[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017033986A1 - Rubber composition, molded rubber article, and method for producing same - Google Patents

Rubber composition, molded rubber article, and method for producing same Download PDF

Info

Publication number
WO2017033986A1
WO2017033986A1 PCT/JP2016/074717 JP2016074717W WO2017033986A1 WO 2017033986 A1 WO2017033986 A1 WO 2017033986A1 JP 2016074717 W JP2016074717 W JP 2016074717W WO 2017033986 A1 WO2017033986 A1 WO 2017033986A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
molded product
rubber molded
parts
carbon black
Prior art date
Application number
PCT/JP2016/074717
Other languages
French (fr)
Japanese (ja)
Inventor
忠志 笠本
和志 坂手
卓志 平山
隆司 小村
Original Assignee
内山工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内山工業株式会社 filed Critical 内山工業株式会社
Priority to JP2017536470A priority Critical patent/JP6745534B2/en
Publication of WO2017033986A1 publication Critical patent/WO2017033986A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3232Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip having two or more lips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3284Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds

Definitions

  • the present invention relates to a rubber composition and a rubber molded product.
  • the present invention also relates to a method for producing the rubber molded product.
  • An automobile axle is supported by a rolling bearing, and this bearing is equipped with a part called a seal to prevent leakage of grease and intrusion of muddy water.
  • the seal is a ring-shaped metal core whose surface is covered with rubber.
  • a conductive rubber composition is used for the seal as a measure against radio noise. Examples of the conductive rubber composition used for sealing include nitrile rubber compositions described in Patent Documents 1 to 3.
  • Patent Document 1 contains 5 to 50 parts by weight of carbon black, 5 to 60 parts by weight of graphite having an average particle diameter of 5 ⁇ m or less, and 5 to 50 parts by weight of conductive carbon other than these with respect to 100 parts by weight of nitrile rubber.
  • a nitrile rubber composition in which the total amount of carbon black, graphite and other conductive carbon is 10 to 100 parts by weight with respect to 100 parts by weight of nitrile rubber is described.
  • the oil seal using the rubber composition of patent document 1 is supposed to satisfy muddy water resistance, sealing performance, and low torque property.
  • Patent Document 2 discloses that 5 to 50 parts by weight of carbon black, 5 to 60 parts by weight of graphite having an average particle diameter of 5 ⁇ m or less, 5 to 50 parts by weight of other conductive carbon, based on 100 parts by weight of nitrile rubber, 1 to 5 parts by weight of alkylated diphenylamine consisting of the reaction product of diphenylamine with styrene and 2,4,4-trimethylpentene as an anti-aging agent, and N, N′-di-2-naphthyl-p-phenylenediamine or A nitrile rubber composition comprising 0.5 to 2.5 parts by weight of dilauryl thiodipropionate is described.
  • Patent Document 3 discloses that 5 to 50 parts by weight of carbon black, 5 to 60 parts by weight of graphite having an average particle diameter of 5 ⁇ m or less, 5 to 50 parts by weight of other conductive carbon, and 100 parts by weight of nitrile rubber; A nitrile rubber composition containing 0.5 to 3.5 parts by weight of 2,5-ditertiarybutylhydroquinone or 2,5-ditertiary amylhydroquinone as an antioxidant is described.
  • the bearing Since the bearing is mounted outside the vehicle, it is exposed to muddy water and rainwater.
  • sodium chloride and calcium chloride are sprayed on the road as antifreezing agents and snow melting agents. Therefore, muddy water and rainwater containing sodium chloride and calcium chloride may adhere to the seal, which causes electrolysis to generate alkali, causing the problem that the conductive rubber swells and deforms, and the core metal corrodes. .
  • Patent Document 1 no consideration has been given to preventing the deformation of the conductive rubber and the corrosion of the core metal. Moreover, in patent documents 2 and 3, although the volume change rate of the rubber
  • JP 2012-97213 A International Publication No. 2015/5080 International Publication No. 2015/5081
  • the above-mentioned problems include 100 parts by mass of nitrile rubber (A), 1 to 30 parts by mass of conductive carbon black (B) having a DBP oil absorption of 150 mL / 100 g or more and 1000 mL / 100 g or less, and 5 to 60 silylated clay (C). This is solved by providing a rubber composition containing parts by weight.
  • the rubber composition further contains 2 to 50 parts by mass of carbon black (D) having a DBP oil absorption of 30 mL / 100 g or more and less than 150 mL / 100 g.
  • D carbon black
  • silylated clay (C) is silylated with alkoxysilane. It is also preferred that the alkoxysilane is a silane coupling agent.
  • the above problem can also be solved by providing a rubber molded product obtained by vulcanizing the rubber composition.
  • the volume resistance value is preferably 1 ⁇ 10 5 ⁇ ⁇ cm or less. It is also preferable that the water contact angle on the surface of the rubber molded product 40 minutes after the dropping of the water droplet is 40 ° or more.
  • the above object is a method for producing the rubber molded article, in which the nitrile rubber (A), the conductive carbon black (B), the silylated clay (C) and the vulcanizing agent (E) are kneaded and the rubber composition
  • This can also be solved by providing a method for producing a rubber molded article comprising a kneading step for obtaining a product and a vulcanization step for vulcanizing the rubber composition.
  • the said subject is a manufacturing method of the said rubber molded product, Comprising: Nitrile rubber (A), electroconductive carbon black (B), unsilylated clay (F), alkoxysilane (G), and vulcanizing agent
  • Nitrile rubber A
  • electroconductive carbon black B
  • unsilylated clay F
  • alkoxysilane G
  • vulcanizing agent The problem can also be solved by providing a method for producing a rubber molded article comprising a kneading step of kneading (E) to obtain a rubber composition and a vulcanization step of vulcanizing the rubber composition.
  • a sealing member composed of the rubber molded product and the cored bar is a preferred embodiment of the present invention.
  • the sealing device is mounted between the two members, the inner member of which is rotatably supported with respect to the outer member, the first member including a slinger that is integrally attached to the inner member, and the outer member A metal core integrally attached to the member and a second member provided with the rubber molded product fixed to the metal core, and the rubber molded product has a lip portion that elastically contacts or approaches the slinger,
  • the first member and the second member form a labyrinth structure portion (R1) facing in parallel with the rotation axis direction, and the rubber molded product faces the first member and the labyrinth structure portion (
  • a sealing device characterized by forming R1) is also a preferred embodiment of the present invention.
  • the first member and the second member further form a labyrinth structure portion (R2) that is perpendicular to the rotation axis direction, and the rubber molded product is opposed to the first member.
  • the labyrinth structure (R2) is preferably formed.
  • the first member has a magnetic rubber molded product fixed to the slinger, and the magnetic rubber molded product forms the labyrinth structure portion (R1) facing the rubber molded product. .
  • the present invention it is possible to provide a rubber molded article excellent in conductivity and weather resistance and a method for producing the same. Moreover, the rubber composition for obtaining such a rubber molded product can be provided.
  • FIG. 1 It is a figure (sectional view) which shows a part of example of the bearing using the sealing member of this invention. It is a figure (sectional view) which shows a part of seal member of Example 1.
  • FIG. It is a figure which shows the sealing device of Example 5.
  • FIG. It is a figure which shows the sealing device of Example 6.
  • the rubber composition of the present invention contains nitrile rubber (A), conductive carbon black (B) having a DBP oil absorption of 150 mL / 100 g or more and 1000 mL / 100 g or less, and silylated clay (C).
  • the rubber molded product of the present invention is obtained by vulcanizing the rubber composition.
  • silylated clay (C) it is important to use silylated clay (C).
  • the inventors of the present invention obtained a specific amount of silylated clay (C) in a rubber composition containing nitrile rubber (A) and conductive carbon black (B). It was found that a rubber molded article having excellent conductivity and weather resistance can be obtained by vulcanizing the rubber composition.
  • the rubber composition of the present invention will be described.
  • Nirile rubber (A) The nitrile rubber (A) used in the present invention is not particularly limited, and a copolymer of acrylonitrile and 1,3-butadiene can be used. Hydrogenation to the double bond remaining in the 1,3-butadiene unit after polymerization is optional.
  • Non-hydrogenated nitrile rubber hereinafter sometimes abbreviated as NBR
  • HNBR hydrogenated nitrile rubber
  • the content of acrylonitrile units in the nitrile rubber (A) is preferably 15 to 50% by mass.
  • the content of 1,3-butadiene units occupies the whole or most of the remainder including those hydrogenated.
  • the nitrile rubber (A) used in the present invention may contain structural units derived from other copolymerizable monomers as long as the effects of the present invention are not impaired. For example, it may contain a functional group such as a carboxyl group or a carboxylic anhydride group.
  • the conductive carbon black (B) used in the present invention is blended to impart conductivity to a rubber molded product, and by using this, a rubber molded product having a low volume resistance value is obtained. Can do. By using a rubber molded product containing conductive carbon black (B) for the seal of the bearing, radio noise can be effectively suppressed.
  • the DBP oil absorption of the conductive carbon black (B) is 150 mL / 100 g or more.
  • the DBP oil absorption indicates the amount (mL) of dibutyl phthalate (DBP) that can be absorbed by 100 g of carbon black (in accordance with JIS K6217-4). This value increases as the aggregate and agglomerate structures develop. And carbon black excellent in electroconductivity has a large DBP oil absorption.
  • DBP dibutyl phthalate
  • a rubber molded product having a low volume resistance value can be obtained by using conductive carbon black (B) having a DBP oil absorption of 150 mL / 100 g or more.
  • the DBP oil absorption of carbon black (B) is preferably 200 mL / 100 g or more, and more preferably 300 mL / 100 g or more.
  • the DBP oil absorption of carbon black (B) is usually 1000 mL / 100 g or less. When the DBP oil absorption exceeds 1000 mL / 100 g, the fluidity of the rubber composition may be deteriorated.
  • the DBP oil absorption is preferably 800 mL / 100 g or less, and more preferably 600 mL / 100 g or less.
  • the average primary particle size of the carbon black (B) is preferably small, and preferably 10 to 50 nm.
  • the blending amount of carbon black (B) is 1 to 30 parts by mass with respect to 100 parts by mass of nitrile rubber (A). When the blending amount of carbon black (B) is less than 1 part by mass, the resulting molded article has insufficient conductivity.
  • the compounding amount of carbon black (B) is preferably 2 parts by mass or more, and more preferably 4 parts by mass or more. On the other hand, when the compounding amount of carbon black (B) exceeds 30 parts by mass, the moldability deteriorates.
  • the blending amount of carbon black (B) is preferably 20 parts by mass or less.
  • the type of carbon black (B) used in the present invention is not particularly limited as long as the DBP oil absorption amount is in the above range, and the volume resistance value of the obtained molded product is a certain value or less.
  • Specific examples include Ketjen Black, Acetylene Black, “Vulcan® XC-72” manufactured by Cabot, “Conductex® 7055® Ultra” manufactured by Colombian International, and “Printex® XE2® B” manufactured by Evonik Degussa.
  • ketjen black is preferable because it can provide conductivity without deteriorating fluidity.
  • Ketjen Black is a conductive carbon black marketed by Lion Corporation. The structure of aggregates and agglomerates is highly developed, and the primary particles have a hollow structure. Can be granted.
  • the clay (C) used in the present invention is a clay having a silylated surface.
  • Clay is a powder composed of fine mineral particles mainly composed of hydrous aluminum silicate.
  • the type of the clay is not particularly limited as long as the surface can be silylated, and examples thereof include kaolin, wax, sericite, talc, and montmorillonite.
  • the clay used in the present invention may be a wet clay, a dry clay, or a fired clay obtained by firing these. Further, clays are generally classified into hard clays and soft clays depending on the hardness of the kneaded dough when blended with rubber, and any of them may be used. These clays can be appropriately used depending on the required performance of the rubber molded product to be obtained.
  • the surface of the clay (C) is silylated with alkoxysilane.
  • the clay (C) having a silylated surface by reacting the hydroxyl group on the clay surface with the alkoxy group of the alkoxysilane can be obtained.
  • the alkoxysilane is a silane coupling agent from the viewpoint of miscibility with the nitrile rubber (A).
  • a silane coupling agent is an alkoxysilane to which an organic group having a reactive functional group is bonded.
  • the reactive functional group include vinyl group, epoxy group, styryl group, methacryl group, acrylic group, amino group, isocyanurate group, ureido group, mercapto group, sulfide group, and isocyanate group.
  • a clay silylated with a coupling agent having a mercapto group it is preferable to use a clay silylated with a coupling agent having a mercapto group, and from the viewpoint of water resistance, a clay silylated with a coupling agent having an amino group should be used. Is preferred.
  • the blending amount of clay (C) is 5 to 60 parts by mass with respect to 100 parts by mass of nitrile rubber (A). When the amount of clay (C) is less than 5 parts by mass, the effect of adding clay (C) becomes insufficient.
  • the blending amount of clay (C) is preferably 10 parts by mass or more. On the other hand, if the blending amount of clay (C) exceeds 60 parts by mass, moldability deteriorates.
  • the blending amount of clay (C) is preferably 50 parts by mass or less.
  • the average particle size of the clay (C) is preferably 0.2 to 8.0 ⁇ m.
  • the rubber composition further contains 5 to 50 parts by mass of carbon black (D) having a DBP oil absorption of 30 mL / 100 g or more and less than 150 mL / 100 g. It is preferable.
  • carbon black (D) will be described.
  • the carbon black (D) used in the present invention preferably has a DBP oil absorption of 30 mL / 100 g or more and less than 150 mL / 100 g.
  • This carbon black (D) is one in which the structure of aggregates and agglomerates is not developed as much as the conductive carbon black (B), and most of the carbon black compounded in general rubber compositions is included in this carbon black (D). .
  • the DBP oil absorption of carbon black (D) is more preferably 130 mL / 100 g or less.
  • the DBP oil absorption of carbon black (D) is more preferably 50 mL / 100 g or more.
  • the type of carbon black (D) used in the present invention is not particularly limited as long as the DBP oil absorption is in the above range. Specifically, FEF, SRF, SAF, ISAF, HAF, MAF, GPF, FT, MT and the like can be used, and FEF and SRF are preferable from the viewpoint of balance between performance and cost. Two or more types of carbon black (D) may be used in combination.
  • the compounding amount of carbon black (D) is preferably 2 to 50 parts by mass with respect to 100 parts by mass of nitrile rubber (A). When the blending amount of carbon black (D) is less than 2 parts by mass, the hardness may be insufficient.
  • the amount of carbon black (D) is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more. On the other hand, if the blending amount of carbon black (D) exceeds 50 parts by mass, moldability may be deteriorated.
  • the compounding amount of carbon black (D) is preferably 40 parts by mass or less.
  • the average primary particle diameter of carbon black (D) is usually 10 to 200 nm.
  • the rubber composition may contain other components than the nitrile rubber (A), the conductive carbon black (B), and the clay (C) having a silylated surface as long as the effects of the present invention are not inhibited. It doesn't matter.
  • a vulcanizing agent in addition to the above-described carbon black (D), a vulcanizing agent, a vulcanization aid, a vulcanization accelerator, a vulcanization retarder, an adhesive, an acid acceptor, a colorant, a filler, a plasticizer
  • various additives such as processing aids and anti-aging agents.
  • the method for producing the rubber molded product of the present invention is not particularly limited, but preferred methods include the following method (1) and method (2). First, the method (1) will be described.
  • Method (1) includes a kneading step of kneading nitrile rubber (A), conductive carbon black (B), silylated clay (C) and vulcanizing agent (E) to obtain a rubber composition, and the rubber And a vulcanization step of vulcanizing the composition.
  • nitrile rubber (A), conductive carbon black (B), and clay (C) having a silylated surface the above-described ones can be used, and the blending amount thereof can also be the above-mentioned amount.
  • a material other than nitrile rubber (A), conductive carbon black (B), and clay (C) having a silylated surface is added. be able to.
  • Carbon black (D) can use what was mentioned above, and can also make it the amount mentioned above.
  • the method of mixing the above components in the kneading step is not particularly limited, and kneading can be performed using an open roll, a kneader, a Banbury mixer, an intermixer, an extruder, or the like. Especially, it is preferable to knead
  • the temperature during kneading is preferably 20 to 120 ° C.
  • the rubber composition obtained in the present invention is obtained by molding the rubber composition thus obtained and vulcanizing it in the next vulcanization step.
  • Examples of the molding method of the rubber composition include injection molding, extrusion molding, compression molding, roll molding and the like. Of these, injection molding and compression molding are preferred. At this time, it may be vulcanized after being previously molded, or may be vulcanized simultaneously with the molding. Further, it may be vulcanized at the same time as molding and then further secondary vulcanized.
  • the vulcanization temperature is usually preferably 150 to 200 ° C.
  • the vulcanization time is usually 5 to 60 minutes.
  • a heating method for vulcanization general methods used for rubber vulcanization such as compression heating, steam heating, oven heating, hot air heating and the like are used.
  • the method of vulcanization is not particularly limited, and examples thereof include sulfur vulcanization, peroxide vulcanization, and amine vulcanization.
  • a vulcanizing agent for sulfur vulcanization sulfur or a sulfur-containing compound is used.
  • An organic peroxide is used as a vulcanizing agent for vulcanizing the peroxide.
  • the amount of the vulcanizing agent (E) used at this time is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the nitrile rubber (A).
  • Method (2) is a method in which a nitrile rubber (A), conductive carbon black (B), non-silylated clay (F), alkoxysilane (G), and a vulcanizing agent (E) are kneaded to obtain a rubber composition. A kneading step to be obtained and a vulcanizing step for vulcanizing the rubber composition.
  • the difference from the method (1) is that the clay (C) having a silylated surface is not added and kneaded, but the non-silylated clay (F) and the alkoxysilane (G) are mixed.
  • the surface of the clay (F) is silylated in the kneading step.
  • the hydroxyl group on the surface of the clay (F) reacts with the alkoxy group of the alkoxysilane (G) to obtain a clay having a silylated surface.
  • alkoxysilane (G) is a silane coupling agent.
  • the silane coupling agent those described above can be used.
  • the clay (F) used at this time is not specifically limited, The various clay demonstrated as a raw material of the silylated clay (C) can be used.
  • the amount of alkoxysilane (G) is not particularly limited as long as it can silylate the surface of clay (F). However, if the amount of alkoxysilane (G) is too large, the fluidity of the rubber composition is lowered, and the rubber properties such as tensile strength and elongation may be deteriorated. From this viewpoint, the amount of alkoxysilane (G) is preferably 50 parts by mass or less and more preferably 30 parts by mass or less with respect to 100 parts by mass of clay (F). On the other hand, if the amount of alkoxysilane (F) is too small, the surface of clay (F) may not be silylated.
  • the amount of the alkoxysilane (G) is preferably 0.5 parts by mass or more and more preferably 2 parts by mass or more with respect to 100 parts by mass of the clay (F).
  • the amount of clay (F) can be the same as the amount of clay (C) described above.
  • Carbon black (D) can use what was mentioned above, and can also make it the amount mentioned above.
  • the rubber composition obtained in the present invention is obtained by molding the rubber composition thus obtained and vulcanizing it in the next vulcanization step.
  • the vulcanization step is the same as the step described in method (1).
  • the method (1) is preferable when the performance of the obtained rubber molded product is emphasized, and the method (2) is preferable when the production cost is important. .
  • the volume resistance value of the rubber molded product thus obtained is preferably 1 ⁇ 10 5 ⁇ ⁇ cm or less. If the volume resistance value exceeds 1 ⁇ 10 5 ⁇ ⁇ cm, radio noise may not be effectively suppressed when a rubber molded product is used for the seal.
  • the volume resistance value is more preferably 1 ⁇ 10 4 ⁇ ⁇ cm or less.
  • the volume resistance value is usually 10 ⁇ ⁇ cm or more.
  • the volume resistance value is a value obtained by measurement by the Wheatstone bridge method according to JIS C2139.
  • the water contact angle on the surface of the rubber molded product 40 minutes after the dropping of the water droplet is 40 ° or more. Since the water contact angle is large, it becomes difficult to wet the alkaline aqueous solution generated by electrolysis, so that the rubber molded product can be prevented from swelling and deforming, and the weather resistance is improved.
  • the water contact angle is more preferably 50 ° or more.
  • a preferred embodiment of the present invention is a part in which the rubber molded product of the present invention and a metal member are bonded, and a more preferred embodiment is a seal member comprising the rubber molded product of the present invention and a cored bar. is there. Since the rubber molded article of the present invention has conductivity, there is a possibility that a battery is formed between the rubber molded article and the metal core, and the aqueous solution in contact therewith is electrolyzed to produce an alkaline aqueous solution.
  • the rubber molded article of the present invention is particularly effective in a mode of contacting with a metal because the rubber molded article can be prevented from swelling or deforming by such an alkaline aqueous solution.
  • FIG. 1 is a view (sectional view) showing a part of an example of a bearing 1 using a seal member 2A of the present invention.
  • the bearing 1 shown in FIG. 1 includes a seal member 2A.
  • the sealing member 2A includes a cored bar 3A and a rubber molded product 4A bonded to the cored bar 3A.
  • the rubber molded product 4A has lip portions 5a to 5c.
  • muddy water or the like tends to accumulate between the rubber molded product 4 ⁇ / b> A and the outer ring 6 (location indicated by 7).
  • muddy water or the like may accumulate between the rubber molded product 4A and the hub wheel 8 (location indicated by 9).
  • a particularly suitable application of the present invention is a seal for a rolling bearing. Since the bearing is mounted outside the vehicle, it is exposed to muddy water and rainwater. In addition, sodium chloride as an antifreeze agent and calcium chloride as a snow melting agent are sprayed on the road. Therefore, muddy water or rainwater containing sodium chloride or calcium chloride may adhere to the seal, which causes a problem that the conductive rubber swells and deforms, and the core metal corrodes. Therefore, the rubber molded product of the present invention, which can suppress this problem and has excellent weather resistance, is particularly preferably used.
  • the method for producing the seal member is not particularly limited, and examples thereof include a method in which a metal mold and a rubber composition in the present invention are filled and pressed. Thereby, the sealing member by which the rubber molded product was coat
  • the metal core used at this time may be a metal plate made of iron, aluminum, or the like, or an alloy plate thereof. These core bars may be subjected to surface treatment such as plating. For example, SECC indicated by JIS G3313, SUS301 indicated by JIS G4305, SPCC indicated by JIS G3141 and the like can be mentioned. From the viewpoint of improving the adhesion between the rubber molded product and the cored bar, the cored bar may have an adhesive applied to the surface thereof. Examples of the adhesive include a phenol-based adhesive, an epoxy-based adhesive, and a silane coupling agent.
  • the shape of the metal core is not particularly limited, but is usually a ring shape. Further, the thickness of the core metal and the thickness of the rubber molded product are not particularly limited, and can be appropriately set according to the size of the rolling bearing.
  • the sealing device (11) shown in FIG. 3 is an example of a sealing device (11) used for a bearing of a wheel support portion of an automobile or the like.
  • the sealing device (11) is mounted between the two members on which the inner member (82) is rotatably supported with respect to the outer member (81).
  • the sealing device (11) includes a first member (1a) having a slinger (11a) attached integrally to the inner member (82).
  • the slinger (11a) is for preventing intrusion of muddy water from the outside and protecting the bearing.
  • the material of the slinger (11a) the same material as the core bar used in the sealing member described above can be used.
  • the shape of the slinger (11a) is not particularly limited, but is usually a ring shape.
  • the dimension of a slinger (11a) is not specifically limited, It can set suitably according to the magnitude
  • the magnetic rubber molded article (12a) is fixed to the slinger (11a).
  • the magnetic rubber molded product (12a) can be obtained by vulcanizing a magnetic rubber composition containing magnetic powder.
  • various rubbers are used, but nitrile rubber is preferably used from the balance of oil resistance, heat resistance, price, and the like.
  • the magnetic powder include ferrite magnetic powder and rare earth magnetic powder. Ferrite magnetic powder is preferably used from the viewpoint of cost and durability.
  • the method for fixing the magnetic rubber molded article (12a) to the slinger (11a) is not particularly limited.
  • the magnetic rubber composition is placed on the slinger (11a) pre-applied with an adhesive and pressed, or bonded to the mold. And a method of filling and pressing the slinger (11a) previously coated with the agent and the magnetic rubber composition.
  • the sealing device (11) includes a second member (2a) including a metal core (21a) integrally attached to the outer member and a rubber molded product (22a) fixed to the metal core (21a). Further, the rubber molded product (22a) has lip portions (23a to 25a) that elastically contact the slinger (11a). At this time, the lip portions (23a to 25a) may be close to the slinger (11a).
  • the second member (2a) corresponds to an example of the sealing member described above.
  • the rubber molded product (22a) in the second member (2a) is the above-described rubber molded product of the present invention, and conductive carbon having 100 parts by mass of nitrile rubber and a DBP oil absorption of 150 mL / 100 g or more and 1000 mL / 100 g or less.
  • the first member (1a) and the second member (2a) form a labyrinth structure portion (R1) that faces the rotation axis (L) in parallel.
  • the labyrinth structure part (R1) forms a gap between the first member (1a) and the second member (2a), and foreign matter enters the space (S) in the sealing device (11).
  • the rubber molded product (22a) having a large water contact angle faces the first member (1a) to form the labyrinth structure portion (R1).
  • the width (d1) of the gap is usually 0.1 to 1.0 mm.
  • the labyrinth structure portion (R1) extends in the direction of the rotation axis (L), but the length in the direction of the rotation axis (L) is not particularly limited, but is usually 0.5 mm or more. Therefore, the length of the labyrinth structure portion (R1) in the direction of the rotation axis (L) is appropriately changed by changing the thicknesses of the slinger (11a) and the magnetic rubber molded product (12a) from the example shown in FIG. It may be extended or shortened.
  • FIG. 4 shows another example of the sealing device (12).
  • the sealing device (11) shown in FIG. 3 The difference from the sealing device (11) shown in FIG. 3 is that the slinger (11b) of the first member (1b) is folded back to the second member (2a) side and extends in the direction of the rotation axis (L). It is the point which has.
  • the 1st member (1b) and the 2nd member (2a) further form the labyrinth structure part (L2) which opposes perpendicularly to the axis of rotation (L), the rubber molded product (22a), It is a point which forms a labyrinth structure part (R2) facing the 1st member (1b).
  • the labyrinth structure portion (R2) is formed such that the rubber molded product (22a) and the portion of the magnetic rubber molded product (12b) covering the tip of the folded portion T are opposed to each other.
  • the first member and the first member (1b) and the second member (2a) further form a labyrinth structure portion (R2) that is perpendicular to the direction of the rotation axis (L). Therefore, it is difficult for foreign matter such as muddy water to enter the space (S) as compared with the sealing device (11) shown in FIG. From the viewpoint of further preventing intrusion of foreign matter, the rubber molded product (22a) faces the first member (1b) to form a labyrinth structure (R2).
  • the width (d2) of the gap is usually 0.1 to 1.0 mm.
  • the labyrinth structure part (R2) extends in a direction intersecting with the direction in which the labyrinth structure part (R1) extends
  • the length is not particularly limited, but is usually 0.5 mm or more. Therefore, the length of the labyrinth structure part (R2) can be extended by changing the thickness of the part of the magnetic rubber molded product (12b) covering the tip part of the folded part T from the example shown in FIG. Or it may be shortened.
  • Nitrile rubber “NBR” “Nipol 1042” manufactured by Nippon Zeon Co., Ltd. (Acrylonitrile content 33.5%, Mooney viscosity (ML 1 + 10 , 100 ° C.) 77.5) ⁇ "Ketjen Black EC-600JD” manufactured by Conductive Carbon Black Lion Co., Ltd. DBP oil absorption: 495mL / 100g ⁇ Carbon Black Tokai Carbon Co., Ltd. FEF (Fast Extruding Furnace) carbon "Seast SO” DBP oil absorption: 115mL / 100g
  • Stearic acid (lubricant) NOF Corporation “Stearic acid cherry” -"Zinc oxide type 1" manufactured by Zinc Oxide ⁇ Plasticizer Adepic acid ether plasticizer "ADEKA SIZER RS-107” manufactured by ADEKA ⁇ Vulcanization accelerator (MBTS) 2,2'-Dibenzothiazolyl disulfide (MBTS) "Sunseller DM” manufactured by Sanshin Chemical Industry Co., Ltd. ⁇ Vulcanization accelerator (TETD) Tetraethylthiuram disulfide (TETD) "Sunseller TET-G” manufactured by Sanshin Chemical Industry Co., Ltd. ⁇ Sulfur Hosoi Chemical Co., Ltd. “fine sulfur 500 mesh”
  • Example 1 (Production of vulcanized rubber sheet) A mixture having the following composition was kneaded for 60 minutes at a temperature of 40 ° C. using an open roll to prepare an unvulcanized rubber sheet having a thickness of 2.0 to 3.0 mm. The obtained unvulcanized rubber sheet was press vulcanized at 150 ° C. for 10 minutes to obtain a vulcanized rubber sheet having a length (long side) 20 mm ⁇ width (short side) 15 mm ⁇ thickness 2 mm (hereinafter referred to as rubber). Abbreviated as sheet).
  • -NBR 100 parts by mass-Conductive carbon black: 8 parts by mass-FEF carbon black: 25 parts by mass-Clay A: 30 parts by mass-Stearic acid: 1 part by mass-Zinc oxide: 5 parts by mass-Plasticizer: 10 parts by mass Parts ⁇ Vulcanization accelerator (MBTS): 2 parts by mass ⁇ Vulcanization accelerator (TETD): 1.5 parts by mass ⁇ Sulfur 1.5 parts by mass
  • the obtained sealing member 2B includes a cored bar 3A and a rubber molded product 4B bonded to the cored bar 3B. Further, a part of the surface of the cored bar 3B is exposed to the outside, and the rubber molded product 4B has lip portions 5d to 5f. This seal member can then be mounted on a rolling bearing.
  • Examples 2 to 4 and Comparative Example 1 A rubber sheet and a sealing member were obtained in the same manner as in Example 1 except that the types and amounts of the components were changed as shown in Table 1 in the above-mentioned “Preparation of vulcanized rubber sheet” and “Preparation of sealing member”. And evaluation similar to Example 1 was performed. The results are shown in Table 1.
  • Example 5 (Production of sealing device) A mold was prepared, and a ring-shaped core metal (cold rolled steel sheet) was put therein. Then, the unvulcanized rubber sheet of Example 1 was placed on the cored bar and pressed at 150 ° C. for 10 minutes at 150 kgf / cm 2 to perform vulcanization molding. Thus, the 2nd member (2a) by which the surface of the ring-shaped metal core 21a was coat
  • NBR polymer JSR N237H
  • Strontium-ferrite Compressed density 3.1 g / cm 3
  • Stearic acid 1 part by mass
  • Microcrystalline wax HIMIC 1070
  • Polyester Plasticizer Polycizer W320
  • Mercaptopropyltrimethoxysilane 1 part by mass
  • Sulfur 0.5 part by mass
  • Active zinc white 4 parts by mass
  • Diphenylamine 2 parts by mass
  • N-cyclohexylbenzothiazyl 2-sulfenamide 1.5 parts by mass Tetramethylthiuram disulfide: 2 parts by mass
  • a ring-shaped L-shaped section made of SUS430 was prepared as a slinger (11a).
  • a ring-shaped mold was prepared, and a slinger (11a) was put therein.
  • the obtained unvulcanized magnetic rubber sheet is placed on the slinger (11a) and pressed at 150 ° C. for 10 minutes at 150 kgf / cm 2 to perform vulcanization molding.
  • the magnetic rubber molding is performed on the slinger (11a).
  • attached was obtained.
  • the sealing device (11) shown in FIG. 3 was produced using the 2nd member (2a) and the 1st member (1a).
  • the width (d1) of the gap in the sealing device (11) shown in FIG. 3 is 0.4 mm.
  • Example 6 As shown in FIG. 4, the sealing device (12) was produced in the same manner as in Example 5 except that the slinger (11b) of the first member (1b) was changed to one having the folded portion (T). A muddy water test was conducted. The results are shown in Table 2. In the sealing device (12) shown in FIG. 4, the width (d1) of the gap is 0.4 mm, and the width (d2) of the gap is 0.4 mm.
  • Comparative Example 2 A sealing device was produced in the same manner as in Example 5 except that the second member was produced using the rubber composition described in Comparative Example 1 in Table 1. And the muddy water test was done like Example 5. The results are shown in Table 2.
  • Comparative Example 3 A sealing device was produced in the same manner as in Example 6 except that the second member was produced using the rubber composition described in Comparative Example 1 in Table 1. And the muddy water test was done like Example 5. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Devices (AREA)
  • Sealing Material Composition (AREA)
  • Sealing With Elastic Sealing Lips (AREA)

Abstract

The present invention provides a molded rubber article obtained by vulcanizing a rubber composition that contains 100 parts by mass of a nitrile rubber (A), 1-30 parts by mass of an electrically conductive carbon black (B) having a DBP oil absorption quantity of 150-1000 mL/100 g and 5-60 parts by mass of a silylated clay (C). It is preferable for the rubber composition to further contain 5-50 parts by mass of a carbon black (D) having a DBP oil absorption quantity of not less than 30 mL/100 g and less than 150 mL/100 g. Due to this configuration, it is possible to provide a molded rubber article having excellent electrical conductivity and weather resistance.

Description

ゴム組成物、ゴム成形品及びその製造方法Rubber composition, rubber molded article and method for producing the same
 本発明は、ゴム組成物及びゴム成形品に関する。また、本発明は当該ゴム成形品の製造方法に関する。 The present invention relates to a rubber composition and a rubber molded product. The present invention also relates to a method for producing the rubber molded product.
 自動車の車軸は転がり軸受によって支持されていて、この軸受にはグリースの漏出や泥水の浸入を防止するためにシールと呼ばれる部品が備わっている。シールは、リング状の芯金の表面がゴムで被覆されたものである。このとき、シールには、ラジオノイズ対策として導電性ゴム組成物が用いられる。シールに用いられる導電性ゴム組成物としては、例えば特許文献1~3に記載のニトリルゴム組成物が挙げられる。 An automobile axle is supported by a rolling bearing, and this bearing is equipped with a part called a seal to prevent leakage of grease and intrusion of muddy water. The seal is a ring-shaped metal core whose surface is covered with rubber. At this time, a conductive rubber composition is used for the seal as a measure against radio noise. Examples of the conductive rubber composition used for sealing include nitrile rubber compositions described in Patent Documents 1 to 3.
 特許文献1には、ニトリルゴム100重量部に対して、カーボンブラック5~50重量部、平均粒子径5μm以下のグラファイト5~60重量部およびこれら以外の導電性カーボン5~50重量部を含有してなり、カーボンブラック、グラファイトおよびこれら以外の導電性カーボンの合計量が、ニトリルゴム100重量部に対して10~100重量部であるニトリルゴム組成物が記載されている。そして、特許文献1に記載のゴム組成物を用いたオイルシールは、耐泥水性、シール性、低トルク性を満たすものであるとされている。 Patent Document 1 contains 5 to 50 parts by weight of carbon black, 5 to 60 parts by weight of graphite having an average particle diameter of 5 μm or less, and 5 to 50 parts by weight of conductive carbon other than these with respect to 100 parts by weight of nitrile rubber. A nitrile rubber composition in which the total amount of carbon black, graphite and other conductive carbon is 10 to 100 parts by weight with respect to 100 parts by weight of nitrile rubber is described. And the oil seal using the rubber composition of patent document 1 is supposed to satisfy muddy water resistance, sealing performance, and low torque property.
 特許文献2には、ニトリルゴム100重量部に対して、カーボンブラック5~50重量部、平均粒子径5μm以下のグラファイト5~60重量部、これら以外の他の導電性カーボン5~50重量部、老化防止剤としてのジフェニルアミンのスチレンおよび2,4,4-トリメチルペンテンとの反応生成物からなるアルキル化ジフェニルアミン1~5重量部、およびN,N’-ジ-2-ナフチル-p-フェニレンジアミンまたはチオジプロピオン酸ジラウリル0.5~2.5重量部を含有してなるニトリルゴム組成物が記載されている。 Patent Document 2 discloses that 5 to 50 parts by weight of carbon black, 5 to 60 parts by weight of graphite having an average particle diameter of 5 μm or less, 5 to 50 parts by weight of other conductive carbon, based on 100 parts by weight of nitrile rubber, 1 to 5 parts by weight of alkylated diphenylamine consisting of the reaction product of diphenylamine with styrene and 2,4,4-trimethylpentene as an anti-aging agent, and N, N′-di-2-naphthyl-p-phenylenediamine or A nitrile rubber composition comprising 0.5 to 2.5 parts by weight of dilauryl thiodipropionate is described.
 特許文献3には、ニトリルゴム100重量部に対して、カーボンブラック5~50重量部、平均粒子径5μm以下のグラファイト5~60重量部、これら以外の他の導電性カーボン5~50重量部および老化防止剤としての2,5-ジ第3ブチルハイドロキノンまたは2,5-ジ第3アミルハイドロキノン0.5~3.5重量部を含有してなるニトリルゴム組成物が記載されている。 Patent Document 3 discloses that 5 to 50 parts by weight of carbon black, 5 to 60 parts by weight of graphite having an average particle diameter of 5 μm or less, 5 to 50 parts by weight of other conductive carbon, and 100 parts by weight of nitrile rubber; A nitrile rubber composition containing 0.5 to 3.5 parts by weight of 2,5-ditertiarybutylhydroquinone or 2,5-ditertiary amylhydroquinone as an antioxidant is described.
 そして、特許文献2及び3に記載のニトリルゴム組成物を用いたオイルシールは、耐泥水性、シール性、低トルク性を満たすものであるとされている。また、水洗された場合においてもゴムの変形を低く抑えることができるとされている。 And the oil seal using the nitrile rubber composition described in Patent Documents 2 and 3 is said to satisfy the muddy water resistance, the sealing property, and the low torque property. Further, even when washed with water, it is said that deformation of rubber can be suppressed to a low level.
 ところで、異なる種類の導電性材料を接触させて電解液に浸すと、材料間に電位差が生じ電池が形成されることが知られている。上述のとおりシールは芯金に導電性ゴムが被覆されたものであるため、電解液に浸すと芯金と導電性ゴムとの間に電位差が生じ電池が形成されることがある。このとき、電解液に塩化ナトリウムや塩化カルシウムなどが含まれている場合、電気分解により水酸化ナトリウムや水酸化カルシウムが生じることもある。 By the way, it is known that when different types of conductive materials are brought into contact with each other and immersed in an electrolytic solution, a potential difference is generated between the materials and a battery is formed. As described above, since the seal is formed by coating the core metal with conductive rubber, when immersed in an electrolyte, a potential difference may be generated between the core metal and the conductive rubber to form a battery. At this time, when sodium chloride, calcium chloride, or the like is contained in the electrolytic solution, sodium hydroxide or calcium hydroxide may be generated by electrolysis.
 軸受は車外に搭載されるものであるため、泥水や雨水に曝される。また、道路には、凍結防止剤や融雪剤として塩化ナトリウムや塩化カルシウムが散布される。そのため塩化ナトリウムや塩化カルシウムを含む泥水や雨水がシールに付着することがあり、これが電気分解してアルカリを生じることが原因で導電性ゴムが膨潤し変形し芯金が腐食するという問題があった。 Since the bearing is mounted outside the vehicle, it is exposed to muddy water and rainwater. In addition, sodium chloride and calcium chloride are sprayed on the road as antifreezing agents and snow melting agents. Therefore, muddy water and rainwater containing sodium chloride and calcium chloride may adhere to the seal, which causes electrolysis to generate alkali, causing the problem that the conductive rubber swells and deforms, and the core metal corrodes. .
 しかしながら、特許文献1では、導電性ゴムの変形や芯金の腐食を防ぐことについて何ら検討されていなかった。また、特許文献2及び3では、凍結防止剤に曝された後に水洗した場合のゴムの体積変化率について検討されているものの、耐候性は未だ不十分であり、改善が求められていた。 However, in Patent Document 1, no consideration has been given to preventing the deformation of the conductive rubber and the corrosion of the core metal. Moreover, in patent documents 2 and 3, although the volume change rate of the rubber | gum at the time of washing with water after exposing to an antifreezing agent is examined, the weather resistance is still inadequate, and the improvement was calculated | required.
特開2012-97213号公報JP 2012-97213 A 国際公開第2015/5080号International Publication No. 2015/5080 国際公開第2015/5081号International Publication No. 2015/5081
 本発明は上記課題を解決するためになされたものであり、導電性及び耐候性に優れたゴム成形品及びその製造方法を提供することを目的とする。また本発明は、このようなゴム成形品を得るためのゴム組成物を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rubber molded article excellent in conductivity and weather resistance and a method for producing the same. Another object of the present invention is to provide a rubber composition for obtaining such a rubber molded product.
 上記課題は、ニトリルゴム(A)100質量部、DBP吸油量が150mL/100g以上1000mL/100g以下の導電性カーボンブラック(B)1~30質量部及びシリル化されたクレー(C)5~60質量部を含有するゴム組成物を提供することによって解決される。 The above-mentioned problems include 100 parts by mass of nitrile rubber (A), 1 to 30 parts by mass of conductive carbon black (B) having a DBP oil absorption of 150 mL / 100 g or more and 1000 mL / 100 g or less, and 5 to 60 silylated clay (C). This is solved by providing a rubber composition containing parts by weight.
 このとき、前記ゴム組成物が、DBP吸油量が30mL/100g以上150mL/100g未満のカーボンブラック(D)2~50質量部をさらに含有することが好ましい。 At this time, it is preferable that the rubber composition further contains 2 to 50 parts by mass of carbon black (D) having a DBP oil absorption of 30 mL / 100 g or more and less than 150 mL / 100 g.
 また、シリル化されたクレー(C)の表面がアルコキシシランでシリル化されてなることが好ましい。前記アルコキシシランがシランカップリング剤であることも好ましい。 Moreover, it is preferable that the surface of silylated clay (C) is silylated with alkoxysilane. It is also preferred that the alkoxysilane is a silane coupling agent.
 上記課題は、前記ゴム組成物を加硫してなるゴム成形品を提供することによっても解決される。このとき、体積抵抗値が1×10Ω・cm以下であることが好ましい。水滴滴下から40分後のゴム成形品表面の水接触角が40°以上であることも好ましい。 The above problem can also be solved by providing a rubber molded product obtained by vulcanizing the rubber composition. At this time, the volume resistance value is preferably 1 × 10 5 Ω · cm or less. It is also preferable that the water contact angle on the surface of the rubber molded product 40 minutes after the dropping of the water droplet is 40 ° or more.
 上記課題は、前記ゴム成形品の製造方法であって、ニトリルゴム(A)、導電性カーボンブラック(B)、シリル化されたクレー(C)及び加硫剤(E)を混練してゴム組成物を得る混練工程と、前記ゴム組成物を加硫する加硫工程とを備えるゴム成形品の製造方法を提供することによっても解決される。 The above object is a method for producing the rubber molded article, in which the nitrile rubber (A), the conductive carbon black (B), the silylated clay (C) and the vulcanizing agent (E) are kneaded and the rubber composition This can also be solved by providing a method for producing a rubber molded article comprising a kneading step for obtaining a product and a vulcanization step for vulcanizing the rubber composition.
 また、上記課題は、前記ゴム成形品の製造方法であって、ニトリルゴム(A)、導電性カーボンブラック(B)、シリル化されていないクレー(F)、アルコキシシラン(G)及び加硫剤(E)を混練してゴム組成物を得る混練工程と、前記ゴム組成物を加硫する加硫工程とを備えるゴム成形品の製造方法を提供することによっても解決される。 Moreover, the said subject is a manufacturing method of the said rubber molded product, Comprising: Nitrile rubber (A), electroconductive carbon black (B), unsilylated clay (F), alkoxysilane (G), and vulcanizing agent The problem can also be solved by providing a method for producing a rubber molded article comprising a kneading step of kneading (E) to obtain a rubber composition and a vulcanization step of vulcanizing the rubber composition.
 上記の各製造方法の混練工程において、さらにカーボンブラック(D)を混練してゴム組成物を得ることが好ましい。 In the kneading step of each production method described above, it is preferable to further knead carbon black (D) to obtain a rubber composition.
 前記ゴム成形品と芯金とからなるシール部材が本発明の好適な実施態様である。 A sealing member composed of the rubber molded product and the cored bar is a preferred embodiment of the present invention.
 また、外側部材に対して内側部材が軸回転可能に支持される当該2部材間に装着される密封装置であって、前記内側部材に一体に取り付けられるスリンガを備えた第1部材と、前記外側部材に一体に取り付けられる芯金及び該芯金に固着される上記ゴム成形品を備えた第2部材とを含み、前記ゴム成形品が、前記スリンガに弾接又は近接するリップ部を有し、前記第1部材及び前記第2部材が、回転軸方向に対して平行に対向するラビリンス構造部(R1)を形成し、前記ゴム成形品が、前記第1部材と対向して前記ラビリンス構造部(R1)を形成することを特徴とする密封装置も本発明の好適な実施態様である。 Further, the sealing device is mounted between the two members, the inner member of which is rotatably supported with respect to the outer member, the first member including a slinger that is integrally attached to the inner member, and the outer member A metal core integrally attached to the member and a second member provided with the rubber molded product fixed to the metal core, and the rubber molded product has a lip portion that elastically contacts or approaches the slinger, The first member and the second member form a labyrinth structure portion (R1) facing in parallel with the rotation axis direction, and the rubber molded product faces the first member and the labyrinth structure portion ( A sealing device characterized by forming R1) is also a preferred embodiment of the present invention.
 このとき、前記第1部材及び前記第2部材が、回転軸方向に対して垂直に対向するラビリンス構造部(R2)をさらに形成するとともに、前記ゴム成形品が、前記第1部材と対向して前記ラビリンス構造(R2)を形成することが好ましい。 At this time, the first member and the second member further form a labyrinth structure portion (R2) that is perpendicular to the rotation axis direction, and the rubber molded product is opposed to the first member. The labyrinth structure (R2) is preferably formed.
 また、前記第1部材が、前記スリンガに固着される磁性ゴム成形品を有し、前記磁性ゴム成形品が、前記ゴム成形品と対向して前記ラビリンス構造部(R1)を形成することが好ましい。 Further, it is preferable that the first member has a magnetic rubber molded product fixed to the slinger, and the magnetic rubber molded product forms the labyrinth structure portion (R1) facing the rubber molded product. .
 本発明により、導電性及び耐候性に優れたゴム成形品及びその製造方法を提供することができる。また、このようなゴム成形品を得るためのゴム組成物を提供することができる。 According to the present invention, it is possible to provide a rubber molded article excellent in conductivity and weather resistance and a method for producing the same. Moreover, the rubber composition for obtaining such a rubber molded product can be provided.
本発明のシール部材を用いた軸受の例の一部を示す図(断面図)である。It is a figure (sectional view) which shows a part of example of the bearing using the sealing member of this invention. 実施例1のシール部材の一部を示す図(断面図)である。It is a figure (sectional view) which shows a part of seal member of Example 1. FIG. 実施例5の密封装置を示す図である。It is a figure which shows the sealing device of Example 5. FIG. 実施例6の密封装置を示す図である。It is a figure which shows the sealing device of Example 6. FIG.
 本発明のゴム組成物は、ニトリルゴム(A)、DBP吸油量が150mL/100g以上1000mL/100g以下の導電性カーボンブラック(B)及びシリル化されたクレー(C)を含有するものである。そして、本発明のゴム成形品は、前記ゴム組成物を加硫してなるものである。 The rubber composition of the present invention contains nitrile rubber (A), conductive carbon black (B) having a DBP oil absorption of 150 mL / 100 g or more and 1000 mL / 100 g or less, and silylated clay (C). The rubber molded product of the present invention is obtained by vulcanizing the rubber composition.
 本発明においては、シリル化されたクレー(C)を用いることが重要である。本発明者らは鋭意検討を重ねた結果、ニトリルゴム(A)及び導電性カーボンブラック(B)を含むゴム組成物に対して、シリル化されたクレー(C)を特定量配合し、得られたゴム組成物を加硫することで、導電性及び耐候性に優れたゴム成形品が得られることを見出した。以下、本発明のゴム組成物を説明する。 In the present invention, it is important to use silylated clay (C). As a result of intensive studies, the inventors of the present invention obtained a specific amount of silylated clay (C) in a rubber composition containing nitrile rubber (A) and conductive carbon black (B). It was found that a rubber molded article having excellent conductivity and weather resistance can be obtained by vulcanizing the rubber composition. Hereinafter, the rubber composition of the present invention will be described.
[ニトリルゴム(A)]
 本発明で用いられるニトリルゴム(A)は特に限定されず、アクリロニトリルと1,3-ブタジエンの共重合体を用いることができる。重合後の1,3-ブタジエン単位に残存する二重結合への水素添加は任意である。水素添加されていないニトリルゴム(以下、NBRと略記することがある)と水素添加されたニトリルゴム(以下、HNBRと略記することがある)を目的に応じて使い分けることができる。
[Nitrile rubber (A)]
The nitrile rubber (A) used in the present invention is not particularly limited, and a copolymer of acrylonitrile and 1,3-butadiene can be used. Hydrogenation to the double bond remaining in the 1,3-butadiene unit after polymerization is optional. Non-hydrogenated nitrile rubber (hereinafter sometimes abbreviated as NBR) and hydrogenated nitrile rubber (hereinafter sometimes abbreviated as HNBR) can be properly used depending on the purpose.
 ニトリルゴム(A)中のアクリロニトリル単位の含有量は15~50質量%であることが好ましい。また、1,3-ブタジエン単位の含有量は水素添加されたものも含めて、残りの全部又は大部分を占める。本発明で用いられるニトリルゴム(A)は、本発明の効果を阻害しない範囲であれば、他の共重合可能な単量体由来の構成単位を含んでいてもかまわない。例えば、カルボキシル基又はカルボン酸無水物基のような官能基を含むものであってもよい。 The content of acrylonitrile units in the nitrile rubber (A) is preferably 15 to 50% by mass. In addition, the content of 1,3-butadiene units occupies the whole or most of the remainder including those hydrogenated. The nitrile rubber (A) used in the present invention may contain structural units derived from other copolymerizable monomers as long as the effects of the present invention are not impaired. For example, it may contain a functional group such as a carboxyl group or a carboxylic anhydride group.
[導電性カーボンブラック(B)]
 本発明で用いられる導電性カーボンブラック(B)は、ゴム成形品に対して導電性を付与するために配合されるものであり、これを用いることにより体積抵抗値の低いゴム成形品を得ることができる。導電性カーボンブラック(B)を含むゴム成形品を軸受のシールに用いることによって、ラジオノイズを効果的に抑制することができる。
[Conductive carbon black (B)]
The conductive carbon black (B) used in the present invention is blended to impart conductivity to a rubber molded product, and by using this, a rubber molded product having a low volume resistance value is obtained. Can do. By using a rubber molded product containing conductive carbon black (B) for the seal of the bearing, radio noise can be effectively suppressed.
 導電性カーボンブラック(B)のDBP吸油量は、150mL/100g以上である。ここで、DBP吸油量とは、カーボンブラック100gが吸収可能なフタル酸ジブチル(DBP)の量(mL)を示すものである(JIS K6217-4に準拠)。この値は、アグリゲートやアグロメートの構造が発達しているほど大きくなる。そして、導電性に優れたカーボンブラックは、大きいDBP吸油量を有している。 The DBP oil absorption of the conductive carbon black (B) is 150 mL / 100 g or more. Here, the DBP oil absorption indicates the amount (mL) of dibutyl phthalate (DBP) that can be absorbed by 100 g of carbon black (in accordance with JIS K6217-4). This value increases as the aggregate and agglomerate structures develop. And carbon black excellent in electroconductivity has a large DBP oil absorption.
 DBP吸油量が150mL/100g以上の導電性カーボンブラック(B)を用いることによって、体積抵抗値の低いゴム成形品を得ることができる。より優れた導電性を得るためには、カーボンブラック(B)のDBP吸油量は200mL/100g以上であることが好ましく、300mL/100g以上であることがより好ましい。一方、カーボンブラック(B)のDBP吸油量は、通常1000mL/100g以下である。DBP吸油量が1000mL/100gを超えると、ゴム組成物の流動性が悪化するおそれがある。DBP吸油量は800mL/100g以下であることが好ましく、600mL/100g以下であることがより好ましい。より優れた導電性を得るためには、カーボンブラック(B)の平均一次粒子径が小さいことが好ましく、10~50nmであることが好ましい。 A rubber molded product having a low volume resistance value can be obtained by using conductive carbon black (B) having a DBP oil absorption of 150 mL / 100 g or more. In order to obtain better conductivity, the DBP oil absorption of carbon black (B) is preferably 200 mL / 100 g or more, and more preferably 300 mL / 100 g or more. On the other hand, the DBP oil absorption of carbon black (B) is usually 1000 mL / 100 g or less. When the DBP oil absorption exceeds 1000 mL / 100 g, the fluidity of the rubber composition may be deteriorated. The DBP oil absorption is preferably 800 mL / 100 g or less, and more preferably 600 mL / 100 g or less. In order to obtain better conductivity, the average primary particle size of the carbon black (B) is preferably small, and preferably 10 to 50 nm.
 カーボンブラック(B)の配合量は、ニトリルゴム(A)100質量部に対して1~30質量部である。カーボンブラック(B)の配合量が1質量部未満の場合、得られる成形品の導電性が不十分となる。カーボンブラック(B)の配合量は、2質量部以上であることが好ましく、4質量部以上であることがより好ましい。一方、カーボンブラック(B)の配合量が30質量部を超えると、成形性が悪化する。カーボンブラック(B)の配合量は20質量部以下であることが好ましい。 The blending amount of carbon black (B) is 1 to 30 parts by mass with respect to 100 parts by mass of nitrile rubber (A). When the blending amount of carbon black (B) is less than 1 part by mass, the resulting molded article has insufficient conductivity. The compounding amount of carbon black (B) is preferably 2 parts by mass or more, and more preferably 4 parts by mass or more. On the other hand, when the compounding amount of carbon black (B) exceeds 30 parts by mass, the moldability deteriorates. The blending amount of carbon black (B) is preferably 20 parts by mass or less.
 本発明で用いるカーボンブラック(B)の種類は特に限定されず、DBP吸油量が上記の範囲のものであって、得られる成形品の体積抵抗値が一定以下の値になるものであればよい。具体的には、ケッチェンブラック、アセチレンブラック、キャボット社製「Vulcan XC-72」、コロンビアン・インターナショナル社製「Conductex 7055 Ultra」、エボニック・デグッサ社製「Printex XE2 B」などが挙げられる。中でも、流動性を悪化させずに導電性を付与できる点からケッチェンブラックが好ましい。ケッチェンブラックは、ライオン株式会社から市販されている導電性カーボンブラックであり、アグリゲートやアグロメートの構造が高度に発達するとともに、一次粒子が中空構造になっており、少量の添加によって導電性を付与することができる。 The type of carbon black (B) used in the present invention is not particularly limited as long as the DBP oil absorption amount is in the above range, and the volume resistance value of the obtained molded product is a certain value or less. . Specific examples include Ketjen Black, Acetylene Black, “Vulcan® XC-72” manufactured by Cabot, “Conductex® 7055® Ultra” manufactured by Colombian International, and “Printex® XE2® B” manufactured by Evonik Degussa. Among these, ketjen black is preferable because it can provide conductivity without deteriorating fluidity. Ketjen Black is a conductive carbon black marketed by Lion Corporation. The structure of aggregates and agglomerates is highly developed, and the primary particles have a hollow structure. Can be granted.
[クレー(C)]
 本発明で用いるクレー(C)は表面がシリル化されたクレーである。クレーとは、含水ケイ酸アルミニウムを主成分とする微細な鉱物粒子からなる粉末である。表面をシリル化することのできるクレーであればその種類は特に限定されず、カオリン、ろう石、セリサイト、タルク、モンモリロナイトなどが挙げられる。本発明で用いられるクレーは、湿式クレー、乾式クレー又はこれらを焼成した焼成クレーのいずれであってもよい。また、クレーは、一般的に、ゴムに配合した際の練り生地の硬さなどに応じて、ハードクレーとソフトクレーとに分類されることがあるが、そのいずれであってもよい。これらのクレーは、得られるゴム成形品の要求性能に応じて適宜使い分けることができる。
[Clay (C)]
The clay (C) used in the present invention is a clay having a silylated surface. Clay is a powder composed of fine mineral particles mainly composed of hydrous aluminum silicate. The type of the clay is not particularly limited as long as the surface can be silylated, and examples thereof include kaolin, wax, sericite, talc, and montmorillonite. The clay used in the present invention may be a wet clay, a dry clay, or a fired clay obtained by firing these. Further, clays are generally classified into hard clays and soft clays depending on the hardness of the kneaded dough when blended with rubber, and any of them may be used. These clays can be appropriately used depending on the required performance of the rubber molded product to be obtained.
 本発明においては、クレー(C)の表面がアルコキシシランでシリル化されてなることが好ましい。クレーとアルコキシシランとを反応させることで、クレー表面の水酸基と、アルコキシシランのアルコキシ基が反応して表面がシリル化されたクレー(C)を得ることができる。 In the present invention, it is preferable that the surface of the clay (C) is silylated with alkoxysilane. By reacting clay and alkoxysilane, the clay (C) having a silylated surface by reacting the hydroxyl group on the clay surface with the alkoxy group of the alkoxysilane can be obtained.
 このとき、ニトリルゴム(A)との混合性の観点から、上記アルコキシシランがシランカップリング剤であることが好ましい。シランカップリング剤は反応性官能基を有する有機基が結合したアルコキシシランである。当該反応性官能基としては、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、イソシアヌレート基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基が挙げられる。引張強さの向上の観点から、メルカプト基を有するカップリング剤でシリル化されたクレーを用いることが好ましく、耐水性の観点から、アミノ基を有するカップリング剤でシリル化されたクレーを用いることが好ましい。 At this time, it is preferable that the alkoxysilane is a silane coupling agent from the viewpoint of miscibility with the nitrile rubber (A). A silane coupling agent is an alkoxysilane to which an organic group having a reactive functional group is bonded. Examples of the reactive functional group include vinyl group, epoxy group, styryl group, methacryl group, acrylic group, amino group, isocyanurate group, ureido group, mercapto group, sulfide group, and isocyanate group. From the viewpoint of improving tensile strength, it is preferable to use a clay silylated with a coupling agent having a mercapto group, and from the viewpoint of water resistance, a clay silylated with a coupling agent having an amino group should be used. Is preferred.
 クレー(C)の配合量は、ニトリルゴム(A)100質量部に対して5~60質量部である。クレー(C)の配合量が5質量部未満の場合、クレー(C)を添加する効果が不十分となる。クレー(C)の配合量は10質量部以上であることが好ましい。一方、クレー(C)の配合量が60質量部を超えると、成形性が悪化する。クレー(C)の配合量は50質量部以下であることが好ましい。また、クレー(C)の平均粒子径は、0.2~8.0μmであることが好ましい。 The blending amount of clay (C) is 5 to 60 parts by mass with respect to 100 parts by mass of nitrile rubber (A). When the amount of clay (C) is less than 5 parts by mass, the effect of adding clay (C) becomes insufficient. The blending amount of clay (C) is preferably 10 parts by mass or more. On the other hand, if the blending amount of clay (C) exceeds 60 parts by mass, moldability deteriorates. The blending amount of clay (C) is preferably 50 parts by mass or less. The average particle size of the clay (C) is preferably 0.2 to 8.0 μm.
[カーボンブラック(D)]
 本発明において、ゴム成形品の引張強さを向上させる観点から、前記ゴム組成物が、DBP吸油量が30mL/100g以上150mL/100g未満のカーボンブラック(D)5~50質量部をさらに含有することが好ましい。以下、カーボンブラック(D)について説明する。
[Carbon black (D)]
In the present invention, from the viewpoint of improving the tensile strength of the rubber molded product, the rubber composition further contains 5 to 50 parts by mass of carbon black (D) having a DBP oil absorption of 30 mL / 100 g or more and less than 150 mL / 100 g. It is preferable. Hereinafter, carbon black (D) will be described.
 本発明で用いるカーボンブラック(D)は、DBP吸油量が30mL/100g以上150mL/100g未満のものが好ましい。このカーボンブラック(D)は、導電性カーボンブラック(B)ほどアグリゲートやアグロメートの構造が発達していないものであり、一般的なゴム組成物に配合されるカーボンブラックの大半がこれに含まれる。 The carbon black (D) used in the present invention preferably has a DBP oil absorption of 30 mL / 100 g or more and less than 150 mL / 100 g. This carbon black (D) is one in which the structure of aggregates and agglomerates is not developed as much as the conductive carbon black (B), and most of the carbon black compounded in general rubber compositions is included in this carbon black (D). .
 DBP吸油量が150mL/100g以上のカーボンブラック(D)を用いると、成形性が悪化する場合があるし、原料コストも上昇するおそれがある。カーボンブラック(D)のDBP吸油量は、130mL/100g以下であることがより好ましい。一方、カーボンブラック(D)のDBP吸油量は、50mL/100g以上であることがより好ましい。 When carbon black (D) having a DBP oil absorption of 150 mL / 100 g or more is used, moldability may be deteriorated and raw material costs may be increased. The DBP oil absorption of carbon black (D) is more preferably 130 mL / 100 g or less. On the other hand, the DBP oil absorption of carbon black (D) is more preferably 50 mL / 100 g or more.
 本発明で用いるカーボンブラック(D)の種類は特に限定されず、DBP吸油量が上記の範囲のものであればよい。具体的には、FEF、SRF、SAF、ISAF、HAF、MAF、GPF、FT、MT等を用いることができ、性能とコストのバランスの点からFEF、SRFが好適である。カーボンブラック(D)として、2種類以上のものを組み合わせて用いても良い。 The type of carbon black (D) used in the present invention is not particularly limited as long as the DBP oil absorption is in the above range. Specifically, FEF, SRF, SAF, ISAF, HAF, MAF, GPF, FT, MT and the like can be used, and FEF and SRF are preferable from the viewpoint of balance between performance and cost. Two or more types of carbon black (D) may be used in combination.
 カーボンブラック(D)の配合量は、ニトリルゴム(A)100質量部に対して2~50質量部であることが好ましい。カーボンブラック(D)の配合量が2質量部未満の場合、硬度が不十分になるおそれがある。カーボンブラック(D)の配合量は、5質量部以上であることが好ましく、10質量部以上であることよりが好ましい。一方、カーボンブラック(D)の配合量が50質量部を超えると、成形性が悪化するおそれがある。カーボンブラック(D)の配合量は40質量部以下であることが好ましい。カーボンブラック(D)の平均一次粒子径は、通常10~200nmである。 The compounding amount of carbon black (D) is preferably 2 to 50 parts by mass with respect to 100 parts by mass of nitrile rubber (A). When the blending amount of carbon black (D) is less than 2 parts by mass, the hardness may be insufficient. The amount of carbon black (D) is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more. On the other hand, if the blending amount of carbon black (D) exceeds 50 parts by mass, moldability may be deteriorated. The compounding amount of carbon black (D) is preferably 40 parts by mass or less. The average primary particle diameter of carbon black (D) is usually 10 to 200 nm.
 上記ゴム組成物は、本発明の効果が阻害されない範囲において、ニトリルゴム(A)、導電性カーボンブラック(B)、表面がシリル化されたクレー(C)以外の他の成分を含んでいてもかまわない。他の成分としては、上記したカーボンブラック(D)の他に、加硫剤、加硫助剤、加硫促進剤、加硫遅延剤、接着剤、受酸剤、着色剤、フィラー、可塑剤、加工助剤、老化防止剤など、各種の添加剤が挙げられる。 The rubber composition may contain other components than the nitrile rubber (A), the conductive carbon black (B), and the clay (C) having a silylated surface as long as the effects of the present invention are not inhibited. It doesn't matter. As other components, in addition to the above-described carbon black (D), a vulcanizing agent, a vulcanization aid, a vulcanization accelerator, a vulcanization retarder, an adhesive, an acid acceptor, a colorant, a filler, a plasticizer And various additives such as processing aids and anti-aging agents.
 本発明のゴム成形品の製造方法は特に限定されないが、好適な製造方法として以下の方法(1)と方法(2)が挙げられる。まず、方法(1)について説明する。 The method for producing the rubber molded product of the present invention is not particularly limited, but preferred methods include the following method (1) and method (2). First, the method (1) will be described.
[方法(1)]
 方法(1)は、ニトリルゴム(A)、導電性カーボンブラック(B)、シリル化されたクレー(C)及び加硫剤(E)を混練してゴム組成物を得る混練工程と、上記ゴム組成物を加硫する加硫工程とを備える方法である。
[Method (1)]
Method (1) includes a kneading step of kneading nitrile rubber (A), conductive carbon black (B), silylated clay (C) and vulcanizing agent (E) to obtain a rubber composition, and the rubber And a vulcanization step of vulcanizing the composition.
 ニトリルゴム(A)、導電性カーボンブラック(B)及び表面がシリル化されたクレー(C)は上記したものを用いることができ、これらの配合量も上記した量とすることができる。 As the nitrile rubber (A), conductive carbon black (B), and clay (C) having a silylated surface, the above-described ones can be used, and the blending amount thereof can also be the above-mentioned amount.
 上記混練工程において、本発明の効果が阻害されない範囲であれば、上記の通り、ニトリルゴム(A)、導電性カーボンブラック(B)、表面がシリル化されたクレー(C)以外のものを加えることができる。ゴム成形品の引張強さを向上させる観点から、さらにカーボンブラック(D)を混練してゴム組成物を得ることが好ましい。カーボンブラック(D)は上記したものを用いることができ、配合量も上記した量とすることができる。 As long as the effect of the present invention is not hindered in the kneading step, as described above, a material other than nitrile rubber (A), conductive carbon black (B), and clay (C) having a silylated surface is added. be able to. From the viewpoint of improving the tensile strength of the rubber molded product, it is preferable to further knead carbon black (D) to obtain a rubber composition. Carbon black (D) can use what was mentioned above, and can also make it the amount mentioned above.
 混練工程において上記成分を混合する方法は特に限定されず、オープンロール、ニーダ、バンバリーミキサ、インターミキサ、押出機などを用いて混練することができる。中でも、オープンロール又はニーダを用いて混練することが好ましい。混練時の温度は20~120℃とすることが好ましい。 The method of mixing the above components in the kneading step is not particularly limited, and kneading can be performed using an open roll, a kneader, a Banbury mixer, an intermixer, an extruder, or the like. Especially, it is preferable to knead | mix using an open roll or a kneader. The temperature during kneading is preferably 20 to 120 ° C.
 こうして得られたゴム組成物を成形して、次の加硫工程で加硫することによって、本発明のゴム成形品が得られる。 The rubber composition obtained in the present invention is obtained by molding the rubber composition thus obtained and vulcanizing it in the next vulcanization step.
 ゴム組成物の成形方法としては、射出成形、押出成形、圧縮成形、ロール成形などが挙げられる。中でも射出成形と圧縮成形が好適である。このとき、予め成形した後に加硫させてもよいし、成形と同時に加硫させてもよい。また、成形と同時に加硫させ、その後さらに二次加硫させてもよい。加硫温度は、通常150~200℃であることが好ましい。加硫時間は、通常5~60分である。加硫させるための加熱方法としては、圧縮加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴムの加硫に用いられる一般的な方法が用いられる。 Examples of the molding method of the rubber composition include injection molding, extrusion molding, compression molding, roll molding and the like. Of these, injection molding and compression molding are preferred. At this time, it may be vulcanized after being previously molded, or may be vulcanized simultaneously with the molding. Further, it may be vulcanized at the same time as molding and then further secondary vulcanized. The vulcanization temperature is usually preferably 150 to 200 ° C. The vulcanization time is usually 5 to 60 minutes. As a heating method for vulcanization, general methods used for rubber vulcanization such as compression heating, steam heating, oven heating, hot air heating and the like are used.
 また、ゴム成形品の形状や寸法などによっては、表面が加硫していても内部まで十分に加硫していない場合があるので、さらに加熱して二次加硫を行ってもよい。 In addition, depending on the shape and dimensions of the rubber molded product, even if the surface is vulcanized, it may not be sufficiently vulcanized to the inside. Therefore, secondary vulcanization may be performed by further heating.
 加硫の方法は特に限定されず、硫黄加硫、過酸化物加硫、アミン加硫などが挙げられる。硫黄加硫する際の加硫剤としては、硫黄や硫黄含有化合物が用いられる。また、過酸化物加硫する際の加硫剤としては有機過酸化物が用いられる。このとき用いられる加硫剤(E)の量はニトリルゴム(A)100質量部に対して通常0.1~10質量部である。 The method of vulcanization is not particularly limited, and examples thereof include sulfur vulcanization, peroxide vulcanization, and amine vulcanization. As a vulcanizing agent for sulfur vulcanization, sulfur or a sulfur-containing compound is used. An organic peroxide is used as a vulcanizing agent for vulcanizing the peroxide. The amount of the vulcanizing agent (E) used at this time is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the nitrile rubber (A).
 次に方法(2)について説明する。
[方法(2)]
 方法(2)は、ニトリルゴム(A)、導電性カーボンブラック(B)、シリル化されていないクレー(F)、アルコキシシラン(G)及び加硫剤(E)を混練してゴム組成物を得る混練工程と、上記ゴム組成物を加硫する加硫工程とを備える方法である。
Next, the method (2) will be described.
[Method (2)]
Method (2) is a method in which a nitrile rubber (A), conductive carbon black (B), non-silylated clay (F), alkoxysilane (G), and a vulcanizing agent (E) are kneaded to obtain a rubber composition. A kneading step to be obtained and a vulcanizing step for vulcanizing the rubber composition.
 方法(2)において、方法(1)と異なる点は、表面がシリル化されたクレー(C)を加えて混練するのではなく、シリル化されていないクレー(F)とアルコキシシラン(G)を加えて、混練工程において当該クレー(F)の表面をシリル化する点である。これにより、混練工程において、クレー(F)の表面にある水酸基とアルコキシシラン(G)のアルコキシ基が反応して、表面がシリル化されたクレーを得ることができる。このとき、アルコキシシラン(G)がシランカップリング剤であることが好ましい。シランカップリング剤は前述したものを用いることができる。また、このとき用いられるクレー(F)は特に限定されず、シリル化されたクレー(C)の原料として説明した各種のクレーを用いることができる。 In the method (2), the difference from the method (1) is that the clay (C) having a silylated surface is not added and kneaded, but the non-silylated clay (F) and the alkoxysilane (G) are mixed. In addition, the surface of the clay (F) is silylated in the kneading step. Thereby, in the kneading step, the hydroxyl group on the surface of the clay (F) reacts with the alkoxy group of the alkoxysilane (G) to obtain a clay having a silylated surface. At this time, it is preferable that alkoxysilane (G) is a silane coupling agent. As the silane coupling agent, those described above can be used. Moreover, the clay (F) used at this time is not specifically limited, The various clay demonstrated as a raw material of the silylated clay (C) can be used.
 アルコキシシラン(G)の量は、クレー(F)の表面をシリル化することのできる量であれば特に限定されない。しかしながら、アルコキシシラン(G)の量が多すぎるとゴム組成物の流動性が低下し、引張強さや伸び等のゴム物性が悪化するおそれがある。かかる観点から、アルコキシシラン(G)の量は、クレー(F)100質量部に対して50質量部以下であることが好ましく、30質量部以下であることがより好ましい。一方、アルコキシシラン(F)の量が少なすぎるとクレー(F)の表面をシリル化することができないおそれがある。かかる観点から、アルコキシシラン(G)の量は、クレー(F)100質量部に対して0.5質量部以上であることが好ましく、2質量部以上であることがより好ましい。クレー(F)の量は上記したクレー(C)の量と同じにすることができる。 The amount of alkoxysilane (G) is not particularly limited as long as it can silylate the surface of clay (F). However, if the amount of alkoxysilane (G) is too large, the fluidity of the rubber composition is lowered, and the rubber properties such as tensile strength and elongation may be deteriorated. From this viewpoint, the amount of alkoxysilane (G) is preferably 50 parts by mass or less and more preferably 30 parts by mass or less with respect to 100 parts by mass of clay (F). On the other hand, if the amount of alkoxysilane (F) is too small, the surface of clay (F) may not be silylated. From this viewpoint, the amount of the alkoxysilane (G) is preferably 0.5 parts by mass or more and more preferably 2 parts by mass or more with respect to 100 parts by mass of the clay (F). The amount of clay (F) can be the same as the amount of clay (C) described above.
 また、方法(2)においてもゴム成形品の引張強さを向上させる観点から、さらにカーボンブラック(D)を混練してゴム組成物を得ることが好ましい。カーボンブラック(D)は上記したものを用いることができ、配合量も上記した量とすることができる。 Also in the method (2), it is preferable to obtain a rubber composition by further kneading carbon black (D) from the viewpoint of improving the tensile strength of the rubber molded product. Carbon black (D) can use what was mentioned above, and can also make it the amount mentioned above.
 こうして得られたゴム組成物を成形して、次の加硫工程で加硫することによって、本発明のゴム成形品が得られる。加硫工程は方法(1)で説明した工程と同様である。 The rubber composition obtained in the present invention is obtained by molding the rubber composition thus obtained and vulcanizing it in the next vulcanization step. The vulcanization step is the same as the step described in method (1).
 方法(1)及び方法(2)のうち、得られるゴム成形品の性能を重視する場合には方法(1)が好適であり、製造コストを重視する場合には方法(2)が好適である。 Of the methods (1) and (2), the method (1) is preferable when the performance of the obtained rubber molded product is emphasized, and the method (2) is preferable when the production cost is important. .
 こうして得られるゴム成形品の体積抵抗値は1×10Ω・cm以下であることが好ましい。体積抵抗値が1×10Ω・cmを超える場合、ゴム成形品をシールに用いたとき、ラジオノイズを効果的に抑制することができないおそれがある。体積抵抗値は1×10Ω・cm以下であることがより好ましい。一方、体積抵抗値は通常10Ω・cm以上である。体積抵抗値が10Ω・cmよりも小さい場合、泥水等が電気分解によってアルカリ性に変化する割合が大きくなるため、ゴム成形品が膨潤するおそれがある。ここでいう体積抵抗値とは、JIS C2139に準拠したホイートストンブリッジ法により測定して得られる値である。 The volume resistance value of the rubber molded product thus obtained is preferably 1 × 10 5 Ω · cm or less. If the volume resistance value exceeds 1 × 10 5 Ω · cm, radio noise may not be effectively suppressed when a rubber molded product is used for the seal. The volume resistance value is more preferably 1 × 10 4 Ω · cm or less. On the other hand, the volume resistance value is usually 10 Ω · cm or more. When the volume resistance value is smaller than 10 Ω · cm, the rate at which muddy water or the like changes to alkaline due to electrolysis increases, and the rubber molded product may swell. Here, the volume resistance value is a value obtained by measurement by the Wheatstone bridge method according to JIS C2139.
 水滴滴下から40分後のゴム成形品表面の水接触角は40°以上であることが好ましい。水接触角が大きいことによって、電気分解で生じたアルカリ性水溶液に濡れにくくなるので、ゴム成形品が膨潤したり変形したりするのを防止でき、耐侯性が良好になる。水接触角は50°以上であることがより好ましい。 It is preferable that the water contact angle on the surface of the rubber molded product 40 minutes after the dropping of the water droplet is 40 ° or more. Since the water contact angle is large, it becomes difficult to wet the alkaline aqueous solution generated by electrolysis, so that the rubber molded product can be prevented from swelling and deforming, and the weather resistance is improved. The water contact angle is more preferably 50 ° or more.
 本発明の好適な実施態様は、本発明のゴム成形品と金属部材とが接着している部品であり、より好適な実施態様は、本発明のゴム成形品と芯金とからなるシール部材である。本発明のゴム成形品は導電性を有しているため、ゴム成形品と芯金との間で電池を形成し、接触する水溶液を電気分解してアルカリ性水溶液を生じるおそれがある。本発明のゴム成形品は、このようなアルカリ性水溶液によってゴム成形品が膨潤したり変形したりするのを抑制することができるので、金属と接触する態様の際に特に有効である。 A preferred embodiment of the present invention is a part in which the rubber molded product of the present invention and a metal member are bonded, and a more preferred embodiment is a seal member comprising the rubber molded product of the present invention and a cored bar. is there. Since the rubber molded article of the present invention has conductivity, there is a possibility that a battery is formed between the rubber molded article and the metal core, and the aqueous solution in contact therewith is electrolyzed to produce an alkaline aqueous solution. The rubber molded article of the present invention is particularly effective in a mode of contacting with a metal because the rubber molded article can be prevented from swelling or deforming by such an alkaline aqueous solution.
 ここで、本発明のシール部材の一例を示す。図1は、本発明のシール部材2Aを用いた軸受1の例の一部を示す図(断面図)である。図1に示す軸受1は、シール部材2Aが備わっている。そして、このシール部材2Aは、芯金3Aと、当該芯金3Aに接着したゴム成形品4Aとを備えている。また、ゴム成形品4Aはリップ部5a~cを有している。このような軸受1は、ゴム成形品4Aと外輪6との間(7で示した箇所)に泥水等が溜まりやすい。また、ゴム成形品4Aとハブ輪8との間(9で示した箇所)に泥水等が溜まることもある。その結果、ゴム成形品4Aと外輪6との間や、ゴム成形品4Aとハブ輪8との間に電位差が生じ泥水が電気分解されアルカリ性水溶液が生じる。そして、このことが原因で成形品4Aが膨潤し変形し芯金3Aが腐食する。しかしながら、本発明のゴム成形品4Aを用いればアルカリ性水溶液によってゴム成形品4Aが膨潤したり変形したりすることがなく、芯金3Aも腐食することがない。 Here, an example of the sealing member of the present invention is shown. FIG. 1 is a view (sectional view) showing a part of an example of a bearing 1 using a seal member 2A of the present invention. The bearing 1 shown in FIG. 1 includes a seal member 2A. The sealing member 2A includes a cored bar 3A and a rubber molded product 4A bonded to the cored bar 3A. The rubber molded product 4A has lip portions 5a to 5c. In such a bearing 1, muddy water or the like tends to accumulate between the rubber molded product 4 </ b> A and the outer ring 6 (location indicated by 7). In addition, muddy water or the like may accumulate between the rubber molded product 4A and the hub wheel 8 (location indicated by 9). As a result, a potential difference is generated between the rubber molded product 4A and the outer ring 6 or between the rubber molded product 4A and the hub ring 8, and the muddy water is electrolyzed to generate an alkaline aqueous solution. Due to this, the molded product 4A swells and deforms, and the cored bar 3A corrodes. However, when the rubber molded product 4A of the present invention is used, the rubber molded product 4A is not swollen or deformed by the alkaline aqueous solution, and the core metal 3A is not corroded.
 本発明の特に好適な用途は、転がり軸受用のシールである。軸受は車外に搭載されるものであるため、泥水や雨水に曝される。また、道路には、凍結防止剤として塩化ナトリウムや融雪剤として塩化カルシウムが散布される。そのため塩化ナトリウムや塩化カルシウムを含む泥水や雨水がシールに付着することがあり、このことが原因で導電性ゴムが膨潤し変形し芯金が腐食するという問題を生じる。したがって、この問題を抑制できて耐侯性に優れる本発明のゴム成形品が特に好適に用いられる用途である。 A particularly suitable application of the present invention is a seal for a rolling bearing. Since the bearing is mounted outside the vehicle, it is exposed to muddy water and rainwater. In addition, sodium chloride as an antifreeze agent and calcium chloride as a snow melting agent are sprayed on the road. Therefore, muddy water or rainwater containing sodium chloride or calcium chloride may adhere to the seal, which causes a problem that the conductive rubber swells and deforms, and the core metal corrodes. Therefore, the rubber molded product of the present invention, which can suppress this problem and has excellent weather resistance, is particularly preferably used.
 シール部材の製造方法は特に限定されず、金型に芯金と本発明におけるゴム組成物とを充填してプレスする方法が挙げられる。これにより芯金の表面にゴム成形品が被覆されたシール部材を得ることができる。 The method for producing the seal member is not particularly limited, and examples thereof include a method in which a metal mold and a rubber composition in the present invention are filled and pressed. Thereby, the sealing member by which the rubber molded product was coat | covered on the surface of the metal core can be obtained.
 このとき用いられる芯金としては、鉄、アルミニウム等からなる金属板又はこれらの合金板が挙げられる。これらの芯金は、めっきなどの表面処理が施されたものであってもかまわない。例えばJIS G3313で示されるSECC、JIS G4305で示されるSUS301、JIS G3141で示されるSPCCなどが挙げられる。ゴム成形品と芯金との密着性を向上させる観点から、芯金は、その表面に接着剤が塗布されたものであってもかまわない。接着剤としてはフェノール系接着剤、エポキシ系接着剤、シランカップリング剤などが挙げられる。 The metal core used at this time may be a metal plate made of iron, aluminum, or the like, or an alloy plate thereof. These core bars may be subjected to surface treatment such as plating. For example, SECC indicated by JIS G3313, SUS301 indicated by JIS G4305, SPCC indicated by JIS G3141 and the like can be mentioned. From the viewpoint of improving the adhesion between the rubber molded product and the cored bar, the cored bar may have an adhesive applied to the surface thereof. Examples of the adhesive include a phenol-based adhesive, an epoxy-based adhesive, and a silane coupling agent.
 芯金の形状は特に限定されないが通常リング状である。また、芯金の厚さ及びゴム成形品の厚さは特に限定されず、転がり軸受けの大きさなどに応じて適宜設定することができる。 The shape of the metal core is not particularly limited, but is usually a ring shape. Further, the thickness of the core metal and the thickness of the rubber molded product are not particularly limited, and can be appropriately set according to the size of the rolling bearing.
 次に、本発明のゴム成形品を用いた密封装置の一例を示す。図3に示す密封装置(11)は、自動車等の車輪支持部の軸受に用いられる密封装置(11)の一例である。密封装置(11)は、外側部材(81)に対して内側部材(82)が軸回転可能に支持される当該2部材の間に装着されるものである。 Next, an example of a sealing device using the rubber molded product of the present invention is shown. The sealing device (11) shown in FIG. 3 is an example of a sealing device (11) used for a bearing of a wheel support portion of an automobile or the like. The sealing device (11) is mounted between the two members on which the inner member (82) is rotatably supported with respect to the outer member (81).
 密封装置(11)は、内側部材(82)に一体に取り付けられるスリンガ(11a)を備えた第1部材(1a)を含む。スリンガ(11a)は、外部からの泥水等の浸入を防ぎ軸受を保護するためのものである。スリンガ(11a)の素材としては、上述したシール部材において用いられる芯金と同じ素材を用いることができる。スリンガ(11a)の形状は特に限定されないが通常リング状である。また、スリンガ(11a)の寸法は特に限定されず、転がり軸受けの大きさなどに応じて適宜設定することができる。 The sealing device (11) includes a first member (1a) having a slinger (11a) attached integrally to the inner member (82). The slinger (11a) is for preventing intrusion of muddy water from the outside and protecting the bearing. As the material of the slinger (11a), the same material as the core bar used in the sealing member described above can be used. The shape of the slinger (11a) is not particularly limited, but is usually a ring shape. Moreover, the dimension of a slinger (11a) is not specifically limited, It can set suitably according to the magnitude | size of a rolling bearing, etc.
 このとき、スリンガ(11a)には磁性ゴム成形品(12a)が固着されていることが好ましい。磁性ゴム成形品(12a)は磁性粉を含む磁性ゴム組成物を加硫することで得ることができる。このとき、様々なゴムが用いられるが、耐油性や耐熱性、価格などのバランスからニトリルゴムが好適に用いられる。また磁性粉としては、フェライト磁性粉や希土類磁性粉などが挙げられるが、コストや耐久性の観点からフェライト磁性粉が好適に用いられる。スリンガ(11a)に磁性ゴム成形品(12a)を固着させる方法は特に限定されず、接着剤を予め塗布したスリンガ(11a)に磁性ゴム組成物を載置しプレスする方法や、金型に接着剤を予め塗布したスリンガ(11a)と磁性ゴム組成物とを充填してプレスする方法が挙げられる。 At this time, it is preferable that the magnetic rubber molded article (12a) is fixed to the slinger (11a). The magnetic rubber molded product (12a) can be obtained by vulcanizing a magnetic rubber composition containing magnetic powder. At this time, various rubbers are used, but nitrile rubber is preferably used from the balance of oil resistance, heat resistance, price, and the like. Examples of the magnetic powder include ferrite magnetic powder and rare earth magnetic powder. Ferrite magnetic powder is preferably used from the viewpoint of cost and durability. The method for fixing the magnetic rubber molded article (12a) to the slinger (11a) is not particularly limited. The magnetic rubber composition is placed on the slinger (11a) pre-applied with an adhesive and pressed, or bonded to the mold. And a method of filling and pressing the slinger (11a) previously coated with the agent and the magnetic rubber composition.
 密封装置(11)は、外側部材に一体に取り付けられる芯金(21a)及び該芯金(21a)に固着されるゴム成形品(22a)を備えた第2部材(2a)を含む。また、ゴム成形品(22a)は、スリンガ(11a)に弾接するリップ部(23a~25a)を有する。このとき、リップ部(23a~25a)は、スリンガ(11a)に近接していてもかまわない。ここで、第2部材(2a)は、上述したシール部材の一例に相当するものである。すなわち、第2部材(2a)におけるゴム成形品(22a)は、上述した本発明のゴム成形品であり、ニトリルゴム100質量部、DBP吸油量が150mL/100g以上1000mL/100g以下の導電性カーボンブラック1~30質量部及びシリル化されたクレー5~60質量部を含有するゴム組成物を加硫してなるゴム成形品である。 The sealing device (11) includes a second member (2a) including a metal core (21a) integrally attached to the outer member and a rubber molded product (22a) fixed to the metal core (21a). Further, the rubber molded product (22a) has lip portions (23a to 25a) that elastically contact the slinger (11a). At this time, the lip portions (23a to 25a) may be close to the slinger (11a). Here, the second member (2a) corresponds to an example of the sealing member described above. That is, the rubber molded product (22a) in the second member (2a) is the above-described rubber molded product of the present invention, and conductive carbon having 100 parts by mass of nitrile rubber and a DBP oil absorption of 150 mL / 100 g or more and 1000 mL / 100 g or less. A rubber molded product obtained by vulcanizing a rubber composition containing 1 to 30 parts by mass of black and 5 to 60 parts by mass of silylated clay.
 図3に示す密封装置(11)においては、第1部材(1a)及び第2部材(2a)が、回転軸(L)方向に対して平行に対向するラビリンス構造部(R1)を形成する。ここで、ラビリンス構造部(R1)とは、第1部材(1a)及び第2部材(2a)との間に隙間を形成して、密封装置(11)における空間(S)に異物が浸入することを防止する構造部のことをいう。異物の浸入をより防止する観点から、水接触角の大きいゴム成形品(22a)が、第1部材(1a)と対向してラビリンス構造部(R1)を形成する。隙間の広さ(d1)は、通常、0.1~1.0mmである。なお、ラビリンス構造部(R1)は、回転軸(L)方向に延びるものであるが、その回転軸(L)方向の長さは特に限定されないが、通常、0.5mm以上である。したがって、このラビリンス構造部(R1)の回転軸(L)方向の長さは、図3に示す例から、スリンガ(11a)及び磁性ゴム成形品(12a)の厚みを変更することによって、適宜、延長してもよいし、短縮してもよい。 In the sealing device (11) shown in FIG. 3, the first member (1a) and the second member (2a) form a labyrinth structure portion (R1) that faces the rotation axis (L) in parallel. Here, the labyrinth structure part (R1) forms a gap between the first member (1a) and the second member (2a), and foreign matter enters the space (S) in the sealing device (11). This refers to the structure that prevents this. From the viewpoint of further preventing the entry of foreign matter, the rubber molded product (22a) having a large water contact angle faces the first member (1a) to form the labyrinth structure portion (R1). The width (d1) of the gap is usually 0.1 to 1.0 mm. The labyrinth structure portion (R1) extends in the direction of the rotation axis (L), but the length in the direction of the rotation axis (L) is not particularly limited, but is usually 0.5 mm or more. Therefore, the length of the labyrinth structure portion (R1) in the direction of the rotation axis (L) is appropriately changed by changing the thicknesses of the slinger (11a) and the magnetic rubber molded product (12a) from the example shown in FIG. It may be extended or shortened.
 このような密封装置(11)において、本発明のゴム成形品を用いれば、泥水等がラビリンス構造部(R1)に浸入しようとしても撥水作用によりはじき出されるため、ラビリンス構造部(R1)から空間(S)に泥水等が浸入し難くなる。 In such a sealing device (11), if the rubber molded product of the present invention is used, muddy water or the like is repelled by the water repellent action even if it tries to enter the labyrinth structure portion (R1). It becomes difficult for muddy water or the like to enter (S).
 図4に密封装置(12)の別の例を示す。以下の説明においては、上述した密封装置(11)と異なる点についてのみ説明し、同様の構成要素は同じ参照符号を付してその説明は省略する。図3に示した密封装置(11)と異なる点は、第1部材(1b)のスリンガ(11b)が、第2部材(2a)側に折り返されるとともに回転軸(L)方向に延びる折り返し部Tを有している点である。そして、第1部材(1b)及び第2部材(2a)が、回転軸(L)方向に対して垂直に対向するラビリンス構造部(L2)をさらに形成するとともに、ゴム成形品(22a)が、第1部材(1b)と対向してラビリンス構造部(R2)を形成する点である。ラビリンス構造部(R2)は、ゴム成形品(22a)と折り返し部Tの先端部を被覆している磁性ゴム成形品(12b)の部分とが対向して形成されている。 FIG. 4 shows another example of the sealing device (12). In the following description, only differences from the above-described sealing device (11) will be described, and the same components are denoted by the same reference numerals, and the description thereof is omitted. The difference from the sealing device (11) shown in FIG. 3 is that the slinger (11b) of the first member (1b) is folded back to the second member (2a) side and extends in the direction of the rotation axis (L). It is the point which has. And while the 1st member (1b) and the 2nd member (2a) further form the labyrinth structure part (L2) which opposes perpendicularly to the axis of rotation (L), the rubber molded product (22a), It is a point which forms a labyrinth structure part (R2) facing the 1st member (1b). The labyrinth structure portion (R2) is formed such that the rubber molded product (22a) and the portion of the magnetic rubber molded product (12b) covering the tip of the folded portion T are opposed to each other.
 図4に示した密封装置(12)では、第1部材及(1b)び第2部材(2a)が、回転軸(L)方向に対して垂直に対向するラビリンス構造部(R2)をさらに形成するので、図3で示した密封装置(11)に比べて空間(S)に泥水などの異物が浸入し難い。異物の浸入をより防止する観点から、ゴム成形品(22a)が、第1部材(1b)と対向してラビリンス構造(R2)を形成する。隙間の広さ(d2)は、通常、0.1~1.0mmである。なお、ラビリンス構造部(R2)は、ラビリンス構造部(R1)が延びる方向に対して交差する方向に延びているが、その長さについては特に限定されないが、通常、0.5mm以上である。したがって、このラビリンス構造部(R2)の長さは、図4に示す例から、折り返し部Tの先端部を被覆している磁性ゴム成形品(12b)の部分の厚みを変更することで、延長してもよいし、短縮してもよい。 In the sealing device (12) shown in FIG. 4, the first member and the first member (1b) and the second member (2a) further form a labyrinth structure portion (R2) that is perpendicular to the direction of the rotation axis (L). Therefore, it is difficult for foreign matter such as muddy water to enter the space (S) as compared with the sealing device (11) shown in FIG. From the viewpoint of further preventing intrusion of foreign matter, the rubber molded product (22a) faces the first member (1b) to form a labyrinth structure (R2). The width (d2) of the gap is usually 0.1 to 1.0 mm. In addition, although the labyrinth structure part (R2) extends in a direction intersecting with the direction in which the labyrinth structure part (R1) extends, the length is not particularly limited, but is usually 0.5 mm or more. Therefore, the length of the labyrinth structure part (R2) can be extended by changing the thickness of the part of the magnetic rubber molded product (12b) covering the tip part of the folded part T from the example shown in FIG. Or it may be shortened.
 以下の実施例で使用した原料は以下の通りである。 The raw materials used in the following examples are as follows.
・ニトリルゴム(NBR)
株式会社日本ゼオン社製「Nipol 1042」
 (アクリロニトリル含有量33.5%、ムーニー粘度(ML1+10、100℃)77.5)
・導電性カーボンブラック
ライオン株式会社製「ケッチェンブラック EC-600JD」
 DBP吸油量:495mL/100g
・カーボンブラック
東海カーボン株式会社製のFEF(Fast Extruding Furnace)カーボン「シーストSO」
 DBP吸油量:115mL/100g
・ Nitrile rubber (NBR)
“Nipol 1042” manufactured by Nippon Zeon Co., Ltd.
(Acrylonitrile content 33.5%, Mooney viscosity (ML 1 + 10 , 100 ° C.) 77.5)
・ "Ketjen Black EC-600JD" manufactured by Conductive Carbon Black Lion Co., Ltd.
DBP oil absorption: 495mL / 100g
・ Carbon Black Tokai Carbon Co., Ltd. FEF (Fast Extruding Furnace) carbon "Seast SO"
DBP oil absorption: 115mL / 100g
・クレーA
白石カルシウム株式会社製のメルカプトシラン処理カオリン「ST-309」
 pH:5.0、平均粒子径:0.7(μm)
・クレーB
白石カルシウム株式会社製のアミノシラン処理焼成カオリン「ST-100」
 pH:7.8、平均粒子径:3.5(μm)
・クレーC
バーゲス・ピグメント社製のシラン処理されていないクレー「オプチホワイトP」
 pH:4.0、平均粒子径:1.4(μm)
・メルカプトシラン
信越化学工業株式会社製の3-メルカプトプロピルトリメトキシシラン「KBM803」
・ Clay A
Mercaptosilane-treated kaolin “ST-309” manufactured by Shiraishi Calcium Co., Ltd.
pH: 5.0, average particle size: 0.7 (μm)
・ Clay B
Aminosilane-treated calcined kaolin “ST-100” manufactured by Shiraishi Calcium Co., Ltd.
pH: 7.8, average particle size: 3.5 (μm)
・ Clay C
Non-silane treated clay “Opti White P” manufactured by Burgess Pigment
pH: 4.0, average particle size: 1.4 (μm)
・ Mercaptosilane 3-mercaptopropyltrimethoxysilane “KBM803” manufactured by Shin-Etsu Chemical Co., Ltd.
・ステアリン酸(滑剤)
日油株式会社製「ステアリン酸 さくら」
・酸化亜鉛
ハクスイテック株式会社製「酸化亜鉛1種」
・可塑剤
株式会社ADEKA製のアジピン酸エーテルエステル系可塑剤「アデカサイザー RS-107」
・加硫促進剤(MBTS)
三新化学工業株式会社製の2,2’-ジベンゾチアゾリルジスルフィド(MBTS)「サンセラーDM」
・加硫促進剤(TETD)
三新化学工業株式会社製のテトラエチルチウラムジスルフィド(TETD)「サンセラーTET-G」
・硫黄
細井化学工業株式会社製「微粉硫黄500mesh」
・ Stearic acid (lubricant)
NOF Corporation “Stearic acid cherry”
-"Zinc oxide type 1" manufactured by Zinc Oxide
・ Plasticizer Adepic acid ether plasticizer "ADEKA SIZER RS-107" manufactured by ADEKA
・ Vulcanization accelerator (MBTS)
2,2'-Dibenzothiazolyl disulfide (MBTS) "Sunseller DM" manufactured by Sanshin Chemical Industry Co., Ltd.
・ Vulcanization accelerator (TETD)
Tetraethylthiuram disulfide (TETD) "Sunseller TET-G" manufactured by Sanshin Chemical Industry Co., Ltd.
・ Sulfur Hosoi Chemical Co., Ltd. “fine sulfur 500 mesh”
実施例1
(加硫ゴムシートの作製)
 以下に示す組成の混合物を、オープンロールを用いて温度40℃で60分間混練し、厚さ2.0~3.0mmの未加硫ゴムシートを作製した。そして、得られた未加硫ゴムシートを150℃で10分間プレス加硫して縦(長辺)20mm×横(短辺)15mm×厚さ2mmの加硫ゴムシートを得た(以下、ゴムシートと略記することがある)。
 ・NBR:100質量部
 ・導電性カーボンブラック:8質量部
 ・FEFカーボンブラック:25質量部
 ・クレーA:30質量部
 ・ステアリン酸:1質量部
 ・酸化亜鉛:5質量部
 ・可塑剤:10質量部
 ・加硫促進剤(MBTS):2質量部
 ・加硫促進剤(TETD):1.5質量部
 ・硫黄1.5質量部
Example 1
(Production of vulcanized rubber sheet)
A mixture having the following composition was kneaded for 60 minutes at a temperature of 40 ° C. using an open roll to prepare an unvulcanized rubber sheet having a thickness of 2.0 to 3.0 mm. The obtained unvulcanized rubber sheet was press vulcanized at 150 ° C. for 10 minutes to obtain a vulcanized rubber sheet having a length (long side) 20 mm × width (short side) 15 mm × thickness 2 mm (hereinafter referred to as rubber). Abbreviated as sheet).
-NBR: 100 parts by mass-Conductive carbon black: 8 parts by mass-FEF carbon black: 25 parts by mass-Clay A: 30 parts by mass-Stearic acid: 1 part by mass-Zinc oxide: 5 parts by mass-Plasticizer: 10 parts by mass Parts ・ Vulcanization accelerator (MBTS): 2 parts by mass ・ Vulcanization accelerator (TETD): 1.5 parts by mass ・ Sulfur 1.5 parts by mass
(シール部材の作製)
 オープンロールを用いて、上記「加硫ゴムシートの作製」と同様にして、未加硫ゴムシートを得た。次に、リング状の金型を用意して、その中に芯金(冷間圧延鋼板)を入れた。そして、芯金の上に、得られた未加硫ゴムシートを載せ、150℃、10分、150kgf/cmでプレスして加硫成形を行った。このようにしてリング状の芯金の表面がゴム成形品で被覆されたシール部材を得た。得られたシール部材2Bは、図2に示すように、芯金3Aと、当該芯金3Bに接着したゴム成形品4Bとを備えている。また、芯金3Bの表面の一部は外部に露出していて、ゴム成形品4Bはリップ部5d~fを有している。なお、このシール部材はその後、転がり軸受に装着可能である。
(Production of seal member)
Using an open roll, an unvulcanized rubber sheet was obtained in the same manner as in “Preparation of vulcanized rubber sheet”. Next, a ring-shaped mold was prepared, and a cored bar (cold rolled steel sheet) was placed therein. Then, the obtained unvulcanized rubber sheet was placed on the cored bar, and vulcanized by pressing at 150 ° C. for 10 minutes at 150 kgf / cm 2 . In this way, a seal member was obtained in which the surface of the ring-shaped cored bar was covered with a rubber molded product. As shown in FIG. 2, the obtained sealing member 2B includes a cored bar 3A and a rubber molded product 4B bonded to the cored bar 3B. Further, a part of the surface of the cored bar 3B is exposed to the outside, and the rubber molded product 4B has lip portions 5d to 5f. This seal member can then be mounted on a rolling bearing.
[評価]
(引張試験)
 JIS K6251に準拠して引張試験を行った。得られた未架橋ゴムシートを用い180℃で3分間プレスして架橋させて厚さ2mmの架橋ゴムシートを得た。得られた架橋ゴムシートを打ち抜いて得られた、ダンベル状3号形の試験片を用い、23℃、相対湿度50%において、引張速度500mm/分の引張速度で、引張強さ(MPa)と伸び(%)を測定した。その結果、引張強さは16.8MPaであり、伸びは400%であった。これらの結果を表1に示す。
[Evaluation]
(Tensile test)
A tensile test was performed according to JIS K6251. The obtained uncrosslinked rubber sheet was pressed and crosslinked at 180 ° C. for 3 minutes to obtain a crosslinked rubber sheet having a thickness of 2 mm. Using a dumbbell-shaped No. 3 test piece obtained by punching out the obtained crosslinked rubber sheet, the tensile strength (MPa) was obtained at a tensile rate of 500 mm / min at 23 ° C. and a relative humidity of 50%. Elongation (%) was measured. As a result, the tensile strength was 16.8 MPa and the elongation was 400%. These results are shown in Table 1.
(体積抵抗値の測定)
 JIS C2139に準拠したホイートストンブリッジ法により、得られたゴムシートの体積抵抗値を測定した。結果を表1に示す。
(Measurement of volume resistance)
The volume resistance value of the obtained rubber sheet was measured by the Wheatstone bridge method based on JIS C2139. The results are shown in Table 1.
(接触角の測定)
 得られたゴムシートの表面に蒸留水を15μL滴下した後、室温にて40分間放置した。そして、メイワフォーシス社製接触角測定装置(CCDカメラ)「P-300」を用いて、液滴法による蒸留水に対する静的接触角を測定した。結果を表1に示す。
(Measurement of contact angle)
After 15 μL of distilled water was dropped on the surface of the obtained rubber sheet, it was allowed to stand at room temperature for 40 minutes. Then, using a contact angle measuring device (CCD camera) “P-300” manufactured by Meiwa Forsys, the static contact angle with respect to distilled water by the droplet method was measured. The results are shown in Table 1.
(塩水浸漬試験)
 得られたシール部材を、0.5質量%の塩化ナトリウム水溶液に室温にて48時間浸漬した。そして、シール部材を塩化ナトリウム水溶液から取り出し、以下の方法で評価した。
(Salt water immersion test)
The obtained sealing member was immersed in a 0.5% by mass aqueous sodium chloride solution at room temperature for 48 hours. And the sealing member was taken out from the sodium chloride aqueous solution, and the following methods evaluated.
・芯金の錆
 芯金が露出している部分を目視にて観察して以下の基準で評価した。結果を表1に示す。
 A:芯金に錆は殆ど発生していなかった
 B:芯金に錆が少し発生していた
 C:芯金に錆が多く発生していた
-Rust of the cored bar The exposed part of the cored bar was visually observed and evaluated according to the following criteria. The results are shown in Table 1.
A: Almost no rust was generated on the core metal. B: A little rust was generated on the core metal. C: A lot of rust was generated on the core metal.
・ゴム成形品の変形
 芯金を被覆しているゴム成形品を目視にて観察して以下の基準で評価した。結果を表1に示す。
 A:変形は確認できなかった
 B:わずかに変形していた
 C:大きく変形していた
-Deformation of rubber molded product The rubber molded product covering the core metal was visually observed and evaluated according to the following criteria. The results are shown in Table 1.
A: Deformation could not be confirmed B: Slightly deformed C: Largely deformed
 実施例2~4及び比較例1
 上記「加硫ゴムシートの作製」及び「シール部材の作製」において、成分の種類及び量を表1に示すように変更した以外は実施例1と同様にしてゴムシート及びシール部材を得た。そして、実施例1と同様の評価を行った。結果を表1に示す。
Examples 2 to 4 and Comparative Example 1
A rubber sheet and a sealing member were obtained in the same manner as in Example 1 except that the types and amounts of the components were changed as shown in Table 1 in the above-mentioned “Preparation of vulcanized rubber sheet” and “Preparation of sealing member”. And evaluation similar to Example 1 was performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例5
(密封装置の作製)
 金型を用意して、その中にリング状の芯金(冷間圧延鋼板)を入れた。そして、芯金の上に、実施例1の未加硫ゴムシートを載せ、150℃、10分、150kgf/cmでプレスして加硫成形を行った。このようにしてリング状の芯金21aの表面がゴム成形品(22a)で被覆された第2部材(2a)を得た。得られた第2部材(2a)は、図3に示すように、芯金(21a)と、当該芯金(21a)に接着したゴム成形品(22a)とを備えている。また、芯金(21a)の表面の一部は外部に露出していて、ゴム成形品(22a)はリップ部(23a)~(25a)を有している。
Example 5
(Production of sealing device)
A mold was prepared, and a ring-shaped core metal (cold rolled steel sheet) was put therein. Then, the unvulcanized rubber sheet of Example 1 was placed on the cored bar and pressed at 150 ° C. for 10 minutes at 150 kgf / cm 2 to perform vulcanization molding. Thus, the 2nd member (2a) by which the surface of the ring-shaped metal core 21a was coat | covered with the rubber molded product (22a) was obtained. The obtained 2nd member (2a) is provided with the metal core (21a) and the rubber molded product (22a) adhere | attached on the said metal core (21a), as shown in FIG. Further, a part of the surface of the core metal (21a) is exposed to the outside, and the rubber molded product (22a) has lip portions (23a) to (25a).
 次に、以下に示す原料を加圧型ニーダーにて混練した後、シート状に成形して未加硫磁性ゴムシートを得た。そして、得られた未加硫ゴムシートをドーナツ状に打ち抜いた。
 ・NBRポリマー(JSR N237H):100質量部
 ・ストロンチウム-フェライト(圧縮密度3.1g/cm):870質量部
 ・ステアリン酸:1質量部
 ・マイクロクリスタリンワックス(HIMIC1070):3質量部
 ・ポリエステル系可塑剤(ポリサイザーW320):3質量部
 ・メルカプトプロピルトリメトキシシラン:1質量部
 ・硫黄:0.5質量部
 ・活性亜鉛華:4質量部
 ・ジフェニルアミン:2質量部
 ・N-シクロヘキシルベンゾチアジル-2-スルフェンアミド:1.5質量部
 ・テトラメチルチウラムジスルフィド:2質量部
Next, the following raw materials were kneaded with a pressure kneader and then formed into a sheet shape to obtain an unvulcanized magnetic rubber sheet. The obtained unvulcanized rubber sheet was punched into a donut shape.
NBR polymer (JSR N237H): 100 parts by mass Strontium-ferrite (compressed density 3.1 g / cm 3 ): 870 parts by mass Stearic acid: 1 part by mass Microcrystalline wax (HIMIC 1070): 3 parts by mass Polyester Plasticizer (Polycizer W320): 3 parts by mass Mercaptopropyltrimethoxysilane: 1 part by mass Sulfur: 0.5 part by mass Active zinc white: 4 parts by mass Diphenylamine: 2 parts by mass N-cyclohexylbenzothiazyl 2-sulfenamide: 1.5 parts by mass Tetramethylthiuram disulfide: 2 parts by mass
 SUS430からなる断面L字型でリング状のものをスリンガ(11a)として準備した。次に、リング状の金型を用意して、その中にスリンガ(11a)を入れた。そして、スリンガ(11a)の上に、得られた未加硫磁性ゴムシートを載せ、150℃、10分、150kgf/cmでプレスして加硫成形を行い、スリンガ(11a)に磁性ゴム成形品(12a)が接着された第1部材(1a)を得た。そして、第2部材(2a)と第1部材(1a)を用いて、図3に示す密封装置(11)を作製した。図3に示す密封装置(11)における隙間の広さ(d1)は、0.4mmである。 A ring-shaped L-shaped section made of SUS430 was prepared as a slinger (11a). Next, a ring-shaped mold was prepared, and a slinger (11a) was put therein. Then, the obtained unvulcanized magnetic rubber sheet is placed on the slinger (11a) and pressed at 150 ° C. for 10 minutes at 150 kgf / cm 2 to perform vulcanization molding. The magnetic rubber molding is performed on the slinger (11a). The 1st member (1a) with which the goods (12a) was adhere | attached was obtained. And the sealing device (11) shown in FIG. 3 was produced using the 2nd member (2a) and the 1st member (1a). The width (d1) of the gap in the sealing device (11) shown in FIG. 3 is 0.4 mm.
(泥水試験)
 得られた密封装置(11)を用いて泥水試験を行った。このときの泥水試験とは、図示しない泥水試験装置に密封装置(11)を組み込み、泥水に密封装置(11)を半分浸漬させて、泥水試験装置を回転数1100r/minにて20時間回転させた後、4時間停止するという工程を1サイクルとして、この工程を繰り返し行う試験である。このとき、泥水試験装置には図示しない漏電センサーが設けられている。泥水がラビリンス構造部(R1)、リップ部(25a)、リップ部(24a)及びリップ部(23a)を通過すると、漏電センサーにより泥水が検知されるようになっている。泥水試験を開始してから、泥水が検知されるまでの時間は310時間であった。結果を表2に示す。
(Muddy water test)
A muddy water test was conducted using the obtained sealing device (11). In this muddy water test, the sealing device (11) is incorporated in a muddy water testing device (not shown), the sealing device (11) is half immersed in the muddy water, and the muddy water testing device is rotated at a rotation speed of 1100 r / min for 20 hours. In this test, the process of stopping for 4 hours is defined as one cycle, and this process is repeated. At this time, an earth leakage sensor (not shown) is provided in the muddy water testing apparatus. When the muddy water passes through the labyrinth structure portion (R1), the lip portion (25a), the lip portion (24a), and the lip portion (23a), the muddy water is detected by the leakage sensor. The time from the start of the muddy water test until the muddy water was detected was 310 hours. The results are shown in Table 2.
実施例6
 図4に示すように、第1部材(1b)のスリンガ(11b)を、折り返し部(T)を有するものに変えた以外は実施例5と同様にして密封装置(12)を作製して、泥水試験を行った。結果を表2に示す。図4に示す密封装置(12)における隙間の広さ(d1)は、0.4mmであり、隙間の広さ(d2)は、0.4mmである。
Example 6
As shown in FIG. 4, the sealing device (12) was produced in the same manner as in Example 5 except that the slinger (11b) of the first member (1b) was changed to one having the folded portion (T). A muddy water test was conducted. The results are shown in Table 2. In the sealing device (12) shown in FIG. 4, the width (d1) of the gap is 0.4 mm, and the width (d2) of the gap is 0.4 mm.
比較例2
 表1の比較例1に記載のゴム組成物を用いて第2部材を作製した以外は実施例5と同様にして密封装置を作製した。そして、実施例5と同様にして泥水試験を行った。結果を表2に示す。
Comparative Example 2
A sealing device was produced in the same manner as in Example 5 except that the second member was produced using the rubber composition described in Comparative Example 1 in Table 1. And the muddy water test was done like Example 5. The results are shown in Table 2.
比較例3
 表1の比較例1に記載のゴム組成物を用いて第2部材を作製した以外は実施例6と同様にして密封装置を作製した。そして、実施例5と同様にして泥水試験を行った。結果を表2に示す。
Comparative Example 3
A sealing device was produced in the same manner as in Example 6 except that the second member was produced using the rubber composition described in Comparative Example 1 in Table 1. And the muddy water test was done like Example 5. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  1 軸受
  2A、2B シール部材
  3A、3B 芯金
  4A、4B ゴム成形品
  5a~5f リップ部
  6 外輪
  8 ハブ輪
  81 外側部材
  82 内側部材
  11、12 密封装置
  1a、1b 第1部材
  11a、11b スリンガ
  12a、12b 磁性ゴム成形品
  2a 第2部材
  21a 芯金
  22a ゴム成形品
  23a~25a リップ部
  R1、R2 ラビリンス構造部
  L 回転軸
  S 空間
DESCRIPTION OF SYMBOLS 1 Bearing 2A, 2B Seal member 3A, 3B Core metal 4A, 4B Rubber molded product 5a-5f Lip part 6 Outer ring 8 Hub ring 81 Outer member 82 Inner member 11, 12 Sealing device 1a, 1b First member 11a, 11b Slinger 12a , 12b Magnetic rubber molded product 2a Second member 21a Core metal 22a Rubber molded product 23a to 25a Lip part R1, R2 Labyrinth structure part L Rotating shaft S Space

Claims (14)

  1.  ニトリルゴム(A)100質量部、DBP吸油量が150mL/100g以上1000mL/100g以下の導電性カーボンブラック(B)1~30質量部及びシリル化されたクレー(C)5~60質量部を含有するゴム組成物。 Contains 100 parts by mass of nitrile rubber (A), 1 to 30 parts by mass of conductive carbon black (B) having a DBP oil absorption of 150 mL / 100 g or more and 1000 mL / 100 g or less, and 5 to 60 parts by mass of silylated clay (C) A rubber composition.
  2.  DBP吸油量が30mL/100g以上150mL/100g未満のカーボンブラック(D)2~50質量部をさらに含有する請求項1に記載のゴム組成物。 The rubber composition according to claim 1, further comprising 2 to 50 parts by mass of carbon black (D) having a DBP oil absorption of 30 mL / 100 g or more and less than 150 mL / 100 g.
  3.  シリル化されたクレー(C)の表面がアルコキシシランでシリル化されてなる請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the surface of silylated clay (C) is silylated with alkoxysilane.
  4.  前記アルコキシシランがシランカップリング剤である請求項3に記載のゴム組成物。 The rubber composition according to claim 3, wherein the alkoxysilane is a silane coupling agent.
  5.  請求項1~4のいずれかに記載のゴム組成物を加硫してなるゴム成形品。 A rubber molded product obtained by vulcanizing the rubber composition according to any one of claims 1 to 4.
  6.  体積抵抗値が1×10Ω・cm以下である請求項5に記載のゴム成形品。 The rubber molded article according to claim 5, wherein the volume resistance value is 1 × 10 5 Ω · cm or less.
  7.  水滴滴下から40分後のゴム成形品表面の水接触角が40°以上である請求項5又は6に記載のゴム成形品。 The rubber molded product according to claim 5 or 6, wherein the water contact angle on the surface of the rubber molded product 40 minutes after the dropping of the water droplet is 40 ° or more.
  8.  請求項5~7のいずれかに記載のゴム成形品と芯金とからなるシール部材。 A sealing member comprising the rubber molded product according to any one of claims 5 to 7 and a cored bar.
  9.  請求項5~7のいずれかに記載のゴム成形品の製造方法であって;
     ニトリルゴム(A)、導電性カーボンブラック(B)、シリル化されたクレー(C)及び加硫剤(E)を混練してゴム組成物を得る混練工程と、
     前記ゴム組成物を加硫する加硫工程とを備えるゴム成形品の製造方法。
    A method for producing a rubber molded product according to any one of claims 5 to 7;
    A kneading step of kneading nitrile rubber (A), conductive carbon black (B), silylated clay (C) and vulcanizing agent (E) to obtain a rubber composition;
    A method for producing a rubber molded article comprising a vulcanization step of vulcanizing the rubber composition.
  10.  請求項5~7のいずれかに記載のゴム成形品の製造方法であって;
     ニトリルゴム(A)、導電性カーボンブラック(B)、シリル化されていないクレー(F)、アルコキシシラン(G)及び加硫剤(E)を混練してゴム組成物を得る混練工程と、
     前記ゴム組成物を加硫する加硫工程とを備えるゴム成形品の製造方法。
    A method for producing a rubber molded product according to any one of claims 5 to 7;
    A kneading step of kneading nitrile rubber (A), conductive carbon black (B), unsilylated clay (F), alkoxysilane (G) and vulcanizing agent (E) to obtain a rubber composition;
    A method for producing a rubber molded article comprising a vulcanization step of vulcanizing the rubber composition.
  11.  前記混練工程において、さらにカーボンブラック(D)を混練してゴム組成物を得る請求項9又は10に記載の製造方法。 The manufacturing method according to claim 9 or 10, wherein in the kneading step, carbon black (D) is further kneaded to obtain a rubber composition.
  12.  外側部材に対して内側部材が軸回転可能に支持される当該2部材間に装着される密封装置であって、
     前記内側部材に一体に取り付けられるスリンガを備えた第1部材と、前記外側部材に一体に取り付けられる芯金及び該芯金に固着される請求項5~7のいずれかに記載のゴム成形品を備えた第2部材とを含み、
     前記ゴム成形品が、前記スリンガに弾接又は近接するリップ部を有し、
     前記第1部材及び前記第2部材が、回転軸方向に対して平行に対向するラビリンス構造部(R1)を形成し、前記ゴム成形品が、前記第1部材と対向して前記ラビリンス構造部(R1)を形成することを特徴とする密封装置。
    A sealing device mounted between the two members, in which the inner member is rotatably supported with respect to the outer member,
    The first member having a slinger that is integrally attached to the inner member, the core that is integrally attached to the outer member, and the rubber molded article that is fixed to the core. A second member provided,
    The rubber molded product has a lip portion that is elastically contacted or close to the slinger,
    The first member and the second member form a labyrinth structure portion (R1) facing in parallel with the rotation axis direction, and the rubber molded product faces the first member and the labyrinth structure portion ( R1) is formed.
  13.  前記第1部材及び前記第2部材が、回転軸方向に対して垂直に対向するラビリンス構造部(R2)をさらに形成するとともに、前記ゴム成形品が、前記第1部材と対向して前記ラビリンス構造(R2)を形成する請求項12に記載の密封装置。 The first member and the second member further form a labyrinth structure portion (R2) perpendicularly opposed to the rotation axis direction, and the rubber molded product faces the first member and the labyrinth structure. 13. The sealing device according to claim 12, forming (R2).
  14.  前記第1部材が、前記スリンガに固着される磁性ゴム成形品を有し、
     前記磁性ゴム成形品が、前記ゴム成形品と対向して前記ラビリンス構造部(R1)を形成する請求項12又は13に記載の密封装置。
    The first member has a magnetic rubber molded product fixed to the slinger,
    The sealing device according to claim 12 or 13, wherein the magnetic rubber molded product forms the labyrinth structure portion (R1) facing the rubber molded product.
PCT/JP2016/074717 2015-08-24 2016-08-24 Rubber composition, molded rubber article, and method for producing same WO2017033986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017536470A JP6745534B2 (en) 2015-08-24 2016-08-24 Rubber composition, rubber molded article and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-165200 2015-08-24
JP2015165200 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017033986A1 true WO2017033986A1 (en) 2017-03-02

Family

ID=58100298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074717 WO2017033986A1 (en) 2015-08-24 2016-08-24 Rubber composition, molded rubber article, and method for producing same

Country Status (2)

Country Link
JP (1) JP6745534B2 (en)
WO (1) WO2017033986A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020079615A (en) * 2018-11-13 2020-05-28 内山工業株式会社 Sealing device
CN111465788A (en) * 2017-12-27 2020-07-28 Nok株式会社 Sealing device
JP2020152796A (en) * 2019-03-19 2020-09-24 内山工業株式会社 Seal member for bearing and its manufacturing method
JP2021099136A (en) * 2019-12-23 2021-07-01 中西金属工業株式会社 Rotation seal
JP2021099135A (en) * 2019-12-23 2021-07-01 中西金属工業株式会社 Rotation seal
CN113105677A (en) * 2021-04-06 2021-07-13 浙江固耐橡塑科技有限公司 Conductive sealing material for motor bearing
WO2022080076A1 (en) * 2020-10-14 2022-04-21 ミネベアミツミ株式会社 Roller bearing
CN116419946A (en) * 2020-11-16 2023-07-11 Nok株式会社 Nitrile rubber composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166553A (en) * 2001-11-30 2003-06-13 Nsk Ltd Rolling bearing
JP2004011664A (en) * 2002-06-03 2004-01-15 Nsk Ltd Rolling bearing
JP2007285374A (en) * 2006-04-14 2007-11-01 Ntn Corp Bearing device for wheel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166553A (en) * 2001-11-30 2003-06-13 Nsk Ltd Rolling bearing
JP2004011664A (en) * 2002-06-03 2004-01-15 Nsk Ltd Rolling bearing
JP2007285374A (en) * 2006-04-14 2007-11-01 Ntn Corp Bearing device for wheel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465788A (en) * 2017-12-27 2020-07-28 Nok株式会社 Sealing device
JP2020079615A (en) * 2018-11-13 2020-05-28 内山工業株式会社 Sealing device
JP7249008B2 (en) 2018-11-13 2023-03-30 内山工業株式会社 sealing device
CN111718552B (en) * 2019-03-19 2022-11-01 内山工业株式会社 Bearing seal member and method for manufacturing same
US11371611B2 (en) * 2019-03-19 2022-06-28 Uchiyama Manufacturing Corp. Seal member for bearing and production method therefor
CN111718552A (en) * 2019-03-19 2020-09-29 内山工业株式会社 Bearing seal member and method for manufacturing same
JP2020152796A (en) * 2019-03-19 2020-09-24 内山工業株式会社 Seal member for bearing and its manufacturing method
JP7253781B2 (en) 2019-03-19 2023-04-07 内山工業株式会社 Bearing sealing member and manufacturing method thereof
JP2021099136A (en) * 2019-12-23 2021-07-01 中西金属工業株式会社 Rotation seal
JP2021099135A (en) * 2019-12-23 2021-07-01 中西金属工業株式会社 Rotation seal
WO2022080076A1 (en) * 2020-10-14 2022-04-21 ミネベアミツミ株式会社 Roller bearing
CN116419946A (en) * 2020-11-16 2023-07-11 Nok株式会社 Nitrile rubber composition
CN116419946B (en) * 2020-11-16 2024-03-12 Nok株式会社 Nitrile rubber composition
CN113105677A (en) * 2021-04-06 2021-07-13 浙江固耐橡塑科技有限公司 Conductive sealing material for motor bearing

Also Published As

Publication number Publication date
JP6745534B2 (en) 2020-08-26
JPWO2017033986A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2017033986A1 (en) Rubber composition, molded rubber article, and method for producing same
JP5655511B2 (en) Nitrile rubber composition
JP5761470B2 (en) Nitrile rubber composition
KR20100116140A (en) Gasket material
JP5761471B2 (en) Nitrile rubber composition
JP4577139B2 (en) NBR composition
JP6713678B2 (en) Rubber composition, rubber molded article and method for producing rubber molded article
JP7249008B2 (en) sealing device
CN111718552B (en) Bearing seal member and method for manufacturing same
JP2013133902A (en) Seal device for hub bearing
JP2013181085A (en) Seal for rolling bearing and rubber composition
JP2018203917A (en) Acrylic rubber composition and crosslinked acrylic rubber member
JPH09183867A (en) Wiper blade rubber
US9095870B2 (en) Conductive roll
JP2002265681A (en) Nbr composition
JP2007040412A (en) Rolling bearing for wheel
JP2023152389A (en) Acrylic rubber composition for conductive seal, and sealing device
JP2010071342A (en) Rolling bearing for wheel
JP2019211552A (en) Electrophotographic apparatus conductive roll
JP4048354B2 (en) Sealing member for rolling device
JP2014084979A (en) Seal for rolling bearing
JP2003166553A (en) Rolling bearing
JP2021066849A (en) Rubber composition for base-isolation structure and base-isolation structure
JP2007046708A (en) Rolling bearing for wheel
JP2023045474A (en) Rubber composition for rolling bearing seal member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536470

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839333

Country of ref document: EP

Kind code of ref document: A1