[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017033935A1 - Electroconductive material and connection structure - Google Patents

Electroconductive material and connection structure Download PDF

Info

Publication number
WO2017033935A1
WO2017033935A1 PCT/JP2016/074532 JP2016074532W WO2017033935A1 WO 2017033935 A1 WO2017033935 A1 WO 2017033935A1 JP 2016074532 W JP2016074532 W JP 2016074532W WO 2017033935 A1 WO2017033935 A1 WO 2017033935A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
electrode
conductive
conductive material
particles
Prior art date
Application number
PCT/JP2016/074532
Other languages
French (fr)
Japanese (ja)
Inventor
周治郎 定永
麻衣 永田
将大 伊藤
敬士 久保田
石澤 英亮
宏 夏井
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201680033297.9A priority Critical patent/CN107636774B/en
Priority to KR1020177023800A priority patent/KR102605942B1/en
Priority to JP2016555375A priority patent/JP6798887B2/en
Publication of WO2017033935A1 publication Critical patent/WO2017033935A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections

Definitions

  • the present invention relates to a conductive material including conductive particles having solder.
  • the present invention also relates to a connection structure using the conductive material.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder.
  • the anisotropic conductive material may be connected between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), or connected between a semiconductor chip and a flexible printed circuit board (COF ( (Chip on Film)), connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
  • FOG Glass
  • COF Chip on Film
  • an anisotropic conductive material containing conductive particles is disposed on the glass epoxy substrate. To do.
  • a flexible printed circuit board is laminated, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.
  • the following Patent Document 1 describes an anisotropic conductive material including conductive particles and a resin component that cannot be cured at the melting point of the conductive particles.
  • the conductive particles include tin (Sn), indium (In), bismuth (Bi), silver (Ag), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd ), Metals such as gallium (Ga) and thallium (Tl), and alloys of these metals.
  • Patent Document 1 a resin heating step for heating the anisotropic conductive resin to a temperature higher than the melting point of the conductive particles and at which the curing of the resin component is not completed, and a resin component curing step for curing the resin component The electrical connection between the electrodes is described.
  • Patent Document 1 describes that mounting is performed with the temperature profile shown in FIG. In Patent Document 1, the conductive particles melt in a resin component that is not completely cured at a temperature at which the anisotropic conductive resin is heated.
  • Patent Document 2 discloses an adhesive tape that includes a resin layer containing a thermosetting resin, solder powder, and a curing agent, and the solder powder and the curing agent are present in the resin layer. Yes.
  • This adhesive tape is in the form of a film, not a paste.
  • solder powder or conductive particles may not be efficiently disposed on the electrodes (lines).
  • connection resistance may increase.
  • the adhesive tape described in Patent Document 2 is a film, not a paste.
  • a part of the solder powder is easily placed in a region (space) where no electrode is formed.
  • Solder powder disposed in a region where no electrode is formed does not contribute to conduction between the electrodes.
  • An object of the present invention is to selectively dispose solder in conductive particles on electrodes, and to suppress migration and keep connection resistance low even when the electrode width and interelectrode width are narrow. It is to provide a conductive material that can be used. Another object of the present invention is to provide a connection structure using the conductive material.
  • the outer surface portion of the conductive portion includes a plurality of conductive particles having solder, a thermosetting compound, and an acid anhydride thermosetting agent, and has a viscosity at 50 ° C. of 10 Pa.
  • a conductive material is provided that is greater than or equal to s and less than or equal to 200 Pa ⁇ s.
  • the content of the conductive particles is 1% by weight or more and 80% by weight or less, and the conductive material is anisotropic conductive. Material.
  • the ratio of the viscosity at 50 ° C. to the viscosity at 100 ° C. is 10 or more and 400 or less.
  • the conductive particles are solder particles.
  • the conductive material includes an organic phosphorus compound.
  • the acid anhydride thermosetting agent is preferably liquid at 25 ° C.
  • the acid anhydride thermosetting agent is preferably a cyclic acid anhydride thermosetting agent.
  • the obtained first cured product is 130 ° C. and humidity.
  • the absolute value of the difference between the glass transition temperature of the first cured product and the glass transition temperature of the second cured product was 20 ° C. It is as follows.
  • the thermosetting compound includes a thermosetting compound having a nitrogen atom.
  • thermosetting compound includes a thermosetting compound having a triazine skeleton.
  • the content of the acid anhydride thermosetting agent is 30 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight as a whole of the thermosetting compound.
  • a carboxyl group is present on the outer surface of the conductive particles.
  • the conductive material is liquid at 25 ° C. and is a conductive paste.
  • a first connection target member having at least one first electrode on the surface
  • a second connection target member having at least one second electrode on the surface
  • the connection part is a cured product of the conductive material described above, and the first electrode and the second electrode.
  • the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode.
  • the solder portion in the connection portion is arranged in 50% or more of the area of 100% of the portion where the first electrode and the second electrode face each other.
  • the conductive material according to the present invention includes a plurality of conductive particles having solder on the outer surface portion of the conductive portion, a thermosetting compound, and an acid anhydride thermosetting agent, and has a viscosity at 50 ° C. of 10 Pa ⁇ Since it is s or more and 200 Pa ⁇ s or less, the solder in the conductive particles can be selectively disposed on the electrode, and even if the electrode width and the inter-electrode width are narrow, the migration is suppressed and the connection resistance is reduced. Can be kept low.
  • FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention.
  • 2A to 2C are cross-sectional views for explaining each step of an example of a method for manufacturing a connection structure using a conductive material according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a modification of the connection structure.
  • FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material.
  • FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used for the conductive material.
  • FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used for the conductive material.
  • the conductive material according to the present invention includes a plurality of conductive particles and a binder.
  • the conductive particles have a conductive part.
  • the conductive particles have solder on the outer surface portion of the conductive portion. Solder is contained in the conductive part and is a part or all of the conductive part.
  • the conductive material according to the present invention contains a thermosetting compound and a thermosetting agent as the binder.
  • a thermosetting compound and a thermosetting agent are thermosetting components.
  • the conductive material according to the present invention includes an acid anhydride thermosetting agent as the thermosetting agent.
  • thermosetting compound In the present invention, specific conductive particles are used, and a specific acid anhydride thermosetting agent is used in combination to cure the thermosetting compound.
  • the viscosity of the conductive material according to the present invention at 50 ° C. is 10 Pa ⁇ s or more and 200 Pa ⁇ s or less.
  • the solder in the conductive particles can be selectively disposed on the electrode.
  • the solder in the conductive particles easily collects between the upper and lower electrodes, and the solder in the conductive particles can be efficiently disposed on the electrodes (lines).
  • the solder in the conductive particles it is difficult for a part of the solder in the conductive particles to be arranged in a region (space) where no electrode is formed, and the amount of solder arranged in a region where no electrode is formed can be considerably reduced.
  • the solder that is not located between the opposing electrodes can be efficiently moved between the opposing electrodes. Therefore, the conduction reliability between the electrodes can be improved.
  • the electrode width and the inter-electrode width are becoming narrower. For this reason, if solder remains between the electrodes adjacent in the lateral direction, migration is likely to occur, and the occurrence of migration is a major problem.
  • the electrode width and the inter-electrode width are narrow, migration can be effectively suppressed and the connection resistance can be kept low.
  • the first cured product is obtained by thermally curing the conductive material at 170 ° C. for 0.5 hour.
  • the second cured product is obtained by leaving the first cured product at 130 ° C. and 85% humidity for 100 hours.
  • the difference between the glass transition temperature (Tg1) of the first cured product and the glass transition temperature (Tg2) of the second cured product is preferably 20 ° C. or lower, more preferably 10 ° C. or lower.
  • the conductive material is preferably liquid at 25 ° C., and preferably a conductive paste.
  • the viscosity ( ⁇ 50) of the conductive material at 50 ° C. is preferably 10 Pa ⁇ s or more, more preferably 30 Pa ⁇ s or more, and preferably 200 Pa ⁇ s or less. More preferably, it is 100 Pa ⁇ s or less.
  • the viscosity at 50 ° C. of the conductive material affects the moving speed of conductive particles or solder at the initial stage of conductive connection.
  • the ratio of the viscosity of the conductive material at 50 ° C. ( ⁇ 50) to the viscosity of the conductive material at 100 ° C. ( ⁇ 100) is preferably 10 or more, more preferably 30 or more, preferably 400 or less, more preferably 100 or less.
  • the viscosity at 100 ° C. of the conductive material affects the moving speed of conductive particles or solder in the middle of conductive connection.
  • the ratio ( ⁇ 50 / ⁇ 100) is not less than the above lower limit and not more than the above upper limit, the conductive particles or solder efficiently move from the initial stage to the middle stage at the time of conductive connection.
  • the above viscosity can be measured using STRESTTECH (manufactured by EOLOGICA) etc. under the conditions of strain control 1 rad, frequency 1 Hz, heating rate 20 ° C./min, and measuring temperature range 40 to 200 ° C.
  • the conductive material can be used as a conductive paste and a conductive film.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the conductive material is preferably used for electrical connection of electrodes.
  • the conductive material is preferably a circuit connection material.
  • the content of the conductive particles in 100% by weight of the conductive material is 1% by weight or more, 80
  • the conductive material is preferably an anisotropic conductive material.
  • This anisotropic conductive material is preferably an anisotropic conductive paste or an anisotropic conductive film.
  • the conductive particles electrically connect the electrodes of the connection target member.
  • the conductive particles have solder on the outer surface portion of the conductive portion.
  • the conductive particles may be solder particles.
  • the solder particles are formed of solder.
  • the solder particles have solder on the outer surface portion of the conductive portion.
  • the solder particles are particles in which both the central portion of the solder particles and the outer surface portion of the conductive portion are solder.
  • both the center part and the outer surface part of an electroconductive part are formed with the solder.
  • the said electroconductive particle may have a base material particle and the electroconductive part arrange
  • the conductive particles are less likely to collect on the surface, and the solder joint property between the conductive particles is low, so the conductive particles that have moved onto the electrodes tend to move out of the electrodes, and the effect of suppressing displacement between the electrodes Tend to be lower. Therefore, the conductive particles are preferably solder particles.
  • a carboxyl group or an amino group is present on the outer surface of the conductive particles (the outer surface of the solder). It is preferable that a carboxyl group is present, and an amino group is preferably present.
  • a group containing a carboxyl group or an amino group is shared on the outer surface of the conductive particle (the outer surface of the solder) via a Si—O bond, an ether bond, an ester bond or a group represented by the following formula (X).
  • a group containing a carboxyl group or an amino group is covalently bonded through an ether bond, an ester bond or a group represented by the following formula (X).
  • the group containing a carboxyl group or an amino group may contain both a carboxyl group and an amino group.
  • the right end and the left end represent a binding site.
  • the bond form between the solder surface and the group containing a carboxyl group may not include a coordinate bond, and may not include a bond due to a chelate coordinate.
  • the conductive particle is a compound having a functional group capable of reacting with a hydroxyl group and a carboxyl group or an amino group ( Hereinafter, it is preferably obtained by reacting a hydroxyl group on the surface of the solder with a functional group capable of reacting with the hydroxyl group using a compound X). In the above reaction, a covalent bond is formed.
  • conductive particles in which a group containing a carboxyl group or an amino group is covalently bonded to the surface of the solder are easily obtained. It is also possible to obtain conductive particles in which a group containing a carboxyl group or an amino group is covalently bonded to the surface of the solder via an ether bond or an ester bond.
  • the compound X can be chemically bonded to the surface of the solder in the form of a covalent bond.
  • Examples of the functional group capable of reacting with the hydroxyl group include a hydroxyl group, a carboxyl group, an ester group, and a carbonyl group.
  • a hydroxyl group or a carboxyl group is preferred.
  • the functional group capable of reacting with the hydroxyl group may be a hydroxyl group or a carboxyl group.
  • Examples of the compound having a functional group capable of reacting with a hydroxyl group include levulinic acid, glutaric acid, glycolic acid, succinic acid, malic acid, oxalic acid, malonic acid, adipic acid, 5-ketohexanoic acid, 3-hydroxypropionic acid, 4- Aminobutyric acid, 3-mercaptopropionic acid, 3-mercaptoisobutyric acid, 3-methylthiopropionic acid, 3-phenylpropionic acid, 3-phenylisobutyric acid, 4-phenylbutyric acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, Hexadecanoic acid, 9-hexadecenoic acid, heptadecanoic acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, (9,12,15) -linolenic acid, nonadecanoic
  • Glutaric acid or glycolic acid is preferred. Only 1 type may be used for the compound which has the functional group which can react with the said hydroxyl group, and 2 or more types may be used together.
  • the compound having a functional group capable of reacting with the hydroxyl group is preferably a compound having at least one carboxyl group.
  • the compound X preferably has a flux action, and the compound X preferably has a flux action in a state of being bonded to the solder surface.
  • the compound having a flux action can remove the oxide film on the surface of the solder and the oxide film on the surface of the electrode.
  • the carboxyl group has a flux action.
  • Examples of the compound having a flux action include levulinic acid, glutaric acid, glycolic acid, succinic acid, 5-ketohexanoic acid, 3-hydroxypropionic acid, 4-aminobutyric acid, 3-mercaptopropionic acid, 3-mercaptoisobutyric acid, 3- Examples include methylthiopropionic acid, 3-phenylpropionic acid, 3-phenylisobutyric acid and 4-phenylbutyric acid. Glutaric acid or glycolic acid is preferred. As for the compound which has the said flux effect
  • the functional group capable of reacting with the hydroxyl group in the compound X is preferably a hydroxyl group or a carboxyl group.
  • the functional group capable of reacting with the hydroxyl group in the compound X may be a hydroxyl group or a carboxyl group.
  • the compound X preferably has at least two carboxyl groups.
  • the method for producing conductive particles includes, for example, using conductive particles and mixing the conductive particles, a compound having a functional group capable of reacting with a hydroxyl group and a carboxyl group, a catalyst, and a solvent.
  • conductive particles in which a group containing a carboxyl group is covalently bonded to the surface of the solder can be easily obtained by the mixing step.
  • this electroconductive particle using electroconductive particle, this electroconductive particle, the compound which has the functional group and carboxyl group which can react with the said hydroxyl group, the said catalyst, and the said solvent are mixed, and it heats. It is preferable.
  • conductive particles in which a group containing a carboxyl group is covalently bonded to the surface of the solder can be obtained more easily.
  • the solvent examples include alcohol solvents such as methanol, ethanol, propanol and butanol, acetone, methyl ethyl ketone, ethyl acetate, toluene and xylene.
  • the solvent is preferably an organic solvent, and more preferably toluene. As for the said solvent, only 1 type may be used and 2 or more types may be used together.
  • the catalyst examples include p-toluenesulfonic acid, benzenesulfonic acid, 10-camphorsulfonic acid, and the like.
  • the catalyst is preferably p-toluenesulfonic acid.
  • the said catalyst only 1 type may be used and 2 or more types may be used together.
  • the heating temperature is preferably 90 ° C or higher, more preferably 100 ° C or higher, preferably 130 ° C or lower, more preferably 110 ° C or lower.
  • the conductive particles react with the isocyanate compound to the hydroxyl group on the surface of the solder using the isocyanate compound. It is preferable that it is obtained through the process of making it. In the above reaction, a covalent bond is formed.
  • the hydroxyl group on the surface of the solder with the isocyanate compound it is possible to easily obtain conductive particles in which the nitrogen atom of the group derived from the isocyanate group is covalently bonded to the surface of the solder.
  • a group derived from an isocyanate group can be chemically bonded to the surface of the solder in the form of a covalent bond.
  • a silane coupling agent can be easily reacted with a group derived from an isocyanate group. Since the conductive particles can be easily obtained, the group containing a carboxyl group is introduced by a reaction using a silane coupling agent having a carboxyl group, or the reaction using a silane coupling agent is performed. It is preferably introduced later by reacting a compound derived from a silane coupling agent with a compound having at least one carboxyl group.
  • the conductive particles are preferably obtained by reacting the isocyanate compound with a hydroxyl group on the surface of the solder using the isocyanate compound and then reacting a compound having at least one carboxyl group.
  • the compound having at least one carboxyl group preferably has a plurality of carboxyl groups.
  • isocyanate compound examples include diphenylmethane-4,4'-diisocyanate (MDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), and isophorone diisocyanate (IPDI). Isocyanate compounds other than these may be used. After reacting this compound on the surface of the solder, by reacting the residual isocyanate group and a compound having reactivity with the residual isocyanate group and having a carboxyl group, the surface of the solder is represented by the above formula (X). A carboxyl group can be introduced through the group represented.
  • MDI diphenylmethane-4,4'-diisocyanate
  • HDI hexamethylene diisocyanate
  • TDI toluene diisocyanate
  • IPDI isophorone diisocyanate
  • the isocyanate compound a compound having an unsaturated double bond and having an isocyanate group may be used. Examples include 2-acryloyloxyethyl isocyanate and 2-isocyanatoethyl methacrylate. After reacting the isocyanate group of this compound on the surface of the solder, reacting the compound having a functional group having reactivity with the remaining unsaturated double bond and having a carboxyl group, A carboxyl group can be introduced to the surface via a group represented by the above formula (X).
  • silane coupling agent examples include 3-isocyanatopropyltriethoxysilane (“KBE-9007” manufactured by Shin-Etsu Silicone) and 3-isocyanatepropyltrimethoxysilane (“Y-5187” manufactured by MOMENTIVE). As for the said silane coupling agent, only 1 type may be used and 2 or more types may be used together.
  • Examples of the compound having at least one carboxyl group include levulinic acid, glutaric acid, glycolic acid, succinic acid, malic acid, oxalic acid, malonic acid, adipic acid, 5-ketohexanoic acid, 3-hydroxypropionic acid, 4-amino Butyric acid, 3-mercaptopropionic acid, 3-mercaptoisobutyric acid, 3-methylthiopropionic acid, 3-phenylpropionic acid, 3-phenylisobutyric acid, 4-phenylbutyric acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecane Examples include acid, 9-hexadecenoic acid, heptadecanoic acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, (9,12,15) -linolenic acid, nonadecanoic acid, arachidic acid
  • the carboxyl group of the compound having a plurality of carboxyl groups is reacted with the hydroxyl group on the surface of the solder.
  • the group containing can be left.
  • the conductive particles are used and the isocyanate compound is used to react the hydroxyl group on the surface of the solder with the isocyanate compound, and then the compound having at least one carboxyl group is reacted.
  • the conductive particles in which a group containing a carboxyl group is bonded to the surface of the solder via the group represented by the above formula (X) are obtained.
  • conductive particles in which a group containing a carboxyl group is introduced on the surface of the solder can be easily obtained by the above-described steps.
  • the following method can be given as a specific method for producing the conductive particles.
  • Conductive particles are dispersed in an organic solvent, and a silane coupling agent having an isocyanate group is added. Thereafter, a silane coupling agent is covalently bonded to the surface of the solder using a reaction catalyst between a hydroxyl group and an isocyanate group on the surface of the solder of the conductive particles.
  • a hydroxyl group is produced
  • Conductive particles are dispersed in an organic solvent, and a compound having an isocyanate group and an unsaturated double bond is added. Thereafter, a covalent bond is formed using a reaction catalyst of a hydroxyl group and an isocyanate group on the surface of the solder of the conductive particles. Thereafter, the unsaturated double bond introduced is reacted with a compound having an unsaturated double bond and a carboxyl group.
  • the reaction catalyst for hydroxyl groups and isocyanate groups on the surface of the solder of the conductive particles includes tin catalysts (dibutyltin dilaurate, etc.), amine catalysts (triethylenediamine, etc.), carboxylate catalysts (lead naphthenate, potassium acetate, etc.) And a trialkylphosphine catalyst (such as triethylphosphine).
  • the compound having at least one carboxyl group is a compound represented by the following formula (1): Is preferred.
  • the compound represented by the following formula (1) has a flux action.
  • the compound represented by following formula (1) has a flux effect
  • X represents a functional group capable of reacting with a hydroxyl group
  • R represents a divalent organic group having 1 to 5 carbon atoms.
  • the organic group may contain a carbon atom, a hydrogen atom, and an oxygen atom.
  • the organic group may be a divalent hydrocarbon group having 1 to 5 carbon atoms.
  • the main chain of the organic group is preferably a divalent hydrocarbon group.
  • a carboxyl group or a hydroxyl group may be bonded to a divalent hydrocarbon group.
  • Examples of the compound represented by the above formula (1) include citric acid.
  • the compound having at least one carboxyl group is preferably a compound represented by the following formula (1A) or the following formula (1B).
  • the compound having at least one carboxyl group is preferably a compound represented by the following formula (1A), and more preferably a compound represented by the following formula (1B).
  • R represents a divalent organic group having 1 to 5 carbon atoms.
  • R in the above formula (1A) is the same as R in the above formula (1).
  • R represents a divalent organic group having 1 to 5 carbon atoms.
  • R in the above formula (1B) is the same as R in the above formula (1).
  • a group represented by the following formula (2A) or the following formula (2B) is bonded to the surface of the solder.
  • a group represented by the following formula (2A) is preferably bonded to the surface of the solder, and more preferably a group represented by the following formula (2B) is bonded.
  • the left end portion represents a binding site.
  • R represents a divalent organic group having 1 to 5 carbon atoms.
  • R in the above formula (2A) is the same as R in the above formula (1).
  • R represents a divalent organic group having 1 to 5 carbon atoms.
  • R in the above formula (2B) is the same as R in the above formula (1).
  • the molecular weight of the compound having at least one carboxyl group is preferably 10,000 or less, more preferably 1000 or less, and even more preferably 500 or less.
  • the molecular weight means a molecular weight that can be calculated from the structural formula when the compound having at least one carboxyl group is not a polymer and when the structural formula of the compound having at least one carboxyl group can be specified. Further, when the compound having at least one carboxyl group is a polymer, it means a weight average molecular weight.
  • the conductive particles may have a conductive particle main body and an anionic polymer disposed on the surface of the conductive particle main body.
  • the conductive particles are preferably obtained by surface-treating the conductive particle body with an anionic polymer or a compound that becomes an anionic polymer.
  • the conductive particles are preferably a surface treated product of an anionic polymer or a compound that becomes an anionic polymer.
  • the anion polymer and the compound used as the said anion polymer only 1 type may respectively be used and 2 or more types may be used together.
  • the anionic polymer is a polymer having an acidic group.
  • an anionic polymer for example, a (meth) acrylic polymer copolymerized with (meth) acrylic acid, synthesized from a dicarboxylic acid and a diol, and having carboxyl groups at both ends are used.
  • Polyester polymer having a carboxyl group at both ends obtained from an intermolecular dehydration condensation reaction of dicarboxylic acid, a polyester polymer synthesized from dicarboxylic acid and diamine and having a carboxyl group at both ends, and a modification having a carboxyl group
  • a method of reacting the carboxyl group of the anionic polymer with the hydroxyl group on the surface of the conductive particle main body using Poval (“GOHSEX T” manufactured by Nippon Synthetic Chemical Co., Ltd.) or the like can be mentioned.
  • anion portion of the anionic polymer examples include the carboxyl group, and other than that, a tosyl group (p—H 3 CC 6 H 4 S ( ⁇ O) 2 —), a sulfonate ion group (—SO 3 —) ), And phosphate ion groups (—PO 4 ⁇ ) and the like.
  • a compound having a functional group that reacts with a hydroxyl group on the surface of the conductive particle main body and a functional group that can be polymerized by addition or condensation reaction is used as another method for the surface treatment.
  • the method of polymerizing on the surface of an electroconductive particle main body is mentioned.
  • the functional group that reacts with the hydroxyl group on the surface of the conductive particle body include a carboxyl group and an isocyanate group, and the functional group that polymerizes by addition and condensation reactions includes a hydroxyl group, a carboxyl group, an amino group, and (meta ) An acryloyl group is mentioned.
  • the weight average molecular weight of the anionic polymer is preferably 2000 or more, more preferably 3000 or more, preferably 10,000 or less, more preferably 8000 or less.
  • the weight average molecular weight is not less than the above lower limit and not more than the above upper limit, a sufficient amount of charge and flux properties can be introduced on the surface of the conductive particles. Thereby, the cohesiveness of electroconductive particle can be effectively improved at the time of conductive connection, and the oxide film on the surface of an electrode can be effectively removed at the time of connection of the connection object member.
  • the weight average molecular weight is not less than the above lower limit and not more than the above upper limit, it is easy to dispose an anionic polymer on the surface of the conductive particle body, and it is possible to effectively increase the cohesiveness of the solder particles at the time of conductive connection.
  • the conductive particles can be arranged more efficiently on the electrode.
  • the weight average molecular weight indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the weight average molecular weight of the anionic polymer is measured by dissolving the solder in the conductive particles, removing the conductive particles with dilute hydrochloric acid that does not cause decomposition of the anionic polymer, and then measuring the weight average molecular weight of the remaining anionic polymer. Can be obtained.
  • the acid value per 1 g of the conductive particles is preferably 1 mgKOH or more, more preferably 2 mgKOH or more, preferably 10 mgKOH or less, more preferably 6 mgKOH or less.
  • the acid value can be measured as follows. 1 g of conductive particles is added to 36 g of acetone and dispersed with an ultrasonic wave for 1 minute. Thereafter, phenolphthalein is used as an indicator and titrated with a 0.1 mol / L potassium hydroxide ethanol solution.
  • FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material.
  • the conductive particles 21 shown in FIG. 4 are solder particles.
  • the conductive particles 21 are entirely formed of solder.
  • the conductive particles 21 do not have base particles in the core, and are not core-shell particles.
  • both the center part and the outer surface part of an electroconductive part are formed with the solder.
  • FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used as a conductive material.
  • the electroconductive particle 31 shown in FIG. 5 is equipped with the base material particle 32 and the electroconductive part 33 arrange
  • the conductive portion 33 covers the surface of the base particle 32.
  • the conductive particles 31 are coated particles in which the surface of the base particle 32 is covered with the conductive portion 33.
  • the conductive portion 33 has a second conductive portion 33A and a solder portion 33B (first conductive portion).
  • the conductive particle 31 includes a second conductive portion 33A between the base particle 32 and the solder portion 33B. Therefore, the conductive particles 31 are composed of the base particle 32, the second conductive portion 33A disposed on the surface of the base particle 32, and the solder portion 33B disposed on the outer surface of the second conductive portion 33A.
  • FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used as a conductive material.
  • the conductive portion 33 in the conductive particle 31 has a two-layer structure.
  • the conductive particle 41 shown in FIG. 6 has a solder part 42 as a single-layer conductive part.
  • the conductive particles 41 include base particles 32 and solder portions 42 disposed on the surfaces of the base particles 32.
  • the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the substrate particles are preferably substrate particles excluding metal, and are preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the substrate particles may be copper particles.
  • the base particle may have a core and a shell disposed on the surface of the core, or may be a core-shell particle.
  • the core may be an organic core, and the shell may be an inorganic shell.
  • the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate , Polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide , Polyacetal, polyimide, polyamideimide, polyether ether Tons, polyether sulfone, divinyl benzene polymer, and divinylbenzene copolymer,
  • polyolefin resins such as polyethylene, polypropylene,
  • the divinylbenzene copolymer examples include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably a coalescence.
  • the polymerizable monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer and And a crosslinkable monomer.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylate compounds such as meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, etc.
  • Oxygen atom-containing (meth) acrylate compounds Nitrile-containing monomers such as (meth) acrylonitrile; Vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; Acids such as vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stearate Vinyl ester compounds; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene Etc.
  • Nitrile-containing monomers such as (meth) acrylonitrile
  • Vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether
  • Acids such as vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stea
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) sia Silane-
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
  • examples of inorganic substances for forming the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black.
  • the inorganic substance is preferably not a metal.
  • the particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the substrate particles are metal particles
  • examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the metal particles are preferably copper particles.
  • the substrate particles are preferably not metal particles.
  • the particle diameter of the substrate particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 1.5 ⁇ m or more, particularly preferably 2 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, more More preferably, it is 40 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 10 ⁇ m or less, particularly preferably 5 ⁇ m or less, and most preferably 3 ⁇ m or less.
  • the particle diameter of the base material particles is equal to or larger than the lower limit, the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes can be further improved and the connection is made through the conductive particles.
  • connection resistance between the formed electrodes can be further reduced.
  • the particle diameter of the substrate particles is not more than the above upper limit, the conductive particles are easily compressed, the connection resistance between the electrodes can be further reduced, and the distance between the electrodes can be further reduced. it can.
  • the particle diameter of the substrate particles indicates a diameter when the substrate particles are spherical, and indicates a maximum diameter when the substrate particles are not spherical.
  • the particle diameter of the substrate particles is particularly preferably 2 ⁇ m or more and 5 ⁇ m or less.
  • the distance between the electrodes can be further reduced, and even if the thickness of the conductive layer is increased, small conductive particles can be obtained. Can do.
  • the method for forming the conductive part on the surface of the base particle and the method for forming the solder part on the surface of the base particle or the surface of the second conductive part are not particularly limited.
  • Examples of the method for forming the conductive portion and the solder portion include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, And a method of coating the surface of the substrate particles with a paste containing metal powder or metal powder and a binder. Electroless plating, electroplating or physical collision methods are preferred.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, in the method based on the physical collision, for example, a sheeter composer (manufactured by Tokuju Kogakusha Co., Ltd.) or the like is used.
  • the melting point of the base material particles is preferably higher than the melting points of the conductive part and the solder part.
  • the melting point of the substrate particles is preferably higher than 160 ° C, more preferably higher than 300 ° C, still more preferably higher than 400 ° C, and particularly preferably higher than 450 ° C.
  • the melting point of the substrate particles may be less than 400 ° C.
  • the melting point of the substrate particles may be 160 ° C. or less.
  • the softening point of the substrate particles is preferably 260 ° C. or higher.
  • the softening point of the substrate particles may be less than 260 ° C.
  • the conductive particles may have a single layer solder portion.
  • the conductive particles may have a plurality of layers of conductive parts (solder part, second conductive part). That is, in the conductive particles, two or more conductive portions may be stacked. When the conductive part has two or more layers, the conductive particles preferably have solder on the outer surface portion of the conductive part.
  • the solder is preferably a metal (low melting point metal) having a melting point of 450 ° C. or lower.
  • the solder part is preferably a metal layer (low melting point metal layer) having a melting point of 450 ° C. or lower.
  • the low melting point metal layer is a layer containing a low melting point metal.
  • the solder in the conductive particles is preferably metal particles having a melting point of 450 ° C. or lower (low melting point metal particles).
  • the low melting point metal particles are particles containing a low melting point metal.
  • the low melting point metal is a metal having a melting point of 450 ° C. or lower.
  • the melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower.
  • the solder in the conductive particles preferably contains tin.
  • the content of tin is preferably 30% by weight or more, more preferably 40% by weight or more, and still more preferably. It is 70% by weight or more, particularly preferably 90% by weight or more.
  • the tin content is determined using a high-frequency inductively coupled plasma emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). It can be measured.
  • ICP-AES high-frequency inductively coupled plasma emission spectrometer
  • EDX-800HS fluorescent X-ray analyzer
  • the solder is melted and joined to the electrodes, and the solder conducts between the electrodes. For example, since the solder and the electrode are not in point contact but in surface contact, the connection resistance is lowered.
  • the use of conductive particles having solder on the outer surface of the conductive portion increases the bonding strength between the solder and the electrode, and as a result, the solder and the electrode are more unlikely to peel off, and the conduction reliability is effective. To be high.
  • the low melting point metal constituting the solder part and the solder particles is not particularly limited.
  • the low melting point metal is preferably tin or an alloy containing tin.
  • the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy.
  • the low melting point metal is preferably tin, tin-silver alloy, tin-silver-copper alloy, tin-bismuth alloy, or tin-indium alloy because of its excellent wettability to the electrode. More preferred are a tin-bismuth alloy and a tin-indium alloy.
  • the material constituting the solder is preferably a filler material having a liquidus of 450 ° C. or lower based on JIS Z3001: Welding terms.
  • the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like.
  • the solder in the conductive particles is nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese. Further, it may contain a metal such as chromium, molybdenum and palladium. Moreover, from the viewpoint of further increasing the bonding strength between the solder and the electrode, the solder in the conductive particles preferably contains nickel, copper, antimony, aluminum, or zinc.
  • the content of these metals for increasing the bonding strength is preferably 0% in 100% by weight of the solder in the conductive particles. 0.0001% by weight or more, preferably 1% by weight or less.
  • the melting point of the second conductive part is preferably higher than the melting point of the solder part.
  • the melting point of the second conductive part is preferably more than 160 ° C, more preferably more than 300 ° C, still more preferably more than 400 ° C, still more preferably more than 450 ° C, particularly preferably more than 500 ° C, most preferably Preferably it exceeds 600 degreeC. Since the solder part has a low melting point, it melts during conductive connection. It is preferable that the second conductive portion does not melt during conductive connection.
  • the conductive particles are preferably used by melting solder, preferably used by melting the solder part, and used without melting the solder part and melting the second conductive part. It is preferred that Since the melting point of the second conductive part is higher than the melting point of the solder part, only the solder part can be melted without melting the second conductive part at the time of conductive connection.
  • the absolute value of the difference between the melting point of the solder part and the melting point of the second conductive part exceeds 0 ° C, preferably 5 ° C or more, more preferably 10 ° C or more, still more preferably 30 ° C or more, and particularly preferably 50 ° C. or higher, most preferably 100 ° C. or higher.
  • the second conductive part preferably contains a metal.
  • the metal which comprises the said 2nd electroconductive part is not specifically limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.
  • the second conductive part is preferably a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably a nickel layer or a gold layer, and even more preferably a copper layer.
  • the conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer or a gold layer, and still more preferably have a copper layer.
  • the thickness of the solder part is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and still more preferably 0.3 ⁇ m or less.
  • the thickness of the solder portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles are not hardened, and the conductive particles are sufficiently deformed when connecting between the electrodes. .
  • the average particle diameter of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 3 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less, particularly preferably. Is 30 ⁇ m or less.
  • the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles can be arranged more efficiently on the electrodes, and there are many solders in the conductive particles between the electrodes. It is easy to arrange and the conduction reliability is further enhanced.
  • the “average particle size” of the conductive particles indicates a number average particle size.
  • the average particle diameter of the conductive particles is obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
  • the shape of the conductive particles is not particularly limited.
  • the conductive particles may have a spherical shape or a shape other than a spherical shape such as a flat shape.
  • the content of the conductive particles in 100% by weight of the conductive material is preferably 1% by weight or more, more preferably 2% by weight or more, still more preferably 10% by weight or more, particularly preferably 20% by weight or more, most preferably. It is 30% by weight or more, preferably 80% by weight or less, more preferably 60% by weight or less, and still more preferably 50% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles can be arranged more efficiently on the electrodes, and more solder in the conductive particles is arranged between the electrodes. It is easy to do and the conduction reliability is further increased. From the viewpoint of further improving the conduction reliability, the content of the conductive particles is preferably large.
  • thermosetting compound is a compound that can be cured by heating.
  • examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
  • an epoxy compound or an episulfide compound is preferable, and an epoxy compound is more preferable.
  • the conductive material preferably contains an epoxy compound.
  • the said thermosetting compound only 1 type may be used and 2 or more types may be used together.
  • the thermosetting compound preferably includes a thermosetting compound having a nitrogen atom, and a thermosetting compound having a triazine skeleton is used. It is preferable to include.
  • thermosetting compound having a nitrogen atom and an acid anhydride thermosetting agent can significantly suppress the occurrence of migration.
  • thermosetting compound having a nitrogen atom examples include triazine triglycidyl ether, and the like.
  • TEPIC series (TEPIC-G, TEPIC-S, TEPIC-SS, TEPIC-HP, TEPIC-L, TEPIC-, manufactured by Nissan Chemical Industries, Ltd.) PAS, TEPIC-VL, TEPIC-UC) and the like.
  • the above-mentioned epoxy compound includes an aromatic epoxy compound. Crystalline epoxy compounds such as resorcinol type epoxy compounds, naphthalene type epoxy compounds, biphenyl type epoxy compounds, and benzophenone type epoxy compounds are preferred.
  • An epoxy compound that is solid at normal temperature (23 ° C.) and has a melting temperature equal to or lower than the melting point of the solder is preferable. The melting temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and preferably 40 ° C. or higher.
  • the content of the thermosetting compound and the thermosetting compound having a nitrogen atom in 100% by weight of the conductive material is preferably 20% by weight or more, more preferably 40% by weight or more, and further preferably 50% by weight or more. Preferably 99% by weight or less, more preferably 98% by weight or less, still more preferably 90% by weight or less, and particularly preferably 80% by weight or less.
  • the content of the thermosetting compound and the thermosetting compound having a nitrogen atom is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles is more efficiently arranged on the electrodes, and between the electrodes Misalignment can be further suppressed, and conduction reliability between the electrodes can be further enhanced.
  • the content of the thermosetting compound is large.
  • the content of the epoxy compound in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 15%. % By weight or more, preferably 50% by weight or less, more preferably 30% by weight or less.
  • thermosetting agent thermosets the thermosetting compound.
  • the thermosetting agent include an imidazole curing agent, a phenol curing agent, a thiol curing agent, an amine curing agent, an acid anhydride thermosetting agent, a thermal cation initiator (thermal cation curing agent), and a thermal radical generator.
  • an acid anhydride thermosetting agent is used as the thermosetting agent.
  • an acid anhydride is used from the viewpoint of efficiently arranging the solder in the conductive particles on the electrode, and from the viewpoint of effectively suppressing the occurrence of migration, when using the conductive particles having solder on the outer surface portion of the conductive part.
  • an acid anhydride is used.
  • the use of a thermosetting agent has great significance.
  • the said acid anhydride thermosetting agent only 1 type may be used and 2 or more types may be used together.
  • the acid anhydride thermosetting agent examples include trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, anhydrides of phthalic acid derivatives, maleic anhydride, methylbutenyltetrahydrophthalic anhydride, and triacryltetrahydrophthalic anhydride.
  • Bifunctional acid anhydride thermosetting agents trifunctional acid anhydride thermosetting agents such as trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, methylcyclohexene tetracarboxylic acid anhydride, and polyazeline acid
  • a tetrafunctional or higher acid anhydride thermosetting agent such as an anhydride may be used.
  • the acid anhydride thermosetting agent is preferably liquid at 25 ° C.
  • the acid anhydride thermosetting agent that is liquid at 25 ° C. contributes to lowering the viscosity of the conductive material at a low temperature and hardly hinders the movement of the solder at a low temperature.
  • the acid anhydride thermosetting agent is preferably a cyclic acid anhydride thermosetting agent.
  • the cyclic acid anhydride thermosetting agent include trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and triacryltetrahydrophthalic anhydride.
  • the content of the acid anhydride thermosetting agent is preferably 30 parts by weight or more, more preferably 40 parts by weight or more, preferably 80 parts by weight or less, with respect to 100 parts by weight as a whole of the thermosetting compound. More preferably, it is 60 parts by weight or less.
  • the content of the acid anhydride thermosetting agent is not less than the above lower limit, it is easy to sufficiently cure the conductive material, the solder is more efficiently disposed on the electrode, and the occurrence of migration is further suppressed. It is done. If the content of the acid anhydride thermosetting agent is not more than the above upper limit, the excess acid anhydride thermosetting agent that did not participate in the curing after the curing becomes difficult to remain, and the heat resistance of the cured product is further enhanced. .
  • the conductive material preferably contains a curing accelerator.
  • the said hardening accelerator only 1 type may be used and 2 or more types may be used together.
  • the curing accelerator is not particularly limited, and specific examples include imidazole curing accelerators such as imidazole, 2-methylimidazole and 2-phenylimidazole; methyltributylphosphonium dimethyl phosphate and tetra n-butylphosphonium tetrafluoroborate The organic phosphorus hardening accelerator of this is mentioned.
  • the conductive material preferably contains an organophosphorus compound.
  • the organophosphorus compound is preferably an organophosphorus curing accelerator.
  • the content of the curing accelerator is preferably 0.5% by weight or more, more preferably 1% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less, and still more preferably. 5% by weight or less.
  • the content of the curing accelerator is equal to or more than the lower limit, the solder placement accuracy is further increased.
  • the content of the curing accelerator is not more than the above upper limit, migration is more difficult to occur.
  • the content of the organic phosphorus compound and the content of the organic phosphorus curing accelerator are preferably 0.5% by weight or more, more preferably 1% by weight or more, and preferably 15% by weight or less. Preferably it is 10 weight% or less, More preferably, it is 5 weight% or less.
  • the content of the organic phosphorus compound and the content of the organic phosphorus curing accelerator are equal to or higher than the lower limit, the solder placement accuracy is further increased.
  • the content of the organophosphorus compound and the content of the organophosphorus curing accelerator are not more than the above upper limit, the solder placement accuracy is further increased, and migration is more difficult to occur.
  • the conductive material preferably contains a flux. By using flux, the solder can be more effectively placed on the electrode.
  • the flux is not particularly limited. As the flux, a flux generally used for soldering or the like can be used.
  • the conductive material may not contain flux.
  • Examples of the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin. Etc. As for the said flux, only 1 type may be used and 2 or more types may be used together.
  • Examples of the molten salt include ammonium chloride.
  • Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, and glutaric acid.
  • Examples of the pine resin include activated pine resin and non-activated pine resin.
  • the flux is preferably an organic acid or pine resin having two or more carboxyl groups.
  • the flux may be an organic acid having two or more carboxyl groups, or pine resin. By using an organic acid having two or more carboxyl groups, pine resin, the conduction reliability between the electrodes is further enhanced.
  • the above rosins are rosins whose main component is abietic acid.
  • the flux is preferably rosins, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.
  • the active temperature (melting point) of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 190 ° C. or lower, even more preferably 160. ° C or lower, more preferably 150 ° C or lower, still more preferably 140 ° C or lower.
  • the active temperature (melting point) of the flux is preferably 80 ° C. or higher and 190 ° C. or lower.
  • the activation temperature (melting point) of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
  • the flux having an active temperature (melting point) of 80 ° C. or higher and 190 ° C. or lower includes succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point) 104 ° C.), dicarboxylic acids such as suberic acid (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), malic acid (melting point 130 ° C.) and the like.
  • the boiling point of the flux is preferably 200 ° C. or lower.
  • the melting point of the flux is preferably higher than the melting point of the solder in the conductive particles, more preferably 5 ° C or higher, and more preferably 10 ° C or higher. More preferably.
  • the melting point of the flux is preferably higher than the reaction start temperature of the thermosetting agent, more preferably 5 ° C or higher, more preferably 10 ° C or higher. More preferably.
  • the flux may be dispersed in the conductive material or may be adhered on the surface of the conductive particles.
  • the solder can be efficiently aggregated on the electrode portion. This is because, when heat is applied at the time of joining, when the electrode formed on the connection target member is compared with the portion of the connection target member around the electrode, the thermal conductivity of the electrode portion is that of the connection target member portion around the electrode. Due to the fact that it is higher than the thermal conductivity, the temperature rise of the electrode portion is fast. At the stage where the melting point of the solder in the conductive particles is exceeded, the solder in the conductive particles dissolves, but the oxide film formed on the surface does not reach the melting point (activation temperature) of the flux and is not removed.
  • the flux is preferably a flux that releases cations by heating.
  • a flux that releases cations upon heating the solder can be placed more efficiently on the electrode.
  • thermal cation initiator As the flux for releasing cations by the heating, a thermal cation initiator can be mentioned.
  • the content of the flux is preferably 0.5% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less.
  • the flux content is not less than the above lower limit and not more than the above upper limit, it becomes more difficult to form an oxide film on the surface of the solder and the electrode, and the oxide film formed on the surface of the solder and the electrode is more effective. Can be removed.
  • the conductive material may be, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, and a lubricant as necessary.
  • various additives such as an antistatic agent and a flame retardant may be included.
  • connection structure includes a first connection target member having at least one first electrode on the surface, a second connection target member having at least one second electrode on the surface, and the first The connection object member and the connection part which has connected the said 2nd connection object member are provided.
  • the material of the connection part is the conductive material described above, and the connection part is a cured product of the conductive material described above.
  • the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
  • the method for manufacturing the connection structure includes the step of disposing the conductive material on the surface of the first connection target member having at least one first electrode on the surface, using the conductive material described above, A second connection target member having at least one second electrode on the surface opposite to the first connection target member side of the material, the first electrode and the second electrode A step of arranging the first connection target member and the second connection target member by connecting the first connection target member and the second connection target member by heating the conductive material to a temperature equal to or higher than the melting point of the solder in the conductive particles. Forming a portion with the conductive material, and electrically connecting the first electrode and the second electrode with a solder portion in the connection portion.
  • the conductive material is heated above the curing temperature of the thermosetting component and the thermosetting compound.
  • connection structure since a specific conductive material is used, solder in a plurality of conductive particles easily collects between the first electrode and the second electrode.
  • the solder can be efficiently arranged on the electrode (line).
  • a part of the solder is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be considerably reduced. Therefore, the conduction reliability between the first electrode and the second electrode can be improved.
  • a conductive paste is used instead of a conductive film. It is preferable to use it.
  • the thickness of the solder part between the electrodes is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the solder wetted area on the surface of the electrode is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, preferably Is 100% or less.
  • connection target member in the step of arranging the second connection target member and the step of forming the connection portion, no pressure is applied, and the second connection is applied to the conductive material.
  • the weight of the target member is preferably added, and in the step of arranging the second connection target member and the step of forming the connection portion, the conductive material exceeds the weight force of the second connection target member. It is preferable that no pressure is applied. In these cases, the uniformity of the amount of solder can be further enhanced in the plurality of solder portions.
  • the thickness of the solder portion can be made even more effective, and a large amount of solder in a plurality of conductive particles tends to gather between the electrodes, and the solder in the plurality of conductive particles is more efficiently distributed on the electrode (line). Can be arranged. In addition, it is difficult for a part of the solder in the plurality of conductive particles to be disposed in the region (space) where the electrode is not formed, and the amount of solder in the conductive particle disposed in the region where the electrode is not formed is further increased. Can be reduced. Therefore, the conduction reliability between the electrodes can be further enhanced. In addition, the electrical connection between the laterally adjacent electrodes that should not be connected can be further prevented, and the insulation reliability can be further improved.
  • connection portion if the weight of the second connection target member is added to the conductive material without applying pressure, the connection portion is Solder arranged in a region (space) where no electrode is formed before it is formed is more likely to gather between the first electrode and the second electrode, and solder in a plurality of conductive particles can be It has also been found that it can be arranged more efficiently on the line).
  • a configuration in which a conductive paste is used instead of a conductive film and a configuration in which the weight of the second connection target member is added to the conductive paste without applying pressure are used in combination. This has a great meaning in order to obtain the effects of the present invention at a higher level.
  • WO2008 / 023452A1 describes that it is preferable to pressurize with a predetermined pressure at the time of bonding from the viewpoint of efficiently moving the solder powder to the electrode surface, and the pressurizing pressure further ensures the solder area.
  • the pressure is set to 0 MPa or more, preferably 1 MPa or more.
  • a predetermined pressure may be applied to the adhesive tape by its own weight.
  • WO2008 / 023452A1 it is described that the pressure applied intentionally to the adhesive tape may be 0 MPa, but there is no difference between the effect when the pressure exceeding 0 MPa is applied and when the pressure is set to 0 MPa. Not listed.
  • WO2008 / 023452A1 recognizes nothing about the importance of using a paste-like conductive paste instead of a film.
  • a conductive paste is used instead of a conductive film, it becomes easy to adjust the thicknesses of the connection part and the solder part depending on the amount of the conductive paste applied.
  • the conductive film in order to change or adjust the thickness of the connection portion, it is necessary to prepare a conductive film having a different thickness or to prepare a conductive film having a predetermined thickness. There is.
  • the melt viscosity of the conductive film compared with the conductive paste, the melt viscosity of the conductive film cannot be sufficiently lowered at the melting temperature of the solder, and the aggregation of the solder tends to be hindered.
  • FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention.
  • connection structure 1 shown in FIG. 1 is a connection that connects a first connection target member 2, a second connection target member 3, and the first connection target member 2 and the second connection target member 3.
  • Part 4 is formed of the conductive material described above.
  • the conductive material includes solder particles as conductive particles.
  • the connecting portion 4 includes a solder portion 4A in which a plurality of solder particles are gathered and joined to each other, and a cured product portion 4B in which a thermosetting component is thermally cured.
  • the first connection object member 2 has a plurality of first electrodes 2a on the surface (upper surface).
  • the second connection target member 3 has a plurality of second electrodes 3a on the surface (lower surface).
  • the first electrode 2a and the second electrode 3a are electrically connected by the solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A.
  • no solder exists in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a.
  • connection structure 1 a plurality of solder particles gather between the first electrode 2 a and the second electrode 3 a, and after the plurality of solder particles melt, After the electrode surface wets and spreads, it solidifies to form the solder portion 4A. For this reason, the connection area of 4 A of solder parts and the 1st electrode 2a, and 4 A of solder parts, and the 2nd electrode 3a becomes large. That is, by using solder particles, the solder portion 4A, the first electrode 2a, and the solder as compared with the case where the outer surface portion of the conductive portion is made of conductive particles such as nickel, gold or copper are used. The contact area between the portion 4A and the second electrode 3a increases. For this reason, the conduction
  • the conductive material may contain a flux.
  • the flux is generally deactivated gradually by heating.
  • connection structure 1 shown in FIG. 1 all of the solder portions 4A are located in the facing region between the first and second electrodes 2a and 3a.
  • the connection structure 1X of the modification shown in FIG. 3 is different from the connection structure 1 shown in FIG. 1 only in the connection portion 4X.
  • the connection part 4X has the solder part 4XA and the hardened
  • most of the solder portions 4XA are located in regions where the first and second electrodes 2a and 3a are opposed to each other, and a part of the solder portion 4XA is first and second. You may protrude to the side from the area
  • the solder part 4XA protruding laterally from the region where the first and second electrodes 2a and 3a are opposed is a part of the solder part 4XA and is not a solder separated from the solder part 4XA.
  • the amount of solder away from the solder portion can be reduced, but the solder away from the solder portion may exist in the cured product portion.
  • connection structure 1 If the amount of solder particles used is reduced, the connection structure 1 can be easily obtained. If the amount of the solder particles used is increased, it becomes easy to obtain the connection structure 1X.
  • the portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is seen.
  • the solder portion in the connection portion is disposed at 90% or more.
  • connection structure 1 using the conductive material Next, an example of a method for manufacturing the connection structure 1 using the conductive material according to the embodiment of the present invention will be described.
  • the first connection target member 2 having the first electrode 2a on the surface (upper surface) is prepared.
  • a conductive material 11 including a thermosetting component 11B and a plurality of solder particles 11A is disposed on the surface of the first connection target member 2 (first Process).
  • the conductive material 11 used includes a thermosetting compound and an acid anhydride thermosetting agent as the thermosetting component 11B.
  • the conductive material 11 is disposed on the surface of the first connection target member 2 on which the first electrode 2a is provided. After the conductive material 11 is disposed, the solder particles 11A are disposed both on the first electrode 2a (line) and on a region (space) where the first electrode 2a is not formed.
  • the arrangement method of the conductive material 11 is not particularly limited, and examples thereof include application by a dispenser, screen printing, and discharge by an inkjet device.
  • the 2nd connection object member 3 which has the 2nd electrode 3a on the surface (lower surface) is prepared.
  • the 2nd connection object member 3 is arrange
  • the second connection target member 3 is disposed from the second electrode 3a side. At this time, the first electrode 2a and the second electrode 3a are opposed to each other.
  • the conductive material 11 is heated to a temperature equal to or higher than the melting point of the solder particles 11A (third step).
  • the conductive material 11 is heated above the curing temperature of the thermosetting component 11B (binder).
  • the solder particles 11A that existed in the region where no electrode is formed gather between the first electrode 2a and the second electrode 3a (self-aggregation effect).
  • the thermosetting component 11B is thermoset. As a result, as shown in FIG.
  • connection portion 4 that connects the first connection target member 2 and the second connection target member 3 is formed of the conductive material 11.
  • the connection part 4 is formed of the conductive material 11
  • the solder part 4A is formed by joining a plurality of solder particles 11A
  • the cured part 4B is formed by thermosetting the thermosetting component 11B.
  • the electrode of the first connection target member Even when the first connection target member and the second connection target member are overlapped in a state where the alignment with the electrode of the second connection target member is shifted, the shift is corrected and the first connection target is corrected.
  • the electrode of the member can be connected to the electrode of the second connection target member (self-alignment effect). This is because the molten solder self-aggregated between the electrode of the first connection target member and the electrode of the second connection target member is the electrode of the first connection target member and the electrode of the second connection target member.
  • connection structure with alignment As the area where the solder and the other components of the conductive material are in contact with each other is minimized, the energy becomes more stable. Therefore, the force that makes the connection structure with alignment, which is the connection structure with the smallest area, works. Because. At this time, it is desirable that the conductive material is not cured, and that the viscosity of components other than the conductive particles of the conductive material is sufficiently low at that temperature and time.
  • connection structure 1 shown in FIG. 1 is obtained.
  • the second step and the third step may be performed continuously.
  • the laminated body of the 1st connection object member 2, the electrically-conductive material 11, and the 2nd connection object member 3 which are obtained is moved to a heating part, and the said 3rd connection object is carried out.
  • You may perform a process.
  • the laminate In order to perform the heating, the laminate may be disposed on a heating member, or the laminate may be disposed in a heated space.
  • the heating temperature in the third step is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, preferably 450 ° C. or lower, more preferably 250 ° C. or lower, and still more preferably 200 ° C. or lower.
  • connection structure As the heating method in the third step, a method of heating the entire connection structure using a reflow furnace or an oven above the melting point of the solder and the curing temperature of the thermosetting component, or a connection structure The method of heating only the connection part of these is mentioned.
  • the first and second connection target members are not particularly limited. Specifically as said 1st, 2nd connection object member, electronic components, such as a semiconductor chip, a semiconductor package, LED chip, LED package, a capacitor
  • the first and second connection target members are preferably electronic components.
  • At least one of the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board.
  • the second connection target member is preferably a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. Resin films, flexible printed boards, flexible flat cables, and rigid flexible boards have the property of being highly flexible and relatively lightweight. When a conductive film is used for connection of such a connection object member, there exists a tendency for a solder not to gather on an electrode.
  • the conductive reliability between the electrodes can be efficiently collected by collecting the solder on the electrodes. Can be sufficiently increased.
  • connection target member Peripherals, area arrays, etc. exist in the form of the connection target member.
  • the electrodes are present only on the outer peripheral portion of the substrate.
  • the area array substrate there are electrodes in the plane.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • Thermosetting compound 1 "YL980” manufactured by Mitsubishi Chemical Corporation, bisphenol A type epoxy resin Thermosetting compound 2: “HP-7200HH” manufactured by DIC, dicyclopentadiene type epoxy resin
  • Thermosetting compound 3 Nissan Chemical Industries “TEPIC-HP” manufactured by Triazine type epoxy resin
  • Thermosetting agent 1 Cyclic anhydride thermosetting agent, liquid at 25 ° C., “YH306” manufactured by Mitsubishi Chemical Corporation
  • Thermosetting agent 2 Acid anhydride thermosetting agent other than cyclic acid anhydride thermosetting agent, tetrapropenyl succinic anhydride, liquid at 25 ° C, "DDSA” manufactured by Shin Nippon Rika Co., Ltd.
  • Thermosetting agent 3 acid anhydride thermosetting agent, solid at 25 ° C., “Pyrimellitic anhydride” manufactured by Wako Pure Chemical Industries, Ltd.
  • Thermosetting agent 4 Amine curing agent, “DICY” manufactured by Mitsubishi Chemical Corporation Flux 1: Glutaric acid Curing accelerator 1 :: “Fujicure 7000” manufactured by T & K TOKA Curing accelerator 2: "PX-4MP” organophosphorus curing accelerator manufactured by Nippon Chemical Industry Co., Ltd.
  • Curing accelerator 3 "PX-4FB” organophosphorus curing accelerator manufactured by Nippon Chemical Industry Co., Ltd.
  • Curing accelerator 4 manufactured by Nippon Chemical Industry Co., Ltd. "PX-4B” organophosphorus curing accelerator
  • Solder particles 1 Method for producing solder particles 1: SnBi solder particles (“ST-5” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter (median diameter) 5 ⁇ m) and glutaric acid (a compound having two carboxyl groups, “glutaric acid” manufactured by Wako Pure Chemical Industries, Ltd.) By using a catalyst p-toluenesulfonic acid and stirring for 8 hours while dehydrating in a toluene solvent at 90 ° C., solder particles 1 in which a carboxyl group-containing group is covalently bonded to the surface of the solder were obtained.
  • the obtained solder particles 1 had a CV value of 20% and a molecular weight Mw of the polymer constituting the surface of 2000.
  • Examples 1 to 12 and Comparative Examples 1 to 3 (1) Preparation of anisotropic conductive paste The components shown in Tables 1 and 2 below were blended in the blending amounts shown in Tables 1 and 2 to obtain anisotropic conductive pastes.
  • the overlapping area of the glass epoxy substrate and the flexible printed circuit board was 1.5 cm ⁇ 3 mm, and the number of connected electrodes was 75 pairs.
  • the anisotropic conductive paste immediately after fabrication was applied on the upper surface of the glass epoxy substrate so as to have a thickness of 100 ⁇ m on the electrode of the glass epoxy substrate to form an anisotropic conductive paste layer.
  • the flexible printed circuit board was laminated on the upper surface of the anisotropic conductive paste layer so that the electrodes face each other. At this time, no pressure was applied. The weight of the flexible printed board is added to the anisotropic conductive paste layer.
  • the anisotropic conductive paste layer was heated so that the temperature became 139 ° C. (melting point of the solder) 5 seconds after the start of temperature increase. Further, 15 seconds after the start of temperature increase, the anisotropic conductive paste layer was heated to 160 ° C. to cure the anisotropic conductive paste, and a connection structure was obtained.
  • the anisotropic conductive paste was thermally cured at 170 ° C. for 0.5 hours to obtain a first cured product.
  • the obtained first cured product was allowed to stand at 130 ° C. and a humidity of 85% for 100 hours to obtain a second cured product.
  • the glass transition temperature (Tg1) of the first cured product and the glass transition temperature (Tg2) of the second cured product were evaluated.
  • the absolute value of the difference between Tg1 and Tg2 was determined.
  • solder placement accuracy on electrode 1 In the obtained connection structure, when the portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is viewed, The ratio X of the area where the solder part in the connection part is arranged in the area of 100% of the part facing the second electrode was evaluated.
  • the solder placement accuracy 1 on the electrode was determined according to the following criteria.
  • Ratio X is 80% or more ⁇ : Ratio X is 70% or more and less than 80% ⁇ : Ratio X is 60% or more and less than 70% ⁇ : Ratio X is 50% or more and less than 60% ⁇ : Ratio X is less than 50%
  • solder placement accuracy 2 In the obtained connection structure, when the portion where the first electrode and the second electrode face each other in the direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode is seen, The ratio Y of the solder part in the connection part arrange
  • the solder placement accuracy 2 on the electrode was determined according to the following criteria.
  • Ratio Y is 99% or more ⁇ : Ratio Y is 90% or more and less than 99% ⁇ : Ratio Y is 70% or more and less than 90% X: Ratio Y is less than 70%
  • the insulating average value of the resistance is 10 ⁇ 10 14 ⁇ or more ⁇ : After standing in the insulation the average value of resistance of 10 ⁇ 10 12 ⁇ or more and less than 10 ⁇ 10 14 ⁇ ⁇ : after standing, the insulation resistance Average value is 10 ⁇ 10 10 ⁇ or more and less than 10 ⁇ 10 12 ⁇ ⁇ : After standing, the average value of the insulation resistance is less than 10 ⁇ 10 10 and is regarded as conduction.
  • the ratio X of the placement accuracy 1 of Examples 10 and 11 was higher than the ratio X of the placement accuracy 1 of Example 9.
  • the ratio X of the placement accuracy 1 in Example 12 was higher than the ratio X of the placement accuracy 1 in Examples 1 to 5.
  • the average value of the insulation resistance after leaving Examples 9 to 11 was higher than the average value of the insulation resistance of Example 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is an electroconductive material with which it is possible to selectively dispose solder in electroconductive particles on an electrode, and minimize migration and keep the connection resistance low even when the electrode width and the electrode pitch are reduced. The electroconductive material according to the present invention: contains, on the outer surface portion of an electroconductive part, a heat-curable compound, an acid anhydride heat curing agent, and a plurality of electroconductive particles having solder; and exhibits a viscosity at 50°C of 10-200 Pa•s.

Description

導電材料及び接続構造体Conductive material and connection structure
 本発明は、はんだを有する導電性粒子を含む導電材料に関する。また、本発明は、上記導電材料を用いた接続構造体に関する。 The present invention relates to a conductive material including conductive particles having solder. The present invention also relates to a connection structure using the conductive material.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー中に導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder.
 上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。 In order to obtain various connection structures, for example, the anisotropic conductive material may be connected between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), or connected between a semiconductor chip and a flexible printed circuit board (COF ( (Chip on Film)), connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
 上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。 For example, when electrically connecting the electrode of the flexible printed circuit board and the electrode of the glass epoxy substrate by the anisotropic conductive material, an anisotropic conductive material containing conductive particles is disposed on the glass epoxy substrate. To do. Next, a flexible printed circuit board is laminated, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.
 上記異方性導電材料の一例として、下記の特許文献1には、導電性粒子と、該導電性粒子の融点で硬化が完了しない樹脂成分とを含む異方性導電材料が記載されている。上記導電性粒子としては、具体的には、錫(Sn)、インジウム(In)、ビスマス(Bi)、銀(Ag)、銅(Cu)、亜鉛(Zn)、鉛(Pb)、カドミウム(Cd)、ガリウム(Ga)及びタリウム(Tl)等の金属や、これらの金属の合金が挙げられている。 As an example of the anisotropic conductive material, the following Patent Document 1 describes an anisotropic conductive material including conductive particles and a resin component that cannot be cured at the melting point of the conductive particles. Specifically, the conductive particles include tin (Sn), indium (In), bismuth (Bi), silver (Ag), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd ), Metals such as gallium (Ga) and thallium (Tl), and alloys of these metals.
 特許文献1では、上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、異方性導電樹脂を加熱する樹脂加熱ステップと、上記樹脂成分を硬化させる樹脂成分硬化ステップとを経て、電極間を電気的に接続することが記載されている。また、特許文献1には、特許文献1の図8に示された温度プロファイルで実装を行うことが記載されている。特許文献1では、異方性導電樹脂が加熱される温度にて硬化が完了しない樹脂成分内で、導電性粒子が溶融する。 In Patent Document 1, a resin heating step for heating the anisotropic conductive resin to a temperature higher than the melting point of the conductive particles and at which the curing of the resin component is not completed, and a resin component curing step for curing the resin component The electrical connection between the electrodes is described. Patent Document 1 describes that mounting is performed with the temperature profile shown in FIG. In Patent Document 1, the conductive particles melt in a resin component that is not completely cured at a temperature at which the anisotropic conductive resin is heated.
 下記の特許文献2には、熱硬化性樹脂を含む樹脂層と、はんだ粉と、硬化剤とを含み、上記はんだ粉と上記硬化剤とが上記樹脂層中に存在する接着テープが開示されている。この接着テープは、フィルム状であり、ペースト状ではない。 Patent Document 2 below discloses an adhesive tape that includes a resin layer containing a thermosetting resin, solder powder, and a curing agent, and the solder powder and the curing agent are present in the resin layer. Yes. This adhesive tape is in the form of a film, not a paste.
特開2004-260131号公報JP 2004-260131 A WO2008/023452A1WO2008 / 023452A1
 従来のはんだ粉や、はんだ層を表面に有する導電性粒子を含む異方性導電材料では、はんだ粉又は導電性粒子が電極(ライン)上に効率的に配置されないことがある。 In conventional anisotropic conductive materials including solder powder and conductive particles having a solder layer on the surface, the solder powder or conductive particles may not be efficiently disposed on the electrodes (lines).
 また、特許文献1に記載の異方性導電材料を用いて、特許文献1に記載の方法で電極間を電気的に接続すると、はんだを含む導電性粒子が電極(ライン)上に効率的に配置されないことがある。また、特許文献1の実施例では、はんだの融点以上の温度で、はんだを十分に移動させるために、一定温度に保持しており、接続構造体の製造効率が低くなる。特許文献1の図8に示された温度プロファイルで実装を行うと、接続構造体の製造効率が低くなる。 Further, when the electrodes are electrically connected by the method described in Patent Document 1 using the anisotropic conductive material described in Patent Document 1, conductive particles including solder are efficiently formed on the electrodes (lines). May not be placed. Moreover, in the Example of patent document 1, in order to move a solder fully at the temperature more than melting | fusing point of solder, it is hold | maintained at fixed temperature, and the manufacturing efficiency of a connection structure becomes low. When mounting is performed with the temperature profile shown in FIG. 8 of Patent Document 1, the manufacturing efficiency of the connection structure is lowered.
 電極幅及び電極間幅が狭い場合には、電極幅が狭い電極上に、導電性粒子におけるはんだを選択的に配置しようとしても、横方向の電極間にはんだが残存しやすく、マイグレーションが生じて、接続抵抗が高くなることがある。 When the electrode width and the inter-electrode width are narrow, even if solder in conductive particles is selectively placed on an electrode having a narrow electrode width, the solder tends to remain between the lateral electrodes, causing migration. The connection resistance may increase.
 また、特許文献2に記載の接着テープは、フィルム状であり、ペースト状ではない。特許文献2に記載のような組成を有する接着テープでは、はんだ粉を電極(ライン)上に効率的に配置することは困難である。例えば、特許文献2に記載の接着テープでは、はんだ粉の一部が、電極が形成されていない領域(スペース)にも配置されやすい。電極が形成されていない領域に配置されたはんだ粉は、電極間の導通に寄与しない。 Also, the adhesive tape described in Patent Document 2 is a film, not a paste. In the adhesive tape having the composition as described in Patent Document 2, it is difficult to efficiently arrange the solder powder on the electrode (line). For example, in the adhesive tape described in Patent Document 2, a part of the solder powder is easily placed in a region (space) where no electrode is formed. Solder powder disposed in a region where no electrode is formed does not contribute to conduction between the electrodes.
 本発明の目的は、電極上に導電性粒子におけるはんだを選択的に配置することができ、かつ、電極幅及び電極間幅が狭くても、マイグレーションを抑制して、接続抵抗を低く維持することができる導電材料を提供することである。また、本発明の目的は、上記導電材料を用いた接続構造体を提供することである。 An object of the present invention is to selectively dispose solder in conductive particles on electrodes, and to suppress migration and keep connection resistance low even when the electrode width and interelectrode width are narrow. It is to provide a conductive material that can be used. Another object of the present invention is to provide a connection structure using the conductive material.
 本発明の広い局面によれば、導電部の外表面部分に、はんだを有する複数の導電性粒子と、熱硬化性化合物と、酸無水物熱硬化剤とを含み、50℃での粘度が10Pa・s以上、200Pa・s以下である、導電材料が提供される。 According to a wide aspect of the present invention, the outer surface portion of the conductive portion includes a plurality of conductive particles having solder, a thermosetting compound, and an acid anhydride thermosetting agent, and has a viscosity at 50 ° C. of 10 Pa. A conductive material is provided that is greater than or equal to s and less than or equal to 200 Pa · s.
 本発明に係る導電材料のある特定の局面では、前記導電材料100重量%中、前記導電性粒子の含有量が1重量%以上、80重量%以下であり、前記導電材料は、異方性導電材料である。 In a specific aspect of the conductive material according to the present invention, in 100% by weight of the conductive material, the content of the conductive particles is 1% by weight or more and 80% by weight or less, and the conductive material is anisotropic conductive. Material.
 本発明に係る導電材料のある特定の局面では、50℃での粘度の100℃での粘度に対する比が10以上、400以下である。 In a specific aspect of the conductive material according to the present invention, the ratio of the viscosity at 50 ° C. to the viscosity at 100 ° C. is 10 or more and 400 or less.
 本発明に係る導電材料のある特定の局面では、前記導電性粒子は、はんだ粒子である。 In a specific aspect of the conductive material according to the present invention, the conductive particles are solder particles.
 本発明に係る導電材料のある特定の局面では、前記導電材料は、有機リン化合物を含む。 In a specific aspect of the conductive material according to the present invention, the conductive material includes an organic phosphorus compound.
 前記酸無水物熱硬化剤は、25℃で液状であることが好ましい。前記酸無水物熱硬化剤は、環状酸無水物熱硬化剤であることが好ましい。 The acid anhydride thermosetting agent is preferably liquid at 25 ° C. The acid anhydride thermosetting agent is preferably a cyclic acid anhydride thermosetting agent.
 本発明に係る導電材料のある特定の局面では、170℃で0.5時間熱硬化させて第1の硬化物を得たときに、かつ、得られた第1の硬化物を130℃及び湿度85%で100時間放置して第2の硬化物を得たときに、前記第1の硬化物のガラス転移温度と、前記第2の硬化物のガラス転移温度との差の絶対値が20℃以下である。 In a specific aspect of the conductive material according to the present invention, when the first cured product is obtained by thermosetting at 170 ° C. for 0.5 hour, the obtained first cured product is 130 ° C. and humidity. When the second cured product was obtained by leaving at 85% for 100 hours, the absolute value of the difference between the glass transition temperature of the first cured product and the glass transition temperature of the second cured product was 20 ° C. It is as follows.
 本発明に係る導電材料のある特定の局面では、前記熱硬化性化合物が、窒素原子を有する熱硬化性化合物を含む。 In a specific aspect of the conductive material according to the present invention, the thermosetting compound includes a thermosetting compound having a nitrogen atom.
 本発明に係る導電材料のある特定の局面では、前記熱硬化性化合物が、トリアジン骨格を有する熱硬化性化合物を含む。 In a specific aspect of the conductive material according to the present invention, the thermosetting compound includes a thermosetting compound having a triazine skeleton.
 本発明に係る導電材料のある特定の局面では、前記熱硬化性化合物の全体100重量部に対して、前記酸無水物熱硬化剤の含有量が30重量部以上、80重量部以下である。 In a specific aspect of the conductive material according to the present invention, the content of the acid anhydride thermosetting agent is 30 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight as a whole of the thermosetting compound.
 本発明に係る導電材料のある特定の局面では、前記導電性粒子の外表面に、カルボキシル基が存在する。 In a specific aspect of the conductive material according to the present invention, a carboxyl group is present on the outer surface of the conductive particles.
 本発明に係る導電材料のある特定の局面では、前記導電材料は、25℃で液状であり、導電ペーストである。 In a specific aspect of the conductive material according to the present invention, the conductive material is liquid at 25 ° C. and is a conductive paste.
 本発明の広い局面によれば、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、上述した導電材料の硬化物であり、前記第1の電極と前記第2の電極とが前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。 According to a wide aspect of the present invention, a first connection target member having at least one first electrode on the surface, a second connection target member having at least one second electrode on the surface, and the first A connection part connecting the second connection target member and the second connection target member, wherein the connection part is a cured product of the conductive material described above, and the first electrode and the second electrode. Are connected to each other by a solder portion in the connection portion.
 本発明に係る接続構造体のある特定の局面では、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている。 In a specific aspect of the connection structure according to the present invention, the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode. When the portion is viewed, the solder portion in the connection portion is arranged in 50% or more of the area of 100% of the portion where the first electrode and the second electrode face each other.
 本発明に係る導電材料は、導電部の外表面部分に、はんだを有する複数の導電性粒子と、熱硬化性化合物と、酸無水物熱硬化剤とを含み、50℃での粘度が10Pa・s以上、200Pa・s以下であるので、電極上に導電性粒子におけるはんだを選択的に配置することができ、かつ、電極幅及び電極間幅が狭くても、マイグレーションを抑制して、接続抵抗を低く維持することができる。 The conductive material according to the present invention includes a plurality of conductive particles having solder on the outer surface portion of the conductive portion, a thermosetting compound, and an acid anhydride thermosetting agent, and has a viscosity at 50 ° C. of 10 Pa · Since it is s or more and 200 Pa · s or less, the solder in the conductive particles can be selectively disposed on the electrode, and even if the electrode width and the inter-electrode width are narrow, the migration is suppressed and the connection resistance is reduced. Can be kept low.
図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention. 図2(a)~(c)は、本発明の一実施形態に係る導電材料を用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。2A to 2C are cross-sectional views for explaining each step of an example of a method for manufacturing a connection structure using a conductive material according to an embodiment of the present invention. 図3は、接続構造体の変形例を示す断面図である。FIG. 3 is a cross-sectional view showing a modification of the connection structure. 図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material. 図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used for the conductive material. 図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used for the conductive material.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 (導電材料)
 本発明に係る導電材料は、複数の導電性粒子と、バインダーとを含む。上記導電性粒子は、導電部を有する。上記導電性粒子は、導電部の外表面部分に、はんだを有する。はんだは、導電部に含まれ、導電部の一部又は全部である。
(Conductive material)
The conductive material according to the present invention includes a plurality of conductive particles and a binder. The conductive particles have a conductive part. The conductive particles have solder on the outer surface portion of the conductive portion. Solder is contained in the conductive part and is a part or all of the conductive part.
 本発明に係る導電材料は、上記バインダーとして、熱硬化性化合物と、熱硬化剤とを含む。熱硬化性化合物と、熱硬化剤とは、熱硬化性成分である。本発明に係る導電材料では、上記熱硬化剤として、酸無水物熱硬化剤を含む。 The conductive material according to the present invention contains a thermosetting compound and a thermosetting agent as the binder. A thermosetting compound and a thermosetting agent are thermosetting components. The conductive material according to the present invention includes an acid anhydride thermosetting agent as the thermosetting agent.
 本発明では、特定の導電性粒子を用い、かつ、熱硬化性化合物を硬化させるために特定の酸無水物熱硬化剤を併用している。 In the present invention, specific conductive particles are used, and a specific acid anhydride thermosetting agent is used in combination to cure the thermosetting compound.
 本発明に係る導電材料の50℃での粘度は10Pa・s以上、200Pa・s以下である。 The viscosity of the conductive material according to the present invention at 50 ° C. is 10 Pa · s or more and 200 Pa · s or less.
 本発明では、上記の構成が備えられているので、電極上に導電性粒子におけるはんだを選択的に配置することができる。電極間を電気的に接続した場合に、導電性粒子におけるはんだが、上下の対向した電極間に集まりやすく、導電性粒子におけるはんだを電極(ライン)上に効率的に配置することができる。 In the present invention, since the above-described configuration is provided, the solder in the conductive particles can be selectively disposed on the electrode. When the electrodes are electrically connected, the solder in the conductive particles easily collects between the upper and lower electrodes, and the solder in the conductive particles can be efficiently disposed on the electrodes (lines).
 また、導電性粒子におけるはんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をかなり少なくすることができる。本発明では、対向する電極間に位置していないはんだを、対向する電極間に効率的に移動させることができる。従って、電極間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。 Also, it is difficult for a part of the solder in the conductive particles to be arranged in a region (space) where no electrode is formed, and the amount of solder arranged in a region where no electrode is formed can be considerably reduced. In the present invention, the solder that is not located between the opposing electrodes can be efficiently moved between the opposing electrodes. Therefore, the conduction reliability between the electrodes can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability.
 さらに、電極幅及び電極間幅が狭くても、マイグレーションを抑制して、接続抵抗を低く維持することができる。 Furthermore, even if the electrode width and the inter-electrode width are narrow, migration can be suppressed and the connection resistance can be kept low.
 半導体素子の実装(特に一次実装)においては、電極幅及び電極間幅が狭くなってきている。このため、横方向に隣接する電極間にはんだが残存していると、マイグレーションが発生しやすく、マイグレーションの発生が大きな問題となっている。本発明では、電極幅及び電極間幅が狭い場合に、マイグレーションを効果的に抑制して、接続抵抗を低く維持することができる。 In the mounting of semiconductor elements (particularly primary mounting), the electrode width and the inter-electrode width are becoming narrower. For this reason, if solder remains between the electrodes adjacent in the lateral direction, migration is likely to occur, and the occurrence of migration is a major problem. In the present invention, when the electrode width and the inter-electrode width are narrow, migration can be effectively suppressed and the connection resistance can be kept low.
 上記導電材料を170℃で0.5時間熱硬化させることで、第1の硬化物が得られる。上記第1の硬化物を130℃及び湿度85%で100時間放置することで、第2の硬化物が得られる。硬化物の熱劣化をより一層抑え、マイグレーションをより一層抑える観点からは、上記第1の硬化物のガラス転移温度(Tg1)と、上記第2の硬化物のガラス転移温度(Tg2)との差の絶対値は、好ましくは20℃以下、より好ましくは10℃以下である。 The first cured product is obtained by thermally curing the conductive material at 170 ° C. for 0.5 hour. The second cured product is obtained by leaving the first cured product at 130 ° C. and 85% humidity for 100 hours. From the viewpoint of further suppressing thermal degradation of the cured product and further suppressing migration, the difference between the glass transition temperature (Tg1) of the first cured product and the glass transition temperature (Tg2) of the second cured product. The absolute value of is preferably 20 ° C. or lower, more preferably 10 ° C. or lower.
 はんだを電極上により一層効率的に配置するために、上記導電材料は、25℃で液状であることが好ましく、導電ペーストであることが好ましい。 In order to arrange the solder more efficiently on the electrode, the conductive material is preferably liquid at 25 ° C., and preferably a conductive paste.
 はんだを電極上により一層効率的に配置するために、上記導電材料の50℃での粘度(η50)は好ましくは10Pa・s以上、より好ましくは30Pa・s以上であり、好ましくは200Pa・s以下、より好ましくは100Pa・s以下である。上記導電材料の50℃での粘度は、導電性粒子又ははんだの導電接続初期の移動速度に影響する。 In order to arrange the solder more efficiently on the electrode, the viscosity (η50) of the conductive material at 50 ° C. is preferably 10 Pa · s or more, more preferably 30 Pa · s or more, and preferably 200 Pa · s or less. More preferably, it is 100 Pa · s or less. The viscosity at 50 ° C. of the conductive material affects the moving speed of conductive particles or solder at the initial stage of conductive connection.
 はんだを電極上により一層効率的に配置するために、上記導電材料の50℃での粘度(η50)の上記導電材料の100℃での粘度(η100)に対する比は好ましくは10以上、より好ましくは30以上であり、好ましくは400以下、より好ましくは100以下である。上記導電材料の100℃での粘度は、導電性粒子又ははんだの導電接続中期の移動速度に影響する。比(η50/η100)が上記下限以上及び上記上限以下であると、導電接続時に、初期から中期にわたって、導電性粒子又ははんだが効率的に移動する。 In order to more efficiently arrange the solder on the electrode, the ratio of the viscosity of the conductive material at 50 ° C. (η50) to the viscosity of the conductive material at 100 ° C. (η100) is preferably 10 or more, more preferably 30 or more, preferably 400 or less, more preferably 100 or less. The viscosity at 100 ° C. of the conductive material affects the moving speed of conductive particles or solder in the middle of conductive connection. When the ratio (η50 / η100) is not less than the above lower limit and not more than the above upper limit, the conductive particles or solder efficiently move from the initial stage to the middle stage at the time of conductive connection.
 上記粘度は、STRESSTECH(EOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲40~200℃の条件で測定可能である。 The above viscosity can be measured using STRESTTECH (manufactured by EOLOGICA) etc. under the conditions of strain control 1 rad, frequency 1 Hz, heating rate 20 ° C./min, and measuring temperature range 40 to 200 ° C.
 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電材料は、異方性導電材料であることが好ましい。上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電フィルムは異方性導電フィルムであることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。 The conductive material can be used as a conductive paste and a conductive film. The conductive material is preferably an anisotropic conductive material. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film. The conductive material is preferably used for electrical connection of electrodes. The conductive material is preferably a circuit connection material.
 本発明の効果が効果的に奏され、更に上下の電極間にはんだを効果的に配置する観点からは、上記導電材料100重量%中、上記導電性粒子の含有量が1重量%以上、80重量%以下であり、上記導電材料は、異方性導電材料であることが好ましい。この異方性導電材料は、異方性導電ペースト又は異方性導電フィルムであることが好ましい。 From the viewpoint of effectively providing the effects of the present invention and further effectively arranging solder between the upper and lower electrodes, the content of the conductive particles in 100% by weight of the conductive material is 1% by weight or more, 80 The conductive material is preferably an anisotropic conductive material. This anisotropic conductive material is preferably an anisotropic conductive paste or an anisotropic conductive film.
 以下、上記導電材料に含まれる各成分を説明する。 Hereinafter, each component contained in the conductive material will be described.
 (導電性粒子)
 上記導電性粒子は、接続対象部材の電極間を電気的に接続する。上記導電性粒子は、導電部の外表面部分にはんだを有する。上記導電性粒子は、はんだ粒子であってもよい。上記はんだ粒子ははんだにより形成されている。上記はんだ粒子は、はんだを導電部の外表面部分に有する。上記はんだ粒子は、上記はんだ粒子の中心部分及び導電部の外表面部分のいずれもがはんだである粒子である。上記はんだ粒子は、中心部分及び導電部の外表面部分のいずれもがはんだにより形成されている。上記導電性粒子は、基材粒子と、該基材粒子の表面上に配置された導電部とを有していてもよい。この場合に、上記導電性粒子は、導電部の外表面部分に、はんだを有する。
(Conductive particles)
The conductive particles electrically connect the electrodes of the connection target member. The conductive particles have solder on the outer surface portion of the conductive portion. The conductive particles may be solder particles. The solder particles are formed of solder. The solder particles have solder on the outer surface portion of the conductive portion. The solder particles are particles in which both the central portion of the solder particles and the outer surface portion of the conductive portion are solder. As for the said solder particle, both the center part and the outer surface part of an electroconductive part are formed with the solder. The said electroconductive particle may have a base material particle and the electroconductive part arrange | positioned on the surface of this base material particle. In this case, the conductive particles have solder on the outer surface portion of the conductive portion.
 なお、上記はんだ粒子を用いた場合と比べて、はんだにより形成されていない基材粒子と基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まりにくくなり、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。従って、上記導電性粒子は、はんだ粒子であることが好ましい。 Compared to the case where the above solder particles are used, in the case where conductive particles including base particles not formed by solder and solder portions arranged on the surface of the base particles are used, The conductive particles are less likely to collect on the surface, and the solder joint property between the conductive particles is low, so the conductive particles that have moved onto the electrodes tend to move out of the electrodes, and the effect of suppressing displacement between the electrodes Tend to be lower. Therefore, the conductive particles are preferably solder particles.
 接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記導電性粒子の外表面(はんだの外表面)に、カルボキシル基又はアミノ基が存在することが好ましく、カルボキシル基が存在することが好ましく、アミノ基が存在することが好ましい。上記導電性粒子の外表面(はんだの外表面)に、Si-O結合、エーテル結合、エステル結合又は下記式(X)で表される基を介して、カルボキシル基又はアミノ基を含む基が共有結合していることが好ましく、エーテル結合、エステル結合又は下記式(X)で表される基を介して、カルボキシル基又はアミノ基を含む基が共有結合していることがより好ましい。カルボキシル基又はアミノ基を含む基は、カルボキシル基とアミノ基との双方を含んでいてもよい。なお、下記式(X)において、右端部及び左端部は結合部位を表す。 From the viewpoint of effectively reducing the connection resistance in the connection structure and effectively suppressing the generation of voids, a carboxyl group or an amino group is present on the outer surface of the conductive particles (the outer surface of the solder). It is preferable that a carboxyl group is present, and an amino group is preferably present. A group containing a carboxyl group or an amino group is shared on the outer surface of the conductive particle (the outer surface of the solder) via a Si—O bond, an ether bond, an ester bond or a group represented by the following formula (X). It is preferably bonded, and more preferably a group containing a carboxyl group or an amino group is covalently bonded through an ether bond, an ester bond or a group represented by the following formula (X). The group containing a carboxyl group or an amino group may contain both a carboxyl group and an amino group. In the following formula (X), the right end and the left end represent a binding site.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 はんだの表面に水酸基が存在する。この水酸基とカルボキシル基を含む基とを共有結合させることにより、他の配位結合(キレート配位)等にて結合させる場合よりも強い結合を形成できるため、電極間の接続抵抗を低くし、かつボイドの発生を抑えることが可能な導電性粒子が得られる。 There are hydroxyl groups on the solder surface. By covalently bonding this hydroxyl group and a group containing a carboxyl group, a stronger bond can be formed than in the case of bonding by other coordination bond (chelate coordination) or the like, so the connection resistance between the electrodes is reduced, And the electroconductive particle which can suppress generation | occurrence | production of a void is obtained.
 上記導電性粒子では、はんだの表面と、カルボキシル基を含む基との結合形態に、配位結合が含まれていなくてもよく、キレート配位による結合が含まれていなくてもよい。 In the conductive particles, the bond form between the solder surface and the group containing a carboxyl group may not include a coordinate bond, and may not include a bond due to a chelate coordinate.
 接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記導電性粒子は、水酸基と反応可能な官能基とカルボキシル基又はアミノ基とを有する化合物(以下、化合物Xと記載することがある)を用いて、はんだの表面の水酸基に、上記水酸基と反応可能な官能基を反応させることにより得られることが好ましい。上記反応では、共有結合を形成させる。はんだの表面の水酸基と上記化合物Xにおける上記水酸基と反応可能な官能基とを反応させることで、はんだの表面にカルボキシル基又はアミノ基を含む基が共有結合している導電性粒子を容易に得ることができ、はんだの表面にエーテル結合又はエステル結合を介してカルボキシル基又はアミノ基を含む基が共有結合している導電性粒子を得ることもできる。上記はんだの表面の水酸基に上記水酸基と反応可能な官能基を反応させることで、はんだの表面に、上記化合物Xを共有結合の形態で化学結合させることができる。 From the viewpoint of effectively reducing the connection resistance in the connection structure and effectively suppressing the generation of voids, the conductive particle is a compound having a functional group capable of reacting with a hydroxyl group and a carboxyl group or an amino group ( Hereinafter, it is preferably obtained by reacting a hydroxyl group on the surface of the solder with a functional group capable of reacting with the hydroxyl group using a compound X). In the above reaction, a covalent bond is formed. By reacting a hydroxyl group on the surface of the solder with a functional group capable of reacting with the hydroxyl group in the compound X, conductive particles in which a group containing a carboxyl group or an amino group is covalently bonded to the surface of the solder are easily obtained. It is also possible to obtain conductive particles in which a group containing a carboxyl group or an amino group is covalently bonded to the surface of the solder via an ether bond or an ester bond. By reacting a hydroxyl group on the surface of the solder with a functional group capable of reacting with the hydroxyl group, the compound X can be chemically bonded to the surface of the solder in the form of a covalent bond.
 上記水酸基と反応可能な官能基としては、水酸基、カルボキシル基、エステル基及びカルボニル基等が挙げられる。水酸基又はカルボキシル基が好ましい。上記水酸基と反応可能な官能基は、水酸基であってもよく、カルボキシル基であってもよい。 Examples of the functional group capable of reacting with the hydroxyl group include a hydroxyl group, a carboxyl group, an ester group, and a carbonyl group. A hydroxyl group or a carboxyl group is preferred. The functional group capable of reacting with the hydroxyl group may be a hydroxyl group or a carboxyl group.
 水酸基と反応可能な官能基を有する化合物としては、レブリン酸、グルタル酸、グリコール酸、コハク酸、リンゴ酸、シュウ酸、マロン酸、アジピン酸、5-ケトヘキサン酸、3-ヒドロキシプロピオン酸、4-アミノ酪酸、3-メルカプトプロピオン酸、3-メルカプトイソブチル酸、3-メチルチオプロピオン酸、3-フェニルプロピオン酸、3-フェニルイソブチル酸、4-フェニル酪酸、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、9-ヘキサデセン酸、ヘプタデカン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、(9,12,15)-リノレン酸、ノナデカン酸、アラキジン酸、デカン二酸及びドデカン二酸等が挙げられる。グルタル酸又はグリコール酸が好ましい。上記水酸基と反応可能な官能基を有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。上記水酸基と反応可能な官能基を有する化合物は、カルボキシル基を少なくとも1つ有する化合物であることが好ましい。 Examples of the compound having a functional group capable of reacting with a hydroxyl group include levulinic acid, glutaric acid, glycolic acid, succinic acid, malic acid, oxalic acid, malonic acid, adipic acid, 5-ketohexanoic acid, 3-hydroxypropionic acid, 4- Aminobutyric acid, 3-mercaptopropionic acid, 3-mercaptoisobutyric acid, 3-methylthiopropionic acid, 3-phenylpropionic acid, 3-phenylisobutyric acid, 4-phenylbutyric acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, Hexadecanoic acid, 9-hexadecenoic acid, heptadecanoic acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, (9,12,15) -linolenic acid, nonadecanoic acid, arachidic acid, decanedioic acid and dodecanedioic acid It is done. Glutaric acid or glycolic acid is preferred. Only 1 type may be used for the compound which has the functional group which can react with the said hydroxyl group, and 2 or more types may be used together. The compound having a functional group capable of reacting with the hydroxyl group is preferably a compound having at least one carboxyl group.
 上記化合物Xは、フラックス作用を有することが好ましく、上記化合物Xは、はんだの表面に結合した状態でフラックス作用を有することが好ましい。フラックス作用を有する化合物は、はんだの表面の酸化膜及び電極の表面の酸化膜を除去可能である。カルボキシル基はフラックス作用を有する。 The compound X preferably has a flux action, and the compound X preferably has a flux action in a state of being bonded to the solder surface. The compound having a flux action can remove the oxide film on the surface of the solder and the oxide film on the surface of the electrode. The carboxyl group has a flux action.
 フラックス作用を有する化合物としては、レブリン酸、グルタル酸、グリコール酸、コハク酸、5-ケトヘキサン酸、3-ヒドロキシプロピオン酸、4-アミノ酪酸、3-メルカプトプロピオン酸、3-メルカプトイソブチル酸、3-メチルチオプロピオン酸、3-フェニルプロピオン酸、3-フェニルイソブチル酸及び4-フェニル酪酸等が挙げられる。グルタル酸又はグリコール酸が好ましい。上記フラックス作用を有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the compound having a flux action include levulinic acid, glutaric acid, glycolic acid, succinic acid, 5-ketohexanoic acid, 3-hydroxypropionic acid, 4-aminobutyric acid, 3-mercaptopropionic acid, 3-mercaptoisobutyric acid, 3- Examples include methylthiopropionic acid, 3-phenylpropionic acid, 3-phenylisobutyric acid and 4-phenylbutyric acid. Glutaric acid or glycolic acid is preferred. As for the compound which has the said flux effect | action, only 1 type may be used and 2 or more types may be used together.
 接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記化合物Xにおける上記水酸基と反応可能な官能基が、水酸基又はカルボキシル基であることが好ましい。上記化合物Xにおける上記水酸基と反応可能な官能基は、水酸基であってもよく、カルボキシル基であってもよい。上記水酸基と反応可能な官能基がカルボキシル基である場合には、上記化合物Xは、カルボキシル基を少なくとも2個有することが好ましい。カルボキシル基を少なくとも2個有する化合物の一部のカルボキシル基を、はんだの表面の水酸基に反応させることで、はんだの表面にカルボキシル基を含む基が共有結合している導電性粒子が得られる。 From the viewpoint of effectively reducing the connection resistance in the connection structure and effectively suppressing the generation of voids, the functional group capable of reacting with the hydroxyl group in the compound X is preferably a hydroxyl group or a carboxyl group. The functional group capable of reacting with the hydroxyl group in the compound X may be a hydroxyl group or a carboxyl group. When the functional group capable of reacting with the hydroxyl group is a carboxyl group, the compound X preferably has at least two carboxyl groups. By reacting a part of the carboxyl group of the compound having at least two carboxyl groups with the hydroxyl group on the surface of the solder, conductive particles in which the group containing the carboxyl group is covalently bonded to the surface of the solder can be obtained.
 上記導電性粒子の製造方法は、例えば、導電性粒子を用いて、該導電性粒子、水酸基と反応可能な官能基とカルボキシル基とを有する化合物、触媒及び溶媒を混合する工程を備える。上記導電性粒子の製造方法では、上記混合工程により、はんだの表面に、カルボキシル基を含む基が共有結合している導電性粒子を容易に得ることができる。 The method for producing conductive particles includes, for example, using conductive particles and mixing the conductive particles, a compound having a functional group capable of reacting with a hydroxyl group and a carboxyl group, a catalyst, and a solvent. In the method for producing conductive particles, conductive particles in which a group containing a carboxyl group is covalently bonded to the surface of the solder can be easily obtained by the mixing step.
 また、上記導電性粒子の製造方法では、導電性粒子を用いて、該導電性粒子、上記水酸基と反応可能な官能基とカルボキシル基とを有する化合物、上記触媒及び上記溶媒を混合し、加熱することが好ましい。混合及び加熱工程により、はんだの表面に、カルボキシル基を含む基が共有結合している導電性粒子をより一層容易に得ることができる。 Moreover, in the said manufacturing method of electroconductive particle, using electroconductive particle, this electroconductive particle, the compound which has the functional group and carboxyl group which can react with the said hydroxyl group, the said catalyst, and the said solvent are mixed, and it heats. It is preferable. By the mixing and heating step, conductive particles in which a group containing a carboxyl group is covalently bonded to the surface of the solder can be obtained more easily.
 上記溶媒としては、メタノール、エタノール、プロパノール及びブタノール等のアルコール溶媒や、アセトン、メチルエチルケトン、酢酸エチル、トルエン及びキシレン等が挙げられる。上記溶媒は有機溶媒であることが好ましく、トルエンであることがより好ましい。上記溶媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the solvent include alcohol solvents such as methanol, ethanol, propanol and butanol, acetone, methyl ethyl ketone, ethyl acetate, toluene and xylene. The solvent is preferably an organic solvent, and more preferably toluene. As for the said solvent, only 1 type may be used and 2 or more types may be used together.
 上記触媒としては、p-トルエンスルホン酸、ベンゼンスルホン酸及び10-カンファースルホン酸等が挙げられる。上記触媒は、p-トルエンスルホン酸であることが好ましい。上記触媒は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the catalyst include p-toluenesulfonic acid, benzenesulfonic acid, 10-camphorsulfonic acid, and the like. The catalyst is preferably p-toluenesulfonic acid. As for the said catalyst, only 1 type may be used and 2 or more types may be used together.
 上記混合時に加熱することが好ましい。加熱温度は好ましくは90℃以上、より好ましくは100℃以上であり、好ましくは130℃以下、より好ましくは110℃以下である。 It is preferable to heat at the time of mixing. The heating temperature is preferably 90 ° C or higher, more preferably 100 ° C or higher, preferably 130 ° C or lower, more preferably 110 ° C or lower.
 接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記導電性粒子は、イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させる工程を経て得られることが好ましい。上記反応では、共有結合を形成させる。はんだの表面の水酸基と上記イソシアネート化合物とを反応させることで、はんだの表面に、イソシアネート基に由来する基の窒素原子が共有結合している導電性粒子を容易に得ることができる。上記はんだの表面の水酸基に上記イソシアネート化合物を反応させることで、はんだの表面に、イソシアネート基に由来する基を共有結合の形態で化学結合させることができる。 From the viewpoint of effectively reducing the connection resistance in the connection structure and effectively suppressing the generation of voids, the conductive particles react with the isocyanate compound to the hydroxyl group on the surface of the solder using the isocyanate compound. It is preferable that it is obtained through the process of making it. In the above reaction, a covalent bond is formed. By reacting the hydroxyl group on the surface of the solder with the isocyanate compound, it is possible to easily obtain conductive particles in which the nitrogen atom of the group derived from the isocyanate group is covalently bonded to the surface of the solder. By reacting the isocyanate compound with a hydroxyl group on the surface of the solder, a group derived from an isocyanate group can be chemically bonded to the surface of the solder in the form of a covalent bond.
 また、イソシアネート基に由来する基には、シランカップリング剤を容易に反応させることができる。上記導電性粒子を容易に得ることができるので、上記カルボキシル基を含む基が、カルボキシル基を有するシランカップリング剤を用いた反応により導入されているか、又は、シランカップリング剤を用いた反応の後に、シランカップリング剤に由来する基にカルボキシル基を少なくとも1つ有する化合物を反応させることで導入されていることが好ましい。上記導電性粒子は、上記イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を少なくとも1つ有する化合物を反応させることにより得られることが好ましい。 In addition, a silane coupling agent can be easily reacted with a group derived from an isocyanate group. Since the conductive particles can be easily obtained, the group containing a carboxyl group is introduced by a reaction using a silane coupling agent having a carboxyl group, or the reaction using a silane coupling agent is performed. It is preferably introduced later by reacting a compound derived from a silane coupling agent with a compound having at least one carboxyl group. The conductive particles are preferably obtained by reacting the isocyanate compound with a hydroxyl group on the surface of the solder using the isocyanate compound and then reacting a compound having at least one carboxyl group.
 接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記カルボキシル基を少なくとも1つ有する化合物が、カルボキシル基を複数有することが好ましい。 From the viewpoint of effectively reducing the connection resistance in the connection structure and effectively suppressing the generation of voids, the compound having at least one carboxyl group preferably has a plurality of carboxyl groups.
 上記イソシアネート化合物としては、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、トルエンジイソシアネート(TDI)及びイソホロンジイソシアネート(IPDI)等が挙げられる。これら以外のイソシアネート化合物を用いてもよい。この化合物をはんだの表面に反応させた後、残イソシアネート基と、その残イソシアネート基と反応性を有し、かつカルボキシル基を有する化合物を反応させることで、はんだの表面に上記式(X)で表される基を介して、カルボキシル基を導入することができる。 Examples of the isocyanate compound include diphenylmethane-4,4'-diisocyanate (MDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), and isophorone diisocyanate (IPDI). Isocyanate compounds other than these may be used. After reacting this compound on the surface of the solder, by reacting the residual isocyanate group and a compound having reactivity with the residual isocyanate group and having a carboxyl group, the surface of the solder is represented by the above formula (X). A carboxyl group can be introduced through the group represented.
 上記イソシアネート化合物としては、不飽和二重結合を有し、かつイソシアネート基を有する化合物を用いてもよい。例えば、2-アクリロイルオキシエチルイソシアネート及び2-イソシアナトエチルメタクリレートが挙げられる。この化合物のイソシアネート基をはんだの表面に反応させた後、残存している不飽和二重結合に対し反応性を有する官能基を有し、かつカルボキシル基を有する化合物を反応させることで、はんだの表面に上記式(X)で表される基を介して、カルボキシル基を導入することができる。 As the isocyanate compound, a compound having an unsaturated double bond and having an isocyanate group may be used. Examples include 2-acryloyloxyethyl isocyanate and 2-isocyanatoethyl methacrylate. After reacting the isocyanate group of this compound on the surface of the solder, reacting the compound having a functional group having reactivity with the remaining unsaturated double bond and having a carboxyl group, A carboxyl group can be introduced to the surface via a group represented by the above formula (X).
 上記シランカップリング剤としては、3-イソシアネートプロピルトリエトキシシラン(信越シリコーン社製「KBE-9007」)、及び3-イソシアネートプロピルトリメトキシシラン(MOMENTIVE社製「Y-5187」)等が挙げられる。上記シランカップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the silane coupling agent include 3-isocyanatopropyltriethoxysilane (“KBE-9007” manufactured by Shin-Etsu Silicone) and 3-isocyanatepropyltrimethoxysilane (“Y-5187” manufactured by MOMENTIVE). As for the said silane coupling agent, only 1 type may be used and 2 or more types may be used together.
 上記カルボキシル基を少なくとも1つ有する化合物としては、レブリン酸、グルタル酸、グリコール酸、コハク酸、リンゴ酸、シュウ酸、マロン酸、アジピン酸、5-ケトヘキサン酸、3-ヒドロキシプロピオン酸、4-アミノ酪酸、3-メルカプトプロピオン酸、3-メルカプトイソブチル酸、3-メチルチオプロピオン酸、3-フェニルプロピオン酸、3-フェニルイソブチル酸、4-フェニル酪酸、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、9-ヘキサデセン酸、ヘプタデカン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、(9,12,15)-リノレン酸、ノナデカン酸、アラキジン酸、デカン二酸及びドデカン二酸等が挙げられる。グルタル酸、アジピン酸又はグリコール酸が好ましい。上記カルボキシル基を少なくとも1つ有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the compound having at least one carboxyl group include levulinic acid, glutaric acid, glycolic acid, succinic acid, malic acid, oxalic acid, malonic acid, adipic acid, 5-ketohexanoic acid, 3-hydroxypropionic acid, 4-amino Butyric acid, 3-mercaptopropionic acid, 3-mercaptoisobutyric acid, 3-methylthiopropionic acid, 3-phenylpropionic acid, 3-phenylisobutyric acid, 4-phenylbutyric acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecane Examples include acid, 9-hexadecenoic acid, heptadecanoic acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, (9,12,15) -linolenic acid, nonadecanoic acid, arachidic acid, decanedioic acid and dodecanedioic acid. . Glutaric acid, adipic acid or glycolic acid is preferred. As for the compound which has at least 1 said carboxyl group, only 1 type may be used and 2 or more types may be used together.
 上記イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を複数有する化合物の一部のカルボキシル基を、はんだの表面の水酸基と反応させることで、カルボキシル基を含む基を残存させることができる。 After reacting the isocyanate compound with the hydroxyl group on the surface of the solder using the isocyanate compound, the carboxyl group of the compound having a plurality of carboxyl groups is reacted with the hydroxyl group on the surface of the solder. The group containing can be left.
 上記導電性粒子の製造方法では、導電性粒子を用いて、かつ、イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を少なくとも1つ有する化合物を反応させて、はんだの表面に、上記式(X)で表される基を介して、カルボキシル基を含む基が結合している導電性粒子を得る。上記導電性粒子の製造方法では、上記の工程により、はんだの表面に、カルボキシル基を含む基が導入された導電性粒子を容易に得ることができる。 In the method for producing conductive particles, the conductive particles are used and the isocyanate compound is used to react the hydroxyl group on the surface of the solder with the isocyanate compound, and then the compound having at least one carboxyl group is reacted. Thus, conductive particles in which a group containing a carboxyl group is bonded to the surface of the solder via the group represented by the above formula (X) are obtained. In the method for producing conductive particles, conductive particles in which a group containing a carboxyl group is introduced on the surface of the solder can be easily obtained by the above-described steps.
 上記導電性粒子の具体的な製造方法としては、以下の方法が挙げられる。有機溶媒に導電性粒子を分散させ、イソシアネート基を有するシランカップリング剤を添加する。その後、導電性粒子のはんだの表面の水酸基とイソシアネート基との反応触媒を用い、はんだの表面にシランカップリング剤を共有結合させる。次に、シランカップリング剤のケイ素原子に結合しているアルコキシ基を加水分解することで、水酸基を生成させる。生成した水酸基に、カルボキシル基を少なくとも1つ有する化合物のカルボキシル基を反応させる。 The following method can be given as a specific method for producing the conductive particles. Conductive particles are dispersed in an organic solvent, and a silane coupling agent having an isocyanate group is added. Thereafter, a silane coupling agent is covalently bonded to the surface of the solder using a reaction catalyst between a hydroxyl group and an isocyanate group on the surface of the solder of the conductive particles. Next, a hydroxyl group is produced | generated by hydrolyzing the alkoxy group couple | bonded with the silicon atom of a silane coupling agent. The produced hydroxyl group is reacted with a carboxyl group of a compound having at least one carboxyl group.
 また、上記導電性粒子の具体的な製造方法としては、以下の方法が挙げられる。有機溶媒に導電性粒子を分散させ、イソシアネート基と不飽和二重結合を有する化合物を添加する。その後、導電性粒子のはんだの表面の水酸基とイソシアネート基との反応触媒を用い、共有結合を形成させる。その後、導入された不飽和二重結合に対して、不飽和二重結合、及びカルボキシル基を有する化合物を反応させる。 Moreover, the following method is mentioned as a concrete manufacturing method of the said electroconductive particle. Conductive particles are dispersed in an organic solvent, and a compound having an isocyanate group and an unsaturated double bond is added. Thereafter, a covalent bond is formed using a reaction catalyst of a hydroxyl group and an isocyanate group on the surface of the solder of the conductive particles. Thereafter, the unsaturated double bond introduced is reacted with a compound having an unsaturated double bond and a carboxyl group.
 導電性粒子のはんだの表面の水酸基とイソシアネート基との反応触媒としては、錫系触媒(ジブチル錫ジラウレート等)、アミン系触媒(トリエチレンジアミン等)、カルボキシレート触媒(ナフテン酸鉛、酢酸カリウム等)、及びトリアルキルホスフィン触媒(トリエチルホスフィン等)等が挙げられる。 The reaction catalyst for hydroxyl groups and isocyanate groups on the surface of the solder of the conductive particles includes tin catalysts (dibutyltin dilaurate, etc.), amine catalysts (triethylenediamine, etc.), carboxylate catalysts (lead naphthenate, potassium acetate, etc.) And a trialkylphosphine catalyst (such as triethylphosphine).
 接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1)で表される化合物であることが好ましい。下記式(1)で表される化合物は、フラックス作用を有する。また、下記式(1)で表される化合物は、はんだの表面に導入された状態でフラックス作用を有する。 From the viewpoint of effectively reducing the connection resistance in the connection structure and effectively suppressing the generation of voids, the compound having at least one carboxyl group is a compound represented by the following formula (1): Is preferred. The compound represented by the following formula (1) has a flux action. Moreover, the compound represented by following formula (1) has a flux effect | action in the state introduced into the surface of solder.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(1)中、Xは、水酸基と反応可能な官能基を表し、Rは、炭素数1~5の2価の有機基を表す。該有機基は、炭素原子と水素原子と酸素原子とを含んでいてもよい。該有機基は炭素数1~5の2価の炭化水素基であってもよい。上記有機基の主鎖は2価の炭化水素基であることが好ましい。該有機基では、2価の炭化水素基にカルボキシル基や水酸基が結合していてもよい。上記式(1)で表される化合物には、例えばクエン酸が含まれる。 In the above formula (1), X represents a functional group capable of reacting with a hydroxyl group, and R represents a divalent organic group having 1 to 5 carbon atoms. The organic group may contain a carbon atom, a hydrogen atom, and an oxygen atom. The organic group may be a divalent hydrocarbon group having 1 to 5 carbon atoms. The main chain of the organic group is preferably a divalent hydrocarbon group. In the organic group, a carboxyl group or a hydroxyl group may be bonded to a divalent hydrocarbon group. Examples of the compound represented by the above formula (1) include citric acid.
 上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1A)又は下記式(1B)で表される化合物であることが好ましい。上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1A)で表される化合物であることが好ましく、下記式(1B)で表される化合物であることがより好ましい。 The compound having at least one carboxyl group is preferably a compound represented by the following formula (1A) or the following formula (1B). The compound having at least one carboxyl group is preferably a compound represented by the following formula (1A), and more preferably a compound represented by the following formula (1B).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(1A)中、Rは、炭素数1~5の2価の有機基を表す。上記式(1A)中のRは上記式(1)中のRと同様である。 In the above formula (1A), R represents a divalent organic group having 1 to 5 carbon atoms. R in the above formula (1A) is the same as R in the above formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(1B)中、Rは、炭素数1~5の2価の有機基を表す。上記式(1B)中のRは上記式(1)中のRと同様である。 In the above formula (1B), R represents a divalent organic group having 1 to 5 carbon atoms. R in the above formula (1B) is the same as R in the above formula (1).
 はんだの表面に、下記式(2A)又は下記式(2B)で表される基が結合していることが好ましい。はんだの表面に、下記式(2A)で表される基が結合していることが好ましく、下記式(2B)で表される基が結合していることがより好ましい。なお、下記式(2A)及び下記式(2B)において、左端部は結合部位を表す。 It is preferable that a group represented by the following formula (2A) or the following formula (2B) is bonded to the surface of the solder. A group represented by the following formula (2A) is preferably bonded to the surface of the solder, and more preferably a group represented by the following formula (2B) is bonded. In the following formula (2A) and the following formula (2B), the left end portion represents a binding site.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(2A)中、Rは、炭素数1~5の2価の有機基を表す。上記式(2A)中のRは上記式(1)中のRと同様である。 In the above formula (2A), R represents a divalent organic group having 1 to 5 carbon atoms. R in the above formula (2A) is the same as R in the above formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(2B)中、Rは、炭素数1~5の2価の有機基を表す。上記式(2B)中のRは上記式(1)中のRと同様である。 In the above formula (2B), R represents a divalent organic group having 1 to 5 carbon atoms. R in the above formula (2B) is the same as R in the above formula (1).
 はんだの表面の濡れ性を高める観点からは、上記カルボキシル基を少なくとも1つ有する化合物の分子量は、好ましくは10000以下、より好ましくは1000以下、更に好ましくは500以下である。 From the viewpoint of enhancing the wettability of the solder surface, the molecular weight of the compound having at least one carboxyl group is preferably 10,000 or less, more preferably 1000 or less, and even more preferably 500 or less.
 上記分子量は、上記カルボキシル基を少なくとも1つ有する化合物が重合体ではない場合、及び上記カルボキシル基を少なくとも1つ有する化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記カルボキシル基を少なくとも1つ有する化合物が重合体である場合は、重量平均分子量を意味する。 The molecular weight means a molecular weight that can be calculated from the structural formula when the compound having at least one carboxyl group is not a polymer and when the structural formula of the compound having at least one carboxyl group can be specified. Further, when the compound having at least one carboxyl group is a polymer, it means a weight average molecular weight.
 導電接続時に導電性粒子の凝集性を効果的に高めることができることから、上記導電性粒子は、導電性粒子本体と、上記導電性粒子本体の表面上に配置されたアニオンポリマーとを有することが好ましい。上記導電性粒子は、導電性粒子本体をアニオンポリマー又はアニオンポリマーとなる化合物で表面処理することにより得られることが好ましい。上記導電性粒子は、アニオンポリマー又はアニオンポリマーとなる化合物による表面処理物であることが好ましい。上記アニオンポリマー及び上記アニオンポリマーとなる化合物はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。上記アニオンポリマーは、酸性基を有するポリマーである。 Since the cohesiveness of the conductive particles can be effectively increased at the time of conductive connection, the conductive particles may have a conductive particle main body and an anionic polymer disposed on the surface of the conductive particle main body. preferable. The conductive particles are preferably obtained by surface-treating the conductive particle body with an anionic polymer or a compound that becomes an anionic polymer. The conductive particles are preferably a surface treated product of an anionic polymer or a compound that becomes an anionic polymer. As for the said anion polymer and the compound used as the said anion polymer, only 1 type may respectively be used and 2 or more types may be used together. The anionic polymer is a polymer having an acidic group.
 導電性粒子本体をアニオンポリマーで表面処理する方法としては、アニオンポリマーとして、例えば(メタ)アクリル酸を共重合した(メタ)アクリルポリマー、ジカルボン酸とジオールとから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、ジカルボン酸の分子間脱水縮合反応により得られかつ両末端にカルボキシル基を有するポリマー、ジカルボン酸とジアミンとから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、並びにカルボキシル基を有する変性ポバール(日本合成化学社製「ゴーセネックスT」)等を用いて、アニオンポリマーのカルボキシル基と、導電性粒子本体の表面の水酸基とを反応させる方法が挙げられる。 As a method of surface-treating the conductive particle body with an anionic polymer, as an anionic polymer, for example, a (meth) acrylic polymer copolymerized with (meth) acrylic acid, synthesized from a dicarboxylic acid and a diol, and having carboxyl groups at both ends are used. Polyester polymer having a carboxyl group at both ends obtained from an intermolecular dehydration condensation reaction of dicarboxylic acid, a polyester polymer synthesized from dicarboxylic acid and diamine and having a carboxyl group at both ends, and a modification having a carboxyl group A method of reacting the carboxyl group of the anionic polymer with the hydroxyl group on the surface of the conductive particle main body using Poval (“GOHSEX T” manufactured by Nippon Synthetic Chemical Co., Ltd.) or the like can be mentioned.
 上記アニオンポリマーのアニオン部分としては、上記カルボキシル基が挙げられ、それ以外には、トシル基(p-HCCS(=O)-)、スルホン酸イオン基(-SO )、及びリン酸イオン基(-PO )等が挙げられる。 Examples of the anion portion of the anionic polymer include the carboxyl group, and other than that, a tosyl group (p—H 3 CC 6 H 4 S (═O) 2 —), a sulfonate ion group (—SO 3 —) ), And phosphate ion groups (—PO 4 ) and the like.
 また、表面処理の他の方法としては、導電性粒子本体の表面の水酸基と反応する官能基を有し、さらに、付加、縮合反応により重合可能な官能基を有する化合物を用いて、この化合物を導電性粒子本体の表面上にてポリマー化する方法が挙げられる。導電性粒子本体の表面の水酸基と反応する官能基としては、カルボキシル基、及びイソシアネート基等が挙げられ、付加、縮合反応により重合する官能基としては、水酸基、カルボキシル基、アミノ基、及び(メタ)アクリロイル基が挙げられる。 In addition, as another method for the surface treatment, a compound having a functional group that reacts with a hydroxyl group on the surface of the conductive particle main body and a functional group that can be polymerized by addition or condensation reaction is used. The method of polymerizing on the surface of an electroconductive particle main body is mentioned. Examples of the functional group that reacts with the hydroxyl group on the surface of the conductive particle body include a carboxyl group and an isocyanate group, and the functional group that polymerizes by addition and condensation reactions includes a hydroxyl group, a carboxyl group, an amino group, and (meta ) An acryloyl group is mentioned.
 上記アニオンポリマーの重量平均分子量は好ましくは2000以上、より好ましくは3000以上であり、好ましくは10000以下、より好ましくは8000以下である。上記重量平均分子量が上記下限以上及び上記上限以下であると、導電性粒子の表面に十分な量の電荷、及びフラックス性を導入することができる。これにより、導電接続時に導電性粒子の凝集性を効果的に高めることができ、かつ、接続対象部材の接続時に、電極の表面の酸化膜を効果的に除去することができる。 The weight average molecular weight of the anionic polymer is preferably 2000 or more, more preferably 3000 or more, preferably 10,000 or less, more preferably 8000 or less. When the weight average molecular weight is not less than the above lower limit and not more than the above upper limit, a sufficient amount of charge and flux properties can be introduced on the surface of the conductive particles. Thereby, the cohesiveness of electroconductive particle can be effectively improved at the time of conductive connection, and the oxide film on the surface of an electrode can be effectively removed at the time of connection of the connection object member.
 上記重量平均分子量が上記下限以上及び上記上限以下であると、導電性粒子本体の表面上にアニオンポリマーを配置することが容易であり、導電接続時にはんだ粒子の凝集性を効果的に高めることができ、電極上に導電性粒子をより一層効率的に配置することができる。 When the weight average molecular weight is not less than the above lower limit and not more than the above upper limit, it is easy to dispose an anionic polymer on the surface of the conductive particle body, and it is possible to effectively increase the cohesiveness of the solder particles at the time of conductive connection. In addition, the conductive particles can be arranged more efficiently on the electrode.
 上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The weight average molecular weight indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
 アニオンポリマーの重量平均分子量は、導電性粒子中のはんだを溶解し、アニオンポリマーの分解を起こさない希塩酸等により、導電性粒子を除去した後、残存しているアニオンポリマーの重量平均分子量を測定することで求めることができる。 The weight average molecular weight of the anionic polymer is measured by dissolving the solder in the conductive particles, removing the conductive particles with dilute hydrochloric acid that does not cause decomposition of the anionic polymer, and then measuring the weight average molecular weight of the remaining anionic polymer. Can be obtained.
 アニオンポリマーの導電性粒子の表面における導入量に関しては、導電性粒子1gあたりの酸価が、好ましくは1mgKOH以上、より好ましくは2mgKOH以上であり、好ましくは10mgKOH以下、より好ましくは6mgKOH以下である。 Regarding the introduction amount of the anionic polymer on the surface of the conductive particles, the acid value per 1 g of the conductive particles is preferably 1 mgKOH or more, more preferably 2 mgKOH or more, preferably 10 mgKOH or less, more preferably 6 mgKOH or less.
 上記酸価は以下のようにして測定可能である。導電性粒子1gを、アセトン36gに添加し、超音波にて1分間分散させる。その後、指示薬として、フェノールフタレインを用い、0.1mol/Lの水酸化カリウムエタノール溶液にて滴定する。 The acid value can be measured as follows. 1 g of conductive particles is added to 36 g of acetone and dispersed with an ultrasonic wave for 1 minute. Thereafter, phenolphthalein is used as an indicator and titrated with a 0.1 mol / L potassium hydroxide ethanol solution.
 次に、図面を参照しつつ、導電性粒子の具体例を説明する。 Next, specific examples of conductive particles will be described with reference to the drawings.
 図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。 FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material.
 図4に示す導電性粒子21は、はんだ粒子である。導電性粒子21は、全体がはんだにより形成されている。導電性粒子21は、基材粒子をコアに有さず、コアシェル粒子ではない。導電性粒子21は、中心部分及び導電部の外表面部分のいずれもがはんだにより形成されている。 The conductive particles 21 shown in FIG. 4 are solder particles. The conductive particles 21 are entirely formed of solder. The conductive particles 21 do not have base particles in the core, and are not core-shell particles. As for the electroconductive particle 21, both the center part and the outer surface part of an electroconductive part are formed with the solder.
 図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。 FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used as a conductive material.
 図5に示す導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された導電部33とを備える。導電部33は、基材粒子32の表面を被覆している。導電性粒子31は、基材粒子32の表面が導電部33により被覆された被覆粒子である。 The electroconductive particle 31 shown in FIG. 5 is equipped with the base material particle 32 and the electroconductive part 33 arrange | positioned on the surface of the base material particle 32. FIG. The conductive portion 33 covers the surface of the base particle 32. The conductive particles 31 are coated particles in which the surface of the base particle 32 is covered with the conductive portion 33.
 導電部33は、第2の導電部33Aと、はんだ部33B(第1の導電部)とを有する。導電性粒子31は、基材粒子32と、はんだ部33Bとの間に、第2の導電部33Aを備える。従って、導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された第2の導電部33Aと、第2の導電部33Aの外表面上に配置されたはんだ部33Bとを備える。 The conductive portion 33 has a second conductive portion 33A and a solder portion 33B (first conductive portion). The conductive particle 31 includes a second conductive portion 33A between the base particle 32 and the solder portion 33B. Therefore, the conductive particles 31 are composed of the base particle 32, the second conductive portion 33A disposed on the surface of the base particle 32, and the solder portion 33B disposed on the outer surface of the second conductive portion 33A. With.
 図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。 FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used as a conductive material.
 上記のように、導電性粒子31における導電部33は2層構造を有する。図6に示す導電性粒子41は、単層の導電部として、はんだ部42を有する。導電性粒子41は、基材粒子32と、基材粒子32の表面上に配置されたはんだ部42とを備える。 As described above, the conductive portion 33 in the conductive particle 31 has a two-layer structure. The conductive particle 41 shown in FIG. 6 has a solder part 42 as a single-layer conductive part. The conductive particles 41 include base particles 32 and solder portions 42 disposed on the surfaces of the base particles 32.
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることが好ましい。上記基材粒子は、銅粒子であってもよい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを有していてもよく、コアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。 Examples of the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. The substrate particles are preferably substrate particles excluding metal, and are preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles. The substrate particles may be copper particles. The base particle may have a core and a shell disposed on the surface of the core, or may be a core-shell particle. The core may be an organic core, and the shell may be an inorganic shell.
 上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Various organic substances are suitably used as the resin for forming the resin particles. Examples of the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate , Polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide , Polyacetal, polyimide, polyamideimide, polyether ether Tons, polyether sulfone, divinyl benzene polymer, and divinylbenzene copolymer, and the like. Examples of the divinylbenzene copolymer include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably a coalescence.
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、該エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer and And a crosslinkable monomer.
 上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylate compounds such as meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, etc. Oxygen atom-containing (meth) acrylate compounds; Nitrile-containing monomers such as (meth) acrylonitrile; Vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; Acids such as vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stearate Vinyl ester compounds; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene Etc.
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、並びに、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) sia Silane-containing monomers such as acrylate, triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, and γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane Etc.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
 上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal, examples of inorganic substances for forming the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black. The inorganic substance is preferably not a metal. The particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle | grains obtained by performing are mentioned. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。上記基材粒子が金属粒子である場合に、該金属粒子は銅粒子であることが好ましい。但し、上記基材粒子は金属粒子ではないことが好ましい。 When the substrate particles are metal particles, examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium. When the base material particles are metal particles, the metal particles are preferably copper particles. However, the substrate particles are preferably not metal particles.
 上記基材粒子の粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上、更に好ましくは1.5μm以上、特に好ましくは2μm以上であり、好ましくは100μm以下、より好ましくは50μm以下、より一層好ましくは40μm以下、更に好ましくは20μm以下、更に一層好ましくは10μm以下、特に好ましくは5μm以下、最も好ましくは3μm以下である。上記基材粒子の粒子径が上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性をより一層高めることができ、導電性粒子を介して接続された電極間の接続抵抗をより一層低くすることができる。上記基材粒子の粒子径が上記上限以下であると、導電性粒子が十分に圧縮されやすく、電極間の接続抵抗をより一層低くすることができ、更に電極間の間隔をより小さくすることができる。 The particle diameter of the substrate particles is preferably 0.1 μm or more, more preferably 1 μm or more, further preferably 1.5 μm or more, particularly preferably 2 μm or more, preferably 100 μm or less, more preferably 50 μm or less, more More preferably, it is 40 μm or less, more preferably 20 μm or less, still more preferably 10 μm or less, particularly preferably 5 μm or less, and most preferably 3 μm or less. When the particle diameter of the base material particles is equal to or larger than the lower limit, the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes can be further improved and the connection is made through the conductive particles. The connection resistance between the formed electrodes can be further reduced. When the particle diameter of the substrate particles is not more than the above upper limit, the conductive particles are easily compressed, the connection resistance between the electrodes can be further reduced, and the distance between the electrodes can be further reduced. it can.
 上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。 The particle diameter of the substrate particles indicates a diameter when the substrate particles are spherical, and indicates a maximum diameter when the substrate particles are not spherical.
 上記基材粒子の粒子径は、2μm以上、5μm以下であることが特に好ましい。上記基材粒子の粒子径が2μm以上、5μm以下の範囲内であると、電極間の間隔をより小さくすることができ、かつ導電層の厚みを厚くしても、小さい導電性粒子を得ることができる。 The particle diameter of the substrate particles is particularly preferably 2 μm or more and 5 μm or less. When the particle diameter of the substrate particles is in the range of 2 μm or more and 5 μm or less, the distance between the electrodes can be further reduced, and even if the thickness of the conductive layer is increased, small conductive particles can be obtained. Can do.
 上記基材粒子の表面上に導電部を形成する方法、並びに上記基材粒子の表面上又は上記第2の導電部の表面上にはんだ部を形成する方法は特に限定されない。上記導電部及び上記はんだ部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。無電解めっき、電気めっき又は物理的な衝突による方法が好適である。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。 The method for forming the conductive part on the surface of the base particle and the method for forming the solder part on the surface of the base particle or the surface of the second conductive part are not particularly limited. Examples of the method for forming the conductive portion and the solder portion include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, And a method of coating the surface of the substrate particles with a paste containing metal powder or metal powder and a binder. Electroless plating, electroplating or physical collision methods are preferred. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, in the method based on the physical collision, for example, a sheeter composer (manufactured by Tokuju Kogakusha Co., Ltd.) or the like is used.
 上記基材粒子の融点は、上記導電部及び上記はんだ部の融点よりも高いことが好ましい。上記基材粒子の融点は、好ましくは160℃を超え、より好ましくは300℃を超え、更に好ましくは400℃を超え、特に好ましくは450℃を超える。なお、上記基材粒子の融点は、400℃未満であってもよい。上記基材粒子の融点は、160℃以下であってもよい。上記基材粒子の軟化点は260℃以上であることが好ましい。上記基材粒子の軟化点は260℃未満であってもよい。 The melting point of the base material particles is preferably higher than the melting points of the conductive part and the solder part. The melting point of the substrate particles is preferably higher than 160 ° C, more preferably higher than 300 ° C, still more preferably higher than 400 ° C, and particularly preferably higher than 450 ° C. The melting point of the substrate particles may be less than 400 ° C. The melting point of the substrate particles may be 160 ° C. or less. The softening point of the substrate particles is preferably 260 ° C. or higher. The softening point of the substrate particles may be less than 260 ° C.
 上記導電性粒子は、単層のはんだ部を有していてもよい。上記導電性粒子は、複数の層の導電部(はんだ部,第2の導電部)を有していてもよい。すなわち、上記導電性粒子では、導電部を2層以上積層してもよい。上記導電部が2層以上の場合、上記導電性粒子は、導電部の外表面部分にはんだを有することが好ましい。 The conductive particles may have a single layer solder portion. The conductive particles may have a plurality of layers of conductive parts (solder part, second conductive part). That is, in the conductive particles, two or more conductive portions may be stacked. When the conductive part has two or more layers, the conductive particles preferably have solder on the outer surface portion of the conductive part.
 上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ部は、融点が450℃以下である金属層(低融点金属層)であることが好ましい。上記低融点金属層は、低融点金属を含む層である。上記導電性粒子におけるはんだは、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。また、上記導電性粒子におけるはんだは錫を含むことが好ましい。上記はんだ部に含まれる金属100重量%中及び上記導電性粒子におけるはんだに含まれる金属100重量%中、錫の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。上記導電性粒子におけるはんだに含まれる錫の含有量が上記下限以上であると、導電性粒子と電極との導通信頼性がより一層高くなる。 The solder is preferably a metal (low melting point metal) having a melting point of 450 ° C. or lower. The solder part is preferably a metal layer (low melting point metal layer) having a melting point of 450 ° C. or lower. The low melting point metal layer is a layer containing a low melting point metal. The solder in the conductive particles is preferably metal particles having a melting point of 450 ° C. or lower (low melting point metal particles). The low melting point metal particles are particles containing a low melting point metal. The low melting point metal is a metal having a melting point of 450 ° C. or lower. The melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower. The solder in the conductive particles preferably contains tin. In 100% by weight of the metal contained in the solder part and 100% by weight of the metal contained in the solder in the conductive particles, the content of tin is preferably 30% by weight or more, more preferably 40% by weight or more, and still more preferably. It is 70% by weight or more, particularly preferably 90% by weight or more. When the content of tin contained in the solder in the conductive particles is not less than the above lower limit, the conduction reliability between the conductive particles and the electrode is further enhanced.
 なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定可能である。 The tin content is determined using a high-frequency inductively coupled plasma emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). It can be measured.
 上記はんだを導電部の外表面部分に有する導電性粒子を用いることで、はんだが溶融して電極に接合し、はんだが電極間を導通させる。例えば、はんだと電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、はんだを導電部の外表面部分に有する導電性粒子の使用により、はんだと電極との接合強度が高くなる結果、はんだと電極との剥離がより一層生じ難くなり、導通信頼性が効果的に高くなる。 Using the conductive particles having the solder on the outer surface portion of the conductive portion, the solder is melted and joined to the electrodes, and the solder conducts between the electrodes. For example, since the solder and the electrode are not in point contact but in surface contact, the connection resistance is lowered. In addition, the use of conductive particles having solder on the outer surface of the conductive portion increases the bonding strength between the solder and the electrode, and as a result, the solder and the electrode are more unlikely to peel off, and the conduction reliability is effective. To be high.
 上記はんだ部及び上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金であることが好ましい。錫-ビスマス合金、錫-インジウム合金であることがより好ましい。 The low melting point metal constituting the solder part and the solder particles is not particularly limited. The low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy. The low melting point metal is preferably tin, tin-silver alloy, tin-silver-copper alloy, tin-bismuth alloy, or tin-indium alloy because of its excellent wettability to the electrode. More preferred are a tin-bismuth alloy and a tin-indium alloy.
 上記はんだ(はんだ部)を構成する材料は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウムなどを含む金属組成が挙げられる。低融点で鉛フリーである錫-インジウム系(117℃共晶)、又は錫-ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだは、鉛を含まないことが好ましく、錫とインジウムとを含むはんだ、又は錫とビスマスとを含むはんだであることが好ましい。 The material constituting the solder (solder part) is preferably a filler material having a liquidus of 450 ° C. or lower based on JIS Z3001: Welding terms. Examples of the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like. A tin-indium system (117 ° C. eutectic) or a tin-bismuth system (139 ° C. eutectic), which has a low melting point and is free of lead, is preferred. That is, the solder preferably does not contain lead, and is preferably a solder containing tin and indium or a solder containing tin and bismuth.
 上記はんだと電極との接合強度をより一層高めるために、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだと電極との接合強度をさらに一層高める観点からは、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部又は導電性粒子におけるはんだと電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、上記導電性粒子におけるはんだ100重量%中、好ましくは0.0001重量%以上であり、好ましくは1重量%以下である。 In order to further increase the bonding strength between the solder and the electrode, the solder in the conductive particles is nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese. Further, it may contain a metal such as chromium, molybdenum and palladium. Moreover, from the viewpoint of further increasing the bonding strength between the solder and the electrode, the solder in the conductive particles preferably contains nickel, copper, antimony, aluminum, or zinc. From the viewpoint of further increasing the bonding strength between the solder and the electrode in the solder portion or the conductive particles, the content of these metals for increasing the bonding strength is preferably 0% in 100% by weight of the solder in the conductive particles. 0.0001% by weight or more, preferably 1% by weight or less.
 上記第2の導電部の融点は、上記はんだ部の融点よりも高いことが好ましい。上記第2の導電部の融点は好ましくは160℃を超え、より好ましくは300℃を超え、更に好ましくは400℃を超え、更に一層好ましくは450℃を超え、特に好ましくは500℃を超え、最も好ましくは600℃を超える。上記はんだ部は融点が低いために導電接続時に溶融する。上記第2の導電部は導電接続時に溶融しないことが好ましい。上記導電性粒子は、はんだを溶融させて用いられることが好ましく、上記はんだ部を溶融させて用いられることが好ましく、上記はんだ部を溶融させてかつ上記第2の導電部を溶融させずに用いられることが好ましい。上記第2の導電部の融点が上記はんだ部の融点よりも高いことによって、導電接続時に、上記第2の導電部を溶融させずに、上記はんだ部のみを溶融させることができる。 The melting point of the second conductive part is preferably higher than the melting point of the solder part. The melting point of the second conductive part is preferably more than 160 ° C, more preferably more than 300 ° C, still more preferably more than 400 ° C, still more preferably more than 450 ° C, particularly preferably more than 500 ° C, most preferably Preferably it exceeds 600 degreeC. Since the solder part has a low melting point, it melts during conductive connection. It is preferable that the second conductive portion does not melt during conductive connection. The conductive particles are preferably used by melting solder, preferably used by melting the solder part, and used without melting the solder part and melting the second conductive part. It is preferred that Since the melting point of the second conductive part is higher than the melting point of the solder part, only the solder part can be melted without melting the second conductive part at the time of conductive connection.
 上記はんだ部の融点と上記第2の導電部の融点との差の絶対値は、0℃を超え、好ましくは5℃以上、より好ましくは10℃以上、更に好ましくは30℃以上、特に好ましくは50℃以上、最も好ましくは100℃以上である。 The absolute value of the difference between the melting point of the solder part and the melting point of the second conductive part exceeds 0 ° C, preferably 5 ° C or more, more preferably 10 ° C or more, still more preferably 30 ° C or more, and particularly preferably 50 ° C. or higher, most preferably 100 ° C. or higher.
 上記第2の導電部は、金属を含むことが好ましい。上記第2の導電部を構成する金属は、特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。 The second conductive part preferably contains a metal. The metal which comprises the said 2nd electroconductive part is not specifically limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.
 上記第2の導電部は、ニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層又は金層であることがより好ましく、銅層であることが更に好ましい。導電性粒子は、ニッケル層、パラジウム層、銅層又は金層を有することが好ましく、ニッケル層又は金層を有することがより好ましく、銅層を有することが更に好ましい。これらの好ましい導電部を有する導電性粒子を電極間の接続に用いることにより、電極間の接続抵抗がより一層低くなる。また、これらの好ましい導電部の表面には、はんだ部をより一層容易に形成できる。 The second conductive part is preferably a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably a nickel layer or a gold layer, and even more preferably a copper layer. The conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer or a gold layer, and still more preferably have a copper layer. By using the conductive particles having these preferable conductive parts for the connection between the electrodes, the connection resistance between the electrodes is further reduced. Moreover, a solder part can be more easily formed on the surface of these preferable conductive parts.
 上記はんだ部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.3μm以下である。はんだ部の厚みが上記下限以上及び上記上限以下であると、充分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が充分に変形する。 The thickness of the solder part is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, and still more preferably 0.3 μm or less. When the thickness of the solder portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles are not hardened, and the conductive particles are sufficiently deformed when connecting between the electrodes. .
 上記導電性粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、更に好ましくは3μm以上であり、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは40μm以下、特に好ましくは30μm以下である。上記導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、電極上に導電性粒子におけるはんだをより一層効率的に配置することができ、電極間に導電性粒子におけるはんだを多く配置することが容易であり、導通信頼性がより一層高くなる。 The average particle diameter of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, further preferably 3 μm or more, preferably 100 μm or less, more preferably 50 μm or less, still more preferably 40 μm or less, particularly preferably. Is 30 μm or less. When the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles can be arranged more efficiently on the electrodes, and there are many solders in the conductive particles between the electrodes. It is easy to arrange and the conduction reliability is further enhanced.
 上記導電性粒子の「平均粒子径」は、数平均粒子径を示す。導電性粒子の平均粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average particle size” of the conductive particles indicates a number average particle size. The average particle diameter of the conductive particles is obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
 上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、扁平状などの球形状以外の形状であってもよい。 The shape of the conductive particles is not particularly limited. The conductive particles may have a spherical shape or a shape other than a spherical shape such as a flat shape.
 上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは1重量%以上、より好ましくは2重量%以上、更に好ましくは10重量%以上、特に好ましくは20重量%以上、最も好ましくは30重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、更に好ましくは50重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極上に導電性粒子におけるはんだをより一層効率的に配置することができ、電極間に導電性粒子におけるはんだを多く配置することが容易であり、導通信頼性がより一層高くなる。導通信頼性をより一層高める観点からは、上記導電性粒子の含有量は多い方が好ましい。 The content of the conductive particles in 100% by weight of the conductive material is preferably 1% by weight or more, more preferably 2% by weight or more, still more preferably 10% by weight or more, particularly preferably 20% by weight or more, most preferably. It is 30% by weight or more, preferably 80% by weight or less, more preferably 60% by weight or less, and still more preferably 50% by weight or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles can be arranged more efficiently on the electrodes, and more solder in the conductive particles is arranged between the electrodes. It is easy to do and the conduction reliability is further increased. From the viewpoint of further improving the conduction reliability, the content of the conductive particles is preferably large.
 (熱硬化性化合物)
 上記熱硬化性化合物は、加熱により硬化可能な化合物である。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電材料の硬化性及び粘度をより一層良好にし、接続信頼性をより一層高める観点から、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記導電材料は、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting compound)
The thermosetting compound is a compound that can be cured by heating. Examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. From the viewpoint of further improving the curability and viscosity of the conductive material and further improving the connection reliability, an epoxy compound or an episulfide compound is preferable, and an epoxy compound is more preferable. The conductive material preferably contains an epoxy compound. As for the said thermosetting compound, only 1 type may be used and 2 or more types may be used together.
 電極の腐食をより一層抑え、接続抵抗をより一層低く維持する観点からは、上記熱硬化性化合物は、窒素原子を有する熱硬化性化合物を含むことが好ましく、トリアジン骨格を有する熱硬化性化合物を含むことが好ましい。 From the viewpoint of further suppressing the corrosion of the electrode and maintaining the connection resistance even lower, the thermosetting compound preferably includes a thermosetting compound having a nitrogen atom, and a thermosetting compound having a triazine skeleton is used. It is preferable to include.
 特に、窒素原子を有する熱硬化性化合物と酸無水物熱硬化剤との併用により、マイグレーションの発生がかなり効果的に抑えられる。 In particular, the combined use of a thermosetting compound having a nitrogen atom and an acid anhydride thermosetting agent can significantly suppress the occurrence of migration.
 上記窒素原子を有する熱硬化性化合物としてはトリアジントリグリシジルエーテル等が挙げられ、日産化学工業社製TEPICシリーズ(TEPIC-G、TEPIC-S、TEPIC-SS、TEPIC-HP、TEPIC-L、TEPIC-PAS、TEPIC-VL、TEPIC-UC)等が挙げられる。 Examples of the thermosetting compound having a nitrogen atom include triazine triglycidyl ether, and the like. TEPIC series (TEPIC-G, TEPIC-S, TEPIC-SS, TEPIC-HP, TEPIC-L, TEPIC-, manufactured by Nissan Chemical Industries, Ltd.) PAS, TEPIC-VL, TEPIC-UC) and the like.
 上記エポキシ化合物としては、芳香族エポキシ化合物が挙げられる。レゾルシノール型エポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、及びベンゾフェノン型エポキシ化合物等の結晶性エポキシ化合物が好ましい。常温(23℃)で固体であり、かつ溶融温度がはんだの融点以下であるエポキシ化合物が好ましい。溶融温度は好ましくは100℃以下、より好ましくは80℃以下、好ましくは40℃以上である。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により、加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができ、なおかつ、硬化時の熱により、導電材料の粘度を大きく低下させることができ、はんだの凝集を効率よく進行させることができる。 The above-mentioned epoxy compound includes an aromatic epoxy compound. Crystalline epoxy compounds such as resorcinol type epoxy compounds, naphthalene type epoxy compounds, biphenyl type epoxy compounds, and benzophenone type epoxy compounds are preferred. An epoxy compound that is solid at normal temperature (23 ° C.) and has a melting temperature equal to or lower than the melting point of the solder is preferable. The melting temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and preferably 40 ° C. or higher. By using the above-mentioned preferable epoxy compound, the first connection target member and the second connection are high when the connection target member is pasted and when the viscosity is high and acceleration is applied by impact such as conveyance. The positional deviation with respect to the target member can be suppressed, and the viscosity of the conductive material can be greatly reduced by the heat at the time of curing, so that the aggregation of the solder can proceed efficiently.
 上記導電材料100重量%中、上記熱硬化性化合物の含有量及び上記窒素原子を有する熱硬化性化合物は、好ましくは20重量%以上、より好ましくは40重量%以上、更に好ましくは50重量%以上であり、好ましくは99重量%以下、より好ましくは98重量%以下、更に好ましくは90重量%以下、特に好ましくは80重量%以下である。上記熱硬化性化合物及び上記窒素原子を有する熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、導電性粒子におけるはんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑制し、電極間の導通信頼性をより一層高めることができる。耐衝撃性をより一層高める観点からは、上記熱硬化性化合物の含有量は多い方が好ましい。導電材料の硬化性及び粘度をより一層良好にし、接続信頼性をより一層高める観点から、上記導電材料100重量%中、上記エポキシ化合物の含有量は、好ましくは10重量%以上、より好ましくは15重量%以上であり、好ましくは50重量%以下、より好ましくは30重量%以下である。 The content of the thermosetting compound and the thermosetting compound having a nitrogen atom in 100% by weight of the conductive material is preferably 20% by weight or more, more preferably 40% by weight or more, and further preferably 50% by weight or more. Preferably 99% by weight or less, more preferably 98% by weight or less, still more preferably 90% by weight or less, and particularly preferably 80% by weight or less. When the content of the thermosetting compound and the thermosetting compound having a nitrogen atom is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles is more efficiently arranged on the electrodes, and between the electrodes Misalignment can be further suppressed, and conduction reliability between the electrodes can be further enhanced. From the viewpoint of further improving the impact resistance, it is preferable that the content of the thermosetting compound is large. From the viewpoint of further improving the curability and viscosity of the conductive material and further improving the connection reliability, the content of the epoxy compound in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 15%. % By weight or more, preferably 50% by weight or less, more preferably 30% by weight or less.
 (熱硬化剤)
 上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、フェノール硬化剤、チオール硬化剤、アミン硬化剤、酸無水物熱硬化剤、熱カチオン開始剤(熱カチオン硬化剤)及び熱ラジカル発生剤等がある。本発明では、上記熱硬化剤として酸無水物熱硬化剤を用いる。導電性粒子におけるはんだを電極上に効率的に配置する観点、並びにマイグレーションの発生を効果的に抑える観点からは、導電部の外表面部分にはんだを有する導電性粒子を用いる場合に、酸無水物熱硬化剤を用いることには大きな意味がある。上記酸無水物熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting agent)
The thermosetting agent thermosets the thermosetting compound. Examples of the thermosetting agent include an imidazole curing agent, a phenol curing agent, a thiol curing agent, an amine curing agent, an acid anhydride thermosetting agent, a thermal cation initiator (thermal cation curing agent), and a thermal radical generator. In the present invention, an acid anhydride thermosetting agent is used as the thermosetting agent. From the viewpoint of efficiently arranging the solder in the conductive particles on the electrode, and from the viewpoint of effectively suppressing the occurrence of migration, when using the conductive particles having solder on the outer surface portion of the conductive part, an acid anhydride is used. The use of a thermosetting agent has great significance. As for the said acid anhydride thermosetting agent, only 1 type may be used and 2 or more types may be used together.
 上記酸無水物熱硬化剤としては、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、フタル酸誘導体の無水物、無水マレイン酸、メチルブテニルテトラヒドロ無水フタル酸、及びトリアクリルテトラヒドロ無水フタル酸等の2官能の酸無水物熱硬化剤、無水トリメリット酸等の3官能の酸無水物熱硬化剤、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物等や、ポリアゼライン酸無水物等の4官能以上の酸無水物熱硬化剤等が挙げられる。 Examples of the acid anhydride thermosetting agent include trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, anhydrides of phthalic acid derivatives, maleic anhydride, methylbutenyltetrahydrophthalic anhydride, and triacryltetrahydrophthalic anhydride. Bifunctional acid anhydride thermosetting agents, trifunctional acid anhydride thermosetting agents such as trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, methylcyclohexene tetracarboxylic acid anhydride, and polyazeline acid A tetrafunctional or higher acid anhydride thermosetting agent such as an anhydride may be used.
 電極上に、はんだをより一層効果的に配置する観点からは、上記酸無水物熱硬化剤は、25℃で液状であることが好ましい。25℃で液状である酸無水物熱硬化剤は、低温での導電材料の粘度を低くすることに寄与し、低温でのはんだの移動を妨げにくい。 From the viewpoint of more effectively arranging the solder on the electrode, the acid anhydride thermosetting agent is preferably liquid at 25 ° C. The acid anhydride thermosetting agent that is liquid at 25 ° C. contributes to lowering the viscosity of the conductive material at a low temperature and hardly hinders the movement of the solder at a low temperature.
 硬化物の熱劣化を効果的に抑える観点からは、上記酸無水物熱硬化剤は、環状酸無水物熱硬化剤であることが好ましい。環状酸無水物熱硬化剤としては、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸及びトリアクリルテトラヒドロ無水フタル酸等が挙げられる。 From the viewpoint of effectively suppressing the thermal degradation of the cured product, the acid anhydride thermosetting agent is preferably a cyclic acid anhydride thermosetting agent. Examples of the cyclic acid anhydride thermosetting agent include trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and triacryltetrahydrophthalic anhydride.
 上記熱硬化性化合物の全体100重量部に対して、上記酸無水物熱硬化剤の含有量は、好ましくは30重量部以上、より好ましくは40重量部以上であり、好ましくは80重量部以下、より好ましくは60重量部以下である。酸無水物熱硬化剤の含有量が上記下限以上であると、導電材料を充分に硬化させることが容易であり、電極上にはんだがより一層効率的に配置され、マイグレーションの発生がより一層抑えられる。酸無水物熱硬化剤の含有量が上記上限以下であると、硬化後に硬化に関与しなかった余剰の酸無水物熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。 The content of the acid anhydride thermosetting agent is preferably 30 parts by weight or more, more preferably 40 parts by weight or more, preferably 80 parts by weight or less, with respect to 100 parts by weight as a whole of the thermosetting compound. More preferably, it is 60 parts by weight or less. When the content of the acid anhydride thermosetting agent is not less than the above lower limit, it is easy to sufficiently cure the conductive material, the solder is more efficiently disposed on the electrode, and the occurrence of migration is further suppressed. It is done. If the content of the acid anhydride thermosetting agent is not more than the above upper limit, the excess acid anhydride thermosetting agent that did not participate in the curing after the curing becomes difficult to remain, and the heat resistance of the cured product is further enhanced. .
 (有機リン化合物及び硬化促進剤)
 接続信頼性を高める観点から、上記導電材料は、硬化促進剤を含むことが好ましい。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Organic phosphorus compound and curing accelerator)
From the viewpoint of improving connection reliability, the conductive material preferably contains a curing accelerator. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.
 上記硬化促進剤としては特に限定されないが、具体的には、イミダゾール、2-メチルイミダゾール及び2-フェニルイミダゾール等のイミダゾール硬化促進剤;メチルトリブチルホスホニウムジメチルホスフェイト及びテトラn-ブチルホスホニウムテトラフルオロボレート等の有機リン硬化促進剤が挙げられる。 The curing accelerator is not particularly limited, and specific examples include imidazole curing accelerators such as imidazole, 2-methylimidazole and 2-phenylimidazole; methyltributylphosphonium dimethyl phosphate and tetra n-butylphosphonium tetrafluoroborate The organic phosphorus hardening accelerator of this is mentioned.
 はんだを電極上により一層効率的に配置する観点からは、上記導電材料は、有機リン化合物を含むことが好ましい。はんだを電極上により一層効率的に配置する観点からは、上記有機リン化合物は、有機リン硬化促進剤であることが好ましい。有機リン化合物又は有機リン硬化促進剤と酸無水物熱硬化剤とを併用することで、はんだ及び電極の表面に形成された酸化膜をより一層効果的に除去でき、さらに、はんだを電極上により一層効果的に配置することができる。 From the viewpoint of more efficiently arranging the solder on the electrode, the conductive material preferably contains an organophosphorus compound. From the viewpoint of more efficiently arranging the solder on the electrode, the organophosphorus compound is preferably an organophosphorus curing accelerator. By using an organophosphorus compound or organophosphorus curing accelerator in combination with an acid anhydride thermosetting agent, the oxide film formed on the surface of the solder and the electrode can be removed more effectively, and the solder can be removed on the electrode. It can arrange | position more effectively.
 上記導電材料100重量%中、上記硬化促進剤の含有量は好ましくは0.5重量%以上より好ましくは1重量%以上、好ましくは15重量%以下、より好ましくは10重量%以下、更に好ましくは5重量%以下である。上記硬化促進剤の含有量が上記下限以上であると、はんだの配置精度がより一層高くなる。上記硬化促進剤の含有量が上記上限以下であると、マイグレーションがより一層発生し難くなる。 In 100% by weight of the conductive material, the content of the curing accelerator is preferably 0.5% by weight or more, more preferably 1% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less, and still more preferably. 5% by weight or less. When the content of the curing accelerator is equal to or more than the lower limit, the solder placement accuracy is further increased. When the content of the curing accelerator is not more than the above upper limit, migration is more difficult to occur.
 上記導電材料100重量%中、上記有機リン化合物の含有量及び上記有機リン硬化促進剤の含有量は好ましくは0.5重量%以上より好ましくは1重量%以上、好ましくは15重量%以下、より好ましくは10重量%以下、更に好ましくは5重量%以下である。上記有機リン化合物の含有量及び上記有機リン硬化促進剤の含有量が上記下限以上であると、はんだの配置精度がより一層高くなる。上記有機リン化合物の含有量及び上記有機リン硬化促進剤の含有量が上記上限以下であると、はんだの配置精度がより一層高くなり、更にマイグレーションがより一層発生し難くなる。 In 100% by weight of the conductive material, the content of the organic phosphorus compound and the content of the organic phosphorus curing accelerator are preferably 0.5% by weight or more, more preferably 1% by weight or more, and preferably 15% by weight or less. Preferably it is 10 weight% or less, More preferably, it is 5 weight% or less. When the content of the organic phosphorus compound and the content of the organic phosphorus curing accelerator are equal to or higher than the lower limit, the solder placement accuracy is further increased. When the content of the organophosphorus compound and the content of the organophosphorus curing accelerator are not more than the above upper limit, the solder placement accuracy is further increased, and migration is more difficult to occur.
 (フラックス)
 上記導電材料は、フラックスを含むことが好ましい。フラックスの使用により、はんだを電極上により一層効果的に配置することができる。該フラックスは特に限定されない。フラックスとして、はんだ接合等に一般的に用いられているフラックスを使用できる。上記導電材料は、フラックスを含んでいなくてもよい。
(flux)
The conductive material preferably contains a flux. By using flux, the solder can be more effectively placed on the electrode. The flux is not particularly limited. As the flux, a flux generally used for soldering or the like can be used. The conductive material may not contain flux.
 上記フラックスとしては、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。上記フラックスは1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin. Etc. As for the said flux, only 1 type may be used and 2 or more types may be used together.
 上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸又は松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性がより一層高くなる。 Examples of the molten salt include ammonium chloride. Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, and glutaric acid. Examples of the pine resin include activated pine resin and non-activated pine resin. The flux is preferably an organic acid or pine resin having two or more carboxyl groups. The flux may be an organic acid having two or more carboxyl groups, or pine resin. By using an organic acid having two or more carboxyl groups, pine resin, the conduction reliability between the electrodes is further enhanced.
 上記松脂はアビエチン酸を主成分とするロジン類である。フラックスは、ロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。 The above rosins are rosins whose main component is abietic acid. The flux is preferably rosins, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.
 上記フラックスの活性温度(融点)は、好ましくは50℃以上、より好ましくは70℃以上、更に好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、更に好ましくは150℃以下、更に一層好ましくは140℃以下である。上記フラックスの活性温度が上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだが電極上により一層効率的に配置される。上記フラックスの活性温度(融点)は80℃以上、190℃以下であることが好ましい。上記フラックスの活性温度(融点)は80℃以上、140℃以下であることが特に好ましい。 The active temperature (melting point) of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 190 ° C. or lower, even more preferably 160. ° C or lower, more preferably 150 ° C or lower, still more preferably 140 ° C or lower. When the activation temperature of the flux is not less than the above lower limit and not more than the above upper limit, the flux effect is more effectively exhibited and the solder is more efficiently arranged on the electrode. The active temperature (melting point) of the flux is preferably 80 ° C. or higher and 190 ° C. or lower. The activation temperature (melting point) of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
 フラックスの活性温度(融点)が80℃以上、190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、スベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、リンゴ酸(融点130℃)等が挙げられる。 The flux having an active temperature (melting point) of 80 ° C. or higher and 190 ° C. or lower includes succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point) 104 ° C.), dicarboxylic acids such as suberic acid (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), malic acid (melting point 130 ° C.) and the like.
 また、上記フラックスの沸点は200℃以下であることが好ましい。 The boiling point of the flux is preferably 200 ° C. or lower.
 はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記導電性粒子におけるはんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。 From the viewpoint of more efficiently arranging the solder on the electrode, the melting point of the flux is preferably higher than the melting point of the solder in the conductive particles, more preferably 5 ° C or higher, and more preferably 10 ° C or higher. More preferably.
 はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。 From the viewpoint of more efficiently arranging the solder on the electrode, the melting point of the flux is preferably higher than the reaction start temperature of the thermosetting agent, more preferably 5 ° C or higher, more preferably 10 ° C or higher. More preferably.
 上記フラックスは、導電材料中に分散されていてもよく、導電性粒子の表面上に付着していてもよい。 The flux may be dispersed in the conductive material or may be adhered on the surface of the conductive particles.
 フラックスの融点が、はんだの融点より高いことにより、電極部分にはんだを効率的に凝集させることができる。これは、接合時に熱を付与した場合、接続対象部材上に形成された電極と、電極周辺の接続対象部材の部分とを比較すると、電極部分の熱伝導率が電極周辺の接続対象部材部分の熱伝導率よりも高いことにより、電極部分の昇温が速いことに起因する。導電性粒子におけるはんだの融点を超えた段階では、導電性粒子におけるはんだは溶解するが、表面に形成された酸化被膜は、フラックスの融点(活性温度)に達していないので、除去されない。この状態で、電極部分の温度が先に、フラックスの融点(活性温度)に達するため、優先的に電極上に来た導電性粒子におけるはんだの表面の酸化被膜が除去されることや、活性化したフラックスにより導電性粒子におけるはんだの表面の電荷が中和されることにより、はんだが電極の表面上に濡れ拡がることができる。これにより、電極上に効率的にはんだを凝集させることができる。 Since the melting point of the flux is higher than the melting point of the solder, the solder can be efficiently aggregated on the electrode portion. This is because, when heat is applied at the time of joining, when the electrode formed on the connection target member is compared with the portion of the connection target member around the electrode, the thermal conductivity of the electrode portion is that of the connection target member portion around the electrode. Due to the fact that it is higher than the thermal conductivity, the temperature rise of the electrode portion is fast. At the stage where the melting point of the solder in the conductive particles is exceeded, the solder in the conductive particles dissolves, but the oxide film formed on the surface does not reach the melting point (activation temperature) of the flux and is not removed. In this state, since the temperature of the electrode part first reaches the melting point (activation temperature) of the flux, the oxide film on the surface of the solder on the conductive particles preferentially coming on the electrode is removed or activated. Since the electric charge on the surface of the solder in the conductive particles is neutralized by the flux, the solder can spread on the surface of the electrode. Thereby, a solder can be efficiently aggregated on an electrode.
 上記フラックスは、加熱によりカチオンを放出するフラックスであることが好ましい。加熱によりカチオンを放出するフラックスの使用により、はんだを電極上により一層効率的に配置することができる。 The flux is preferably a flux that releases cations by heating. By using a flux that releases cations upon heating, the solder can be placed more efficiently on the electrode.
 上記加熱によりカチオンを放出するフラックスとしては、熱カチオン開始剤が挙げられる。 As the flux for releasing cations by the heating, a thermal cation initiator can be mentioned.
 上記導電材料100重量%中、上記フラックスの含有量は好ましくは0.5重量%以上であり、好ましくは30重量%以下、より好ましくは25重量%以下である。フラックスの含有量が上記下限以上及び上記上限以下であると、はんだ及び電極の表面に酸化被膜がより一層形成され難くなり、さらに、はんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。 In 100% by weight of the conductive material, the content of the flux is preferably 0.5% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less. When the flux content is not less than the above lower limit and not more than the above upper limit, it becomes more difficult to form an oxide film on the surface of the solder and the electrode, and the oxide film formed on the surface of the solder and the electrode is more effective. Can be removed.
 (他の成分)
 上記導電材料は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
(Other ingredients)
The conductive material may be, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, and a lubricant as necessary. In addition, various additives such as an antistatic agent and a flame retardant may be included.
 (接続構造体及び接続構造体の製造方法)
 本発明に係る接続構造体は、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電材料であり、上記接続部が、上述した導電材料の硬化物である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
(Connection structure and method of manufacturing connection structure)
A connection structure according to the present invention includes a first connection target member having at least one first electrode on the surface, a second connection target member having at least one second electrode on the surface, and the first The connection object member and the connection part which has connected the said 2nd connection object member are provided. In the connection structure according to the present invention, the material of the connection part is the conductive material described above, and the connection part is a cured product of the conductive material described above. In the connection structure according to the present invention, the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
 上記接続構造体の製造方法は、上述した導電材料を用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、上記導電材料を配置する工程と、上記導電材料の上記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する工程と、上記導電性粒子におけるはんだの融点以上に上記導電材料を加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記導電材料により形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する工程とを備える。好ましくは、上記熱硬化性成分、熱硬化性化合物の硬化温度以上に上記導電材料を加熱する。 The method for manufacturing the connection structure includes the step of disposing the conductive material on the surface of the first connection target member having at least one first electrode on the surface, using the conductive material described above, A second connection target member having at least one second electrode on the surface opposite to the first connection target member side of the material, the first electrode and the second electrode A step of arranging the first connection target member and the second connection target member by connecting the first connection target member and the second connection target member by heating the conductive material to a temperature equal to or higher than the melting point of the solder in the conductive particles. Forming a portion with the conductive material, and electrically connecting the first electrode and the second electrode with a solder portion in the connection portion. Preferably, the conductive material is heated above the curing temperature of the thermosetting component and the thermosetting compound.
 本発明に係る接続構造体及び上記接続構造体の製造方法では、特定の導電材料を用いているので、複数の導電性粒子におけるはんだが第1の電極と第2の電極との間に集まりやすく、はんだを電極(ライン)上に効率的に配置することができる。また、はんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。 In the connection structure according to the present invention and the method for manufacturing the connection structure, since a specific conductive material is used, solder in a plurality of conductive particles easily collects between the first electrode and the second electrode. The solder can be efficiently arranged on the electrode (line). In addition, a part of the solder is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be considerably reduced. Therefore, the conduction reliability between the first electrode and the second electrode can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability.
 また、複数の導電性粒子におけるはんだを電極上に効率的に配置し、かつ電極が形成されていない領域に配置されるはんだの量をかなり少なくするためには、導電フィルムではなく、導電ペーストを用いることが好ましい。 Also, in order to efficiently arrange the solder in a plurality of conductive particles on the electrode and to considerably reduce the amount of solder arranged in the region where the electrode is not formed, a conductive paste is used instead of a conductive film. It is preferable to use it.
 電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上であり、好ましくは100%以下である。 The thickness of the solder part between the electrodes is preferably 10 μm or more, more preferably 20 μm or more, preferably 100 μm or less, more preferably 80 μm or less. The solder wetted area on the surface of the electrode (area where the solder is in contact with 100% of the exposed area of the electrode) is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, preferably Is 100% or less.
 本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料には、上記第2の接続対象部材の重量が加わることが好ましく、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、上記導電材料には、上記第2の接続対象部材の重量の力を超える加圧圧力は加わらないことが好ましい。これらの場合には、複数のはんだ部において、はんだ量の均一性をより一層高めることができる。さらに、はんだ部の厚みをより一層効果的に厚くすることができ、複数の導電性粒子におけるはんだが電極間に多く集まりやすくなり、複数の導電性粒子におけるはんだを電極(ライン)上により一層効率的に配置することができる。また、複数の導電性粒子におけるはんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置される導電性粒子におけるはんだの量をより一層少なくすることができる。従って、電極間の導通信頼性をより一層高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続をより一層防ぐことができ、絶縁信頼性をより一層高めることができる。 In the method for manufacturing a connection structure according to the present invention, in the step of arranging the second connection target member and the step of forming the connection portion, no pressure is applied, and the second connection is applied to the conductive material. The weight of the target member is preferably added, and in the step of arranging the second connection target member and the step of forming the connection portion, the conductive material exceeds the weight force of the second connection target member. It is preferable that no pressure is applied. In these cases, the uniformity of the amount of solder can be further enhanced in the plurality of solder portions. Furthermore, the thickness of the solder portion can be made even more effective, and a large amount of solder in a plurality of conductive particles tends to gather between the electrodes, and the solder in the plurality of conductive particles is more efficiently distributed on the electrode (line). Can be arranged. In addition, it is difficult for a part of the solder in the plurality of conductive particles to be disposed in the region (space) where the electrode is not formed, and the amount of solder in the conductive particle disposed in the region where the electrode is not formed is further increased. Can be reduced. Therefore, the conduction reliability between the electrodes can be further enhanced. In addition, the electrical connection between the laterally adjacent electrodes that should not be connected can be further prevented, and the insulation reliability can be further improved.
 さらに、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料に、上記第2の接続対象部材の重量が加われば、接続部が形成される前に電極が形成されていない領域(スペース)に配置されていたはんだが第1の電極と第2の電極との間により一層集まりやすくなり、複数の導電性粒子におけるはんだを電極(ライン)上により一層効率的に配置することができることも、見出した。本発明では、導電フィルムではなく、導電ペーストを用いるという構成と、加圧を行わず、上記導電ペーストには、上記第2の接続対象部材の重量が加わるようにするという構成とを組み合わせて採用することには、本発明の効果をより一層高いレベルで得るために大きな意味がある。 Furthermore, in the step of arranging the second connection target member and the step of forming the connection portion, if the weight of the second connection target member is added to the conductive material without applying pressure, the connection portion is Solder arranged in a region (space) where no electrode is formed before it is formed is more likely to gather between the first electrode and the second electrode, and solder in a plurality of conductive particles can be It has also been found that it can be arranged more efficiently on the line). In the present invention, a configuration in which a conductive paste is used instead of a conductive film and a configuration in which the weight of the second connection target member is added to the conductive paste without applying pressure are used in combination. This has a great meaning in order to obtain the effects of the present invention at a higher level.
 なお、WO2008/023452A1では、はんだ粉を電極表面に押し流して効率よく移動させる観点からは、接着時に所定の圧力で加圧するとよいことが記載されており、加圧圧力は、はんだ領域をさらに確実に形成する観点では、例えば、0MPa以上、好ましくは1MPa以上とすることが記載されており、更に、接着テープに意図的に加える圧力が0MPaであっても、接着テープ上に配置された部材の自重により、接着テープに所定の圧力が加わってもよいことが記載されている。WO2008/023452A1では、接着テープに意図的に加える圧力が0MPaであってもよいことは記載されているが、0MPaを超える圧力を付与した場合と0MPaとした場合との効果の差異については、何ら記載されていない。また、WO2008/023452A1では、フィルム状ではなく、ペースト状の導電ペーストを用いることの重要性についても何ら認識されていない。 In addition, WO2008 / 023452A1 describes that it is preferable to pressurize with a predetermined pressure at the time of bonding from the viewpoint of efficiently moving the solder powder to the electrode surface, and the pressurizing pressure further ensures the solder area. For example, it is described that the pressure is set to 0 MPa or more, preferably 1 MPa or more. Further, even if the pressure intentionally applied to the adhesive tape is 0 MPa, the member disposed on the adhesive tape It is described that a predetermined pressure may be applied to the adhesive tape by its own weight. In WO2008 / 023452A1, it is described that the pressure applied intentionally to the adhesive tape may be 0 MPa, but there is no difference between the effect when the pressure exceeding 0 MPa is applied and when the pressure is set to 0 MPa. Not listed. In addition, WO2008 / 023452A1 recognizes nothing about the importance of using a paste-like conductive paste instead of a film.
 また、導電フィルムではなく、導電ペーストを用いれば、導電ペーストの塗布量によって、接続部及びはんだ部の厚みを調整することが容易になる。一方で、導電フィルムでは、接続部の厚みを変更したり、調整したりするためには、異なる厚みの導電フィルムを用意したり、所定の厚みの導電フィルムを用意したりしなければならないという問題がある。また、導電フィルムでは、導電ペーストと比べて、はんだの溶融温度で、導電フィルムの溶融粘度を十分に下げることができず、はんだの凝集が阻害されやすい傾向がある。 Also, if a conductive paste is used instead of a conductive film, it becomes easy to adjust the thicknesses of the connection part and the solder part depending on the amount of the conductive paste applied. On the other hand, in the conductive film, in order to change or adjust the thickness of the connection portion, it is necessary to prepare a conductive film having a different thickness or to prepare a conductive film having a predetermined thickness. There is. Moreover, in the conductive film, compared with the conductive paste, the melt viscosity of the conductive film cannot be sufficiently lowered at the melting temperature of the solder, and the aggregation of the solder tends to be hindered.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention.
 図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電材料により形成されている。本実施形態では、導電材料は、導電性粒子として、はんだ粒子を含む。 The connection structure 1 shown in FIG. 1 is a connection that connects a first connection target member 2, a second connection target member 3, and the first connection target member 2 and the second connection target member 3. Part 4. The connection part 4 is formed of the conductive material described above. In the present embodiment, the conductive material includes solder particles as conductive particles.
 接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性成分が熱硬化された硬化物部4Bとを有する。 The connecting portion 4 includes a solder portion 4A in which a plurality of solder particles are gathered and joined to each other, and a cured product portion 4B in which a thermosetting component is thermally cured.
 第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだは存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだは存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだが存在していてもよい。 The first connection object member 2 has a plurality of first electrodes 2a on the surface (upper surface). The second connection target member 3 has a plurality of second electrodes 3a on the surface (lower surface). The first electrode 2a and the second electrode 3a are electrically connected by the solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A. In the connection portion 4, no solder exists in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a. In an area different from the solder part 4A (hardened product part 4B part), there is no solder separated from the solder part 4A. If the amount is small, the solder may be present in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a.
 図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電部の外表面部分がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このため、接続構造体1における導通信頼性及び接続信頼性が高くなる。 As shown in FIG. 1, in the connection structure 1, a plurality of solder particles gather between the first electrode 2 a and the second electrode 3 a, and after the plurality of solder particles melt, After the electrode surface wets and spreads, it solidifies to form the solder portion 4A. For this reason, the connection area of 4 A of solder parts and the 1st electrode 2a, and 4 A of solder parts, and the 2nd electrode 3a becomes large. That is, by using solder particles, the solder portion 4A, the first electrode 2a, and the solder as compared with the case where the outer surface portion of the conductive portion is made of conductive particles such as nickel, gold or copper are used. The contact area between the portion 4A and the second electrode 3a increases. For this reason, the conduction | electrical_connection reliability and connection reliability in the connection structure 1 become high.
 なお、導電材料は、フラックスを含んでいてもよい。フラックスを用いた場合には、加熱により、一般にフラックスは次第に失活する。 Note that the conductive material may contain a flux. When the flux is used, the flux is generally deactivated gradually by heating.
 なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図3に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだではない。なお、本実施形態では、はんだ部から離れたはんだの量を少なくすることができるが、はんだ部から離れたはんだが硬化物部中に存在していてもよい。 In addition, in the connection structure 1 shown in FIG. 1, all of the solder portions 4A are located in the facing region between the first and second electrodes 2a and 3a. The connection structure 1X of the modification shown in FIG. 3 is different from the connection structure 1 shown in FIG. 1 only in the connection portion 4X. The connection part 4X has the solder part 4XA and the hardened | cured material part 4XB. As in the connection structure 1X, most of the solder portions 4XA are located in regions where the first and second electrodes 2a and 3a are opposed to each other, and a part of the solder portion 4XA is first and second. You may protrude to the side from the area | region which electrode 2a, 3a has opposed. The solder part 4XA protruding laterally from the region where the first and second electrodes 2a and 3a are opposed is a part of the solder part 4XA and is not a solder separated from the solder part 4XA. In the present embodiment, the amount of solder away from the solder portion can be reduced, but the solder away from the solder portion may exist in the cured product portion.
 はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。 If the amount of solder particles used is reduced, the connection structure 1 can be easily obtained. If the amount of the solder particles used is increased, it becomes easy to obtain the connection structure 1X.
 導通信頼性をより一層高める観点からは、上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上(好ましくは60%以上、より好ましくは70%以上、更に好ましくは80%以上、特に好ましくは90%以上)に、上記接続部中のはんだ部が配置されていることが好ましい。 From the viewpoint of further improving the conduction reliability, the portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is seen. Sometimes, 50% or more (preferably 60% or more, more preferably 70% or more, still more preferably 80% or more) of 100% of the area where the first electrode and the second electrode face each other. It is particularly preferable that the solder portion in the connection portion is disposed at 90% or more.
 次に、本発明の一実施形態に係る導電材料を用いて、接続構造体1を製造する方法の一例を説明する。 Next, an example of a method for manufacturing the connection structure 1 using the conductive material according to the embodiment of the present invention will be described.
 先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、複数のはんだ粒子11Aとを含む導電材料11を配置する(第1の工程)。用いた導電材料11は、熱硬化性成分11Bとして、熱硬化性化合物と酸無水物熱硬化剤とを含む。 First, the first connection target member 2 having the first electrode 2a on the surface (upper surface) is prepared. Next, as shown in FIG. 2A, a conductive material 11 including a thermosetting component 11B and a plurality of solder particles 11A is disposed on the surface of the first connection target member 2 (first Process). The conductive material 11 used includes a thermosetting compound and an acid anhydride thermosetting agent as the thermosetting component 11B.
 第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電材料11を配置する。導電材料11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。 The conductive material 11 is disposed on the surface of the first connection target member 2 on which the first electrode 2a is provided. After the conductive material 11 is disposed, the solder particles 11A are disposed both on the first electrode 2a (line) and on a region (space) where the first electrode 2a is not formed.
 導電材料11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。 The arrangement method of the conductive material 11 is not particularly limited, and examples thereof include application by a dispenser, screen printing, and discharge by an inkjet device.
 また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電材料11において、導電材料11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電材料11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。 Moreover, the 2nd connection object member 3 which has the 2nd electrode 3a on the surface (lower surface) is prepared. Next, as shown in FIG. 2B, in the conductive material 11 on the surface of the first connection target member 2, on the surface opposite to the first connection target member 2 side of the conductive material 11, The 2nd connection object member 3 is arrange | positioned (2nd process). On the surface of the conductive material 11, the second connection target member 3 is disposed from the second electrode 3a side. At this time, the first electrode 2a and the second electrode 3a are opposed to each other.
 次に、はんだ粒子11Aの融点以上に導電材料11を加熱する(第3の工程)。好ましくは、熱硬化性成分11B(バインダー)の硬化温度以上に導電材料11を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。導電フィルムではなく、導電ペーストを用いた場合には、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。また、はんだ粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4を、導電材料11により形成する。導電材料11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。 Next, the conductive material 11 is heated to a temperature equal to or higher than the melting point of the solder particles 11A (third step). Preferably, the conductive material 11 is heated above the curing temperature of the thermosetting component 11B (binder). At the time of this heating, the solder particles 11A that existed in the region where no electrode is formed gather between the first electrode 2a and the second electrode 3a (self-aggregation effect). When the conductive paste is used instead of the conductive film, the solder particles 11A are effectively collected between the first electrode 2a and the second electrode 3a. Also, the solder particles 11A are melted and joined together. Further, the thermosetting component 11B is thermoset. As a result, as shown in FIG. 2C, the connection portion 4 that connects the first connection target member 2 and the second connection target member 3 is formed of the conductive material 11. The connection part 4 is formed of the conductive material 11, the solder part 4A is formed by joining a plurality of solder particles 11A, and the cured part 4B is formed by thermosetting the thermosetting component 11B.
 本実施形態では、上記第2の工程及び上記第3の工程において、加圧を行わない方が好ましい。この場合には、導電材料11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、はんだ粒子が第1の電極と第2の電極との間に集まろうとする作用が阻害される傾向が高くなる。 In this embodiment, it is preferable that no pressure is applied in the second step and the third step. In this case, the weight of the second connection target member 3 is added to the conductive material 11. For this reason, when the connection part 4 is formed, the solder particles 11A are effectively collected between the first electrode 2a and the second electrode 3a. In addition, if pressure is applied in at least one of the second step and the third step, the action of the solder particles trying to collect between the first electrode and the second electrode is hindered. The tendency to become higher.
 また、本実施形態では、加圧を行っていないため、導電材料を塗布した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材の電極とを接続させることができる(セルフアライメント効果)。これは、第1の接続対象部材の電極と第2の接続対象部材の電極との間に自己凝集した溶融したはんだが、第1の接続対象部材の電極と第2の接続対象部材の電極との間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料の導電性粒子以外の成分の粘度が十分低いことが望ましい。 Moreover, in this embodiment, since pressurization is not performed, when the second connection target member is superimposed on the first connection target member to which the conductive material is applied, the electrode of the first connection target member Even when the first connection target member and the second connection target member are overlapped in a state where the alignment with the electrode of the second connection target member is shifted, the shift is corrected and the first connection target is corrected. The electrode of the member can be connected to the electrode of the second connection target member (self-alignment effect). This is because the molten solder self-aggregated between the electrode of the first connection target member and the electrode of the second connection target member is the electrode of the first connection target member and the electrode of the second connection target member. As the area where the solder and the other components of the conductive material are in contact with each other is minimized, the energy becomes more stable. Therefore, the force that makes the connection structure with alignment, which is the connection structure with the smallest area, works. Because. At this time, it is desirable that the conductive material is not cured, and that the viscosity of components other than the conductive particles of the conductive material is sufficiently low at that temperature and time.
 このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電材料11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。 In this way, the connection structure 1 shown in FIG. 1 is obtained. The second step and the third step may be performed continuously. Moreover, after performing the said 2nd process, the laminated body of the 1st connection object member 2, the electrically-conductive material 11, and the 2nd connection object member 3 which are obtained is moved to a heating part, and the said 3rd connection object is carried out. You may perform a process. In order to perform the heating, the laminate may be disposed on a heating member, or the laminate may be disposed in a heated space.
 上記第3の工程における上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上であり、好ましくは450℃以下、より好ましくは250℃以下、更に好ましくは200℃以下である。 The heating temperature in the third step is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, preferably 450 ° C. or lower, more preferably 250 ° C. or lower, and still more preferably 200 ° C. or lower.
 上記第3の工程における加熱方法としては、はんだの融点以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。 As the heating method in the third step, a method of heating the entire connection structure using a reflow furnace or an oven above the melting point of the solder and the curing temperature of the thermosetting component, or a connection structure The method of heating only the connection part of these is mentioned.
 上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。 The first and second connection target members are not particularly limited. Specifically as said 1st, 2nd connection object member, electronic components, such as a semiconductor chip, a semiconductor package, LED chip, LED package, a capacitor | condenser, a diode, and a resin film, a printed circuit board, a flexible printed circuit board, flexible Examples include electronic components such as flat cables, rigid flexible substrates, glass epoxy substrates, and circuit boards such as glass substrates. The first and second connection target members are preferably electronic components.
 上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだが電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだを電極上に効率的に集めることで、電極間の導通信頼性を充分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップなどの他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。 It is preferable that at least one of the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. The second connection target member is preferably a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. Resin films, flexible printed boards, flexible flat cables, and rigid flexible boards have the property of being highly flexible and relatively lightweight. When a conductive film is used for connection of such a connection object member, there exists a tendency for a solder not to gather on an electrode. On the other hand, by using a conductive paste, even if a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board is used, the conductive reliability between the electrodes can be efficiently collected by collecting the solder on the electrodes. Can be sufficiently increased. When using a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board, the reliability of conduction between electrodes by not applying pressure compared to the case of using other connection target members such as a semiconductor chip. The improvement effect can be obtained more effectively.
 上記接続対象部材の形態にはペリフェラルやエリアアレイなどが存在する。各部材の特徴として、ペリフェラル基板では、電極が基板の外周部のみに存在する。エリアアレイ基板では、面内に電極が存在する。 Peripherals, area arrays, etc. exist in the form of the connection target member. As a feature of each member, in the peripheral substrate, the electrodes are present only on the outer peripheral portion of the substrate. In the area array substrate, there are electrodes in the plane.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 熱硬化性化合物1:三菱化学社製「YL980」、ビスフェノールA型エポキシ樹脂
 熱硬化性化合物2:DIC社製「HP-7200HH」、ジシクロペンタジエン型エポキシ樹脂
 熱硬化性化合物3:日産化学工業社製「TEPIC-HP」、トリアジン型エポキシ樹脂
 熱硬化剤1:環状酸無水物熱硬化剤、25℃で液状、三菱化学社製「YH306」
 熱硬化剤2:環状酸無水物熱硬化剤以外の酸無水物熱硬化剤、テトラプロペニル無水コハク酸、25℃で液状、新日本理化社製「DDSA」
 熱硬化剤3:酸無水物熱硬化剤、25℃で固形、和光純薬社製「ピリメリット酸無水物」
 熱硬化剤4:アミン硬化剤、三菱化学社製「DICY」
 フラックス1:グルタル酸
 硬化促進剤1::T&K TOKA社製「フジキュア7000」
 硬化促進剤2:日本化学工業社製「PX-4MP」有機リン硬化促進剤
 硬化促進剤3:日本化学工業社製「PX-4FB」有機リン硬化促進剤
 硬化促進剤4:日本化学工業社製「PX-4B」有機リン硬化促進剤
Thermosetting compound 1: "YL980" manufactured by Mitsubishi Chemical Corporation, bisphenol A type epoxy resin Thermosetting compound 2: "HP-7200HH" manufactured by DIC, dicyclopentadiene type epoxy resin Thermosetting compound 3: Nissan Chemical Industries “TEPIC-HP” manufactured by Triazine type epoxy resin Thermosetting agent 1: Cyclic anhydride thermosetting agent, liquid at 25 ° C., “YH306” manufactured by Mitsubishi Chemical Corporation
Thermosetting agent 2: Acid anhydride thermosetting agent other than cyclic acid anhydride thermosetting agent, tetrapropenyl succinic anhydride, liquid at 25 ° C, "DDSA" manufactured by Shin Nippon Rika Co., Ltd.
Thermosetting agent 3: acid anhydride thermosetting agent, solid at 25 ° C., “Pyrimellitic anhydride” manufactured by Wako Pure Chemical Industries, Ltd.
Thermosetting agent 4: Amine curing agent, “DICY” manufactured by Mitsubishi Chemical Corporation
Flux 1: Glutaric acid Curing accelerator 1 :: “Fujicure 7000” manufactured by T & K TOKA
Curing accelerator 2: "PX-4MP" organophosphorus curing accelerator manufactured by Nippon Chemical Industry Co., Ltd. Curing accelerator 3: "PX-4FB" organophosphorus curing accelerator manufactured by Nippon Chemical Industry Co., Ltd. Curing accelerator 4: manufactured by Nippon Chemical Industry Co., Ltd. "PX-4B" organophosphorus curing accelerator
 はんだ粒子1:
 はんだ粒子1の作製方法:
 SnBiはんだ粒子(三井金属社製「ST-5」、平均粒子径(メディアン径)5μm)と、グルタル酸(2つのカルボキシル基を有する化合物、和光純薬工業社製「グルタル酸」)とを、触媒であるp-トルエンスルホン酸を用いて、トルエン溶媒中90℃で脱水しながら8時間攪拌することにより、はんだの表面にカルボキシル基を含む基が共有結合しているはんだ粒子1を得た。
Solder particles 1:
Method for producing solder particles 1:
SnBi solder particles (“ST-5” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter (median diameter) 5 μm) and glutaric acid (a compound having two carboxyl groups, “glutaric acid” manufactured by Wako Pure Chemical Industries, Ltd.) By using a catalyst p-toluenesulfonic acid and stirring for 8 hours while dehydrating in a toluene solvent at 90 ° C., solder particles 1 in which a carboxyl group-containing group is covalently bonded to the surface of the solder were obtained.
 得られたはんだ粒子1では、CV値20%、表面を構成しているポリマーの分子量Mw=2000であった。 The obtained solder particles 1 had a CV value of 20% and a molecular weight Mw of the polymer constituting the surface of 2000.
 (実施例1~12及び比較例1~3)
 (1)異方性導電ペーストの作製
 下記の表1,2に示す成分を下記の表1,2に示す配合量で配合して、異方性導電ペーストを得た。
(Examples 1 to 12 and Comparative Examples 1 to 3)
(1) Preparation of anisotropic conductive paste The components shown in Tables 1 and 2 below were blended in the blending amounts shown in Tables 1 and 2 to obtain anisotropic conductive pastes.
 (2)接続構造体(L/S=50μm/50μm)の作製
 L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR-4基板、厚み0.6mm)(第1の接続対象部材)を用意した。また、L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(ポリイミドにより形成されている、第2の接続対象部材、厚み0.1mm)を用意した。
(2) Fabrication of connection structure (L / S = 50 μm / 50 μm) Glass epoxy substrate (FR−) with a copper electrode pattern (copper electrode thickness 12 μm) having an L / S of 50 μm / 50 μm and an electrode length of 3 mm on the upper surface 4 substrates, thickness 0.6 mm) (first connection object member) was prepared. Further, a flexible printed circuit board (a second connection target member formed of polyimide, having a thickness of 0.1 μm) having a copper electrode pattern (copper electrode thickness 12 μm) having a L / S of 50 μm / 50 μm and an electrode length of 3 mm on the lower surface. 1 mm) was prepared.
 ガラスエポキシ基板とフレキシブルプリント基板との重ね合わせ面積は、1.5cm×3mmとし、接続した電極数は75対とした。 The overlapping area of the glass epoxy substrate and the flexible printed circuit board was 1.5 cm × 3 mm, and the number of connected electrodes was 75 pairs.
 上記ガラスエポキシ基板の上面に、作製直後の異方性導電ペーストを、ガラスエポキシ基板の電極上で厚さ100μmとなるように、塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層の上面に上記フレキシブルプリント基板を、電極同士が対向するように積層した。このとき、加圧を行わなかった。異方性導電ペースト層には、上記フレキシブルプリント基板の重量は加わる。 The anisotropic conductive paste immediately after fabrication was applied on the upper surface of the glass epoxy substrate so as to have a thickness of 100 μm on the electrode of the glass epoxy substrate to form an anisotropic conductive paste layer. Next, the flexible printed circuit board was laminated on the upper surface of the anisotropic conductive paste layer so that the electrodes face each other. At this time, no pressure was applied. The weight of the flexible printed board is added to the anisotropic conductive paste layer.
 その後、異方性導電ペースト層の温度が、昇温開始から5秒後に139℃(はんだの融点)となるように加熱した。さらに、昇温開始から15秒後に、異方性導電ペースト層の温度が160℃となるように加熱し、異方性導電ペーストを硬化させ、接続構造体を得た。 Thereafter, the anisotropic conductive paste layer was heated so that the temperature became 139 ° C. (melting point of the solder) 5 seconds after the start of temperature increase. Further, 15 seconds after the start of temperature increase, the anisotropic conductive paste layer was heated to 160 ° C. to cure the anisotropic conductive paste, and a connection structure was obtained.
 (評価)
 (1)粘度
 異方性導電ペーストの50℃での粘度(η50)、及び100℃での粘度(η100)を、STRESSTECH(EOLOGICA社製)を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲40~200℃の条件で測定した。
(Evaluation)
(1) Viscosity Viscosity (η50) at 50 ° C. and viscosity (η100) at 100 ° C. of an anisotropic conductive paste using STRESSTECH (manufactured by EOLOGICA), strain control 1 rad, frequency 1 Hz, heating rate The measurement was performed under the conditions of 20 ° C./min and a measurement temperature range of 40 to 200 ° C.
 (2)熱劣化特性
 異方性導電ペーストを170℃で0.5時間熱硬化させて第1の硬化物を得た。得られた第1の硬化物を130℃及び湿度85%で100時間放置して第2の硬化物を得た。粘弾性装置を用いて、上記第1の硬化物のガラス転移温度(Tg1)と、上記第2の硬化物のガラス転移温度(Tg2)とを評価した。Tg1とTg2との差の絶対値を求めた。
(2) Thermal degradation characteristics The anisotropic conductive paste was thermally cured at 170 ° C. for 0.5 hours to obtain a first cured product. The obtained first cured product was allowed to stand at 130 ° C. and a humidity of 85% for 100 hours to obtain a second cured product. Using a viscoelastic device, the glass transition temperature (Tg1) of the first cured product and the glass transition temperature (Tg2) of the second cured product were evaluated. The absolute value of the difference between Tg1 and Tg2 was determined.
 (3)電極上のはんだの配置精度1
 得られた接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度1を下記の基準で判定した。
(3) Solder placement accuracy on electrode 1
In the obtained connection structure, when the portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is viewed, The ratio X of the area where the solder part in the connection part is arranged in the area of 100% of the part facing the second electrode was evaluated. The solder placement accuracy 1 on the electrode was determined according to the following criteria.
 [電極上のはんだの配置精度1の判定基準]
 ○○○:割合Xが80%以上
 ○○:割合Xが70%以上、80%未満
 ○:割合Xが60%以上、70%未満
 △:割合Xが50%以上、60%未満
 ×:割合Xが50%未満
[Criteria for solder placement accuracy 1 on electrode]
○○○: Ratio X is 80% or more ○○: Ratio X is 70% or more and less than 80% ○: Ratio X is 60% or more and less than 70% Δ: Ratio X is 50% or more and less than 60% ×: Ratio X is less than 50%
 (4)電極上のはんだの配置精度2
 得られた接続構造体において、第1の電極と接続部と第2の電極との積層方向と直交する方向に第1の電極と第2の電極との対向し合う部分をみたときに、接続部中のはんだ部100%中、第1の電極と第2の電極との対向し合う部分に配置されている接続部中のはんだ部の割合Yを評価した。電極上のはんだの配置精度2を下記の基準で判定した。
(4) Solder placement accuracy on electrode 2
In the obtained connection structure, when the portion where the first electrode and the second electrode face each other in the direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode is seen, The ratio Y of the solder part in the connection part arrange | positioned in the part which the 1st electrode and 2nd electrode oppose in 100% of solder parts in a part was evaluated. The solder placement accuracy 2 on the electrode was determined according to the following criteria.
 [電極上のはんだの配置精度2の判定基準]
 ○○:割合Yが99%以上
 ○:割合Yが90%以上、99%未満
 △:割合Yが70%以上、90%未満
 ×:割合Yが70%未満
[Criteria for solder placement accuracy 2 on electrode]
◯: Ratio Y is 99% or more ○: Ratio Y is 90% or more and less than 99% △: Ratio Y is 70% or more and less than 90% X: Ratio Y is less than 70%
 (5)マイグレーション
 得られた接続構造体を110℃、湿度85%で100時間放置した後、上下の電極間の絶縁抵抗をそれぞれ、4端子法により測定した。絶縁抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより絶縁抵抗を求めることができる。マイグレーションを下記の基準で判定した。
(5) Migration After the obtained connection structure was allowed to stand at 110 ° C. and a humidity of 85% for 100 hours, the insulation resistance between the upper and lower electrodes was measured by a four-terminal method. The average value of insulation resistance was calculated. In addition, from the relationship of voltage = current × resistance, the insulation resistance can be obtained by measuring the voltage when a constant current is passed. Migration was judged according to the following criteria.
 [マイグレーションの判定基準]
 ○○:放置後に、絶縁抵抗の平均値が10×1014Ω以上
 ○:放置後に、絶縁抵抗の平均値が10×1012Ω以上、10×1014Ω未満
 △:放置後に、絶縁抵抗の平均値が10×1010Ω以上、10×1012Ω未満
 ×:放置後に、絶縁抵抗の平均値が10×1010未満であり、導通とみなされる
[Migration criteria for migration]
○○: After standing, the insulating average value of the resistance is 10 × 10 14 Ω or more ○: After standing in the insulation the average value of resistance of 10 × 10 12 Ω or more and less than 10 × 10 14 Ω △: after standing, the insulation resistance Average value is 10 × 10 10 Ω or more and less than 10 × 10 12 Ω ×: After standing, the average value of the insulation resistance is less than 10 × 10 10 and is regarded as conduction.
 結果を下記の表1,2に示す。 The results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 なお、上記(3)の評価項目について、実施例10,11の配置精度1の割合Xは、実施例9の配置精度1の割合Xよりも高かった。上記(3)の評価項目について、実施例12の配置精度1の割合Xは、実施例1~5の配置精度1の割合Xよりも高かった。上記(5)の評価項目について、実施例9~11の放置後の絶縁抵抗の平均値は、実施例12の絶縁抵抗の平均値よりも高かった。 For the evaluation item (3) above, the ratio X of the placement accuracy 1 of Examples 10 and 11 was higher than the ratio X of the placement accuracy 1 of Example 9. Regarding the evaluation item (3), the ratio X of the placement accuracy 1 in Example 12 was higher than the ratio X of the placement accuracy 1 in Examples 1 to 5. Regarding the evaluation item (5) above, the average value of the insulation resistance after leaving Examples 9 to 11 was higher than the average value of the insulation resistance of Example 12.
 フレキシブルプリント基板にかえて、樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。 The same tendency was observed when using a resin film, a flexible flat cable, and a rigid flexible board instead of the flexible printed board.
 1,1X…接続構造体
 2…第1の接続対象部材
 2a…第1の電極
 3…第2の接続対象部材
 3a…第2の電極
 4,4X…接続部
 4A,4XA…はんだ部
 4B,4XB…硬化物部
 11…導電材料
 11A…はんだ粒子(導電性粒子)
 11B…熱硬化性成分
 21…導電性粒子(はんだ粒子)
 31…導電性粒子
 32…基材粒子
 33…導電部(はんだを有する導電部)
 33A…第2の導電部
 33B…はんだ部
 41…導電性粒子
 42…はんだ部
DESCRIPTION OF SYMBOLS 1,1X ... Connection structure 2 ... 1st connection object member 2a ... 1st electrode 3 ... 2nd connection object member 3a ... 2nd electrode 4, 4X ... Connection part 4A, 4XA ... Solder part 4B, 4XB ... Cured part 11 ... Conductive material 11A ... Solder particles (conductive particles)
11B ... thermosetting component 21 ... conductive particles (solder particles)
31 ... Conductive particles 32 ... Base particle 33 ... Conductive part (conductive part having solder)
33A ... second conductive part 33B ... solder part 41 ... conductive particles 42 ... solder part

Claims (15)

  1.  導電部の外表面部分に、はんだを有する複数の導電性粒子と、
     熱硬化性化合物と、
     酸無水物熱硬化剤とを含み、
     50℃での粘度が10Pa・s以上、200Pa・s以下である、導電材料。
    A plurality of conductive particles having solder on the outer surface portion of the conductive portion,
    A thermosetting compound;
    An acid anhydride thermosetting agent,
    A conductive material having a viscosity at 50 ° C. of 10 Pa · s or more and 200 Pa · s or less.
  2.  導電材料100重量%中、前記導電性粒子の含有量が1重量%以上、80重量%以下であり、
     異方性導電材料である、請求項1に記載の導電材料。
    In 100% by weight of the conductive material, the content of the conductive particles is 1% by weight or more and 80% by weight or less,
    The conductive material according to claim 1, which is an anisotropic conductive material.
  3.  50℃での粘度の100℃での粘度に対する比が10以上、400以下である、請求項1又は2に記載の導電材料。 The conductive material according to claim 1 or 2, wherein the ratio of the viscosity at 50 ° C to the viscosity at 100 ° C is 10 or more and 400 or less.
  4.  前記導電性粒子は、はんだ粒子である、請求項1~3のいずれか1項に記載の導電材料。 4. The conductive material according to claim 1, wherein the conductive particles are solder particles.
  5.  有機リン化合物を含む、請求項1~4のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 4, comprising an organic phosphorus compound.
  6.  前記酸無水物熱硬化剤が、25℃で液状である、請求項1~5のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 5, wherein the acid anhydride thermosetting agent is liquid at 25 ° C.
  7.  前記酸無水物熱硬化剤は、環状酸無水物熱硬化剤である、請求項1~6のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 6, wherein the acid anhydride thermosetting agent is a cyclic acid anhydride thermosetting agent.
  8.  170℃で0.5時間熱硬化させて第1の硬化物を得たときに、かつ、得られた第1の硬化物を130℃及び湿度85%で100時間放置して第2の硬化物を得たときに、
     前記第1の硬化物のガラス転移温度と、前記第2の硬化物のガラス転移温度との差の絶対値が20℃以下である、請求項1~7のいずれか1項に記載の導電材料。
    When the first cured product was obtained by heat curing at 170 ° C. for 0.5 hours, and the obtained first cured product was allowed to stand at 130 ° C. and 85% humidity for 100 hours to obtain the second cured product. When you get
    The conductive material according to any one of claims 1 to 7, wherein an absolute value of a difference between a glass transition temperature of the first cured product and a glass transition temperature of the second cured product is 20 ° C or less. .
  9.  前記熱硬化性化合物が、窒素原子を有する熱硬化性化合物を含む、請求項1~8のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 8, wherein the thermosetting compound contains a thermosetting compound having a nitrogen atom.
  10.  前記熱硬化性化合物が、トリアジン骨格を有する熱硬化性化合物を含む、請求項9に記載の導電材料。 The conductive material according to claim 9, wherein the thermosetting compound includes a thermosetting compound having a triazine skeleton.
  11.  前記熱硬化性化合物の全体100重量部に対して、前記酸無水物熱硬化剤の含有量が30重量部以上、80重量部以下である、請求項1~10のいずれか1項に記載の導電材料。 The content of the acid anhydride thermosetting agent is 30 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight as a whole of the thermosetting compound. Conductive material.
  12.  前記導電性粒子の外表面に、カルボキシル基が存在する、請求項1~11のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 11, wherein a carboxyl group is present on the outer surface of the conductive particles.
  13.  25℃で液状であり、導電ペーストである、請求項1~12のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 12, which is liquid at 25 ° C and is a conductive paste.
  14.  少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、
     少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部が、請求項1~13のいずれか1項に記載の導電材料の硬化物であり、
     前記第1の電極と前記第2の電極とが前記接続部中のはんだ部により電気的に接続されている、接続構造体。
    A first connection target member having at least one first electrode on its surface;
    A second connection target member having at least one second electrode on its surface;
    A connection portion connecting the first connection target member and the second connection target member;
    The connection part is a cured product of the conductive material according to any one of claims 1 to 13,
    A connection structure in which the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
  15.  前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている、請求項14に記載の接続構造体。 When the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode, the first electrode and the second electrode The connection structure according to claim 14, wherein a solder portion in the connection portion is disposed in 50% or more of an area of 100% of a portion facing the two electrodes.
PCT/JP2016/074532 2015-08-24 2016-08-23 Electroconductive material and connection structure WO2017033935A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680033297.9A CN107636774B (en) 2015-08-24 2016-08-23 Conductive material and connection structure
KR1020177023800A KR102605942B1 (en) 2015-08-24 2016-08-23 Conductive materials and connection structures
JP2016555375A JP6798887B2 (en) 2015-08-24 2016-08-23 Conductive materials and connecting structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015165214 2015-08-24
JP2015-165214 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017033935A1 true WO2017033935A1 (en) 2017-03-02

Family

ID=58100133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074532 WO2017033935A1 (en) 2015-08-24 2016-08-23 Electroconductive material and connection structure

Country Status (5)

Country Link
JP (1) JP6798887B2 (en)
KR (1) KR102605942B1 (en)
CN (1) CN107636774B (en)
TW (1) TWI686820B (en)
WO (1) WO2017033935A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045541A (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Conducive material and connection structure
WO2018066368A1 (en) * 2016-10-06 2018-04-12 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure
JP2018195525A (en) * 2017-05-22 2018-12-06 積水化学工業株式会社 Conductive material, connection structure, and manufacturing method of connection structure
US11028262B2 (en) 2018-03-13 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Resin composition, anisotropic conductive film including the same, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142271A (en) * 2010-12-14 2012-07-26 Sekisui Chem Co Ltd Anisotropic conductive material and connection structure
JP2013149610A (en) * 2011-12-20 2013-08-01 Sekisui Chem Co Ltd Electronic component connection material and connection structure
WO2013125517A1 (en) * 2012-02-21 2013-08-29 積水化学工業株式会社 Conductive particles, method for producing conductive particles, conductive material and connection structure
JP2015098588A (en) * 2013-10-17 2015-05-28 デクセリアルズ株式会社 Anisotropic conductive adhesive and connection structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769688B2 (en) 2003-02-05 2006-04-26 独立行政法人科学技術振興機構 Terminal connection method and semiconductor device mounting method
KR20090045195A (en) 2006-08-25 2009-05-07 스미토모 베이클리트 컴퍼니 리미티드 Adhesive tape, joint structure, and semiconductor package
JP5602743B2 (en) * 2009-08-26 2014-10-08 積水化学工業株式会社 Anisotropic conductive material, connection structure, and manufacturing method of connection structure
JP6313669B2 (en) * 2013-06-20 2018-04-18 積水化学工業株式会社 Conductive material and connection structure
CN105189655B (en) * 2013-09-05 2017-03-08 积水化学工业株式会社 Solidification compound and connection structural bodies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142271A (en) * 2010-12-14 2012-07-26 Sekisui Chem Co Ltd Anisotropic conductive material and connection structure
JP2013149610A (en) * 2011-12-20 2013-08-01 Sekisui Chem Co Ltd Electronic component connection material and connection structure
WO2013125517A1 (en) * 2012-02-21 2013-08-29 積水化学工業株式会社 Conductive particles, method for producing conductive particles, conductive material and connection structure
JP2015098588A (en) * 2013-10-17 2015-05-28 デクセリアルズ株式会社 Anisotropic conductive adhesive and connection structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045541A (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Conducive material and connection structure
WO2018066368A1 (en) * 2016-10-06 2018-04-12 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure
US11101052B2 (en) 2016-10-06 2021-08-24 Sekisui Chemical Co., Ltd. Conductive material, connection structure and method for producing connection structure
JP2018195525A (en) * 2017-05-22 2018-12-06 積水化学工業株式会社 Conductive material, connection structure, and manufacturing method of connection structure
US11028262B2 (en) 2018-03-13 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Resin composition, anisotropic conductive film including the same, and electronic device

Also Published As

Publication number Publication date
JPWO2017033935A1 (en) 2018-06-07
CN107636774A (en) 2018-01-26
KR102605942B1 (en) 2023-11-27
CN107636774B (en) 2020-11-06
TWI686820B (en) 2020-03-01
KR20180043193A (en) 2018-04-27
TW201721664A (en) 2017-06-16
JP6798887B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP6630284B2 (en) Conductive material and connection structure
JP7425824B2 (en) Conductive material, connected structure, and method for manufacturing connected structure
WO2017033935A1 (en) Electroconductive material and connection structure
WO2017179532A1 (en) Conductive material and connected structure
WO2017033932A1 (en) Electroconductive material and connection structure
JP6734141B2 (en) Conductive material and connection structure
JP6581434B2 (en) Conductive material and connection structure
JP6523105B2 (en) Conductive material, connection structure and method of manufacturing connection structure
JP2017195180A (en) Conductive material and connection structure
JP2017224602A (en) Conductive material, connection structure and method for producing connection structure
JP2018006084A (en) Conductive material, connection structure and method for producing connection structure
WO2017130892A1 (en) Conductive material and connection structure
JP6067191B1 (en) Conductive material and connection structure
WO2017033931A1 (en) Conductive material and connection structure
WO2017033933A1 (en) Electroconductive material and connection structure
JP2018060786A (en) Conductive material and connection structure
JP6294973B2 (en) Conductive material and connection structure
JP2017191685A (en) Conductive material and connection structure
JP2018006085A (en) Conductive material, connection structure, and method for producing connection structure
JP2017045542A (en) Conducive material and connection structure
JP2017045606A (en) Conducive material, connection structure and manufacturing method of connection structure
JP2018046003A (en) Conductive material and connection structure
JP2017045543A (en) Conducive material and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016555375

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177023800

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839282

Country of ref document: EP

Kind code of ref document: A1