[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017038060A1 - アーク溶接方法およびアーク溶接装置 - Google Patents

アーク溶接方法およびアーク溶接装置 Download PDF

Info

Publication number
WO2017038060A1
WO2017038060A1 PCT/JP2016/003872 JP2016003872W WO2017038060A1 WO 2017038060 A1 WO2017038060 A1 WO 2017038060A1 JP 2016003872 W JP2016003872 W JP 2016003872W WO 2017038060 A1 WO2017038060 A1 WO 2017038060A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
base material
threshold
less
parameter
Prior art date
Application number
PCT/JP2016/003872
Other languages
English (en)
French (fr)
Inventor
篤寛 川本
海斗 松井
将 古和
昂裕 野口
将史 藤原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP16841096.7A priority Critical patent/EP3345710B1/en
Priority to US15/743,433 priority patent/US10807180B2/en
Priority to CN201680045276.9A priority patent/CN107921565B/zh
Priority to JP2017537533A priority patent/JP6754952B2/ja
Publication of WO2017038060A1 publication Critical patent/WO2017038060A1/ja
Priority to US17/019,623 priority patent/US12036629B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0732Stabilising of the arc current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present invention relates to an arc welding method and an arc welding apparatus for performing arc welding while feeding a welding wire as a consumable electrode.
  • spatter In recent years, the demand for higher quality welding and improved production efficiency has been increasing in the welding industry in order to improve productivity. Among these, reduction of spatter and higher welding speed are important items in the market demand. As the generation of spatter increases, the spatter often adheres to the base material to be welded. If spatter adheres to the base material, post-treatment is required to remove the adhering spatter, and welding productivity is reduced. Further, if the post-treatment is not performed and the spatter may flow out as a product in a state where it adheres to the base material, the product value is significantly impaired.
  • Patent Document 1 discloses hybrid welding in which pulse welding and short-circuit welding are alternately repeated.
  • Hybrid welding has the intermediate properties of higher heat input than short circuit welding and lower heat input than pulse welding.
  • FIG. 1 shows the welding current in the hybrid welding disclosed in Patent Document 1.
  • the vertical axis indicates the welding current
  • the horizontal axis indicates time.
  • short circuit welding is performed in the short circuit transition period Ta
  • pulse welding is performed in the pulse transition period Tb.
  • a welding voltage capable of stably performing short-circuit welding at a set feeding speed of the welding wire is preset, and the number of short-circuits (one or more times) is also preset.
  • pulse welding the welding wire feeding speed at which the average current of the welding current does not exceed the critical current is preset. The number of pulses (one or more times) is also set in advance.
  • the base material is welded by the first welding method.
  • the base material is welded by a second welding method.
  • the base material is welded by a third welding method.
  • FIG. 1 is a diagram showing a welding current of a conventional arc welding method.
  • FIG. 2 is a diagram showing the relationship between the welding current and the welding voltage in arc welding.
  • FIG. 3 is a schematic configuration diagram of the arc welding apparatus in the embodiment.
  • FIG. 4 is a diagram showing the relationship between the welding current and the welding voltage in the arc welding method in the embodiment.
  • FIG. 5A is a diagram showing a relationship between a welding current and a welding voltage in another arc welding method in the embodiment.
  • FIG. 5B is a diagram showing a welding current in the hybrid welding in the arc welding method shown in FIG. 5A.
  • FIG. 6 is a diagram showing a welding current and a welding result in the arc welding method in the embodiment.
  • FIG. 7 is a diagram showing a welding current and a welding result in the arc welding method in the embodiment.
  • the short-circuit welding method has less spatter if the welding current region is 200 A or less, but as the welding current increases beyond 200 A. Spatter increases. Particularly, the area between 220A and 300A is a globule region, and large spatter is generated, so that the amount of spatter deposition increases. If welding is performed in a low current region without using a current region where a large amount of spatter is generated, the spatter is low, but it is necessary to reduce the welding speed in order to secure the same wire deposition amount, resulting in longer production time and productivity. Becomes lower.
  • the pulse welding method for example, if the region of the welding current of the base material having a thickness of 3.2 mm or more is about 270 A or more, spatter is small, but welding is performed to weld a thin plate having a thickness of less than 2.3 mm. Since pulse welding has a high heat input as the current is made lower than about 200 A, at the welded portion where the base material 22 is welded during welding, for example, the molten metal of the base material is mainly welded to the base material. Burn-out, which is a phenomenon of melting to the opposite side of the wire, occurs. Further, when the welding current is 200 A or less, the directivity of the arc is lowered, arc blow occurs, the occurrence of arc breakage increases, and the increase in spattering is caused, so use of this low current region is not preferable.
  • FIG. 2 shows an appropriate welding voltage range 25 with respect to the welding current in short-circuit welding and an appropriate welding voltage range with respect to the welding current in pulse welding when the base material 22 is made of a ferrous metal material mild steel material. 26 is shown.
  • the vertical axis indicates the welding voltage
  • the horizontal axis indicates the welding current.
  • an appropriate welding voltage in short-circuit welding is, for example, 17 to 18V
  • an appropriate welding voltage in pulse welding is, for example, 23 to 24V. Pulse welding has higher heat input than short-circuit welding.
  • the welding method does not understand the characteristics of the welding method so much, for example, welding with a thin base metal by setting the welding current to a low value while setting to pulse welding or welding with setting to short-circuit welding.
  • the current set value is increased to 200 A to 300 A and a thick base material is welded.
  • switching the setting of the welding method or the like for each welding location becomes complicated, so that an appropriate welding method is not set for the thickness. Increase or drop of droplets may occur.
  • FIG. 3 is a schematic configuration diagram of an arc welding apparatus 1001 according to the embodiment.
  • the arc welding apparatus 1001 generates an arc 21 between a welding wire 19 that is a consumable electrode and a base material 22 that is an object to be welded, so that the base material 22 is at least one of short-circuit welding and pulse welding. It is configured to be welded with.
  • the base material 22 is welded by short-circuit welding, pulse welding, or hybrid welding in which pulse welding and short-circuit welding are alternately repeated.
  • the arc welding apparatus 1001 includes a primary side rectification unit 2, a switching unit 3, a main transformer 4, a secondary side rectification unit 5, a reactor (DCL) 6, a drive unit 7, a voltage detection unit 8, Current detection unit 9, pulse waveform control unit 10, short-circuit welding control unit 11, hybrid welding control unit 12, welding condition setting unit 14, storage unit 15, feed rate control unit 16, and switching unit 17 , 23, a feeding motor 18, and a chip 20.
  • the primary side rectification unit 2 rectifies and outputs the output of the input power supply 1.
  • the switching unit 3 controls the welding output including the welding voltage and the welding current by converting the DC output from the primary side rectification unit 2 into AC.
  • the main transformer 4 converts the AC voltage output from the switching unit 3.
  • the output of the main transformer 4 is output as a welding output via the secondary side rectification unit 5 that rectifies the secondary side output of the main transformer 4 and the reactor 6.
  • the voltage detector 8 detects the welding voltage V
  • the current detector 9 detects the welding current I.
  • the welding condition setting unit 14 sets welding conditions including a welding current I and a welding voltage V.
  • the storage unit 15 stores a threshold value, and outputs a welding method, an appropriate control value, and a feeding speed of the welding wire 19 stored in advance based on the output from the welding condition setting unit 14.
  • the switching unit 17 outputs a signal for welding output of any one of the short-circuit welding control unit 11, the pulse waveform control unit 10, and the hybrid welding control unit 12.
  • the feed rate control unit 16 controls the feed rate of the welding wire 19 according to the set current of the welding current set by the welding condition setting unit 14. The feeding speed and the welding current are correlated with each other.
  • the drive unit 7 controls the switching unit 3.
  • the drive unit 7, the pulse waveform control unit 10, the short-circuit welding control unit 11, the hybrid welding control unit 12, the welding condition setting unit 14, the storage unit 15, the feeding speed control unit 16, and the switching units 17 and 23 are connected to the switching unit 3.
  • a control unit 1001A to be controlled is configured.
  • the switching unit 23 includes a short-circuit welding control unit 11 that controls short-circuit welding, a pulse waveform control unit 10 that controls pulse welding, and a hybrid welding control unit 12 that controls hybrid welding. Select one of the feed speed outputs.
  • the threshold value stored in the storage unit 15 is a threshold value in welding parameters related to heat input to the base material 22, and is a welding current I, a feeding speed, or a welding voltage V.
  • FIG. 4 shows the welding current I and the welding voltage V in the arc welding method in the embodiment.
  • the vertical axis represents the welding voltage V
  • the horizontal axis represents the welding current I.
  • the storage unit 15 stores a threshold value 28.
  • the switching unit 17 selects the output of the short circuit welding control unit 11 suitable for the thin base material 22 and performs short circuit welding.
  • the switching unit 17 selects the output of the pulse waveform control unit 10 suitable for the thick base material 22 and performs pulse welding.
  • the short-circuit welding is switched to the pulse welding to increase the heat input to the base material 22.
  • FIG. 5A shows a welding current I and a welding voltage V in another arc welding method in the embodiment.
  • the vertical axis represents the welding voltage V
  • the horizontal axis represents the welding current I.
  • the storage unit 15 (see FIG. 3) stores a threshold value 28 and a threshold value 29 greater than the threshold value 28.
  • the switching unit 17 selects the output of the hybrid welding control unit 12 and performs hybrid welding in which short-circuit welding and pulse welding are alternately repeated.
  • FIG. 5B shows the welding current I in the hybrid welding by the arc welding method shown in FIG. 5A.
  • the vertical axis indicates the welding current I
  • the horizontal axis indicates time.
  • the control unit 1001A alternately repeats short-circuit welding and pulse welding at the switching cycle Tm.
  • the control unit 1001A controls the switching unit 3 so as to weld the base material 22 by short-circuit welding in the period Ts of the switching period Tm, and welds the base material 22 by pulse welding in the period Tp of the switching period Tm.
  • the switching unit 3 is controlled.
  • the sum of the periods Ts and Tp is the switching period Tm.
  • the ratio of the pulse welding period Tp to the switching period Tm is increased.
  • the appropriate welding voltage V can be gradually increased, and a rapid change in heat input when the welding current I is changed is suppressed, and short-circuit welding and pulse welding are performed.
  • the base material 22 can be stably welded even when the welding current I is changed in a coordinated manner.
  • FIGS. 4 and 5A show a welding current I, a welding voltage V, and threshold values 28 and 29 when the base material 22 is made of an iron-based material.
  • the thresholds 28 and 29 are the values of the welding current I.
  • the threshold values 28 and 29 are welding parameters related to heat input to the base material 22.
  • the welding parameter is a welding current I or a welding voltage V or a feeding amount that is a feeding speed of the welding wire 19 or a thickness of the base material 22. That is, the thresholds 28 and 29 are the welding current I or the welding voltage V or the feeding amount that is the feeding speed of the welding wire 19 or the thickness of the base material 22, and the control unit 1001A compares the welding parameters with the thresholds 28 and 29. .
  • FIG. 6 shows the values of the welding current I and the welding results of the base material 22 at those values when the base material 22 is made of a mild steel material of an iron-based metal material.
  • FIG. 6 shows the welding results when the welding method is changed for each value of the welding current I.
  • “G” indicates a good welding result
  • “NG” indicates a poor welding result.
  • MAG welding Metal active gas Welding
  • the welding wire 19 is made of mild steel and has a diameter of ⁇ 1.2.
  • the threshold 28 is preferably 180 A or more and 200 A or less
  • the threshold 29 is preferably 270 A or more, as shown in FIG. And 290 A or less.
  • the welding method is changed to short-circuit welding, hybrid welding, or pulse welding for each value of the welding current I.
  • the welding result will be described.
  • the arc is stable and spatter is good.
  • the base material 22 is welded by hybrid welding that alternately outputs pulse welding and short-circuit welding at a predetermined ratio, the shape of the bead formed by short-circuit welding is good, but since the welding current I is low, short-circuit welding is performed.
  • the width of the bead formed by the above becomes narrower than the width of the bead formed by pulse welding, and when switching from short-circuit welding to pulse welding, the arc does not spread and the droplets detach irregularly and spatter increases.
  • the welding current I is 180A or more and less than 200A and in the region of 200A where the welding current I is 200A or more and less than 220A, that is, in the region A1 where the welding current I is 180A or more and less than 220A.
  • the base material 22 is welded by welding, the arc is stable and spatter is good.
  • the base material 22 is welded by hybrid welding, the shape of the bead formed by short circuit welding is favorable.
  • the width of the bead formed by the short-circuit welding in the hybrid welding is wide, and is almost the same as the width of the bead formed by the pulse welding.
  • both the short-circuit welding and the hybrid welding are good in the region where the welding current I is 180A and the region where the welding current I is 200A.
  • the base material 22 is welded by pulse welding instead of hybrid welding in the 180A region and the 200A region, the heat input increases, and depending on the thickness of the base material 22, droplet drops occur.
  • the threshold 28 which is a threshold for selecting a welding method, is preferably 180A or more and 200A of 180A or more and less than 220A.
  • the burn-off which is a phenomenon of melting from the base material to the opposite side with respect to the welding wire 19, and to weld the base material 22 satisfactorily with less spatter.
  • the arc is stabilized but there is much spatter. Further, since heat input is high when the base material 22 is welded by pulse welding, depending on the thickness of the base material 22, the molten metal is welded from the base material to the welding wire 19 in the welded portion where the base material 22 is welded during welding. In some cases, a burn-out, which is a phenomenon of melting to the opposite side, may occur.
  • hybrid welding in which pulse welding and short-circuit welding are alternately repeated at a predetermined rate, the width of the beads formed by short-circuit welding is wide and has a cooling effect, so heat input to the base metal is suppressed, so Therefore, the arc spreads and the droplets of the welding wire 19 are regularly separated from the beads formed by pulse welding, so that there is little spatter. Therefore, hybrid welding is good in the region of 250A. Below 250A, the thickness of the base material 22 is preferably less than 3.2 mm, for example.
  • the thickness of the base material 22 is preferably 1.6 mm or more and 2.3 mm or less, and in the 150A region or less, the thickness of the base material 22 is preferably less than 1.6 mm.
  • the thickness of the base material 22 is 3. Since it is as thick as 2 mm or more and less than 8 mm, even if it is pulse welding, there is no burn-off and it is good. Further, when the base material 22 is welded by short-circuit welding, the arc is stable, but there are many spatters.
  • the width of the bead formed by short-circuit welding is wide and has a cooling effect, so it suppresses melting and spreads the bead to expand the arc.
  • the droplets of the welding wire 19 are regularly separated from the formed bead, and there is little spatter.
  • the base material 22 is welded not by hybrid welding but by pulse welding, it is preferable because there is little spatter and there is no melt-down. Therefore, in the region of 270A and the region of 290A, both hybrid welding and pulse welding are good.
  • the thickness of the base material 22 is as thick as 8 mm or more and less than 20 mm. Further, when the base material 22 is welded by short-circuit welding, the arc is stable, but there are many spatters. In hybrid welding in which pulse welding and short-circuit welding are alternately repeated at a predetermined ratio, the welding current I is high, so even in short-circuit welding, the welding wire does not short-circuit, and droplets of the welding wire fall. There is a lot of spatter due to the transition to the base material and the droplets coming off unstable.
  • the base material 22 is welded not by hybrid welding but by pulse welding, sufficient heat input can be applied to the thick base material 22 by pulse welding, so that a deep penetration bead can be obtained and spatter is reduced. Good because there is no melting. For this reason, the region of 320A is good in pulse welding. Further, if the base material 22 is thicker, pulse welding can be applied to a welding current region exceeding the region of 320A.
  • the threshold 29 for selecting the welding method is a region where the welding current I is 270A to 290A, and is preferably 270A or more and less than 320A.
  • FIG. 7 shows the values of the welding current I and the welding results at those values when the base material 22 is made of an aluminum-based material.
  • FIG. 7 shows the welding results when the welding method is changed for each value of the welding current I.
  • “G” indicates a good welding result
  • “NG” indicates an unfavorable welding result.
  • MAG welding is performed, and the welding wire 19 is made of hard aluminum and has a diameter of ⁇ 1.2.
  • the base material 22 is made of hard aluminum.
  • the threshold value 28 is preferably 80 A or more and less than 120 A.
  • the threshold 29 is preferably 150 A or more and less than 200 A.
  • the welding method is changed to short-circuit welding, hybrid welding, or pulse welding for each value of the welding current I. Describe the welding results.
  • the welding method is MIG welding (metal inert gas welding).
  • the arc for welding the base material 22 by short-circuit welding is stable and spatter is good.
  • the base material 22 is welded by hybrid welding in which pulse welding and short-circuit welding are alternately repeated at a predetermined ratio, the shape of the bead formed by short-circuit welding is good, but because the welding current I is low, it is formed by short-circuit welding.
  • the width of the bead is narrower than the width of the bead formed by pulse welding. Accordingly, when switching from short-circuit welding to pulse welding in hybrid welding, the arc does not spread and the droplets are irregularly separated, resulting in an increase in spatter.
  • short-circuit welding is more suitable than hybrid welding in the region where the welding current is 60A.
  • the base material 22 is welded by pulse welding instead of hybrid welding, the heat input increases, and depending on the thickness of the base material 22, the molten metal is not welded at the welded portion where the base material 22 is welded during welding. There may be a case where the metal material melts down from the base metal to the opposite side of the welding wire 19.
  • the arc In the 80A region where the welding current I is 80A or more and less than 100A, and in the 100A region where the welding current I is 100A or more and less than 120A, that is, in the region A1 where the welding current I is 80A or more and less than 120A, the arc is stable.
  • the spatter is small and good.
  • the base material 22 is welded by hybrid welding in which pulse welding and short-circuit welding are alternately repeated at a predetermined ratio, the arc spreads because the width of the bead formed by short-circuit welding is wide, and the droplets formed by pulse welding are regular. The spattering is small due to separation. For this reason, both the 80A region and the 100A region have good short-circuit welding and hybrid welding. If welding is performed by pulse welding instead of hybrid welding, heat input increases, and melting may occur depending on the thickness of the base material 22.
  • the threshold 28 for selecting a welding method is a region where the welding current is from 80 A to 100 A, and is preferably 80 A or more and less than 120 A.
  • the threshold value 28 it is possible to prevent the welded portion of the base material 22 from being melted by low heat input at the time of short-circuit welding, and to improve the amount of spatter. I can do it.
  • the arc is stable, but there are many spatters.
  • the heat input is high, and therefore, melting may occur depending on the thickness of the base material 22.
  • the arc spreads because the width of the bead formed by short-circuit welding is wide, and droplets of the welding wire 19 are regularly separated during pulse welding. And less spatter.
  • the thickness of the base material 22 is preferably less than 4 mm, for example. Further, in the region of 100A and 80A, the thickness of the base material 22 is preferably 1.5 mm or more and 3 mm or less, and in the region of 60A or less, the thickness of the base material 22 is preferably less than 1.5 mm.
  • the thickness of the base material 22 is, for example, 4 mm or more Since the thickness is less than 8 mm, even if pulse welding is used, the welded portion of the base material 22 is not melted down and is good. Further, when the base material 22 is welded by short-circuit welding, the arc is stable, but there are many spatters.
  • the width of the bead formed by short-circuit welding is wide and has a cooling effect.
  • the arc spreads and the droplets of the welding wire 19 are regularly separated during pulse welding, resulting in less spatter.
  • the base material 22 is welded not by hybrid welding but by pulse welding, it is preferable because there is little spatter and there is no melt-down. For this reason, in the region of 150A and the region of 180A, both hybrid welding and pulse welding are good.
  • the thickness of the base material 22 becomes thicker, for example, 8 mm or more and less than 20 mm. It is good. Further, when the base material 22 is welded by short-circuit welding, the arc is stable, but there are many spatters. In hybrid welding in which pulse welding and short-circuit welding are alternately repeated at a predetermined ratio, since the welding current I is high, droplets are dropped even in short-circuit welding, and the droplets are unstablely detached and spatter is large. When welding is performed not by hybrid welding but by pulse welding, it is preferable because there is little spatter and there is no melting of the welded portion of the base material 22. For this reason, pulse welding is good in the region of 200A.
  • pulse welding can be applied to a welding current region exceeding the region of 200A.
  • the threshold 29 for selecting a welding method is a region where the welding current is 150 A and a region where 180 A, and is preferably 150 A or more and less than 200 A.
  • short-circuit welding can be selected as the first welding method.
  • short-circuit welding is selected as the first welding method
  • welding parameter is within the threshold 28 region
  • short-circuit welding is selected as the first welding method
  • second Any of the hybrid welding can be selected as the welding method.
  • hybrid welding or pulse welding as the third welding method is selected as the second welding method.
  • the hybrid welding as the second welding method different from the short-circuit welding as the first welding method and the pulse welding as the third welding method is selected.
  • the welding parameter is within the threshold 29 range, either hybrid welding as the second welding method or pulse welding can be selected as the third welding method.
  • pulse welding is selected as the third welding method.
  • the threshold 28 is 180 A or more and less than 220 A when the base material 22 is made of a mild steel material, and is 80 A or more and less than 120 A when the base material 22 is made of an aluminum material.
  • the threshold 29 is 270 A or more and less than 320 A when the base material 22 is made of a mild steel material, and is 150 A or more and less than 200 A when the base material 22 is an aluminum material.
  • any of at least two welding methods can be selected, in which the thresholds 28 and 29 are given widths, and a plurality of welding methods can be selected within the respective width regions at the thresholds 28 and 29. Thereby, it can be made compatible with at least any welding method before and after the threshold.
  • a threshold value 28, in order to expand the tolerance corresponding to various welding wires 19, 29 has a width.
  • the regions of thresholds 28 and 29 for selecting the welding method are as follows: As described above, the larger the region where a plurality of welding methods are used, the more gently the change of the welding situation and the effect of stabilizing the welding.
  • the threshold value 28 is in a range of 1.6 mm or more and less than 2.3 mm.
  • the threshold value 29 is preferably in the range of 3.2 mm or more and less than 8 mm.
  • the threshold value 28 is preferably in the range of 1.5 mm or more and less than 3.0 mm, and the threshold value 29 is in the range of 4 mm or more and less than 8 mm. It is preferable to enter.
  • the switching unit 23 feeds the welding wire 19 backward during the short-circuit welding.
  • the hybrid welding control unit 12 supplies the welding current I, the welding voltage V, or the welding wire 19 with respect to the ratio of the pulse welding period Tp to the switching period Tm, which is the sum of the short-circuit welding period Ts and the pulse welding period Tp.
  • the quantity is increased as the welding parameter increases.
  • the welding method can be set in accordance with the welding parameters related to the heat input to the base material 22 (the welding current I or the welding voltage V, the feeding speed of the welding wire 19 or the thickness of the base material 22), and low spatter. High-quality welding with high productivity in which the welded portion of the base material 22 is prevented from being melted is possible.
  • Table 1 shows selectable welding methods in relation to the welding parameter Pw and the thresholds 28 and 29.
  • the first welding method is short-circuit welding
  • the second welding method is hybrid welding in which pulse welding and short-circuit welding are alternately repeated at a predetermined ratio
  • the third welding method is pulse welding.
  • the base material 22 when the welding parameter Pw, which is the welding current I, is less than the threshold value 28, the base material 22 is welded by short-circuit welding as the first welding method.
  • the welding parameter Pw is equal to the threshold value 28
  • the base material 22 is welded in one of short-circuit welding as the first welding method and hybrid welding as the second welding method.
  • the welding parameter Pw is larger than the threshold 28 and less than the threshold 29
  • the base material 22 is welded by hybrid welding as the second welding method.
  • the base material 22 is welded in one of the hybrid welding as the second welding method and the pulse welding as the third welding method.
  • the base material 22 is welded by pulse welding as a third welding method.
  • both short-circuit welding as the first welding method and hybrid welding as the second welding method can be selected.
  • the welding parameter when the welding parameter is larger than the threshold value 28, one of hybrid welding and pulse welding as the third welding method is selected as the second welding method.
  • the welding parameter is between the threshold value 28 and the threshold value 29
  • the hybrid welding as the second welding method different from the short-circuit welding as the first welding method and the pulse welding as the third welding method is selected.
  • both hybrid welding as the second welding method and pulse welding as the third welding method can be selected.
  • the base material 22 is welded by the first welding method.
  • the base material 22 is welded by one of the first welding method and the second welding method.
  • the base material 22 is welded by the second welding method.
  • the base material 22 is welded by one of the second welding method and the third welding method.
  • the welding parameter is larger than the threshold value 29, the base material 22 is welded by the third welding method.
  • the threshold value 28 can take a value in the area A1.
  • the base material 22 can be welded by either the first welding method or the second welding method.
  • the threshold value 29 can take a value in the area A2.
  • the base material 22 can be welded by either the second welding method or the third welding method.
  • the first welding method may be short-circuit welding, and the third welding method may be pulse welding.
  • the welding parameter is one of the welding current I, the welding voltage V, the feeding speed of the welding wire 19, and the thickness of the base material 22.
  • the first welding method may be short-circuit welding
  • the third welding method may be pulse welding.
  • the second welding method is hybrid welding in which short-circuit welding and pulse welding are alternately repeated at a switching cycle Tm.
  • the welding parameter is less than the threshold value 29 and greater than the threshold value 28
  • the base material 22 may be welded by changing the ratio according to the welding current I or the welding voltage V.
  • the base material is increased by increasing the ratio of the period Tp during which the base material 22 is welded by pulse welding to the switching period Tm as the welding current I or the welding voltage V increases. 22 may be welded.
  • the forward feeding for feeding the welding wire 19 toward the base material 22 and the backward feeding for feeding the welding wire 19 so as to move the welding wire 19 away from the base material are alternately performed.
  • the base material 22 may be welded by the first welding method while repeating the above.
  • the base material 22 may be welded by the second welding method while alternately repeating forward feeding and backward feeding.
  • the welding parameter may be a welding current I, and the base material 22 may be made of a mild steel material.
  • the threshold value 28 is 180A or more and less than 220A, and the threshold value 29 is 270A or more and less than 320A.
  • the welding parameter may be a welding current I, and the base material 22 may be made of an aluminum-based material.
  • the threshold value 28 is 80 A or more and less than 120 A, and the threshold value 29 is 150 A or more and less than 200 A.
  • the arc welding apparatus 1001 welds the base material 22 using the welding wire 19.
  • the arc welding apparatus 1001 includes a switching unit 3 that controls the welding current I and the welding voltage V, a current detection unit 9 that detects the welding current I, a voltage detection unit 8 that detects the welding voltage V, and a welding wire 19.
  • a feeding motor 18 that feeds at a feeding speed and a control unit 1001A that controls the switching unit 3 are provided.
  • the control unit 1001A is configured to control the switching unit 3 so as to weld the base material 22 by the first welding method when the welding parameter, which is the welding current I or the feeding speed, is less than the threshold value 28.
  • the control unit 1001A is configured to control the switching unit 3 so as to weld the base material 22 in one of the first welding method and the second welding method when the welding parameter is equal to the threshold value 28. .
  • the control unit 1001A is configured to control the switching unit 3 so that the base material 22 is welded by the second welding method when the welding parameter is less than the threshold value 29 and greater than the threshold value 28.
  • the control unit 1001A is configured to control the switching unit 3 to weld the base material 22 in one of the second welding method and the third welding method when the welding parameter is equal to the threshold value 29.
  • the control unit 1001A is configured to control the switching unit 3 to weld the base material 22 by the third welding method when the welding parameter is larger than the threshold value 29.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Abstract

母材への入熱に関係する溶接パラメータが第1の閾値未満の場合に第1の溶接法で前記母材を溶接する。前記溶接パラメータが第2の閾値未満でかつ前記第1の閾値より大きい場合に第2の溶接法で前記母材を溶接する。前記溶接パラメータが前記第2の閾値より大きい場合に第3の溶接法で前記母材を溶接する。このアーク溶接方法により、母材の厚みにかかわらず溶接条件を調整することで、母材の厚みに適した溶接法が設定され、スパッタが少なく母材の溶落ちのない溶接が可能となる。

Description

アーク溶接方法およびアーク溶接装置
 本発明は、消耗電極である溶接ワイヤを送給しながらアーク溶接を行うアーク溶接方法およびアーク溶接装置に関するものである。
 近年の溶接業界では、生産性向上のため、溶接の高品位化および生産効率向上に対する要求が高まっている。中でも、スパッタの低減や溶接の高速度化は市場要望の中で重要な項目である。スパッタの発生が増加するに伴い、スパッタが溶接対象である母材に付着する場合が多くなる。母材にスパッタが付着すると、付着したスパッタを除去するための後処理が必要となり、溶接生産性が低下する。また、後処理が実施されず、スパッタが母材に付着した状態で製品として流出する場合があると、製品価値を著しく損なう。
 特許文献1は、パルス溶接と短絡溶接を交互に繰り返す混成溶接を開示している。混成溶接は短絡溶接より入熱が高くパルス溶接より入熱が低い中間の特性を有する。
 図1は特許文献1に開示されている混成溶接での溶接電流を示す。図1において、縦軸は溶接電流を示し、横軸は時間を示す。図1において、短絡移行期間Taで短絡溶接が行われ、パルス移行期間Tbではパルス溶接が行われる。短絡溶接において、溶接ワイヤの設定された送給速度で短絡溶接を安定に行わせることができる溶接電圧が予め設定されており、その短絡回数(1回以上)も予め設定されている。一方パルス溶接においては溶接電流の平均電流が臨界電流を越えない溶接ワイヤの送給速度が予め設定されている。また、パルス回数(1回以上)も予め設定されている。
特開昭60-255276号公報
 母材への入熱に関係する溶接パラメータが第1の閾値未満の場合に第1の溶接法で前記母材を溶接する。前記溶接パラメータが第2の閾値未満でかつ前記第1の閾値より大きい場合に第2の溶接法で前記母材を溶接する。前記溶接パラメータが前記第2の閾値より大きい場合に第3の溶接法で前記母材を溶接する。
 このアーク溶接方法により、母材の厚みに応じて溶接条件を調整することで、母材の厚みに適した溶接法が設定され、スパッタが少なく母材の溶落ちのない溶接が可能となる。
図1は従来のアーク溶接法の溶接電流を示す図である。 図2はアーク溶接における溶接電流と溶接電圧の関係を示す図である。 図3は実施の形態におけるアーク溶接装置の概略構成図である。 図4は実施の形態におけるアーク溶接方法での溶接電流と溶接電圧の関係を示す図である。 図5Aは実施の形態における他のアーク溶接方法での溶接電流と溶接電圧の関係を示す図である。 図5Bは図5Aに示すアーク溶接方法での混成溶接での溶接電流を示す図である。 図6は実施の形態におけるアーク溶接方法での溶接電流と溶接の結果とを示す図である。 図7は実施の形態におけるアーク溶接方法での溶接電流と溶接の結果とを示す図である。
 短絡溶接法やパルス溶接法を溶接機器に組み込む場合は、それぞれの溶接法毎に、溶接機器の最低電流から最大定格電流まで溶接電流、あるいはワイヤ送給量毎に波形制御パラメータをリンクさせて、溶接電流および溶接電圧の設定値を設定することで容易に母材を溶接することを可能としている。
 低スパッタ性能を発揮する溶接電流の範囲がそれぞれの溶接法で異なる。
 母材22が鉄系金属材料の軟鋼系材料よりなる場合において、短絡溶接法は、例えば、溶接電流の領域が200A以下であればスパッタは少ないが、200Aを越えて溶接電流が高くなるに伴ってスパッタは増加する。特に220Aから300Aの間はグロビュール領域であり大粒スパッタが発生するためスパッタの付着量が多くなる。このスパッタが多量発生する電流域を使用せずに低い電流域で溶接すると低スパッタであるが同じワイヤ溶着量を確保するために溶接速度を低くする必要があるので、生産時間が長くなり生産性が低くなる。
 また、パルス溶接法では、例えば、板厚3.2mm以上の母材の溶接電流の領域が約270A以上であればスパッタは少ないが、板厚が2.3mm未満の薄板を溶接するために溶接電流を約200Aより低くするに伴ってパルス溶接は入熱が高いために、溶接時に、母材22の溶接される部分である溶接部において、例えば主に母材の溶融金属が母材について溶接ワイヤに対して反対側に溶け落ちる現象である溶落ちが発生する。また溶接電流が200A以下になるとアークの指向性が低くなりアークブローが発生しアーク切れの発生が多くなりスパッタの増加を招くため、この低い電流域の使用は好ましくない。
 図2は、母材22が鉄系金属材料の軟鋼系材料よりなる場合において、短絡溶接での溶接電流に対する適正な溶接電圧の範囲25と、パルス溶接での溶接電流に対する適正な溶接電圧の範囲26を示す。図2において、縦軸は溶接電圧を示し、横軸は溶接電流を示す。図2に示すように、例えば同じ200Aの溶接電流であっても、短絡溶接での適正な溶接電圧は例えば17~18Vであるのに対して、パルス溶接で適正な溶接電圧は例えば23~24Vと高くなり、パルス溶接は短絡溶接より入熱が高くなる。このため200Aの溶接電流での短絡溶接と同じ入熱をパルス溶接で行う場合、パルス溶接での溶接電流が200Aでは高すぎるので、パルス溶接の溶接電流を150A程度にまで低くする。但し、この150Aのパルス溶接の溶接電流の値ではアークブローの発生等によってスパッタが増加するため使用するのが困難である。
 特許文献1に開示されているパルス溶接と短絡溶接を交互に繰り返す混成溶接では、低電流域では入熱が短絡溶接より高いため、溶落ちやパルス出力時のアークブロー発生によりスパッタが増加し、高電流域ではパルス溶接より入熱が低いので溶接速度を高めることができず、特に厚い母材の溶接では生産性が低下する場合がある。また、従来の溶接機器は、溶接する際にまず溶接法をユーザが設定する。溶接法に熟練した作業者であれば母材の板厚に応じて溶接法を切替えて溶接条件を設定することができる。しかし、作業者の多くは溶接法の特徴をあまり理解しておらず、例えばパルス溶接に設定したまま溶接電流の設定値を低くして薄い母材を溶接したり、短絡溶接に設定したまま溶接電流の設定値を200A~300Aに高くして厚い母材を溶接したりする場合がある。また、多くの溶接個所で母材の厚みが互いに異なる場合は、溶接箇所毎に溶接法等の設定を切替えることは煩雑になるので、厚みに対して適正な溶接法が設定されないために、スパッタの増加や溶滴の落ち等が発生する場合がある。
 (実施の形態)
 図3は実施の形態におけるアーク溶接装置1001の概略構成図である。アーク溶接装置1001は、消耗電極である溶接ワイヤ19と溶接対象物である母材22との間でアーク21を発生させることにより母材22を短絡溶接とパルス溶接とのうちの少なくともいずれか一方で溶接するように構成されている。言い換えると、短絡溶接、パルス溶接、または、パルス溶接と短絡溶接を交互に繰り返す混成溶接で母材22を溶接するように構成されている。
 アーク溶接装置1001は、一次側整流部2と、スイッチング部3と、主変圧器4と、二次側整流部5と、リアクトル(DCL)6と、駆動部7と、電圧検出部8と、電流検出部9と、パルス波形制御部10と、短絡溶接制御部11と、混成溶接制御部12と、溶接条件設定部14と、記憶部15と、送給速度制御部16と、切替え部17、23と、送給モータ18と、チップ20とを備える。
 一次側整流部2は、入力電源1の出力を整流して出力する。スイッチング部3は、一次側整流部2からの直流出力を交流に変換することにより溶接電圧と溶接電流よりなる溶接出力を制御する。主変圧器4はスイッチング部3の出力する交流の電圧を変換する。主変圧器4の出力は、主変圧器4の二次側出力を整流する二次側整流部5とリアクトル6を介して溶接出力として出力される。電圧検出部8は溶接電圧Vを検出し、電流検出部9は溶接電流Iを検出する。溶接条件設定部14は溶接電流Iと溶接電圧Vを含む溶接条件を設定する。記憶部15は閾値を格納し、溶接条件設定部14からの出力にもとづいて予め記憶している溶接法及び適正な制御値や溶接ワイヤ19の送給速度を出力する。記憶部15の出力に応じて、切替え部17は、短絡溶接制御部11とパルス波形制御部10と混成溶接制御部12のいずれかの溶接出力のための信号を出力する。なお、送給速度制御部16は、溶接条件設定部14で設定される溶接電流の設定電流に応じて溶接ワイヤ19の送給速度を制御する。送給速度と溶接電流は互いに相関関係にある。駆動部7はスイッチング部3を制御する。駆動部7とパルス波形制御部10と短絡溶接制御部11と混成溶接制御部12と溶接条件設定部14と記憶部15と送給速度制御部16と切替え部17、23とはスイッチング部3を制御する制御部1001Aを構成する。
 記憶部15の出力に応じて、切替え部23は、短絡溶接の制御を行う短絡溶接制御部11とパルス溶接の制御を行うパルス波形制御部10と混成溶接の制御を行う混成溶接制御部12のいずれかの送給速度の出力を選択する。記憶部15が有する閾値は母材22に与える入熱に関係する溶接パラメータでの閾値であり、溶接電流I、送給速度または溶接電圧Vである。
 次に、実施の形態のアーク溶接装置1001を用いたアーク溶接制御方法について説明する。
 図4は実施の形態におけるアーク溶接方法での溶接電流I及び溶接電圧Vを示す。図4において縦軸は溶接電圧Vを示し、横軸は溶接電流Iを示す。
 記憶部15(図3参照)は閾値28を格納する。溶接電流Iが閾値28以下である場合、電気エネルギーが低いので、切替え部17は薄い母材22に適している短絡溶接制御部11の出力を選択して短絡溶接を行う。溶接電流Iが閾値28より大きい場合は、電気エネルギーが高いので、切替え部17は厚い母材22に適しているパルス波形制御部10の出力を選択してパルス溶接を行う。図4に示すように、溶接電流Iが閾値28より大きいと短絡溶接からパルス溶接に切り替えて、母材22への入熱を高める。
 図5Aは実施の形態における他のアーク溶接方法での溶接電流I及び溶接電圧Vを示す。図5Aにおいて縦軸は溶接電圧Vを示し、横軸は溶接電流Iを示す。
 記憶部15(図3参照)は閾値28と、閾値28より大きい閾値29とを格納する。溶接電流Iが閾値28以上、かつ閾値29以下である場合は、切替え部17は混成溶接制御部12の出力を選択して短絡溶接とパルス溶接とを交互に繰り返す混成溶接を行う。
 図5Bは図5Aに示すアーク溶接方法での混成溶接での溶接電流Iを示す。図5Bにおいて、縦軸は溶接電流Iを示し、横軸は時間を示す。混成溶接において、制御部1001Aは短絡溶接とパルス溶接とを切替え周期Tmで交互に繰り返す。制御部1001Aは切替え周期Tmのうちの期間Tsに短絡溶接で母材22を溶接するようにスイッチング部3を制御し、切替え周期Tmのうちの期間Tpにパルス溶接で母材22を溶接するようにスイッチング部3を制御する。期間Ts、Tpの和は切替え周期Tmである。溶接電流Iが閾値28から閾値29まで大きくなるにしたがって切替え周期Tmに対するパルス溶接の期間Tpの割合を高めていく。これにより、徐々に溶接電流Iが大きくなるに伴い適正な溶接電圧Vを徐々に高めることができ、溶接電流Iを変化させた場合の急激な入熱の変化を抑制して短絡溶接とパルス溶接を円滑に連携して溶接電流Iを変化させても安定に母材22を溶接することができる。
 なお、図4、図5Aは母材22が鉄系材料よりなる場合の溶接電流Iと溶接電圧Vと閾値28、29を示している。
 実施の形態におけるアーク溶接装置1001では、閾値28、29は溶接電流Iの値である。実施の形態では、閾値28、29は母材22に与える入熱に関係する溶接パラメータである。この溶接パラメータは、溶接電流Iまたは溶接電圧Vまたは溶接ワイヤ19の送給速度である送給量または母材22の厚みである。すなわち閾値28、29は、溶接電流Iまたは溶接電圧Vまたは溶接ワイヤ19の送給速度である送給量または母材22の厚みであり、制御部1001Aは溶接パラメータを閾値28、29と比較する。
 図6は母材22が鉄系金属材料の軟鋼系材料よりなる場合において、溶接電流Iの値と、それらの値での母材22の溶接結果を示す。図6は溶接電流Iの値毎に溶接方法を変えた場合の溶接結果を示す。図6において「G」は良好な溶接結果を示し、「NG」は良好でない溶接結果を示す。図6における溶接では、MAG溶接(Metal active gas Welding)を行い、溶接ワイヤ19は軟鋼よりなりφ1.2の径を有する。溶接電流Iを溶接パラメータとする場合は、母材22が鉄系材料であれば、図6に示すように、閾値28は好ましくは180A以上でかつ200A以下であり、閾値29は好ましくは270A以上でかつ290A以下である。
 図6を用いて、母材22が軟鋼系材料よりなる場合での閾値28、29について説明するために、溶接電流Iの値毎に溶接方法を短絡溶接、混成溶接、パルス溶接と変えた場合の溶接結果について説明する。
 溶接電流Iが150A以上かつ180A未満である150Aの領域は、短絡溶接で母材22を溶接するとアークは安定し、スパッタは少なく良好である。一方、パルス溶接と短絡溶接を所定の割合で交互に出力する混成溶接で母材22を溶接すると、短絡溶接で形成されるビードの形状は良好であるが、溶接電流Iが低いため、短絡溶接で形成されるビードの幅がパルス溶接で形成されるビードの幅より狭くなり、短絡溶接からパルス溶接に切り替えた際にアークが広がらずに溶滴が不規則に離脱してスパッタが多くなる。したがって、溶接電流Iが150A以上かつ180A未満の場合は、短絡溶接の方が混成溶接より適している。なお、パルス溶接で母材22を溶接すると入熱が多くなり、母材22の厚みによっては溶滴落ちが発生する。
 溶接電流Iが180A以上かつ200A未満である180Aの領域と、溶接電流Iが200A以上かつ220A未満である200Aの領域とでは、すなわち、溶接電流Iが180A以上かつ220A未満である領域A1では短絡溶接で母材22を溶接するとアークは安定しておりスパッタは少なく良好である。また、混成溶接で母材22を溶接すると、短絡溶接で形成されたビードの形状は良好である。さらに、溶接電流Iが増加しているため、混成溶接での短絡溶接で形成されたビードの幅が広く、パルス溶接で形成されたビードの幅とほぼ同じになる。したがって、混成溶接で、短絡溶接からパルス溶接に切り替えた際にパルス溶接で形成された溶滴は規則的に離脱しスパッタが少ない。したがって溶接電流Iが180Aの領域と200Aの領域とでは短絡溶接と混成溶接がいずれも良好である。なお、180Aの領域と200Aの領域とで混成溶接ではなくパルス溶接で母材22を溶接すると入熱が多くなり、母材22の厚みによっては溶滴落ちが発生する。
 これにより母材22が軟鋼材系材料よりなる場合は、溶接法を選択する閾値である閾値28は、180Aの領域と200Aの領域である180A以上かつ220A未満が好ましい。閾値28の領域内で、母材22に短絡溶接および混成溶接を行う場合、短絡溶接で入熱が低くなるので、溶接時に、母材22の溶接される部分である溶接部において、溶融金属が母材から溶接ワイヤ19に対して反対側に溶け落ちる現象である溶落ちを低減でき、スパッタも少なく良好に母材22を溶接することができる。
 溶接電流Iが220A以上かつ250A未満の220Aの領域では、短絡溶接を行うとアークは安定しているがスパッタが多い。また、パルス溶接では入熱が高いため母材22の厚みによっては溶敵の落ちが発生する場合がある。パルス溶接と短絡溶接を所定の割合で交互に繰り返す混成溶接では、短絡溶接で形成されるビードが広いためにアークが広がり、パルス溶接で形成されるビードに溶接ワイヤ19の溶滴が規則的に離脱するのでスパッタが少ない。したがって220Aの領域では混成溶接が良好である。なお、混成溶接ではなく、パルス溶接で母材22を溶接すると入熱が多くなり、母材22の厚みにより溶落ちが発生する。
 溶接電流Iが250A以上かつ270A未満の250Aの領域では、母材22を短絡溶接するとアークは安定するがスパッタが多い。また、パルス溶接で母材22を溶接すると入熱が高いため母材22の厚みによっては、溶接時に、母材22の溶接される部分である溶接部において、溶融金属が母材から溶接ワイヤ19に対して反対側に溶け落ちる現象である溶落ちが発生する場合がある。パルス溶接と短絡溶接を所定の割合で交互に繰り返す混成溶接では短絡溶接で形成されるビードの幅が広く冷却効果があるので、母材への入熱が抑制され溶落ちを抑制し、かつビードの幅が広がるのでアークが広がりパルス溶接で形成されるビードに溶接ワイヤ19の溶滴が規則的に離脱してスパッタが少ない。したがって250Aの領域では混成溶接が良好である。250Aの領域以下では、母材22の厚みは例えば3.2mm未満が好ましい。
 また、200A,180Aの領域では母材22の厚みは例えば1.6mm以上、2.3mm以下が好ましく、150Aの領域以下では母材22の厚みは1.6mm未満が好ましい。
 溶接電流Iが270A以上かつ290A未満の270Aの領域と、290A以上かつ320A未満の290Aの領域では、すなわち、溶接電流Iが270A以上かつ320A未満の領域A2では、母材22の厚みが3.2mm以上、8mm未満と厚くなるので、パルス溶接であっても溶落ちはなく良好である。また、短絡溶接で母材22を溶接するとアークは安定しているがスパッタが多い。パルス溶接と短絡溶接を所定の割合で交互に繰り返す混成溶接では、短絡溶接で形成されるビードの幅が広く冷却効果があるので溶落ちを抑制し、ビードが広がるのでアークが広がり、パルス溶接で形成されるビードへ溶接ワイヤ19の溶滴が規則的に離脱してスパッタが少ない。混成溶接ではなくパルス溶接で母材22を溶接すると、スパッタが少なく溶落ちがないため良好である。したがって270Aの領域と290Aの領域は、混成溶接とパルス溶接がいずれも良好である。
 溶接電流Iが320A以上かつ400A未満の320Aの領域では、母材22の厚さは8mm以上、20mm未満と厚くなるのでパルス溶接であっても溶落ちの発生はなく良好である。また、短絡溶接で母材22を溶接するとアークは安定しているがスパッタが多い。パルス溶接と短絡溶接を所定の割合で交互に繰り返す混成溶接では、溶接電流Iが高いため短絡溶接であっても、溶接ワイヤと母材とが短絡せずに、溶接ワイヤの溶滴が落ちて母材へ移行し、溶滴が不安定に離脱してスパッタが多い。また一方、混成溶接ではなくパルス溶接で母材22を溶接すると、厚い母材22に対してパルス溶接により十分入熱を加えることができるので溶込みの深いビードを得ることができ、スパッタが少なく溶落ちがないため良好である。このため320Aの領域はパルス溶接が良好である。また、母材22の厚みがより厚ければ、320Aの領域を超える溶接電流領域にもパルス溶接が適用可能である。
 これにより、母材22が軟鋼系材料よりなる場合、溶接法を選択する閾値29は、溶接電流Iが270Aの領域から290Aの領域であり、270A以上かつ320A未満が好ましい。閾値29を320A以上として、母材22の厚みに対して短絡溶接および混成溶接を行う場合、短絡溶接を行う際に母材22への低い入熱により深い溶け込みを得ることができず、スパッタが多くなる。
 図7は、母材22がアルミ系材料よりなる場合において、溶接電流Iの値と、それらの値での溶接結果を示す。図7は溶接電流Iの値毎に溶接方法を変えた場合の溶接結果を示す。図7において「G」は良好な溶接結果を示し、「NG」は良好でない溶接結果を示す。図7における溶接では、MAG溶接を行い、溶接ワイヤ19は硬質アルミよりなりφ1.2の径を有する。母材22は硬質アルミよりなる。
 母材22が非鉄系金属材料のアルミ系材料よりなる場合には、閾値28は80A以上かつ120A未満であることが好ましい。また、閾値29は150A以上かつ200A未満であることが好ましい。
 図7を用いて、母材22がアルミ系材料よりなる場合の閾値28、29について説明するために、溶接電流Iの値毎に溶接方法を短絡溶接、混成溶接、パルス溶接と変えた場合の溶接結果について記載する。図7では溶接方法はMIG溶接(metal inert gas welding)である。
 溶接電流Iが60A以上かつ80A未満の60Aの領域では、短絡溶接で母材22を溶接するアークは安定し、スパッタは少なく良好である。パルス溶接と短絡溶接を所定の割合で交互に繰り返す混成溶接で母材22を溶接すると、短絡溶接で形成されるビードの形状は良好であるが、溶接電流Iが低いために、短絡溶接で形成されビードの幅がパルス溶接で形成されるビードの幅より狭くなる。これにより、混成溶接で短絡溶接からパルス溶接に切り替えた際に、アークが広がらずに溶滴が不規則に離脱してスパッタが多くなる。このため溶接電流が60Aの領域では短絡溶接の方が混成溶接より適している。なお、混成溶接ではなく、パルス溶接で母材22を溶接すると入熱が多くなり、母材22の厚みによっては、溶接時に、母材22の溶接される部分である溶接部において、溶融金属が母材から溶接ワイヤ19に対して反対側に溶け落ちる現象である溶落ちが発生する場合がある。
 溶接電流Iが80A以上かつ100A未満の80Aの領域と、100A以上かつ120A未満の100Aの領域では、すなわち溶接電流Iが80A以上かつ120A未満の領域A1では、短絡溶接を行うとアークは安定しておりスパッタは少なく良好である。パルス溶接と短絡溶接を所定の割合で交互に繰り返す混成溶接で母材22を溶接すると、短絡溶接で形勢されるビードの幅が広いためアークが広がり、パルス溶接で形成される溶滴が規則的に離脱してスパッタが少ない。このため80Aの領域、100Aの領域は、短絡溶接、混成溶接がいずれも良好である。なお、混成溶接ではなく、パルス溶接で溶接を行うと入熱が多くなり、母材22の厚みによっては溶落ちが発生する場合がある。
 これにより母材がアルミ系材料よりなる場合は、溶接方法を選択する閾値28は、溶接電流が80Aの領域から100Aの領域であり、80A以上かつ120A未満であることが好ましい。閾値28の領域内で母材22に短絡溶接および混成溶接を行う場合、短絡溶接の際の低い入熱により母材22の溶接部の溶落ちを抑制でき、またスパッタも少なく良好とすることが出来る。
 また溶接電流Iが120A以上かつ130A未満の120Aの領域と、130A以上かつ150A未満の130Aの領域では、短絡溶接で母材22を溶接するとアークは安定しているがスパッタが多い。パルス溶接で母材22を溶接すると入熱が高いため母材22の厚みによっては溶落ちが発生する場合がある。パルス溶接と短絡溶接を所定の割合で交互に繰り返す混成溶接では、短絡溶接で形成されるビードの幅が広いためアークが広がり、パルス溶接の際に溶接ワイヤ19の溶滴が規則的に離脱してスパッタが少ない。このため120Aの領域、130Aの領域は混成溶接が良好である。130Aの領域以下では、母材22の厚みは例えば4mm未満が好ましい。また、100A,80Aの領域では母材22の厚みが例えば1.5mm以上、3mm以下が好ましく、60Aの領域以下では母材22の厚みが1.5mm未満が好ましい。
 なお、混成溶接ではなく、パルス溶接で母材22を溶接すると入熱が多くなり、母材22の厚により溶落ちが発生する場合がある。
 溶接電流Iが150A以上かつ180A未満の150Aの領域と、180A以上かつ200A未満の180Aの領域では、すなわち溶接電流Iが150A以上かつ200A未満の領域A2では、母材22の厚みが例えば4mm以上、8mm未満と厚くなるのでパルス溶接であっても母材22の溶接部の溶落ち発生はなく良好である。また、短絡溶接で母材22を溶接するとアークは安定しているがスパッタが多い。パルス溶接と短絡溶接を所定の割合で交互に繰り返す混成溶接では、短絡溶接で形成されるビードの幅が広く冷却効果があるので母材22の溶接部の溶落ちを抑制し、ビードが広がるのでアークが広がり、パルス溶接の際に溶接ワイヤ19の溶滴が規則的に離脱してスパッタが少ない。混成溶接ではなく、パルス溶接で母材22を溶接すると、スパッタが少なく溶落ちがないため良好である。このため150Aの領域、180Aの領域は、混成溶接、パルス溶接がいずれも良好である。
 溶接電流Iが200A以上かつ300A未満の200Aの領域では、母材22の厚みは例えば8mm以上、20mm未満と厚くなるのでパルス溶接であっても母材22の溶接部の溶落ちの発生はなく良好である。また、短絡溶接で母材22を溶接するとアークは安定しているがスパッタが多い。パルス溶接と短絡溶接を所定の割合で交互に繰り返す混成溶接では、溶接電流Iが高いため短絡溶接でも溶滴がドロップする状態となり、溶滴が不安定に離脱してスパッタが多い。混成溶接ではなく、パルス溶接で溶接を行うと、スパッタが少なく母材22の溶接部の溶落ちがないため良好である。このため200Aの領域はパルス溶接が良好である。
 また、母材22の厚みがより厚ければ、200Aの領域を超える溶接電流領域にもパルス溶接が適用可能である。
 これにより、母材がアルミ系材料よりなる場合は、溶接方法を選択する閾値29は、溶接電流が150Aの領域と180Aの領域であり、150A以上かつ200A未満であることが好ましい。溶接電流Iが200A以上で母材22に対して短絡溶接および混成溶接が実施される場合、短絡溶接での低い入熱により深い溶け込みを得ることができなく、またスパッタも多くなってしまう。
 上述のように、閾値28と、閾値28より大きい閾値29による溶接方法の選択について説明する。
 溶接電流Iである溶接パラメータが閾値28以下の場合は、第1の溶接方法として短絡溶接を選択することが出来る。
 また、溶接パラメータが閾値28未満または以下の場合は第1の溶接法として短絡溶接を選択し、溶接パラメータが閾値28の領域内である場合は、第1の溶接法としての短絡溶接、第2の溶接法としての混成溶接のいずれも選択することが出来る。
 または、溶接パラメータが閾値28を超える場合は、第2の溶接法として混成溶接または、第3の溶接法としてのパルス溶接を選択する。また、溶接パラメータが閾値28と閾値29の間は、第1の溶接法としての短絡溶接および第3の溶接法としてのパルス溶接とは異なる第2の溶接法としての混成溶接を選択する。溶接パラメータが閾値29の領域内の場合は、第2の溶接法としての混成溶接、第3の溶接法としてパルス溶接のいずれも選択することが出来る。溶接パラメータが閾値29を超えるまたは以上の場合は、第3の溶接法としてパルス溶接を選択する。
 閾値28は、母材22が軟鋼材系材料よりなる場合は、180A以上かつ220A未満であり、母材22がアルミ系材料よりなる場合は、80A以上かつ120A未満である。また、閾値29は、母材22が軟鋼材系材料よりなる場合は270A以上かつ320A未満であり、母材22がアルミ系材料の場合は、150A以上かつ200A未満である。
 このように、閾値28、29にそれぞれ幅を持たせ、閾値28、29でのそれぞれの幅の領域内では複数の溶接方法を選択可能である、少なくとも2つの溶接方法のいずれも選択できる。これにより、少なくとも閾値前後のいずれかの溶接方法に対応可能とすることが出来る。
 溶接ワイヤ19はメーカや銘柄毎に異なる金属組成を有し、短絡発生状況や溶滴離脱に必要な電流値が異なるので、様々な溶接ワイヤ19に対応する裕度を拡大するために閾値28、29に幅を持たせている。
 溶接方法を急に切り替えると溶接状況が急変して溶接が不安定(母材22の溶接部の溶落ち、溶込み不足等)となるため、溶接方法を選択する閾値28、29の領域は、上述のように、複数の溶接法を用いる領域が大きいほど溶接状況の変化が緩やかになり溶接が安定する効果がある。
 また、例えば母材22の厚みを溶接パラメータとする場合として、母材22が鉄系金属材料の軟鋼材料よりなる場合には、閾値28は1.6mm以上、2.3mm未満の範囲に入ることが好ましく、閾値29は3.2mm以上、8mm未満の範囲に入ることが好ましい。
 また、母材22が非鉄系金属材料のアルミ系材料よりなる場合には、閾値28は1.5mm以上、3.0mm未満の範囲に入ることが好ましく、閾値29は4mm以上、8mm未満の範囲に入ることが好ましい。
 また、短絡溶接と、混成溶接での短絡溶接とでは、溶接ワイヤ19を母材22に向かって送給する前進送給と、溶接ワイヤ19を母材22から遠ざかるように送給する後進送給とを交互に実施してもよい。この場合、記憶部15に格納された閾値28、29により短絡溶接あるいは混成溶接が選択された場合、短絡溶接を行っている間、切替え部23が溶接ワイヤ19を後進送給で送給して母材22との間で短絡かつ開放を繰り返すことで機械的に短絡と開放を行うことができスパッタを低減させることができる。
 また、混成溶接制御部12は短絡溶接の期間Tsとパルス溶接の期間Tpとの和である切替え周期Tmに対するパルス溶接の期間Tpの割合は溶接電流Iあるいは溶接電圧Vあるいは溶接ワイヤ19の送給量である溶接パラメータが大きくなるにつれて増加させる。
 実施の形態におけるアーク溶接装置1001を用いたアーク溶接方法により、特に溶接をあまり知らない作業者の場合や、多くの溶接個所で互いに厚みが異なる母材22でも、溶接条件を調整することで、母材22への入熱に関係する溶接パラメータ(溶接電流Iまたは溶接電圧Vまたは溶接ワイヤ19の送給速度または母材22の厚み)に応じて溶接方法を設定することが出来、低スパッタで母材22の溶接部の溶落ち等を抑制した生産性の高い高品質な溶接が可能となる。
 表1は溶接パラメータPwと閾値28、29との関係において、選択可能な溶接方法を示す。ここで、第1の溶接法は短絡溶接であり、第2の溶接法はパルス溶接と短絡溶接を所定の割合で交互に繰り返す混成溶接であり、第3の溶接方法はパルス溶接である。
Figure JPOXMLDOC01-appb-T000001
 このように、本実施の形態における溶接方法では、溶接電流Iである溶接パラメータPwが閾値28未満の場合は、第1の溶接法としての短絡溶接で母材22を溶接する。また、溶接パラメータPwが閾値28と等しい場合は、第1の溶接法としての短絡溶接と第2の溶接法としての混成溶接とのうちの一方で母材22を溶接する。溶接パラメータPwが閾値28より大きくかつ閾値29未満である場合は第2の溶接法としての混成溶接で母材22を溶接する。溶接パラメータPwが閾値29と等しい場合は、第2の溶接法としての混成溶接と第3の溶接法としてのパルス溶接とのうちの一方で母材22を溶接する。また、溶接パラメータPwが閾値29より大きい場合は第3の溶接法としてのパルス溶接で母材22を溶接する。
 溶接パラメータが閾値28の領域A1内である場合は、第1の溶接法としての短絡溶接と第2の溶接法としての混成溶接とのいずれも選択することが出来る。
 または、溶接パラメータが閾値28より大きい場合は、第2の溶接法として混成溶接と第3の溶接法としてのパルス溶接とのうちの一方を選択する。また、溶接パラメータが閾値28と閾値29の間である場合は、第1の溶接法としての短絡溶接と第3の溶接法としてのパルス溶接とは異なる第2の溶接法としての混成溶接を選択する。溶接パラメータが閾値29の領域A2内の場合は、第2の溶接法としての混成溶接と第3の溶接法としてパルス溶接とのいずれも選択することが出来る。
 上述のように、母材22への入熱に関係する溶接パラメータが閾値28未満の場合に第1の溶接法で母材22を溶接する。前記溶接パラメータが第1の閾値28と等しい場合に前記第1の溶接法と第2の溶接法とのうちの一方で前記母材22を溶接する。溶接パラメータが閾値29未満でかつ閾値28より大きい場合に第2の溶接法で母材22を溶接する。前記溶接パラメータが第2の閾値29と等しい場合に前記第2の溶接法と第3の溶接法とのうちの一方で前記母材22を溶接する。溶接パラメータが閾値29より大きい場合に第3の溶接法で母材22を溶接する。
 閾値28は領域A1内の値を取ることができる。溶接パラメータが領域A1内にある場合には母材22は第1の溶接法と第2の溶接法とのいずれでも溶接することができる。閾値29は領域A2内の値を取ることができる。溶接パラメータが領域A2内にある場合には母材22は第2の溶接法と第3の溶接法とのいずれでも溶接することができる。
 第1の溶接法は短絡溶接であってもよく、第3の溶接法はパルス溶接であってもよい。
 溶接パラメータは溶接電流Iと、溶接電圧Vと、溶接ワイヤ19の送給速度と、母材22の厚みとのうちの1つである。
 第1の溶接法は短絡溶接であってもよく、第3の溶接法はパルス溶接であってもよい。この場合は、第2の溶接法は短絡溶接とパルス溶接とを切替え周期Tmで交互に繰り返す混成溶接である。溶接パラメータが閾値29未満でかつ閾値28より大きい場合に切替え周期Tmのうちの短絡溶接で母材22を溶接する期間Tsと切替え周期Tmのうちのパルス溶接で母材22を溶接する期間Tpとの割合を溶接電流Iあるいは溶接電圧Vに応じて変更して母材22を溶接してもよい。
 溶接パラメータが閾値29未満でかつ閾値28より大きい場合はパルス溶接で母材22を溶接する期間Tpの切替え周期Tmに対する割合を溶接電流Iあるいは溶接電圧Vが大きくなるに応じて増加させて母材22を溶接してもよい。
 溶接パラメータが閾値28未満の場合は、溶接ワイヤ19を母材22に向かって送給する前進送給と溶接ワイヤ19を母材から遠ざかるように溶接ワイヤ19を送給する後進送給とを交互に繰り返しながら第1の溶接法で母材22を溶接してもよい。また、溶接パラメータが閾値29未満でかつ閾値28より大きい場合は前進送給と後進送給とを交互に繰り返しながら第2の溶接法で母材22を溶接してもよい。
 溶接パラメータは溶接電流Iであってもよく、母材22は軟鋼材系材料よりなっていてもよい。この場合、閾値28は180A以上かつ220A未満であり、閾値29は270A以上かつ320A未満である。
 溶接パラメータは溶接電流Iであってもよく、母材22はアルミ系材料よりなっていてもよい。この場合、閾値28は80A以上かつ120A未満であり、閾値29は150A以上かつ200A未満である。
 アーク溶接装置1001は、溶接ワイヤ19を用いて母材22を溶接する。アーク溶接装置1001は、溶接電流Iと溶接電圧Vとを制御するスイッチング部3と、溶接電流Iを検出する電流検出部9と、溶接電圧Vを検出する電圧検出部8と、溶接ワイヤ19を送給速度で送給する送給モータ18と、スイッチング部3を制御する制御部1001Aとを備える。制御部1001Aは、溶接電流Iまたは送給速度である溶接パラメータが閾値28未満の場合に第1の溶接法で母材22を溶接するようにスイッチング部3を制御するよう構成されている。制御部1001Aは、溶接パラメータが閾値28と等しい場合に第1の溶接法と第2の溶接法とのうちの一方で母材22を溶接するようにスイッチング部3を制御するよう構成されている。制御部1001Aは、溶接パラメータが閾値29未満でかつ閾値28より大きい場合に第2の溶接法で母材22を溶接するようにスイッチング部3を制御するよう構成されている。制御部1001Aは、溶接パラメータが閾値29と等しい場合に第2の溶接法と第3の溶接法とのうちの一方で母材22を溶接するようにスイッチング部3を制御するよう構成されている。制御部1001Aは、溶接パラメータが閾値29より大きい場合に第3の溶接法で母材22を溶接するようにスイッチング部3を制御するよう構成されている。
1  入力電源
2  一次側整流部
3  スイッチング部
4  主変圧器
5  二次側整流部
6  リアクトル
7  駆動部
8  電圧検出部
9  電流検出部
10  パルス波形制御部
11  短絡溶接制御部
12  混成溶接制御部
14  溶接条件設定部
15  記憶部
16  ワイヤ送給速度制御部
17  切替え部
18  送給モータ
19  溶接ワイヤ
20  チップ
21  アーク
22  母材
23  切替え部
28  閾値(第1の閾値)
29  閾値(第2の閾値)
1001  アーク溶接装置
1001A  制御部
Tm  切替え周期

Claims (16)

  1. 母材への入熱に関係する溶接パラメータが第1の閾値未満の場合に第1の溶接法で前記母材を溶接するステップと、
    前記溶接パラメータが第1の閾値と等しい場合に前記第1の溶接法と第2の溶接法とのうちの一方で前記母材を溶接するステップと、
    前記溶接パラメータが第2の閾値未満でかつ前記第1の閾値より大きい場合に前記第2の溶接法で前記母材を溶接するステップと、
    前記溶接パラメータが第2の閾値と等しい場合に前記第2の溶接法と第3の溶接法とのうちの一方で前記母材を溶接するステップと、
    前記溶接パラメータが前記第2の閾値より大きい場合に前記第3の溶接法で前記母材を溶接するステップと、
    を含むアーク溶接方法。
  2. 前記第1の閾値は第1の領域内の値を取ることができ、
    前記溶接パラメータが前記第1の領域内にある場合には前記母材は前記第1の溶接法と前記第2の溶接法とのいずれでも溶接することができ、
    前記第2の閾値は第2の領域内の値を取ることができ、
    前記溶接パラメータが前記第2の領域内にある場合には前記母材は前記第2の溶接法と前記第3の溶接法とのいずれでも溶接することができる、請求項1に記載のアーク溶接方法。
  3. 前記第1の溶接法は短絡溶接であり、
    前記第3の溶接法はパルス溶接である、請求項1または2に記載のアーク溶接方法。
  4. 前記溶接パラメータは溶接電流と、溶接電圧と、溶接ワイヤのワイヤ送給速度と、前記母材の厚みとのうちの1つである、請求項1または2に記載のアーク溶接方法。
  5. 前記第1の溶接法は短絡溶接であり、
    前記第3の溶接法はパルス溶接であり、
    前記第2の溶接法は短絡溶接とパルス溶接とを切替え周期で交互に繰り返す混成溶接であり、
    前記溶接パラメータが前記第2の閾値未満でかつ前記第1の閾値より大きい場合に前記第2の溶接法で前記母材を溶接する前記ステップは、前記溶接パラメータが前記第2の閾値未満でかつ前記第1の閾値より大きい場合に前記切替え周期のうちの前記短絡溶接で前記母材を溶接する期間と前記切替え周期のうちの前記パルス溶接で前記母材を溶接する期間との割合を溶接電流あるいは溶接電圧に応じて変更して前記母材を溶接するステップを含む、請求項1または2に記載のアーク溶接方法。
  6. 前記溶接パラメータが前記第2の閾値未満でかつ前記第1の閾値より大きい場合に前記切替え周期のうちの前記短絡溶接で前記母材を溶接する前記期間と前記パルス溶接で前記母材を溶接する前記期間との割合を前記溶接電流あるいは前記溶接電圧に応じて変更して前記第2の溶接法で前記母材を溶接するステップは、前記溶接パラメータが前記第2の閾値未満でかつ前記第1の閾値より大きい場合に前記パルス溶接で前記母材を溶接する前記期間の前記切替え周期に対する割合を前記溶接電流あるいは前記溶接電圧が大きくなるに応じて増加させて前記母材を溶接するステップを含む、請求項5に記載のアーク溶接方法。
  7. 前記溶接パラメータが前記第1の閾値未満の場合に前記第1の溶接法で前記母材を溶接するステップは、前記溶接パラメータが前記第1の閾値未満の場合に溶接ワイヤを前記母材に向かって送給する前進送給と前記溶接ワイヤを前記母材から遠ざかるように前記溶接ワイヤを送給する後進送給とを交互に繰り返しながら前記第1の溶接法で前記母材を溶接するステップを含み、
    前記溶接パラメータが前記第2の閾値未満でかつ前記第1の閾値より大きい場合に前記第2の溶接法で前記母材を溶接する前記ステップは、前記溶接パラメータが前記第2の閾値未満でかつ前記第1の閾値より大きい場合に前記前進送給と前記後進送給とを交互に繰り返しながら前記第2の溶接法で前記母材を溶接するステップを含む、請求項5に記載のアーク溶接方法。
  8. 前記溶接パラメータは溶接電流であり、
    前記母材は軟鋼材系材料よりなり、
    前記第1の閾値は180A以上かつ220A未満であり、
    前記第2の閾値は270A以上かつ320A未満である、請求項1から7のいずれか一項に記載のアーク溶接方法。
  9. 前記溶接パラメータは溶接電流であり、
    前記母材はアルミ系材料よりなり、
    前記第1の閾値は80A以上かつ120A未満であり、
    前記第2の閾値は150A以上かつ200A未満である、請求項1から7のいずれか一項に記載のアーク溶接方法。
  10. 溶接ワイヤを用いて母材を溶接するアーク溶接装置であって、
    溶接電流と溶接電圧とを制御するスイッチング部と、
    前記溶接電流を検出する電流検出部と、
    前記溶接電圧を検出する電圧検出部と、
    前記溶接ワイヤを送給速度で送給する送給モータと、
    前記スイッチング部を制御する制御部と、
    を備え、
    前記制御部は、
       前記溶接電流または前記送給速度である溶接パラメータが第1の閾値未満の場合に第1の溶接法で前記母材を溶接し、
       前記溶接パラメータが第1の閾値と等しい場合に前記第1の溶接法と第2の溶接法とのうちの一方で前記母材を溶接し、
       前記溶接パラメータが第2の閾値未満でかつ前記第1の閾値より大きい場合に前記第2の溶接法で前記母材を溶接し、
       前記溶接パラメータが第2の閾値と等しい場合に前記第2の溶接法と第3の溶接法とのうちの一方で前記母材を溶接し、
       前記溶接パラメータが前記第2の閾値より大きい場合に前記第3の溶接法で前記母材を溶接する、
    ように前記スイッチング部を制御するよう構成されている、アーク溶接装置。
  11. 前記第1の閾値は第1の領域内の値を取ることができ、
    前記溶接パラメータが前記第1の領域内にある場合には前記母材は前記第1の溶接法と前記第2の溶接法とのいずれでも溶接することができ、
    前記第2の閾値は第2の領域内の値を取ることができ、
    前記溶接パラメータが前記第2の領域内にある場合には前記母材は前記第2の溶接法と前記第3の溶接法とのいずれでも溶接することができる、請求項10に記載のアーク溶接装置。
  12. 前記母材は軟鋼材系材料よりなり、
    前記溶接パラメータは前記溶接電流であり、
    前記第1の閾値は180A以上かつ220A未満であり、
    前記第2の閾値は270A以上かつ320A未満である、請求項10または11に記載のアーク溶接装置。
  13. 前記母材はアルミ系材料よりなり、
    前記溶接パラメータは前記溶接電流であり、
    前記第1の閾値は80A以上かつ120A未満であり、
    前記第2の閾値は150A以上かつ200A未満である、請求項10または11に記載のアーク溶接装置。
  14. 前記第2の溶接法は短絡溶接とパルス溶接とを切替え周期で交互に繰り返す混成溶接であり、
    前記制御部は、前記溶接パラメータが前記第2の閾値未満でかつ前記第1の閾値より大きい場合に前記切替え周期のうちの前記短絡溶接で前記母材を溶接する期間と前記切替え周期のうちの前記パルス溶接で前記母材を溶接する期間との割合を溶接電流あるいは溶接電圧に応じて変更して前記混成溶接で前記母材を溶接するように前記スイッチング部を制御するよう構成されている、請求項10に記載のアーク溶接装置。
  15. 前記第1の溶接法は短絡溶接であり、
    前記第3の溶接法はパルス溶接であり、
    前記制御部は、
       前記溶接パラメータが前記第1の閾値未満の場合に前記溶接ワイヤを前記母材に向かって送給する前進送給と前記溶接ワイヤを前記母材から遠ざかるように前記溶接ワイヤを送給する後進送給とを交互に繰り返しながら短絡溶接で前記母材を溶接し、
       前記溶接パラメータが第2の閾値未満でかつ前記第1の閾値より大きい場合に前記前進送給と前記後進送給とを交互に繰り返しながら前記混成溶接で前記母材を溶接する、
    ように前記スイッチング部を制御するよう構成されている、請求項14に記載のアーク溶接装置。
  16. 前記制御部は、前記溶接パラメータが第2の閾値未満でかつ前記第1の閾値より大きい場合に前記パルス溶接で前記母材を溶接する前記期間の前記切替え周期に対する割合を前記溶接電流あるいは前記溶接電圧が大きくなるに応じて増加させて前記混成溶接で前記母材を溶接するように前記スイッチング部を制御するよう構成されている、請求項14または15に記載のアーク溶接装置。
PCT/JP2016/003872 2015-09-03 2016-08-25 アーク溶接方法およびアーク溶接装置 WO2017038060A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16841096.7A EP3345710B1 (en) 2015-09-03 2016-08-25 Arc welding method and arc welding device
US15/743,433 US10807180B2 (en) 2015-09-03 2016-08-25 Arc welding method and arc welding device
CN201680045276.9A CN107921565B (zh) 2015-09-03 2016-08-25 电弧焊接方法以及电弧焊接装置
JP2017537533A JP6754952B2 (ja) 2015-09-03 2016-08-25 アーク溶接方法およびアーク溶接装置
US17/019,623 US12036629B2 (en) 2015-09-03 2020-09-14 Arc welding method and arc welding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015173366 2015-09-03
JP2015-173366 2015-09-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/743,433 A-371-Of-International US10807180B2 (en) 2015-09-03 2016-08-25 Arc welding method and arc welding device
US17/019,623 Continuation US12036629B2 (en) 2015-09-03 2020-09-14 Arc welding method and arc welding device

Publications (1)

Publication Number Publication Date
WO2017038060A1 true WO2017038060A1 (ja) 2017-03-09

Family

ID=58186934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003872 WO2017038060A1 (ja) 2015-09-03 2016-08-25 アーク溶接方法およびアーク溶接装置

Country Status (5)

Country Link
US (2) US10807180B2 (ja)
EP (1) EP3345710B1 (ja)
JP (1) JP6754952B2 (ja)
CN (2) CN107921565B (ja)
WO (1) WO2017038060A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070029A (ja) * 2019-10-29 2021-05-06 株式会社ダイヘン アーク溶接方法
WO2023095562A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 アーク溶接方法及びアーク溶接装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3599046A1 (de) * 2018-07-27 2020-01-29 FRONIUS INTERNATIONAL GmbH Lichtbogenschweissverfahren mit einem abschmelzenden schweissdraht
US11660698B2 (en) * 2020-05-26 2023-05-30 Illinois Tool Works Inc. Input power user interfaces for welding power supplies

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235348A (ja) * 2010-05-13 2011-11-24 Daihen Corp マグ溶接の短絡電流制御方法
US20140124492A1 (en) * 2012-11-07 2014-05-08 Lincoln Global, Inc. Method and system to control heat input in a welding operation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255276A (ja) 1984-05-31 1985-12-16 Mitsubishi Heavy Ind Ltd 消耗電極式ア−ク溶接法
US4717807A (en) * 1986-12-11 1988-01-05 The Lincoln Electric Company Method and device for controlling a short circuiting type welding system
WO1991001842A1 (en) * 1989-08-02 1991-02-21 Mitsubishi Denki Kabushiki Kaisha Pulse welding apparatus
JP3163519B2 (ja) 1993-06-23 2001-05-08 松下電器産業株式会社 亜鉛メッキ鋼板のガスシールドアーク溶接方法とその溶接機
US6051810A (en) * 1998-01-09 2000-04-18 Lincoln Global, Inc. Short circuit welder
US6331694B1 (en) * 1999-12-08 2001-12-18 Lincoln Global, Inc. Fuel cell operated welder
WO2005042199A1 (de) 2003-10-23 2005-05-12 Fronius International Gmbh Verfahren zum steuern und/oder regeln eines schweissprozesses und schweissgerät zur durchführung eines schweissprozesses
US7304269B2 (en) * 2004-06-04 2007-12-04 Lincoln Global, Inc. Pulse welder and method of using same
US7495193B2 (en) * 2005-03-15 2009-02-24 Lincoln Global, Inc. Pipe seam tack welding methods and apparatus using modified series arc welding
JP3844004B1 (ja) * 2005-05-31 2006-11-08 松下電器産業株式会社 パルスアーク溶接制御方法及びパルスアーク溶接装置
FI119592B (fi) * 2005-09-06 2009-01-15 Kemppi Oy Menetelmä ja laitteisto hitsausta varten
AT504197B1 (de) * 2006-09-08 2010-01-15 Fronius Int Gmbh Schweissverfahren zur durchführung eines schweissprozesses
US8946596B2 (en) * 2006-10-05 2015-02-03 Lincoln Global, Inc. Multiple welding using a single power source
KR101630494B1 (ko) * 2010-06-14 2016-06-14 이에스에이비 아베 Mig/mag 용접에 대한 용접 파라미터의 자동 설정 방법 및 이 방법을 실행하기 위한 컨트롤러
US9162308B2 (en) * 2010-10-22 2015-10-20 Lincoln Global, Inc. Apparatus and method for pulse welding with AC waveform
US10118243B2 (en) * 2011-10-14 2018-11-06 Lincoln Global, Inc. Real time inductance monitoring in welding and cutting power supply
US20130112660A1 (en) * 2011-11-08 2013-05-09 Lincoln Global, Inc. Welding torch with gas flow control
EP2826584B1 (en) * 2012-03-16 2018-04-04 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method and arc welding device
EP2669037B1 (de) * 2012-05-30 2019-09-11 Ewm Ag Schweißrauchreduzierung
WO2013190746A1 (ja) * 2012-06-18 2013-12-27 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
US9333581B2 (en) * 2012-07-06 2016-05-10 Lincoln Global, Inc. Apparatus and method for energy replacement in a welding waveform during welding
FR2994872B1 (fr) * 2012-09-05 2014-09-26 Air Liquide Welding France Dispositif de soudage a l'arc avec selection automatique du regime de transfert de metal
US9533366B2 (en) * 2013-03-14 2017-01-03 Lincoln Global, Inc. Apparatus and method for welding with AC waveform
JP6268360B2 (ja) 2013-08-05 2018-01-31 パナソニックIpマネジメント株式会社 アーク溶接制御方法およびアーク溶接装置
US10543551B2 (en) * 2013-09-16 2020-01-28 Illinois Tool Works Inc. Synchronized rotating arc welding method and system
US10486270B2 (en) * 2014-04-07 2019-11-26 Illinois Tool Works Inc. System for determining inductance of a power cable
CN104368900B (zh) * 2014-09-01 2017-01-11 无锡特莱姆气体设备有限公司 一种手工氩弧焊焊接工艺
US11198189B2 (en) * 2014-09-17 2021-12-14 Illinois Tool Works Inc. Electrode negative pulse welding system and method
JP6695030B2 (ja) * 2014-10-17 2020-05-20 パナソニックIpマネジメント株式会社 アーク溶接の制御方法
JP7271893B2 (ja) * 2018-09-28 2023-05-12 株式会社安川電機 溶接装置及び溶接方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235348A (ja) * 2010-05-13 2011-11-24 Daihen Corp マグ溶接の短絡電流制御方法
US20140124492A1 (en) * 2012-11-07 2014-05-08 Lincoln Global, Inc. Method and system to control heat input in a welding operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3345710A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070029A (ja) * 2019-10-29 2021-05-06 株式会社ダイヘン アーク溶接方法
WO2023095562A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 アーク溶接方法及びアーク溶接装置

Also Published As

Publication number Publication date
EP3345710A4 (en) 2018-10-31
CN107921565B (zh) 2019-10-11
EP3345710B1 (en) 2024-05-15
US20180207739A1 (en) 2018-07-26
CN110524089A (zh) 2019-12-03
CN110524089B (zh) 2021-09-28
JP6754952B2 (ja) 2020-09-16
US20200406385A1 (en) 2020-12-31
JPWO2017038060A1 (ja) 2018-06-21
US10807180B2 (en) 2020-10-20
US12036629B2 (en) 2024-07-16
EP3345710A1 (en) 2018-07-11
CN107921565A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
JP6695030B2 (ja) アーク溶接の制御方法
JP5927433B2 (ja) アーク溶接方法およびアーク溶接装置
JP6778855B2 (ja) パルスアーク溶接制御方法およびパルスアーク溶接装置
US12036629B2 (en) Arc welding method and arc welding device
JP5061007B2 (ja) 溶接制御装置、溶接制御方法およびそのプログラム
US20150129566A1 (en) Apparatus and method for short circuit welding with ac waveform
JP2013530046A (ja) ショートアーク溶接システム
JP6778857B2 (ja) アーク溶接制御方法
US20210031293A1 (en) Arc welding control method
JP6945290B2 (ja) スパッタを低減したac溶接用の溶接システム
WO2019188124A1 (ja) ガスシールドアーク溶接の制御方法及び制御装置
JP2017144480A (ja) アーク溶接方法及びアーク溶接装置
JP6778858B2 (ja) アーク溶接制御方法
JP6757892B2 (ja) アーク溶接制御方法
JP2012245547A (ja) 溶接装置
JP6524412B2 (ja) アーク溶接制御方法
JP7113329B2 (ja) アーク溶接制御方法
JP6268360B2 (ja) アーク溶接制御方法およびアーク溶接装置
JP6948528B2 (ja) アーク溶接方法およびアーク溶接装置
JP6994623B2 (ja) アークスタート方法
WO2024034363A1 (ja) アーク溶接方法
JP7576764B2 (ja) 直流アーク溶接制御方法
JPH03297561A (ja) 消耗電極式交流ガスシールドアーク溶接方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537533

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15743433

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016841096

Country of ref document: EP