WO2017037793A1 - Power supply device - Google Patents
Power supply device Download PDFInfo
- Publication number
- WO2017037793A1 WO2017037793A1 PCT/JP2015/074496 JP2015074496W WO2017037793A1 WO 2017037793 A1 WO2017037793 A1 WO 2017037793A1 JP 2015074496 W JP2015074496 W JP 2015074496W WO 2017037793 A1 WO2017037793 A1 WO 2017037793A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- vibration
- frequency
- power
- power supply
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
Definitions
- the present invention relates to a power supply device using a vibration power generation element that generates power by external vibration.
- a technique for determining the abnormal state based on the vibration state of the monitoring target device obtained using the vibration power generation element is also disclosed (see, for example, Patent Document 1).
- predetermined wireless transmission is performed to the information processing device side using the power generated by the vibration power generation element, and the abnormal state of the monitored device is determined based on the reception interval by the information processing device. Is called.
- a vibration power generation element that converts vibration energy into electric power can generate power based on vibrations of motors and the like that are often used in factories and the like.
- the amount of power generated by such a vibration power generation element generally depends on the amplitude and frequency of external vibration, and it is not always possible to generate a sufficient amount as compared with the power consumption at the load. .
- using a wireless device to determine an abnormality of a monitored device can eliminate wiring in the system construction for the abnormality determination, and is extremely useful in terms of maintenance and cost. is there.
- wireless transmission for abnormality determination using the generated power of the vibration power generation element on the monitoring target device side having the vibration power generation element, it is not caused by the abnormality of the monitoring target device. If sufficient vibration power generation due to external vibration cannot be performed, abnormality monitoring and wireless transmission that should be originally performed are not performed, and an erroneous abnormality determination may be made regarding the monitoring target device.
- the present invention has been made in view of the above problems, and in a power supply device using a vibration power generation element that generates power by external vibration, the efficiency of vibration power generation by external vibration is improved and the amount of power to a power supply target The purpose is to increase as much as possible.
- the present invention is a power supply device that outputs the generated power from the power generation unit to a power supply target via the control unit, and the power generation unit is at least an external device from the outside of the power supply device.
- a plurality of DC power generation units comprising a combination of a vibration power generation element that performs vibration power generation by vibration and a rectifier circuit that rectifies the output of the vibration power generation element; and the plurality of DC power generation units are connected to the control unit.
- Unit output power connected in parallel and passing through the rectifier circuit in each DC power generation unit is input to the control unit in parallel.
- the power supply apparatus includes a plurality of DC power generation units each formed by a combination of a vibration power generation element that performs vibration power generation by external vibration and a rectifier circuit that rectifies the output thereof.
- the power generation capability of each vibration power generation element in the plurality of sets of DC power generation units for example, the ratio of the generated power to the vibration energy of the external vibration to be applied may all be the same. Alternatively, some vibration power generation The power generation capacity of the element may be different from the power generation capacity of other vibration power generation elements.
- the unit output power which is the DC output of the DC power generation unit including the vibration power generation element, is parallel to the control unit that controls the supply of the generated power by the power supply device to the power supply target. The input configuration is adopted.
- the control unit superimposes the unit output power from each DC power generation unit to generate the generated power, and can increase the power generation capability as a power supply device. Further, since the plurality of unit output powers to be superimposed are DC power, the generated power can be increased without canceling the waveforms as in the case of AC power. Moreover, as a power supply device, each DC power generation unit is controlled by a common control unit. That is, since the power consumed by the control unit for the output of generated power is shared by each DC power generation unit, the ratio of power loss due to the power consumption of the control unit in one DC power generation unit is reduced, and as a result As a power supply device, it is possible to realize power supply with high power generation efficiency.
- the number of DC power generation units included in the power supply device according to the present invention is not particularly limited.
- the number of DC power generation units is determined to such an extent that the power required for the power supply target can be covered.
- the configuration of the vibration power generation element is not limited to a specific configuration.
- each of the vibration power generation elements included in the plurality of DC power generation units has a peak value of the generated power of the vibration power generation element when the frequency of the external vibration is a predetermined frequency. It may be formed as follows. In other words, each vibration power generation element is configured to have a resonance frequency with respect to the external vibration. Therefore, when the external vibration is a vibration having a lot of resonance frequency components, the resonance The vibration power generation element corresponding to the frequency can realize more efficient vibration power generation.
- the plurality of DC power generation units may include at least two types of vibration power generation elements having different predetermined frequencies.
- the predetermined frequencies of the vibration power generation elements included in the plurality of DC power generation units are not necessarily different from each other.
- the predetermined frequency of the first vibration power generation element group including one or a plurality of vibration power generation elements may be different from the predetermined frequency of the second vibration power generation element group including other vibration power generation elements.
- another vibration power generation element group corresponding to a different predetermined frequency may be formed.
- the first frequency is the vibration power generation corresponding to the second frequency with respect to the second frequency.
- the transition of the amount of power generation with respect to the vibration frequency by the first power generation element that is a deviation from the half-value width of the transition of the power generation amount with respect to the vibration frequency by the second power generation element that is the element and that corresponds to the first frequency
- the first frequency and the second frequency may be set so that the transition related to the second power generation element overlaps with each other.
- the vibration frequency of the external vibration is changed in the transition of the power generation amount with respect to the vibration frequency of the external vibration in the power supply device. Even if it changes, the area
- the first frequency and the second frequency are set with a deviation equal to or greater than the half width, and the output generated by the first power generation element is rectified by the corresponding rectifier circuit, and the power generation by the second power generation element.
- the transition of the power supply device is formed by superimposing the output rectified by the corresponding rectifier circuit.
- the first frequency and the second frequency are set such that the first frequency is deviated from the second frequency by the half-value width of the transition with respect to the second power generation element.
- the first frequency and the second frequency are set as another method.
- Each of the frequencies may be a multiple of 50 Hz and 60 Hz.
- the power supply device according to the present invention realizes power supply to a power supply target using external vibration caused by either 50 Hz or 60 Hz, which is the frequency of the commercial power supply. Can do.
- each of the plurality of DC power generation units has a backflow prohibition circuit that prohibits a backflow in which a current flows into the rectification circuit side between the rectification circuit and the control unit. May be.
- a plurality of DC power generation units are connected in parallel to the control unit. And even if the vibration power generation element included in each DC power generation unit is performing vibration power generation by external vibration, not all vibration power generation elements necessarily output the same power generation amount. A potential difference is generated on the output terminal of the DC power generation unit. Therefore, if a backflow to the rectifier circuit side occurs due to the potential difference, as a result, the generated power as the power supply device decreases. Therefore, by providing the backflow prohibition circuit for prohibiting the backflow as described above between the rectifier circuit of each DC power generation unit and the control unit, it is possible to suppress a decrease in the generated power of the power supply device.
- the control unit may include a secondary battery that stores the generated power from the plurality of DC power generation units.
- the control unit can appropriately control the supply timing of the generated power to the power supply target by storing the generated power from each DC power generation unit in the secondary battery.
- the plurality of DC power generation units may be disposed on the flexible substrate.
- some DC power generation units among the plurality of DC power generation units are arranged on one surface of one flexible substrate, and the remaining DC power generation units among the plurality of DC power generation units
- the DC power generation unit may be disposed on the other surface of the flexible substrate. In this way, by arranging the DC power generation units on the respective surfaces with the flexible substrate interposed therebetween, a part of the DC power generation units and the remaining DC power generation units can be arranged at different positions. As a result, it is possible to form an environment in which external vibration is appropriately applied to each of some of the DC power generation units and the remaining DC power generation units, thereby realizing more efficient vibration power generation. .
- FIG. 1 shows a configuration of an electret group 1a and an electrode group 5a provided on each of a movable member 1 and a fixed member 5 in a vibration power generation element 10 that performs vibration power generation by external vibration.
- the electret and the electrode are arranged in a direction in which the relative movement direction of the movable member 1 with respect to the fixed member 5 is the X direction, and the directions in which the movable member 1 and the fixed member are opposed are the Z direction, the X direction, and The direction orthogonal to the Z direction is defined as the Y direction.
- FIG. 1 is a cross-sectional view of the vibration power generation element 10 taken along the ZX plane.
- the movable member 1 and the fixed member 5 are housed in a housing 11 shown in FIG.
- the movable member 1 and the fixed member 5 are configured to be relatively movable while maintaining a state of facing each other, and a support structure of the movable member 1 that enables the relative movement will be described later.
- the fixing member 5 is fixed to the housing 11.
- both ends of the movable member 1 are respectively connected to the housing 11 by springs 14 (see FIG. 2 and the like), the movable member 1 itself is a fixed member fixed to the casing 11 by external vibration. 5 is configured to reciprocate (vibrate) relative to the other.
- the movable member 1 and the fixed member 5 are configured to be relatively movable while being opposed to each other and maintaining a parallel state to each other, that is, maintaining a constant interval between the opposing surfaces. ing. Thereby, it becomes possible to generate an electrical signal for the pair of electrodes 6 and 7 on the fixed member 5 side by the action of the electret 2 on the movable member 1 side. Since this electric signal generation principle is a conventional technique, a detailed description thereof is omitted in this specification.
- an electret group 1a is formed on a movable substrate 1b.
- the electret group 1a includes a plurality of electrets 2 provided on the surface of the movable member 1 facing the fixed member 5 and formed on a conductor, respectively, and a plurality of guard electrodes 4 that are not grounded.
- the electrets 2 and the guard electrodes 4 are arranged alternately along the relative movement direction (X direction) of the movable member 1 with respect to the fixed member 5.
- the plurality of electrets 2 and the plurality of guard electrodes 4 are each formed in a comb shape, and the respective electrets 2 and the respective guard electrodes 4 are arranged in a nested manner.
- FIG. 1 is a ZX sectional view. Therefore, the electret 2 and the guard electrode 4 are illustrated as being alternately arranged.
- the electret 2 is configured to hold a negative charge semipermanently.
- the guard electrode 4 employs a configuration in which the guard electrode 4 is not grounded as described above, but may be configured to be grounded instead.
- an electrode group 5a is formed on a fixed substrate 5b.
- the electrode group 5a is provided on the surface of the fixed member 5 facing the movable member 1, and includes a plurality of small electrode groups each including a pair of electrodes (first electrode 6 and second electrode 7).
- the relative position fluctuation (vibration) between the electrodes 6 and 7 due to the relative position fluctuation of the movable member 1 having the electret 2 with respect to the fixed member 5 due to external vibration. ) Is generated and power is generated.
- the generated power is rectified by the rectifier circuit 20.
- FIG. 2 is a top view (top view in the XY plane) of the vibration power generation element 10, and FIG. 3 is a cross-sectional view along AA in FIG. 2 (cross-sectional view in the ZY plane).
- FIG. 2 shows a state in which the upper surface 11c of the housing 11 is removed and the inside is visualized from above.
- the fixed member 5 including the electrode group 5 a and the fixed substrate 5 b and the movable member 1 including the electret group 1 a and the movable substrate 1 b are accommodated in the casing 11 of the vibration power generation element 10. .
- the casing 11 has a substantially rectangular parallelepiped shape, and includes a top surface 11c and a bottom surface 11b, a pair of side surfaces 11a extending in the X direction that is the relative movement direction of the movable member 1, and a side surface orthogonal to the relative movement direction. And has a pair of side surfaces 11d extending in the Y direction.
- the fixing member 5 is being fixed to the bottom face 11b of the housing
- the movable member 1 is supported so as to be able to move relative to the fixed member 5 via a plurality of supporting steel balls 12.
- the movable member 1 is further arranged on the plurality of supporting steel balls 12 arranged on the inner wall surface of the bottom surface 11b.
- the distance between the electret group 1a on the movable member 1 side and the electrode group 5a of the fixed member 5 is a predetermined value suitable for vibration power generation. Stipulated in distance.
- a further supporting steel ball 13 is disposed between the movable member 1 and the inner wall surface of the side surface 11a.
- End side projections 1d are provided at both ends of the side surface of the movable substrate 1b facing the inner wall surface of the side surface 11a, and a central projection 1c is provided at the center of the side surface of the movable substrate 1b.
- a support groove 1e in which the support steel ball 13 can be disposed is formed. Therefore, as shown in FIG. 2, two support grooves 1 e are formed on each of the left and right sides of the movable member 1, and the support steel balls 13 are disposed in each.
- a spring 14 is disposed between the movable member 1 and each of the two side surfaces 11d of the housing 11 via a connection portion 15 provided substantially at the center in the XY plane of the movable member 1.
- the spring 14 is connected to a substantially central portion of the side surface 11 d, and the elastic force by each spring 14 is arranged to act in the relative movement direction (X direction). Due to the elastic force of the spring 14, the movable member 1 that has received external vibration reciprocates within the housing 11, thereby realizing efficient vibration power generation.
- the movable member 1 is independently supported by the support steel ball 12 for the bottom surface 11b and by the support steel ball 13 for the side surface 11a.
- a resonance phenomenon occurs in which the amplitude of the movable member 1 with respect to the fixed member 5 becomes maximum when the frequency of the external vibration is a predetermined frequency due to its physical characteristics.
- the amplitude of the movable member 1 is maximized, the number of electrodes that the electret on the movable member 1 side crosses per unit time increases, and thus the power generation amount of the vibration power generation element 10 increases.
- the resonance frequency of the movable member 1 in the vibration power generation element 10 approaches or coincides with the frequency of external vibration as much as possible. It is preferable to do this.
- the resonance frequency of the vibration power generation element 10 can be set to a desired frequency by adjusting the weight of the movable member 1 and the spring constant of the spring 14.
- FIG.4 shows a schematic configuration of the power supply device 60 and the sensor module 70
- FIG. 5 shows a circuit configuration corresponding to the power supply device 60 shown in FIG.
- the sensor module 70 includes a power supply device 60 and a load 50 that operates by receiving power supply from the power supply device. This load 50 corresponds to a power supply target in the present invention.
- the power supply device 60 includes a plurality of sets (four sets in this embodiment) of the DC power generation unit 30 including the vibration power generation element 10, the rectification / smoothing circuit 20, and the backflow prohibition circuit 21.
- the reference number thereof is 30.
- subscripts (a to d) corresponding to the respective DC power generation units are used. Reference is made to FIG. The same applies to the reference numerals of the vibration power generation element 10, the rectification / smoothing circuit 20, and the backflow prohibition circuit 21 included in the DC power generation unit 30.
- the generated power of the vibration power generation element 10 due to external vibration is AC power from the configuration of the vibration power generation element 10 shown in FIG. Therefore, in order to convert the generated power into DC power, the generated power is passed through the rectifying / smoothing circuit 20.
- the rectification / smoothing circuit 20a of the DC power generation unit 30a is formed by a full bridge circuit including four diodes D1 to D4 and a capacitor C1, and the rectification / smoothing circuit of the DC power generation unit 30b.
- the rectifying / smoothing circuit 20d of the power generation unit 30d is formed by a full bridge circuit including four diodes D13 to D16 and a capacitor C4.
- the generated power that has passed through the rectification / smoothing circuit 20 becomes the output of the DC power generation unit 30 through the backflow prohibition circuit 21.
- the backflow prohibiting circuit 21a of the DC power generation unit 30a is formed by a diode DA1
- the backflow prohibiting circuit 21b of the DC power generation unit 30b is formed by a diode DA2
- the backflow of the DC power generation unit 30c is formed of a diode DA3
- the reverse current prohibition circuit 21d of the DC power generation unit 30d is formed of a diode DA4.
- these four sets of DC power generation units 30 are connected to the control unit 40 in parallel. That is, when external vibration is applied to the sensor module 70 including the power supply device 60, vibration power generation is performed by the vibration power generation element 10 in each DC power generation unit 30, and the generated power is rectified and smoothed by the rectifying / smoothing circuit 20, backflow.
- the electric power of each DC power generation unit 30 and the control unit 40 so that the power (corresponding to the unit output power in the present invention) that is output from the DC power generation unit 30 through the prohibition circuit 21 is input to the control unit 40 in an overlapping manner. A proper connection relationship is set.
- the control unit 40 is a functional unit for controlling the power supply of the power supply device 60, that is, the supply of the generated power by each vibration power generation element 10 to the load 50, specifically, a predetermined power control circuit 41. Or a microcomputer (not shown).
- the control unit 40 includes a secondary battery 42, and stores the unit output power from each DC power generation unit 30 in the secondary battery 42, or loads the power stored in the secondary battery 42 with a load 50. The control relating to the storage / discharge to be performed is performed.
- the load 50 is driven by the power supplied from the power supply device 60 as described above, and specifically includes the wireless communication device 51 and the acceleration sensor 52.
- the acceleration sensor 52 is a sensor that detects the acceleration generated in the measurement object on which the sensor module 70 is disposed, and the detection data is transmitted to the reception device outside the sensor module by the wireless communication device 51.
- the power supply device 60 performs vibration power generation by external vibration, so that the acceleration of the measurement object on which the sensor module 70 is disposed can be obtained without receiving power supply from the outside of the sensor module. Data transmission for detection and collection of the detection data is realized.
- the acceleration sensor 52 is exemplified as the sensor included in the sensor module 70.
- the present invention is not limited to the acceleration sensor, and other sensors, for example, according to the purpose of data collection, for example, A pressure sensor or a temperature sensor may be mounted on the sensor module 70 together with the acceleration sensor 52 or instead of the acceleration sensor 52.
- FIG. 6 shows the transition of the power generation amount by the power supply device 60 with respect to the vibration frequency of the external vibration (hereinafter referred to as “power generation transition”).
- the power generation amount transition shown in FIG. 6 is for the case where the acceleration of the external vibration is 0.15G.
- the power generation amount transition of the power supply device 60 is indicated by the line L1
- the power generation amount transition of the power supply device having only one set of the DC power generation unit 30 is indicated by the line L2.
- the spring constant of the spring 14 of the vibration power generation element 10 is adjusted so that all the resonance frequencies of the vibration power generation element 10 in the DC power generation unit 30 are the same (for example, 29.5 Hz). Yes.
- the resonance frequency of the vibration power generation element of the power generation amount transition indicated by the line L2 is also 29.5 Hz.
- the four DC power generation units 30 are connected in parallel to the control unit 40, so that the external vibration frequency is in the vicinity of the resonance frequency of 29.5 Hz. (For example, 29.5 Hz to 30.1 Hz), the generated power of each vibration power generation element 10 is superimposed, and the power generation amount as the power supply device 60 is 4 as compared with the case where the DC power generation unit is one set. The output is increased to about twice. As a result, the power supply device 60 can supply a sufficient amount of power to the power consumed by the wireless communication device 51 and the acceleration sensor 52 at the load 50.
- the power generation by the power supply device 60 is also performed.
- the amount is larger than that in the case of one set of DC power generation units, but the ratio is more than four times that in the case of a set of DC power generation units. This is because, in the power supply device 60, one set of control units 40 controls the four sets of DC power generation units 30, and the load of the control unit 40 is distributed among the units.
- the proportion of the power consumed by the control unit 40 in the unit output power of the DC power generation unit is Because it grows.
- the power generated by the vibration power generation element 10 is lower than that in the vicinity of the external vibration frequency. Therefore, in the case indicated by the line L2, the consumption of the control unit 40 The effect of electric power is increased, and the result shown in FIG. 6 is obtained.
- the power supply device 60 employs a configuration in which four sets of DC power generation units 30 are connected in parallel to the control unit 40, thereby increasing the power generation amount of the power supply device 60 and reducing the external vibration frequency. Even when the resonant frequency of the vibration power generation element 10 is slightly deviated, an efficient direct current output is realized. Accordingly, from the viewpoint of driving the load 50, it is possible to expand the frequency region of external vibration that can be handled from the vicinity region to the peripheral region, and to increase the power generation amount itself.
- the secondary battery 42 is provided in the control unit 40, but the secondary battery is not necessarily required.
- the unit output power of each DC power generation unit 30 is supplied to the load 50 as it is.
- the backflow prohibition circuit 21 is provided in each DC power generation unit 30, installation of the backflow prohibition circuit 21 may be avoided because the influence of the backflow on the amount of power generation can be ignored.
- each vibration power generation is performed so that the resonance frequencies of the vibration power generation elements 10a to 10d included in the four sets of DC power generation units 30 are 27.5 Hz, 28.5 Hz, 29.5 Hz, and 30.5 Hz, respectively.
- the spring constant of the spring 14 of the element 10 is adjusted.
- the power generation amount transition of the power supply device 60 in this case is indicated by a line L3 in FIG.
- the power generation amount transition (that is, the power generation amount transition indicated by the line L2 in FIG. 6) of the power supply apparatus having only one set of the DC power generation unit 30 is indicated by the line L4 as a reference.
- the power generation amount transition shown in FIG. 7 is for the case where the acceleration of external vibration is 0.15G.
- the resonance frequency of the vibration power generation elements 10a to 10d is set with reference to the vibration power generation element 10c having a resonance frequency of 29.5 Hz. Specifically, based on the fact that the half-value width of the power generation amount of the vibration power generation element 10c alone having a resonance frequency of 29.5 Hz (that is, the transition indicated by the line L4) is about 1 Hz, from the reference of 29.5 Hz The resonance frequency of the vibration power generation elements 10a, 10b, and 10d is set to 27.5 Hz, 28.5 Hz, and 30.5 Hz as described above by shifting by 1 Hz.
- the unit output power of the four DC power generation units 30 is suitably overlapped in the frequency domain, and thus the power generation amount in the power generation amount transition of the power supply device 60 is relatively high. It becomes possible to acquire as large a frequency range as possible.
- the frequency region where the power generation amount exceeds 100 ⁇ W can be determined as approximately 27.5 Hz to 31.0 Hz.
- the power generation amount transition indicated by the line L1 in FIG. 6 that is, the transition when the resonance frequencies of the vibration power generation elements 10a to 10d are all 29.5 Hz
- the power generation amount transition indicated by the line L3 in FIG. That is, transitions when the resonant frequencies of the vibration power generation elements 10a to 10d are 27.5 Hz, 28.5 Hz, 29.5 Hz, and 30.5 Hz, respectively, are indicated by lines L5 and L6 in FIG.
- the acceleration of the external vibration is 0.03 G, that is, when the acceleration in FIG.
- the acceleration of 0.03G external vibration is set as the minimum acceleration at which the power generation device 60 can generate vibration and power.
- the power generation amount transitions indicated by the lines L5 and L6 in the former case (the case indicated by the line L5), if the external vibration frequency is close to the set resonance frequency, a relatively large power generation amount is obtained. Although it can be obtained, the amount of power generation is reduced when the external vibration frequency is separated from the resonance frequency.
- the power generation amount in the latter case (the case indicated by line L6), the power generation amount is larger than the power generation amount in the case of one DC power generation unit, although the peak value of the power generation amount is lower than the former in a relatively wide frequency range as described above. The amount can be obtained, and the load 50 can be driven stably. This tendency is the same even when the acceleration of the external vibration is minimum as shown in FIG.
- whether to adopt the former configuration or the latter configuration for the power supply device 60 may be appropriately selected according to the frequency of external vibration applied to the power supply device 60.
- a specific frequency component is relatively high, for example, about two vibration power generation elements among four vibration power generation elements
- frequencies shifted from the specific frequency by the half-value width may be set as the respective resonance frequencies.
- the resonance frequency of the vibration power generation elements 10a and 10b is set to 29.5 Hz
- the resonance frequency of the vibration power generation elements 10c and 10d is set to 28.5 Hz and 30.5 Hz. In this way, efficient vibration power generation can be realized.
- the resonance frequency of the vibration power generation element 10 in each DC power generation unit 30 included in the power supply device 60 is determined in consideration of the half width of the power generation amount transition in the case of one vibration power generation element.
- the resonance frequency of the vibration power generation element 10 may be determined based on 50 Hz and 60 Hz as the frequencies of the commercial power source.
- the vibration generated from a motor or the like driven by the power supplied from the commercial power supply, that is, the vibration that can be external vibration applied to the power supply device 60 includes the one affected by the frequency of the commercial power supply. Therefore, by determining the resonance frequency of the vibration power generation element 10 based on 50 Hz and 60 Hz, which are the frequencies of the commercial power supply, efficient vibration power generation can be realized regardless of the frequency of the commercial power supply. Is possible.
- the resonance frequency of the vibration power generation elements 10a and 10b in each DC power generation unit 30 included in the power supply device 60 is determined based on 60 Hz
- the resonance frequency of the vibration power generation elements 10c and 10d is determined based on 50 Hz.
- the former resonance frequency and the latter resonance frequency may be multiples of 60 Hz and 50 Hz, respectively.
- the former may be 30 Hz and the latter may be 25 Hz.
- the former and latter combinations may be 15 Hz, 12.5 Hz, 60 Hz, 50 Hz, 120 Hz, and 100 Hz, respectively.
- FIG. 10 shows a state in which the sensor module 70 is installed in the acceleration detection target object 100 by the acceleration sensor 52.
- a step is formed as shown in FIG. It is difficult for the vibration power generation element 30 to perform efficient vibration power generation unless external vibration is appropriately applied to the vibration power generation element 30. Therefore, when the sensor module 70 is installed on an object having such a step, each vibration power generation element 30 comes into contact with the object 100 so that external vibrations can be appropriately propagated from the object 100.
- the sensor module 70 is formed.
- the DC power generation units 30 including the vibration power generation elements 10 are respectively arranged on the upper surface side and the lower surface side of the so-called flexible substrate 80 whose shape is variable.
- DC power generation units 30a and 30b corresponding to the upper steps of the object 100 are disposed on the upper surface side of the flexible substrate 80, and DC power generation units corresponding to the lower steps of the object 100 are disposed on the lower surface side of the flexible substrate 80.
- 30c and 30d are arranged.
- Each DC power generation unit 30, the control unit 40, and the load 50 are wired on the surface or inside of the flexible substrate 80 to form the electrical configuration shown in FIG.
- the direct current is adjusted to the respective vibration frequency.
- the resonance frequency of the vibration power generation elements 10a and 10b in the power generation units 30a and 30b and the resonance frequency of the vibration power generation elements 10c and 10d in the DC power generation units 30c and 30d may be set.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
The present invention is a power supply device for outputting generated power from a power generation unit via a control unit to an object to which power is to be supplied, wherein: the power generation unit includes a plurality of DC power generation units each composed of a combination of at least a vibration power generation element for performing vibration power generation due to external vibration from outside the power supply device and a rectifying circuit for rectifying the output of the vibration power generation element; the plurality of DC power generation units are connected in parallel to the control unit; and in the individual DC power generation units, unit output powers that have passed through the rectifying circuit are input in parallel to the control unit. In this manner, the efficiency of vibration power generation due to external vibration is enhanced, and the amount of power to the object to which power is to be supplied is increased as much as possible.
Description
本発明は、外部振動により発電を行う振動発電素子を利用した電源装置に関する。
The present invention relates to a power supply device using a vibration power generation element that generates power by external vibration.
昨今の省エネルギーの流れから、化石燃料等に依存しない日常的に存在する環境エネルギーが注目されている。環境エネルギーとして太陽光や風力等による発電エネルギーは広く知られているが、これらに劣らないエネルギー密度を有する環境エネルギーとして、日常周囲に存在する振動エネルギーを挙げることができる。そして、この振動エネルギーを利用して発電を行う振動発電素子が開発されており、その一例として、発電装置には電荷を半永久的に保持できるエレクトレットが広く利用されている。
From the recent trend of energy conservation, environmental energy that exists on a daily basis that does not depend on fossil fuels has attracted attention. As the environmental energy, power generation energy by sunlight, wind power or the like is widely known, but as the environmental energy having an energy density not inferior to these, vibration energy existing around the daily environment can be mentioned. And the vibration power generation element which generates electric power using this vibration energy is developed, As an example, the electret which can hold | maintain an electric charge semipermanently is widely used for the electric power generating apparatus.
また、振動発電素子を用いて得られる監視対象機器の振動状態に基づいて、その異常状態を判断する技術も開示されている(例えば、特許文献1を参照)。当該技術では、振動発電素子で発電された電力を利用して情報処理装置側へ所定の無線送信を行い、そして該情報処理装置によるその受信間隔に基づいて監視対象機器の異常状態の判断が行われる。
In addition, a technique for determining the abnormal state based on the vibration state of the monitoring target device obtained using the vibration power generation element is also disclosed (see, for example, Patent Document 1). In this technology, predetermined wireless transmission is performed to the information processing device side using the power generated by the vibration power generation element, and the abnormal state of the monitored device is determined based on the reception interval by the information processing device. Is called.
振動エネルギーを電力に変換する振動発電素子は、工場等で多く使用されているモーター等の振動に基づいて発電を行うことが可能であるため、そのような振動が多く存在する場所では、実質的に外部からの電力供給を行うことなく、所定のセンシングを行うセンサ等の負荷を長期にわたって駆動することが可能となる。一方で、このような振動発電素子による発電量は、外部振動の振幅や周波数に依存するのが一般であり、負荷での消費電力と比較して必ずしも十分な量を常に発電できるとは限らない。
A vibration power generation element that converts vibration energy into electric power can generate power based on vibrations of motors and the like that are often used in factories and the like. In addition, it is possible to drive a load such as a sensor that performs predetermined sensing over a long period of time without externally supplying power. On the other hand, the amount of power generated by such a vibration power generation element generally depends on the amplitude and frequency of external vibration, and it is not always possible to generate a sufficient amount as compared with the power consumption at the load. .
上記の従来技術のように、無線を利用して監視対象機器の異常判断を行うことは、その異常判定のためのシステム構築において配線を省略することができ、メンテナンス面やコスト面で極めて有用である。しかし、一方で、振動発電素子の発電電力を利用して異常判断のための無線送信を、振動発電素子を有する監視対象装置側で行う場合、監視対象機器の異常に起因するのではなく、そもそも外部振動による十分な振動発電が行えなくなると本来行うべき異常監視や無線送信が行われなくなり、監視対象装置に関し誤った異常判断を下してしまう恐れもある。
As in the above prior art, using a wireless device to determine an abnormality of a monitored device can eliminate wiring in the system construction for the abnormality determination, and is extremely useful in terms of maintenance and cost. is there. However, on the other hand, when performing wireless transmission for abnormality determination using the generated power of the vibration power generation element on the monitoring target device side having the vibration power generation element, it is not caused by the abnormality of the monitoring target device. If sufficient vibration power generation due to external vibration cannot be performed, abnormality monitoring and wireless transmission that should be originally performed are not performed, and an erroneous abnormality determination may be made regarding the monitoring target device.
本発明は、上記問題に鑑みてなされたものであり、外部振動により発電を行う振動発電素子を利用した電源装置において、外部振動による振動発電の効率を向上させるとともに、電力供給対象への電力量を可及的に増やすことを目的とする。
The present invention has been made in view of the above problems, and in a power supply device using a vibration power generation element that generates power by external vibration, the efficiency of vibration power generation by external vibration is improved and the amount of power to a power supply target The purpose is to increase as much as possible.
本発明においては、上記課題を解決するために、電源装置からの電力出力を制御する制御部に対して、振動発電素子とそれに対応する整流回路を複数組接続する構成を採用した。これにより、可及的に多くの発電電力が制御部にまとめられることになり、電源装置における振動発電効率を高めることが可能となる。
In the present invention, in order to solve the above-described problems, a configuration in which a plurality of sets of vibration power generation elements and corresponding rectifier circuits are connected to the control unit that controls the power output from the power supply device. Accordingly, as much generated power as possible is collected in the control unit, and the vibration power generation efficiency in the power supply device can be increased.
そこで、詳細には、本発明は、制御部を介して、発電部からの発電電力を電力供給対象へ出力する電源装置であって、前記発電部は、少なくとも、前記電源装置の外部からの外部振動によって振動発電を行う振動発電素子と、該振動発電素子の出力を整流する整流回路との組合せからなる直流発電ユニットを複数組含み、そして、前記複数の直流発電ユニットは前記制御部に対して並列に接続され、各直流発電ユニットにおいて前記整流回路を経たユニット出力電力が該制御部に並列に入力される。
Therefore, in detail, the present invention is a power supply device that outputs the generated power from the power generation unit to a power supply target via the control unit, and the power generation unit is at least an external device from the outside of the power supply device. A plurality of DC power generation units comprising a combination of a vibration power generation element that performs vibration power generation by vibration and a rectifier circuit that rectifies the output of the vibration power generation element; and the plurality of DC power generation units are connected to the control unit. Unit output power connected in parallel and passing through the rectifier circuit in each DC power generation unit is input to the control unit in parallel.
上記に示す本発明に係る電源装置は、外部振動によって振動発電を行う振動発電素子とその出力を整流する整流回路との組合せからなる直流発電ユニットを複数組含む。当該複数組の直流発電ユニットにおける各振動発電素子の発電能力、例えば、付与される外部振動の振動エネルギーに対する発電電力の比率等は全て同一であってもよく、別法として、一部の振動発電素子の発電能力は他の振動発電素子の発電能力と異なっていてもよい。本発明において注目すべきは、振動発電素子を含む直流発電ユニットの直流出力であるユニット出力電力が、それぞれ、電源装置による発電電力の電力供給対象への供給を制御する制御部に対して並列に入力される構成が採用されていることである。
The power supply apparatus according to the present invention described above includes a plurality of DC power generation units each formed by a combination of a vibration power generation element that performs vibration power generation by external vibration and a rectifier circuit that rectifies the output thereof. The power generation capability of each vibration power generation element in the plurality of sets of DC power generation units, for example, the ratio of the generated power to the vibration energy of the external vibration to be applied may all be the same. Alternatively, some vibration power generation The power generation capacity of the element may be different from the power generation capacity of other vibration power generation elements. It should be noted in the present invention that the unit output power, which is the DC output of the DC power generation unit including the vibration power generation element, is parallel to the control unit that controls the supply of the generated power by the power supply device to the power supply target. The input configuration is adopted.
このような構成を採用することで、制御部は、各直流発電ユニットからのユニット出力電力を重ねて発電電力とすることになり、電源装置としての発電能力を増大させることができる。また、重ねられる複数のユニット出力電力は直流電力であるため、交流電力のように波形を打ち消しあうことなく発電電力の増大を図ることができる。また、電源装置としては、各直流発電ユニットが共通する制御部によって制御されることになる。すなわち、発電電力の出力のために制御部が消費する電力を各直流発電ユニットで分担する形になるため、一つの直流発電ユニットにおける制御部の消費電力による電力ロスの比率を低減させ、結果として、電源装置としては発電効率の高い電力供給を実現することが可能となる。なお、本発明に係る電源装置において含まれる直流発電ユニットの数は、特に限定されない。好ましくは、電力供給対象において必要とされる電力が賄える程度に、直流発電ユニットの数が決定される。また、振動発電素子の構成は、特定の構成に限定されない。
By adopting such a configuration, the control unit superimposes the unit output power from each DC power generation unit to generate the generated power, and can increase the power generation capability as a power supply device. Further, since the plurality of unit output powers to be superimposed are DC power, the generated power can be increased without canceling the waveforms as in the case of AC power. Moreover, as a power supply device, each DC power generation unit is controlled by a common control unit. That is, since the power consumed by the control unit for the output of generated power is shared by each DC power generation unit, the ratio of power loss due to the power consumption of the control unit in one DC power generation unit is reduced, and as a result As a power supply device, it is possible to realize power supply with high power generation efficiency. The number of DC power generation units included in the power supply device according to the present invention is not particularly limited. Preferably, the number of DC power generation units is determined to such an extent that the power required for the power supply target can be covered. Further, the configuration of the vibration power generation element is not limited to a specific configuration.
また、上記の電源装置において、前記複数の直流発電ユニットに含まれる前記振動発電素子のそれぞれは、前記外部振動の周波数が所定周波数であるときに、該振動発電素子の発電電力がピーク値を迎えるように形成されてもよい。換言すれば、各振動発電素子においては、外部振動に対して共振周波数を有するように構成されるものであり、以て、外部振動が共振周波数成分を多く有する振動である場合には、当該共振周波数に対応する振動発電素子は、より効率的な振動発電を実現することが可能となる。
Further, in the power supply device described above, each of the vibration power generation elements included in the plurality of DC power generation units has a peak value of the generated power of the vibration power generation element when the frequency of the external vibration is a predetermined frequency. It may be formed as follows. In other words, each vibration power generation element is configured to have a resonance frequency with respect to the external vibration. Therefore, when the external vibration is a vibration having a lot of resonance frequency components, the resonance The vibration power generation element corresponding to the frequency can realize more efficient vibration power generation.
そして、このように振動発電素子が構成される場合において、前記複数の直流発電ユニットには、前記所定周波数が異なる少なくとも2種類の前記振動発電素子が含まれてもよい。この結果、外部振動の振動周波数が変化した場合や、外部振動に複数の振動周波数成分が含まれる場合等に、効率的な振動発電を実現することが可能となる。なお、本発明に係る電源装置においては、所定周波数が異なる少なくとも2種類の振動発電素子が含まれることから、複数の直流発電ユニットにおいて含まれる振動発電素子の所定周波数が、必ずしも全て互いに異なる必要はなく、例えば、一又は複数の振動発電素子を含む第1の振動発電素子群の所定周波数と、その他の振動発電素子を含む第2振動発電素子群の所定周波数が異なっていてもよく、別法として、更に異なる所定周波数に対応する別の振動発電素子群が形成されてもよい。
In the case where the vibration power generation element is configured as described above, the plurality of DC power generation units may include at least two types of vibration power generation elements having different predetermined frequencies. As a result, it is possible to realize efficient vibration power generation when the vibration frequency of the external vibration changes or when the external vibration includes a plurality of vibration frequency components. In the power supply device according to the present invention, since at least two types of vibration power generation elements having different predetermined frequencies are included, the predetermined frequencies of the vibration power generation elements included in the plurality of DC power generation units are not necessarily different from each other. For example, the predetermined frequency of the first vibration power generation element group including one or a plurality of vibration power generation elements may be different from the predetermined frequency of the second vibration power generation element group including other vibration power generation elements. As another example, another vibration power generation element group corresponding to a different predetermined frequency may be formed.
また、上記の電源装置において、前記異なる所定周波数に、第1周波数と第2周波数が含まれる場合、前記第1周波数は、前記第2周波数に対して、該第2周波数に対応する前記振動発電素子である第2発電素子による、振動周波数に対する発電量の推移の半値幅以上ずれ、且つ、該第1周波数に対応する前記振動発電素子である第1発電素子による、振動周波数に対する発電量の推移と、該第2発電素子に関する該推移とは互いに重なるように、該第1周波数と該第2周波数は設定されてもよい。このように第1発電素子の第1周波数と第2発電素子の第2周波数の相対関係が設定されると、電源装置における外部振動の振動周波数に対する発電量の推移において、外部振動の振動周波数が変化しても発電量が安定する領域を広く確保することができる。これは、第1周波数と第2周波数とが上記半値幅以上のずれをもって設定された上で、第1発電素子による発電電力が対応する整流回路によって整流された出力と、第2発電素子による発電電力が対応する整流回路によって整流された出力とが重ねられて、電源装置の当該推移が形成されるからである。特に好ましくは、前記第1周波数は、前記第2周波数に対して、前記第2発電素子に関する前記推移の半値幅ずれるように、該第1周波数と該第2周波数は設定される。
In the above power supply apparatus, when the different predetermined frequencies include a first frequency and a second frequency, the first frequency is the vibration power generation corresponding to the second frequency with respect to the second frequency. The transition of the amount of power generation with respect to the vibration frequency by the first power generation element that is a deviation from the half-value width of the transition of the power generation amount with respect to the vibration frequency by the second power generation element that is the element and that corresponds to the first frequency Further, the first frequency and the second frequency may be set so that the transition related to the second power generation element overlaps with each other. When the relative relationship between the first frequency of the first power generation element and the second frequency of the second power generation element is set as described above, the vibration frequency of the external vibration is changed in the transition of the power generation amount with respect to the vibration frequency of the external vibration in the power supply device. Even if it changes, the area | region where electric power generation amount is stabilized can be ensured widely. This is because the first frequency and the second frequency are set with a deviation equal to or greater than the half width, and the output generated by the first power generation element is rectified by the corresponding rectifier circuit, and the power generation by the second power generation element. This is because the transition of the power supply device is formed by superimposing the output rectified by the corresponding rectifier circuit. Particularly preferably, the first frequency and the second frequency are set such that the first frequency is deviated from the second frequency by the half-value width of the transition with respect to the second power generation element.
ここで、上記の電源装置において、前記異なる所定周波数に第1周波数と第2周波数が含まれる場合の、第1周波数と第2周波数の設定手法の別法として、前記第1周波数及び前記第2周波数のそれぞれは、50Hz及び60Hzの倍数とされてもよい。このように構成されることで、本発明に係る電源装置は、商用電源の周波数である50Hz及び60Hzの何れかに起因した外部振動を利用して、電力供給対象への電力供給を実現することができる。
Here, in the above power supply apparatus, as another method of setting the first frequency and the second frequency when the different predetermined frequencies include the first frequency and the second frequency, the first frequency and the second frequency are set as another method. Each of the frequencies may be a multiple of 50 Hz and 60 Hz. With this configuration, the power supply device according to the present invention realizes power supply to a power supply target using external vibration caused by either 50 Hz or 60 Hz, which is the frequency of the commercial power supply. Can do.
ここで、上述までの電源装置において、前記複数の直流発電ユニットのそれぞれは、前記整流回路と前記制御部との間に、電流が該整流回路側に流れ込む逆流を禁止する逆流禁止回路を有してもよい。上記の通り、本発明に係る電源装置においては、制御部に対して複数の直流発電ユニットが並列に接続される。そして、各直流発電ユニットに含まれる振動発電素子は、外部振動による振動発電を行っている場合でも、必ずしもすべての振動発電素子が同じ発電量を出力するとは限らず、その発電量の差によって各直流発電ユニットの出力端子上に電位差が生じる。そのため、その電位差によって整流回路側への逆流が生じてしまうと、結果として電源装置としての発電電力が低下してしまうことになる。そこで、上記のように当該逆流を禁止するための逆流禁止回路を、各直流発電ユニットの整流回路と制御部との間に設けることで、電源装置の発電電力低下を抑制することができる。
Here, in the power supply device described above, each of the plurality of DC power generation units has a backflow prohibition circuit that prohibits a backflow in which a current flows into the rectification circuit side between the rectification circuit and the control unit. May be. As described above, in the power supply device according to the present invention, a plurality of DC power generation units are connected in parallel to the control unit. And even if the vibration power generation element included in each DC power generation unit is performing vibration power generation by external vibration, not all vibration power generation elements necessarily output the same power generation amount. A potential difference is generated on the output terminal of the DC power generation unit. Therefore, if a backflow to the rectifier circuit side occurs due to the potential difference, as a result, the generated power as the power supply device decreases. Therefore, by providing the backflow prohibition circuit for prohibiting the backflow as described above between the rectifier circuit of each DC power generation unit and the control unit, it is possible to suppress a decrease in the generated power of the power supply device.
ここで、上述までの電源装置において、前記制御部は、前記複数の直流発電ユニットからの発電電力を蓄電する二次電池を有してもよい。これにより制御部は、各直流発電ユニットからの発電電力を二次電池に蓄電することで、電力供給対象への発電電力の供給時期を好適に制御することが可能となる。
Here, in the power supply device described above, the control unit may include a secondary battery that stores the generated power from the plurality of DC power generation units. Thus, the control unit can appropriately control the supply timing of the generated power to the power supply target by storing the generated power from each DC power generation unit in the secondary battery.
また、上述までの電源装置において、前記複数の直流発電ユニットのうち少なくとも一部の直流発電ユニットが、フレキシブル基板上に配置されてもよい。このように直流発電ユニットがフレキシブル基板を介して接続されることで、適切に外部振動が付与され、効率的な振動発電が実現可能となる。また、フレキシブル基板上の配置の一例として、前記複数の直流発電ユニットのうち一部の直流発電ユニットは、一つのフレキシブル基板の一方の面上に配置され、該複数の直流発電ユニットのうち残りの直流発電ユニットは、該フレキシブル基板の他方の面上に配置されてもよい。このようにフレキシブル基板を挟んでそれぞれの面上に直流発電ユニットを配置することで、一部の直流発電ユニットと残りの直流発電ユニットとを、それぞれ異なる位置に配置できる。その結果、一部の直流発電ユニットと残りの直流発電ユニットのそれぞれに対して適切に外部振動が付与される環境を形成でき、以て、より効率的な振動発電を実現することが可能となる。
In the power supply device described above, at least some of the plurality of DC power generation units may be disposed on the flexible substrate. Thus, by connecting the DC power generation unit via the flexible substrate, external vibration is appropriately applied, and efficient vibration power generation can be realized. In addition, as an example of the arrangement on the flexible substrate, some DC power generation units among the plurality of DC power generation units are arranged on one surface of one flexible substrate, and the remaining DC power generation units among the plurality of DC power generation units The DC power generation unit may be disposed on the other surface of the flexible substrate. In this way, by arranging the DC power generation units on the respective surfaces with the flexible substrate interposed therebetween, a part of the DC power generation units and the remaining DC power generation units can be arranged at different positions. As a result, it is possible to form an environment in which external vibration is appropriately applied to each of some of the DC power generation units and the remaining DC power generation units, thereby realizing more efficient vibration power generation. .
外部振動により発電を行う振動発電素子を利用した電源装置において、外部振動による振動発電の効率を向上させるとともに、電力供給対象への電力量を可及的に増やす。
In a power supply device using a vibration power generation element that generates power by external vibration, the efficiency of vibration power generation by external vibration is improved and the amount of power to the power supply target is increased as much as possible.
以下に、図面を参照して、本発明の実施形態に係る振動発電素子について説明する。なお、以下の実施形態の構成は例示であり、本発明はこの実施の形態の構成に限定されるものではない。
Hereinafter, a vibration power generation element according to an embodiment of the present invention will be described with reference to the drawings. The configuration of the following embodiment is an exemplification, and the present invention is not limited to the configuration of this embodiment.
先ず、図1、図2、図3に基づいて、本発明に係る電源装置に含まれる振動発電素子10の概略構成について説明する。図1は、外部振動による振動発電を行う振動発電素子10における、可動部材1と固定部材5のそれぞれに設けられたエレクトレット群1aおよび電極群5aの構成を示す。なお、図1においては、エレクトレットおよび電極が並べられる方向であって、固定部材5に対する可動部材1の相対移動方向をX方向、可動部材1と固定部材が対向する方向をZ方向、X方向およびZ方向に直交する方向をY方向とする。そして、図1は振動発電素子10をZX平面で切断したときの断面図である。
First, a schematic configuration of the vibration power generation element 10 included in the power supply device according to the present invention will be described with reference to FIGS. 1, 2, and 3. FIG. 1 shows a configuration of an electret group 1a and an electrode group 5a provided on each of a movable member 1 and a fixed member 5 in a vibration power generation element 10 that performs vibration power generation by external vibration. In FIG. 1, the electret and the electrode are arranged in a direction in which the relative movement direction of the movable member 1 with respect to the fixed member 5 is the X direction, and the directions in which the movable member 1 and the fixed member are opposed are the Z direction, the X direction, and The direction orthogonal to the Z direction is defined as the Y direction. FIG. 1 is a cross-sectional view of the vibration power generation element 10 taken along the ZX plane.
振動発電素子10において、可動部材1及び固定部材5は、後述する図2等に示す筐体11の内部に収納される。可動部材1と、固定部材5は、互いに対向した状態を保ったまま、相対的に移動可能に構成されており、当該相対移動を可能とする可動部材1の支持構造については後述する。また、固定部材5は筐体11に固定されている。これに対して、可動部材1は、その両端がそれぞれバネ14によって筺体11につながれているため(図2等を参照)、可動部材1そのものは、外部振動によって筐体11に固定された固定部材5に対して相対的に往復運動(振動)するように構成されている。
In the vibration power generation element 10, the movable member 1 and the fixed member 5 are housed in a housing 11 shown in FIG. The movable member 1 and the fixed member 5 are configured to be relatively movable while maintaining a state of facing each other, and a support structure of the movable member 1 that enables the relative movement will be described later. The fixing member 5 is fixed to the housing 11. On the other hand, since both ends of the movable member 1 are respectively connected to the housing 11 by springs 14 (see FIG. 2 and the like), the movable member 1 itself is a fixed member fixed to the casing 11 by external vibration. 5 is configured to reciprocate (vibrate) relative to the other.
なお、可動部材1と固定部材5は、互いに対向した状態で、かつ互いに平行な状態を保ったまま、つまり対向する面の間隔が一定の状態を保ったまま、相対的に移動可能に構成されている。これにより、可動部材1側のエレクトレット2の作用によって固定部材5側の一対の電極6、7に電気信号を生成することが可能となる。この電気信号の生成原理については従来技術であることから、本明細書ではその詳細な説明は割愛する。
The movable member 1 and the fixed member 5 are configured to be relatively movable while being opposed to each other and maintaining a parallel state to each other, that is, maintaining a constant interval between the opposing surfaces. ing. Thereby, it becomes possible to generate an electrical signal for the pair of electrodes 6 and 7 on the fixed member 5 side by the action of the electret 2 on the movable member 1 side. Since this electric signal generation principle is a conventional technique, a detailed description thereof is omitted in this specification.
ここで、可動部材1側の構造について説明する。可動部材1は、可動基板1b上に、エレクトレット群1aが形成されている。このエレクトレット群1aは、可動部材1における固定部材5との対向面側に設けられ、それぞれ導電体上に形成された複数のエレクトレット2と、いずれも接地されていない複数のガード電極4を含む。そして、固定部材5に対する可動部材1の相対移動方向(X方向)に沿って、エレクトレット2とガード電極4が交互に並ぶように配置されている。この複数のエレクトレット2と複数のガード電極4はそれぞれ櫛状に形成され、それぞれのエレクトレット2と、それぞれのガード電極4が入れ子状に配置されているが、上記のとおり、図1はZX断面図であるため、エレクトレット2とガード電極4が交互に配置されているように図示される。本実施形態においては、エレクトレット2はマイナスの電荷を半永久的に保持するように構成されている。なお、ガード電極4については、本実施形態では上記の通り接地させない構成を採用しているが、それに代えて接地させる構成を採用してもよい。
Here, the structure on the movable member 1 side will be described. In the movable member 1, an electret group 1a is formed on a movable substrate 1b. The electret group 1a includes a plurality of electrets 2 provided on the surface of the movable member 1 facing the fixed member 5 and formed on a conductor, respectively, and a plurality of guard electrodes 4 that are not grounded. The electrets 2 and the guard electrodes 4 are arranged alternately along the relative movement direction (X direction) of the movable member 1 with respect to the fixed member 5. The plurality of electrets 2 and the plurality of guard electrodes 4 are each formed in a comb shape, and the respective electrets 2 and the respective guard electrodes 4 are arranged in a nested manner. As described above, FIG. 1 is a ZX sectional view. Therefore, the electret 2 and the guard electrode 4 are illustrated as being alternately arranged. In the present embodiment, the electret 2 is configured to hold a negative charge semipermanently. The guard electrode 4 employs a configuration in which the guard electrode 4 is not grounded as described above, but may be configured to be grounded instead.
次に、固定部材5側の構造について説明する。固定部材5は、固定基板5b上に、電極群5aが形成されている。この電極群5aは、固定部材5おける可動部材1との対向面側に設けられ、一対の電極(第一電極6と第二電極7)を一組とする小電極群を複数組み含む。
Next, the structure on the fixing member 5 side will be described. In the fixing member 5, an electrode group 5a is formed on a fixed substrate 5b. The electrode group 5a is provided on the surface of the fixed member 5 facing the movable member 1, and includes a plurality of small electrode groups each including a pair of electrodes (first electrode 6 and second electrode 7).
このように構成される振動発電素子10では、外部振動によるエレクトレット2を有する可動部材1の固定部材5に対する相対的な位置変動に起因して、電極6、7間に当該相対的位置変動(振動)に応じた起電力が生じ、発電が行われる。そして、発電された電力は整流回路20によって整流される。
In the vibration power generation element 10 configured as described above, the relative position fluctuation (vibration) between the electrodes 6 and 7 due to the relative position fluctuation of the movable member 1 having the electret 2 with respect to the fixed member 5 due to external vibration. ) Is generated and power is generated. The generated power is rectified by the rectifier circuit 20.
次に、図2は、振動発電素子10の上面図(XY平面における上面図)であり、図3は、図2におけるA-A断面図(ZY平面における断面図)である。ただし、図2は、筐体11の上面11cが外され、その内部が上方より可視化された状態を表している。これらの図からも分かるように、電極群5aおよび固定基板5bを含む固定部材5と、エレクトレット群1aおよび可動基板1bを含む可動部材1は、振動発電素子10の筐体11に収容されている。当該筐体11は、略直方体の形状を有し、上面11cと底面11b、可動部材1の相対移動方向であるX方向に延在する一組の側面11aと、当該相対移動方向に直交する側面であってY方向に延在する一組の側面11dを有する。
Next, FIG. 2 is a top view (top view in the XY plane) of the vibration power generation element 10, and FIG. 3 is a cross-sectional view along AA in FIG. 2 (cross-sectional view in the ZY plane). However, FIG. 2 shows a state in which the upper surface 11c of the housing 11 is removed and the inside is visualized from above. As can be seen from these drawings, the fixed member 5 including the electrode group 5 a and the fixed substrate 5 b and the movable member 1 including the electret group 1 a and the movable substrate 1 b are accommodated in the casing 11 of the vibration power generation element 10. . The casing 11 has a substantially rectangular parallelepiped shape, and includes a top surface 11c and a bottom surface 11b, a pair of side surfaces 11a extending in the X direction that is the relative movement direction of the movable member 1, and a side surface orthogonal to the relative movement direction. And has a pair of side surfaces 11d extending in the Y direction.
そして、図3に示すように、固定部材5は、電極群5aが上方(筐体11の内側)を向くようにして、筐体11の底面11bに固定されている。一方で、このように筐体11に固定された固定部材5に対して、可動部材1は複数の支持用鋼球12を介して該固定部材5に対して相対移動が可能となるように支持されている。すなわち、底面11bの内壁面上に配置された複数の支持用鋼球12の上に、更に可動部材1が配置される構成となっている。このように可動部材が支持用鋼球12で支持された状態で、可動部材1側のエレクトレット群1aと、固定部材5の電極群5aとの間の間隔距離が、振動発電に適した所定の距離に規定される。
And as shown in FIG. 3, the fixing member 5 is being fixed to the bottom face 11b of the housing | casing 11 so that the electrode group 5a may face upward (inside of the housing | casing 11). On the other hand, with respect to the fixed member 5 fixed to the housing 11 in this way, the movable member 1 is supported so as to be able to move relative to the fixed member 5 via a plurality of supporting steel balls 12. Has been. That is, the movable member 1 is further arranged on the plurality of supporting steel balls 12 arranged on the inner wall surface of the bottom surface 11b. In this state where the movable member is supported by the support steel ball 12, the distance between the electret group 1a on the movable member 1 side and the electrode group 5a of the fixed member 5 is a predetermined value suitable for vibration power generation. Stipulated in distance.
また、図2に示すように、可動部材1については、可動部材1と側面11aの内壁面との間に更なる支持用鋼球13が配置されている。側面11aの内壁面と対向する、可動基板1bの側面の両端に端部側突起1dと、当該可動基板1bの側面の中央部分に中央突起1cが設置され、端部側突起1dと中央突起1cとの間に、支持用鋼球13が配置可能な支持用溝1eが形成される。したがって、図2に示すように、可動部材1の左右それぞれに2つずつ、支持用溝1eが形成され、それぞれに支持用鋼球13が配置される。このように可動部材1の側方において、筐体11の内壁面との間に支持用鋼球13を配置させることで、固定部材5に対する可動部材1の相対移動方向に沿った移動を円滑に行わせることが可能となる。
Further, as shown in FIG. 2, with respect to the movable member 1, a further supporting steel ball 13 is disposed between the movable member 1 and the inner wall surface of the side surface 11a. End side projections 1d are provided at both ends of the side surface of the movable substrate 1b facing the inner wall surface of the side surface 11a, and a central projection 1c is provided at the center of the side surface of the movable substrate 1b. Between the two, a support groove 1e in which the support steel ball 13 can be disposed is formed. Therefore, as shown in FIG. 2, two support grooves 1 e are formed on each of the left and right sides of the movable member 1, and the support steel balls 13 are disposed in each. As described above, by arranging the supporting steel balls 13 between the movable member 1 and the inner wall surface of the housing 11, the movement along the relative movement direction of the movable member 1 with respect to the fixed member 5 can be smoothly performed. It is possible to make it happen.
更に、可動部材1のXY平面における概ね中央部分に設けられた接続部15を介して、可動部材1と筐体11の2つの側面11dのそれぞれとの間にバネ14が配置されている。図2に示す状態では、バネ14は側面11dの概ね中央部分に接続され、各バネ14による弾性力は、相対移動方向(X方向)に作用するように配置されている。バネ14の弾性力により、外部振動を受けた可動部材1は筐体11内で往復運動を行い、効率的な振動発電が実現される。
Furthermore, a spring 14 is disposed between the movable member 1 and each of the two side surfaces 11d of the housing 11 via a connection portion 15 provided substantially at the center in the XY plane of the movable member 1. In the state shown in FIG. 2, the spring 14 is connected to a substantially central portion of the side surface 11 d, and the elastic force by each spring 14 is arranged to act in the relative movement direction (X direction). Due to the elastic force of the spring 14, the movable member 1 that has received external vibration reciprocates within the housing 11, thereby realizing efficient vibration power generation.
このように、本実施例に係る振動発電素子10では、可動部材1については、支持用鋼球12による底面11bに対する支持と、支持用鋼球13による側面11aに対する支持が独立して行われていることになる。ここで、振動発電素子10に外部振動が付与された場合、その物理的特性から外部振動の周波数が所定周波数のときに固定部材5に対する可動部材1の振幅が最大となる共振現象が発生する。可動部材1の振幅が最大となることによって、単位時間あたりに可動部材1側のエレクトレットが横切る電極数が増えるため、振動発電素子10の発電量が増加することになる。したがって、発電効率の観点に立てば、振動発電素子10における可動部材1の共振周波数(以下、単に「振動発電素子10の共振周波数」という)が、可及的に外部振動の周波数に近づく又は一致するのが好ましい。そして、この振動発電素子10の共振周波数は、可動部材1の重量やバネ14のバネ定数を調整することで所望の周波数に設定可能である。
As described above, in the vibration power generation element 10 according to the present embodiment, the movable member 1 is independently supported by the support steel ball 12 for the bottom surface 11b and by the support steel ball 13 for the side surface 11a. Will be. Here, when external vibration is applied to the vibration power generation element 10, a resonance phenomenon occurs in which the amplitude of the movable member 1 with respect to the fixed member 5 becomes maximum when the frequency of the external vibration is a predetermined frequency due to its physical characteristics. When the amplitude of the movable member 1 is maximized, the number of electrodes that the electret on the movable member 1 side crosses per unit time increases, and thus the power generation amount of the vibration power generation element 10 increases. Therefore, from the viewpoint of power generation efficiency, the resonance frequency of the movable member 1 in the vibration power generation element 10 (hereinafter simply referred to as “resonance frequency of the vibration power generation element 10”) approaches or coincides with the frequency of external vibration as much as possible. It is preferable to do this. The resonance frequency of the vibration power generation element 10 can be set to a desired frequency by adjusting the weight of the movable member 1 and the spring constant of the spring 14.
ここで、図4及び図5に基づいて、本実施例に係る電源装置60を有するセンサモジュール70の概略構成について説明する。図4は、電源装置60及びセンサモジュール70の概略構成を示し、図5は、図4に示す電源装置60に対応する回路構成を示す。センサモジュール70は、電源装置60及び当該電源装置からの電力供給を受けて作動する負荷50を含む。この負荷50は、本発明における電力供給対象に相当する。
Here, based on FIG.4 and FIG.5, schematic structure of the sensor module 70 which has the power supply device 60 which concerns on a present Example is demonstrated. 4 shows a schematic configuration of the power supply device 60 and the sensor module 70, and FIG. 5 shows a circuit configuration corresponding to the power supply device 60 shown in FIG. The sensor module 70 includes a power supply device 60 and a load 50 that operates by receiving power supply from the power supply device. This load 50 corresponds to a power supply target in the present invention.
ここで、電源装置60には、上記振動発電素子10、整流・平滑回路20、逆流禁止回路21を含んで構成される直流発電ユニット30が、複数組(本実施例においては4組)含まれる。なお、本明細書においては、直流発電ユニットを総じて指す場合にはその参照番号を30とし、各直流発電ユニットを指す場合には、それぞれの直流発電ユニットに対応する添え字(a~d)を番号30に添付して参照する。また、直流発電ユニット30に含まれる振動発電素子10、整流・平滑回路20、逆流禁止回路21の参照番号についても、同様である。
Here, the power supply device 60 includes a plurality of sets (four sets in this embodiment) of the DC power generation unit 30 including the vibration power generation element 10, the rectification / smoothing circuit 20, and the backflow prohibition circuit 21. . In this specification, when referring to DC power generation units as a whole, the reference number thereof is 30. When referring to each DC power generation unit, subscripts (a to d) corresponding to the respective DC power generation units are used. Reference is made to FIG. The same applies to the reference numerals of the vibration power generation element 10, the rectification / smoothing circuit 20, and the backflow prohibition circuit 21 included in the DC power generation unit 30.
外部振動による振動発電素子10の発電電力は、図1に示す振動発電素子10の構成から交流電力であることが分かる。そこで、その発電電力を直流電力に変換するために、当該発電電力が、整流・平滑回路20に通される。具体的には、図5に示すように、直流発電ユニット30aの整流・平滑回路20aは、4つのダイオードD1~D4によるフルブリッジ回路とコンデンサC1によって形成され、直流発電ユニット30bの整流・平滑回路20bは、4つのダイオードD5~D8によるフルブリッジ回路とコンデンサC2によって形成され、直流発電ユニット30cの整流・平滑回路20cは、4つのダイオードD9~D12によるフルブリッジ回路とコンデンサC3によって形成され、直流発電ユニット30dの整流・平滑回路20dは、4つのダイオードD13~D16によるフルブリッジ回路とコンデンサC4によって形成されている。
It can be seen that the generated power of the vibration power generation element 10 due to external vibration is AC power from the configuration of the vibration power generation element 10 shown in FIG. Therefore, in order to convert the generated power into DC power, the generated power is passed through the rectifying / smoothing circuit 20. Specifically, as shown in FIG. 5, the rectification / smoothing circuit 20a of the DC power generation unit 30a is formed by a full bridge circuit including four diodes D1 to D4 and a capacitor C1, and the rectification / smoothing circuit of the DC power generation unit 30b. 20b is formed by a full bridge circuit including four diodes D5 to D8 and a capacitor C2, and a rectifying / smoothing circuit 20c of the DC power generation unit 30c is formed by a full bridge circuit including four diodes D9 to D12 and a capacitor C3. The rectifying / smoothing circuit 20d of the power generation unit 30d is formed by a full bridge circuit including four diodes D13 to D16 and a capacitor C4.
そして、直流発電ユニット30において、整流・平滑回路20を経た発電電力は、逆流禁止回路21を経て、直流発電ユニット30の出力となる。具体的には、図5に示すように、直流発電ユニット30aの逆流禁止回路21aはダイオードDA1で形成され、直流発電ユニット30bの逆流禁止回路21bはダイオードDA2で形成され、直流発電ユニット30cの逆流禁止回路21cはダイオードDA3で形成され、直流発電ユニット30dの逆流禁止回路21dはダイオードDA4で形成される。これらのダイオードD1~D4により、直流発電ユニット30a~30dでは、外部からの電流の流入(逆流)が禁止されることになる。後述するように、振動発電素子10a~10dの共振周波数等の振動発電条件は必ずしも同じではなく、また仮に振動発電条件が同じであっても製造上の個体差も存在するため、整流・平滑回路20を出た端子での電位は、直流発電ユニット30ごとにばらつきやすい。その結果、直流発電ユニット30間に電位差が生じ、その電位差に従い特定の直流発電ユニット30に外部から電流が流れ込むと、電源装置60としての発電電力が低下してしまうため、それを回避するために逆流禁止回路21が各直流発電ユニット30に設けられている。そして、逆流禁止回路21の出力が、各直流発電ユニット30の出力となる。
Then, in the DC power generation unit 30, the generated power that has passed through the rectification / smoothing circuit 20 becomes the output of the DC power generation unit 30 through the backflow prohibition circuit 21. Specifically, as shown in FIG. 5, the backflow prohibiting circuit 21a of the DC power generation unit 30a is formed by a diode DA1, and the backflow prohibiting circuit 21b of the DC power generation unit 30b is formed by a diode DA2, and the backflow of the DC power generation unit 30c. The prohibition circuit 21c is formed of a diode DA3, and the reverse current prohibition circuit 21d of the DC power generation unit 30d is formed of a diode DA4. By these diodes D1 to D4, inflow (reverse flow) of current from the outside is prohibited in the DC power generation units 30a to 30d. As will be described later, the vibration power generation conditions such as the resonance frequencies of the vibration power generation elements 10a to 10d are not necessarily the same, and there are individual differences in manufacturing even if the vibration power generation conditions are the same. The potential at the terminal leaving 20 tends to vary from one DC power generation unit 30 to another. As a result, a potential difference is generated between the DC power generation units 30, and when a current flows into the specific DC power generation unit 30 from the outside according to the potential difference, the generated power as the power supply device 60 is reduced. A backflow prohibition circuit 21 is provided in each DC power generation unit 30. The output of the backflow prohibition circuit 21 becomes the output of each DC power generation unit 30.
本実施例の電源装置では、図4に示すように、これらの4組の直流発電ユニット30が並列に制御部40に対して接続される。すなわち、電源装置60を含むセンサモジュール70に対して外部振動が付与されると、各直流発電ユニット30内の振動発電素子10による振動発電が行われ、その発電電力が整流・平滑回路20、逆流禁止回路21を経て直流発電ユニット30の出力となる電力(本発明におけるユニット出力電力に相当する)が重ねて制御部40に入力されるように、各直流発電ユニット30と制御部40の電気的な接続関係が設定されている。
In the power supply device of the present embodiment, as shown in FIG. 4, these four sets of DC power generation units 30 are connected to the control unit 40 in parallel. That is, when external vibration is applied to the sensor module 70 including the power supply device 60, vibration power generation is performed by the vibration power generation element 10 in each DC power generation unit 30, and the generated power is rectified and smoothed by the rectifying / smoothing circuit 20, backflow. The electric power of each DC power generation unit 30 and the control unit 40 so that the power (corresponding to the unit output power in the present invention) that is output from the DC power generation unit 30 through the prohibition circuit 21 is input to the control unit 40 in an overlapping manner. A proper connection relationship is set.
また、制御部40は、電源装置60の電力供給、すなわち各振動発電素子10による発電電力の負荷50への供給を制御するための機能部であり、具体的には、所定の電源制御回路41や図示しないマイコンで形成される。また、制御部40は、二次電池42を有しており、各直流発電ユニット30からのユニット出力電力を二次電池42に蓄電し、又は、二次電池42に蓄電された電力を負荷50に対して放電する蓄電・放電に関する制御を行う。
The control unit 40 is a functional unit for controlling the power supply of the power supply device 60, that is, the supply of the generated power by each vibration power generation element 10 to the load 50, specifically, a predetermined power control circuit 41. Or a microcomputer (not shown). The control unit 40 includes a secondary battery 42, and stores the unit output power from each DC power generation unit 30 in the secondary battery 42, or loads the power stored in the secondary battery 42 with a load 50. The control relating to the storage / discharge to be performed is performed.
また、負荷50は、上記の通り電源装置60からの供給電力により駆動されるものであり、具体的には、無線通信デバイス51と加速度センサ52を有している。加速度センサ52は、センサモジュール70が配置される測定対象物に生じている加速度を検出するセンサであり、その検出データが、無線通信デバイス51によってセンサモジュール外の受信装置に送信される。このように構成されるセンサモジュール70は、電源装置60が外部振動により振動発電を行うことで、センサモジュール外部から電力の供給を受けることなく、センサモジュール70が配置された測定対象物の加速度の検出、及びその検出データの収集のためのデータ送信を実現する。なお、本実施例ではセンサモジュール70に含まれるセンサとして加速度センサ52を例示したが、本発明としては加速度センサに拘泥されるものではなく、データ収集の目的に応じて、その他のセンサ、例えば、圧力センサや温度センサが、加速度センサ52とともに、又は加速度センサ52に代わって、センサモジュール70に搭載されてもよい。
Further, the load 50 is driven by the power supplied from the power supply device 60 as described above, and specifically includes the wireless communication device 51 and the acceleration sensor 52. The acceleration sensor 52 is a sensor that detects the acceleration generated in the measurement object on which the sensor module 70 is disposed, and the detection data is transmitted to the reception device outside the sensor module by the wireless communication device 51. In the sensor module 70 configured as described above, the power supply device 60 performs vibration power generation by external vibration, so that the acceleration of the measurement object on which the sensor module 70 is disposed can be obtained without receiving power supply from the outside of the sensor module. Data transmission for detection and collection of the detection data is realized. In the present embodiment, the acceleration sensor 52 is exemplified as the sensor included in the sensor module 70. However, the present invention is not limited to the acceleration sensor, and other sensors, for example, according to the purpose of data collection, for example, A pressure sensor or a temperature sensor may be mounted on the sensor module 70 together with the acceleration sensor 52 or instead of the acceleration sensor 52.
ここで、図6に、外部振動の振動周波数に対する電源装置60による発電量の推移(以下、「発電量推移」という)を示す。なお、図6に示す発電量推移は、外部振動の加速度が0.15Gの場合のものである。図中、線L1で示されるのが電源装置60の発電量推移であり、線L2で示されるのが、直流発電ユニット30を一組のみ有する電源装置の発電量推移である。なお、本実施例の場合、直流発電ユニット30内の振動発電素子10の共振周波数が全て同じとなるように(例えば、29.5Hz)、振動発電素子10のバネ14のバネ定数が調整されている。また、線L2で示される発電量推移の振動発電素子の共振周波数も同じく29.5Hzとされている。
Here, FIG. 6 shows the transition of the power generation amount by the power supply device 60 with respect to the vibration frequency of the external vibration (hereinafter referred to as “power generation transition”). The power generation amount transition shown in FIG. 6 is for the case where the acceleration of the external vibration is 0.15G. In the figure, the power generation amount transition of the power supply device 60 is indicated by the line L1, and the power generation amount transition of the power supply device having only one set of the DC power generation unit 30 is indicated by the line L2. In the case of this embodiment, the spring constant of the spring 14 of the vibration power generation element 10 is adjusted so that all the resonance frequencies of the vibration power generation element 10 in the DC power generation unit 30 are the same (for example, 29.5 Hz). Yes. Further, the resonance frequency of the vibration power generation element of the power generation amount transition indicated by the line L2 is also 29.5 Hz.
図6から理解できるように、電源装置60には、制御部40に対して4組の直流発電ユニット30が並列に接続されているため、外部振動の周波数が共振周波数29.5Hzの近傍の領域(例えば、29.5Hz~30.1Hz)にある場合には、各振動発電素子10の発電電力が重ね合わされ、電源装置60としての発電量が、直流発電ユニットが一組の場合と比べて4倍程度の出力に増大されている。この結果、負荷50での無線通信デバイス51や加速度センサ52による消費電力に対して、十分量の電力を電源装置60が供給することが可能となる。
As can be understood from FIG. 6, in the power supply device 60, the four DC power generation units 30 are connected in parallel to the control unit 40, so that the external vibration frequency is in the vicinity of the resonance frequency of 29.5 Hz. (For example, 29.5 Hz to 30.1 Hz), the generated power of each vibration power generation element 10 is superimposed, and the power generation amount as the power supply device 60 is 4 as compared with the case where the DC power generation unit is one set. The output is increased to about twice. As a result, the power supply device 60 can supply a sufficient amount of power to the power consumed by the wireless communication device 51 and the acceleration sensor 52 at the load 50.
また、外部振動周波数が共振周波数から若干外れた、上記近傍領域の周囲の領域(例えば、28.6Hz~29.5Hz、30.1Hz~31.0Hz)にある場合、やはり、電源装置60の発電量は直流発電ユニットが一組の場合と比べて大きいが、その比率が直流発電ユニットが一組の場合を基準としたときの4倍を超えている。これは、電源装置60では、4組の直流発電ユニット30の制御を1つの制御部40が行う構成となっており、制御部40の負荷が各ユニットで分散されるのに対して、直流発電ユニットが一組の場合は1つの直流発電ユニットの制御を1つの制御部が行う構成となっているため、直流発電ユニットのユニット出力電力のうち、制御部40によって消費される電力の占める比率が大きくなるからである。外部振動周波数が上記の周囲領域にある場合には、振動発電素子10による発電電力が、外部振動周波数の近傍領域にある場合と比べて低くなるため、線L2で示すケースでは制御部40の消費電力が及ぼす影響が大きくなり、図6に示す結果となる。
Further, when the external vibration frequency is slightly out of the resonance frequency and is in a region around the above-mentioned nearby region (for example, 28.6 Hz to 29.5 Hz, 30.1 Hz to 31.0 Hz), the power generation by the power supply device 60 is also performed. The amount is larger than that in the case of one set of DC power generation units, but the ratio is more than four times that in the case of a set of DC power generation units. This is because, in the power supply device 60, one set of control units 40 controls the four sets of DC power generation units 30, and the load of the control unit 40 is distributed among the units. When the unit is a set, since one control unit controls one DC power generation unit, the proportion of the power consumed by the control unit 40 in the unit output power of the DC power generation unit is Because it grows. When the external vibration frequency is in the surrounding area, the power generated by the vibration power generation element 10 is lower than that in the vicinity of the external vibration frequency. Therefore, in the case indicated by the line L2, the consumption of the control unit 40 The effect of electric power is increased, and the result shown in FIG. 6 is obtained.
以上より、電源装置60は、制御部40に対して4組の直流発電ユニット30を並列に接続する構成を採用することで、電源装置60の発電量を増大させているとともに、外部振動周波数が、振動発電素子10の共振周波数を若干外れた場合でも、効率的な直流出力を実現する。これにより、負荷50を駆動する観点に立てば、対応できる外部振動の周波数領域を上記近傍領域から上記周辺領域まで拡大させ、また、発電量そのものも増大させることが可能となる。
As described above, the power supply device 60 employs a configuration in which four sets of DC power generation units 30 are connected in parallel to the control unit 40, thereby increasing the power generation amount of the power supply device 60 and reducing the external vibration frequency. Even when the resonant frequency of the vibration power generation element 10 is slightly deviated, an efficient direct current output is realized. Accordingly, from the viewpoint of driving the load 50, it is possible to expand the frequency region of external vibration that can be handled from the vicinity region to the peripheral region, and to increase the power generation amount itself.
<変形例>
上記実施例においては、制御部40に二次電池42が設けられたが、当該二次電池は必ずしも必要ではない。二次電池が設けられない場合には、各直流発電ユニット30のユニット出力電力がそのまま負荷50に対して供給されることになる。また、各直流発電ユニット30に逆流禁止回路21が設けられたが、逆流による発電量低下への影響が無視し得る等の理由により、当該逆流禁止回路21の設置を回避してもよい。 <Modification>
In the above embodiment, thesecondary battery 42 is provided in the control unit 40, but the secondary battery is not necessarily required. When the secondary battery is not provided, the unit output power of each DC power generation unit 30 is supplied to the load 50 as it is. Moreover, although the backflow prohibition circuit 21 is provided in each DC power generation unit 30, installation of the backflow prohibition circuit 21 may be avoided because the influence of the backflow on the amount of power generation can be ignored.
上記実施例においては、制御部40に二次電池42が設けられたが、当該二次電池は必ずしも必要ではない。二次電池が設けられない場合には、各直流発電ユニット30のユニット出力電力がそのまま負荷50に対して供給されることになる。また、各直流発電ユニット30に逆流禁止回路21が設けられたが、逆流による発電量低下への影響が無視し得る等の理由により、当該逆流禁止回路21の設置を回避してもよい。 <Modification>
In the above embodiment, the
次に、本発明に係る電源装置60の第2の実施例について説明する。本実施例では、4組の直流発電ユニット30に含まれる振動発電素子10a~10dの共振周波数を、それぞれ27.5Hz、28.5Hz、29.5Hz、30.5Hzとなるように、各振動発電素子10のバネ14のバネ定数が調整されている。そして、この場合の電源装置60の発電量推移が、図7に線L3で示されている。また、図7には、直流発電ユニット30を一組のみ有する電源装置の発電量推移(すなわち、図6で線L2で示された発電量推移)が、参考として線L4で示されている。なお、図7に示す発電量推移は、外部振動の加速度が0.15Gの場合のものである。
Next, a second embodiment of the power supply device 60 according to the present invention will be described. In this embodiment, each vibration power generation is performed so that the resonance frequencies of the vibration power generation elements 10a to 10d included in the four sets of DC power generation units 30 are 27.5 Hz, 28.5 Hz, 29.5 Hz, and 30.5 Hz, respectively. The spring constant of the spring 14 of the element 10 is adjusted. The power generation amount transition of the power supply device 60 in this case is indicated by a line L3 in FIG. Further, in FIG. 7, the power generation amount transition (that is, the power generation amount transition indicated by the line L2 in FIG. 6) of the power supply apparatus having only one set of the DC power generation unit 30 is indicated by the line L4 as a reference. The power generation amount transition shown in FIG. 7 is for the case where the acceleration of external vibration is 0.15G.
なお、振動発電素子10a~10dの共振周波数は、共振周波数が29.5Hzである振動発電素子10cを基準として設定される。具体的には、共振周波数が29.5Hzである振動発電素子10c単独の発電量推移(すなわち、線L4で示される推移)の半値幅が約1Hzであることを踏まえ、基準の29.5Hzから1Hzずつずらして、上記の通り振動発電素子10a、10b、10dの共振周波数を27.5Hz、28.5Hz、30.5Hzとするものである。このように基準の発電量推移を半値幅ずつずらすことで、4つの直流発電ユニット30のユニット出力電力は周波数領域において好適に重ねられ、以て電源装置60の発電量推移において発電量が比較的大きくなる周波数領域を可及的に広く取得することが可能となる。例えば、図7で線L3で示す発電量推移では、発電量が100μWを超える周波数領域を、概ね27.5Hz~31.0Hzと見定めることができる。
Note that the resonance frequency of the vibration power generation elements 10a to 10d is set with reference to the vibration power generation element 10c having a resonance frequency of 29.5 Hz. Specifically, based on the fact that the half-value width of the power generation amount of the vibration power generation element 10c alone having a resonance frequency of 29.5 Hz (that is, the transition indicated by the line L4) is about 1 Hz, from the reference of 29.5 Hz The resonance frequency of the vibration power generation elements 10a, 10b, and 10d is set to 27.5 Hz, 28.5 Hz, and 30.5 Hz as described above by shifting by 1 Hz. In this way, by shifting the reference power generation amount transition by half width, the unit output power of the four DC power generation units 30 is suitably overlapped in the frequency domain, and thus the power generation amount in the power generation amount transition of the power supply device 60 is relatively high. It becomes possible to acquire as large a frequency range as possible. For example, in the power generation amount transition indicated by the line L3 in FIG. 7, the frequency region where the power generation amount exceeds 100 μW can be determined as approximately 27.5 Hz to 31.0 Hz.
ここで、図6で線L1で示される発電量推移(すなわち、振動発電素子10a~10dの共振周波数が全て29.5Hzの場合の推移)と、図7で線L3で示される発電量推移(すなわち、振動発電素子10a~10dの共振周波数がそれぞれ27.5Hz、28.5Hz、29.5Hz、30.5Hzの場合の推移)とを、図8に、それぞれ線L5、L6で示す。更に、外部振動の加速度が0.03Gのときの、すなわち図8での加速度の1/5のときの、振動発電素子10a~10dの共振周波数が全て29.5Hzの場合の発電量推移と、振動発電素子10a~10dの共振周波数がそれぞれ27.5Hz、28.5Hz、29.5Hz、30.5Hzの場合の発電量推移を、図9に、それぞれ線L7、L8で示す。この0.03Gの外部振動の加速度は、電源装置60において振動発電が可能な最小の加速度として設定されるものである。
Here, the power generation amount transition indicated by the line L1 in FIG. 6 (that is, the transition when the resonance frequencies of the vibration power generation elements 10a to 10d are all 29.5 Hz) and the power generation amount transition indicated by the line L3 in FIG. That is, transitions when the resonant frequencies of the vibration power generation elements 10a to 10d are 27.5 Hz, 28.5 Hz, 29.5 Hz, and 30.5 Hz, respectively, are indicated by lines L5 and L6 in FIG. Furthermore, when the acceleration of the external vibration is 0.03 G, that is, when the acceleration in FIG. 8 is 1/5, the generation amount transition when the resonance frequencies of the vibration power generation elements 10a to 10d are all 29.5 Hz, Transitions of power generation when the resonant frequencies of the vibration power generation elements 10a to 10d are 27.5 Hz, 28.5 Hz, 29.5 Hz, and 30.5 Hz, respectively, are shown by lines L7 and L8 in FIG. The acceleration of 0.03G external vibration is set as the minimum acceleration at which the power generation device 60 can generate vibration and power.
線L5、L6で示される発電量推移を比較して理解できるように、前者(線L5で示すケース)の場合は、外部振動周波数が設定されている共振周波数に近ければ比較的大きい発電量を得ることができるが、外部振動周波数が当該共振周波数よりも離れると発電量が低下してしまう。一方で、後者(線L6で示すケース)の場合は、上記の通り比較的広い周波数領域で、前者よりも発電量のピーク値は下がるものの、直流発電ユニット1つの場合の発電量よりも大きい発電量を得ることができ、負荷50の駆動を安定的に行うことができる。この傾向は、図9に示すように外部振動の加速度が最小の場合も同じである。
As can be understood by comparing the power generation amount transitions indicated by the lines L5 and L6, in the former case (the case indicated by the line L5), if the external vibration frequency is close to the set resonance frequency, a relatively large power generation amount is obtained. Although it can be obtained, the amount of power generation is reduced when the external vibration frequency is separated from the resonance frequency. On the other hand, in the latter case (the case indicated by line L6), the power generation amount is larger than the power generation amount in the case of one DC power generation unit, although the peak value of the power generation amount is lower than the former in a relatively wide frequency range as described above. The amount can be obtained, and the load 50 can be driven stably. This tendency is the same even when the acceleration of the external vibration is minimum as shown in FIG.
したがって、電源装置60に前者の構成を採用するか後者の構成を採用するかについては、電源装置60に付与される外部振動の周波数の状況に応じて適宜選択すればよい。また、付与される外部振動の周波数の状況において、特定の周波数成分が比較的高いことが分かっている場合には、例えば、4個の振動発電素子のうち、2個の振動発電素子については当該特定の周波数を共振周波数として設定し、他の2個の振動発電素子については、特定の周波数から半値幅分ずらした周波数をそれぞれの共振周波数として設定してもよい。具体的には、特定の周波数が29.5Hzの場合、振動発電素子10a、10bの共振周波数を29.5Hzとし、振動発電素子10c、10dの共振周波数を28.5Hz、30.5Hzとする。このようにすることで、効率的な振動発電を実現できる。
Therefore, whether to adopt the former configuration or the latter configuration for the power supply device 60 may be appropriately selected according to the frequency of external vibration applied to the power supply device 60. In addition, in the situation of the frequency of external vibration to be applied, when it is known that a specific frequency component is relatively high, for example, about two vibration power generation elements among four vibration power generation elements A specific frequency may be set as the resonance frequency, and for the other two vibration power generation elements, frequencies shifted from the specific frequency by the half-value width may be set as the respective resonance frequencies. Specifically, when the specific frequency is 29.5 Hz, the resonance frequency of the vibration power generation elements 10a and 10b is set to 29.5 Hz, and the resonance frequency of the vibration power generation elements 10c and 10d is set to 28.5 Hz and 30.5 Hz. In this way, efficient vibration power generation can be realized.
<変形例>
上記の実施例では、振動発電素子が1つの場合の発電量推移の半値幅を考慮して、電源装置60に含まれる各直流発電ユニット30内の振動発電素子10の共振周波数を決定したが、その態様に代えて、振動発電素子10の共振周波数を、商用電源の周波数とされる50Hz、60Hzに基づいて決定してもよい。商用電源からの供給電力により駆動されるモーター等から発生する振動、すなわち電源装置60に付与される外部振動となり得る振動には、その商用電源の周波数の影響を受けたものが含まれる。したがって、振動発電素子10の共振周波数を、商用電源の周波数とされる50Hz、60Hzに基づいて決定することで、何れの周波数の商用電源が使用されても、効率的な振動発電を実現することが可能となる。 <Modification>
In the above embodiment, the resonance frequency of the vibrationpower generation element 10 in each DC power generation unit 30 included in the power supply device 60 is determined in consideration of the half width of the power generation amount transition in the case of one vibration power generation element. Instead of this aspect, the resonance frequency of the vibration power generation element 10 may be determined based on 50 Hz and 60 Hz as the frequencies of the commercial power source. The vibration generated from a motor or the like driven by the power supplied from the commercial power supply, that is, the vibration that can be external vibration applied to the power supply device 60 includes the one affected by the frequency of the commercial power supply. Therefore, by determining the resonance frequency of the vibration power generation element 10 based on 50 Hz and 60 Hz, which are the frequencies of the commercial power supply, efficient vibration power generation can be realized regardless of the frequency of the commercial power supply. Is possible.
上記の実施例では、振動発電素子が1つの場合の発電量推移の半値幅を考慮して、電源装置60に含まれる各直流発電ユニット30内の振動発電素子10の共振周波数を決定したが、その態様に代えて、振動発電素子10の共振周波数を、商用電源の周波数とされる50Hz、60Hzに基づいて決定してもよい。商用電源からの供給電力により駆動されるモーター等から発生する振動、すなわち電源装置60に付与される外部振動となり得る振動には、その商用電源の周波数の影響を受けたものが含まれる。したがって、振動発電素子10の共振周波数を、商用電源の周波数とされる50Hz、60Hzに基づいて決定することで、何れの周波数の商用電源が使用されても、効率的な振動発電を実現することが可能となる。 <Modification>
In the above embodiment, the resonance frequency of the vibration
例えば、電源装置60に含まれる各直流発電ユニット30内の振動発電素子10a、10bの共振周波数を60Hzに基づいて決定し、振動発電素子10c、10dの共振周波数を50Hzに基づいて決定してもよい。具体的には、前者の共振周波数、後者の共振周波数を、それぞれ60Hz、50Hzの倍数とし、一例として、前者を30Hz、後者を25Hzとしてもよい。その他には、前者、後者の組合せを、それぞれ、15Hz、12.5Hzの組合せ、60Hz、50Hzの組合せ、120Hz、100Hzの組合せとしてもよい。
For example, the resonance frequency of the vibration power generation elements 10a and 10b in each DC power generation unit 30 included in the power supply device 60 is determined based on 60 Hz, and the resonance frequency of the vibration power generation elements 10c and 10d is determined based on 50 Hz. Good. Specifically, the former resonance frequency and the latter resonance frequency may be multiples of 60 Hz and 50 Hz, respectively. For example, the former may be 30 Hz and the latter may be 25 Hz. In addition, the former and latter combinations may be 15 Hz, 12.5 Hz, 60 Hz, 50 Hz, 120 Hz, and 100 Hz, respectively.
次に、電源装置60を含むセンサモジュール70の別の実施例について、図10に基づいて説明する。図10は、加速度センサ52による加速度検出の対象物100において、センサモジュール70が設置された状態を示している。対象物100においては、図10に示すように段差が形成されている。振動発電素子30は、外部振動が振動発電素子30に適切に付与されなければ効率的な振動発電を行うことが難しい。そこで、このような段差を有する対象物において、センサモジュール70を設置する場合、各振動発電素子30が対象物100に接触し、対象物100から外部振動が適切に伝播してくるようにするために、当該センサモジュール70は形成されている。
Next, another embodiment of the sensor module 70 including the power supply device 60 will be described with reference to FIG. FIG. 10 shows a state in which the sensor module 70 is installed in the acceleration detection target object 100 by the acceleration sensor 52. In the object 100, a step is formed as shown in FIG. It is difficult for the vibration power generation element 30 to perform efficient vibration power generation unless external vibration is appropriately applied to the vibration power generation element 30. Therefore, when the sensor module 70 is installed on an object having such a step, each vibration power generation element 30 comes into contact with the object 100 so that external vibrations can be appropriately propagated from the object 100. In addition, the sensor module 70 is formed.
具体的には、本実施例のセンサモジュール70は、形状が可変であるいわゆるフレキシブル基板80の上面側と下面側のそれぞれに振動発電伝素子10を含む直流発電ユニット30がそれぞれ配置される。フレキシブル基板80の上面側に、対象物100の段差の上段に対応する直流発電ユニット30a、30bが配置され、フレキシブル基板80の下面側には、対象物100の段差の下段に対応する直流発電ユニット30c、30dが配置されている。そして、各直流発電ユニット30及び制御部40、負荷50とは、図4に示す電気的構成を形成するために、フレキシブル基板80の表面又は内部で配線される。このようにセンサモジュール70を構成し、フレキシブル基板80の変形性も利用することで、各直流電源ユニット30を段差形状を有する対象物100に対して適切に配置することができる。
Specifically, in the sensor module 70 of the present embodiment, the DC power generation units 30 including the vibration power generation elements 10 are respectively arranged on the upper surface side and the lower surface side of the so-called flexible substrate 80 whose shape is variable. DC power generation units 30a and 30b corresponding to the upper steps of the object 100 are disposed on the upper surface side of the flexible substrate 80, and DC power generation units corresponding to the lower steps of the object 100 are disposed on the lower surface side of the flexible substrate 80. 30c and 30d are arranged. Each DC power generation unit 30, the control unit 40, and the load 50 are wired on the surface or inside of the flexible substrate 80 to form the electrical configuration shown in FIG. By configuring the sensor module 70 in this manner and also using the deformability of the flexible substrate 80, each DC power supply unit 30 can be appropriately arranged with respect to the object 100 having a step shape.
また、図10に示す場合において、対象物100の段差上段で生じている振動の周波数と、段差下段で生じている振動の周波数が異なっている場合には、それぞれの振動周波数に合わせて、直流発電ユニット30a、30b内の振動発電素子10a、10bの共振周波数、及び直流発電ユニット30c、30d内の振動発電素子10c、10dの共振周波数を設定してもよい。
In the case shown in FIG. 10, when the frequency of the vibration generated in the upper step of the object 100 is different from the frequency of the vibration generated in the lower step of the object 100, the direct current is adjusted to the respective vibration frequency. The resonance frequency of the vibration power generation elements 10a and 10b in the power generation units 30a and 30b and the resonance frequency of the vibration power generation elements 10c and 10d in the DC power generation units 30c and 30d may be set.
1・・・・可動部材
1a・・・・エレクトレット群
1b・・・・可動基板
1e・・・・支持用溝
2・・・・エレクトレット
5・・・・固定部材
5a・・・・電極群
5b・・・・固定基板
6、7・・・・電極
10、10a、10b、10c、10d・・・・振動発電素子
11・・・・筐体
11a・・・・側面
11b・・・・底面
11d・・・・側面
12・・・・支持用鋼球
13・・・・支持用鋼球
14・・・・バネ
15・・・・連結部
20、20a、20b、20c、20d・・・・整流・平滑回路
21、21a、21b、21c、21d・・・・逆流禁止回路
30、30a、30b、30c、30d・・・・直流発電ユニット
40・・・・制御部
50・・・・負荷
60・・・・電源装置
70・・・・センサモジュール DESCRIPTION OFSYMBOLS 1 ... Movable member 1a ... Electret group 1b ... Movable substrate 1e ... Supporting groove 2 ... Electret 5 ... Fixed member 5a ... Electrode group 5b ··· Fixed substrate 6, 7 ··· Electrode 10, 10a, 10b, 10c, 10d ··· Vibration generator 11 ··· Case 11a · · · Side surface 11b · · · Bottom surface 11d ··· Side 12 ··· Steel ball for support 13 ······································ 15・ Smoothing circuit 21, 21a, 21b, 21c, 21d... Reverse current prohibition circuit 30, 30a, 30b, 30c, 30d... DC power generation unit 40. ... Power supply 70 ... Sensor module
1a・・・・エレクトレット群
1b・・・・可動基板
1e・・・・支持用溝
2・・・・エレクトレット
5・・・・固定部材
5a・・・・電極群
5b・・・・固定基板
6、7・・・・電極
10、10a、10b、10c、10d・・・・振動発電素子
11・・・・筐体
11a・・・・側面
11b・・・・底面
11d・・・・側面
12・・・・支持用鋼球
13・・・・支持用鋼球
14・・・・バネ
15・・・・連結部
20、20a、20b、20c、20d・・・・整流・平滑回路
21、21a、21b、21c、21d・・・・逆流禁止回路
30、30a、30b、30c、30d・・・・直流発電ユニット
40・・・・制御部
50・・・・負荷
60・・・・電源装置
70・・・・センサモジュール DESCRIPTION OF
Claims (8)
- 制御部を介して、発電部からの発電電力を電力供給対象へ出力する電源装置であって、
前記発電部は、少なくとも、前記電源装置の外部からの外部振動によって振動発電を行う振動発電素子と、該振動発電素子の出力を整流する整流回路との組合せからなる直流発電ユニットを複数組含み、
前記複数の直流発電ユニットは前記制御部に対して並列に接続され、各直流発電ユニットにおいて前記整流回路を経たユニット出力電力が該制御部に並列に入力される、
電源装置。 A power supply device that outputs generated power from a power generation unit to a power supply target via a control unit,
The power generation unit includes a plurality of DC power generation units each including a combination of a vibration power generation element that performs vibration power generation by external vibration from the outside of the power supply device and a rectifier circuit that rectifies the output of the vibration power generation element,
The plurality of DC power generation units are connected in parallel to the control unit, and unit output power that has passed through the rectifier circuit in each DC power generation unit is input to the control unit in parallel.
Power supply. - 前記複数の直流発電ユニットに含まれる前記振動発電素子のそれぞれは、前記外部振動の周波数が所定周波数であるときに、該振動発電素子の発電電力がピーク値を迎えるように形成され、
前記複数の直流発電ユニットには、前記所定周波数が異なる少なくとも2種類の前記振動発電素子が含まれる、
請求項1に記載の電源装置。 Each of the vibration power generation elements included in the plurality of DC power generation units is formed such that when the frequency of the external vibration is a predetermined frequency, the generated power of the vibration power generation element reaches a peak value,
The plurality of DC power generation units include at least two types of vibration power generation elements having different predetermined frequencies.
The power supply device according to claim 1. - 前記異なる所定周波数には、第1周波数と第2周波数が含まれ、
前記第1周波数は、前記第2周波数に対して、該第2周波数に対応する前記振動発電素子である第2発電素子による、振動周波数に対する発電量の推移の半値幅以上ずれ、且つ、該第1周波数に対応する前記振動発電素子である第1発電素子による、振動周波数に対する発電量の推移と、該第2発電素子に関する該推移とは互いに重なるように、該第1周波数と該第2周波数は設定される、
請求項2に記載の電源装置。 The different predetermined frequencies include a first frequency and a second frequency,
The first frequency deviates from the second frequency by more than a half-value width of the transition of the power generation amount with respect to the vibration frequency by the second power generation element that is the vibration power generation element corresponding to the second frequency, and the first frequency The first frequency and the second frequency so that the transition of the power generation amount with respect to the vibration frequency by the first power generation element, which is the vibration power generation element corresponding to one frequency, and the transition regarding the second power generation element overlap each other. Is set,
The power supply device according to claim 2. - 前記第1周波数は、前記第2周波数に対して、前記第2発電素子に関する前記推移の半値幅ずれるように、該第1周波数と該第2周波数は設定される、
請求項3に記載の電源装置。 The first frequency and the second frequency are set such that the first frequency is deviated from the second frequency by a half-value width of the transition related to the second power generation element.
The power supply device according to claim 3. - 前記異なる所定周波数には、第1周波数と第2周波数が含まれ、
前記第1周波数及び前記第2周波数のそれぞれは、50Hz及び60Hzの倍数とされる、
請求項2に記載の電源装置。 The different predetermined frequencies include a first frequency and a second frequency,
Each of the first frequency and the second frequency is a multiple of 50 Hz and 60 Hz.
The power supply device according to claim 2. - 前記複数の直流発電ユニットのそれぞれは、前記整流回路と前記制御部との間に、電流が該整流回路側に流れ込む逆流を禁止する逆流禁止回路を有する、
請求項1から請求項5の何れか1項に記載の電源装置。 Each of the plurality of DC power generation units includes a backflow prohibition circuit that prohibits a backflow of current flowing into the rectifier circuit side between the rectifier circuit and the control unit.
The power supply device according to any one of claims 1 to 5. - 前記制御部は、前記複数の直流発電ユニットからの発電電力を蓄電する二次電池を有する、
請求項1から請求項6の何れか1項に記載の電源装置。 The control unit includes a secondary battery that stores generated power from the plurality of DC power generation units.
The power supply device according to any one of claims 1 to 6. - 前記複数の直流発電ユニットのうち少なくとも一部の直流発電ユニットが、フレキシブル基板上に配置される、
請求項1から請求項7の何れか1項に記載の電源装置。 At least some of the DC power generation units among the plurality of DC power generation units are disposed on a flexible substrate.
The power supply device according to any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/074496 WO2017037793A1 (en) | 2015-08-28 | 2015-08-28 | Power supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/074496 WO2017037793A1 (en) | 2015-08-28 | 2015-08-28 | Power supply device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017037793A1 true WO2017037793A1 (en) | 2017-03-09 |
Family
ID=58187092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/074496 WO2017037793A1 (en) | 2015-08-28 | 2015-08-28 | Power supply device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017037793A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11830352B1 (en) | 2022-08-10 | 2023-11-28 | International Business Machines Corporation | Haptic vibration exposure control based on directional position of power recovery module |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012206630A (en) * | 2011-03-30 | 2012-10-25 | Asahi Glass Co Ltd | Mobile body |
JP2013150387A (en) * | 2012-01-17 | 2013-08-01 | Kansai Univ | Method for manufacturing electret, electret, and generator |
WO2014069483A1 (en) * | 2012-11-05 | 2014-05-08 | 旭硝子株式会社 | Vibratory generator device and power source module |
JP2014131418A (en) * | 2012-12-28 | 2014-07-10 | Omron Corp | Oscillating power generator |
-
2015
- 2015-08-28 WO PCT/JP2015/074496 patent/WO2017037793A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012206630A (en) * | 2011-03-30 | 2012-10-25 | Asahi Glass Co Ltd | Mobile body |
JP2013150387A (en) * | 2012-01-17 | 2013-08-01 | Kansai Univ | Method for manufacturing electret, electret, and generator |
WO2014069483A1 (en) * | 2012-11-05 | 2014-05-08 | 旭硝子株式会社 | Vibratory generator device and power source module |
JP2014131418A (en) * | 2012-12-28 | 2014-07-10 | Omron Corp | Oscillating power generator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11830352B1 (en) | 2022-08-10 | 2023-11-28 | International Business Machines Corporation | Haptic vibration exposure control based on directional position of power recovery module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4663035B2 (en) | Vibration power generator, vibration power generation device, and communication device equipped with vibration power generation device | |
US8933611B2 (en) | Vibration power generator, vibration power generating device and communication device having vibration power generating device mounted thereon | |
US20140056043A1 (en) | Power generator, and electric equipment using it | |
US8723398B2 (en) | Piezoelectric energy harvesting apparatus | |
US8710712B2 (en) | Vibration power generator and vibration power generation device, and communication device and electronic equipment with vibration power generation device | |
US9134168B2 (en) | Vibration sensor and external detection device | |
US8564170B2 (en) | Vibration power generator, vibration power generation apparatus, and electric device and communication device with vibration power generation apparatus mounted thereon | |
JP2016025777A (en) | Power supply device | |
JP2010115062A (en) | Generating set and electronic equipment | |
JP2014226003A (en) | Vibration power generator | |
WO2013057897A1 (en) | Oscillation generator, rotor, and communication device | |
WO2017037793A1 (en) | Power supply device | |
KR101332006B1 (en) | Omnidirectional vibration based energy harvester | |
WO2014013835A1 (en) | Vibration-based power generation device | |
KR20150004491A (en) | Piezoelectric power generator | |
KR20190061421A (en) | Large power charger overheating prevented system and method | |
JP5790599B2 (en) | Vibration power generator | |
WO2019216165A1 (en) | Vibration power generation element and vibration power generation device | |
CN112042104A (en) | Vibration power generation device and vibration power generation element | |
Nakahigashi et al. | SEPIC-based Vibration Power Generation System With Variable Equivalent Resistance Control | |
JP7117219B2 (en) | Wireless power supply device and multi-axis robot using it | |
JP2014011921A (en) | Vibration power generating circuit, electronic apparatus using the same, and wireless sensor | |
JP2018137271A (en) | Coil unit | |
JP2015092545A (en) | Piezoelectric transformer, and wireless power transmission system | |
JP2015186048A (en) | Radio device and radio system using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15902919 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15902919 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |