[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017032107A1 - 一种宽带双圆极化rfid天线 - Google Patents

一种宽带双圆极化rfid天线 Download PDF

Info

Publication number
WO2017032107A1
WO2017032107A1 PCT/CN2016/083344 CN2016083344W WO2017032107A1 WO 2017032107 A1 WO2017032107 A1 WO 2017032107A1 CN 2016083344 W CN2016083344 W CN 2016083344W WO 2017032107 A1 WO2017032107 A1 WO 2017032107A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
antenna
layer
dielectric layer
wilkinson power
Prior art date
Application number
PCT/CN2016/083344
Other languages
English (en)
French (fr)
Inventor
李标
蔡凌云
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017032107A1 publication Critical patent/WO2017032107A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • the present application relates to, but is not limited to, the field of wireless communications, and in particular, to a broadband dual circular polarization RFID (Radio Frequency Identification) antenna.
  • a broadband dual circular polarization RFID Radio Frequency Identification
  • RFID tag antenna is a transponder antenna of an RFID electronic tag, and is a communication sensing antenna, which generally forms an RFID electronic tag transponder with a chip. Due to different materials and manufacturing processes, RFID tag antennas are classified into metal etched antennas, printed antennas, and copper-plated antennas. The antenna obtains the energy obtained from the induced current through the RF front-end circuit and sends the digital signal to the logic control circuit for information processing, and sends the information to be recovered back to the reader from the RF front-end circuit, thereby realizing communication identification. It can be seen that the antenna is crucial in the process of data communication between the RFID card and the reader.
  • Ultra-high frequency (UHF) antennas currently have the farthest distance, wideband range from 866 to 869 MHz in Europe, 902 to 928 MHz in South America and North America, and 950 to 956 MHz in Japan and other countries.
  • the current UHF antenna is very susceptible to the environment, because the RFID antenna will move due to the continuous movement of the object, so the radiation direction will also change, so that the reader is prone to miss reading when reading data, which is The antenna is required to have polarization characteristics.
  • the RFID handheld terminals on the market are linearly polarized antennas, so the tag antennas need to be linearly polarized to match, in order to read and write data. This configuration allows the tags to be placed anywhere or to identify the horizontal or vertical poles of the tags. When the application is uncertain, there is a serious phenomenon of missing data.
  • a circularly polarized antenna is used in an RFID system, it can effectively receive a changed signal and reduce the missed reading phenomenon.
  • there are several methods for implementing a circularly polarized antenna first, orthogonal feeding; second, chamfering on the vibrator; third, using cross-coupling feeding.
  • the antenna oscillators corresponding to these methods have a narrow bandwidth and cannot meet the general UHF frequency band; and most of the antennas have weak circular polarization performance and port performance, and the transmission distance is short and the coverage is small when used; in addition, circular polarization
  • the antenna has problems such as difficulty in controlling the shaft ratio, large volume, poor consistency, high cost, and difficulty in mounting the antenna.
  • the method of widening the bandwidth can be a Wilkinson power splitter or the like. But the circular polarization and the wide frequency band are combined There are few RFID antennas at present, such as feeding with Wilkinson power splitter, feeding short-circuited T-bars at different corners through short-circuited column feeds, generating circularly polarized electromagnetic waves through T-bars, and adjusting T-bars.
  • the horizontal and vertical lengths can produce a 90 degree orthogonal mode.
  • the phase shift of 90 degrees by adjusting the T-bar is not as wide as the orthogonal mode bandwidth generated by the Wilkinson splitter excitation quarter-ring patch, T-bar
  • the length adjustment also has certain limitations, which need to be affected by the size of the antenna, so the axial ratio cannot be optimized.
  • the present application provides a broadband double circular polarization RFID antenna, which can combine circular polarization and wide frequency band, and realize axial ratio control.
  • a broadband dual circular polarization radio frequency identification (RFID) antenna includes: a first dielectric layer and a second dielectric layer, a floor copper layer is disposed between the first dielectric layer and the second dielectric layer, and the floor covering a plurality of coupling grooves are disposed on the copper layer, the coupling groove includes a first coupling side strip and a second coupling side strip, the first coupling strip end is connected to the end of the second coupling strip and the first coupling strip
  • the second coupling layer is perpendicular to the second coupling strip; the other side of the second dielectric layer is provided with a Wilkinson power divider feed copper layer.
  • the other side of the first dielectric layer is provided with a radiation patch copper layer, and the radiation patch copper layer is provided with an excitation branch.
  • the excitation branch is a quarter ring excitation branch.
  • the radiation patch copper layer is square.
  • the length difference between the long arm and the short arm of the Wilkinson power splitter is one quarter of the applied wavelength.
  • two coupling slots are disposed on the floor copper layer, and the first coupling strips of the two coupling slots are respectively perpendicular to the long arm and the short arm of the Wilkinson power splitter.
  • the Wilkinson power divider sets a load resistor and a feed line.
  • the first dielectric layer and the second dielectric layer are FR-4 epoxy dielectric sheets.
  • the resistance of the load resistor is twice the resistance of the feed line.
  • the broadband double circular polarized RFID antenna of the present application is phase-shifted by 90 degrees based on the Wilkinson power splitter, and is fed by an L-type or inverted-L coupling to generate a circularly polarized wave when the electromagnetic wave reaches a quarter ring of the surface layer.
  • the RFID antenna that excites the branch to re-energize the circularly polarized wave has the advantages of small size, wide bandwidth, long recognition distance, complete coverage of UHF frequency band, good axial ratio control, simple fabrication, low cost, etc. Market prospects.
  • FIG. 1 is a top plan view of a broadband dual circular polarization RFID antenna provided by an embodiment of the present application
  • FIG. 2 is a side view of a broadband dual circular polarization RFID antenna provided by an embodiment of the present application
  • the embodiment of the present application provides a broadband dual circular polarization radio frequency identification (RFID) antenna, including: a first dielectric layer 901 and a second dielectric layer 902, the first dielectric layer 901 A floor copper layer is disposed between the second dielectric layer 902, and the plurality of coupling grooves 6 are disposed on the floor copper layer, the coupling groove 6 includes a first coupling strip and a second coupling strip, the first The end of the coupling strip is connected to the end of the second coupling strip and the first coupling strip is perpendicular to the second coupling strip; the other side of the second dielectric layer 902 is provided with Wilkinson splitter feed copper Floor.
  • RFID radio frequency identification
  • the other side of the first dielectric layer 901 is provided with a radiation patch copper layer 7, and the radiation patch copper layer 7 is provided with an excitation branch.
  • the excitation branch is a quarter ring excitation branch 8; the radiation patch copper layer 7 is square.
  • the radius of the ring may generally be 13 cm, which may be a reasonable value in other embodiments.
  • the antenna provided by the embodiment of the present application is mainly composed of two dielectric layers and three copper layers.
  • the bottom copper layer is the Wilkinson power divider feed network
  • the middle layer is the floor
  • the floor has two L-types.
  • an inverted L-shaped coupling groove, two L-shaped or inverted L-shaped coupling grooves allow electromagnetic waves to be coupled to the surface of the radiation patch layer through the L-shaped or inverted-L coupling groove, thereby generating circularly polarized waves.
  • the surface copper layer is a radiation patch layer with a quarter ring excitation branch attached. The quarter-ring excitation branch stimulates, thereby disturbing the surface electric field distribution of the surface square groove, thereby exciting the circularly polarized wave again.
  • the length difference between the long arm 4 and the short arm 5 of the Wilkinson power divider 2 is one quarter of the applied wavelength.
  • Wavelength c / f, where c is the speed of light in vacuum, 3 ⁇ 10 8 m / s, the length difference between the long arm 4 and the short arm 5 of the Wilkinson power splitter 2 is one quarter of the antenna The wavelength of the electromagnetic wave transmitted.
  • the Wilkinson power divider 2 sets a load resistor 3 and a feed unit 1.
  • the first coupling strips of the two coupling slots 6 are perpendicular to the long arm 4 and the short arm 5 of the Wilkinson power splitter 2, respectively.
  • the Wilkinson power splitter is used for orthogonal feeding.
  • the lengths of the long arm and the short arm are different by 1/4 of the applied wavelength, and a 90-degree phase shift feed is generated to reach the L-shaped or inverted L-shaped groove of the intermediate layer, and the electromagnetic wave passes through the L.
  • the radiating patch of the type or inverted L-shaped groove coupled to the surface layer is square-grooved to produce a circularly polarized wave. Due to the addition of a quarter-circular circular strip, the surface electric field distribution of the square groove is disturbed by the excitation of the annular strip.
  • the two near-end resonant modes have a phase difference of 90 degrees, thereby exciting the circularly polarized waves again.
  • the circular polarization axis ratio is adjusted by adjusting the length of the two arms of the Wilkinson power divider.
  • the first dielectric layer 901 and the second dielectric layer 902 are FR-4 epoxy dielectric sheets.
  • FR-4 epoxy resin dielectric board according to the application, the industry is generally called: FR-4 Epoxy Glass Cloth, insulation board, epoxy board, epoxy board, brominated epoxy resin Board, FR-4, fiberglass board, fiberglass board, FR-4 reinforcing board, FPC (Flexible Printed Circuit Board) reinforcing board, flexible circuit board reinforcing board, FR-4 epoxy tree Grease board, flame retardant insulation board, FR-4 laminated board, epoxy board, FR-4 light board, FR-4 glass fiber board, epoxy glass cloth board, epoxy glass cloth laminate, circuit board drilling pad .
  • FPC Flexible Printed Circuit Board
  • the resistance of the load resistor 3 is twice the resistance of the feed 1 .
  • the antenna has a wide bandwidth and is less subject to interference
  • the antenna has a flat structure, a small volume, a controllable axial ratio of the antenna, low cost, and simple installation.
  • the embodiment provides a small-sized, wide-band, circular-polarized UHF RFID antenna, comprising two layers of dielectric plates and three layers of copper, wherein the surface copper-clad layer is a slotted radiation patch 7 and an additional circular excitation branch 8
  • the intermediate layer is covered with copper or L-shaped or inverted L-shaped coupling groove 6.
  • the lower layer is covered with copper, Wilkinson power divider 2, load resistor 3, feed line (feeder) 1.
  • the dielectric substrate has two layers, 901 and 902 respectively. composition.
  • the dielectric substrate is a rectangular FR-4 epoxy dielectric plate.
  • the antenna is fed by the microstrip to the Wilkinson power splitter 2, and the microstrip is a 50 ohm feeder 1 so that the Wilkinson splitter 2 loads a load resistor of 100 ohms between the two, in Wilkinson Load resistor 3 is introduced in device 2 to achieve complete matching and high isolation of the signal link and increase the bandwidth of the antenna.
  • the Wilkinson Power Splitter 2 can achieve an arbitrary power distribution ratio by adjusting the branch width of the Wilkinson Power Splitter 2 to achieve different power distribution.
  • the microstrip feeder 1 passes through the long arm 4, the short arm 5, the long arm 4, and the short arm 5 of the Wilkinson power splitter 2, and the lengths of the long arm 4 and the short arm 5 are different, and the wavelength difference is 1/4, and a 90-degree phase shift feed is generated, and the electromagnetic wave arrives.
  • middle layer The L-shaped or inverted-L-shaped groove is coupled to the surface of the square-grooved radiation patch 7 by an L-shaped or inverted-L-shaped groove to produce a circularly polarized wave, which is disturbed by the excitation of the added annular ring segment 8 of the added ring.
  • the electric field distribution of the surface of the groove, the two near-end resonance modes have a phase difference of 90 degrees, thereby exciting the circularly polarized wave again.
  • the circular polarization axis ratio is adjusted by adjusting the length of the two arms of the Wilkinson power divider 2 and the radius of the circular ring to achieve a 3 dB axial ratio.
  • This embodiment discloses a broadband circularly polarized RFID antenna.
  • the double-layer dielectric substrate used for the antenna is made of FR-4 epoxy resin, the dielectric constant is 4.4, the overall size of the antenna is 40mm*45mm, the thickness is 6mm, and the size of the square slotted radiation patch is 30mm*30mm.
  • the radius of one of the circular rings is 13 mm, and the length of the L-shaped or inverted L-shaped grooves is 3.6 mm, 2.5 mm, and the width is 1 mm.
  • the antenna has a feed of 50 ohms and a feed line width of 1.45 mm.
  • the antenna of this embodiment has a small size and is miniaturized without affecting performance.
  • Wilkinson Power Splitter 2 has an isolation resistance of 100 ohms for complete matching and isolation of the two ports.
  • the antenna can operate from 810MHz to 960MHz with an impedance bandwidth of 150MHz, which is increased from the traditional 100MHz to 150MHz.
  • the antenna In the international UHF band (866MHz to 956MHz), the antenna has an axial ratio of 3dB.
  • the embodiment of the present application provides a broadband double circular polarization RFID antenna, which is phase-shifted by 90 degrees based on a Wilkinson power splitter, and is fed by an L-type or inverted-L coupling to generate a circularly polarized wave.
  • a broadband double circular polarization RFID antenna which is phase-shifted by 90 degrees based on a Wilkinson power splitter, and is fed by an L-type or inverted-L coupling to generate a circularly polarized wave.
  • the electromagnetic wave reaches the surface layer
  • One of the circular rings excites the branches to re-energize the circularly polarized wave RFID antenna, which is small in size, wide in bandwidth, long in recognition distance, completely covered in UHF frequency band, well controlled in axial ratio, simple in production, low in cost, etc. Advantages, with good marketing prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种宽带双圆极化无线射频识别RFID天线,包括:第一介质层和第二介质层,所述第一介质层和第二介质层之间设置地板覆铜层,所述地板覆铜层上设置多个耦合槽,所述耦合槽包括第一耦合边条和第二耦合边条,所述第一耦合边条末端与第二耦合边条末端相连并且所述第一耦合边条与第二耦合边条垂直;所述第二介质层的另一侧设置威尔金森功分器馈电覆铜层。如此,能实现将圆极化和宽频段相结合,并实现轴比控制。

Description

一种宽带双圆极化RFID天线 技术领域
本申请涉及但不限于无线通信领域,尤其涉及一种宽带双圆极化RFID(Radio Frequency Identification,无线射频识别)天线。
背景技术
无线射频识别(Radio Frequency Identification,简称RFID)技术是一种非接触式的自动识别技术。RFID标签天线是RFID电子标签的应答器天线,是一种通信感应天线,一般与芯片组成RFID电子标签应答器。RFID标签天线由于材质与制造工艺不同,分为金属蚀刻天线、印刷天线、镀铜天线等几种。天线将从感应电流所获得的能量通过射频前端电路检得数字信号送入逻辑控制电路进行信息处理,又将需回复的信息从射频前端电路发回给读写器,从而实现通讯识别。可见,天线是RFID卡与读写器实现数据通讯过程中至关重要的。目前超高频(UHF)天线感应的距离最远,频段宽,欧洲是从866到869MHz,南美和北美是从902到928MHz,日本和其他国家是从950到956MHz。但是,目前的UHF天线很容易受到环境影响,因为RFID天线会由于物品的不断移动而移动,因此辐射方向也会随之变化,这样读写器在读取数据时容易出现漏读情况,这就要求天线具有极化特性。市面上的RFID手持终端都是线极化天线,那么标签天线也需要是线极化才能匹配,才能读写数据,这种配置使得标签在任意放置的场合或辨别标签的水平极化或垂直极化不确定的场合应用时,出现严重的漏读数据的现象。
如果在RFID系统中使用圆极化天线,可以有效地接收到变化的信号,减少漏读现象。目前实现圆极化天线的方法有以下几种:一、正交馈电;二、在振子上切角;三、采用十字耦合馈电等。但是,这些方法对应的天线振子带宽较窄,无法满足通用的UHF频段;并且大多的天线圆极化性能和端口性能都还比较弱,使用时传输距离短、覆盖范围小;此外,圆极化天线存在轴比难控制、体积大、一致性差、成本高、天线难于安装等问题。
展宽带宽的方法可采用威尔金森功分器等。但是将圆极化和宽频段相结 合的RFID天线目前很少,例如采用威尔金森功分器进行馈电,通过短路柱馈电到达异面转角处的短路T型条,通过T型条产生圆极化电磁波,调节T型条水平和垂直的长度可以产生90度的正交模。虽然实现了天线的圆极化,但是通过调节T型条而产生的相移90度并不如威尔金森功分器激励四分之一环形贴片产生的正交模带宽宽,T型条的长度调节也有一定的限制,需要受天线尺寸的影响,所以轴比不能达到最佳。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种宽带双圆极化RFID天线,能实现将圆极化和宽频段相结合,并实现轴比控制。
本申请采取的技术方案如下:
一种宽带双圆极化无线射频识别(RFID)天线,包括:第一介质层和第二介质层,所述第一介质层和第二介质层之间设置地板覆铜层,所述地板覆铜层上设置多个耦合槽,所述耦合槽包括第一耦合边条和第二耦合边条,所述第一耦合边条末端与第二耦合边条末端相连并且所述第一耦合边条与第二耦合边条垂直;所述第二介质层的另一侧设置威尔金森功分器馈电覆铜层。
可选地,所述第一介质层的另一侧设置辐射贴片覆铜层,所述辐射贴片覆铜层上设置激励枝节。
可选地,所述激励枝节为四分之一圆环激励枝节。
可选地,所述辐射贴片覆铜层为正方形。
可选地,所述威尔金森功分器的长臂与短臂的长度差为四分之一的应用波长。
可选地,所述地板覆铜层上设置两个耦合槽,所述两个耦合槽的第一耦合边条分别垂直威尔金森功分器的长臂和短臂。
可选地,所述威尔金森功分器设置加载电阻和馈线。
可选地,所述第一介质层和第二介质层为FR-4环氧树脂介质板。
可选地,所述加载电阻的阻值为所述馈线的阻值的二倍。
本申请具有如下有益效果:
本申请的宽带双圆极化RFID天线基于威尔金森功分器进行相移90度,通过L型或者倒L耦合馈电,产生圆极化波,当电磁波到达表层的四分之一圆环激励枝节从而再次激励起圆极化波的RFID天线,尺寸小、带宽宽、识别距离远、完全覆盖超高频频段(UHF)、轴比控制好、制作简单、成本低等优点,具有很好的市场推广前景。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是本申请实施例提供的宽带双圆极化RFID天线的俯视图;
图2是本申请实施例提供的宽带双圆极化RFID天线的侧视图;
其中,1为馈线;2为威尔金森功分器;3为加载电阻;4为威尔金森功分器的长臂;5为威尔金森功分器的短臂;6为耦合槽;7为辐射贴片覆铜层;8为环形激励枝节;9为介质层;901为第一介质层;902为第二介质层。
本发明的实施方式
下面结合附图对本申请的实施例进行说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以相互任意组合。
如图1和图2所示,本申请实施例提供一种宽带双圆极化无线射频识别(RFID)天线,包括:第一介质层901和第二介质层902,所述第一介质层901和第二介质层902之间设置地板覆铜层,所述地板覆铜层上设置多个耦合槽6,所述耦合槽6包括第一耦合边条和第二耦合边条,所述第一耦合边条末端与第二耦合边条末端相连并且所述第一耦合边条与第二耦合边条垂直;所述第二介质层902的另一侧设置威尔金森功分器馈电覆铜层。
可选地,所述第一介质层901的另一侧设置辐射贴片覆铜层7,所述辐射贴片覆铜层7上设置激励枝节。
其中,所述激励枝节为四分之一圆环激励枝节8;所述辐射贴片覆铜层7为正方形。
所述圆环的半径一般可以为13cm,在其他实施例中可以为合理数值。
本申请实施例提供的天线主要由两层介质层、三层覆铜层组成,其中,底层覆铜层为威尔金森功分器馈电网络,中间层为地板,地板上有两个L型或者倒L型的耦合槽,两个L型或者倒L型的耦合槽使得电磁波通过该L型或者倒L型耦合槽耦合到表层的辐射贴片层上,从而产生圆极化波。表层覆铜层为辐射贴片层,附加有四分之一圆环激励枝节。四分之一圆环激励枝节产生激励作用,从而扰乱表层正方形槽的表面电场分布,从而再次激励起圆极化波。
所述威尔金森功分器2的长臂4与短臂5的长度差为四分之一的应用波长。
波长=c/f,这里c是真空中的光速,为3×108m/s,威尔金森功分器2的长臂4与短臂5的长度差值为四分之一所述天线传输的电磁波波长。
所述威尔金森功分器2设置加载电阻3和馈电器1。
所述两个耦合槽6的第一耦合边条分别垂直威尔金森功分器2的长臂4和短臂5。
采用威尔金森功分器进行正交馈电,长臂与短臂的长度相差1/4应用波长,产生90度相移馈电,到达中间层的L型或者倒L型槽,电磁波通过L型或者倒L型槽耦合到表层的辐射贴片为正方形开槽,产生圆极化波,由于加入了四分之一圆环形条,受环形条的激励作用,扰乱正方形槽的表面电场分布,两个近端谐振模有90度的相位差,从而再次激励起圆极化波。通过调节威尔金森功分器两个臂的长度从而调节圆极化轴比。
所述第一介质层901和第二介质层902为FR-4环氧树脂介质板。
FR-4环氧树脂介质板,根据使用的用途不同,行业一般称为:FR-4玻璃布层压板(Epoxy Glass Cloth),绝缘板,环氧板,环氧树脂板,溴化环氧树脂板,FR-4,玻璃纤维板,玻纤板,FR-4补强板,FPC(Flexible Printed Circuit board,柔性印制电路板)补强板,柔性线路板补强板,FR-4环氧树 脂板,阻燃绝缘板,FR-4积层板,环氧板,FR-4光板,FR-4玻纤板,环氧玻璃布板,环氧玻璃布层压板,线路板钻孔垫板。主要技术特点及应用:电绝缘性能稳定,平整度好,表面光滑,无凹坑,厚度公差标准,适合应用于高性能电子绝缘要求的产品,如FPC补强板,PCB钻孔垫板,玻纤介子,电位器碳膜印刷玻璃纤维板,精密游星齿轮(晶片研磨),精密测试板材,电气(电器)设备绝缘撑条隔板,绝缘垫板,变压器绝缘板,电机绝缘件,研磨齿轮,电子开关绝缘板等。
所述加载电阻3的阻值为所述馈电器1的阻值的二倍。
采用本申请实施例的RFID天线,具有以下显著特点:
1)使用时,标签读取距离远、覆盖范围大;
2)该天线的带宽宽,受干扰小;
3)实现了RFID宽频段标签读取距离的稳定;
4)读取标签的可靠性比传统的超高频RFID天线高;
5)该天线平面结构、体积小、天线的轴比可控、成本低、安装简单等。
以下通过具体实施例进行说明。
实施例一
本实施例提供一种小尺寸、宽带、圆极化超高频RFID天线,包括两层介质板、三层覆铜,其中,表层覆铜层为开槽辐射贴片7、附加环形激励枝节8,中间层覆铜有L型或者倒L型耦合槽6,下层覆铜有威尔金森功分器2、加载电阻3、馈线(馈电器)1,介质基板有两层,分别为901和902组成。所述介质基板是一块长方形的FR-4环氧树脂介质板。该天线采用微带馈电到威尔金森功分器2,微带采用的是50欧姆馈线1,所以威尔金森功分器2之间加载100欧的加载电阻3,在威尔金森功分器2中引入了加载电阻3,从而实现信号链路的完全匹配和高度隔离,增加天线的带宽。威尔金森功分器2可以实现任意的功率分配比,通过调节威尔金森功分器2的枝节宽度从而实现不同的功率分配。
微带馈线1通过威尔金森功分器2的长臂4、短臂5,长臂4、短臂5的长度不等,相差1/4应用波长,产生90度相移馈电,电磁波到达中间层 的L型或倒L型槽,通过L型或倒L型槽耦合到表层的正方形开槽辐射贴片7,产生圆极化波,由于受到加入的圆环附加环形枝节8的激励,扰乱正方形槽的表面电场分布,两个近端谐振模有90度的相位差,从而再次激励起圆极化波。通过调节威尔金森功分器2的两个臂的长度和圆环形条的半径来调节圆极化轴比,实现3dB轴比。
实施例二
本实施例公开了一种宽带圆极化RFID天线,请参考图1和图2。天线选用的双层介质基板的材质为FR-4环氧树脂,介电常数为4.4,天线的整体尺寸为40mm*45mm,厚度为6mm,正方形开槽辐射贴片的尺寸为30mm*30mm,四分之一圆环形条的半径为13mm,L型或倒L型槽的长度分别为3.6mm、2.5mm,宽度为1mm。该天线的馈电为50欧姆,馈线宽为1.45mm,本实施例的天线尺寸小,在性能不受影响的前提下实现了小型化。威尔金森功分器2的隔离电阻为100欧姆,实现两个端口的完全匹配和隔离,天线工作的频段可以从810MHz到960MHz,阻抗带宽为150MHz,由传统的100MHz提高到150MHz,完全覆盖了国际超高频频段(866MHz到956MHz),天线的轴比为3dB。
虽然本申请所揭示的实施方式如上,但其内容只是为了便于理解本申请的技术方案而采用的实施方式,并非用于限定本申请。任何本申请所属技术领域内的技术人员,在不脱离本申请所揭示的核心技术方案的前提下,可以在实施的形式和细节上做任何修改与变化,但本申请所限定的保护范围,仍须以所附的权利要求书限定的范围为准。
工业实用性
本申请实施例提供一种宽带双圆极化RFID天线,基于威尔金森功分器进行相移90度,通过L型或者倒L耦合馈电,产生圆极化波,当电磁波到达表层的四分之一圆环激励枝节从而再次激励起圆极化波的RFID天线,尺寸小、带宽宽、识别距离远、完全覆盖超高频频段(UHF)、轴比控制好、制作简单、成本低等优点,具有很好的市场推广前景。

Claims (9)

  1. 一种宽带双圆极化无线射频识别RFID天线,包括:第一介质层和第二介质层,所述第一介质层和所述第二介质层之间设置地板覆铜层,所述地板覆铜层上设置多个耦合槽,所述耦合槽包括第一耦合边条和第二耦合边条,所述第一耦合边条末端与第二耦合边条末端相连并且所述第一耦合边条与所述第二耦合边条垂直;所述第二介质层的另一侧设置威尔金森功分器馈电覆铜层。
  2. 如权利要求1所述的天线,其中,所述第一介质层的另一侧设置辐射贴片覆铜层,所述辐射贴片覆铜层上设置激励枝节。
  3. 如权利要求2所述的天线,其中,所述激励枝节为四分之一圆环激励枝节。
  4. 如权利要求2所述的天线,其中,所述辐射贴片覆铜层为正方形。
  5. 如权利要求1所述的天线,其中,所述威尔金森功分器的长臂与短臂的长度差为四分之一的应用波长。
  6. 如权利要求5所述的天线,其中,所述地板覆铜层上设置两个耦合槽,所述两个耦合槽的第一耦合边条分别垂直所述威尔金森功分器的长臂和短臂。
  7. 如权利要求5所述的天线,其中,所述威尔金森功分器设置加载电阻和馈线。
  8. 如权利要求1所述的天线,其中,所述第一介质层和所述第二介质层为FR-4环氧树脂介质板。
  9. 如权利要求7所述的天线,其中,所述加载电阻的阻值为所述馈线的阻值的二倍。
PCT/CN2016/083344 2015-08-24 2016-05-25 一种宽带双圆极化rfid天线 WO2017032107A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520644005.8 2015-08-24
CN201520644005.8U CN205029009U (zh) 2015-08-24 2015-08-24 一种宽带双圆极化无线射频识别天线

Publications (1)

Publication Number Publication Date
WO2017032107A1 true WO2017032107A1 (zh) 2017-03-02

Family

ID=55261517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083344 WO2017032107A1 (zh) 2015-08-24 2016-05-25 一种宽带双圆极化rfid天线

Country Status (2)

Country Link
CN (1) CN205029009U (zh)
WO (1) WO2017032107A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066070A (zh) * 2018-08-07 2018-12-21 福州福大信捷天线技术有限公司 一种rfid读写器天线及其使用方法
CN109687168A (zh) * 2019-02-27 2019-04-26 中国电子科技集团公司第五十四研究所 一种形变振子圆极化天线
CN109687116A (zh) * 2019-02-01 2019-04-26 桂林电子科技大学 C波段的小型化宽带宽波束圆极化微带天线
CN111600137A (zh) * 2020-05-09 2020-08-28 中国人民武装警察部队工程大学 一种多制式移动通信信号测向天线
CN112134012A (zh) * 2020-10-20 2020-12-25 北京华通嘉业科技有限公司 一种圆极化天线及圆极化阵列天线
CN112787072A (zh) * 2021-01-22 2021-05-11 福建中锐网络股份有限公司 一种uhf频段的矩形开槽圆极化天线
CN113346218A (zh) * 2021-04-25 2021-09-03 天津大学 一种基于sisl结构的高增益5g缝隙耦合太阳能天线
WO2022095866A1 (zh) * 2020-11-04 2022-05-12 蓬托森思股份有限公司 一种基片集成圆极化电磁辐射结构及阵列
US12046823B2 (en) 2022-04-04 2024-07-23 Htc Corporation Communication device for antenna adjustment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205029009U (zh) * 2015-08-24 2016-02-10 中兴通讯股份有限公司 一种宽带双圆极化无线射频识别天线
CN109818155B (zh) * 2019-03-26 2020-12-11 东南大学 一种波束独立可控的双圆极化毫米波反射阵天线
CN113471694B (zh) * 2021-07-05 2022-11-25 上海磐启微电子有限公司 一种超宽带rfid天线
CN117477219B (zh) * 2023-12-28 2024-03-26 北京品驰医疗设备有限公司 天线结构及体外程控设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012527A1 (en) * 2002-07-16 2004-01-22 Alps Electric Co., Ltd. Circularly-polarized-wave patch antenna which can be used in a wide frequency band
CN204029985U (zh) * 2014-08-18 2014-12-17 浙江大学 一种宽带圆极化rfid手持阅读器天线
CN205029009U (zh) * 2015-08-24 2016-02-10 中兴通讯股份有限公司 一种宽带双圆极化无线射频识别天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012527A1 (en) * 2002-07-16 2004-01-22 Alps Electric Co., Ltd. Circularly-polarized-wave patch antenna which can be used in a wide frequency band
CN204029985U (zh) * 2014-08-18 2014-12-17 浙江大学 一种宽带圆极化rfid手持阅读器天线
CN205029009U (zh) * 2015-08-24 2016-02-10 中兴通讯股份有限公司 一种宽带双圆极化无线射频识别天线

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BO, XU ET AL.: "Broadband Circularly Polarized Loop Antenna Based on High-pass and Low-pass Filters for Handheld RFID Reader Applications", PIERS PROCEEDINGS, 28 August 2014 (2014-08-28), Guangzhou, China, pages 500 - 502 *
QIAN, ZUPING ET AL.: "Design of Wide-Band Aperture-Coupled Circularly Polarized Microstrip Antenna", CHINESE JOURNAL OF RADIO SCIENCE, vol. 25, no. 4, 31 August 2010 (2010-08-31), pages 739 and 740, ISSN: 1005-0388 *
ZHANG, HUI ET AL.: "Broadband Circularly Polarized H-Shaped Aperture-Coupled Microstrip Patch Antenna", JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, vol. 29, no. 4, 30 April 2007 (2007-04-30), pages 991 and 992, ISSN: 1009-5896 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066070A (zh) * 2018-08-07 2018-12-21 福州福大信捷天线技术有限公司 一种rfid读写器天线及其使用方法
CN109066070B (zh) * 2018-08-07 2024-02-06 福州福大信捷天线技术有限公司 一种rfid读写器天线及其使用方法
CN109687116B (zh) * 2019-02-01 2024-01-30 桂林电子科技大学 C波段的小型化宽带宽波束圆极化微带天线
CN109687116A (zh) * 2019-02-01 2019-04-26 桂林电子科技大学 C波段的小型化宽带宽波束圆极化微带天线
CN109687168A (zh) * 2019-02-27 2019-04-26 中国电子科技集团公司第五十四研究所 一种形变振子圆极化天线
CN109687168B (zh) * 2019-02-27 2024-06-11 中国电子科技集团公司第五十四研究所 一种形变振子圆极化天线
CN111600137A (zh) * 2020-05-09 2020-08-28 中国人民武装警察部队工程大学 一种多制式移动通信信号测向天线
CN112134012A (zh) * 2020-10-20 2020-12-25 北京华通嘉业科技有限公司 一种圆极化天线及圆极化阵列天线
WO2022095866A1 (zh) * 2020-11-04 2022-05-12 蓬托森思股份有限公司 一种基片集成圆极化电磁辐射结构及阵列
CN112787072A (zh) * 2021-01-22 2021-05-11 福建中锐网络股份有限公司 一种uhf频段的矩形开槽圆极化天线
CN113346218B (zh) * 2021-04-25 2022-05-31 天津大学 一种基于sisl结构的高增益5g缝隙耦合太阳能天线
CN113346218A (zh) * 2021-04-25 2021-09-03 天津大学 一种基于sisl结构的高增益5g缝隙耦合太阳能天线
US12046823B2 (en) 2022-04-04 2024-07-23 Htc Corporation Communication device for antenna adjustment

Also Published As

Publication number Publication date
CN205029009U (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
WO2017032107A1 (zh) 一种宽带双圆极化rfid天线
US7271768B2 (en) Circularly polarized array antenna
CN101807748B (zh) 一种宽带圆极化微带贴片天线
CN201146246Y (zh) 基于环形馈电网络的射频识别圆极化阅读器阵列天线
CN108281776B (zh) Uhf rfid读卡器系统及其读卡器天线
CN105226390B (zh) 一种840/920MHz双频圆极化射频识别读写器天线及其阻抗匹配方法
US8717245B1 (en) Planar multilayer high-gain ultra-wideband antenna
CN104157968A (zh) 一种新概念宽带圆极化天线
JP2000269724A (ja) 多重ループアンテナ
WO2016127595A1 (zh) 无线射频识别rfid标签天线
US20140091979A1 (en) Near-closed polygonal chain microstrip antenna
US9136604B2 (en) Antenna and wireless communication apparatus
US20170317421A1 (en) Low Profile Wideband Planar Antenna Element
US7315283B2 (en) Dual-band circularly polarized antenna
US9929470B2 (en) Low profile wideband planar antenna element with integrated baluns
EP3221926B1 (en) Dual band multi-layer dipole antennas for wireless electronic devices
Dorsey et al. Dual‐band, dual‐circularly polarised antenna element
Wu et al. Substrate integrated waveguide switched beam antenna
US20090002239A1 (en) Micro-strip antenna with l-shaped band-stop filter
TWI285982B (en) Triangular dipole antenna
Abdelrahim et al. Compact broadband dual‐band circularly polarised antenna for universal UHF RFID handheld reader and GPS applications
CN108521014B (zh) 一种应用于rfid的小型化mimo阅读器天线及终端
Chen et al. Annular ring slot antenna design with reconfigurable polarization
Sabran et al. A single band dual-fed circular polarization microstrip antenna for RFID application
CN105529519A (zh) 一种双频带圆极化射频识别阅读器天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838367

Country of ref document: EP

Kind code of ref document: A1