to the rotation of the driving side rotating body.
  • a ring roller that rotates integrally with the driving-side rotator, a sun roller disposed inside the ring roller, and a rotation between the inner peripheral surface of the ring roller and the outer peripheral surface of the sun roller.
  • a planetary traction drive including a plurality of moving planetary rollers, a planetary roller that supports the planetary roller so as to rotate and revolve, and includes a carrier that rotates integrally with the driven-side rotating body as the planetary roller revolves is adopted.
  • the sun roller of the planetary traction drive is appropriately rotated by an electric motor to change the opening / closing timing of the intake valve or exhaust valve driven by the camshaft.
  • phase adjusting unit of the valve timing changing apparatus employs a planetary roller that is long in the axial direction (thrust direction) of the camshaft, the axial dimension becomes long, resulting in an increase in the size of the apparatus. . Further, since the planetary roller and the ring roller, and the planetary roller and the sun roller are in line contact, each roller is required to have strict processing accuracy. Furthermore, a carrier that supports a plurality of planetary rollers so as to rotate and revolve is required, and it is difficult to reduce the number of components structurally.
  • the planetary traction drive is a general planetary deceleration mechanism
  • the reduction ratio cannot be increased so much. Therefore, for example, when the sun roller is rotated using an electric motor when adjusting the phase, an electric motor having a large output is required.
  • the present invention has been made in view of the above circumstances, and its object is to simplify the structure, reduce the number of parts, reduce the size of the apparatus, reduce the processing accuracy of various parts, and accompanying it. While reducing the manufacturing cost, etc., it is possible to eliminate the tilt and pop-out of the rotation shaft of the rollers that make up the traction drive as in the past, and to increase the reduction ratio and adjust the phase with a small output electric motor, etc. It is an object to provide a phase adjustment unit capable of performing the above and a valve timing changing device including the phase adjustment unit.
  • the phase adjustment unit of the present invention is a phase adjustment unit that adjusts the relative rotational phase of a driving side rotating body and a driven side rotating body that rotate about a predetermined axis, and is a driving side formed on the driving side rotating body.
  • it includes a rotation transmission body that is pressed and clamped between the driving ring and the driven ring at least in the axial direction, and an adjustment member that can rotate and adjust the rotation transmission body.
  • the driving side ring rotates integrally with the driving side rotating body.
  • the driven ring rotates in one direction together with the driving side ring via the rotation transmitting body pressed and clamped at least in the axial direction by the driving side ring and the driven side ring.
  • the rotation transmission body rotates and is relative to the driving side ring and the driven side ring. A rotational force is exerted while giving a rotational phase difference.
  • the rotation transmitting body is in contact with the driving side ring at the first turning radius and is in contact with the driven side ring at the second turning radius, so that the driving side ring and the driven side ring are connected to the contact point.
  • a rotation difference corresponding to the difference in rotation radius (difference in contact position) occurs.
  • a relative rotational phase difference is provided between the driving side ring and the driven side ring, and the phase of the rotation of the driving side rotating body and the rotation of the driven side rotating body is appropriately adjusted.
  • the phase adjustment unit includes the drive transmission ring, the driven ring, the rotation transmission body that is pressed and clamped at least in the axial direction while being in contact with the rotation radius different from that of the drive ring and the driven ring, and the adjustment member. Since the differential frictional transmission mechanism is employed, there are no problems such as noise due to backlash that occurs in the case of the gear transmission mechanism and a decrease in durability.
  • the rotation transmission body is required to be pressed and clamped in at least the axial direction (thrust direction), not in the direction perpendicular to the axis (radial direction), it can be surely pressed and clamped in the thrust direction to generate a frictional force. As long as the axial dimension can be reduced.
  • the rotation transmitting body includes a plurality of spheres arranged around the axis, and the adjustment member can roll the plurality of spheres in cooperation with the driving side ring and the driven side ring.
  • the driving side ring is in contact with the plurality of spheres such that the normal at the contact point with each of the plurality of spheres forms a first angle with respect to the axis, and the driven side ring is in each of the plurality of spheres.
  • a configuration may be adopted in which the normal line at the contact point with the sphere contacts a plurality of spheres so as to form a second angle different from the first angle with respect to the axis.
  • a spherical body as the rotation transmitting body, it is possible to easily form a point contact between the driving side ring and the driven side ring and the spherical body while reducing the dimension in the axial direction.
  • a spherical body can be easily obtained by diverting a general-purpose product such as a steel ball applied to a bearing or the like, so that strict processing accuracy as in the prior art is not required, and the manufacturing cost can be reduced.
  • the driving side ring and the driven side ring are in contact with the sphere at the first angle and the second angle, respectively, the driving side ring and the driven side ring are not only pushed in the thrust direction but also in the radial direction with respect to the sphere. A pressure is exerted, and the spherical body can be surely pressed and clamped in cooperation with the adjusting member to obtain a desired frictional force.
  • the adjustment member is disposed on the inner side of the plurality of spheres in the radial direction perpendicular to the axis, and the driving side ring and the driven side ring are formed from the plurality of spheres in the radial direction perpendicular to the axis.
  • a configuration may be adopted that is arranged outside.
  • the adjustment member ⁇ the plurality of spheres ⁇ the driving side ring and the driven side ring are arranged from the side close to the axis toward the outside in the radial direction, for example, the housing formed integrally with the sprocket
  • the phase adjustment units can be collectively arranged within a range that does not exceed the outer diameter of the driving side rotating body. Therefore, downsizing of the device in the radial direction perpendicular to the axis can be achieved.
  • the adjustment member may have a V-groove having a substantially V-shaped cross section so as to contact each of the plurality of spheres at two points.
  • the plurality of spheres can be easily positioned in the axial direction in cooperation with the drive side ring and the driven side ring by fitting the plurality of spheres into the V groove of the adjustment member.
  • by positioning each sphere at two points of the V-groove it is possible to prevent each sphere from rotating vertically (that is, rotating in an undesired direction) as compared with the case of positioning at one point.
  • the phase adjustment unit having the above-described configuration may employ a configuration further including a pressing application mechanism that applies a pressing force in the axial direction between the driving side rotating body and the driven side rotating body and the rotation transmitting body.
  • a pressing application mechanism that applies a pressing force in the axial direction between the driving side rotating body and the driven side rotating body and the rotation transmitting body.
  • the phase adjustment unit having the above-described configuration may employ a configuration that further includes a retainer that positions the plurality of spheres at predetermined intervals. According to this configuration, since the plurality of spheres are maintained at a predetermined interval by the retainer, it is possible to prevent the plurality of spheres from contacting each other when rotating and revolving. Therefore, a collision between a plurality of spheres can be prevented, and the plurality of spheres can perform stable rotation and revolution.
  • the adjusting member is rotated faster or slower (braking) in the same direction as the driving side ring and the driven side ring, and much energy is required to rotate faster.
  • the phase adjustment direction has an advance angle direction and a retard angle direction
  • the advance angle direction is the intake valve or exhaust valve direction. Since it is the direction to push the valve open, it requires more energy than the retarding direction.
  • the first turning radius ⁇ the second turning radius that is, the first angle ⁇ the second angle
  • the valve timing changing device includes a phase adjustment unit that adjusts the relative rotation phase of a driving side rotating body that rotates in conjunction with rotation of a crankshaft and a driven side rotating body that rotates integrally with a camshaft.
  • a valve timing changing device that changes the opening / closing timing of an intake valve or an exhaust valve driven by a camshaft, and employs any one of the phase change units configured as described above as a phase change unit.
  • the driving side rotating body rotates in one direction in conjunction with the crankshaft
  • the driving side ring rotates integrally with the driving side rotating body
  • the driven ring rotates in one direction together with the driving ring via the rotation transmission body
  • the camshaft rotates in one direction integrally with the driven ring.
  • the intake valve or the exhaust valve is opened / closed at a predetermined valve timing.
  • the rotation transmission body rotates to cause a phase difference between the driving side ring and the driven side ring. Applying rotational force while giving
  • the rotation transmitting body since the rotation transmitting body is in contact with the driving side ring at the first turning radius and is in contact with the driven side ring at the second turning radius, the driving side ring and the driven side ring rotate to the contact point. A rotation difference corresponding to the difference in radius (difference in contact position) occurs. As a result, a relative rotational phase difference is given between the driving side ring and the driven side ring, and the phase of the rotation of the driving side rotating body and the rotation of the driven side rotating body is adjusted as appropriate.
  • the opening and closing time can be changed.
  • phase adjustment unit configured as described above, the structure is simplified, the number of parts is reduced, the apparatus is downsized, the processing accuracy of various parts is reduced, and the manufacturing cost is reduced accordingly.
  • problems such as the inclination of the rotating shaft of the roller constituting the traction drive and the protrusion of the roller can be solved, and the reduction ratio can be set large, so that the phase adjustment can be performed with a small output electric motor or the like.
  • FIG. 1 It is a disassembled perspective view which shows one Embodiment of the valve timing change apparatus provided with the phase adjustment unit which concerns on this invention. It is a perspective sectional view which passes along the axis line of the valve timing change apparatus shown in FIG. It is sectional drawing which passes along the axis line of the valve timing change apparatus shown in FIG. While showing the relationship of the drive side ring, driven side ring, rotation transmission body (sphere), and adjustment member which constitute the phase adjustment unit of the present invention, the first rotation radius (and the first angle) is the second rotation radius (and It is a schematic diagram which shows a structure smaller than (2nd angle).
  • the first rotation radius (and the first angle) is the second rotation radius (and It is a schematic diagram which shows a structure larger than (2nd angle).
  • FIG. 7 is a diagram illustrating the operation of the phase adjustment unit of the present invention, and is a schematic diagram illustrating the operation of the drive side ring, the rotation transmission body (sphere), and the driven side ring in a state where phase adjustment is not performed.
  • FIG. 9 is a diagram illustrating the operation of the phase adjustment unit according to the present invention, and is a schematic diagram illustrating the operation of a drive side ring, a rotation transmission body (sphere), and a driven side ring when performing phase adjustment.
  • FIG. 1 It is a schematic diagram for demonstrating the reduction ratio in the phase adjustment unit of this invention. It is a disassembled perspective view which shows other embodiment of the valve timing change apparatus provided with the phase adjustment unit which concerns on this invention. It is a perspective sectional view which passes along the axis line of the valve timing change apparatus shown in FIG. It is sectional drawing which passes along the axis line of the valve timing change apparatus shown in FIG. It is a schematic diagram which shows the arrangement
  • the driving side ring, driven side ring, rotation transmission body (sphere), and adjustment member constituting the phase adjustment unit of the present invention other embodiments of the adjustment member are shown, and the first rotation radius (and the first angle) are shown.
  • the driving side ring, driven side ring, rotation transmission body (sphere), and adjustment member constituting the phase adjustment unit of the present invention other embodiments of the adjustment member are shown, and the first rotation radius (and the first angle) are shown.
  • valve timing changing device As shown in FIGS. 1 to 3, the valve timing changing device according to this embodiment is supported on a drive side that is rotatably supported around an axis S of a camshaft CS in conjunction with rotation of a crankshaft included in an engine.
  • the phase adjustment unit includes a drive-side ring 22, a driven-side ring 31, a plurality of spheres 40 as a rotation transmission body, an adjustment member 50, a retainer 60, and a pair of dishes as a pressing addition mechanism.
  • a spring DS or the like is provided.
  • the adjustment member 50 included in the phase adjustment unit is appropriately rotated and adjusted by an electric motor (not shown) or the like, thereby changing the opening / closing timing (valve timing) of the intake valve or the exhaust valve driven by the camshaft CS. It is like that.
  • the drive-side rotator A is connected to the first housing 10 that is rotatably supported around the axis S of the camshaft CS, and is connected to the first housing 10 by a bolt B ⁇ b> 1.
  • a second housing 20 and the like are provided.
  • the first housing 10 accommodates a sprocket 11 around which a chain for transmitting rotation of the crankshaft is wound, an annular fitting recess 12 into which the thrust bearing SB is fitted, and a pair of disc springs DS. It has an annular housing recess 13, a plurality of screw holes 14 into which the bolts B1 are screwed. As shown in FIGS.
  • the second housing 20 has a cylindrical portion 21 that is joined to the first housing 10, a drive side ring 22, a through hole 23 that exposes the adjustment member 50, and a plurality of penetrations through which bolts B1 are passed. It has holes 24 and the like.
  • the drive side ring 22 has a contact surface 22 a that makes point contact with the plurality of spheres 40.
  • the contact surface 22a is formed in a conical surface shape with the axis S as the center, and makes point contact with the plurality of spheres 40, that is, the first rotation radius R1 around the axis S. It is formed so as to make point contact with the sphere 40.
  • the contact surface 22a has a sphere at a position where the normal line at the contact point forms a first angle ⁇ 1 with respect to an axis S ′ passing through the center of the sphere 40 and parallel to the axis S (that is, with respect to the axis S). It is formed so as to make point contact with 40.
  • the driven-side rotating body B includes a driven-side ring 31 disposed so as to face the driving-side ring 22 in the axis S direction, a fitting cylinder portion 32 fitted into the camshaft CS,
  • the driven disk 30 is integrally formed with a through hole 33 and the like through which the bolt B2 passes. Then, the driven disk 30 is fastened to the camshaft CS by a bolt B2 so as to rotate about the axis S integrally with the camshaft CS.
  • the driven ring 31 has a contact surface 31 a that makes point contact with the plurality of spheres 40.
  • FIGS. 1 to 3 the driven-side rotating body B includes a driven-side ring 31 disposed so as to face the driving-side ring 22 in the axis S direction, a fitting cylinder portion 32 fitted into the camshaft CS,
  • the driven disk 30 is integrally formed with a through hole 33 and the like through which the bolt B2 passes. Then, the driven disk 30 is fastened to the cams
  • the contact surface 31a is formed in a conical surface shape with the axis S as the center, and makes point contact with the plurality of spheres 40, that is, the axis S different from the first rotation radius R1. It is formed so as to make point contact with the sphere 40 at a second rotation radius R2. Further, the contact surface 31a has a second angle ⁇ 2 that is different from the first angle ⁇ 1 with respect to an axis S ′ that passes through the center of the sphere 40 and is parallel to the axis S (that is, with respect to the axis S). It is formed so as to make point contact with the sphere 40 at the position formed.
  • FIG. 4A shows a configuration in which the first rotation radius R1 ⁇ the second rotation radius R2 and the first angle ⁇ 1 ⁇ the second angle ⁇ 2.
  • FIG. 4B shows a configuration in which the first rotation radius R1> the second rotation radius R2 and the first angle ⁇ 1> the second angle ⁇ 2.
  • any of the configurations shown in FIGS. 4A and 4 may be adopted.
  • each sphere 40 makes point contact with the contact surface 22a of the drive side ring 22 at the first rotation radius R1 around the axis S, and the normal line at the contact point is the sphere 40.
  • each sphere 40 makes point contact with the contact surface 31a of the driven ring 31 at a second rotation radius R2 around the axis S different from the first rotation radius R1, and the normal line at the contact point is that of the sphere 40. It is arranged so as to form a second angle ⁇ 2 with respect to an axis S ′ passing through the center and parallel to the axis S (that is, with respect to the axis S). Further, each sphere 40 is in two-point contact with the contact surface 51a of the V groove 51 of the adjustment member 50 at the third rotation radius R3 around the axis S.
  • the plurality of spheres 40 In a normal operation state in which the valve timing is not adjusted, the plurality of spheres 40 have a role of locking and rotating the driving side ring 22 and the driven side ring 31 by friction force without rotating. Eggplant.
  • the plurality of spheres 40 are rotated and revolved appropriately through the rotation adjustment of the adjustment member 50, so that the rotational radius of the drive side ring 22 and the driven side ring 31 is increased.
  • ) is generated, and a relative rotation phase difference is provided between the rotation of the driving side rotating body A and the rotation of the driven side rotating body B.
  • the adjustment member 50 is formed to be rotatable about the axis S as shown in FIGS. 1 to 4B.
  • the adjusting member 50 removably connects a drive shaft (not shown) such as an electric motor or the like having a substantially V-shaped cross section so as to contact the plurality of spheres 40 at two points in the axis S direction.
  • the connection part 52 grade
  • the adjustment member 50 is configured to press and hold the sphere 40 from the axis S direction between the driving side ring 22 and the driven side ring 31 in a state where the plurality of spheres 40 held by the retainer 60 are fitted in the V-groove 51.
  • the connecting portion 52 is assembled from the through hole 23 so as to be rotatable around the axis S.
  • the contact surface 51a of the V-groove 51 is in contact at two points aligned in the axis S direction at the third rotation radius R3 around the axis S, and the axis of the sphere 40
  • the spherical body 40 is pressed and supported so as to be able to roll in cooperation with the contact surface 22a of the drive side ring 22 and the contact surface 31a of the driven side ring 31 while restricting the displacement in the S direction.
  • the retainer 60 is formed in a cylindrical shape, and receives each of the spheres 40 so that the spheres 40 can roll with a predetermined gap, and the plurality of spheres 40 are spaced apart from each other around the axis S.
  • a plurality of circular holes 61 are provided. According to this, since the plurality of spheres 40 are maintained at a predetermined interval around the axis S by the retainer 60, the plurality of spheres 40 can be prevented from contacting each other when rotating and revolving. Therefore, the plurality of spheres 40 can be prevented from colliding with each other, and the plurality of spheres 40 can be stably rotated and revolved.
  • the retainer 60 is not essential, and a configuration in which the retainer 60 is eliminated may be employed.
  • the pair of disc springs DS is disposed in the housing recess 13 of the first housing 10 as shown in FIGS. 1 to 3.
  • the pair of disc springs DS exert a pressing force that separates the first housing 10 and the driven disk 30 from each other in the axis S direction. That is, the pair of disc springs DS serves as a pressing mechanism that applies a pressing force in the direction of the axis S between the driving ring 22 and the driven ring 31 and the sphere 40. According to this, even when the pressing force is changed with time in a state where the spherical body 40 is pressed and clamped by the driving side ring 22 and the driven side ring 31, the pressing force is applied by the pair of disc springs DS. Therefore, a desired pressing force can be obtained by compensating for the change with time, and in particular, a predetermined pressing force can be generated even when the engine is stopped.
  • the driving side ring 22 included in the driving side rotating body A, the driven side ring 31 included in the driven side rotating body B, and the driving side ring 22 are in contact with each other at the first rotation radius R1 around the axis S.
  • a plurality of spheres 40 as rotation transmission bodies that are pressed and clamped between the driving side ring 22 and the driven side ring 31 at least in the direction of the axis S while being in contact with the driven side ring 31 at a second rotation radius R2 different from the first rotation radius R1.
  • the phase adjusting unit that adjusts the phase of rotation of the driven side rotating body B with respect to the rotation of the driving side rotating body A is configured by the adjusting member 50 that can adjust the rotation (spinning and revolution) of the plurality of spheres 40 about the axis S. ing.
  • this phase adjustment unit will be described.
  • the valve timing is not changed, as shown in FIG. 5A, when the driving side rotating body A including the driving side ring 22 rotates in one direction, the driven side ring 31 is moved through the frictional force of the plurality of spheres 40.
  • the driven-side rotating body B and the adjustment member 50 that are included also rotate integrally in one direction.
  • the adjusting member 50 when the adjusting member 50 is rotated in one direction or the other direction using an electric motor (not shown) or the like, the plurality of spheres 40 rotate.
  • phase adjustment unit having the above-described configuration, it is possible to simplify the structure, reduce the number of parts, reduce the size of the apparatus, and the like.
  • the spherical body 40 as the rotation transmitting body, it is possible to easily form a point contact between the driving side ring 22 and the driven side ring 31 and the spherical body 40 while reducing the dimension in the axis S direction. Therefore, it is possible to solve problems such as tilting of the rotating shaft and popping out of the roller that occur when using a roller that is long in the axial direction as in the prior art.
  • the sphere 40 can be easily obtained, and the strict processing accuracy as in the prior art is not required, and the manufacturing cost can be reduced. Furthermore, since the driving side ring 22 and the driven side ring 31 are in contact with the spherical body 40 at the first angle ⁇ 1 and the second angle ⁇ 2, respectively, the driving side ring 22 and the driven side ring 31 are thrust against the spherical body 40.
  • the pressing force is applied not only in the direction (axis S direction) but also in the radial direction. Thereby, in cooperation with the adjustment member 50, the spherical body 40 can be reliably pressed and clamped to obtain a desired frictional force.
  • the reduction ratio of the position adjustment unit having the above configuration will be described with reference to FIG.
  • the rotation radius from the center of the sphere 40 to the contact point of the drive side ring 22 is Rb1
  • the center of the sphere 40 is moved to the driven ring 31.
  • the reduction ratio ⁇ is expressed by the following equation.
  • the adjustment member 50 is disposed inside the sphere 40 in the radial direction perpendicular to the axis S, and the driving side ring 22 and the driven side ring 31 are spherical in the radial direction perpendicular to the axis S. 40, the adjustment member 50 ⁇ the sphere 40 ⁇ the drive side ring 22 and the driven side ring 31 are arranged from the side close to the axis S of the camshaft CS toward the outside in the radial direction. become.
  • phase adjustment units can be arranged in a concentrated manner within a range not exceeding the outer diameter of the housing 10 formed integrally with the drive side rotor A, for example, the sprocket 11, and the diameter perpendicular to the axis S A reduction in the size of the device in the direction can be achieved.
  • the first rotation radius R1 is set smaller than the second rotation radius R2.
  • the adjustment member 50 is rotated faster or slower (a brake is applied) in the same direction as the driving side ring 22 and the driven side ring 31, and much energy is required to rotate the adjustment member 50 faster.
  • the direction of phase adjustment includes an advance angle direction and a retard angle direction. Since the advance direction is a direction in which the intake valve or the exhaust valve is pushed open, it requires more energy than the retard direction.
  • the first turning radius R1 ⁇ the second turning radius R2 that is, the first angle ⁇ 1 ⁇ the second angle ⁇ 2
  • the first angle ⁇ 1 and the second angle ⁇ 2 are larger than 45 degrees. According to this, when variations occur in the processing of the contact surfaces 22a, 31a of the drive side ring 22 and the driven side ring 31, variations occur in the rotation radii R1, R2 at the contact position with the sphere 40, that is, at the contact points. Although there is a possibility of affecting the reduction ratio, by setting the first angle ⁇ 1> 45 degrees and the second angle ⁇ 2> 45 degrees, it is possible to suppress the variation in the rotation radius due to the processing variation of the contact surfaces 22a and 31a. it can.
  • the first rotation radius R1 and the second rotation radius R2 can be set to large values, and a large torque can be transmitted. Further, by setting the first angle ⁇ 1> 45 degrees and the second angle ⁇ 2> 45 degrees, the axial line is generated based on the generation of the normal force due to the wedge effect of the contact surfaces 22 and 31a of the driving side ring 22 and the driven side ring 31. The pressing force generated in the S direction can be increased.
  • valve timing changing device shows another embodiment of the valve timing changing device according to the present invention.
  • the same components are denoted by the same reference numerals and description thereof is omitted.
  • the valve timing changing device according to this embodiment includes a first housing 10 ′ and a second housing 20 constituting the driving side rotating body A, and a driven side constituting the driven side rotating body B.
  • Disks 30 'and 70, a phase adjustment unit, a thrust bearing SB, a bearing disk 80, and the like are provided.
  • the phase adjustment unit includes a drive side ring 22, a driven side ring 31, a plurality of spheres 40, an adjustment member 50, a retainer 60, a single disc spring DS as a pressing addition mechanism, a loading cam mechanism RC, and the like.
  • the first housing 10 ′ includes a sprocket 11, one disc spring DS, an annular fitting recess 12 ′ into which a thrust bearing SB incorporated in the bearing disk 80 is fitted, and a driven disk.
  • the driven disk 30 ′ includes a driven ring 31, a cam portion 32 ′ that defines a cam groove that exerts a cam action on the sphere 74, a through hole 33, and the like. As shown in FIGS.
  • the driven-side disk 70 is disposed so as to be opposed to the cam portion 32 'and defines a cam groove or the like that exerts a cam action on the sphere 74, and is fitted into the camshaft CS. It has a joint tube portion 72, a through hole 73 through which the bolt B2 is passed.
  • the loading cam mechanism RC is constituted by the cam portion 32 ′, the cam portion 71, and the plurality of spheres 74.
  • the loading cam mechanism RC causes the sphere 74 to receive the cam action when the torque fluctuation or rotational phase shift occurs.
  • a pressing force is generated so that the disk 30 ′ and the driven disk 70 are separated from each other in the axis S direction.
  • the loading cam mechanism RC applies a pressing force in the direction of the axis S between the driving side ring 22 and the driven side ring 31 and the sphere 40.
  • the spherical body 40 is pressed and clamped by the driving side ring 22 and the driven side ring 31. Even if a change with time occurs in the pressing force, a desired pressing force can be obtained by compensating the change with time. In particular, it is possible to generate a predetermined pressing force even when the engine is stopped by one disc spring DS, and it is possible to generate a pressing force corresponding to the torque at the start of the engine by the loading cam mechanism RC.
  • the phase adjustment unit is in contact with the driving side ring 22, the driven side ring 31, the driving side ring 22, and the driven side ring 31 at a different radius of rotation. Since the differential friction transmission mechanism including the spherical body 40 pressed and clamped at least in the direction of the axis S and the adjustment member 50 is employed, problems such as noise due to backlash generated in the case of the gear transmission mechanism and a decrease in durability occur. There is nothing.
  • the spherical body 40 is required to be pressed and clamped at least in the direction of the axis S (thrust direction) rather than in the direction perpendicular to the axis S (radial direction), it can be surely pressed and clamped in the thrust direction to generate a frictional force.
  • the dimension in the axis S direction can be reduced, the structure can be simplified, the number of parts can be reduced, and the apparatus can be downsized.
  • the reduction ratio can be set large, an electric motor having a small output can be used when adjusting the rotation of the adjusting member 50.
  • FIG. 11A and FIG. 11B are schematic views showing another embodiment of the adjusting member included in the valve timing changing device according to the present invention.
  • the adjustment member 50 ′ includes a contact surface 51 a defined by the outer peripheral surface of the cylindrical portion 51 ′ so as to contact the plurality of spheres 40 at one point.
  • first housing 10 and the second housing 20 are connected while the spherical body 40 is pressed and clamped from the axis S direction by the driving side ring 22 and the driven side ring 31, so that the adjustment member 50 ′
  • the plurality of spheres 40 are pressed and supported so as to roll freely.
  • each sphere 40 makes point contact with the contact surface 22a of the drive side ring 22 at the first rotation radius R1 around the axis S, as shown in FIGS. 11A and 11B, and the normal line at the contact point is It arrange
  • each sphere 40 is in contact with the contact surface 51 a ′ of the cylindrical portion 51 ′ of the adjustment member 50 ′ at a single point at the third rotation radius R 3 ′ around the axis S.
  • the operation of the adjustment member 50 ' is the same as described above. That is, when the valve timing is not changed, when the driving side rotating body A including the driving side ring 22 rotates in one direction, the driven side rotating body B including the driven side ring 31 and the frictional force of the plurality of spherical bodies 40 and The adjustment member 50 'also rotates integrally in one direction. On the other hand, when changing the valve timing, when the adjusting member 50 ′ is rotated in one direction or the other direction using an electric motor (not shown) or the like, the plurality of spheres 40 rotate and revolve around the axis S.
  • the phase adjustment unit is in contact with the driving side ring 22, the driven side ring 31, the driving side ring 22, and the driven side ring 31 at a different rotation radius.
  • a differential friction transmission mechanism including a rotation transmission body (sphere 40) pressed and clamped at least in the direction of the axis S and the adjustment members 50 and 50 ′ is employed, noise due to backlash generated in the case of the gear transmission mechanism, There is no problem such as a decrease in durability.
  • the rotation transmitting body (sphere 40) is required to be pressed and clamped in at least the direction of the axis S (thrust direction), not in the direction perpendicular to the axis S (radial direction), it is reliably pressed and clamped in the thrust direction.
  • the dimension in the direction of the axis S can be reduced, and the structure can be simplified, the number of parts can be reduced, and the apparatus can be downsized.
  • there is no problem such as tilting or jumping out of the rotation axis of the rotation transmitting body (sphere 40).
  • the reduction ratio can be set large, an electric motor having a small output can be used when adjusting the rotation of the adjusting members 50 and 50 '.
  • the present invention is not limited to this. At least in the direction of the axis S and the movement of the driving-side ring and the movement of the driving-side ring at the first turning radius R1 around the axis A and at the second turning radius R2 different from the first turning radius R1. As long as the rotation transmission body is pressed and clamped by the side ring, a rotation transmission body in another form may be adopted.
  • the phase adjustment unit of the present invention achieves the simplification of the structure, the reduction of the number of parts, the downsizing of the apparatus, the reduction of processing accuracy of various parts, the reduction of the manufacturing cost associated therewith, and the like. It is possible to eliminate the inclination and pop-out of the rotating shaft of the roller constituting the conventional traction drive, and to increase the reduction ratio and adjust the phase with an electric motor with a small output. Therefore, this phase adjustment unit can be applied as a valve timing changing device for an internal combustion engine, and is also useful for mechanisms and devices that need to adjust the relative rotational phase of two rotating bodies.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve Device For Special Equipments (AREA)
  • Friction Gearing (AREA)

Abstract

This phase adjustment unit includes: a drive-side ring (22); a driven-side ring (31); multiple spherical bodies (40) that make contact with the drive-side ring with a first radius of rotation (R1), make contact with the driven-side ring with a second radius of rotation (R2) different from the first radius of rotation, and are pressed and sandwiched between the drive-side ring and the driven-side ring in at least the axial line direction (S); and an adjustment member (50) capable of adjusting the revolution of the multiple spherical bodies. Thus, it is possible to achieve a simpler structure, a reduction in the number of parts, a reduction in the size of the device, more flexibility in machining precision, and the like.

Description

位相調整ユニット及びバルブタイミング変更装置Phase adjustment unit and valve timing changing device
 本発明は、二つの回転体の相対的な回転位相を調整する位相調整ユニットに関し、又、位相調整ユニットを用いて内燃エンジンの吸気バルブ又は排気バルブの開閉時期(バルブタイミング)を運転状況に応じて変更するバルブタイミング変更装置に関する。 The present invention relates to a phase adjusting unit that adjusts the relative rotational phase of two rotating bodies, and also uses the phase adjusting unit to change the opening / closing timing (valve timing) of an intake valve or an exhaust valve of an internal combustion engine in accordance with the operating situation. The present invention relates to a valve timing changing device that changes the timing.
 従来のバルブタイミング変更装置としては、エンジンのクランクシャフトと同期して回転するスプロケット等を含む駆動側回転体、カムシャフトと一体的に回転する被動側回転体、駆動側回転体の回転に対する被動側回転体の回転の位相を調整する位相調整ユニット等を備えたものが知られている(例えば、特許文献1等参照)。 Conventional valve timing changing devices include a driving side rotating body including a sprocket that rotates in synchronization with an engine crankshaft, a driven side rotating body that rotates integrally with a camshaft, and a driven side relative to the rotation of the driving side rotating body. What is provided with the phase adjustment unit etc. which adjust the phase of rotation of a rotary body is known (for example, refer patent document 1 etc.).
 ここで、位相調整ユニットとしては、駆動側回転体と一体的に回転するリングローラ、リングローラの内側に配置される太陽ローラ、リングローラの内周面と太陽ローラの外周面との間で転動する複数の遊星ローラ、遊星ローラを自転及び公転自在に支持すると共に遊星ローラの公転に伴って被動側回転体と一体的に回転するキャリアを含む遊星式トラクションドライブを採用している。
 そして、遊星式トラクションドライブの太陽ローラを、電動モータにより適宜回転させて、カムシャフトにより駆動される吸気バルブ又は排気バルブの開閉時期を変更するようになっている。
Here, as the phase adjustment unit, a ring roller that rotates integrally with the driving-side rotator, a sun roller disposed inside the ring roller, and a rotation between the inner peripheral surface of the ring roller and the outer peripheral surface of the sun roller. A planetary traction drive including a plurality of moving planetary rollers, a planetary roller that supports the planetary roller so as to rotate and revolve, and includes a carrier that rotates integrally with the driven-side rotating body as the planetary roller revolves is adopted.
The sun roller of the planetary traction drive is appropriately rotated by an electric motor to change the opening / closing timing of the intake valve or exhaust valve driven by the camshaft.
 しかしながら、上記バルブタイミング変更装置の位相調整ユニットにおいては、カムシャフトの軸線方向(スラスト方向)に長尺な遊星ローラを採用しているため、軸線方向の寸法が長くなり、装置の大型化を招く。また、遊星ローラとリングローラ及び遊星ローラと太陽ローラを線接触させる構成であるため、各ローラには厳しい加工精度が要求される。さらに、複数の遊星ローラを自転及び公転自在に支持するキャリアを必要とし、構造的に部品点数の削減が難しい。 However, since the phase adjusting unit of the valve timing changing apparatus employs a planetary roller that is long in the axial direction (thrust direction) of the camshaft, the axial dimension becomes long, resulting in an increase in the size of the apparatus. . Further, since the planetary roller and the ring roller, and the planetary roller and the sun roller are in line contact, each roller is required to have strict processing accuracy. Furthermore, a carrier that supports a plurality of planetary rollers so as to rotate and revolve is required, and it is difficult to reduce the number of components structurally.
 また、遊星トラクションドライブは、一般的な遊星減速機構であるため、減速比をそれ程大きくすることができない。それ故に、例えば、位相を調整する際に電動モータを用いて太陽ローラを回転させる場合、出力の大きい電動モータが必要である。 Also, since the planetary traction drive is a general planetary deceleration mechanism, the reduction ratio cannot be increased so much. Therefore, for example, when the sun roller is rotated using an electric motor when adjusting the phase, an electric motor having a large output is required.
 さらに、軸線方向に長尺な円錐台状又は円柱状の遊星ローラを採用する場合、動力伝達の際に、遊星ローラの回転軸の傾きや遊星ローラの飛び出し等の問題を生じる虞がある。したがって、これらの問題を防止するには、堅固なキャリアを採用する必要がある。 Furthermore, when a planetary roller having a truncated cone shape or a columnar shape that is long in the axial direction is used, there is a risk that problems such as tilting of the rotating shaft of the planetary roller or popping out of the planetary roller may occur during power transmission. Therefore, to prevent these problems, it is necessary to employ a solid carrier.
特開2010-77814号公報JP 2010-77814 A
 本発明は、上記の事情に鑑みて成されたものであり、その目的とするところは、構造の簡素化、部品点数の削減、装置の小型化、種々の部品の加工精度の軽減及びそれに伴う製造コストの低減等を図りつつ、従来のようなトラクションドライブを構成するローラの回転軸の傾きや飛び出し等を解消でき、又、減速比を大きくでき小さい出力の電動モータ等で位相調整を行うことのできる位相調整ユニット及びこの位相調整ユニットを備えたバルブタイミング変更装置を提供することにある。 The present invention has been made in view of the above circumstances, and its object is to simplify the structure, reduce the number of parts, reduce the size of the apparatus, reduce the processing accuracy of various parts, and accompanying it. While reducing the manufacturing cost, etc., it is possible to eliminate the tilt and pop-out of the rotation shaft of the rollers that make up the traction drive as in the past, and to increase the reduction ratio and adjust the phase with a small output electric motor, etc. It is an object to provide a phase adjustment unit capable of performing the above and a valve timing changing device including the phase adjustment unit.
 本発明の位相調整ユニットは、所定の軸線回りに回転する駆動側回転体及び被動側回転体の相対的な回転位相を調整する位相調整ユニットであって、駆動側回転体に形成された駆動側リングと、被動側回転体に形成された被動側リングと、上記軸線回りの第1回転半径にて駆動側リングと接触しかつ第1回転半径と異なる第2回転半径にて被動側リングと接触しつつ,少なくとも軸線方向において駆動側リング及び被動側リングに押圧挟持される回転伝達体と、回転伝達体を回転調整し得る調整部材と、を含む。 The phase adjustment unit of the present invention is a phase adjustment unit that adjusts the relative rotational phase of a driving side rotating body and a driven side rotating body that rotate about a predetermined axis, and is a driving side formed on the driving side rotating body. A ring, a driven ring formed on the driven rotating body, and a contact with the driven ring at a second rotating radius different from the first rotating radius at a first rotating radius around the axis. However, it includes a rotation transmission body that is pressed and clamped between the driving ring and the driven ring at least in the axial direction, and an adjustment member that can rotate and adjust the rotation transmission body.
 この構成によれば、位相調整を行わない通常の動作時においては、駆動側回転体が一方向に回転すると、駆動側回転体と一体的に駆動側リングが回転する。そして、駆動側リング及び被動側リングにより少なくとも軸線方向に押圧挟持された回転伝達体を介して、被動側リングが駆動側リングと一緒に一方向に回転する。
 一方、位相調整時には、例えば電動モータ等の駆動源により、調整部材を軸線回りの一方向又は他方向に適宜回転させると、回転伝達体が回転して駆動側リング及び被動側リングに相対的な回転位相差を与えつつ回転力を及ぼす。
 すなわち、回転伝達体は、駆動側リングと第1回転半径にて接触しかつ被動側リングと第2回転半径にて接触しているため、駆動側リングと被動側リングには、接触点までの回転半径の差(接触位置の相違)に応じた回転差が生じる。その結果、駆動側リングと被動側リングとの間に相対的な回転位相差が与えられ、駆動側回転体の回転と被動側回転体の回転の位相が適宜調整される。
According to this configuration, in a normal operation in which phase adjustment is not performed, when the driving side rotating body rotates in one direction, the driving side ring rotates integrally with the driving side rotating body. The driven ring rotates in one direction together with the driving side ring via the rotation transmitting body pressed and clamped at least in the axial direction by the driving side ring and the driven side ring.
On the other hand, at the time of phase adjustment, if the adjusting member is appropriately rotated in one direction or the other direction around the axis by a driving source such as an electric motor, the rotation transmission body rotates and is relative to the driving side ring and the driven side ring. A rotational force is exerted while giving a rotational phase difference.
That is, the rotation transmitting body is in contact with the driving side ring at the first turning radius and is in contact with the driven side ring at the second turning radius, so that the driving side ring and the driven side ring are connected to the contact point. A rotation difference corresponding to the difference in rotation radius (difference in contact position) occurs. As a result, a relative rotational phase difference is provided between the driving side ring and the driven side ring, and the phase of the rotation of the driving side rotating body and the rotation of the driven side rotating body is appropriately adjusted.
 このように、位相調整ユニットとして、駆動側リング、被動側リング、駆動側リング及び被動側リングと異なる回転半径にて接触しつつ少なくとも軸線方向において押圧挟持される回転伝達体、及び調整部材を含む差動式の摩擦伝達機構を採用するため、歯車伝達機構の場合に生じるバックラッシによる騒音、耐久性の低下等の問題を生じることはない。
 ここでは、回転伝達体が軸線に垂直方向(ラジアル方向)ではなく少なくとも軸線方向(スラスト方向)における押圧挟持を必須の条件としているため、スラスト方向において確実に押圧挟持されて摩擦力を発生し得る限り、軸線方向の寸法を小さくできる。それ故に、構造の簡素化、部品点数の削減、装置の小型化等を達成できる。また、回転伝達体の回転軸の傾きや飛び出し等の問題を解消できる。さらに、減速比を大きく設定できるため、調整部材の回転調整の際に小さい出力の電動モータ等を用いることができる。
As described above, the phase adjustment unit includes the drive transmission ring, the driven ring, the rotation transmission body that is pressed and clamped at least in the axial direction while being in contact with the rotation radius different from that of the drive ring and the driven ring, and the adjustment member. Since the differential frictional transmission mechanism is employed, there are no problems such as noise due to backlash that occurs in the case of the gear transmission mechanism and a decrease in durability.
Here, since the rotation transmission body is required to be pressed and clamped in at least the axial direction (thrust direction), not in the direction perpendicular to the axis (radial direction), it can be surely pressed and clamped in the thrust direction to generate a frictional force. As long as the axial dimension can be reduced. Therefore, simplification of the structure, reduction in the number of parts, miniaturization of the apparatus, and the like can be achieved. In addition, problems such as tilting and popping of the rotation shaft of the rotation transmitting body can be solved. Furthermore, since the reduction ratio can be set large, an electric motor having a small output can be used when adjusting the rotation of the adjusting member.
 上記構成をなす位相調整ユニットにおいて、回転伝達体は、軸線の周りに配列された複数の球体を含み、調整部材は、駆動側リング及び被動側リングと協働して複数の球体を転動自在に支持し、駆動側リングは、複数の球体の各々との接触点における法線が軸線に対して第1角度をなすように複数の球体と接触し、被動側リングは、複数の球体の各々との接触点における法線が軸線に対して第1角度と異なる第2角度をなすように複数の球体と接触する、構成を採用してもよい。 In the phase adjustment unit configured as described above, the rotation transmitting body includes a plurality of spheres arranged around the axis, and the adjustment member can roll the plurality of spheres in cooperation with the driving side ring and the driven side ring. The driving side ring is in contact with the plurality of spheres such that the normal at the contact point with each of the plurality of spheres forms a first angle with respect to the axis, and the driven side ring is in each of the plurality of spheres. A configuration may be adopted in which the normal line at the contact point with the sphere contacts a plurality of spheres so as to form a second angle different from the first angle with respect to the axis.
 この構成によれば、位相を調整する動作においては、例えば電動モータ等の駆動源により、調整部材を軸線回りの一方向又は他方向に適宜回転させると、複数の球体がそれぞれ自転及び公転して、駆動側リング及び被動側リングに相対的な回転位相差を与えつつ回転力を及ぼす。
 ここで、複数の球体の各々は、駆動側リングと第1角度にて接触しかつ被動側リングと第2角度にて接触しているため、駆動側リングと被動側リングには、接触点までの回転半径の差(|第1回転半径-第2回転半径|)に応じた回転差が生じる。その結果、駆動側リングと被動側リングとの間に相対的な回転位相差が与えられ、駆動側回転体の回転と被動側回転体の回転の位相が適宜調整される。
According to this configuration, in the operation of adjusting the phase, when the adjustment member is appropriately rotated in one direction or the other direction around the axis by a driving source such as an electric motor, the plurality of spheres rotate and revolve respectively. A rotational force is exerted while giving a relative rotational phase difference to the drive side ring and the driven side ring.
Here, since each of the plurality of spheres is in contact with the driving side ring at the first angle and is in contact with the driven side ring at the second angle, the driving side ring and the driven side ring have contact points up to the contact point. Difference in rotation radius (| first rotation radius−second rotation radius |). As a result, a relative rotational phase difference is provided between the driving side ring and the driven side ring, and the phase of the rotation of the driving side rotating body and the rotation of the driven side rotating body is appropriately adjusted.
 ここでは、回転伝達体として球体を用いることにより、軸線方向の寸法を小さくしつつ駆動側リング及び被動側リングと球体との間で容易に点接触を形成できる。特に、従来のような軸線方向に長尺なローラ等の場合に生じる回転軸の傾きやローラの飛び出し等を解消できる。
 また、例えば軸受等に適用される鋼球等の汎用品を流用することで球体を容易に入手でき、従来のような厳しい加工精度が要求されず、製造コストも低減できる。
 さらに、球体に対して駆動側リング及び被動側リングがそれぞれ第1角度及び第2角度にて接触するため、駆動側リング及び被動側リングが、球体に対してスラスト方向だけでなくラジアル方向の押圧力を及ぼすことになり、調整部材と協働して球体を確実に押圧挟持して所望の摩擦力を得ることができる。
Here, by using a spherical body as the rotation transmitting body, it is possible to easily form a point contact between the driving side ring and the driven side ring and the spherical body while reducing the dimension in the axial direction. In particular, it is possible to eliminate the tilt of the rotating shaft and the protrusion of the roller that occur in the case of a roller that is long in the axial direction as in the prior art.
Further, for example, a spherical body can be easily obtained by diverting a general-purpose product such as a steel ball applied to a bearing or the like, so that strict processing accuracy as in the prior art is not required, and the manufacturing cost can be reduced.
Further, since the driving side ring and the driven side ring are in contact with the sphere at the first angle and the second angle, respectively, the driving side ring and the driven side ring are not only pushed in the thrust direction but also in the radial direction with respect to the sphere. A pressure is exerted, and the spherical body can be surely pressed and clamped in cooperation with the adjusting member to obtain a desired frictional force.
 上記構成をなす位相調整ユニットにおいて、調整部材は、軸線に垂直な径方向において複数の球体よりも内側に配置され、駆動側リング及び被動側リングは、軸線に垂直な径方向において複数の球体よりも外側に配置されている、構成を採用してもよい。
 この構成によれば、軸線に近い側から径方向の外側に向けて、調整部材→複数の球体→駆動側リング及び被動側リングが配置されるため、例えば、スプロケットと一体的に形成されるハウジングのような駆動側回転体の外径寸法を超えない範囲において位相調整ユニットを集約して配置することができる。それ故に、軸線に垂直な径方向における装置の小型化等を達成することができる。
In the phase adjustment unit configured as described above, the adjustment member is disposed on the inner side of the plurality of spheres in the radial direction perpendicular to the axis, and the driving side ring and the driven side ring are formed from the plurality of spheres in the radial direction perpendicular to the axis. Alternatively, a configuration may be adopted that is arranged outside.
According to this configuration, since the adjustment member → the plurality of spheres → the driving side ring and the driven side ring are arranged from the side close to the axis toward the outside in the radial direction, for example, the housing formed integrally with the sprocket As described above, the phase adjustment units can be collectively arranged within a range that does not exceed the outer diameter of the driving side rotating body. Therefore, downsizing of the device in the radial direction perpendicular to the axis can be achieved.
 上記構成をなす位相調整ユニットにおいて、調整部材は、複数の球体の各々と二点にて接触するべく略V字状の断面をなすV溝を有する、構成を採用してもよい。
 この構成によれば、調整部材のV溝に複数の球体を嵌め込むことで、駆動側リング及び被動側リングと協働して、複数の球体を軸線方向において容易に位置決めすることができる。また、V溝の二点で各々の球体を位置決めすることで、一点で位置決めした場合に比べて、各々の球体の縦回転(すなわち、望ましくない方向の自転)を防止することができる。
In the phase adjustment unit having the above-described configuration, the adjustment member may have a V-groove having a substantially V-shaped cross section so as to contact each of the plurality of spheres at two points.
According to this configuration, the plurality of spheres can be easily positioned in the axial direction in cooperation with the drive side ring and the driven side ring by fitting the plurality of spheres into the V groove of the adjustment member. In addition, by positioning each sphere at two points of the V-groove, it is possible to prevent each sphere from rotating vertically (that is, rotating in an undesired direction) as compared with the case of positioning at one point.
 上記構成をなす位相調整ユニットにおいて、駆動側回転体及び被動側回転体と回転伝達体との間において、軸線方向に押圧力を付加する押圧付加機構をさらに含む、構成を採用してもよい。
 この構成によれば、回転伝達体が駆動側リング及び被動側リングにより押圧挟持された状態で、その押圧力に経時変化等を生じても、押圧付加機構により押圧力が付加されるため、その経時変化を補って所望の押圧力を得ることができる。特に、押圧付加機構として、皿バネ等を用いる場合にはエンジンの停止時においても所定の押圧力を発生させることができ、ローディングカム機構等を用いる場合にはエンジンの始動と共にトルクに応じた押圧力を発生させることができる。
The phase adjustment unit having the above-described configuration may employ a configuration further including a pressing application mechanism that applies a pressing force in the axial direction between the driving side rotating body and the driven side rotating body and the rotation transmitting body.
According to this configuration, since the rotation transmitting body is pressed and clamped by the driving side ring and the driven side ring, even if a change with time occurs in the pressing force, the pressing force is applied by the pressing mechanism. A desired pressing force can be obtained by compensating for the change with time. In particular, when a disc spring or the like is used as the pressing mechanism, a predetermined pressing force can be generated even when the engine is stopped. When a loading cam mechanism or the like is used, the pressing according to the torque is started at the start of the engine. Pressure can be generated.
 上記構成をなす位相調整ユニットにおいて、複数の球体を互いに所定の間隔を開けて位置付けるリテーナをさらに含む、構成を採用してもよい。
 この構成によれば、複数の球体が、リテーナにより、互いに所定の間隔をおいて維持されるため、複数の球体が自転及び公転する際に互いに接触し合うことを防止できる。それ故に、複数の球体同士の衝突を防止でき、複数の球体に安定した自転及び公転を行わせることができる。
The phase adjustment unit having the above-described configuration may employ a configuration that further includes a retainer that positions the plurality of spheres at predetermined intervals.
According to this configuration, since the plurality of spheres are maintained at a predetermined interval by the retainer, it is possible to prevent the plurality of spheres from contacting each other when rotating and revolving. Therefore, a collision between a plurality of spheres can be prevented, and the plurality of spheres can perform stable rotation and revolution.
 上記構成をなす位相調整ユニットにおいて、第1回転半径は、第2回転半径よりも小さく設定されている、構成を採用してもよい。
 この構成によれば、位相調整時には、調整部材を、駆動側リング及び被動側リングと同一方向により速く回すか又は遅く回す(ブレーキを掛ける)ことになり、より速く回すには多くのエネルギを必要とする。
 例えば、位相調整ユニットが、エンジンの吸気バルブ又は排気バルブの開閉時期を調整する際に適用された場合、位相調整の向きは進角方向と遅角方向があり、進角方向は吸気バルブ又は排気バルブを押し開ける方向であるため遅角方向よりも多くのエネルギを必要とする。ここでは、第1回転半径<第2回転半径(すなわち、第1角度<第2角度)とすることにより、調整部材にブレーキを掛ける際に進角させることができ、エネルギの省力化を行うことができる。
In the phase adjustment unit having the above-described configuration, a configuration in which the first rotation radius is set smaller than the second rotation radius may be adopted.
According to this configuration, at the time of phase adjustment, the adjusting member is rotated faster or slower (braking) in the same direction as the driving side ring and the driven side ring, and much energy is required to rotate faster. And
For example, when the phase adjustment unit is applied when adjusting the opening / closing timing of the intake valve or exhaust valve of the engine, the phase adjustment direction has an advance angle direction and a retard angle direction, and the advance angle direction is the intake valve or exhaust valve direction. Since it is the direction to push the valve open, it requires more energy than the retarding direction. Here, by setting the first turning radius <the second turning radius (that is, the first angle <the second angle), it is possible to advance the angle when the brake is applied to the adjusting member, and to save energy. Can do.
 本発明のバルブタイミング変更装置は、クランクシャフトの回転に連動して回転する駆動側回転体とカムシャフトと一体的に回転する被動側回転体との相対的な回転位相を調整する位相調整ユニットを備え、カムシャフトにより駆動される吸気バルブ又は排気バルブの開閉時期を変更するバルブタイミング変更装置であって、位相変更ユニットとして、上記構成をなすいずれかの位相変更ユニットを採用するものである。 The valve timing changing device according to the present invention includes a phase adjustment unit that adjusts the relative rotation phase of a driving side rotating body that rotates in conjunction with rotation of a crankshaft and a driven side rotating body that rotates integrally with a camshaft. A valve timing changing device that changes the opening / closing timing of an intake valve or an exhaust valve driven by a camshaft, and employs any one of the phase change units configured as described above as a phase change unit.
 この構成によれば、位相調整を行わない通常の動作時においては、クランクシャフトに連動して駆動側回転体が一方向に回転すると、駆動側回転体と一体的に駆動側リングが回転し、回転伝達体を介して、被動側リングが駆動側リングと一緒に一方向に回転し、被動側リングと一体的にカムシャフトが一方向に回転する。このカムシャフトの回転により、吸気バルブ又は排気バルブが所定のバルブタイミングで開閉駆動される。
 一方、位相調整時には、例えば電動モータ等の駆動源により、調整部材を軸線回りの一方向又は他方向に適宜回転させると、回転伝達体が回転して、駆動側リング及び被動側リングに位相差を与えつつ回転力を及ぼす。
According to this configuration, during normal operation without phase adjustment, when the driving side rotating body rotates in one direction in conjunction with the crankshaft, the driving side ring rotates integrally with the driving side rotating body, The driven ring rotates in one direction together with the driving ring via the rotation transmission body, and the camshaft rotates in one direction integrally with the driven ring. By the rotation of the camshaft, the intake valve or the exhaust valve is opened / closed at a predetermined valve timing.
On the other hand, at the time of phase adjustment, if the adjusting member is appropriately rotated in one direction or the other direction around the axis line by a driving source such as an electric motor, the rotation transmission body rotates to cause a phase difference between the driving side ring and the driven side ring. Applying rotational force while giving
 すなわち、回転伝達体は、駆動側リングと第1回転半径にて接触しかつ被動側リングと第2回転半径にて接触しているため、駆動側リングと被動側リングには接触点までの回転半径の差(接触位置の相違)に応じた回転差が生じる。
 その結果、駆動側リングと被動側リングとの間に相対的な回転位相差が与えられ、駆動側回転体の回転と被動側回転体の回転の位相が適宜調整され、吸気バルブ又は排気バルブの開閉時期を変更することができる。
That is, since the rotation transmitting body is in contact with the driving side ring at the first turning radius and is in contact with the driven side ring at the second turning radius, the driving side ring and the driven side ring rotate to the contact point. A rotation difference corresponding to the difference in radius (difference in contact position) occurs.
As a result, a relative rotational phase difference is given between the driving side ring and the driven side ring, and the phase of the rotation of the driving side rotating body and the rotation of the driven side rotating body is adjusted as appropriate. The opening and closing time can be changed.
 上記構成をなす位相調整ユニットによれば、構造の簡素化、部品点数の削減、装置の小型化、種々の部品の加工精度の軽減及びそれに伴う製造コストの低減等を達成しつつ、従来のようなトラクションドライブを構成するローラの回転軸の傾きやローラの飛び出し等の問題を解消でき、又、減速比を大きく設定できるため小さい出力の電動モータ等で位相調整を行うことができる。 According to the phase adjustment unit configured as described above, the structure is simplified, the number of parts is reduced, the apparatus is downsized, the processing accuracy of various parts is reduced, and the manufacturing cost is reduced accordingly. In addition, problems such as the inclination of the rotating shaft of the roller constituting the traction drive and the protrusion of the roller can be solved, and the reduction ratio can be set large, so that the phase adjustment can be performed with a small output electric motor or the like.
本発明に係る位相調整ユニットを備えたバルブタイミング変更装置の一実施形態を示す分解斜視図である。It is a disassembled perspective view which shows one Embodiment of the valve timing change apparatus provided with the phase adjustment unit which concerns on this invention. 図1に示すバルブタイミング変更装置の軸線を通る斜視断面図である。It is a perspective sectional view which passes along the axis line of the valve timing change apparatus shown in FIG. 図1に示すバルブタイミング変更装置の軸線を通る断面図である。It is sectional drawing which passes along the axis line of the valve timing change apparatus shown in FIG. 本発明の位相調整ユニットを構成する駆動側リング、被動側リング、回転伝達体(球体)、及び調整部材の関係を示すと共に、第1回転半径(及び第1角度)が第2回転半径(及び第2角度)よりも小さい構成を示す模式図である。While showing the relationship of the drive side ring, driven side ring, rotation transmission body (sphere), and adjustment member which constitute the phase adjustment unit of the present invention, the first rotation radius (and the first angle) is the second rotation radius (and It is a schematic diagram which shows a structure smaller than (2nd angle). 本発明の位相調整ユニットを構成する駆動側リング、被動側リング、回転伝達体(球体)、及び調整部材の関係を示すと共に、第1回転半径(及び第1角度)が第2回転半径(及び第2角度)よりも大きい構成を示す模式図である。While showing the relationship of the drive side ring, driven side ring, rotation transmission body (sphere), and adjustment member which constitute the phase adjustment unit of the present invention, the first rotation radius (and the first angle) is the second rotation radius (and It is a schematic diagram which shows a structure larger than (2nd angle). 本発明の位相調整ユニットの動作を説明するものであり、位相調整を行わない状態での駆動側リング、回転伝達体(球体)、被動側リングの動作を示す模式図である。FIG. 7 is a diagram illustrating the operation of the phase adjustment unit of the present invention, and is a schematic diagram illustrating the operation of the drive side ring, the rotation transmission body (sphere), and the driven side ring in a state where phase adjustment is not performed. 本発明の位相調整ユニットの動作を説明するものであり、位相調整を行う際の駆動側リング、回転伝達体(球体)、被動側リングの動作を示す模式図である。FIG. 9 is a diagram illustrating the operation of the phase adjustment unit according to the present invention, and is a schematic diagram illustrating the operation of a drive side ring, a rotation transmission body (sphere), and a driven side ring when performing phase adjustment. 本発明の位相調整ユニットにおける減速比を説明するための模式図である。It is a schematic diagram for demonstrating the reduction ratio in the phase adjustment unit of this invention. 本発明に係る位相調整ユニットを備えたバルブタイミング変更装置の他の実施形態を示す分解斜視図である。It is a disassembled perspective view which shows other embodiment of the valve timing change apparatus provided with the phase adjustment unit which concerns on this invention. 図7に示すバルブタイミング変更装置の軸線を通る斜視断面図である。It is a perspective sectional view which passes along the axis line of the valve timing change apparatus shown in FIG. 図7に示すバルブタイミング変更装置の軸線を通る断面図である。It is sectional drawing which passes along the axis line of the valve timing change apparatus shown in FIG. 本発明の位相調整ユニットに含まれる押圧付加機構としてのローディングカム機構の配置関係を示す模式図である。It is a schematic diagram which shows the arrangement | positioning relationship of the loading cam mechanism as a press addition mechanism contained in the phase adjustment unit of this invention. 本発明の位相調整ユニットに含まれる押圧付加機構としてのローディングカム機構の配置関係を示す模式図である。It is a schematic diagram which shows the arrangement | positioning relationship of the loading cam mechanism as a press addition mechanism contained in the phase adjustment unit of this invention. 本発明の位相調整ユニットを構成する駆動側リング、被動側リング、回転伝達体(球体)、及び調整部材のうち、調整部材の他の実施形態を示すと共に、第1回転半径(及び第1角度)が第2回転半径(及び第2角度)よりも小さい構成を示す模式図である。Among the driving side ring, driven side ring, rotation transmission body (sphere), and adjustment member constituting the phase adjustment unit of the present invention, other embodiments of the adjustment member are shown, and the first rotation radius (and the first angle) are shown. ) Is a schematic diagram showing a configuration in which the second turning radius (and the second angle) is smaller. 本発明の位相調整ユニットを構成する駆動側リング、被動側リング、回転伝達体(球体)、及び調整部材のうち、調整部材の他の実施形態を示すと共に、第1回転半径(及び第1角度)が第2回転半径(及び第2角度)よりも大きい構成を示す模式図である。Among the driving side ring, driven side ring, rotation transmission body (sphere), and adjustment member constituting the phase adjustment unit of the present invention, other embodiments of the adjustment member are shown, and the first rotation radius (and the first angle) are shown. ) Is a schematic diagram showing a configuration in which the second turning radius (and the second angle) is larger.
 以下、本発明の実施形態について、添付図面を参照しつつ説明する。
 この実施形態に係るバルブタイミング変更装置は、図1ないし図3に示すように、エンジンに含まれるクランクシャフトの回転に連動してカムシャフトCSの軸線S回りに回動自在に支持される駆動側回転体A、カムシャフトCSと一体的に回転する被動側回転体B、駆動側回転体A及び被動側回転体Bの相対的な回転位相を調整する位相調整ユニット、スラスト軸受SB等を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIGS. 1 to 3, the valve timing changing device according to this embodiment is supported on a drive side that is rotatably supported around an axis S of a camshaft CS in conjunction with rotation of a crankshaft included in an engine. A rotating body A, a driven side rotating body B that rotates integrally with the camshaft CS, a phase adjusting unit that adjusts the relative rotational phase of the driving side rotating body A and the driven side rotating body B, a thrust bearing SB, and the like. Yes.
 位相調整ユニットは、図1ないし図3に示すように、駆動側リング22、被動側リング31、回転伝達体としての複数の球体40、調整部材50、リテーナ60、押圧付加機構としての一対の皿バネDS等を備えている。 As shown in FIGS. 1 to 3, the phase adjustment unit includes a drive-side ring 22, a driven-side ring 31, a plurality of spheres 40 as a rotation transmission body, an adjustment member 50, a retainer 60, and a pair of dishes as a pressing addition mechanism. A spring DS or the like is provided.
 そして、位相調整ユニットに含まれる調整部材50を、電動モータ(不図示)等で適宜回転調整することにより、カムシャフトCSにより駆動される吸気バルブ又は排気バルブの開閉時期(バルブタイミング)を変更するようになっている。 Then, the adjustment member 50 included in the phase adjustment unit is appropriately rotated and adjusted by an electric motor (not shown) or the like, thereby changing the opening / closing timing (valve timing) of the intake valve or the exhaust valve driven by the camshaft CS. It is like that.
 駆動側回転体Aは、図1ないし図3に示すように、カムシャフトCSの軸線S回りに回動自在に支持される第1ハウジング10、第1ハウジング10に対してボルトB1により連結される第2ハウジング20等を備えている。
 第1ハウジング10は、図2及び図3に示すように、クランクシャフトの回転を伝達するチェーンを巻き付けるスプロケット11、スラスト軸受SBを嵌め込む環状の嵌合凹部12、一対の皿バネDSを収容する環状の収容凹部13、ボルトB1を捩じ込む複数のネジ孔14等を有する。
 第2ハウジング20は、図2及び図3に示すように、第1ハウジング10と接合される円筒部21、駆動側リング22、調整部材50を露出させる貫通孔23、ボルトB1を通す複数の貫通孔24等を有する。
 駆動側リング22は、図2ないし図4Bに示すように、複数の球体40と点接触する接触面22aを有する。
 ここで、接触面22aは、図4A及び図4Bに示すように、軸線Sを中心として円錐面状に形成されて複数の球体40と点接触する、すなわち、軸線S回りの第1回転半径R1にて球体40と点接触するように形成されている。また、接触面22aは、接触点における法線が球体40の中心を通り軸線Sに平行な軸線S´に対して(すなわち、軸線Sに対して)第1角度θ1をなす位置にて、球体40と点接触するように形成されている。
As shown in FIGS. 1 to 3, the drive-side rotator A is connected to the first housing 10 that is rotatably supported around the axis S of the camshaft CS, and is connected to the first housing 10 by a bolt B <b> 1. A second housing 20 and the like are provided.
As shown in FIGS. 2 and 3, the first housing 10 accommodates a sprocket 11 around which a chain for transmitting rotation of the crankshaft is wound, an annular fitting recess 12 into which the thrust bearing SB is fitted, and a pair of disc springs DS. It has an annular housing recess 13, a plurality of screw holes 14 into which the bolts B1 are screwed.
As shown in FIGS. 2 and 3, the second housing 20 has a cylindrical portion 21 that is joined to the first housing 10, a drive side ring 22, a through hole 23 that exposes the adjustment member 50, and a plurality of penetrations through which bolts B1 are passed. It has holes 24 and the like.
As shown in FIGS. 2 to 4B, the drive side ring 22 has a contact surface 22 a that makes point contact with the plurality of spheres 40.
Here, as shown in FIGS. 4A and 4B, the contact surface 22a is formed in a conical surface shape with the axis S as the center, and makes point contact with the plurality of spheres 40, that is, the first rotation radius R1 around the axis S. It is formed so as to make point contact with the sphere 40. Further, the contact surface 22a has a sphere at a position where the normal line at the contact point forms a first angle θ1 with respect to an axis S ′ passing through the center of the sphere 40 and parallel to the axis S (that is, with respect to the axis S). It is formed so as to make point contact with 40.
 被動側回転体Bは、図1ないし図3に示すように、軸線S方向において駆動側リング22と対向するように配置される被動側リング31、カムシャフトCSに嵌め込まれる嵌合筒部32、ボルトB2を通す貫通孔33等を一体的に有する被動側ディスク30として形成されている。
 そして、被動側ディスク30は、カムシャフトCSと一体的に軸線S回りに回転するようにボルトB2によりカムシャフトCSに締結される。
 被動側リング31は、図2ないし図4Bに示すように、複数の球体40と点接触する接触面31aを有する。
 ここで、接触面31aは、図4A及び図4Bに示すように、軸線Sを中心として円錐面状に形成されて複数の球体40と点接触する、すなわち、第1回転半径R1と異なる軸線S回りの第2回転半径R2にて球体40と点接触するように形成されている。また、接触面31aは、接触点における法線が球体40の中心を通り軸線Sに平行な軸線S´に対して(すなわち、軸線Sに対して)第1角度θ1と異なる第2角度θ2をなす位置にて、球体40と点接触するように形成されている。
 尚、図4Aにおいては、第1回転半径R1<第2回転半径R2、第1角度θ1<第2角度θ2の構成が示されている。図4Bにおいては、第1回転半径R1>第2回転半径R2、第1角度θ1>第2角度θ2の構成が示されている。位相調整ユニットとしては、上記図4A及び図4に示す構成のいずれの構成を採用してもよい。
As shown in FIGS. 1 to 3, the driven-side rotating body B includes a driven-side ring 31 disposed so as to face the driving-side ring 22 in the axis S direction, a fitting cylinder portion 32 fitted into the camshaft CS, The driven disk 30 is integrally formed with a through hole 33 and the like through which the bolt B2 passes.
Then, the driven disk 30 is fastened to the camshaft CS by a bolt B2 so as to rotate about the axis S integrally with the camshaft CS.
As shown in FIGS. 2 to 4B, the driven ring 31 has a contact surface 31 a that makes point contact with the plurality of spheres 40.
Here, as shown in FIGS. 4A and 4B, the contact surface 31a is formed in a conical surface shape with the axis S as the center, and makes point contact with the plurality of spheres 40, that is, the axis S different from the first rotation radius R1. It is formed so as to make point contact with the sphere 40 at a second rotation radius R2. Further, the contact surface 31a has a second angle θ2 that is different from the first angle θ1 with respect to an axis S ′ that passes through the center of the sphere 40 and is parallel to the axis S (that is, with respect to the axis S). It is formed so as to make point contact with the sphere 40 at the position formed.
4A shows a configuration in which the first rotation radius R1 <the second rotation radius R2 and the first angle θ1 <the second angle θ2. FIG. 4B shows a configuration in which the first rotation radius R1> the second rotation radius R2 and the first angle θ1> the second angle θ2. As the phase adjustment unit, any of the configurations shown in FIGS. 4A and 4 may be adopted.
 複数の球体40は、図1ないし図3に示すように、軸線Sの周りに環状に配列されるように調整部材50のV溝51に転動自在に嵌め込まれると共に、軸線S方向において駆動側リング22と被動側リング31とにより押圧挟持されるように配置されている。
 各々の球体40は、図4A及び図4Bに示すように、軸線S回りの第1回転半径R1にて駆動側リング22の接触面22aと点接触し、その接触点における法線が、球体40の中心を通り軸線Sに平行な軸線S´に対して(すなわち、軸線Sに対して)第1角度θ1をなすように配置されている。
 また、各々の球体40は、第1回転半径R1と異なる軸線S回りの第2回転半径R2にて被動側リング31の接触面31aと点接触し、その接触点における法線が、球体40の中心を通り軸線Sに平行な軸線S´に対して(すなわち、軸線Sに対して)第2角度θ2をなすように配置されている。
 さらに、各々の球体40は、軸線S回りの第3回転半径R3にて調整部材50のV溝51の接触面51aと二点接触するようになっている。
As shown in FIGS. 1 to 3, the plurality of spheres 40 are fitted into the V-groove 51 of the adjustment member 50 so as to be arranged in an annular shape around the axis S so as to be freely rotatable, and in the direction of the axis S The ring 22 and the driven ring 31 are disposed so as to be pressed and clamped.
As shown in FIGS. 4A and 4B, each sphere 40 makes point contact with the contact surface 22a of the drive side ring 22 at the first rotation radius R1 around the axis S, and the normal line at the contact point is the sphere 40. Are arranged so as to form a first angle θ1 with respect to an axis S ′ that passes through the center of the axis and is parallel to the axis S (that is, with respect to the axis S).
Further, each sphere 40 makes point contact with the contact surface 31a of the driven ring 31 at a second rotation radius R2 around the axis S different from the first rotation radius R1, and the normal line at the contact point is that of the sphere 40. It is arranged so as to form a second angle θ2 with respect to an axis S ′ passing through the center and parallel to the axis S (that is, with respect to the axis S).
Further, each sphere 40 is in two-point contact with the contact surface 51a of the V groove 51 of the adjustment member 50 at the third rotation radius R3 around the axis S.
 そして、バルブタイミングの調整を行わない通常の運転状態においては、複数の球体40は、自転することなく、駆動側リング22と被動側リング31を摩擦力によりロックして一体的に回転させる役割をなす。
 一方、バルブタイミングの調整を行う際には、複数の球体40は、調整部材50の回転調整を介して適宜自転及び公転することにより、駆動側リング22と被動側リング31に対して回転半径の差(|R1-R2|)に応じた回転差を生じさせ、駆動側回転体Aの回転と被動側回転体Bの回転との間に相対的な回転位相差を与える役割をなす。
In a normal operation state in which the valve timing is not adjusted, the plurality of spheres 40 have a role of locking and rotating the driving side ring 22 and the driven side ring 31 by friction force without rotating. Eggplant.
On the other hand, when adjusting the valve timing, the plurality of spheres 40 are rotated and revolved appropriately through the rotation adjustment of the adjustment member 50, so that the rotational radius of the drive side ring 22 and the driven side ring 31 is increased. A rotation difference corresponding to the difference (| R1−R2 |) is generated, and a relative rotation phase difference is provided between the rotation of the driving side rotating body A and the rotation of the driven side rotating body B.
 調整部材50は、図1ないし図4Bに示すように、軸線Sを中心として回動自在に形成されている。
 調整部材50は、複数の球体40と軸線S方向において二点にて接触するべく略V字状の断面をなすV溝51、電動モータ等の駆動軸(不図示)を挿脱自在に連結する連結部52等を備えている。
 そして、調整部材50は、リテーナ60で保持された複数の球体40がV溝51に嵌め込まれた状態で、駆動側リング22と被動側リング31で球体40を軸線S方向から押圧挟持するように第1ハウジング10と第2ハウジング20が連結されることにより、少なくとも連結部52が貫通孔23から露出しつつ軸線S回りに回動自在に組み付けられた状態となる。
 ここで、V溝51の接触面51aは、図4A及び図4Bに示すように、軸線S回りの第3回転半径R3にて軸線S方向に並ぶ二点にて接触して、球体40の軸線S方向への位置ずれを規制すると共に駆動側リング22の接触面22a及び被動側リング31の接触面31aと協働して球体40を転動自在に押圧支持するようになっている。
The adjustment member 50 is formed to be rotatable about the axis S as shown in FIGS. 1 to 4B.
The adjusting member 50 removably connects a drive shaft (not shown) such as an electric motor or the like having a substantially V-shaped cross section so as to contact the plurality of spheres 40 at two points in the axis S direction. The connection part 52 grade | etc., Is provided.
The adjustment member 50 is configured to press and hold the sphere 40 from the axis S direction between the driving side ring 22 and the driven side ring 31 in a state where the plurality of spheres 40 held by the retainer 60 are fitted in the V-groove 51. By connecting the first housing 10 and the second housing 20, at least the connecting portion 52 is assembled from the through hole 23 so as to be rotatable around the axis S.
Here, as shown in FIGS. 4A and 4B, the contact surface 51a of the V-groove 51 is in contact at two points aligned in the axis S direction at the third rotation radius R3 around the axis S, and the axis of the sphere 40 The spherical body 40 is pressed and supported so as to be able to roll in cooperation with the contact surface 22a of the drive side ring 22 and the contact surface 31a of the driven side ring 31 while restricting the displacement in the S direction.
 リテーナ60は、図1に示すように、円筒状に形成され、各々の球体40を所定の隙間をおいて転動自在に受け入れると共に複数の球体40同士を軸線Sの周りにおいて所定の間隔を開けて位置付ける複数の円孔61を備えている。
 これによれば、複数の球体40が、リテーナ60により軸線S周りに所定の間隔をおいて維持されるため、複数の球体40がそれぞれ自転及び公転する際に互いに接触し合うのを防止できる。それ故に、複数の球体40が互いに衝突するのを防止でき、複数の球体40に安定した自転及び公転を行わせることができる。
 尚、位相調整ユニットにおいては、リテーナ60は必須ではなく、リテーナ60を廃止した構成を採用してもよい。
As shown in FIG. 1, the retainer 60 is formed in a cylindrical shape, and receives each of the spheres 40 so that the spheres 40 can roll with a predetermined gap, and the plurality of spheres 40 are spaced apart from each other around the axis S. A plurality of circular holes 61 are provided.
According to this, since the plurality of spheres 40 are maintained at a predetermined interval around the axis S by the retainer 60, the plurality of spheres 40 can be prevented from contacting each other when rotating and revolving. Therefore, the plurality of spheres 40 can be prevented from colliding with each other, and the plurality of spheres 40 can be stably rotated and revolved.
In the phase adjustment unit, the retainer 60 is not essential, and a configuration in which the retainer 60 is eliminated may be employed.
 一対の皿バネDSは、図1ないし図3に示すように、第1ハウジング10の収容凹部13内に配置されている。そして、一対の皿バネDSは、第1ハウジング10と被動側ディスク30とを軸線S方向において互いに離隔させる押圧力を及ぼす。すなわち、一対の皿バネDSは、駆動側リング22及び被動側リング31と球体40との間において、軸線S方向に押圧力を付加する押圧付加機構の役割をなす。
 これによれば、球体40が駆動側リング22及び被動側リング31により押圧挟持された状態で、その押圧力に経時変化等を生じても、一対の皿バネDSにより押圧力が付加される。したがって、その経時変化を補って所望の押圧力を得ることができ、特に、エンジンの停止時においても所定の押圧力を発生させることができる。
The pair of disc springs DS is disposed in the housing recess 13 of the first housing 10 as shown in FIGS. 1 to 3. The pair of disc springs DS exert a pressing force that separates the first housing 10 and the driven disk 30 from each other in the axis S direction. That is, the pair of disc springs DS serves as a pressing mechanism that applies a pressing force in the direction of the axis S between the driving ring 22 and the driven ring 31 and the sphere 40.
According to this, even when the pressing force is changed with time in a state where the spherical body 40 is pressed and clamped by the driving side ring 22 and the driven side ring 31, the pressing force is applied by the pair of disc springs DS. Therefore, a desired pressing force can be obtained by compensating for the change with time, and in particular, a predetermined pressing force can be generated even when the engine is stopped.
 上記構成においては、駆動側回転体Aに含まれる駆動側リング22、被動側回転体Bに含まれる被動側リング31、軸線S回りの第1回転半径R1にて駆動側リング22と接触しかつ第1回転半径R1と異なる第2回転半径R2にて被動側リング31と接触しつつ少なくとも軸線S方向において駆動側リング22及び被動側リング31に押圧挟持される回転伝達体としての複数の球体40、複数の球体40を軸線S回りに回転(自転及び公転)調整し得る調整部材50により、駆動側回転体Aの回転に対する被動側回転体Bの回転の位相を調整する位相調整ユニットが構成されている。 In the above configuration, the driving side ring 22 included in the driving side rotating body A, the driven side ring 31 included in the driven side rotating body B, and the driving side ring 22 are in contact with each other at the first rotation radius R1 around the axis S. A plurality of spheres 40 as rotation transmission bodies that are pressed and clamped between the driving side ring 22 and the driven side ring 31 at least in the direction of the axis S while being in contact with the driven side ring 31 at a second rotation radius R2 different from the first rotation radius R1. The phase adjusting unit that adjusts the phase of rotation of the driven side rotating body B with respect to the rotation of the driving side rotating body A is configured by the adjusting member 50 that can adjust the rotation (spinning and revolution) of the plurality of spheres 40 about the axis S. ing.
 この位相調整ユニットの作用について説明する。
 先ず、バルブタイミングを変更しない場合、図5Aに示すように、駆動側リング22を含む駆動側回転体Aが一方向に回転すると、複数の球体40の摩擦力を介して、被動側リング31を含む被動側回転体B及び調整部材50も一方向に一体的に回転する。
 一方、バルブタイミングを変更する場合、図5Bに示すように、電動モータ(不図示)等を用いて調整部材50が一方向又は他方向のいずれかに回転させられると、複数の球体40が自転及び軸線S回りに公転して、駆動側リング22と被動側リング31の間に回転半径の差(|第1回転半径R1-第2回転半径R2|)に応じた回転差を生じさせ、駆動側回転体Aの回転と被動側回転体Bの回転の間に相対的な回転位相差を生じさせる。
 したがって、調整部材50を適宜回転調整することにより、所望のバルブタイミングに変更することができる。
The operation of this phase adjustment unit will be described.
First, when the valve timing is not changed, as shown in FIG. 5A, when the driving side rotating body A including the driving side ring 22 rotates in one direction, the driven side ring 31 is moved through the frictional force of the plurality of spheres 40. The driven-side rotating body B and the adjustment member 50 that are included also rotate integrally in one direction.
On the other hand, when changing the valve timing, as shown in FIG. 5B, when the adjusting member 50 is rotated in one direction or the other direction using an electric motor (not shown) or the like, the plurality of spheres 40 rotate. And revolves around the axis S to generate a rotation difference corresponding to the difference in rotation radius (| first rotation radius R1−second rotation radius R2 |) between the drive side ring 22 and the driven side ring 31 to drive A relative rotational phase difference is generated between the rotation of the side rotating body A and the rotation of the driven side rotating body B.
Therefore, it can be changed to a desired valve timing by appropriately adjusting the rotation of the adjusting member 50.
 上記構成をなす位相調整ユニットによれば、構造の簡素化、部品点数の削減、装置の小型化等を達成できる。特に、回転伝達体として球体40を用いることにより、軸線S方向の寸法を小さくしつつ駆動側リング22及び被動側リング31と球体40との間で容易に点接触を形成できる。したがって、従来のような軸線方向に長尺なローラを用いる場合に生じる回転軸の傾きやローラの飛び出し等の問題を解消できる。
 また、例えば軸受等に適用される鋼球等を流用することで、球体40を容易に入手でき、又、従来のような厳しい加工精度が要求されず、製造コストも低減できる。
 さらに、球体40に対して駆動側リング22及び被動側リング31がそれぞれ第1角度θ1及び第2角度θ2にて接触するため、駆動側リング22及び被動側リング31が、球体40に対してスラスト方向(軸線S方向)だけでなくラジアル方向の押圧力を及ぼすことになる。これにより、調整部材50と協働して、球体40を確実に押圧挟持して所望の摩擦力を得ることができる。
According to the phase adjustment unit having the above-described configuration, it is possible to simplify the structure, reduce the number of parts, reduce the size of the apparatus, and the like. In particular, by using the spherical body 40 as the rotation transmitting body, it is possible to easily form a point contact between the driving side ring 22 and the driven side ring 31 and the spherical body 40 while reducing the dimension in the axis S direction. Therefore, it is possible to solve problems such as tilting of the rotating shaft and popping out of the roller that occur when using a roller that is long in the axial direction as in the prior art.
Further, for example, by diverting a steel ball or the like applied to a bearing or the like, the sphere 40 can be easily obtained, and the strict processing accuracy as in the prior art is not required, and the manufacturing cost can be reduced.
Furthermore, since the driving side ring 22 and the driven side ring 31 are in contact with the spherical body 40 at the first angle θ1 and the second angle θ2, respectively, the driving side ring 22 and the driven side ring 31 are thrust against the spherical body 40. The pressing force is applied not only in the direction (axis S direction) but also in the radial direction. Thereby, in cooperation with the adjustment member 50, the spherical body 40 can be reliably pressed and clamped to obtain a desired frictional force.
 上記構成をなす位置調整ユニットの減速比について、図6に基づき説明する。
 上記第1回転半径R1、第2回転半径R2、第3回転半径R3の他に、球体40の中心から駆動側リング22の接触点までの回転半径をRb1、球体40の中心から被動側リング31の接触点までの回転半径をRb2、球体40の中心から調整部材50の接触点までの回転半径をRb3とした場合、減速比αは下記式となる。
 α=-{R2・(Rb3・R1+Rb1・R3)}/{R3・(Rb2・R1-Rb1・R2)}
 したがって、R1とR2の値(Rb1とRb2の値)を異なる値としつつも近い値とすることにより、高減速比を容易に設定することができる。
 そして、減速比αを大きく設定することにより、小さい出力の電動モータ等で調整部材50を回転調整することができ、省電力化、電動モータの小型化等に寄与する。
The reduction ratio of the position adjustment unit having the above configuration will be described with reference to FIG.
In addition to the first rotation radius R1, the second rotation radius R2, and the third rotation radius R3, the rotation radius from the center of the sphere 40 to the contact point of the drive side ring 22 is Rb1, and the center of the sphere 40 is moved to the driven ring 31. When the rotation radius to the contact point is Rb2, and the rotation radius from the center of the sphere 40 to the contact point of the adjustment member 50 is Rb3, the reduction ratio α is expressed by the following equation.
α = − {R2 · (Rb3 · R1 + Rb1 · R3)} / {R3 · (Rb2 · R1−Rb1 · R2)}
Therefore, by setting the values of R1 and R2 (values of Rb1 and Rb2) to different values, the high reduction ratio can be easily set.
By setting the reduction ratio α to be large, the adjustment member 50 can be rotationally adjusted with a small output electric motor or the like, which contributes to power saving, miniaturization of the electric motor, and the like.
 上記構成をなす位置調整ユニットにおいては、調整部材50が軸線Sに垂直な径方向において球体40よりも内側に配置され、駆動側リング22及び被動側リング31が軸線Sに垂直な径方向において球体40よりも外側に配置されているため、カムシャフトCSの軸線Sに近い側から径方向の外側に向けて、調整部材50→球体40→駆動側リング22及び被動側リング31が配置されることになる。
 したがって、駆動側回転体A、例えば、スプロケット11と一体的に形成されるハウジング10の外径寸法を超えない範囲において、位相調整ユニットを集約して配置することができ、軸線Sに垂直な径方向における装置の小型化等を達成することができる。
In the position adjustment unit configured as described above, the adjustment member 50 is disposed inside the sphere 40 in the radial direction perpendicular to the axis S, and the driving side ring 22 and the driven side ring 31 are spherical in the radial direction perpendicular to the axis S. 40, the adjustment member 50 → the sphere 40 → the drive side ring 22 and the driven side ring 31 are arranged from the side close to the axis S of the camshaft CS toward the outside in the radial direction. become.
Therefore, the phase adjustment units can be arranged in a concentrated manner within a range not exceeding the outer diameter of the housing 10 formed integrally with the drive side rotor A, for example, the sprocket 11, and the diameter perpendicular to the axis S A reduction in the size of the device in the direction can be achieved.
 上記構成をなす位相調整ユニットにおいては、第1回転半径R1が第2回転半径R2よりも小さく設定されるのが好ましい。
 位相調整時には、調整部材50を駆動側リング22及び被動側リング31と同一方向により速く回すか又は遅く回す(ブレーキを掛ける)ことになり、より速く回すには多くのエネルギを必要とする。位相調整の向きは、進角方向と遅角方向がある。そして、進角方向は、吸気バルブ又は排気バルブを押し開ける方向であるため、遅角方向よりも多くのエネルギを必要とする。
 ここで、第1回転半径R1<第2回転半径R2(すなわち、第1角度θ1<第2角度θ2)とすることにより、調整部材50にブレーキを掛ける際に進角させることができ、エネルギの省力化を行うことができる。
In the phase adjustment unit configured as described above, it is preferable that the first rotation radius R1 is set smaller than the second rotation radius R2.
At the time of phase adjustment, the adjustment member 50 is rotated faster or slower (a brake is applied) in the same direction as the driving side ring 22 and the driven side ring 31, and much energy is required to rotate the adjustment member 50 faster. The direction of phase adjustment includes an advance angle direction and a retard angle direction. Since the advance direction is a direction in which the intake valve or the exhaust valve is pushed open, it requires more energy than the retard direction.
Here, by setting the first turning radius R1 <the second turning radius R2 (that is, the first angle θ1 <the second angle θ2), the adjustment member 50 can be advanced when the brake is applied, and the energy Labor saving can be achieved.
 また、上記構成をなす位相調整ユニットにおいては、第1角度θ1及び第2角度θ2を45度よりも大きく設定するのが好ましい。
 これによれば、駆動側リング22及び被動側リング31の接触面22a,31aの加工にバラツキを生じた場合、球体40との接触位置すなわち接触点での回転半径R1,R2にバラツキを生じて減速比に影響を及ぼす虞があるが、第1角度θ1>45度かつ第2角度θ2>45度とすることにより、接触面22a,31aの加工バラツキに伴う回転半径のバラツキを小さく抑えることができる。
 また、第1角度θ1>45度かつ第2角度θ2>45度とすることにより、第1回転半径R1及び第2回転半径R2を大きい値に設定でき、大きなトルクを伝達させることができる。
 さらに、第1角度θ1>45度かつ第2角度θ2>45度とすることにより、駆動側リング22及び被動側リング31の接触面22,31aのくさび効果による法線力の発生に基づき、軸線S方向に発生する押圧力を増加させることができる。
In the phase adjustment unit having the above configuration, it is preferable to set the first angle θ1 and the second angle θ2 to be larger than 45 degrees.
According to this, when variations occur in the processing of the contact surfaces 22a, 31a of the drive side ring 22 and the driven side ring 31, variations occur in the rotation radii R1, R2 at the contact position with the sphere 40, that is, at the contact points. Although there is a possibility of affecting the reduction ratio, by setting the first angle θ1> 45 degrees and the second angle θ2> 45 degrees, it is possible to suppress the variation in the rotation radius due to the processing variation of the contact surfaces 22a and 31a. it can.
Further, by setting the first angle θ1> 45 degrees and the second angle θ2> 45 degrees, the first rotation radius R1 and the second rotation radius R2 can be set to large values, and a large torque can be transmitted.
Further, by setting the first angle θ1> 45 degrees and the second angle θ2> 45 degrees, the axial line is generated based on the generation of the normal force due to the wedge effect of the contact surfaces 22 and 31a of the driving side ring 22 and the driven side ring 31. The pressing force generated in the S direction can be increased.
 図7ないし図9は、本発明に係るバルブタイミング変更装置の他の実施形態を示すものであり、押圧付加機構として一つの皿バネDS及びローディングカム機構RCを採用した以外は、前述の実施形態と同一であり、同一の構成については同一の符号を付して説明を省略する。
 この実施形態に係るバルブタイミング変更装置は、図7ないし図9に示すように、駆動側回転体Aを構成する第1ハウジング10´及び第2ハウジング20、被動側回転体Bを構成する被動側ディスク30´,70、位相調整ユニット、スラスト軸受SB、軸受ディスク80等を備えている。
 位相調整ユニットは、駆動側リング22、被動側リング31、複数の球体40、調整部材50、リテーナ60、押圧付加機構としての一つの皿バネDS及びローディングカム機構RC等を備えている。
7 to 9 show another embodiment of the valve timing changing device according to the present invention. The embodiment described above except that one disc spring DS and a loading cam mechanism RC are employed as the pressing addition mechanism. The same components are denoted by the same reference numerals and description thereof is omitted.
As shown in FIGS. 7 to 9, the valve timing changing device according to this embodiment includes a first housing 10 ′ and a second housing 20 constituting the driving side rotating body A, and a driven side constituting the driven side rotating body B. Disks 30 'and 70, a phase adjustment unit, a thrust bearing SB, a bearing disk 80, and the like are provided.
The phase adjustment unit includes a drive side ring 22, a driven side ring 31, a plurality of spheres 40, an adjustment member 50, a retainer 60, a single disc spring DS as a pressing addition mechanism, a loading cam mechanism RC, and the like.
 第1ハウジング10´は、図8及び図9に示すように、スプロケット11、一つの皿バネDS及び軸受ディスク80に組み込まれたスラスト軸受SBを嵌め込む環状の嵌合凹部12´、被動側ディスク70を収容する環状の収容凹部13´、複数のネジ孔14等を有する。
 被動側ディスク30´は、図7ないし図9に示すように、被動側リング31、球体74にカム作用を及ぼすカム溝等を画定するカム部32´、貫通孔33等を有する。
 被動側ディスク70は、図7ないし図9に示すように、カム部32´に対向して配置され球体74にカム作用を及ぼすカム溝等を画定するカム部71、カムシャフトCSに嵌め込まれる嵌合筒部72、ボルトB2を通す貫通孔73等を有する。
As shown in FIGS. 8 and 9, the first housing 10 ′ includes a sprocket 11, one disc spring DS, an annular fitting recess 12 ′ into which a thrust bearing SB incorporated in the bearing disk 80 is fitted, and a driven disk. An annular housing recess 13 ′ for housing 70, a plurality of screw holes 14, and the like.
As shown in FIGS. 7 to 9, the driven disk 30 ′ includes a driven ring 31, a cam portion 32 ′ that defines a cam groove that exerts a cam action on the sphere 74, a through hole 33, and the like.
As shown in FIGS. 7 to 9, the driven-side disk 70 is disposed so as to be opposed to the cam portion 32 'and defines a cam groove or the like that exerts a cam action on the sphere 74, and is fitted into the camshaft CS. It has a joint tube portion 72, a through hole 73 through which the bolt B2 is passed.
 上記カム部32´、カム部71、複数の球体74により、ローディングカム機構RCが構成されている。そして、ローディングカム機構RCは、被動側ディスク30´及び被動側ディスク70が軸線S回りに回転する際に、トルクの変動あるいは回転位相のずれが生じると、球体74がカム作用を受けて被動側ディスク30´と被動側ディスク70を軸線S方向において互いに離隔させるように押圧力を発生する。その結果、ローディングカム機構RCは、駆動側リング22及び被動側リング31と球体40との間において、軸線S方向に押圧力を付加するようになっている。 The loading cam mechanism RC is constituted by the cam portion 32 ′, the cam portion 71, and the plurality of spheres 74. When the driven disk 30 ′ and the driven disk 70 rotate about the axis S, the loading cam mechanism RC causes the sphere 74 to receive the cam action when the torque fluctuation or rotational phase shift occurs. A pressing force is generated so that the disk 30 ′ and the driven disk 70 are separated from each other in the axis S direction. As a result, the loading cam mechanism RC applies a pressing force in the direction of the axis S between the driving side ring 22 and the driven side ring 31 and the sphere 40.
 上記構成をなす装置によれば、押圧付加機構として、一つの皿バネDS及びローディングカム機構RCを採用したことにより、球体40が駆動側リング22及び被動側リング31により押圧挟持された状態で、その押圧力に経時変化等を生じても、その経時変化を補って所望の押圧力を得ることができる。特に、一つの皿バネDSによりエンジンの停止時においても所定の押圧力を発生させることができ、又、ローディングカム機構RCによりエンジンの始動と共にトルクに応じた押圧力を発生させることができる。 According to the apparatus having the above configuration, by adopting the single disc spring DS and the loading cam mechanism RC as the pressing addition mechanism, the spherical body 40 is pressed and clamped by the driving side ring 22 and the driven side ring 31. Even if a change with time occurs in the pressing force, a desired pressing force can be obtained by compensating the change with time. In particular, it is possible to generate a predetermined pressing force even when the engine is stopped by one disc spring DS, and it is possible to generate a pressing force corresponding to the torque at the start of the engine by the loading cam mechanism RC.
 この実施形態に係る装置よれば、前述の実施形態と同様に、位相調整ユニットとして、駆動側リング22、被動側リング31、駆動側リング22及び被動側リング31と異なる回転半径にて接触しつつ少なくとも軸線S方向において押圧挟持される球体40、及び調整部材50を含む差動式の摩擦伝達機構を採用するため、歯車伝達機構の場合に生じるバックラッシによる騒音、耐久性の低下等の問題を生じることはない。
 また、球体40が軸線Sに垂直方向(ラジアル方向)ではなく少なくとも軸線S方向(スラスト方向)における押圧挟持を必須の条件としているため、スラスト方向において確実に押圧挟持されて摩擦力を発生し得る限り軸線S方向の寸法を小さくでき、構造の簡素化、部品点数の削減、装置の小型化等を達成できる。
 さらに、減速比を大きく設定できるため、調整部材50の回転調整の際に小さい出力の電動モータ等を用いることができる。
According to the apparatus according to this embodiment, as in the above-described embodiment, the phase adjustment unit is in contact with the driving side ring 22, the driven side ring 31, the driving side ring 22, and the driven side ring 31 at a different radius of rotation. Since the differential friction transmission mechanism including the spherical body 40 pressed and clamped at least in the direction of the axis S and the adjustment member 50 is employed, problems such as noise due to backlash generated in the case of the gear transmission mechanism and a decrease in durability occur. There is nothing.
In addition, since the spherical body 40 is required to be pressed and clamped at least in the direction of the axis S (thrust direction) rather than in the direction perpendicular to the axis S (radial direction), it can be surely pressed and clamped in the thrust direction to generate a frictional force. As long as the dimension in the axis S direction can be reduced, the structure can be simplified, the number of parts can be reduced, and the apparatus can be downsized.
Furthermore, since the reduction ratio can be set large, an electric motor having a small output can be used when adjusting the rotation of the adjusting member 50.
 ここで、ローディングカム機構RCとスラスト軸受SBとの配置関係については、図10Aに示すように、図7ないし図9の実施形態における配置関係、又は、図10Bに示すように、スラスト軸受SBとローディングカム機構RCとを入れ替えた配置関係を採用してもよい。 Here, regarding the arrangement relationship between the loading cam mechanism RC and the thrust bearing SB, as shown in FIG. 10A, the arrangement relationship in the embodiment of FIGS. 7 to 9 or as shown in FIG. 10B, the thrust bearing SB An arrangement relationship in which the loading cam mechanism RC is replaced may be employed.
 図11A及び図11Bは、本発明に係るバルブタイミング変更装置に含まれる調整部材の他の実施形態を示す模式図である。調整部材50´は、図11A及び図11Bに示すように、複数の球体40と一点にて接触するべく円筒部51´の外周面により画定される接触面51aを備えている。
 そして、調整部材50´は、リテーナ60で保持された複数の球体40を接触面51a上において転動するように配列させる。また、駆動側リング22と被動側リング31で球体40を軸線S方向から押圧挟持しつつ第1ハウジング10と第2ハウジング20が連結されることにより、調整部材50´は、駆動側リング22の接触面22a及び被動側リング31の接触面31aと協働して、複数の球体40を転動自在に押圧支持するようになっている。
FIG. 11A and FIG. 11B are schematic views showing another embodiment of the adjusting member included in the valve timing changing device according to the present invention. As shown in FIGS. 11A and 11B, the adjustment member 50 ′ includes a contact surface 51 a defined by the outer peripheral surface of the cylindrical portion 51 ′ so as to contact the plurality of spheres 40 at one point.
And adjustment member 50 'arranges the some spherical body 40 hold | maintained by the retainer 60 so that it may roll on the contact surface 51a. Further, the first housing 10 and the second housing 20 are connected while the spherical body 40 is pressed and clamped from the axis S direction by the driving side ring 22 and the driven side ring 31, so that the adjustment member 50 ′ In cooperation with the contact surface 22a and the contact surface 31a of the driven-side ring 31, the plurality of spheres 40 are pressed and supported so as to roll freely.
 すなわち、各々の球体40は、図11A及び図11Bに示すように、軸線S回りの第1回転半径R1にて駆動側リング22の接触面22aと点接触し、その接触点における法線が、球体40の中心を通り軸線Sに平行な軸線S´に対して(すなわち、軸線Sに対して)第1角度θ1をなすように配置されている。
 また、各々の球体40は、第1回転半径R1と異なる軸線S回りの第2回転半径R2にて被動側リング31の接触面31aと点接触し、その接触点における法線が、球体40の中心を通り軸線Sに平行な軸線S´に対して(すなわち、軸線Sに対して)第2角度θ2をなすように配置されている。
 さらに、各々の球体40は、軸線S回りの第3回転半径R3´にて調整部材50´の円筒部51´の接触面51a´と一点にて接触するようになっている。
That is, each sphere 40 makes point contact with the contact surface 22a of the drive side ring 22 at the first rotation radius R1 around the axis S, as shown in FIGS. 11A and 11B, and the normal line at the contact point is It arrange | positions so that the 1st angle (theta) 1 may be made | formed with respect to the axis line S 'which passes along the center of the spherical body 40 and is parallel to the axis line S (namely, with respect to the axis line S).
Further, each sphere 40 makes point contact with the contact surface 31a of the driven ring 31 at a second rotation radius R2 around the axis S different from the first rotation radius R1, and the normal line at the contact point is that of the sphere 40. It is arranged so as to form a second angle θ2 with respect to an axis S ′ passing through the center and parallel to the axis S (that is, with respect to the axis S).
Further, each sphere 40 is in contact with the contact surface 51 a ′ of the cylindrical portion 51 ′ of the adjustment member 50 ′ at a single point at the third rotation radius R 3 ′ around the axis S.
 調整部材50´の作用については、前述同様である。
 すなわち、バルブタイミングを変更しない場合、駆動側リング22を含む駆動側回転体Aが一方向に回転すると、複数の球体40の摩擦力を介して、被動側リング31を含む被動側回転体B及び調整部材50´も一方向に一体的に回転する。
 一方、バルブタイミングを変更する場合、電動モータ(不図示)等を用いて調整部材50´が一方向又は他方向のいずれかに回転させられると、複数の球体40が自転及び軸線S回りに公転して、駆動側リング22と被動側リング31の間に回転半径の差(|第1回転半径R1-第2回転半径R2|)に応じた回転差を生じさせ、駆動側回転体Aの回転と被動側回転体Bの回転の間に相対的な位相差を生じさせる。
The operation of the adjustment member 50 'is the same as described above.
That is, when the valve timing is not changed, when the driving side rotating body A including the driving side ring 22 rotates in one direction, the driven side rotating body B including the driven side ring 31 and the frictional force of the plurality of spherical bodies 40 and The adjustment member 50 'also rotates integrally in one direction.
On the other hand, when changing the valve timing, when the adjusting member 50 ′ is rotated in one direction or the other direction using an electric motor (not shown) or the like, the plurality of spheres 40 rotate and revolve around the axis S. Thus, a rotation difference corresponding to the difference in rotation radius (| first rotation radius R1−second rotation radius R2 |) is generated between the driving side ring 22 and the driven side ring 31 to rotate the driving side rotating body A. And a relative phase difference is caused between the rotation of the driven-side rotator B.
 以上述べたように、上記構成をなすバルブタイミング変更装置によれば、位相調整ユニットとして、駆動側リング22、被動側リング31、駆動側リング22及び被動側リング31と異なる回転半径にて接触しつつ少なくとも軸線S方向において押圧挟持される回転伝達体(球体40)、及び調整部材50,50´を含む差動式の摩擦伝達機構を採用するため、歯車伝達機構の場合に生じるバックラッシによる騒音、耐久性の低下等の問題を生じることはない。 As described above, according to the valve timing changing device configured as described above, the phase adjustment unit is in contact with the driving side ring 22, the driven side ring 31, the driving side ring 22, and the driven side ring 31 at a different rotation radius. However, since a differential friction transmission mechanism including a rotation transmission body (sphere 40) pressed and clamped at least in the direction of the axis S and the adjustment members 50 and 50 ′ is employed, noise due to backlash generated in the case of the gear transmission mechanism, There is no problem such as a decrease in durability.
 また、回転伝達体(球体40)が軸線Sに垂直方向(ラジアル方向)ではなく少なくとも軸線S方向(スラスト方向)における押圧挟持を必須の条件としているため、スラスト方向において確実に押圧挟持されて摩擦力を発生し得る限り軸線S方向の寸法を小さくでき、構造の簡素化、部品点数の削減、装置の小型化等を達成できる。
 また、回転伝達体(球体40)の回転軸の傾きや飛び出し等の問題を生じることは無い。さらに、減速比を大きく設定できるため、調整部材50,50´の回転調整の際に小さい出力の電動モータ等を用いることができる。
Further, since the rotation transmitting body (sphere 40) is required to be pressed and clamped in at least the direction of the axis S (thrust direction), not in the direction perpendicular to the axis S (radial direction), it is reliably pressed and clamped in the thrust direction. As long as force can be generated, the dimension in the direction of the axis S can be reduced, and the structure can be simplified, the number of parts can be reduced, and the apparatus can be downsized.
Further, there is no problem such as tilting or jumping out of the rotation axis of the rotation transmitting body (sphere 40). Furthermore, since the reduction ratio can be set large, an electric motor having a small output can be used when adjusting the rotation of the adjusting members 50 and 50 '.
 上記実施形態においては、位相調整ユニットを構成する回転伝達体として球体40を採用した場合を示したが、これに限定されるものではない。軸線A回りの第1回転半径R1にて駆動側リングと接触しかつ第1回転半径R1と異なる第2回転半径R2にて被動側リングと接触しつつ、少なくとも軸線S方向において駆動側リング及び動側リングに押圧挟持される回転伝達体であれば、その他の形態をなす回転伝達体を採用してもよい。 In the above embodiment, the case where the sphere 40 is adopted as the rotation transmission body constituting the phase adjustment unit is shown, but the present invention is not limited to this. At least in the direction of the axis S and the movement of the driving-side ring and the movement of the driving-side ring at the first turning radius R1 around the axis A and at the second turning radius R2 different from the first turning radius R1. As long as the rotation transmission body is pressed and clamped by the side ring, a rotation transmission body in another form may be adopted.
 以上述べたように、本発明の位相調整ユニットは、構造の簡素化、部品点数の削減、装置の小型化、種々の部品の加工精度の軽減及びそれに伴う製造コストの低減等を達成しつつ、従来のようなトラクションドライブを構成するローラの回転軸の傾きや飛び出し等を解消でき、又、減速比を大きくでき小さい出力の電動モータ等で位相調整を行うことができる。したがって、この位相調整ユニットを内燃エンジンのバルブタイミング変更装置として適用できるのは勿論のこと、二つの回転体の相対的な回転位相を調整する必要のある機構及び装置等にも有用である。 As described above, the phase adjustment unit of the present invention achieves the simplification of the structure, the reduction of the number of parts, the downsizing of the apparatus, the reduction of processing accuracy of various parts, the reduction of the manufacturing cost associated therewith, and the like. It is possible to eliminate the inclination and pop-out of the rotating shaft of the roller constituting the conventional traction drive, and to increase the reduction ratio and adjust the phase with an electric motor with a small output. Therefore, this phase adjustment unit can be applied as a valve timing changing device for an internal combustion engine, and is also useful for mechanisms and devices that need to adjust the relative rotational phase of two rotating bodies.
CS カムシャフト
S 軸線
A 駆動側回転体
B 被動側回転体
SB スラスト軸受
DS 皿バネ(押圧付加機構)
RC ローディングカム機構(押圧付加機構)
B1,B2 ボルト
10,10´ 第1ハウジング
11 スプロケット
12,12´ 嵌合凹部
13,13´ 収容凹部
14 ネジ孔
20 第2ハウジング
21 円筒部
22 駆動側リング(位相調整ユニット)
22a 接触面
23,24 貫通孔
30,30´ 被動側ディスク
31 被動側リング(位相調整ユニット)
31a 接触面
32 嵌合筒部
32´ カム部(ローディングカム機構)
33 貫通孔
40 球体(回転伝達体、位相調整ユニット)
50,50´ 調整部材(位相調整ユニット)
51 V溝
51´ 円筒部
51a,51a´ 接触面
52 連結部
60 リテーナ
70 被動側ディスク
71 カム部(ローディングカム機構)
72 嵌合筒部
73 貫通孔
74 球体(ローディングカム機構)
80 軸受ディスク
R1 第1回転半径
R2 第2回転半径
θ1 第1角度
θ2 第2角度
 
CS Camshaft S Axis A Drive side rotator B Driven side rotator SB Thrust bearing DS Disc spring (Pressurizing mechanism)
RC loading cam mechanism (pressing mechanism)
B1, B2 Bolts 10, 10 'First housing 11 Sprocket 12, 12' Fitting recess 13, 13 'Housing recess 14 Screw hole 20 Second housing 21 Cylindrical portion 22 Drive side ring (phase adjustment unit)
22a Contact surface 23, 24 Through hole 30, 30 'Drive side disk 31 Drive side ring (phase adjustment unit)
31a Contact surface 32 Fitting cylinder part 32 'Cam part (loading cam mechanism)
33 Through-hole 40 Sphere (Rotation transmission body, phase adjustment unit)
50, 50 'adjustment member (phase adjustment unit)
51 V-groove 51 ′ Cylindrical portions 51 a, 51 a ′ Contact surface 52 Connecting portion 60 Retainer 70 Driven disk 71 Cam portion (loading cam mechanism)
72 fitting cylinder 73 through-hole 74 sphere (loading cam mechanism)
80 Bearing disc R1 First turning radius R2 Second turning radius θ1 First angle θ2 Second angle

Claims (8)

  1.  所定の軸線回りに回転する駆動側回転体及び被動側回転体の相対的な回転位相を調整する位相調整ユニットであって、
     前記駆動側回転体に形成された駆動側リングと、
     前記被動側回転体に形成された被動側リングと、
     前記軸線回りの第1回転半径にて前記駆動側リングと接触しかつ前記第1回転半径と異なる第2回転半径にて前記被動側リングと接触しつつ,少なくとも前記軸線方向において前記駆動側リング及び被動側リングに押圧挟持される回転伝達体と、
     前記回転伝達体を回転調整し得る調整部材と、
    を含む、位相調整ユニット。
    A phase adjusting unit for adjusting a relative rotational phase of a driving side rotating body and a driven side rotating body that rotate around a predetermined axis;
    A drive side ring formed on the drive side rotating body;
    A driven ring formed on the driven rotating body;
    At least in the axial direction, in contact with the driven ring at a first turning radius around the axis and in contact with the driven ring at a second turning radius different from the first turning radius; A rotation transmission body pressed and held by the driven ring;
    An adjustment member capable of rotationally adjusting the rotation transmission body;
    Including a phase adjustment unit.
  2.  前記回転伝達体は、前記軸線の周りに配列された複数の球体を含み、
     前記調整部材は、前記駆動側リング及び被動側リングと協働して前記複数の球体を転動自在に支持し、
     前記駆動側リングは、前記複数の球体の各々との接触点における法線が前記軸線に対して第1角度をなすように前記複数の球体と接触し、
     前記被動側リングは、前記複数の球体の各々との接触点における法線が前記軸線に対して前記第1角度と異なる第2角度をなすように前記複数の球体と接触する、
    ことを特徴とする請求項1に記載の位相調整ユニット。
    The rotation transmission body includes a plurality of spheres arranged around the axis,
    The adjusting member supports the plurality of spheres so as to roll in cooperation with the driving side ring and the driven side ring,
    The driving ring is in contact with the plurality of spheres such that a normal line at a contact point with each of the plurality of spheres forms a first angle with respect to the axis;
    The driven ring contacts the plurality of spheres such that a normal line at a contact point with each of the plurality of spheres forms a second angle different from the first angle with respect to the axis;
    The phase adjustment unit according to claim 1.
  3.  前記調整部材は、前記軸線に垂直な径方向において前記複数の球体よりも内側に配置され、
     前記駆動側リング及び被動側リングは、前記軸線に垂直な径方向において前記複数の球体よりも外側に配置されている、
    ことを特徴とする請求項2に記載の位相調整ユニット。
    The adjustment member is disposed inside the plurality of spheres in a radial direction perpendicular to the axis,
    The drive side ring and the driven side ring are disposed outside the plurality of spheres in a radial direction perpendicular to the axis.
    The phase adjustment unit according to claim 2.
  4.  前記調整部材は、前記複数の球体の各々と二点にて接触するべく略V字状の断面をなすV溝を有する、
    ことを特徴とする請求項2又は3に記載の位相調整ユニット。
    The adjusting member has a V-groove having a substantially V-shaped cross section so as to contact each of the plurality of spheres at two points.
    The phase adjustment unit according to claim 2, wherein the phase adjustment unit is provided.
  5.  前記駆動側回転体及び被動側回転体と前記回転伝達体との間において、前記軸線方向に押圧力を付加する押圧付加機構をさらに含む、
    ことを特徴とする請求項2ないし4いずれか一つに記載の位相調整ユニット。
    A pressure applying mechanism for applying a pressing force in the axial direction between the driving side rotating body and the driven side rotating body and the rotation transmitting body;
    The phase adjustment unit according to claim 2, wherein the phase adjustment unit is a unit.
  6.  前記複数の球体を互いに所定の間隔を開けて位置付けるリテーナをさらに含む、
    ことを特徴とする請求項2ないし5いずれか一つに記載の位相調整ユニット。
    A retainer for positioning the plurality of spheres at a predetermined distance from each other;
    6. The phase adjustment unit according to claim 2, wherein
  7.  前記第1回転半径は、前記第2回転半径よりも小さく設定されている、
    ことを特徴とする請求項1ないし6いずれか一つに記載の位相調整ユニット。
    The first turning radius is set smaller than the second turning radius;
    The phase adjustment unit according to claim 1, wherein the phase adjustment unit is a unit.
  8.  クランクシャフトの回転に連動して回転する駆動側回転体とカムシャフトと一体的に回転する被動側回転体との相対的な回転位相を調整する位相調整ユニットを備え、前記カムシャフトにより駆動される吸気バルブ又は排気バルブの開閉時期を変更するバルブタイミング変更装置であって、
     前記位相調整ユニットは、請求項1ないし7いずれか一つに記載の位相調整ユニットである、
    ことを特徴とするバルブタイミング変更装置。
     
    A phase adjusting unit for adjusting a relative rotational phase between a driving side rotating body that rotates in conjunction with rotation of the crankshaft and a driven side rotating body that rotates integrally with the camshaft, and is driven by the camshaft; A valve timing changing device for changing the opening / closing timing of an intake valve or an exhaust valve,
    The phase adjustment unit is the phase adjustment unit according to any one of claims 1 to 7.
    A valve timing changing device characterized by that.
PCT/JP2016/067893 2015-08-28 2016-06-16 Phase adjustment unit and valve timing changing device WO2017038202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015168570A JP2017044179A (en) 2015-08-28 2015-08-28 Valve timing change device
JP2015-168570 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038202A1 true WO2017038202A1 (en) 2017-03-09

Family

ID=58188877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067893 WO2017038202A1 (en) 2015-08-28 2016-06-16 Phase adjustment unit and valve timing changing device

Country Status (2)

Country Link
JP (1) JP2017044179A (en)
WO (1) WO2017038202A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1686446A (en) * 1926-04-15 1928-10-02 John A Gilman Planetary transmission mechanism
US3685499A (en) * 1970-09-16 1972-08-22 George B K Meacham Emission control device
US3955661A (en) * 1972-06-28 1976-05-11 Lsb Industries, Inc. Apparatus for opening and closing door members and the like
JPS60129539U (en) * 1984-02-09 1985-08-30 日本精工株式会社 Decelerator
JPS6427568U (en) * 1987-08-10 1989-02-16
JPH0735212A (en) * 1993-07-27 1995-02-07 Nikon Corp Deceleration device
JP2009121292A (en) * 2007-11-13 2009-06-04 Denso Corp Valve timing control apparatus
WO2010004880A1 (en) * 2008-07-09 2010-01-14 Ntn株式会社 Reduction gear and variable valve timing device using same
JP2010077814A (en) * 2008-09-24 2010-04-08 Mikuni Corp Variable valve timing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1686446A (en) * 1926-04-15 1928-10-02 John A Gilman Planetary transmission mechanism
US3685499A (en) * 1970-09-16 1972-08-22 George B K Meacham Emission control device
US3955661A (en) * 1972-06-28 1976-05-11 Lsb Industries, Inc. Apparatus for opening and closing door members and the like
JPS60129539U (en) * 1984-02-09 1985-08-30 日本精工株式会社 Decelerator
JPS6427568U (en) * 1987-08-10 1989-02-16
JPH0735212A (en) * 1993-07-27 1995-02-07 Nikon Corp Deceleration device
JP2009121292A (en) * 2007-11-13 2009-06-04 Denso Corp Valve timing control apparatus
WO2010004880A1 (en) * 2008-07-09 2010-01-14 Ntn株式会社 Reduction gear and variable valve timing device using same
JP2010077814A (en) * 2008-09-24 2010-04-08 Mikuni Corp Variable valve timing device

Also Published As

Publication number Publication date
JP2017044179A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP4735504B2 (en) Valve timing adjustment device
WO2013042263A1 (en) Continuously variable transmission
WO2013042226A1 (en) Continuously variable transmission
WO2012131921A1 (en) Continuously variable transmission
JP2007224865A (en) Valve timing adjusting device
WO2016208105A1 (en) Valve timing adjustment device
WO2018105281A1 (en) Gear power transmitting mechanism
JP2018087564A (en) Valve opening/closing timing control device
WO2018179484A1 (en) Gear transmission device
JP2009185986A (en) Eccentrically swinging gear device
JP5138535B2 (en) Booster / decelerator
JP6117991B2 (en) Toroidal continuously variable transmission
JP2012219680A (en) Valve timing adjustment device
JP5180135B2 (en) Variable valve timing device and roller speed reducer incorporated in this variable valve timing device
JP5139209B2 (en) Variable valve timing device
WO2017038202A1 (en) Phase adjustment unit and valve timing changing device
JP2016008633A (en) Inscription gear type speed reducer
JP2003343674A (en) Toroidal type continuously variable transmission
TWM524897U (en) Deceleration mechanism
JP2012251609A (en) Continuously variable transmission
JP6265061B2 (en) Planetary roller traction drive device
WO2019187057A1 (en) Valve timing regulation device
KR20210095762A (en) High reduction-ratio speed reducer device
WO2021220904A1 (en) Toroidal continuously variable transmission
JP2015102065A (en) Valve opening/closing timing control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841234

Country of ref document: EP

Kind code of ref document: A1