WO2017030392A1 - 저굴절층 및 이를 포함하는 반사 방지 필름 - Google Patents
저굴절층 및 이를 포함하는 반사 방지 필름 Download PDFInfo
- Publication number
- WO2017030392A1 WO2017030392A1 PCT/KR2016/009111 KR2016009111W WO2017030392A1 WO 2017030392 A1 WO2017030392 A1 WO 2017030392A1 KR 2016009111 W KR2016009111 W KR 2016009111W WO 2017030392 A1 WO2017030392 A1 WO 2017030392A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- low refractive
- refractive index
- index layer
- layer
- equation
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
Definitions
- the present invention relates to a low refractive index layer and an antireflection film including the low refractive index layer and a hard coating layer.
- a flat panel display device such as a PDP or LCD is equipped with an anti-reflection film for minimizing reflection of light incident from the outside.
- a method for minimizing the reflection of light a method of dispersing a filler of inorganic fine particles in a resin is coated on a base film and imparts irregularities (ant i-glare: AG coating); There are a method of forming a plurality of layers having different refractive indices on a base film to use interference of light (ant i-ref lect ion: AR coating), or a method of using them in common.
- the absolute amount of reflected light is equivalent to that of a general hard coating, but a low reflection effect can be obtained by reducing the amount of light entering the eye by using light scattering through unevenness.
- the AG coating has poor screen clarity due to surface irregularities, much research has recently been conducted on AR coatings.
- the film using the AR coating a multilayer structure in which a hard coating layer (high refractive index layer), a low reflection coating layer, and the like are laminated on a base film is commercialized.
- the method of forming a plurality of layers as described above has a disadvantage in that scratch resistance is inferior due to weak adhesion between the layers (interfacial adhesion) as a separate process of forming each layer.
- the present invention provides a low refractive index layer that can exhibit excellent optical and mechanical properties.
- the present invention provides an antireflection film including the low refractive layer.
- b * 0 is the b * value of the L * a * b * color coordinate system as determined by the International Lighting Commission of the Low Refractive Layer,
- I is the low refractive index layer to an aqueous solution of sodium hydroxide of 10 parts by weight and heated to 30 ° C>
- the term low refractive index layer may mean a layer having a low refractive index, for example, a layer exhibiting a refractive index of about 1.2 to 1.6.
- the low refractive index layer according to the embodiment has excellent mechanical properties such as scratch resistance and optical properties such as reflectance and color for the visible light region.
- the low refractive index layer can be used in a display device to remarkably improve the glare caused by light incident from the outside of the device without degrading the image quality, and can effectively protect the surface of the device from external stratified black stimulation. have.
- the low refractive layer has a very small change in physical properties even when exposed to alkali. Due to this high alkali resistance, the low refractive index layer can omit the attachment and desorption process of the protective film which is essentially performed to protect the low refractive index during the manufacturing process of the display device, thereby eliminating the production process of the display device Simplify and lower production costs.
- the low refractive index layer is also excellent in alkali resistance at high temperature is expected to be able to greatly improve the production speed and productivity without reducing the quality of the device by adjusting the manufacturing conditions of the manufacturing process of the display device to more severe conditions.
- the low refractive layer may satisfy the above formula (1).
- Equation 1 b * 0 is a value capable of evaluating the initial color of the low refractive index layer, b is a value capable of evaluating the color of the alkali-treated low refractive index layer.
- the low refractive layer is treated with alkali twice, in particular, the second alkali treatment is performed by a high temperature aqueous sodium hydroxide solution. Thereby, alkali resistance at the high temperature of the low refractive layer can be evaluated through the degree of color change of the low refractive layer before and after the alkali treatment of the formula (1).
- the alkali treatment conditions are the same as those described in Equation 1, and for the details related to the alkali treatment, reference may be made to the experimental examples described later. Further, detailed examples related to the evaluation method of the b * value of the L * a * b * color coordinate system for the low refractive layer before and after the alkali treatment may be referred to the experimental example described later.
- the low refractive index layer may have a color change degree (Ab * ) of 0.5 or less, 0.45 or less, or 0.4 or less before and after alkali treatment due to excellent alkali resistance. Since the low refractive index layer may have no color change even after high temperature alkali treatment, Ab * of Equation 1 may be zero.
- the conventional low refractive layer has been added with an inorganic layer agent.
- these inorganic fillers greatly reduced the alkali resistance of the low refractive index layer, making it difficult to apply the low refractive index layer to the manufacturing process of the display device which essentially involves an alkali treatment process, and color the low refractive layer to image quality of the display device. There was a problem that adversely affects.
- the low refractive index layer according to the embodiment has excellent scratch resistance and no color change or minimizes color change of the polymer resin included in the low refractive layer. Properties such as alkali resistance can be exhibited.
- the b * value (b * 0 value of Equation 1) before the alkali treatment of the low refractive layer may be 1 to -8 or 1 to -5.
- the low refractive index layer according to the embodiment may exhibit the color coordinate values as described above, thereby effectively preventing the glare while transmitting the image as it is without changing the quality of the display device image.
- the low refractive index layer according to the embodiment exhibits excellent alkali resistance as described above, and has a characteristic of almost no color change even when exposed to high temperature alkali.
- the b * value (1A value of Equation 1) after alkali treatment of the low refractive index layer may be 1.5 to -8.5, 1 to -8, 0 to -8 or 1.5 to -5.5.
- the low refractive index layer according to the embodiment may satisfy the following formula 2 due to the excellent alkali resistance.
- the unit of the load of Equation 2 is g / (2 * 2 cm 2 ), which means the weight (g) per area (2 * 2 cm 2 ) of 2 cm horizontal, 2 cm vertical.
- Equation 2 So is a value that can evaluate the initial scratch resistance of the low refractive index layer, ⁇ is a value that can evaluate the scratch resistance of the alkali-treated low refractive layer.
- the alkali treatment conditions are the same as in Equation 1, the scratch resistance to the low refractive layer before and after the alkali treatment can be evaluated as described in Equation 2, the details of the scratch resistance evaluation method will be described later in the experimental example Can refer to have.
- the low refractive index layer according to the embodiment may have a change rate (AS) of scratch resistance before and after alkali treatment of Formula 2 due to excellent alkali resistance of 30% or less, 25% or less, 20% or less or 15% or less.
- AS of Formula 2 since the low refractive index layer may exhibit unchanged scratch resistance even after high-temperature alkali treatment, AS of Formula 2 may be.
- the low refractive layer has excellent mechanical properties such as scratch resistance.
- the scratch resistance (S 0 value in Equation 2) before the alkali treatment of the low refractive index layer may be about 250 to 800 g / (2 * 2cm 2 ) black about 300 to 800 g / (2 * 2cm 2 ).
- the low refractive layer may exhibit excellent scratch resistance even after alkali treatment due to the excellent alkali resistance.
- the scratch resistance (value of Equation 2) after alkali treatment of the low refractive index layer may be about 200 to 800 g / (2 * 2 cm 2 ) or about 230 to 800 g / (2 * 2 cm 2 ).
- the low refractive index layer according to the embodiment may exhibit the minimum reflectance in the visible light region together with the excellent optical and mechanical properties described above. More specifically, the low refractive index layer exhibits a minimum reflectance in a wavelength region of about 480 to 680 nm or a wavelength region of about 500 to 580 nm, thereby effectively preventing glare of the display device.
- the low refractive layer according to the embodiment may exhibit a very low reflectance in the visible light region. More specifically, the low refractive index layer may have an average reflectance of 0.9 to 2.5%, 0.9 to 2.2%, 0.9 to 2.0%, 0.9 to 1.53 ⁇ 4> black and 1 to 1.3% for light in the wavelength range of 380 to 780 nm. . Accordingly, when the low refractive index layer is introduced into the display device, glare caused by light incident from the outside may be prevented.
- the average reflectance and color coordinate values of the low refractive index layer may be measured using a spectrophotometer. Specifically, at room temperature, the sampling interval 1 nm (preferably 2 nm or less, but can also be adjusted to 5 nm), t ime constant 0.1 sec, slit width 20 nm, fixing the measurement conditions at medium scanning speed, The opposite side of the surface to be irradiated with light of both sides is darkened so as not to transmit light, and the reflectance and color coordinate values may be measured by irradiating the other surface with light in a wavelength region of 380 nm to 780 nm.
- the low refractive index layer is a base film; Or on a base film as mentioned later If it is formed in the formed hard coating layer, the low refractive black of the base film may darken the surface on which the hard coating layer is not formed so that light cannot be transmitted. For example, the darkening may be performed by attaching a black tape to a corresponding surface.
- the light is irradiated at an angle of incidence of 5 ° and the light reflected at a angle of reflection of 5 ° is provided to provide a standard sample material (BaS0 4 and 95% A1 mirror, provided by Shimadzu. Based on the measured value of), the reflectance according to the wavelength of the low refractive layer is measured (measure mode). The average reflectance and color coordinate values may be derived from the reflectance through the UV-240 IPC color analyzer program.
- the low refractive layer has a surface with irregularities
- the light is incident perpendicularly to the low refractive layer and scattered in all directions to measure the reflected light to measure the standard sample material (BaS0 4 , provided by Shimadzu).
- the reflectance according to the wavelength of the low refractive layer is measured (10 T mode).
- the average reflectance and color coordinate values may be derived from the reflectance through the UV-2401PC color analyzer program.
- the low refractive index layer according to the embodiment which may exhibit excellent optical and mechanical properties, may include a photopolymerizable compound and a polysilsesquioxane substituted with at least one semi-ungsung functional group (polysi sesquioxane), -0_CF 2 CF It may include a photocured obtained by photocuring a photocurable coating composition comprising a fluorine-based compound, 2 -0-CF 3 , including inorganic particles and a photopolymerization initiator.
- a photopolymerizable compound is collectively referred to as a compound causing polymerization reaction when light is irradiated, for example, visible light or ultraviolet light.
- the photocurable coating composition may include a monomer or oligomer comprising a (meth) acryloyl group or a vinyl group as the photopolymerizable compound.
- the monomer or oligomer may include one or more, two or more or three or more (meth) acryloyl groups or vinyl groups.
- (meth) acryl [(meth) acryl] is meant to include both acryl and methacryl.
- the monomer or oligomer containing the (meth) acryloyl group include pentaerythritol tri (meth) acrylate, pentaerythrite tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, Nucleate (meth) acrylate, dipentaerythrate, hepta (meth) acrylate, trimethyl-propane tri (meth) acrylate, trimethylolpropane polyhydroxy tri (meth) acrylate, ethylene glycol di (Meth) acrylate, butanediol di (meth) acrylate, ethylnuclear (meth) acrylate, butyl (meth) acrylate or two or more kinds thereof, or urethane-modified acrylate oligomers, epoxide acrylate oligomers , Ether acrylate oligomers, dendritic acrylate
- the monomer or oligomer containing the vinyl group examples include divinylbenzene, styrene, paramethyl styrene or oligomers obtained by combining one or more of them.
- the molecular weight of the oligomer in the above can be adjusted to 1, 000 to 10,000g / niol.
- the content of the photopolymerizable compound in the photocurable coating composition is 20% by weight to 80% by weight, 30% by weight to 70% by weight, based on the solid content of the photocurable coating composition in consideration of the mechanical properties of the low refractive layer to be finally produced. Or 30% to 65% by weight.
- Solid content of the photocurable coating composition means only a solid component excluding components of the photocurable coating composition thickening liquid, for example, an organic solvent or the like that may be optionally included as described below.
- the photocurable coating composition includes polysilsesquioxane in which one or more semi-functional functional groups are substituted, and can realize low reflectivity and high light transmittance without coloring, improve alkali resistance, and at the same time, excellent wear resistance or It is possible to provide a low refractive index layer that can secure scratch resistance.
- the polysilsesquioxane substituted with at least one semi-functional functional group may be included in an amount of 0.5 to 25 parts by weight, 1 to 20 parts by weight, 1.5 to 19 parts by weight, or 2 to 15 parts by weight with respect to 100 parts by weight of the photopolymerizable compound.
- the content of the polysilsesquioxane substituted with at least one semi-cyclic functional group in the photocurable coating composition is 1% by weight to 25% by weight, 1% by weight to 20% by weight, based on the solid content of the photocurable coating composition.
- » 1% by weight to 15% by weight black may be adjusted to 1% by weight to 10% by weight.
- the content of the polysilsesquioxane substituted with at least one semi-functional functional group is less than the above-mentioned range, the alkali resistance or scratch resistance of the coating film or the polymer resin formed during photocuring of the photocurable coating composition is sufficiently secured. It can be difficult to do.
- the content of the polysilsesquioxane substituted with at least one semi-functional functional group exceeds the above-mentioned range, the transparency of the low refractive layer prepared from the photocurable coating composition may be lowered, and scratch resistance is rather deteriorated. Can be.
- the semi-functional groups which may be substituted in the polysilsesquioxane include alcohols, amines, carboxylic acids, epoxides, imides, (meth) acrylates, nitriles, norbornenes, olefins [al ly, cyclo] Alkenyl (cyc loalkenyl) or vinyldimethylsilyl, etc.], polyethyleneglycol, thiol, and a vinyl group may include one or more functional groups selected from the group, and may preferably include an epoxide or (meth) acrylate. have.
- the semi-functional group is an epoxide
- 2- [3,4-epoxycyclonuclear] ethyl group or 3-glycidoxypropyl group may be introduced as the semi-functional group.
- a (meth) acryloyloxyalkyl group in this case, the alkyl group may have 1 to 6 carbon atoms
- the like may be introduced as a semi-active functional group.
- the polysilsesquioxane employs the same functional group as the photopolymerizable compound as a semi-functional functional group, the polysilsesquioxane having a siloxane bond (-Si-0-) as a skeleton is not included in the photopolymerizable compound. It is prescribed.
- the polysilsesquioxane substituted with one or more of the semi-cyclic functional group is a linear or branched alkyl group of 1 to 30 carbon atoms, a cycloalkyl group of 6 to 30 carbon atoms and an aryl group of 6 to 30 carbon atoms in addition to the above-mentioned semi-functional functional group It may be further substituted with one or more non-banung functional groups selected from the group consisting of.
- the surface of the polysilsesquioxane is substituted with a semi-active functional group and a non-cyclic functional group, so that the siloxane bond (-Si-0-) is in the molecule in the polysilsesquioxane in which the semi-functional functional group is substituted with at least one. While not being exposed to the outside while being located in the alkali resistance of the coating film or polymer resin formed during the photocuring of the photocurable coating composition can be further improved.
- the non-banung functional group introduced into the polysilsesquioxane together with the semi-aromatic functional group is a linear or branched alkyl group having 6 or more carbon atoms; Linear or branched alkyl groups having 6 to 30 carbon atoms; Or in the case of a C6-C30 cycloalkyl group, the alkali resistance of a low refractive layer can be improved more.
- the polysilsesquioxane may be represented as (! ⁇ ⁇ ⁇ ; ⁇ (Where n is 4 to 30 or 8 to 20, R is each independently a semi-functional group; or a straight chain having 1 to 30 carbon atoms or A non-acyclic functional group selected from the group consisting of a branched alkyl group, a cycloalkyl group having 6 to 30 carbon atoms, and an aryl group having 6 to 30 carbon atoms), a random structure, a ladder, a cage, and a partial cage. It can have
- a polysilsesquioxane in which the semi-maleic functional group is substituted with one or more, polyhedral oligomeric yarn substituted with one or more semi-maleic functional groups and having a cage structure Sesquioxane (Polyhedral 01 igomeric Si l sesquioxane) can be used.
- polyhedral oligomeric silsesquioxane may comprise 8 to 20 silicon in the molecule.
- polyhedral oligomer silsesquioxanes which are substituted with one or more semi-active functional groups and have a cage structure
- TMP Diol Isobutyl POSS Cyclohexanediol Isobutyl POSS, 1,2 POSS with one or more alcohol substitutions, such as Propanediol Isobutyl POSS, Oct a (3 hydroxy ⁇ 3 methylbutyldimethyl sioxy) POSS; POSS substituted with one or more amines such as Ami nopropyl Isobutyl POSS, Aminopropyl Isooctyl POSS, Aminoethylaminopropyl Isobutyl POSS, N ⁇ Phenyl ami nopropyl POSS, N ⁇ Methyl ami nopropyl Isobutyl POSS,
- At least one or more of the silicon of the polyhedral oligomeric silsesquioxane may be introduced with a semi-functional functional group, and the above-described non-acyclic functional group may be substituted with the silicone having no semi-functional functional group introduced therein.
- the mechanical properties of the coating film or the polymer resin formed during photocuring of the photocurable coating composition may be greatly improved.
- molecular structural steric hindrance Ster i c hinderance
- the alkali resistance of the coating film or the polymer resin formed during photocuring of the photocurable coating composition can be greatly improved.
- the molar ratio of the semi-ung functional group to the non-banung functional group substituted in the polysilsesquioxane Molar number of the male functional group may be 0.20 or more or 0.30 or more, and may also be 0.20 to 6.00, 0.30 to 4.00 or 0.40 to 3.00.
- the photocurable coating composition includes a fluorine-based compound including -0—CF 2 CF 2 -0-CF 3 .
- the fluorine-based compound refers to a compound having a weight average molecular weight of 2,000 g / mol or more and substituted with fluorine, and such a compound is not included in the definition of the photopolymerizable compound.
- the fluorine-based compound includes -0-CF 2 CF 2 -0-CF 3
- the low refractive layer prepared from the photocurable coating composition may have a lower reflectance and improved light transmittance and also improved alkali resistance and It can exhibit scratch resistance.
- the fluorine-based compound is 0-with -0-CF 2 CF 2 -0- CF 3 (CF 2) n -0- (wherein n is an integer from 1 to 3), and -0-CF 2 CF 2 CF 3 Including the physical properties can be further improved.
- At least one photoreactive functional group is introduced into the fluorine-based compound, and the photoreactive functional group means a functional group capable of participating in the polymerization reaction by irradiation of light, for example, visible light or ultraviolet radiation.
- the photoreactive functional group may include various functional groups known to be able to participate in the polymerization reaction by irradiation of light, and specific examples thereof include (meth) acryloyl groups, epoxy groups, vinyl (vinyl) groups, or merapto. And the like can be mentioned.
- the fluorine-based compound may have a fluorine content of 1% by weight to 25% by weight. If the content of fluorine in the fluorine-based compound is less than the above range, it may be difficult to sufficiently secure physical properties such as alkali resistance because the fluorine component may not be arranged on the surface of the final resultant obtained from the photocurable coating composition. In addition, when the content of fluorine in the fluorine-based compound exceeds the above range, the surface properties of the final resultant obtained from the photocurable coating composition may be lowered or defects may be increased during the post-process to obtain the final resultant.
- the fluorine compound is silicon; Or the side chain black derived from a silicon compound may further contain a repeating unit.
- the fluorine-based compound contains a side chain or repeating unit derived from silicon or a silicon compound
- the content of silicon is relative to the fluorine-based compound. 0.1 weight to 20 weight 3 ⁇ 4>.
- Silicon contained in the fluorine-based compound may serve to prevent haze from occurring in the low refractive layer obtained from the photocurable coating composition of the embodiment, thereby increasing transparency.
- the content of silicon in the fluorine-based compound exceeds the above range, the alkali resistance of the low refractive layer obtained from the photocurable coating composition may be lowered.
- the fluorine-based compound may have a weight average molecular weight of 2,000 to 200, 000 g / m. If the weight average molecular weight of the fluorine-based compound is too small, the low refractive layer obtained from the photocurable coating composition may not have layered alkali resistance. In addition, when the weight average molecular weight of the fluorine-based compound is too large, the low refractive index layer obtained from the photocurable coating composition may not have a layered durability or scratch resistance.
- the weight average molecular weight means a conversion value for standard polystyrene measured by GPCX Gel Permeat ion Chromatograph.
- the fluorine-based compound is i) an aliphatic compound or an aliphatic ring compound substituted with one or more photoreactive functional groups, at least one hydrogen is substituted with fluorine; ii) silicon-based compounds in which at least one carbon of the aliphatic compound or aliphatic ring compound is substituted with silicon; Hi) a siloxane compound in which at least one carbon of the aliphatic compound or aliphatic ring compound is substituted with silicon and at least one -c3 ⁇ 4- is substituted with oxygen; iv) a fluoropolyether wherein at least one -CH 2 -of said aliphatic compound or aliphatic ring compound is substituted with oxygen; Or a combination of two or more thereof or a copolymer.
- Equation 1 In order for the low refractive index layer to exhibit high alkali resistance to satisfy Equation 1 above, a sufficient amount of fluorine should be distributed on the surface of the low refractive layer so that the alkaline solution does not penetrate or be absorbed into the low refractive layer. Even if the alkaline solution penetrates or is absorbed into the layer, the crosslinking density must be high to withstand the alkaline solution.
- the cured product of the bloso-based compound is distributed on the surface of the low refractive layer of the present invention, and even if the low refractive layer is treated with alkali, it is possible to prevent the alkaline solution from penetrating into or absorbing into the low refractive layer.
- the fluorine-based compound since the fluorine-based compound has a higher molecular weight than the above-mentioned photopolymerizable compound and has a smaller amount of photoreactive functional groups for the same volume or weight, the content of the photopolymerizable compound is higher. When it decreases and the content of a fluorine compound increases, the crosslinking density of a low refractive layer tends to fall.
- the cured product of the fluorine-based compound should exist mostly on the surface of the low refractive layer. It is important to control the content of the fluorine-based compound in the photocurable coating composition in order for the cured product of the fluorine-based compound to exist mostly on the surface of the low refractive index layer.
- the photocurable coating composition may contain 1 to 75 parts by weight, 1 to 50 parts by weight, 1 to 30 parts by weight, 1 to 20 parts by weight or 1 to 15 parts by weight with respect to 100 parts by weight of the photopolymerizable compound. It may include.
- the content of the fluorine-based compound in the photocurable coating composition is 0.5% by weight to 50% by weight, 0.5% by weight to 30% by weight, 0.5% by weight to 20% by weight or 1% by weight relative to the solid content of the photocurable coating composition. To 15% by weight.
- the coating property of the photocurable coating composition is lowered or the crosslinking density of the low refractive layer obtained from the photocurable coating composition is lowered, thereby providing sufficient alkali resistance, durability, and scratch resistance. Or the like.
- the amount of the fluorine-based compound is too small compared to the photopolymerizable compound, the fluorine in a layered content is not distributed on the surface of the low refractive layer obtained from the photocurable coating composition, the low refractive layer may not have sufficient alkali resistance. .
- the photocurable coating composition includes inorganic particles having a diameter in nanometer or micrometer units.
- the inorganic particles may be hollow silica particles having a number average particle diameter of 10 to 100 nm.
- the hollow silica particles are silica particles derived from silicon compounds or organosilicon compounds, and mean silica particles having empty spaces on and / or inside the particles.
- the hollow silica particles have a lower refraction than the hollow particles to provide excellent antireflection properties. Can be represented.
- the inorganic particles may have a number average particle diameter of 10 to 100 nm, 20 to 70 nm, or 30 to 70 nm, and the shape of the particles is preferably spherical, but may be amorphous.
- the inorganic particles those whose surfaces are coated with a fluorine-based compound may be used alone, or may be used in combination with inorganic particles whose surfaces are not coated with the fluorine-based compound. Coating the surface of the inorganic particles with a fluorine-based compound may lower the surface energy, and more uniform distribution of the inorganic particles in the photocurable coating composition. Accordingly, the film obtained from the photocurable coating composition containing such inorganic particles may exhibit more improved durability or scratch resistance.
- Particle coating methods or polymerization methods commonly known as coating the fluorine-based compound on the surface of the inorganic particles may be used without particular limitation.
- a method in which the inorganic particles and the fluorine compound are sol-gel reacted in the presence of water and a catalyst to bind the fluorine compound to the surface of the inorganic particle through hydrolysis and condensation reaction may be used.
- the inorganic particles may be included in the composition in the form of a colloid dispersed in a predetermined dispersion medium.
- the colloidal phase including the inorganic particles may include an organic solvent as a dispersion medium.
- the solid content of the inorganic particles in the colloidal phase of the inorganic particles may be determined in consideration of the content range of the inorganic particles in the photocurable coating composition or the viscosity of the photocurable coating composition.
- the solid content of the inorganic particles in the colloidal phase may be 5% by weight to 60% by weight.
- examples of the organic solvent in the dispersion medium include alcohols such as methanol, isopropyl alcohol, ethylene glycol and butanol; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; Aromatic hydrocarbons such as toluene and xylene; Dimethylformamide. Amides such as dimethylacetamide and N-methylpyridone; Esters such as ethyl acetate, butyl acetate and gamma butyrolactone; Ethers such as tetrahydrofuran and 1,4-dioxane; Or combinations thereof.
- alcohols such as methanol, isopropyl alcohol, ethylene glycol and butanol
- Ketones such as methyl ethyl ketone and methyl isobutyl ketone
- Aromatic hydrocarbons such as toluene and xylene
- Dimethylformamide Amides such as dimethylacetamide and N-
- the photocurable coating composition is based on 100 parts by weight of the photopolymerizable compound
- the inorganic particles may comprise 10 to 320 parts by weight, 20 to 200 parts by weight or 30 to 200 parts by weight.
- the content of the inorganic particles in the photocurable coating composition may be adjusted to 10% by weight to 80% by weight, 20% by weight to 70% by weight or 20% by weight to 60% by weight with respect to the solid content of the photocurable coating composition. Can be. If the inorganic particles are added in an excessive amount, scratch resistance or abrasion resistance of the coating film may decrease due to a decrease in the content of the polymer resin.
- the photopolymerization initiator may be used without particular limitation as long as it is a compound known to be used in the photocurable coating composition, and specifically, a benzophenone compound, acetophenone compound, biimidazole compound, triazine compound, oxime compound, or the like. Two or more kinds thereof may be used.
- the photopolymerization initiator may be used in an amount of 1 to 100 parts by weight, 1 to 50 parts by weight, and 1 to 20 parts by weight of black silver.
- the content of the photopolymerization initiator in the photocurable coating composition is 0.1% by weight to 15% by weight, 1% by weight to 10% by weight or 3% by weight to 7% by weight relative to the solids of the photocurable coating composition. Can be adjusted.
- the amount of the photopolymerization initiator is too small, an uncured material remaining in the photocuring step of the photocurable coating composition may occur. If the amount of the photopolymerization initiator is too large, the non-aqueous initiator may remain as an impurity or have a low crosslinking density, thereby lowering mechanical properties or reflectance of the film.
- the photocurable coating composition may further include an organic solvent.
- organic solvents include ketones, alcohols, acetates and ethers, or combinations of two or more thereof.
- Specific examples of such organic solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetylacetone or isobutyl ketone; Alcohols such as methanol, ethane, n-propane, i so-propanol, n-butane, i so-butanol, or t-butanol; Acetates such as ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or two or more kinds thereof.
- the organic solvent is a component of the photocurable coating composition It may be included in the photocurable coating composition as it is added at the time of mixing or the components are added in a dispersed or mixed state in an organic solvent.
- a defect may occur such that the flowability of the photocurable coating composition is lowered, resulting in streaks in the final manufactured film.
- the photocurable coating composition may include an organic solvent such that the concentration of the total solids of the components included is from 1 to 50 wt%, or from 2 to 20 wt%.
- Such photocurable coating compositions may be applied and photocured according to methods known in the art to provide the above-described low refractive layer.
- the photocurable coating composition may be applied on a predetermined substrate.
- the specific type or thickness of the substrate is not particularly limited, and the substrate known to be used for the manufacture of the low refractive layer may be used without particular limitation.
- the photocurable coating composition may be applied using a method and apparatus known in the art, for example, bar coating method such as Meyer bar, gravure coating method, 2 roll l reverse coating method, vacuum s It can be applied by lot die coating or 2 roll coating.
- bar coating method such as Meyer bar, gravure coating method, 2 roll l reverse coating method, vacuum s It can be applied by lot die coating or 2 roll coating.
- the low refractive layer may have a thickness of lnm to 300nm or 50nm to 200nm. Accordingly, the thickness of the photocurable coating composition applied on the predetermined substrate may be adjusted to about lnm to 300ran, or 50nm to 200 ⁇ .
- the photocurable coating composition may be photocured by irradiating ultraviolet or visible light in the wavelength range of 200 to 400nm.
- the exposure amount of the irradiated light may be adjusted in the range of 100 to 4, 000 mJ / cm 2 , the exposure time may be appropriately adjusted according to the exposure apparatus, the wavelength of the irradiation light or the exposure amount used.
- the photocuring step may be performed under a nitrogen atmosphere. Accordingly, nitrogen purging may be further performed before or during the photocuring step.
- the low refractive index layer prepared from the photocurable coating composition as described above is a photopolymerizable compound, polysilsesquioxane substituted with at least one reactive functional group, and -0-CF 2 CF 2 -0-CF 3 It may include a polymer resin comprising a cross-linked polymer between fluorine-based compounds and inorganic particles dispersed in the polymer resin.
- the low refractive index layer of the present invention is not formed only by the above-described components and compositions, and may be formed with various components and compositions with reference to the above contents if the formula 1 is satisfied.
- the low refractive layer On the other hand, according to another embodiment of the invention, the low refractive layer; And a hard coat layer formed on one surface of the low refractive layer. Since the low refractive index layer has been described in detail above, a detailed description thereof will be omitted.
- the hard coating layer a commonly known hard coating layer may be employed without particular limitation.
- the hard coating layer is a photocurable resin and a weight average molecular weight
- Binder resin containing a (co) polymer hereinafter referred to as a high molecular weight (co) polymer
- (co) polymer hereinafter referred to as a high molecular weight (co) polymer
- (co) polymer is meant to include both co-polymers and homo-polymers.
- the high molecular weight (co) polymer may include at least one polymer selected from the group consisting of cellulose-based polymers, acrylic polymers, styrene-based polymers, epoxide-based polymers, nylon-based polymers, urethane-based polymers, and polyolefin-based polymers. Can be.
- the photocurable resin included in the hard coating layer is a polymer of a photopolymerizable compound that may cause polymerization reaction when light such as ultraviolet rays is irradiated, and may be one commonly used in the art.
- the photopolymerizable compound may include a semi-aromatic acrylate oligomer group consisting of urethane acrylate oligomer, epoxide acrylate oligomer, polyester acrylate, and polyether acrylate; And dipentaerythri nucleoacrylate, dipentaerythri pentaacrylate, pentaerythri tetraacrylate, pentaerythri triacrylate, trimethyl to propane triacrylate, glycerin propoxylate triacrylate, Trimethylpropane ethoxylate triacrylate, 1,6-nucleic acid diol.
- Diacrylate, tripropylene glycol One or more selected from the group of polyfunctional acrylate monomers consisting of diacrylate and ethylene glycol diacrylate can be used.
- the organic or inorganic fine particles may have a particle diameter of 1 to 10 mm 3.
- the organic or inorganic fine particles are organic fine particles selected from the group consisting of acrylic resins, styrene resins, epoxy resins and nylon resins or inorganic particles selected from the group consisting of silicon oxide, titanium dioxide, indium oxide, tin oxide, zirconium oxide and zinc oxide. It may be particulate.
- the hard coating layer may be formed from a coating composition comprising organic or inorganic fine particles, a photopolymerizable compound, a photoinitiator, and a high molecular weight (co) polymer.
- the anti-reflection film including such a hard coating layer is excellent in anti-glare effect.
- the hard coating layer may include a binder resin including a photocurable resin; And an antistatic agent dispersed in the binder resin.
- the photocurable resin included in the hard coating layer is a polymer of a photopolymerizable compound that may cause polymerization reaction when light such as ultraviolet rays is irradiated, and may be one commonly used in the art.
- a polyfunctional (meth) acrylate-based monomer or oligomer may be used, wherein the number of (meth) acrylate-based functional groups is 2 to 10, 2 to 8 black is adjusted to 2 to 7 It is possible to secure the desired physical properties of the hard coating layer.
- pentaerythri tri (meth) acrylate pentaerythri tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythrocyte nucleus (Meth) acrylates, tripentaerythrates, hepta (meth) acrylates, toluene diisocyanates, xylene diisocyanates, nusamethylene diisocyanates, trimethylolpropane tri (meth) acrylates and trimethylolpropane polyhydroxy tri
- One or more selected from the group consisting of (meth) acrylates can be used.
- the antistatic agent may be a quaternary ammonium salt compound, a conductive polymer or a combination thereof.
- the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium salt groups in the molecule, it can be used without limitation low molecular type or polymer type.
- the conductive polymer is a low molecular type or a polymer type It can be used without limitation, and the kind thereof may be conventional in the art to which the present invention pertains, and is not particularly limited.
- Binder resin of the photocurable resin; And the hard coating layer comprising an antistatic agent dispersed in the binder resin may further comprise at least one compound selected from the group consisting of alkoxy silane oligomer and metal alkoxide oligomer.
- the alkoxy silane compound may be conventional in the art, but preferably tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methacryloxypropyl It may be at least one compound selected from the group consisting of trimethoxysilane, glycidoxypropyl trimethoxysilane, and glycidoxypropyl trioxysilane.
- the metal alkoxide-based oligomer may be prepared through the sol-gel reaction of the composition comprising a metal alkoxide-based compound and water.
- the sol-gel reaction can be carried out by a method similar to the method for producing an alkoxy silane oligomer described above.
- the sol-gel reaction may be performed by diluting the metal alkoxide compound in an organic solvent and slowly dropping water.
- the molar ratio of the metal alkoxide compound to water (based on metal ions) is preferably adjusted within the range of 3 to 170.
- the metal alkoxide-based compound may be at least one compound selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide and aluminum isopropoxide.
- the anti-reflection film may further include a substrate bonded to the other surface of the hard coating layer.
- the substrate may have a light transmittance of 90% or more and a haze of 1% or less.
- the material of the substrate may be triacetyl salose, cycloolefin polymer, polyacrylate, polycarbonate, polyethylene terephthalate and the like.
- the thickness of the base film may be 10 to 300 in consideration of productivity. However, the present invention is not limited thereto.
- Low refractive index layer adversely affects the color of the polymer resin It can exhibit excellent optical properties such as low reflectance and high light transmittance and excellent mechanical properties such as high abrasion resistance and scratch resistance.
- the low refractive index layer may exhibit the above-described excellent physical properties even after alkali treatment, due to its excellent alkali resistance. Accordingly, when the low refractive index layer is introduced into the display device, it is expected that the manufacturing process can be simplified and the production speed and the yield will be significantly increased.
- FIG. 1 is a graph showing reflectance according to the wavelength of the antireflection film prepared in Example 1.
- FIG. 2 is a graph showing reflectance according to the wavelength of the antireflection film prepared in Example 2.
- FIG. 3 is a graph showing reflectance according to the wavelength of the antireflection film prepared in Example 3.
- FIG. 4 is a graph showing reflectance according to the wavelength of the antireflection film prepared in Comparative Example 1.
- FIG. 5 is a graph showing reflectance according to the wavelength of the antireflection film prepared in Comparative Example 2.
- FIG. 6 is a graph showing reflectance according to the wavelength of the antireflective film prepared in Comparative Example 3.
- FIG. 7 is a graph showing reflectance according to the wavelength of the reflective film prepared in Comparative Example 4.
- Preparation Example 1 Preparation of Hard Coating Film 1 (HD1) KYOEISHA salt type antistatic hard coating solution (50 wt% solids, product name: LJD-1000) was coated with triacetylcell film with # 10 mayer bar and dried at 90 ° C for 1 minute, and then 150 mJ / cm 2 UV light was irradiated to prepare a hard coat film (HD1) having a thickness of 5 / m.
- Preparation Example 2 Preparation of Hard Coating Film 2 (HD2)
- Hollow silica dispersion THRULYA 4320 (catalyzed product) in which hollow silica particles having a number average diameter of 50 nm were dispersed in MIBK at 20% by weight.
- Polysilsesquioxane 1 Polysilsesquioxane 1 prepared according to Preparation Example 3
- Polysilsesquioxane 2 T0AGOSEI CO. , Ltd. MAOSQ-F
- Fluorine compound 1 A fluorine compound containing a photoreactive functional group, -0-CF 2 CF 2 -0-CF 3 , -0- (CF 2 ) 3 -0- and -0-CF 2 CF 2 CF 3 D907 RS907 dilutes 30% by weight in MIBK
- Fluorine compound 2 Fluorine compound 2 prepared according to Preparation Example 4, and dispersed in MIBK at 15% by weight of solids (2) Preparation of low refractive layer and antireflection film (Examples 1 to 3 and Comparative Examples 1 to 5)
- the photocurable coating composition obtained in Table 1 was coated with # 3 mayer bar and dried at 60 ° C. for 1 minute.
- an antireflection film was prepared by irradiating 180 mJ / cm 2 ultraviolet rays to the dried material under nitrogen purge to form a low refractive layer having a thickness of llOnm.
- FIGS. 1 to 8 reflectance measurement results for the wavelength range of 380ran to 780nm of the antireflection films prepared in Examples and Comparative Examples are shown in FIGS. 1 to 8.
- the dotted lines in Figs. 1 to 8 are graphs showing the reflectance (y-axis) according to the wavelength (X axis) of the antireflection diameter before alkali treatment, and the solid line (——) is the wavelength of the antireflection film after alkali treatment. This graph shows the reflectance (y-axis) along the (x-axis).
- the surface of the antireflection film obtained in Examples and Comparative Examples was rubbed with a steel wool of # 0000 grade and reciprocated 10 times at a speed of 24 rpm.
- the maximum load at which no scratches were observed visually under the LED 50W ceiling light was measured.
- the load is defined as the weight (g) per area (2 * 2 cm 2 ) of 2 cm width and 2 cm length.
- the antireflective films of Examples 1 and 2 exhibit significantly low reflectance and high scratch resistance in the visible light region (480 to 680 nm). It is confirmed that it is maintained at an excellent level. In contrast, the antireflective films of Comparative Examples 1 to 3 exhibit poor scratch resistance, and in particular, it is confirmed that scratch resistance remarkably decreases after alkali treatment.
- the anti-reflection films of Examples 3 and 4 and 5 reduced the content of the vaporized silica contained in the low refractive index layer to achieve high scratch resistance, but similarly the anti-reflection films of Comparative Examples 4 and 5 after alkali treatment It is confirmed that scratch resistance is remarkably lowered.
- the antireflection film can be provided that exhibits excellent alkali resistance only when the low refractive index layer that satisfies the specific conditions of the present invention is less than before and after alkali treatment.
- the low refractive index layer does not significantly decrease the optical properties such as reflectance or transmittance and the mechanical properties such as abrasion resistance or scratch resistance even when exposed to alkali depending on the manufacturing process of the polarizing plate. Application can be omitted, which simplifies the production process and reduces production costs.
- the low refractive layer is expected to contribute significantly to the production speed and productivity by maintaining excellent optical and mechanical properties even in the high temperature alkali treatment process.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
Abstract
본 발명은 저굴절층 및 이를 포함하는 반사 방지 필름에 관한 것이다. 상기 저굴절층은 저굴절층을 형성하는 고분자 수지의 색상에 악영향을 미치지 않으면서 낮은 반사율 및 높은 투광율의 우수한 광학 특성과 높은 내마모성 및 내스크래치성 등의 우수한 기계적 물성을 동시에 나타낼 수 있다. 특히, 상기 저굴절층은 우수한 내알칼리성으로 인해, 알칼리 처리 후에도 상술한 우수한 물성을 유지할 수 있다. 이에 따라, 상기 저굴절층을 디스플레이 장치에 도입할 경우 제조 공정을 단순화할 수 있고 생산 속도 및 생산량을 현저하게 증대시킬 것으로 기대된다.
Description
【명세서】
【발명의 명칭】
저굴절층 및 이를 포함하는 반사 방지 필름
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2015년 8월 18일자 한국 특허 출원 제 10-2015-0116260 호 및 2016년 8월 17일자 한국 특허 출원 제 10-2016-0104409 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 저굴절층 및 상기 저굴절층과 하드 코팅층을 포함하는 반사 방지 필름에 관한 것이다.
【배경기술】
일반적으로 PDP, LCD 등의 평판 디스폴레이 장치에는 외부로부터 입사되는 빛의 반사를 최소화하기 위한 반사 방지 필름이 장착된다.
빛의 반사를 최소화하기 위한 방법으로는 수지에 무기 미립자 둥의 필러를 분산시켜 기재 필름 상에 코팅하고 요철을 부여하는 방법 (ant i -glare : AG 코팅) ; 기재 필름 상에 굴절률이 다른 다수의 층을 형성시켜 빛의 간섭을 이용하는 방법 (ant i-ref lect ion: AR 코팅) 또는 이들을 흔용하는 방법 등이 있다.
그 중, 상기 AG 코팅의 경우 반사되는 빛의 절대량은 일반적인 하드 코팅과 동등한 수준이지만, 요철을 통한 빛의 산란을 이용해 눈에 들어오는 빛의 양을 줄임으로써 저반사 효과를 얻을 수 있다. 그러나, 상기 AG 코팅은 표면 요철로 인해 화면의 선명도가 떨어지기 때문에, 최근에는 AR 코팅에 대한 많은 연구가 이루어지고 있다.
상기 AR 코팅을 이용한 필름으로는 기재 필름 상에 하드 코팅층 (고굴절를층), 저반사 코팅층 등이 적층된 다층 구조인 것이 상용화되고 있다. 그러나, 상기와 같이 다수의 층을 형성시키는 방법은 각 층을 형성하는 공정을 별도로 수행함에 따라 층간 밀착력 (계면 접착력)이 약해 내스크래치성이 떨어지는 단점이 있다.
이에 따라, 외부로부터 입사되는 빛의 절대 반사량을 줄이고, 표면의
내스크래치성을 향상시키기 위한 많은 연구가 이루어지고 있으나 이에 따른 물성 개선의 정도가 미흡한 실정이다. 또한, 반사 방지 필름에 적용되는 고분자 필름에 내스크래치성을 높이기 위해 무기 첨가제 등을 첨가하는 등의 방법이 알려져 있는데, 이에 따르면 상기 고분자 필름의 내알칼리성이 크게 저하되어 편광판 등의 제조 과정에 적용하기에는 부적합해지는 한계가 있었다.
【발명의 내용】
【해결하려는 과제】
본 발명은 우수한 광학 특성 및 기계적 특성을 나타낼 수 있는 저굴절층을 제공한다.
또한, 본 발명은 상기 저굴절층을 포함하는 반사 방지 필름을 제공한다.
【과제의 해결 수단】
이하 발명의 구체적인 구현예에 따른 저굴절층 및 이를 포함하는 반사 방지 필름 등에 대해 설명하기로 한다.
발명의 일 구현예에 따르면, 하기 식 1을 만족하는 저굴절층이 제공된다. [식 1]
0.5 > Ab* = \ b - b*이
상기 식 1에서,
b* 0은 상기 저굴절층의 국제 조명 위원회가 정한 L*a*b* 색 좌표계의 b*값이며,
I 은 상기 저굴절층을 30°C로 가열된 10 중량>의 수산화나트륨 수용액에
2분간 침지시킨 후, 물로 세척하고 물기를 닦은 다음, 55°C로 가열된 10 중량 %의 수산화나트륨 수용액에 30초간 침지시킨 후, 물로 세척하고 물기를 닦아 준비한 필름에 대하여 b* 0를 측정한 방법과 같이 측정된 L*a*b* 색 좌표계의 b*값이다. 본 명세서에서 용어 저굴절층은 낮은 굴절률을 갖는 층을 의미할 수 있으며, 예를 들면, 약 1.2 내지 1.6의 굴절를을 나타내는 층을 의미할 수 있다. 상기 일 구현예에 따른 저굴절층은 가시 광선 영역에 대한 반사율 및 색상 등의 광학 물성과 내스크래치성 등의 기계적 물성이 우수한 특성을 갖는다. 이에 따라, 상기 저굴절층은 디스플레이 장치에 사용되어 영상의 품질 저하 없이 장치 외부에서 입사되는 빛에 의한 눈부심 현상을 현저하게 개선할 수 있으며, 외부 층격 흑은 자극 등으로부터 장치 표면을 효과적으로 보호할 수 있다.
뿐만 아니라 상기 저굴절층은 알칼리에 노출되어도 상술한 물성의 변화가 매우 작은 특성을 갖는다. 이러한 높은 내알칼리성으로 인해, 상기 저굴절층은 디스플레이 장치의 제조 공정 시에 저굴절충을 보호하기 위해 필수적으로 수행되는 보호 필름의 부착 및 탈착 공정을 생략할 수 있으며, 이에 따라 디스플레이 장치의 생산 공정을 단순화하고 생산 단가를 낮출 수 있다. 특히, 상기 저굴절층은 고온에서의 내알칼리성도 우수하여 디스플레이 장치의 제조 공정의 제조 조건을 보다 가혹한 조건으로 조절하여 장치의 품질 저하 없이 생산 속도 및 생산성을 크게 향상시킬 수 있을 것으로 기대된다.
보다 구체적으로, 상기 저굴절층은 상술한 식 1을 만족할 수 있다. 상기 식 1에서, b* 0은 저굴절층의 초기 색상을 평가할 수 있는 값이며, b 은 알칼리 처리된 저굴절층의 색상을 평가할 수 있는 값이다. 이때, 상기 저굴절층은 2회에 걸쳐 알칼리로 처리되며, 특히 2번째 알칼리 처리는 고온의 수산화나트륨 수용액에 의해 수행된다. 이에 따라, 상기 식 1의 알칼리 처리 전후의 저굴절층의 색상 변화 정도를 통해 저굴절층의 고온에서의 내알칼리성을 평가할 수 있다. 상기 알칼리 처리 조건은 식 1에 기재된 바와 같으며, 알칼리 처리와 관련된 자세한 내용은 후술하는 실험예를 참고할 수 있다. 또한, 알칼리 처리 전후의 저굴절층에 대한 L*a*b* 색 좌표계의 b*값의 평가 방법과 관련된 자세한 내용도 후술하는 실험예를 참고할 수 있다.
일 구현예에 따른 저굴절층은 우수한 내알칼리성으로 인해 식 1의 알칼리 처리 전후의 색상 변화 정도 ( Ab* )가 0.5 이하, 0.45 이하 혹은 0.4 이하일 수 있다. 상기 저굴절층은 고온의 알칼리 처리 후에도 색상 변화가 없을 수 있으므로, 식 1의 Ab*는 0일 수 있다.
기존의 저굴절층에는 가시 광선 영역에서 낮은 반사율을 나타내기 위해 혹은 내스크래치성을 개선하기 위해 무기 층전제 등이 첨가되었다. 그러나, 이러한 무기 충전제는 저굴절층의 내알칼리성을 크게 저하시켜 알칼리 처리 공정을 필수적으로 수반하는 디스플레이 장치의 제조 공정에 저굴절층을 적용시키기 어렵게 하였으며, 저굴절층을 착색시켜 디스플레이 장치의 영상 품질에 악영향을 미치는 문제가 있었다.
그러나, 상기 일 구현예에 따른 저굴절층은 저굴절층에 포함된 고분자 수지의 색상 변화 없이 혹은 색상 변화를 최소화하면서 우수한 내스크래치성 및
내알칼리성 등의 특성을 나타낼 수 있다. 일 예로, 상기 저굴절층의 알칼리 처리 전의 b*값 (식 1의 b* 0값)은 1 내지 -8 혹은 1 내지 -5일 수 있다.
상기 I/a*b* 색 좌표계에서 1 값은 양수이면 황색에 치우친 색을 나타내며, 음수이면 청색에 치우친 색을 나타낸다. 따라서, 상기 일 구현예에 따른 저굴절층은 상술한 바와 같은 색 좌표값을 나타내어 디스플레이 장치 영상의 품질 변화 없이 영상을 그대로 투과시키면서 눈부심 현상을 효과적으로 방지할 수 있다.
또한, 상기 일 구현예에 따른 저굴절층은 상술한 바와 같이 우수한 내알칼리성을 나타내어 고온의 알칼리에 노출되어도 색상 변화가 거의 없는 특성을 갖는다. 일 예로, 상기 저굴절층의 알칼리 처리 후의 b*값 (식 1의 1A값)은 1.5 내지 -8.5, 1 내지 -8, 0 내지 -8 혹은 1.5 내지 -5.5일 수 있다. 한편, 상기 일 구현예에 따른 저굴절층은 우수한 내알칼리성으로 인해 하기 식 2를 만족할 수 있다.
[식 2]
30% > AS = [ (So - S^/So] X 100
상기 식 2에서,
So는 #0000 등급의 스틸울에 하중을 걸고 24rpm의 속도로 10회 왕복하며 저굴절층의 표면을 문질렀을 때, 스크래치가 발생되지 않는 최대 하중이며,
¾은 상기 저굴절층을 30°C로 가열된 10 증량 %의 수산화나트륨 수용액에 2분간 침지시킨 후, 물로 세척하고 물기를 닦은 다음, 55°C로 가열된 10 중량 %의 수산화나트륨 수용액에 30초간 침지시킨 후, 물로 세척하고 물기를 닦아 준비한 상기 필름에 대하여 S0를 측정한 방법과 같이 측정된 스크래치가 발생되지 않는 최대 하중이다.
상기 식 2의 하중의 단위는 g/(2*2cm2)이고, 이는 가로 2cm , 세로 2cm의 면적 (2*2cm2) 당 무게 (g)를 의미한다.
상기 식 2에서 So는 저굴절층의 초기 내스크래치성을 평가할 수 있는 값이며, ^은 알칼리 처리된 저굴절층의 내스크래치성을 평가할 수 있는 값이다. 이때, 상기 알칼리 처리 조건은 식 1과 동일하며, 알칼리 처리 전후의 저굴절층에 대한 내스크래치성은 식 2에 기재된 바와 같이 평가될 수 있고, 내스크래치성의 평가 방법과 관련된 자세한 내용은 후술하는 실험예를 참고할 수
있다.
일 구현예에 따른 저굴절층은 우수한 내알칼리성으로 인해 식 2의 알칼리 처리 전후의 내스크래치성의 변화율 ( AS)이 30% 이하, 25% 이하, 20% 이하 혹은 15% 이하일 수 있다. 또한, 상기 저굴절층은 고온의 알칼리 처리 후에도 변함 없는 내스크래치성을 나타낼 수 있으므로, 식 2의 AS는 일 수 있다.
한편, 상기 저굴절층은 상술한 바와 같이 내스크래치성 .등의 기계적 물성이 우수한 특성을 갖는다. 일 예로, 상기 저굴절층의 알칼리 처리 전의 내스크래치성 (식 2의 S0값)은 약 250 내지 800g/(2*2cm2) 흑은 약 300 내지 800g/(2*2cm2) 정도일 수 있다. 또한, 상기 저굴절층은 우수한 내알칼리성으로 인해 알칼리 처리 후에도 우수한 내스크래치성을 나타낼 수 있다. 일 예로, 상기 저굴절층의 알칼리 처리 후의 내스크래치성 (식 2의 값)은 약 200 내지 800g/(2*2cm2) 혹은 약 230 내지 800g/(2*2cm2) 정도일 수 있다.
상기 일 구현예에 따른 저굴절층은 상술한 우수한 광학 특성 및 기계적 특성과 함께 가시 광선 영역에서의 최소 반사율을 나타낼 수 있다. 보다 구체적으로, 상기 저굴절층은 약 480 내지 680nm의 파장 영역 혹은 약 500 내지 580nm의 파장 영역에서 최소 반사율을 나타내어 디스플레이 장치의 눈부심 현상을 효과적으로 방지할 수 있다.
또한, 상기 일 구현예에 따른 저굴절층은 가시 광선 영역에서 매우 낮은 반사율을 나타낼 수 있다. 보다 구체적으로, 상기 저굴절층은 380 내지 780nm 파장 영역의 광에 대한 평균 반사율이 0.9 내지 2.5%, 0.9 내지 2.2%, 0.9 내지 2.0%, 0.9 내지 1.5¾> 흑은 1 내지 1.3%일 수 있다. 이에 따라, 상기 저굴절층이 디스플레이 장치에 도입되면 외부에서 입사되는 빛에 의한 눈부심 현상을 방지할 수 있다.
상기 저굴절층의 평균 반사율 및 색 좌표값은 분광광도계를 이용하여 측정될 수 있다. 구체적으로, 상온에서 sampl ing interval 1 nm (2nm 이하가 바람직하나, 5nm로도 조절 가능), t ime constant 0. 1 sec , s l i t width 20 nm, medium scanning speed로 측정 조건을 고정하고, 저굴절층의 양면 중 광을 조사할 면의 반대면을 광이 투과되지 못하도록 암색화하고, 다른 면에 380nm 내지 780nm 파장 영역의 광을 조사하여 반사율 및 색 좌표값을 측정할 수 있다. 이때, 상기 저굴절층이 기재 필름; 혹은 후술하는 바와 같이 기재 필름 상에
형성된 하드 코팅층에 형성되어 있다면, 기재 필름의 저굴절충 흑은 하드 코팅층이 형성되지 않은 면을 광이 투과되지 못하도록 암색화할 수 있다. 일 예로, 상기 암색화는 해당 면에 검정 테이프를 붙여 수행될 수 있다.
또한, 상기 저굴절층이 요철이 없는 평평한 표면을 가질 경우 5° 의 입사각으로 광을 조사하고 5° 의 반사각으로 반사된 광을 측정하여, 표준 시료 물질 (BaS04와 95% A1 거울, Shimadzu 제공)의 측정 값을 기준으로, 상기 저굴절층의 파장에 따른 반사율을 측정하게 된다 (measure 모드) . 그리고, UV- 240 IPC color analysi s 프로그램을 통해 상기 반사율로부터 평균 반사율 및 색 좌표값을 도출할 수 있다.
반면, 상기 저굴절층이 요철이 있는 표면을 가질 경우, 광을 저굴절층에 수직으로 입사시키고 전 방향으로 산란되어 반사되는 광을 측정하여, 표준 시료 물질 (BaS04, Shimadzu 제공)의 측정 값을 기준으로, 상기 저굴절층의 파장에 따른 반사율을 측정하게 된다 ( 10 T 모드) . 그리고, UV-2401PC color analysi s 프로그램을 통해 상기 반사율로부터 평균 반사율 및 색 좌표값을 도출할 수 있다. 상술한 바와 같이 우수한 광학 특성 및 기계적 특성을 나타낼 수 있는 일 구현예에 따른 저굴절층은 광중합성 화합물, 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산 (polysi l sesquioxane) , -0_CF2CF2-0-CF3를 포함하는 불소계 화합물, 무기 입자 및 광증합 개시제를 포함하는 광경화성 코팅 조성물을 광경화시켜 얻은 광경화물을 포함할 수 있다.
본 명세서에서 광증합성 화합물은 빛이 조사되면, 예를 들어, 가시 광선 또는 자외선이 조사되면 중합 반웅을 일으키는 화합물을 통칭한다.
상기 광경화성 코팅 조성물에는 광중합성 화합물로서 (메트)아크릴로일 [ (meth)acryloyl ]기 또는 비닐기를 포함하는 단량체 또는 을리고머가 포함될 수 있다. 상기 단량체 또는 올리고머는 (메트)아크릴로일기 또는 비닐기를 1 이상, 2 이상 또는 3 이상 포함할 수 있다. 본 명세서에서 (메트)아크릴 [ (meth)acryl ]은 아크릴 (acryl ) 및 메타크릴 (methacryl ) 양쪽 모두를 포함하는 의미이다.
상기 (메타)아크릴로일기를 포함한 단량체 또는 올리고머의 구체적인 예로는, 펜타에리스리를 트리 (메트)아크릴레이트, 펜타에리스리틀 테트라 (메트)아크릴레이트, 디펜타에리스리를 펜타 (메트)아크릴레이트,
디펜타에리스리를 핵사 (메트)아크릴레이트, 트리펜타에리스리를 헵타 (메트)아크릴레이트, 트리메틸을프로판 트리 (메트)아크릴레이트, 트리메틸올프로판 폴리에록시 트리 (메트)아크릴레이트, 에틸렌글리콜 디 (메트)크릴레이트, 부탄디올 디 (메트)아크릴레이트, 에틸핵실 (메트)아크릴레이트, 부틸 (메트)아크릴레이트 또는 이들의 2종 이상의 흔합물이나, 또는 우레탄 변성 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 에테르아크릴레이트 올리고머, 덴드리틱 아크릴레이트 올리고머 또는 이들의 2종 이상의 흔합물을 들 수 있다.
그리고, 상기 비닐기를 포함하는 단량체 또는 올리고머의 구체적인 예로는, 디비닐벤젠, 스티렌, 파라메틸스티렌 또는 이들 중 1종 이상을 증합하여 얻은 올리고머 등을 들 수 있다. 상기에서 을리고머의 분자량은 1 , 000 내지 10 ,000g/niol로 조절될 수 있다.
상기 광경화성 코팅 조성물 중 상기 광중합성 화합물의 함량은 최종 제조되는 저굴절층의 기계적 물성 등을 고려하여 상기 광경화성 코팅 조성물의 고형분에 대하여 20 중량 % 내지 80 중량 %, 30 중량 % 내지 70 증량 % 혹은 30 중량 %내지 65 중량 %로 조절될 수 있다.
상기 광경화성 코팅 조성물의 고형분은 상기 광경화성 코팅 조성물 증 액상의 성분, 예를 들어, 후술하는 바와 같이 선택적으로 포함될 수 있는 유기 용매 등의 성분이 제외된 고체 성분만을 의미한다.
상기 광경화성 코팅 조성물에는 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산 (polysi l sesquioxane)이 포함되어, 착색 없이 낮은 반사율 및 높은 투광율을 구현할 수 있고, 내알칼리성을 향상시킴과 동시에 우수한 내마모성 또는 내스크래치성을 확보할 수 있는 저굴절층을 제공할 수 있다.
이러한 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산은 상기 광중합성 화합물 100 중량부 대비 0.5 내지 25 중량부, 1 내지 20 중량부, 1.5 내지 19 중량부 또는 2 내지 15 중량부로 포함될 수 있다. 또한, 상기 광경화성 코팅 조성물 중 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산의 함량은 상기 광경화성 코팅 조성물의 고형분에 대하여 1 중량 % 내지 25 중량 ¾>, 1 중량 % 내지 20 중량 ¾», 1 중량 % 내지 15 중량 ¾>흑은 1 중량 % 내지 10 중량 %로 조절될 수 있다.
만일 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산의 함량이 상술한 범위 미만이면, 상기 광경화성 코팅 조성물의 광경화시 형성되는 도막이나 고분자 수지의 내알칼리성이나 내스크래치성을 층분히 확보하기 어려울 수 있다. 반면 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산의 함량이 상술한 범위를 초과하면, 상기 광경화성 코팅 조성물로부터 제조되는 저굴절층의 투명도가 저하될 수 있으며, 내스크래치성이 오히려 저하될 수 있다.
상기 폴리실세스퀴옥산에 치환될 수 있는 반웅성 작용기는, 알코올, 아민, 카르복실산, 에폭사이드, 이미드, (메트)아크릴레이트, 니트릴, 노보넨, 올레핀 [알릴 (al ly) , 사이클로알케닐 (cyc loalkenyl ) 또는 비닐디메틸실릴 등], 폴리에틸렌글리콜, 싸이올 및 비닐기로 이루어진 군에서 선택된 1 종 이상의 작용기를 포함할 수 있으며, 바람직하게는 에폭사이드 또는 (메트)아크릴레이트를 포함할 수 있다.
보다 구체적으로, 상기 반웅성 작용기가 에폭사이드인 경우에는 반웅성 작용기로서 2-[3, 4-에폭시사이클로핵실]에틸기 혹은 3-글리시독시프로필기 (3- glycidoxypropyl ) 등이 도입될 수 있으며, (메트)아크릴레이트인 경우에는 반웅성 작용기로서 (메트)아크릴로일옥시알킬기 (이때, 알킬기는 탄소수 1 내지 6일 수 있음) 등이 도입될 수 있다.
본 명세서에서 폴리실세스퀴옥산이 반웅성 작용기로 상기 광중합성 화합물과 동일한 작용기를 채용한다 하더라도 실록산 결합 (-Si-0-)을 골격으로 하는 폴리실세스퀴옥산은 광중합성 화합물에 포함되지 않는 것으로 규정한다. 한편, 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산은 상술한 반웅성 작용기 이외에 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기, 탄소수 6 내지 30의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택된 1종 이상의 비반웅성 작용기로 추가 치환될 수 있다. 이와 같이 상기 폴리실세스퀴옥산의 표면이 반웅성 작용기와 비반웅성 작용기로 치환됨에 따라, 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산에서 실록산 결합 (-Si-0- )이 분자 내부에 위치하면서 외부로 노출되지 않게 되어 상기 광경화성 코팅 조성물의 광경화시 형성되는 도막이나 고분자 수지의 내알칼리성을 보다 향상시킬 수 있다. 특히, 상기 폴리실세스퀴옥산에 반웅성 작용기와 함께 도입되는 비반웅성 작용기가 탄소수 6 이상의 직쇄 또는 분지쇄의 알킬기;
탄소수 6 내지 30의 직쇄 또는 분지쇄의 알킬기; 또는 탄소수 6 내지 30의 사이클로알킬기인 경우, 저굴절층의 내알칼리성을 보다 향상시킬 수 있다.
상기 폴리실세스퀴옥산은 (!^^^;^로 표기될 수 있으며 (이때, n은 4 내지 30 또는 8 내지 20이고, R은 각각 독립적으로 반웅성 작용기; 혹은 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기, 탄소수 6 내지 30의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택된 비반웅성 작용기임), 랜덤, 사다리형, 케이지 (cage) 및 부분적인 케이지 (cage) 등의 다양한 구조를 가질 수 있다.
이 중, 상술한 특성을 보다 향상시키기 위해, 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산으로서, 1개 이상의 반웅성 작용기로 치환되어 있고 케이지 (cage) 구조를 갖는 다면체 을리고머 실세스퀴옥산 (Polyhedral 01 igomer ic Si l sesquioxane)을 사용할 수 있다.
보다 구체적으로, 상기 다면체 올리고머 실세스퀴옥산은 분자 중 8 내지 20개의 실리콘을 포함할 수 있다.
이러한 1 이상의 반웅성 작용기로 치환되어 있고 케이지 (cage)구조를 갖는 다면체 올리고머 실세스퀴옥산 (Polyhedral 01 igomer i c Si l sesquioxane , POSS)의 예로는, TMP Diol Isobutyl POSS, Cyclohexanediol Isobutyl POSS, 1 ,2- Propanediol Isobutyl POSS, Oct a (3一 hydroxyᅳ 3 methylbutyldimethyl si loxy) POSS 등 알코올이 1 이상 치환된 POSS; Ami nopropyl Isobutyl POSS , Aminopropyl Isooctyl POSS , Aminoethylaminopropyl Isobutyl POSS, Nᅳ Phenyl ami nopropyl POSS , Nᅳ Methyl ami nopropyl Isobutyl POSS, OctaAmmonium POSS, Am inophenyl Cyclohexyl POSS , Aminophenyl Isobutyl POSS 등 아민이 1 이상 치환된 POSS; Maleamic Acid-Cyclohexyl POSS , Maleamic Acid-Isobutyl POSS, Oct a Maleamic Ac id POSS 등 카르복실산이 1 이상 치환된 POSS ; EpoxyCyclohexyl Isobutyl POSS, Epoxycyclohexyl POSS , Glycidyl POSS , GlycidylEthyl POSS , Glycidyl Isobutyl POSS, Glycidyl Isooctyl POSS 등 에폭사이드가 1 이상 치환된 POSS; POSS Maleimide Cyclohexyl , POSS Maleimide Isobutyl 등 이미드가 1 이상 치환된 POSS ; Acrylolsobutyl POSS, (Meth)acryl Isobutyl POSS , (Meth)acrylate Cyclohexyl POSS, (Meth)acrylate Isobutyl POSS, (Meth)acrylate Ethyl POSS, (Meth)acrylEthyl POSS,
(Meth)acrylate Isooctyl POSS, (Meth)acryl Isooctyl POSS, (Meth)acrylPhenyl POSS , (Meth)acryl POSS, Acrylo POSS 등 (메타)아크릴레이트가 1 이상 치환된 POSS; Cyanopropyl lsobutyl POSS 등의 니트릴기가 1 이상 치환된 P0SS; NorbornenylethylEthyl POSS , Norbornenylethyl Isobutyl POSS, Nor bornenyl ethyl DiSi lanoIsobutyl POSS, Tr i snor bornenyl Isobutyl POSS 등 노보넨기가 1 이상 치환된 POSS ; Al lyl Isobutyl POSS, MonoVinyl Isobutyl POSS, OctaCyclohexenyldimethyl si lyl POSS, OctaVinyldimethyl si lyl POSS, OctaVinyl POSS 등 비닐기 1 이상 치환된 POSS ; Al lyl Isobutyl POSS , MonoVinyl Isobutyl POSS , OctaCyclohexenyldimethyl si lyl POSS , OctaVinyldimethyl si lyl POSS , OctaVinyl POSS 등의 올레핀이 1 이상 치환된 POSS; 탄소수 5 내지 30의 PEG가 치환된 POSS; 또는 Mercaptopropyl Isobutyl POSS 또는 Mercaptopropyl Isooctyl POSS등의 싸이올기가 1 이상 치환된 POSS ; 등을 들 수 있다.
또한, 상기 다면체 올리고머 실세스퀴옥산의 실리콘들 중 적어도 1개 이상에는 반웅성 작용기가 도입될 수 있으며, 반웅성 작용기가 도입되지 않은 실리콘들에는 상술한 비반웅성 작용기가 치환될 수 있다.
상기 다면체 올리고머 실세스퀴옥산의 실리콘들 중 적어도 1개에 반웅성 작용기가 도입되면 상기 광경화성 코팅 조성물의 광경화시 형성되는 도막이나 고분자 수지의 기계적 물성올 크게 향상시킬 수 있다. 그리고, 나머지 실리콘들에 비반웅성 작용기가 도입되면, 분자 구조적으로 입체적인 장애 (Ster i c hinderance)가 나타나 실록산 결합 (-Si-0-)이 외부로 노출될 가능성을 크게 낮출 수 있다. 이에 따라, 상기 광경화성 코팅 조성물의 광경화시 형성되는 도막이나 고분자 수지의 내알칼리성을 크게 향상시킬 수 있다.
보다 구체적으로, 상기 폴리실세스퀴옥산에 반응성 작용기 및 비반웅성 작용기가 함께 치환되는 경우, 상기 폴리실세스퀴옥산에 치환된 비반웅성 작용기에 대한 반웅성 작용기의 몰비 (반웅성 작용기의 몰수 /비반웅성 작용기의 몰수)는 0.20 이상 또는 0.30 이상일 수 있고, 또한 0.20 내지 6.00, 0.30 내지 4.00 또는 0.40 내지 3.00 일 수 있다.
상기 폴리실세스퀴옥산에 치환되는 반웅성 작용기 및 비반웅성 작용기 간의 비율이 상기 범위인 경우, 상기 폴리실세스퀴옥산 분자에서 입체적인 장애가 극대화될 수 있고, 이에 따라 실록산 결합 (-Si-0-)이 외부로 노출될
염려가 현저하게 감소되어 상기 광경화성 코팅 조성물의 광경화시 형성되는 도막이나 고분자 수지의 기계적 물성이나 내알칼리성을 크게 향상시킬 수 있다. 상기 광경화성 코팅 조성물은 -0— CF2CF2-0-CF3를 포함하는 불소계 화합물을 포함한다.
본 명세서에서 불소계 화합물은 2 , 000g/mol 이상의 증량평균분자량을 가지며 불소로 치환된 화합물을 의미하며, 이러한 화합물은 상술한 광중합성 화합물의 정의에 포함되지 않는 것으로 규정한다.
특히, 상기 불소계 화합물은 -0-CF2CF2-0-CF3를 포함하여, 상기 광경화성 코팅 조성물로부터 제조되는 저굴절층은 보다 낮은 반사율 및 향상된 투광율을 가질 수 있고 아울러 보다 향상된 내알칼리성 및 내스크래치성을 나타낼 수 있다. 상기 불소계 화합물은 -0-CF2CF2-0-CF3와 함께 -0-(CF2)n-0- (여기서 n은 1 내지 3의 정수이다) 및 -0-CF2CF2CF3를 포함하여 상술한 물성을 보다 향상시킬 수 있다.
상기 불소계 화합물에는 1 이상의 광반응성 작용기가 도입되어 있으며, 상기 광반웅성 작용기는 빛의 조사에 의하여, 예를 들어, 가시 광선 또는 자외선의 조사에 의하여 중합 반웅에 참여할 수 있는 작용기를 의미한다. 상기 광반웅성 작용기는 빛의 조사에 의하여 증합 반웅에 참여할 수 있는 것으로 알려진 다양한 작용기를 포함할 수 있으며, 이의 구체적인 예로는 (메트)아크릴로일기, 에폭시기, 비닐 (vinyl )기 또는 머갑토 (merapto)기 등을 들 수 있다.
상기 불소계 화합물은 1 증량 % 내지 25 중량 %의 불소 함량을 가질 수 있다. 상기 불소계 화합물에서 불소의 함량이 상기 범위 미만이면, 상기 광경화성 코팅 조성물로부터 얻어지는 최종 결과물의 표면으로 불소 성분이 층분히 배열하지 못하여 내알칼리성 등의 물성을 층분히 확보하기 어려울 수 있다. 또한, 상기 불소계 화합물에서 불소의 함량이 상기 범위를 초과하면, 상기 광경화성 코팅 조성물로부터 얻어지는 최종 결과물의 표면 특성이 저하되거나 최종 결과물을 얻기 위한후단 공정 중에 불량품 발생를이 높아질 수 있다.
상기 불소계 화합물은 규소; 또는 규소 화합물로부터 유래한 측쇄 흑은 반복단위를 더 포함할 수 있다. 상기 불소계 화합물이 규소 혹은 규소 화합물 유래의 측쇄나 반복단위를 포함할 경우, 규소의 함량은 불소계 화합물에 대하여
0. 1 중량 내지 20 중량 ¾>일 수 있다. 상기 불소계 화합물에 포함되는 규소는 상기 구현예의 광경화성 코팅 조성물로부터 얻어진 저굴절층에 헤이즈 (haze)가 발생하는 것을 방지하여 투명도를 높이는 역할을 할 수 있다. 한편, 상기 불소계 화합물 중 규소의 함량이 상기 범위를 초과하면 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층의 내알칼리성이 저하될 수 있다.
상기 불소계 화합물은 2 , 000 내지 200 , 000g/m 의 중량평균분자량을 가질 수 있다. 상기 불소계 화합물의 중량평균분자량이 너무 작으면, 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 층분한 내알칼리성을 갖지 못할 수 있다. 또한, 상기 불소계 화합물의 중량평균분자량이 너무 크면, 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 층분한 내구성이나 내스크래치성을 갖지 못할 수 있다. 본 명세서에서 중량평균분자량은 GPCXGel Permeat ion Chromatograph)로 측정한 표준 폴리스티렌에 대한 환산 수치를 의미한다.
구체적으로, 상기 불소계 화합물은 i ) 1 이상의 광반웅성 작용기로 치환되고, 적어도 하나의 수소가 불소로 치환된 지방족 화합물 또는 지방족 고리 화합물; ii ) 상기 지방족 화합물 또는 지방족 고리 화합물의 하나 이상의 탄소가 규소로 치환된 실리콘계 화합물; Hi ) 상기 지방족 화합물 또는 지방족 고리 화합물의 하나 이상의 탄소가 규소로 치환되고 하나 이상의 -c¾-가 산소로 치환된 실록산계 화합물; iv ) 상기 지방족 화합물 또는 지방족 고리 화합물의 하나 이상의 -CH2-가 산소로 치환된 플루오로폴리에테르; 또는 이들의 2 종 이상의 흔합물이거나 공중합체일 수 있다.
저굴절층이 상기 식 1을 충족할 정도로 고온의 내알칼리성을 나타내기 위해서는 알칼리 용액이 저굴절층 내부로 침투하거나 흡수되지 않도록 저굴절층의 표면에는 충분한 함량의 불소가 분포해야 하며, 만일 저굴절층 내부로 알칼리 용액이 침투 혹은 흡수되더라도 이러한 알칼리 용액에 견딜 수 있도록 가교 밀도가높아야 한다.
본 발명의 저굴절층의 표면에는 상기 블소계 화합물의 경화물이 분포되어 있어 저굴절층을 알칼리로 처리하더라도 알칼리 용액이 저굴절층 내부로 침투하거나 흡수되는 것을 방지할 수 있다. 하지만, 상기 불소계 화합물은 상술한 광증합성 화합물에 비해 분자량이 크며 동일 부피 또는 중량에 대해 더 적은 함량의 광반웅성 작용기를 가지기 때문에 광중합성 화합물의 함량이
감소하고 불소계 화합물의 함량이 증가하는 경우 저굴절층의 가교 밀도가 저하되는 경향이 있다.
따라서, 저굴절층의 표면에서부터 내부까지 상기 불소계 화합물의 경화물이 과량 존재하는 경우에는 저굴절층의 가교 밀도가 저하되어 우수한 내알칼리성을 나타내기 어렵다.
저굴절층이 상기 식 1을 층족할 정도로 고온의 내알칼리성을 나타내기 위해서는 불소계 화합물의 경화물이 대부분 저굴절층의 표면에 존재해야 한다. 상기 불소계 화합물의 경화물이 대부분 저굴절층의 표면에 존재하기 위해서는 광경화성 코팅 조성물 내의 상기 불소계 화합물의 함량을 조절하는 것이 중요하다.
구체적으로, 상기 광경화성 코팅 조성물은 상기 광중합성 화합물 100 중량부에 대하여 1 내지 75 중량부, 1 내지 50 중량부, 1 내지 30 중량부, 1 내지 20 중량부 혹은 1 내지 15 중량부의 불소계 화합물을 포함할 수 있다. 또한, 상기 광경화성 코팅 조성물 중 상기 불소계 화합물의 함량은 상기 광경화성 코팅 조성물의 고형분에 대하여 0.5 중량 % 내지 50 중량 %, 0.5 중량 % 내지 30 중량 %, 0.5 중량 % 내지 20 중량 ¾혹은 1 중량 % 내지 15 중량 %로 조절될 수 있다.
상기 광중합성 화합물 대비 상기 불소계 화합물이 과량으로 첨가되는 경우 상기 광경화성 코팅 조성물의 코팅성이 저하되거나 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층의 가교 밀도가 저하되어 충분한 내알칼리성, 내구성, 내스크래치성 등을 나타내지 못할 수 있다. 또한, 상기 광중합성 화합물 대비 상기 불소계 화합물의 양이 너무 적으면, 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층 표면에 층분한 함량의 불소가 분포되지 못해 저굴절층이 충분한 내알칼리성을 갖지 못할 수 있다.
한편, 상기 광경화성 코팅 조성물은 나노 미터 또는 마이크로 미터 단위의 직경을 갖는 무기 입자를 포함한다.
구체적으로, 상기 무기 입자는 10 내지 lOOnm의 수평균 입경을 갖는 중공 실리카 입자 (si l.ica hol low part icle)일 수 있다. 상기 중공 실리카 입자는 규소 화합물 또는 유기 규소 화합물로부터 도출되는 실리카 입자로서, 입자의 표면 및 /또는 내부에 빈 공간이 존재하는 실리카 입자를 의미한다. 상기 중공 실리카 입자는 속이 찬 입자에 비하여 낮은 굴절를을 가져 우수한 반사 방지 특성을
나타낼 수 있다.
상기 무기 입자는 수평균 입경이 10 내지 lOOnm, 20 내지 70nm 혹은 30 내지 70nm인 것일 수 있으며, 입자의 형상은 구상인 것이 바람직하지만, 부정형이라도 무방하다.
또한, 상기 무기 입자로는 그 표면이 불소계 화합물로 코팅된 것을 단독으로 사용하거나, 혹은 이를 불소계 화합물로 표면이 코팅되지 않는 무기 입자와 흔합하여 사용할 수 있다. 상기 무기 입자의 표면을 불소계 화합물로 코팅하면 표면 에너지를 보다 낮출 수 있어, 상기 광경화성 코팅 조성물 내에서 상기 무기 입자가 보다 균일하게 분포할 수 있다. 이에 따라, 이러한 무기 입자를 포함하는 광경화성 코팅 조성물로부터 얻어지는 필름은 보다 향상된 내구성이나 내스크래치성을 나타낼 수 있다.
상기 무기 입자의 표면에 불소계 화합물을 코팅하는 방법으로 통상적으로 알려진 입자 코팅 방법이나 중합 방법 등이 특별한 제한 없이 사용될 수 있다. 비제한적인 예로, 상기 무기 입자 및 불소계 화합물을 물과 촉매의 존재 하에서 졸-겔 반웅시켜서 가수 분해 및 축합 반웅을 통해 상기 무기 입자의 표면에 불소계 화합물을 결합시키는 방법 등이 사용될 수 있다.
그리고, 상기 무기 입자는 소정의 분산매에 분산된 콜로이드상으로 조성물에 포함될 수 있다. 상기 무기 입자를 포함하는 콜로이드상은 분산매로 유기 용매를 포함할 수 있다.
상기 무기 입자의 콜로이드상에서 무기 입자의 고형분 함량은 상기 광경화성 코팅 조성물 중 무기 입자의 함량 범위나 상기 광경화성 코팅 조성물의 점도 등을 고려하여 결정될 수 있다. 일 예로, 상기 콜로이드상 중 상기 무기 입자의 고형분 함량은 5 중량 %내지 60 중량%일 수 있다.
여기서, 상기 분산매 중 유기 용매로는 메탄올, 이소프로필알코올, 에틸렌글리콜, 부탄올 등의 알코을류; 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤류; 를루엔, 자일렌 등의 방향족 탄화수소류; 디메틸포름아미드. 디메틸아세트아미드, N-메틸피를리돈 등의 아미드류; 초산에틸, 초산부틸, 감마부틸로락톤 등의 에스테르류; 테트라하이드로퓨란, 1,4-디옥산 등의 에테르류; 또는 이들의 흔합물이 사용될 수 있다.
상기 광경화성 코팅 조성물은 상기 광중합성 화합물 100 중량부에 대하여
상기 무기 입자를 10 내지 320 중량부, 20 내지 200 중량부 혹은 30 내지 200 중량부로 포함할 수 있다. 또한, 상기 광경화성 코팅 조성물 중 상기 무기 입자의 함량은 상기 광경화성 코팅 조성물의 고형분에 대하여 10 중량 % 내지 80 중량 %, 20 중량 ¾> 내지 70 중량 %혹은 20 중량 %내지 60 중량 %로 조절될 수 있다. 만일 상기 무기 입자가 과량으로 첨가되면 고분자 수지의 함량 저하로 인하여 코팅막의 내스크래치성이나 내마모성이 저하될 수 있다.
상기 광중합 개시제로는 광경화성 코팅 조성물에 사용될 수 있는 것으로 알려진 화합물이면 특별한 제한 없이 사용 가능하며, 구체적으로 벤조페논계 화합물, 아세토페논계 화합물, 비이미다졸계 화합물, 트리아진계 화합물, 옥심계 화합물 또는 이들의 2종 이상의 흔합물이 사용될 수 있다.
상기 광중합성 화합물 100 증량부에 대하여, 상기 광중합 개시제는 1 내지 100 증량부, 1 내지 50 증량부 흑은 1 내지 20 증량부의 함량으로 사용될 수 있다. 또한, 상기 광경화성 코팅 조성물 중 상기 광증합 개시제의 함량은 상기 광경화성 코팅 조성물의 고형분에 대하여 0. 1 증량 % 내지 15 중량 %, 1 중량 % 내지 10 중량 %혹은 3 중량 % 내지 7 중량 %로 조절될 수 있다.
상기 광중합 개시제의 양이 너무 적으면, 상기 광경화성 코팅 조성물의 광경화 단계에서 미경화되어 잔류하는 물질이 발생할 수 있다. 상기 광중합 개시제의 양이 너무 많으면, 미반웅 개시제가 불순물로 잔류하거나 가교 밀도가 낮아져서 제조되는 필름의 기계적 물성이 저하되거나 반사율이 크게 높아질 수 있다.
한편, 상기 광경화성 코팅 조성물은 유기 용매를 더 포함할 수 있다. 상기 유기 용매의 비제한적인 예를 들면 케톤류, 알코올류, 아세테이트류 및 에테르류, 또는 이들의 2종 이상의 흔합물을 들 수 있다. 이러한 유기 용매의 구체적인 예로는 메틸에틸케톤, 메틸이소부틸케톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄을, n—프로판을, i so-프로판올, n- 부탄을, i so-부탄올, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i so- 프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 또는 이들의 2종 이상의 흔합물을 들 수 있다.
상기 유기 용매는 상기 광경화성 코팅 조성물에 포함되는 각 성분들을
흔합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 흔합된 상태로 첨가되면서 상기 광경화성 코팅 조성물에 포함될 수 있다. 상기 광경화성 코팅 조성물 중 유기 용매의 함량이 너무 적으면 , 상기 광경화성 코팅 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매의 과량 첨가시 고형분 함량이 낮아져, 코팅 및 성막이 층분히 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다. 이에 따라, 상기 광경화성 코팅 조성물은 포함되는 성분들의 전체 고형분의 농도가 1 내지 50 증량 ¾>, 또는 2 내지 20 중량%가 되도록 유기 용매를 포함할 수 있다.
이러한 광경화성 코팅 조성물은 본 발명이 속한 기술분야에 알려진 방법에 따라 도포 및 광경화되어 상술한 저굴절층을 제공할 수 있다.
우선ᅳ 상기 광경화성 코팅 조성물은 소정의 기재 상에 도포될 수 있다. 이때, 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 저굴절층의 제조에 사용되는 것으로 알려진 기재가특별한 제한 없이 사용될 수 있다.
상기 광경화성 코팅 조성물은 본 발명이 속한 기술분야에 알려진 방법 및 장치를 이용하여 도포될 수 있으며, 예를 들어, Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 rol l reverse 코팅법, vacuum s lot die 코팅법 또는 2 rol l 코팅법 등을 통해 도포될 수 있다.
상기 저굴절층은 lnm 내지 300nm 또는 50nm 내지 200nm의 두께를 가질 수 있다. 이에 따라, 상기 소정의 기재 상에 도포되는 상기 광경화성 코팅 조성물의 두께는 약 lnm 내지 300ran , 또는 50nm 내지 200ηιη로 조절될 수 있다.
상기와 같이 광경화성 코팅 조성물을 기재 상에 도포한 후, 200 내지 400nm 파장 영역의 자외선 또는 가시 광선을 조사하여 상기 광경화성 코팅 조성물을 광경화시킬 수 있다. 이때, 조사되는 광의 노광량은 100 내지 4, 000 mJ/cm2의 범위로 조절될 수 있고, 노광 시간은 사용되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 조절될 수 있다.
상기 광경화 단계는 질소 분위기 하에서 수행될 수 있다. 이에 따라, 광경화 단계 전 혹은 광경화 단계 중에 질소 퍼징이 추가로 수행될 수 있다. 상기와 같이 광경화성 코팅 조성물로부터 제조된 저굴절층은 광중합성 화합물, 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산 및 -0-CF2CF2-0-CF3를
포함하는 불소계 화합물 간의 가교 중합체를 포함하는 고분자 수지와 상기 고분자수지에 분산된 무기 입자를 포함할수 있다.
그러나, 본 발명의 저굴절층은 상술한 성분 및 조성에 의해서만 형성되는 것은 아니며, 상기 식 1을 만족할 수 있다면 상술한 내용을 참고하여 다양한 성분 및 조성으로 형성될 수 있다.
한편, 발명의 다른 구현예에 따르면, 상기 저굴절층; 및 상기 저굴절층의 일면 상에 형성된 하드 코팅층을 포함하는 반사 방지 필름이 제공된다. 상기 저굴절층에 대하여는 앞서 자세하게 설명하였으므로 여기서는 자세한 설명을 생략하기로 한다.
상기 하드 코팅층으로는 통상적으로 알려진 하드 코팅층이 특별한 제한 없이 채용될 수 있다.
일 예로, 상기 하드 코팅층은 광경화성 수지 및 중량평균분자량이
10 , 000g/mol 이상인 (공)중합체 (이하, 고분자량 (공)중합체라 함)를 포함하는 바인더 수지 ; 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자를 포함할 수 있다. 본 명세서에서 (공)중합체는 공중합체 (co-polymer) 및 단독중합체 (homo- polymer) 양쪽 모두를 포함하는 의미이다.
상기 고분자량 (공)중합체는 셀를로오스계 폴리머, 아크릴계 폴리머, 스티렌계 폴리머, 에폭사이드계 폴리머, 나일론계 폴리머, 우레탄계 폴리머 및 폴리을레핀계 폴리머로 이루어진 군에서 선택되는 1 종 이상의 폴리머를 포함할 수 있다.
상기 하드 코팅층에 포함되는 광경화성 수지는 자외선 등의 광이 조사되면 중합 반웅을 일으킬 수 있는 광중합성 화합물의 중합체로서, 본 발명이 속한 기술분야에서 통상적으로 사용되는 것일 수 있다. 구체적으로, 상기 광중합성 화합물로는 우레탄 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 을리고머, 폴리에스테르 아크릴레이트 및 폴리에테르 아크릴레이트로 이루어진 반웅성 아크릴레이트 을리고머 군; 및 디펜타에리스리를 핵사아크릴레이트, 디펜타에리스리를 펜타아크릴레이트, 펜타에리스리를 테트라아크릴레이트, 펜타에리스리를 트리아크릴레이트, 트리메틸을프로판 트리아크릴레이트, 글리세린 프로폭시레이트 트리아크릴레이트, 트리메틸프로판 에톡시레이트 트리아크릴레이트, 1 ,6-핵산디올 . 디아크릴레이트, 트리프로필렌글리콜
디아크릴레이트 및 에틸렌글리콜 디아크릴레이트로 이루어진 다관능성 아크릴레이트 단량체 군에서 선택되는 1 종 이상이 사용될 수 있다. - 상기 유기 또는 무기 미립자는 입경이 1 내지 10卿일 수 있다.
상기 유기 또는 무기 미립자는 아크릴계 수지, 스티렌계 수지, 에폭시계 수지 및 나일론 수지로 이루어진 군에서 선택된 유기 미립자이거나 산화규소, 이산화티탄, 산화인듐, 산화주석, 산화지르코늄 및 산화아연으로 이루어진 군에서 선택된 무기 미립자일 수 있다.
상기 하드 코팅층은 유기 또는 무기 미립자, 광중합성 화합물, 광개시제 및 고분자량 (공)중합체를 포함하는 코팅 조성물로부터 형성될 수 있다. 이러한 하드 코팅층을 포함하는 반사 방지 필름은 눈부심 방지 효과가 탁월하다.
한편, 상기 하드 코팅층의 또 다른 일 예로, 광경화성 수지를 포함하는 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅층을 들 수 있다.
상기 하드 코팅층에 포함되는 광경화성 수지는 자외선 등의 광이 조사되면 중합 반웅을 일으킬 수 있는 광중합성 화합물의 중합체로서, 본 발명이 속한 기술분야에서 통상적으로 사용되는 것일 수 있다. 구체적으로, 상기 광중합성 화합물로는 다관능성 (메트)아크릴레이트계 단량체 또는 올리고머가 사용될 수 있고, 이때 (메트)아크릴레이트계 관능기의 수는 2 내지 10, 2 내지 8 흑은 2 내지 7로 조절되어 하드 코팅층의 목적하는 물성을 확보할 수 있다. 보다 구체적으로, 상기 광중합성 화합물로는 펜타에리스리를 트리 (메트)아크릴레이트, 펜타에리스리를 테트라 (메트)아크릴레이트, 디펜타에리스리를 펜타 (메트)아크릴레이트, 디펜타에리스리를 핵사 (메트)아크릴레이트, 트리펜타에리스리를 헵타 (메트)아크릴레이트, 를루엔 디이소시아네이트, 자일렌 디이소시아네이트, 핵사메틸렌 디이소시아네이트, 트리메틸올프로판 트리 (메트)아크릴레이트 및 트리메틸올프로판 폴리에록시 트리 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있다. 상기 대전 방지제는 4급 암모늄염 화합물, 전도성 고분자 또는 이들의 흔합물일 수 있다. 여기서, 상기 4급 암모늄염 화합물은 분자 내에 1개 이상의 4급 암모늄염기를 가지는 화합물일 수 있으며, 저분자형 또는 고분자형을 제한 없이 사용할 수 있다. 또한, 상기 전도성 고분자로는 저분자형 또는 고분자형을
제한 없이 사용할 수 있으며, 그 종류는 본 발명이 속하는 기술분야에서 통상적인 것일 수 있으므로, 특별히 쎄한되지 않는다.
상기 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅층은 알콕시 실란계 올리고머 및 금속 알콕사이드계 올리고머로 이루어진 군에서 선택되는 1종 이상의 화합물을 더 포함할 수 있다. 상기 알콕시 실란계 화합물은 당업계에서 통상적인 것일 수 있으나, 바람직하게는 테트라메특시실란, 테트라에록시실란, 테트라이소프로폭시실란, 메틸트리메톡시실란, 메틸트리에록시실란, 메타크릴록시프로필트리메특시실란, 글리시독시프로필 트리메톡시실란, 및 글리시독시프로필 트리에특시실란으로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.
또한, 상기 금속 알콕사이드계 올리고머는 금속 알콕사이드계 화합물 및 물을 포함하는 조성물의 졸-겔 반웅을 통해 제조할 수 있다. 상기 졸-겔 반웅은 전술한 알콕시 실란계 올리고머의 제조 방법에 준하는 방법으로 수행할수 있다. 다만, 상기 금속 알콕사이드계 화합물은 물과 급격하게 반웅할 수 있으므로, 상기 금속 알콕사이드계 화합물을 유기용매에 희석한 후 물을 천천히 드로핑하는 방법으로 상기 졸-겔 반웅을 수행할 수 있다. 이때, 반웅 효율 등을 감안하여 , 물에 대한 금속 알콕사이드 화합물의 몰비 (금속이온 기준)는 3 내지 170인 범위 내에서 조절하는 것이 바람직하다.
여기서, 상기 금속 알콕사이드계 화합물은 티타늄 테트라- 이소프로폭사이드, 지르코늄 이소프로폭사이드 및 알루미늄 이소프로폭사이드로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.
한편, 상기 반사 방지 필름은 상기 하드 코팅층의 다른 일면에 결합된 기재를 더 포함할 수 있다. 상기 기재는 광 투과도가 90% 이상이고, 헤이즈 1% 이하인 투명 필름일 수 있다. 또한, 상기 기재의 소재는 트리아세틸샐를로오스, 사이클로올레핀중합체, 폴리아크릴레이트, 폴리카보네이트, 폴리에틸렌테레프탈레이트 등일 수 있다. 또한, 상기 기재 필름의 두께는 생산성 등을 고려하여 10 내지 300 일 수 있다. 다만, 본 발명을 이에 한정하는 것은 아니다.
【발명의 효과】
발명의 일 구현예에 따른 저굴절층은 고분자 수지의 색상에 악영향을
미치지 않으면서 낮은 반사율 및 높은 투광율의 우수한 광학 특성과 높은 내마모성 및 내스크래치성 등의 우수한 기계적 물성을 동시에 나타낼 수 있다. 특히, 상기 저굴절층은 우수한 내알칼리성으로 인해, 알칼리 처리 후에도 상술한 우수한 물성을 나타낼 수 있다. 이에 따라, 상기 저굴절층을 디스플레이 장치에 도입할 경우 제조 공정을 단순화할 수 있고 생산 속도 및 생산량을 현저하게 증대시킬 것으로 기대된다.
[도면의 간단한 설명】
도 1은 실시예 1에서 제조한 반사 방지 필름의 파장에 따른 반사율을 나타내는 그래프이다.
도 2는 실시예 2에서 제조한 반사 방지 필름의 파장에 따른 반사율을 나타내는 그래프이다.
도 3은 실시예 3에서 제조한 반사 방지 필름의 파장에 따른 반사율을 나타내는 그래프이다.
도 4는 비교예 1에서 제조한 반사 방지 필름의 파장에 따른 반사율을 나타내는 그래프이다.
도 5는 비교예 2에서 제조한 반사 방지 필름의 파장에 따른 반사율을 나타내는 그래프이다.
도 6은 비교예 3에서 제조한 반사 방지 필름의 파장에 따른 반사율을 나타내는 그래프이다.
도 7은 비교예 4에서 제조한 반사 필름의 파장에 따른 반사율을 나타내는 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
이하 발명의 구체적인 실시예를 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.
<제조예 >
제조예 1: 하드코팅 필름 1(HD1)의 제조
KYOEISHA사 염타입의 대전 방지 하드 코팅액 (고형분 50 중량 %, 제품명 : LJD-1000)을 트리아세틸셀를로오스 필름에 #10 mayer bar로 코팅하고 90°C에서 1분간 건조한 이후, 150 mJ/cm2의 자외선을 조사하여 5/ m의 두께를 갖는 하드 코팅 필름 (HD1)을 제조하였다. 제조예 2: 하드코팅 필름 2(HD2)의 제조
펜타에리스리를 트리아크릴레이트 30g, 고분자량 공중합체 (BEAMSET 371 , Arakawa사, Epoxy Acryl ate , 분자량 40 , 000) 2.5g, 메틸에틸케톤 20g 및 레벨링제 (Tego wet 270) 0.5g을 균일하게 흔합한 이후에 굴절률이 1.525인 미립자로서 아크릴-스티렌 공중합체 (부피 평균 입경: ΛΠ, 제조사: Seki sui Plast ic) 2g을 첨가하여 하드 코팅 조성물을 제조하였다. 이와 같이 얻어진 하드 코팅 조성물을 트리아세틸셀를로오스 필름에 #10 mayer bar로 코팅하고 90°C에서 1분간 건조하였다. 상기 건조물에 150 mJ/cm2의 자외선을 조사하여 5//m의 두께를 갖는 하드 코팅 필름 (HD2)을 제조하였다. 제조예 3: 폴리실세스퀴옥산 1의 제조
질소 가스 도입관, 컨덴서 (condenser ) 및 교반기를 갖춘 1L 반웅기에, 이소옥틸트리메특시실란 ( i sooctyl tr imethoxy s i lane) 36.57g (0. 156mol ) , 3- 메타크릴옥시프로필 트리메톡시실란 (3-methacyloxypropyl tr imethoxysi lane) 23.34g (0.094mol ) 및 메탄을 (methanol ) 500mL를 투입하고 실온에서 10 분간 교반하였다. 이후, 테트라메틸암모늄 하이드록사이드 (tetramethyla隱 onium hydroxide) 280g (0.77mol , 25 wt% in methanol )을 투입하고, 질소 분위기 하에서 반응기 온도를 60°C로 올리고 8 시간 동안 반웅을 진행하였다. 반웅 종결 루, Column Chromatography와 재결정을 ■통해 i sooctyl group과 methacryloxypropyl group으로 치환된 polyhedral ol igomer ic si l sesquioxane (P0SS) 15g을 얻었다. GP Chromatography로 확인한 결과, 폴리실세스퀴옥산의 실리콘에 치환된 i sooctyl group에 대한 methacryloxypropyl group의 몰비 (methacryloxypropyl group의 몰수 /i sooctyl group의 몰수)는 약 0.6 내지 1.67인 것이 확인되었다.
제조예 4: 불소계 화합물 2의 제조
2.0 L의 전자 교반기 부착 스테인리스제 오토클레이브를 질소 가스로 층분히 치환한 후, 초산에틸 400 g, 퍼플루오로 (프로필 비닐 에테르) 53.2 g, 에틸 비닐 에테르 36.1 g, 히드록시에틸 비닐 에테르 44.0 g, 과산화 라우로일 1.00 g, 하기 화학식 1으로 표시되는 아조기 함유 폴리디메틸실록산 (VPS1001 (상품명), ffako Pure Chemical Industries, Ltd. 거 1) 6.0 g 및 비이온성 반웅성 유화제 (NE-30(상품명), 아사히 전화공업 (주)제) 20.0 g를 첨가해, 드라이아이스 메탄올로 -50°C까지 넁각한 후, 재차 질소가스로 계 내 산소를 제거했다.
이어서 핵사플루오로프로필렌 120.0 g를 첨가하고 승은을 시작했다. 오토클레이브 내의 온도가 60°C에 이른 시점에서의 압력은 5.3 X 105 Pa를 나타냈다. 그 후 70°C로 20 시간 교반 하에 반웅을 계속해, 압력이 1.7 X 105 Pa로 저하한 시점에서 오토클레이브를 넁각하여 반응을 정지시켰다. 실온에 이른 후, 미반응 모노머를 방출한 후 오토클레이브를 개방하여, 고형분 농도 26.4%의 폴리머 용액을 얻었다. 얻어진 폴리머 용액을 메탄올에 투입해 폴리머를 석출시킨 후, 메탄올로 세척하고 50°C에서 진공 건조하여 220 g의 수산기 함유 함불소 중합체를 얻었다.
전자 교반기, 유리제 넁각관 및 온도계를 구비한 용량 1 리터의 플라스크에 앞서 제조한 수산기 함유 함불소 증합체를 50.0 g, 중합 금지제로서 2, 6-디 -t-부틸메틸 페놀 0.01 g 및 메틸이소부틸케톤 (MIBK) 370 g을 첨가하고, 20°C에서 상기 수산기 함유 함불소 중합체가 MIBK에 용해되어 용액이 투명해질 때까지 교반하였다.
이어서 이 계에 2-아크릴로일옥시에틸 이소시아네이트를 13.7 g를 첨가해, 용액이 균일하게 될 때까지 교반한 후, 디부틸틴 디라우레이트 0.1 g를 첨가한 다음 계의 온도를 55 5°C로 유지하며 5 시간 동안 교반함으로써, 에틸렌성 불포화기 함유 함불소 중합체 (아크릴 변성 함불소 중합체)의 MIBK 용액을 얻었다.
이 용액 2 g을 칭량하여 알루미늄 접시에 떨어뜨리고 150°C의 핫 플레이트상에서 5 분간 건조한 후 재칭량하여 고형분의 함량을 계산한 결과 고형분의 함량은 15.0 중량 %이었다.
<실시예 및 비교예: 반사 방지 필름의 제조 >
(1) 저굴절층 제조용 광경화성 코팅 조성물의 제조
하기 표 1의 성분을 흔합하고, MIBK methyl i sobutyl ketone)용매에 고형분이 3 중량 %가 되도록 회석하였다.
【표 1】
(단위 : g; 괄호 안의 수치는 고형분와함량을 와미한다. )
1) 중공 실리카 분산액: 수평균 직경이 50nm인 중공 실리카 입자가 MIBK에 20 중량 %로 분산된 THRULYA 4320(촉매화성 제품)
2) 폴리실세스퀴옥산 1 : 제조예 3에 따라 제조된 폴리실세스퀴옥산 1 3) 폴리실세스퀴옥산 2 : T0AGOSEI CO. , Ltd.의 MAOSQ-F
4) 불소계 화합물 1: 광반웅성 작용기, -0-CF2CF2-0-CF3 , -0-(CF2)3-0- 및 -0-CF2CF2CF3를 포함하는 불소계 화합물로서 MIBK에 30 중량 %로 회석된 DIC사의 RS907
5) 불소계 화합물 2 : 제조예 4에 따라 제조된 것으로, 고형분 15 중량 %로 MIBK에 분산된 불소계 화합물 2
(2) 저굴절층 및 반사 방지 필름의 제조 (실시예 1 내지 3 및 비교예 1 내지 5)
하기 표 2에 기재된 하드 코팅 필름 상에, 상기 표 1에서 각각 얻어진 광경화성 코팅 조성물을 #3 mayer bar로 코팅하고, 60°C에서 1분간 건조하였다. 그리고, 질소 퍼징하에서 상기 건조물에 180 mJ/cm2의 자외선을 조사하여 llOnm의 두께를 갖는 저굴절층을 형성함으로써 반사 방지 필름을 제조하였다.
<실험예: 반사방지 필름의 물성 측정 >
상기 실시예 및 비교예에서 얻어진 반사 방지 필름에 대하여 다음과 같은 항목의 실험을 시행하였다.
1. 알칼리 전처리
30°C의 NaOH 수용액 (NaOH를 증류수에 10 중량 ¾>로 희석한 용액)에 실시예 1 내지 3 및 비교예 1 내지 5에서 얻어진 반사 방지 필름 각각을 2 분간 담궜다가 흐르는 물로 세척한 후 물기를 닦아주었다. 이어서, 물기를 닦은 반사 방지 필름을 다시 55°C의 NaOH 수용액 (NaOH를 증류수에 10 증량 ¾로 희석한 용액)에 30 초간 담궜다가흐르는 물로 세척한후 물기를 닦아주었다. 2. 반사율 (Y) 및 색좌표값 (b*) 측정
상기 알칼리 전처리 전후 시점에서 Sol idSpec 3700 (SHIMADZU)를 이용하여, 실시예 및 비교예에서 제조한 반사 방지 필름의 평균 반사율 및 색 좌표값을 측정하였다.
구체적으로, 기재 필름의 하드 코팅층이 형성되지 않은 면에 광이 투과하지 못하도록 검정 테이프를 붙이고, sampl ing interval 1 nm, t ime constant 0. 1 sec , sl i t width 20 nm, medium scanning speed로 즉정 조건을 고정한 후, 상온에서 상기 반사 방지 필름의 저굴절층에 380nm 내지 780nm 파장 영역의 광을 조사하였다.
하드 코팅 필름으로 HD2를 사용한 경우 100%T 모드를 적용하고 하드 코팅 필름을 ΗΕ)1을 사용한 경우에는 Measure 모드를 적용하여 380ran 내지 780nm 파장
영역에서의 반사율을 측정하였다. 실시예 및 비교예에서 제조한 반사 방지 필름의 380ran 내지 780nm 파장 영역에 대한 반사율 측정 결과를 도 1 내지 도 8에 나타내었다. 도 1 내지 도 8의 점선 (一ᅳ )은 알칼리 처리 전의 반사 방지 름의 파장 (X축)에 따른 반사율 (y축)을 보여주는 그래프이고, 실선 (—— )은 알칼리 처리 후의 반사 방지 필름의 파장 (X축)에 따른 반사율 (y축)을 보여주는 그래프이다.
그리고, UV-2401PC color analysi s 프로그램을 통해 상기 반사율로부터 380iim 내지 780nm 파장 영역에서의 평균 반사율 및 색 좌표값 (b*)을 도출하여 표 2에 기재하였다.
3. 내스크래치성 측정
상기 전처리 전후 시점에서, #0000 등급의 스틸울에 하중을 걸고 24rpm의 속도로 10회 왕복하며 실시예 및 비교예에서 얻어진 반사 방지 필름의 표면을 문질렀다. LED 50W 천장 조명 아래에서 육안으로 관찰되는 스크래치가 발생되지 않는 최대 하중을 측정하였다. 상기 하중은 가로 2cm , 세로 2cm의 면적 (2*2cm2) 당무게 (g)로 정의된다.
【표 2】
상기 표 2 및 도 1 내지 도 8을 참조하면, 실시예 1 및 2의 반사 방지 필름은 가시 광선 영역 (480 내지 680nm)에서 현저하게 낮은 반사율 및 높은 내스크래치성을 나타내며, 이러한 특성은 알칼리 처리 후에도 우수한 수준으로 유지됨이 확인된다. 이에 반해, 비교예 1 내지 3의 반사 방지 필름은 열악한 내스크래치성을 나타내며, 특히, 알칼리 처리 후에 내스크래치성이 현저하게 저하됨이 확인된다.
한편, 실시예 3, 비교예 4 및 5의 반사 방지 필름은 저굴절층에 포함된 증공 실리카의 함량을 줄여 높은 내스크래치성을 구현하였으나, 마찬가지로 비교예 4 및 5의 반사 방지 필름은 알칼리 처리 후에 내스크래치성이 현저하게 저하됨이 확인된다.
이에 따라, 본 발명의 특정 조건을 만족시키는 저굴절층을 이용한 경우에 한하여 뛰어난 내알칼리성을 나타내 알칼리 처리 전후에 물성 변화가 적은 반사 방지 필름을 제공할 수 있음이 확인된다. 특히, 이러한 저굴절층은 편광판의 제조 공정에 따라 알칼리에 노출되어도 반사율 또는 투과율 등의 광학 물성이나 내마모성 또는 내스크래치성 등의 기계적 물성의 저하가 크지 않기 때문에, 외부 표면 보호를 위한 추가적인 보호 필름의 적용을 생략할 수 있어서 생산 공정을 단순화하고 생산 비용을 절감할 수 있다. 또한, 상기 저굴절층은 고온의 알칼리 처리 공정에서도 우수한 광학 물성 및 기계적 물성을 유지해 생산 속도 및 생산성 향상에 크게 기여할 것으로 기대된다.
Claims
【청구범위】
【청구항 1】
하기 식 1을 만족하는 저굴절층:
[식 1]
0.5 > Ah* = \ b - b* 0 l
상기 식 1에서,
b'0은 상기 저굴절층의 국제 조명 위원회가 정한 색 좌표계의 b*값이며,
I 은 상기 저굴절층을 30°C로 가열된 10 중량 %의 수산화나트륨 수용액에 2분간 침지시킨 후, 물로 세척하고 물기를 닦은 다음, 55°C로 가열된 10 중량 %의 수산화나트륨 수용액에 30초간 침지시킨 후, 물로 세척하고 물기를 닦아 준비한 필름에 대하여 b* 0를 측정한 방법과 같이 측정된 L*a*b* 색 좌표계의 b*값이다.
【청구항 2】
제 1 항에 있어서, 상기 식 1의 b* 0값이 1 내지 ᅳ8인 저굴절층. 【청구항 3】
제 1 항에 있어서, 상기 식 1의 1 값이 1.5 내지 -8.5인 저굴절층. 【청구항 4】
제 1 항에 있어서, 하기 식 2를 만족하는 저굴절층:
[식 2]
30% > AS = [ (So - Si) /S0] X 100
상기 식 2에서,
S0는 #0000 등급의 스틸울에 하중을 걸고 24rpm의 속도로 10회 왕복하며 저굴절층의 표면을 문질렀을 때, 스크래치가 발생되지 않는 최대 하중이며,
¾은 상기 저굴절층을 30°C로 가열된 10 중량 %의 수산화나트륨 수용액에 2분간 침지시킨 후, 물로 세척하고 물기를 닦은 다음, 55°C로 가열된 10 중량 %의 수산화나트륨 수용액에 30초간 침지시킨 후, 물로 세척하고 물기를 닦아 준비한 상기 필름에 대하여 So를 측정한 방법과 같이 측정된 스크래치가 발생되지 않는
최대 하중이다.
【청구항 5】
제 4 항에 있어서, 상기 식 2의 So값이 250 내지 800g인 저굴절층.
【청구항 6]
제 4항에 있어서, 상기 식 2의 ¾값이 200 내지 800g인 저굴절층. 【청구항 7】
제 1 항에 있어서, 480 내지 680nm의 파장 영역에서 최소 반사율을 나타내는 저굴절층.
【청구항 8]
제 1 항에 있어서, 380 내지 780nm 파장 영역의 광에 대한 평균 반사율이 0.9 내지 2.5%인 저굴절층.
【청구항 9】
제 1 항에 있어서, 광중합성 화합물, 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산, -0-CF2CF2-0-CF3를 포함하는 불소계 화합물, 무기 입자 및 광중합 개시제를 포함하는 광경화성 코팅 조성물을 광경화시켜 얻은 광경화물을 포함하는 저굴절층.
[청구항 10】
제 1 항의 저굴절층; 및 상기 저굴절층의 일면에 형성된 하드 코팅층을 포함하는 반사 방지 필름.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680006119.7A CN107110996B (zh) | 2015-08-18 | 2016-08-18 | 低折射层和包括其的抗反射膜 |
EP16837334.8A EP3223043B1 (en) | 2015-08-18 | 2016-08-18 | Low refractive layer and anti-reflection film comprising same |
JP2018508677A JP6651609B2 (ja) | 2015-08-18 | 2016-08-18 | 低屈折層及びこれを含む反射防止フィルム |
US15/639,669 US20170343704A1 (en) | 2015-08-18 | 2017-06-30 | Low refractive layer and anti-reflective film comprising the same |
US16/921,285 US11614567B2 (en) | 2015-08-18 | 2020-07-06 | Low refractive layer and anti-reflective film comprising the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150116260 | 2015-08-18 | ||
KR10-2015-0116260 | 2015-08-18 | ||
KR1020160104409A KR101807208B1 (ko) | 2015-08-18 | 2016-08-17 | 저굴절층 및 이를 포함하는 반사 방지 필름 |
KR10-2016-0104409 | 2016-08-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/639,669 Continuation US20170343704A1 (en) | 2015-08-18 | 2017-06-30 | Low refractive layer and anti-reflective film comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017030392A1 true WO2017030392A1 (ko) | 2017-02-23 |
Family
ID=58051125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/009111 WO2017030392A1 (ko) | 2015-08-18 | 2016-08-18 | 저굴절층 및 이를 포함하는 반사 방지 필름 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017030392A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252634A (ja) * | 1994-03-16 | 1995-10-03 | Nippon Steel Corp | 耐アルカリ性金属板及びその製造方法 |
JP2005077860A (ja) * | 2003-09-01 | 2005-03-24 | Fuji Photo Film Co Ltd | 反射防止フィルム、偏光板、及びそれを用いた画像表示装置 |
KR20060111622A (ko) * | 2003-12-26 | 2006-10-27 | 후지 샤신 필름 가부시기가이샤 | 반사방지 필름, 편광판, 그의 제조 방법, 액정 디스플레이소자, 액정 디스플레이 장치, 및 영상 디스플레이 장치 |
KR20070048727A (ko) * | 2004-08-12 | 2007-05-09 | 후지필름 가부시키가이샤 | 반사방지 필름, 편광판 및 이를 이용한 화상 표시 장치 |
JP2014192341A (ja) * | 2013-03-27 | 2014-10-06 | Toray Advanced Film Co Ltd | 太陽電池モジュール用裏面保護シート |
-
2016
- 2016-08-18 WO PCT/KR2016/009111 patent/WO2017030392A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252634A (ja) * | 1994-03-16 | 1995-10-03 | Nippon Steel Corp | 耐アルカリ性金属板及びその製造方法 |
JP2005077860A (ja) * | 2003-09-01 | 2005-03-24 | Fuji Photo Film Co Ltd | 反射防止フィルム、偏光板、及びそれを用いた画像表示装置 |
KR20060111622A (ko) * | 2003-12-26 | 2006-10-27 | 후지 샤신 필름 가부시기가이샤 | 반사방지 필름, 편광판, 그의 제조 방법, 액정 디스플레이소자, 액정 디스플레이 장치, 및 영상 디스플레이 장치 |
KR20070048727A (ko) * | 2004-08-12 | 2007-05-09 | 후지필름 가부시키가이샤 | 반사방지 필름, 편광판 및 이를 이용한 화상 표시 장치 |
JP2014192341A (ja) * | 2013-03-27 | 2014-10-06 | Toray Advanced Film Co Ltd | 太陽電池モジュール用裏面保護シート |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11614567B2 (en) | Low refractive layer and anti-reflective film comprising the same | |
JP6789593B2 (ja) | 反射防止フィルム | |
JP6607510B2 (ja) | 光硬化性コーティング組成物、低屈折層および反射防止フィルム | |
US11555947B2 (en) | Low refractive layer and anti-reflective film comprising the same | |
JP6732015B2 (ja) | 反射防止フィルム | |
EP3378902B1 (en) | Anti-reflective film | |
WO2017119658A1 (ko) | 반사 방지 필름 | |
JP6727574B2 (ja) | 光硬化性コーティング組成物、低屈折層および反射防止フィルム | |
WO2017155336A1 (ko) | 반사 방지 필름 | |
WO2017030392A1 (ko) | 저굴절층 및 이를 포함하는 반사 방지 필름 | |
WO2017030391A1 (ko) | 저굴절층 및 이를 포함하는 반사 방지 필름 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16837334 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2016837334 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018508677 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |