[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017030348A1 - 무선 통신 시스템에서 v2x 메시지 송수신 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 v2x 메시지 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017030348A1
WO2017030348A1 PCT/KR2016/008992 KR2016008992W WO2017030348A1 WO 2017030348 A1 WO2017030348 A1 WO 2017030348A1 KR 2016008992 W KR2016008992 W KR 2016008992W WO 2017030348 A1 WO2017030348 A1 WO 2017030348A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
information
rsu
control
network
Prior art date
Application number
PCT/KR2016/008992
Other languages
English (en)
French (fr)
Inventor
김래영
천성덕
김태헌
서한별
이영대
정성훈
슈지안
김동수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/752,876 priority Critical patent/US10687175B2/en
Publication of WO2017030348A1 publication Critical patent/WO2017030348A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/021Traffic management, e.g. flow control or congestion control in wireless networks with changing topologies, e.g. ad-hoc networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving V2X messages for V2X control.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • a method of transmitting and receiving a vehicle to everything (V2X) message of a first RSU (Road Side Unit) in a wireless communication system comprising: transmitting PC5 interface congestion related information to an ITS server; Receiving the first V2X message after transmitting the PC5 interface congestion related information; And broadcasting a second V2X message based on the first V2X message, wherein the second V2X message includes a second V2X message through a Packet Data Convergence Protocol (PDCP) Service Data Unit (SDU).
  • PDCP Packet Data Convergence Protocol
  • SDU Service Data Unit
  • a first Road Side Unit (RSU) device for transmitting and receiving a V2X (vehicle to everything) message in a wireless communication system, the transceiver; And a processor, wherein the processor transmits PC5 interface congestion related information to an ITS server, transmits the PC5 interface congestion related information, and then receives a first V2X message, based on the first V2X message.
  • a second V2X message is broadcast, and the second V2X message is a first RSU device indicating that the second V2X message is control information through a Packet Data Convergence Protocol (PDCP) Service Data Unit (SDU).
  • PDCP Packet Data Convergence Protocol
  • SDU Service Data Unit
  • the second V2X message may indicate control information by using 'V2X control' as a PDCP SDU type.
  • the second V2X message may use 'V2X-non-IP' as a PDCP SDU type, and may indicate control information by using at least one of a source layer-2 ID and a destination layer-2 ID as a preset value.
  • the PDCP SDU type may not be retransmitted by the UE that receives the 'V2X control' information.
  • the second V2X message may be retransmitted by the second RSU receiving the second V2X message.
  • the preset condition may be V2X message transmission control position information and V2X message transmission control time information.
  • the V2X message transmission control location information includes geographic location information, administrative area information, PLMN, tracking area, tracking area list, cell unit location information, eNode unit location information, eNodeB service area unit location information, and V2X-MeCE unit location. Information, MME unit location information, and service area unit location information of the MME.
  • the first RSU may be selected as an RSU to be used for transmitting a second V2X message.
  • the first V2X message may be transmitted in unicast.
  • the second V2X message may be transmitted on a PC5 interface channel.
  • the PC5 congestion related information may be transmitted in unicast through a PDN connection.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • FIG. 14 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • ProSe communication Means communication through a ProSe communication path between two or more ProSe capable terminals. Unless specifically stated otherwise, ProSe communication may mean one of ProSe E-UTRA communication, ProSe-assisted WLAN direct communication between two terminals, ProSe group communication, or ProSe broadcast communication.
  • ProSe-assisted WLAN direct communication ProSe communication using a direct communication path
  • ProSe communication path As a communication path supporting ProSe communication, a ProSe E-UTRA communication path may be established between ProSe-enabled UEs or through a local eNB using E-UTRA. ProSe-assisted WLAN direct communication path can be established directly between ProSe-enabled UEs using WLAN.
  • EPC path (or infrastructure data path): user plane communication path through EPC
  • ProSe Discovery A process of identifying / verifying a nearby ProSe-enabled terminal using E-UTRA
  • ProSe Group Communication One-to-many ProSe communication using a common communication path between two or more ProSe-enabled terminals in close proximity.
  • ProSe UE-to-Network Relay ProSe-enabled public safety terminal acting as a communication relay between ProSe-enabled network using E-UTRA and ProSe-enabled public safety terminal
  • ProSe UE-to-UE Relay A ProSe-enabled public safety terminal operating as a ProSe communication relay between two or more ProSe-enabled public safety terminals.
  • -Remote UE In the UE-to-Network Relay operation, a ProSe-enabled public safety terminal that is connected to the EPC network through ProSe UE-to-Network Relay without receiving service by E-UTRAN, that is, provides a PDN connection, and is a UE.
  • a ProSe-enabled public safety terminal In -to-UE Relay operation, a ProSe-enabled public safety terminal that communicates with other ProSe-enabled public safety terminals through a ProSe UE-to-UE Relay.
  • ProSe-enabled Network A network that supports ProSe Discovery, ProSe Communication, and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled Network may be referred to simply as a network.
  • ProSe-enabled UE a terminal supporting ProSe discovery, ProSe communication and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled UE and the ProSe-enabled Public Safety UE may be called terminals.
  • Proximity Satisfying proximity criteria defined in discovery and communication, respectively.
  • SLP SULP Location Platform
  • SLP An entity that manages Location Service Management and Position Determination.
  • SLP includes a SPL (SUPL Location Center) function and a SPC (SUPL Positioning Center) function.
  • SPL SUPL Location Center
  • SPC SUPL Positioning Center
  • OMA Open Mobile Alliance
  • the application / service layer includes Temporary Mobile Group Identity (TMGI) for each MBMS service, session start and end time, frequencies, MBMS service area identities (MBMS SAIs) information belonging to the MBMS service area. To put in USD to the terminal. See 3GPP TS 23.246 for details.
  • TMGI Temporary Mobile Group Identity
  • MBMS SAIs MBMS service area identities
  • ISR Interle mode Signaling Reduction
  • EPC Evolved Packet Core
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data Rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data Rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • the 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active.
  • BCHs broadcaster channels
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing).
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • Prose service means a service capable of discovery and direct communication between physically adjacent devices, communication through a base station, or communication through a third device.
  • FIG. 7 illustrates a default data path through which two UEs communicate in EPS. This basic route goes through the operator's base station (eNodeB) and the core network (ie, EPC). In the present invention, such a path will be referred to as an infrastructure data path (or EPC path). In addition, communication through such an infrastructure data path will be referred to as infrastructure communication.
  • eNodeB operator's base station
  • EPC core network
  • FIG. 8 shows a direct mode communication path between two UEs based on Prose. This direct mode communication path does not go through an eNodeB and a core network (ie, EPC) operated by an operator.
  • FIG. 8 (a) illustrates a case where UE-1 and UE-2 camp on different eNodeBs while transmitting and receiving data through a direct mode communication path.
  • FIG. 8 (b) illustrates camping on the same eNodeB.
  • FIG. 2 illustrates a case in which two UEs that are on exchange data via a direct mode communication path.
  • FIG. 9 shows a communication path (locally-routed data path) through an eNodeB between two UEs based on Prose.
  • the communication path through the eNodeB does not go through the core network (ie, EPC) operated by the operator.
  • EPC core network
  • V2X is a concept including V2V between vehicle terminals, V2P between a vehicle and other types of terminals, and V2I communication between a vehicle and a roadside unit (RSU). Since safety-related services are the most important services among V2X services, V2X terminals need to receive all V2X-related messages sent by vehicles nearby. For example, V2X-related messages sent by vehicles subscribed to MNO A through direct communication or via a D2D interface (e.g. PC5 interface) can be received not only by vehicles subscribed to MNO A, but also by vehicles subscribed to other MNOs. Should be.
  • a D2D interface e.g. PC5 interface
  • Safety conditions such as collision avoidance can be provided properly when these conditions are satisfied.
  • how to make any band in the commercial LTE spectrum available for LTE-based V2X (Sharing Public Safety spectrum with V2X also can be considered), and dedicated spectrum for V2X (e.g., non-V2X applications And the unlicensed band.
  • dedicated spectrum for V2X e.g., non-V2X applications And the unlicensed band.
  • vehicles that join MNO A send V2X messages 10 times per second based on the setting or control of MNO A
  • vehicles that have joined MNO B can transmit V2X messages of the same type / personality twice per second based on the setting or control of the MNO B, and these vehicles can travel in the same area.
  • the vehicle A group uses more radio resources than the vehicle B group, which may cause inefficiency in the utilization of the radio resources. This can adversely affect the user experience.
  • Network node Explanation ITS server Server that provides V2X service or ITS service operated by 3rd party (or 3rd party ITS / V2X service provider). It may be owned by a mobile network operator (MNO).
  • MNO mobile network operator
  • the ITS server may be connected to various network nodes (eg, V2X Function, P-GW, PCRF, BM-SC, CBC, etc.).
  • Evolved Core Network (EPC) This is a core network of the MNO network, and may be composed of various network functions or nodes such as MME, S-GW, P-GW, HSS, PCRF, MBMS related network nodes, PWS / CBS related network nodes, and the like.
  • IMS network may be included if necessary.
  • the ProSe Function and its function of 3GPP TS 23.303 may be similar, but the present invention is not limited thereto and additionally performs the function proposed by the present invention. For example, it may be regarded as a sub-function or the same as a ProSe function or a direct provisioning function (DPF).
  • DPF direct provisioning function
  • V2X function may be considered to be included in the EPC and may be included in a network managed by a third party, not an MNO network. Or it may be considered to be operating in a trusted domain.
  • the V2X Function can be connected not only to the ITS server but also to various network functions or nodes of the EPC. It can also be connected with E-UTRAN. It may also be connected to the V2X Function of another MNO.
  • E-UTRAN It includes a base station such as an eNodeB. This may or may not include a Road Side Unit (RSU) function.
  • RSU Road Side Unit
  • V2X Multi-eNodeB Coordination Entity a V2X Multi-eNodeB Control Entity
  • V2X-MeCE a V2X Multi-eNodeB Control Entity
  • the V2X-MeCE may be considered to be included in the EPC.
  • the V2X Function may be connected with the V2X-MeCE, otherwise the V2X Function may be connected with the eNodeB.
  • the V2X-MeCE function may be implemented in an existing multi-cell / multicast coordination entity.
  • the RSU may be co-located in the eNodeB, but may be implemented as a separate node in the network.
  • the RSU may be connected to one or more other network nodes (eg, V2X Function, MME, eNodeB, etc.) through an interface.
  • the RSU may be a V2X-MeCE described above or play a similar role.
  • UE Vehicles, UEs carried by pedestrians, etc. can all be included in the architecture model. Vehicles A-1, A-2, B-1, and B-2 use the spectrum allocated for the V2X service to receive V2X service (or to send V2X messages directly) in a specific region or country, or in any region. Can be used.
  • the V2X message transmission characteristics may be controlled through the MNO network to which it subscribes or the MNO network currently serving.
  • RSU A stationary infrastructure that supports V2X applications that can send and receive V2X messages with other entities that support V2X applications.
  • V2X application By adding a V2X application to the UE, there may be an eNB-type RSU implemented by combining V2X application logic including the UE-type RSU implemented in the UE form and the eNB function.
  • the matters described by the eNodeB-type RSU may be equally applied to the case where the RSU is a UE type and a separate network node.
  • the descriptions of the UE-type RSU may be equally applicable to the case where the RSU is an eNodeB type.
  • the first embodiment is a V2X message transmission control method applicable to the situation as illustrated in FIG. 11.
  • the content of the first embodiment is not necessarily limited to the situation illustrated in FIG. 11, and FIG. 11 is an example assuming a hypothetical situation for the sake of understanding.
  • FIG. 11 assumes an intersection situation where these MNOs have deployed a UE-type RSU in a situation where MNO A, MNO B, and MNO C share spectrum for V2X service.
  • RSU (A-x) means MNO A
  • RSU (B-x) means MNO B
  • RSU (C-x) means MSU C installed. It is assumed that the RSUs are installed at a distance capable of communicating with each other to PC5.
  • These UE-type RSUs are stationary UEs, but are not shown in FIG.
  • the ITS servers are connected to the EPCs of the MNO A, MNO B, and MNO C networks. Assume that it is connected to V2X Function of each MNO network. In addition, the following description will be described with reference to FIG. 12 for better understanding.
  • the RSU transmits PC5 interface congestion related information to the ITS server (S1201). That is, the RSU experiencing traffic congestion or PC5 resource congestion reports it to the ITS server.
  • the RSU (C-1), RSU (C-2), RSU (A-3), and RSU (A-4) of FIG. 11 may report the congestion situation to the ITS server.
  • Such a report message may be transmitted to the ITS server in unicast form through a PDN connection established by the RSU through the EPS network.
  • the first V2X message (V2X message transmission control information) may be received.
  • the first RSU is selected (S1203) as the RSU to be used for the second V2X message transmission by the ITS server that determines to perform the V2X message transmission control (S1202).
  • the RSU sending PC5 interface congestion related information may not be selected as the RSU to be used for transmitting the second V2X message by the ITS server that has decided to perform V2X message transmission control, in which case the PC5 interface congestion related from the ITS server. Even after transmitting the information, the first V2X message may not be received.
  • the RSU sending the PC5 interface congestion related information may be selected as the RSU to be used for the second V2X message transmission by the ITS server that has decided to perform V2X message transmission control, and in this case, the PCS interface congestion related from the ITS server. After transmitting the information, the first V2X message may be received.
  • the RSU not transmitting congestion related information is selected by the ITS server as the RSU to be used for transmitting the second V2X message, the first V2X message may be received (S1204).
  • the first RSU is an RSU that transmits the congestion information of the latter and is selected as the RSU to be used for the second V2X message transmission, and receives the first V2X message after transmitting the PC5 interface congestion related information. More details related to the ITS server will be described later.
  • the first RSU eg, RSU (C-2) and RSU (B-6) in FIG. 11
  • the second V2X message (using D2D) based on the first V2X message.
  • the second V2X message may indicate that the second V2X message is control information through a Packet Data Convergence Protocol (PDCP) Service Data Unit (SDU).
  • PDCP Packet Data Convergence Protocol
  • SDU Service Data Unit
  • the second V2X message indicates control information by using 'V2X control' as a PDCP SDU type or 'V2X-non-IP' as a PDCP SDU type, but using a source layer-2 ID or a destination layer-2.
  • One or more of the IDs may be used as a preset value (or filled with a specific value defined for sending V2X message transmission control information) to indicate that the information is control information.
  • the PDCP SDU type is not retransmitted / spread by the UE that receives the 'V2X control' information.
  • a UE that recognizes that a message received through PC5 is a V2X message, that is, control information rather than user traffic, determines that it does not need to spread it to other UEs / RSUs.
  • the UE that receives the V2X message transmission control information through PC5 performs V2X message transmission based on the received information (S1206). For example, while transmitting a V2X message 10 times per second, the information is instructed to transmit the V2X message twice a second. Accordingly, V2X message transmission can be performed.
  • the second V2X message may be retransmitted / spread by the second RSU that receives the second V2X message.
  • the RSU receiving the V2X message transmission control information through PC5 checks whether it needs to spread to other UE / RSU.
  • the preset condition may be V2X message transmission control position information and V2X message transmission control time information, and the second RSU uses the V2X message transmission control position information and V2X message transmission control time information included in the first V2X message. It is used to determine whether or not to spread (S1207).
  • the V2X message transmission control location information is geographic location information, administrative area information, PLMN, Tracking Area, Tracking Area List, Cell unit location information, eNode unit location information, eNodeB service area unit location information, V2X-MeCE unit
  • the location information may be one of location information, MME unit location information, and service area unit location information of the MME.
  • the second RSU determines that the received transmission control information should be spread, it may be broadcasted using D2D (S1208). For example, if the RSU itself belongs to the region / range in which the V2X message transfer control should be performed based on the V2X message transfer control position information and the current V2X message transfer control should be performed based on the V2X message transfer control time information. It may be determined that the information should be spread. Specifically, for example, in FIG. 11, V2X message transmission control information broadcasted by the RSU (C-2) and the RSU (B-6) is represented by the RSU (B-2), the RSU (B-3), and the RSU (A-3).
  • the RSU (A-4), RSU (C-5), and RSU (C-6) receive, they transmit the V2X message transmission control position information included in the V2X message transmission control information, and additionally, the V2X message transmission. Based on the control time information, it is determined that the information should be spread. Then, for example, the RSU (A-2) receiving the V2X message transmission control information from the RSU (B-3) is V2X message transmission control position information included in the V2X message transmission control information, additionally V2X message transmission control time Based on the information, it is determined not to spread the information and deletes the received message.
  • the second RSU can receive the V3X message transmission control information that has already been broadcast by the adjacent third RSU. At this time, the second RSU has previously received and processed the V2X message transmission control information, and thus may delete it without further processing.
  • the time that the ITS server generates / provides a serial number or information when transmitting the information (eg YY, MM, DD, HH, XX minutes, SS) Can be sent by adding seconds). Accordingly, V2X related message transmission control serviced through the first spectrum (or / and the first network) may be performed through a spectrum other than the first spectrum (and / or a network / MNO network other than the first network).
  • the ITS server recognizes that congestion has occurred based on the congestion information transmitted by the first RSU. This determines that V2X message transmission control should be performed for the region.
  • the ITS server determines the range in which V2X message transfer control should be performed (indicated by the circles indicated by dashed lines in FIG. 11). In particular, it determines the center coordinates (latitude, longitude) of the area where the transmission control should be performed.
  • the ITS server determines the V2X message transmission control information based on the collected traffic congestion or PC5 resource congestion information and selects one or more RSUs to transmit it.
  • the RSU may be the RSU closest to the determined center coordinates. Referring to FIG.
  • the selected RSU includes four RSUs closest to the center of the intersection (ie, RSU (C-2), RSU (A-3), RSU (A-4), and RSU (B-6)). It may be one of the. Alternatively, two or more of these four RSUs can be selected. Assume that RSU (C-2) and RSU (B-6) are selected.
  • the ITS server provides V2X message transmission control information to the selected RSU.
  • the V2X message transmission control information includes information on a region / location at which control on V2X message transmission should occur, which may be various types of information, such as the above-described V2X message transmission control position information. For example, it may have various forms such as center coordinates and radius, or coordinate information of each vertex indicating a range of a rectangular shape.
  • the ITS server provides this information directly to the RSU in unicast.
  • the ITS server provides the above information to the V2X Function of the HPLMN subscribed to the RSU. At this time, the identification information of the corresponding RSU is also provided. The V2X Function receiving this provides the information to the corresponding RSU unicast or through the MME.
  • the ITS server can store / manage map information on which RSUs are installed.
  • the map information may be generated using location information (eg, coordinate information) in which the RSU transmitted to the ITS server is installed when the RSU is installed.
  • the V2X function of the MNO network may provide the location information of the RSUs to the ITS server at once.
  • the V2X function may obtain location information of the RSU from the RSU or from subscriber information of the RSU.
  • Example 2 is based on the following assumptions. Vehicles currently passing a range of shrines send a V2X message using the PC5 interface to announce their presence 10 times a second.
  • the ITS server collects information that the vehicle density is high at the shrine range.
  • the ITS server requests control of V2X message transmission from MNO A, MNO B, and MNO C providing V2X service in the first spectrum (the spectrum shared by three MNOs to provide V2X service) in the area containing the shrine range.
  • V2X Function-A V2X Function in MNO A
  • V2X Function-B V2X Function in MNO B
  • V2X Function-C V2X Function in MNO C
  • the eNodeB belonging to the MNO A receiving the request may broadcast the V2X message transmission characteristic information to the SIB through a spectrum (second spectrum) managed by itself / self.
  • the eNodeB belonging to the MNO B receiving the request may broadcast V2X message transmission characteristic information to the SIB through a spectrum (third spectrum) managed by itself / self.
  • the eNodeB belonging to the MNO C receiving the request may broadcast V2X message transmission characteristic information to the SIB through a spectrum (fourth spectrum) managed by itself / self.
  • the vehicle A subscribing to the MNO A may transmit a V2X message for notifying its presence five times a second by receiving the information from the eNodeB. It is assumed that the vehicle A is not roaming at present, and the vehicle D joining the MNO D is currently roaming into the MNO A network and receives the information from the eNodeB belonging to the MNO A. In this way, V2X messages can be sent to inform the user of his presence five times a second.
  • the vehicle B subscribing to the MNO B may transmit a V2X message for notifying its presence five times a second by receiving the information from the eNodeB. Assume that vehicle B is not currently roaming.
  • the vehicle E subscribing to the MNO E is currently roaming into the MNO B network and receives the information from the eNodeB belonging to the MNO B. In this way, V2X messages can be sent to inform the user of his presence five times a second.
  • the vehicle C subscribing to the MNO C may transmit a V2X message for notifying its presence five times a second by receiving the information from the eNodeB. It is assumed that the vehicle C is not currently roaming.
  • the vehicle F subscribing to the MNO F is currently roaming into the MNO C network and receives the information from the eNodeB belonging to the MNO C. In this way, V2X messages can be sent to inform the user of his presence five times a second.
  • V2X related message transmission control serviced over the first spectrum may be performed over a spectrum other than the first spectrum (and / or a network / MNO network other than the first network).
  • Another embodiment is as follows. Vehicles currently passing a range of shrines send a V2X message using the PC5 interface to announce their presence 10 times a second.
  • the ITS server collects information on the per square range that vehicle density and / or congestion / transmission failure rate of PC5 resources is high.
  • the ITS server controls the V2X message transmission control to MNO A, MNO B, and MNO C providing V2X service in the first spectrum (the spectrum shared by three MNOs to provide V2X service) in the area including the shrine range. Provide the information to request.
  • the information provided may include coordinate information indicating a dead range, an interface for transmitting a Periodic V2X message, PC5, and an interface for transmitting an Event-triggered V2X message, Uu.
  • the event-triggered V2X message generated during an accident should be delivered to other UEs in the vicinity, so that a reliable Uu interface is used instead of a PC5 interface that may have a collision.
  • V2X Function in MNO A (called V2X Function-A), V2X Function in MNO B (called V2X Function-B) and V2X Function in MNO C (called V2X Function-C) Can be received from the ITS server.
  • V2X Function-A, V2X Function-B, and V2X Function-C can extract information / list on the eNodeB that should request / execute V2X message transmission control based on the received coordinate information.
  • V2X Function-A, V2X Function-B, and V2X Function-C may request the V2X message transmission control from the extracted eNode (s).
  • the eNodeB belonging to the MNO A receiving the request may broadcast the V2X message transmission characteristic information to the SIB through a spectrum (second spectrum) managed by itself / self.
  • the eNodeB belonging to the MNO B receiving the request may broadcast V2X message transmission characteristic information to the SIB through a spectrum (third spectrum) managed by itself / self.
  • the eNodeB belonging to the MNO C receiving the request may broadcast V2X message transmission characteristic information to the SIB through a spectrum (fourth spectrum) managed by itself / self.
  • Vehicle A subscribed to MNO A receives the information from the eNodeB so that periodic V2X messages can continue to be transmitted over the PC5 interface. It can be assumed that the vehicle A is not currently roaming.
  • the vehicle D subscribing to the MNO D is currently roaming into the MNO A network and may receive the information from the eNodeB belonging to the MNO A.
  • Periodic V2X messages continue to be transmitted via the PC5 interface. When an event-triggered V2X message occurs in vehicle A or vehicle D, it can be sent via the Uu interface.
  • the vehicle B subscribing to the MNO B receives the information from the eNodeB so that periodic V2X messages continue to be transmitted through the PC5 interface. It may be assumed that the vehicle B is not currently roaming. The vehicle E joining the MNO E is currently roaming into the MNO B network, and thus may receive the information from the eNodeB belonging to the MNO B. Periodic V2X messages continue to be transmitted via the PC5 interface. When an event-triggered V2X message is generated in vehicle B or vehicle E, it can be transmitted via the Uu interface.
  • the vehicle C subscribing to the MNO C receives the information from the eNodeB so that periodic V2X messages can continue to be transmitted through the PC5 interface. It can be assumed that the vehicle C is not currently roaming.
  • the vehicle F joining the MNO F is currently roaming into the MNO C network, and thus can receive the information from the eNodeB belonging to the MNO C.
  • Periodic V2X messages continue to be transmitted via the PC5 interface. When an event-triggered V2X message occurs in vehicle C or vehicle F, it can be sent via the Uu interface.
  • V2X related message transmission control serviced over the first spectrum may be performed over a spectrum other than the first spectrum (and / or a network / MNO network other than the first network).
  • V2X transmission control The contents described below are related to V2X transmission control and may be used together or independently with the foregoing embodiments. The following description may be applied to the architecture model illustrated in FIG. 13.
  • the ITS server collects traffic information.
  • traffic information may be various information necessary for traffic control, such as accident occurrence, traffic congestion, climate information, traffic flow effect due to bad weather, large-scale event information, and congestion / collision rate on the PC5 interface. That is, the traffic information may include not only traffic information according to actual vehicle operation but also radio resource related information of PC5 used by the vehicle to transmit a V2X message.
  • traffic information can be collected from various nodes in various ways. For example, it can be collected from a device carried by a vehicle or an individual, that is, a UE, collected from an RSU, or collected from various other network nodes. In the case of an eNodeB-type RSU, information received from the UE and information generated by the UE may be transmitted to the ITS server.
  • the eNodeB-type RSU may transmit the information to the V2X Function, and the V2X Function receiving the information may transmit it to the ITS server. If the V2X-MeCE exists, the eNodeB-type RSU may transmit the information to the V2X-MeCE, and the information may be transmitted as V2X-MeCE-> V2X Function-> ITS server.
  • V2X Message transfer control (or V2X Control of message transfer properties)
  • the ITS server may decide to control the transmission of V2X messages for specific regions based on the traffic information collected. Accordingly, the MNO (s) providing the V2X service in the specific region may provide information for requesting V2X message transmission control. This information may be one or more of the following: In addition, the same information can be provided to all MNOs provided when providing such information. In addition, different information may be provided according to the type or characteristic of the UE (eg, different sets of information are provided to the vehicle UE and the UE carried by the person).
  • V2X message transmission control location information V2X message Control over the transfer should take place Information about your location / location
  • the location / location information may be in various forms. For example, geographic location information, administrative district information (area / region, etc., for example, Seoul, Seocho-gu, Seoul, etc.), specific places (for example, Incheon International Airport, xx shopping mall, etc.), PLMN, Tracking Area, Tracking Area List, Cell unit location information, eNode unit location information, service area unit location information of the eNodeB, V2X-MeCE unit location information, MME unit location information, service area unit location information of the MME. If outside of this area, the UE returns to the method before V2X message transmission control, performs V2X message transmission, performs V2X message transmission using the method that should be used as the default, or receives the information described in i) below. This is how V2X messages are sent.
  • This may be for example a) traffic congestion information at a location / location.
  • the degree of congestion may be expressed as a level or may be expressed as congestion, no congestion, decongestion, and the like.
  • the information may be density related information of a UE receiving a vehicle or a V2X service. This may mean congestion of network resources due to V2X message transmission irrespective of or associated with traffic congestion.
  • This may be information such as frequency for transmitting a V2X message, V2X message size, power information used when transmitting a V2X message, communication range, transmission latency, transmission reliability, and the like.
  • the various pieces of information may be provided in the form of a specific value, may be provided in the form of a range value, or may be provided in a level value such as upper / middle / lower.
  • the information may include radio resource related information for transmitting a V2X message, which may be SL-Preconfiguration defined in TS 36.331.
  • This may be a V2X message transmission via direct communication (eg, transmission via a PC5 interface), or V2X message transmission (eg, via a Uu interface) via a network.
  • Some UEs may also send V2X messages over the PC5 interface and some UEs may send V2X messages over the Uu interface.
  • the ratio of the UE to use each interface may be provided together.
  • the Uu interface can be made available to 50% of the UEs.
  • the UE may use the PC5 interface at a% probability and the Uu interface at (100-a)% probability when transmitting a V2X message. Accordingly, the probability information may be provided together.
  • V2X message it is possible to have the UE use PC5 or Uu depending on the type / priority / importance of the V2X message.
  • periodic V2X messages can be sent using the Uu interface and event-triggered V2X messages can be sent using the PC5 interface. Or vice versa.
  • an association about the type of V2X message and the interface to be used can be provided.
  • V2X Message transmission control time information (in the information provided Based on V2X Time-related information on which message transfer control should be performed)
  • the V2X message transmission characteristic may be changed to the original characteristic (which may be a characteristic that was operated by default or may be a characteristic that was operated before performing V2X message transmission control).
  • This time-related information may be set to infinity or, if not provided, it may be regarded as maintaining the current control state until the next request for V2X message transmission control comes.
  • the UE may provide information indicating which set to use / apply. For example, information about V2X message transmission characteristics available in a specific region / location is used to set / use Set # 1 among them (Set # 1, Set # 2) while two sets are provisioned to the UE. May be provided to the UE.
  • the sets may be provided with information indicating which set should be used / applied instead of being pre-provisioned to the UE.
  • the information of c) may be used to determine which set the UE should use / apply.
  • the UE may use the information received from the network and / or the information it collects itself (eg, traffic congestion, resource congestion due to V2X message transmission, etc.) to determine which set to use.
  • information received from the network e.g, traffic congestion, resource congestion due to V2X message transmission, etc.
  • It may be provided as one or more information of the d), e), h).
  • it may be information about a set to be used among sets provisioned to the UE.
  • the ITS server may provide the above information to the V2X Function.
  • the V2X Function can receive a V2X message transfer control request from the ITS server.
  • the present invention is not limited thereto, and various network nodes may also receive different requests from the ITS server.
  • V2X message transmission control may be performed using MBMS through BM-SC.
  • the eNB when the information is transmitted to the eNB after passing through the BM-SC, the MBMS GW, and the MME, the eNB, which has received the information, may convert the information into a form such as SIB instead of the MBMS channel and transmit the information to the UE.
  • the eNB when the information is transmitted to the eNB after passing through the BM-SC and the MBMS GW, the eNB, which has received the information, may convert the information into a form such as SIB instead of the MBMS channel and transmit the information to the UE.
  • MBMS service reception related information (eg, TMGI, etc.) needs to be provided to the UE in order for the UE to receive traffic from the MBMS channel through which the information is transmitted. Accordingly, the MBMS service reception related information may be provided to the UE through one or more of the following methods I) to IV).
  • the information may be configured in various regional units, such as region, country, PLMN, cell list, MBMS Service Area.
  • eNB informs UE of MBMS service reception related information using SIB.
  • RSU broadcasts MBMS service reception related information to UE.
  • the ITS server sends information related to the reception of valid / appropriate MBMS services at that location based on the location information of the UE.
  • the ITS server may provide the UE with the V2X message transmission control information in a unicast manner.
  • the ITS server needs to provide the above-mentioned V2X message transmission control information based on the location information of the UE or the UE collected from the network (e.g., the area / location where control of the V2X message transmission should occur).
  • the ITS server needs to provide the above-mentioned V2X message transmission control information based on the location information of the UE or the UE collected from the network (e.g., the area / location where control of the V2X message transmission should occur).
  • V2X Of Function V2X Message transfer control action
  • the V2X function receiving the V2X message transmission control request from the ITS server performs a V2X message transmission control operation. This may mean transmitting a V2X message transmission control request to another network node of an MNO network based on the information received from the ITS server. Some of the information described in relation to the V2X message transmission control is provided from the ITS server, and some of the other information may be generated or acquired from other network nodes based on the received information, operator policy, local configuration, and subscriber information. have.
  • the V2X Function may allow the eNodeB (s) that manages the region / location where V2X message transfer control should take place to broadcast information related to V2X message transfer characteristics.
  • the eNodeB may broadcast the information by using something such as a system information block (SIB).
  • SIB system information block
  • the V2X Function may be connected to the MME to allow the eNodeB (s) that manages the region / location where V2X message transmission control should occur to broadcast information related to V2X message transmission characteristics.
  • the V2X Function may cause the RSU (s) that manages the region / location where V2X message transfer control should occur to broadcast information related to V2X message transfer characteristics. If the RSU is a UE type, the RSU may broadcast the information through a D2D operation such as direct communication. If the RSU is an eNodeB type or the eNodeB can control or connect with the eNodeB, the eNodeB can broadcast the information.
  • the V2X Function may provide the UE with the V2X message transmission control information in a unicast manner.
  • the V2X Function is a UE that needs to provide the above-described V2X message transmission control information based on the location information of the UE or UE collected from the network (for example, the area / location where control of the V2X message transmission should occur).
  • the UEs may be provided in a unicast manner to only those UEs that are likely to access / access the area / location where control of the V2X message transmission should occur.
  • the spectrum for the V2X service is shared by a plurality of MNOs.
  • each MNO has a spectrum for a V2X service or a spectrum for a non-V2X service and a V2X service.
  • a spectrum for a V2X service it may be a spectrum for D2D operation (or a spectrum for a PC5 interface or a spectrum for sidelink).
  • FIG. 13 shows a structure in which one ITS server is connected to all MNO networks sharing a spectrum for a V2X service.
  • a plurality of ITS servers may be connected to MNO networks sharing a spectrum for a V2X service. It may be.
  • ITS server-A connects to MNO A
  • ITS server-B connects to MNO B
  • ITS server-C connects to MNO C
  • ITS server-1 may be connected to MNO A and MNO B
  • ITS server-2 may be connected to MNO C.
  • each ITS server may decide to perform V2X message transmission control together, and may perform V2X message transmission control in an integrated form.
  • ETSI defines various use cases related to ITS and V2X message transmission, and the related contents are detailed in ETSI TS 302 637-2, TS 302 637-3, TR 102 638, 3GPP S1-150140, and the like. It is included in the content of. Tables 3 to 4 below show ETSI ITS messages.
  • ETSI ITS Message Category Message Name Message Type CAM TX Mode MIN Frequency (Hz) MAX Latency (ms) From To Vehicle type warnings
  • Emergency Vehicle Warning CAM Broadcast 10 100 V V Slow Vehicle Indication CAM Broadcast 2 100 V V Motorcycle Approaching Indication CAM Broadcast 2 100 V V / I Vulnerable road user Warning CAM Broadcast One 100 I / P V Dynamic vehicle warnings Overtaking vehicle warning CAM Broadcast 10 100 V V Lane change assistance CAM Broadcast 10 100 V V Co-operative glare reduction CAM Broadcast 2 100 V V Collision Risk Warning Across traffic turn collision risk warning CAM Broadcast 10 100 V V Merging Traffic Turn Collision Risk Warning CAM Broadcast 10 100 V V Co-operative merging assistance CAM Broadcast 10 100 V V / I Intersection Collision Warning CAM Broadcast 10 100 V V V Traffic light optimal speed advisory CAM Broadcast 2 100 I V Traffic information and recommended itinerary CAM Broadcast 1-10 500 I V Enhanced route guidance and navigation (RSU Capability) CAM Broad
  • FIG. 14 is a diagram showing the configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
  • the terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the processor 120 may be configured to perform a terminal operation proposed in the present invention.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the network node device 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the processor 220 may be configured to perform the network node operation proposed in the present invention.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예는, 무선통신시스템에서 제1 RSU(Road Side Unit)의 V2X(vehicle to everything) 메시지 송수신 방법에 있어서, PC5 인터페이스 혼잡 관련 정보를 ITS 서버로 전송하는 단계; 상기 PC5 인터페이스 혼잡 관련 정보를 전송한 후, 제1 V2X 메시지를 수신하는 단계; 및 상기 제1 V2X 메시지에 기초하여 제2 V2X 메시지를 브로드캐스트하는 단계를 포함하며, 상기 제2 V2X 메시지는, PDCP(Packet Data Convergence Protocol) SDU(Service Data Unit)를 통해 상기 제2 V2X 메시지가 제어 정보임을 지시하는, V2X 메시지 송수신 방법이다.

Description

무선 통신 시스템에서 V2X 메시지 송수신 방법 및 이를 위한 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 V2X 제어를 위한 V2X 메시지 송수신 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명에서는 V2X 제어를 위한 V2X 메시지를 송수신하고 처리를 수행해야 하는지를 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 제1 RSU(Road Side Unit)의 V2X(vehicle to everything) 메시지 송수신 방법에 있어서, PC5 인터페이스 혼잡 관련 정보를 ITS 서버로 전송하는 단계; 상기 PC5 인터페이스 혼잡 관련 정보를 전송한 후, 제1 V2X 메시지를 수신하는 단계; 및 상기 제1 V2X 메시지에 기초하여 제2 V2X 메시지를 브로드캐스트하는 단계를 포함하며, 상기 제2 V2X 메시지는, PDCP(Packet Data Convergence Protocol) SDU(Service Data Unit)를 통해 상기 제2 V2X 메시지가 제어 정보임을 지시하는, V2X 메시지 송수신 방법이다.
본 발명의 일 실시예는, 무선 통신 시스템에서 V2X(vehicle to everything) 메시지를 송수신하는 제1 RSU(Road Side Unit) 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는, PC5 인터페이스 혼잡 관련 정보를 ITS 서버로 전송하고, 상기 PC5 인터페이스 혼잡 관련 정보를 전송한 후, 제1 V2X 메시지를 수신하며, 상기 제1 V2X 메시지에 기초하여 제2 V2X 메시지를 브로드캐스트하고, 상기 제2 V2X 메시지는, PDCP(Packet Data Convergence Protocol) SDU(Service Data Unit)를 통해 상기 제2 V2X 메시지가 제어 정보임을 지시하는, 제1 RSU 장치이다.
상기 제2 V2X 메시지는 PDCP SDU type으로 'V2X control' 사용함으로써 제어 정보임을 지시할 수 있다.
상기 제2 V2X 메시지는 PDCP SDU type으로 'V2X-non-IP' 사용하되, source Layer-2 ID 또는 destination Layer-2 ID 중 하나 이상을 미리 설정된 값으로 사용함으로써 제어 정보임을 지시할 수 있다.
상기 PDCP SDU type이 'V2X control' 정보를 수신한 UE에 의해 재전송되지 않을 수 있다.
상기 PDCP SDU type이 'V2X control', 미리 설정된 조건에 해당하는 경우 상기 제2 V2X 메시지는 상기 제2 V2X 메시지를 수신한 제2 RSU에 의해 재전송될 수 있다.
상기 미리 설정된 조건은, V2X 메시지 전송 제어 위치 정보 및 V2X 메시지 전송 제어 시간 정보일 수 있다.
상기 V2X 메시지 전송 제어 위치 정보는, 지리학적 위치 정보, 행정구역 정보, PLMN, Tracking Area, Tracking Area List, Cell 단위 위치 정보, eNode 단위 위치 정보, eNodeB의 service area 단위 위치 정보, V2X-MeCE 단위 위치 정보, MME 단위 위치 정보, MME의 service area 단위 위치 정보 중 하나일 수 있다.
상기 제1 RSU는 제2 V2X 메시지 전송에 사용될 RSU로 선택된 것일 수 있다.
상기 제1 V2X 메시지는 유니캐스트로 전송되는 것일 수 있다.
상기 제2 V2X 메시지는 PC5 인터페이스 채널 상에서 전송될 수 있다.
상기 PC5 혼잡 관련 정보는 PDN 연결을 통해 유니캐스트로 전송되는 것일 수 있다.
본 발명에 따르면, 혼잡 상황에서 보다 효율적으로 V2X 단말들을 제어할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7은 EPS를 통한 데이터 경로를 나타낸다.
도 8 내지 도 9는 직접 모드에서 데이터 경로를 나타낸다.
도 10 내지 도 13은 본 발명의 실시예들에 관련된 예시를 설명하기 위한 도면이다.
도 14는 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.
- ProSe 커뮤니케이션: 둘 이상의 ProSe 가능한 단말들 사이의, ProSe 커뮤니케이션 경로를 통한 커뮤니케이션을 의미한다. 특별히 달리 언급되지 않는 한, ProSe 커뮤니케이션은 ProSe E-UTRA 커뮤니케이션, 두 단말 사이의 ProSe-assisted WLAN direct communication, ProSe 그룹 커뮤니케이션 또는 ProSe 브로드캐스트 커뮤니케이션 중 하나를 의미할 수 있다.
- ProSe E-UTRA 커뮤니케이션 : ProSe E-UTRA 커뮤니케이션 경로를 사용한 ProSe 커뮤니케이션
- ProSe-assisted WLAN direct communication: 직접 커뮤니케이션 경로를 사용한 ProSe 커뮤니케이션
- ProSe 커뮤니케이션 경로 : ProSe 커뮤니케이션을 지원하는 커뮤니케이션 경로로써, ProSe E-UTRA 커뮤니케이션 경로는 E-UTRA를 사용하여 ProSe-enabled UE들 사이에서 또는 로컬 eNB를 통해 수립될 수 있다. ProSe-assisted WLAN direct communication path는 WLAN을 사용하여 ProSe-enabled UEs 사이에서 직접 수립될 수 있다.
- EPC 경로 (또는 infrastructure data path): EPC를 통한 사용자 평면 커뮤니케이션 경로
- ProSe 디스커버리: E-UTRA를 사용하여, 근접한 ProSe-enabled 단말을 식별/확인하는 과정
- ProSe Group Communication: 근접한 둘 이상의 ProSe-enabled 단말 사이에서, 공통 커뮤니케이션 경로를 사용하는 일 대 다 ProSe 커뮤니케이션
- ProSe UE-to-Network Relay : E-UTRA를 사용하는 ProSe-enabled 네트워크와 ProSe-enabled 퍼블릭 세이프티 단말 사이의 커뮤니케이션 릴레이로 동작하는 ProSe-enabled 퍼블릭 세이프티 단말
- ProSe UE-to-UE Relay: 둘 이상의 ProSe-enabled 퍼블릭 세이프티 단말 사이에서 ProSe 커뮤니케이션 릴레이로 동작하는 ProSe-enabled 퍼블릭 세이프티 단말
- Remote UE: UE-to-Network Relay 동작에서는 E-UTRAN에 의해 서비스 받지 않고 ProSe UE-to-Network Relay를 통해 EPC 네트워크에 연결되는, 즉 PDN 연결을 제공받는 ProSe-enabled 퍼블릭 세이프티 단말이며, UE-to-UE Relay 동작에서는 ProSe UE-to-UE Relay를 통해 다른 ProSe-enabled 퍼블릭 세이프티 단말과 통신하는 ProSe-enabled 퍼블릭 세이프티 단말.
- ProSe-enabled Network: ProSe 디스커버리, ProSe 커뮤니케이션 및/또는 ProSe-assisted WLAN 직접 통신을 지원하는 네트워크. 이하에서는 ProSe-enabled Network 를 간단히 네트워크라고 지칭할 수 있다.
- ProSe-enabled UE: ProSe 디스커버리, ProSe 커뮤니케이션 및/또는 ProSe-assisted WLAN 직접 통신을 지원하는 단말. 이하에서는 ProSe-enabled UE 및 ProSe-enabled Public Safety UE를 단말이라 칭할 수 있다.
- Proximity: 디스커버리와 커뮤니케이션에서 각각 정의되는 proximity 판정 기준을 만족하는 것
- SLP(SUPL Location Platform): 위치 서비스 관리(Location Service Management)와 포지션 결정(Position Determination)을 관장하는 엔티티. SLP는 SLC(SUPL Location Center) 기능과 SPC(SUPL Positioning Center) 기능을 포함한다. 자세한 사항은 Open Mobile Alliance(OMA) 표준문서 OMA AD SUPL: "Secure User Plane Location Architecture"을 참고하기로 한다.
- USD(User Service Description): 애플리케이션/서비스 레이어는 각 MBMS 서비스를 위한 TMGI(Temporary Mobile Group Identity), 세션의 시작 및 종료 시간, frequencies, MBMS 서비스 지역에 속하는 MBMS service area identities(MBMS SAIs) 정보 등을 USD에 담아 단말에게 전송한다. 자세한 사항은 3GPP TS 23.246 내용을 참고하기로 한다.
- ISR(Idle mode Signalling Reduction): 단말이 E-UTRAN과 UTRAN/GERAN 사이를 자주 이동하게 되는 경우 반복적인 위치 등록 절차에 의한 네트워크 자원의 낭비가 발생한다. 이를 줄이기 위한 방법으로써 단말이 idle mode인 경우 E-UTRAN과 UTRAN/GERAN을 경유하여 각각 MME와 SGSN (이하 이 두 노드를 mobility management node라 칭함)에게 위치 등록 후, 이미 등록한 두 RAT(Radio Access Technology) 사이의 이동 또는 cell reselection을 수행한 경우 별도의 위치 등록을 하지 않게 하는 기술이다. 따라서 해당 단말로의 DL(downlink) data가 도착하는 경우 paging을 E-UTRAN과 UTRAN/GERAN에 동시에 보냄으로써, 단말을 성공적으로 찾아 DL data를 전달할 수 있다. [3GPP TS 23.401 및 3GPP TS 23.060 참조]
EPC(Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
ProSe (Proximity Service)
Prose서비스는 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스를 의미한다.
도 7은 EPS에서 두 UE가 통신하는 기본적인 경로 (default data path)를 도시하고 있다. 이러한 기본적인 경로는 사업자가 운영하는 기지국(eNodeB) 및 core network(즉, EPC)을 거친다. 본 발명에서는 이러한 경로를 인프라스트럭처 데이터 경로(infrastructure data path) (또는 EPC path)라고 부르기로 한다. 또한, 이러한 인프라스트럭처 데이터 경로를 통한 통신을 인프라스트럭처 통신이라고 부르기로 한다.
도 8은 Prose에 기반한 두 UE 간의 직접 모드 통신 경로(direct mode data path)를 보여준다. 이러한 직접 모드 통신 경로는 사업자가 운영하는 eNodeB 및 core network (즉, EPC)을 거치지 않는다. 도 8(a)는 UE-1과 UE-2가 각각 다른 eNodeB에 캠프 온 (camp-on) 하고 있으면서 직접 모드 통신 경로를 통해 데이터를 주고 받는 경우를, 도 8(b)는 동일한 eNodeB에 캠프 온 하고 있는 두 UE가 직접 모드 통신 경로를 통해 데이터를 주고 받는 경우를 도시하고 있다.
도 9는 Prose에 기반한 두 UE 간의 eNodeB를 거치는 통신 경로(locally-routed data path)를 보여준다. 이러한 eNodeB를 거치는 통신 경로는 사업자가 운영하는 core network (즉, EPC)은 거치지 않는다.
한편, D2D 통신에 연계된 형태로써, V2X 통신에 대한 논의가 진행되고 있다. V2X는 차량 단말들간의 V2V, 차량과 다른 종류의 단말간의 V2P, 차량과 RSU(roadside unit) 간의 V2I 통신을 포함하는 개념이다. V2X 서비스 중 특히 Safety 관련 서비스가 가장 중요한 서비스인 바, V2X 단말은 주위의 차량이 직접 통신을 통해 전송한 V2X 관련 메시지를 모두 수신해야 할 필요가 있다. 가령, MNO A에 가입한 차량이 직접 통신 또는 D2D용 인터페이스(예, PC5 인터페이스)을 통해 전송한 V2X 관련 메시지는, MNO A에 가입한 차량들뿐만 아니라 그 외의 다른 MNO에 가입한 차량도 수신 가능해야 한다. 이러한 조건이 만족되어야 충돌 방지와 같은 Safety 서비스가 적절하게 제공될 수 있는데, 이를 위해 V2X 메시지를 radio를 통해 직접 송수신 시 사용하는 radio spectrum을 어떻게 할당/deploy 할지에 대한 문제가 있다 (3GPP S1-152178). 이에 관해, 상업 LTE 스펙트럼의 어떤 밴드든지 LTE-based V2X를 위해 사용할 수 있도록 하는 방법(Sharing Public Safety spectrum with V2X also can be considered), V2X를 위해 전용의 스펙트럼(예를 들어, non-V2X 애플리케이션은 사용할 수 없는)을 정하는 방법, 비면허 대역을 사용하는 방법 등이 있다. 여기서, V2X를 위해 전용의 스펙트럼을 정해 두는 방법의 구체적 예로써, V2X를 위해 할당된 스펙트럼을 각 MNO가 각각 분리하여 사용하는 방법과 모든 사업자들이 공유하여 사용하는 방법이 있다. 이 중, V2X를 위해 할당된 스펙트럼을 모든 사업자들이 (또는 특정 국가나 지역의 사업자들이) 공유하도록 하는 시나리오가 차량들이 비록 non-V2X를 위해 가입한 MNO가 서로 다르더라도 원활하게 직접적으로 V2X 메시지를 교환하는데 있어서 효율적이다. 도 10에는 이와 같은 예가 도시되어 있다. (구체적 내용은 3GPP S1-152295 참조)
이와 같이, V2X 서비스를 위한 스펙트럼을 다수의 MNO가 공유하는 경우 V2X 통신에 있어서 차량들이 일치된 형태로 동작하도록 하기 위한 제어가 중요하다. 예를 들어, MNO A에 가입한 차량들(차량 A 집단)의 경우 MNO A의 설정 또는 제어에 기반하여 V2X 메시지를 1초에 10번 전송하는 반면, MNO B에 가입한 차량들(차량 B 집단)의 경우 MNO B의 설정 또는 제어에 기반하여 상기 차량 A 집단이 전송하는 것과 동일한 종류/성격의 V2X 메시지를 1초에 2번 전송할 수 있고, 이 차량들이 동일한 지역을 운행할 수 있다. 이러한 경우, 차량 A 집단이 차량 B 집단에 비해 더 많은 무선 자원을 사용하게 되고 이로 인해 무선 자원의 활용에 있어서 비효율성이 초래할 수 있다. 이로 인해 사용자 경험에도 나쁜 영향을 미칠 수 있다. 이러한 문제를 해결하기 위해, V2X 서비스를 위한 스펙트럼을 다수의 MNO가 공유하는 경우 V2X 통신에 있어서 차량들이 일치된 형태로 동작하도록 하기 위한 제어 방안이 필요하다. 따라서, 이하에서는 V2X 메시지 전송 (또는 V2X 메시지 전송 특성)을 효율적으로 제어하는 방법들에 대해 설명한다.
이하의 설명에서는 다음과 같은 주요 네트워크 노드들이 언급되는데 다름 표 2는 각 네트워크 노드들에 대한 설명이다.
네트워크 노드 설명
ITS 서버 3rd party (또는 3rd party ITS/V2X service provider)가 운영하는 V2X 서비스 또는 ITS 서비스를 제공하는 서버다. 이는 MNO(Mobile Network Operator)가 소유할 수도 있다. ITS 서버는 다양한 네트워크 노드 (예, V2X Function, P-GW, PCRF, BM-SC, CBC 등)와 연결될 수 있다.
EPC(Evolved Core Network) 이는 MNO 망의 핵심망으로써, MME, S-GW, P-GW, HSS, PCRF, MBMS 관련 네트워크 노드들, PWS/CBS 관련 네트워크 노드들 등 다양한 네트워크 펑션 내지는 노드들로 구성될 수 있다. 또한, 필요시 IMS 망도 포함될 수 있다. 자세한 사항은 3GPP TS 23.401, TS 23.041, TS 23.246, TS 23.228 등을 참고.
V2X Function V2X 서비스 또는 ITS 서비스를 제공하기 위한 MNO가 운영하는 네트워크 펑션 또는 노드이다. 이는 UE가 V2X 서비스를 받기 위해 필요로 하는 정보를 provisioning, UE의 V2X 서비스 관련 authorization 등의 기능을 수행할 수 있다. 3GPP TS 23.303의 ProSe Function과 그 기능이 유사하다고 할 수 있으나, 그에 국한하지 않고 본 발명에서 제안하는 기능을 추가로 수행한다. 일례로, ProSe Function이나 DPF(Direct Provisioning Function)와 동일하거나 sub-function으로 간주될 수 있다. 이러한 V2X Function은 EPC에 포함되는 것으로 간주할 수도 있으며 MNO 망이 아닌 3rd party가 관리하는 망에 포함될 수도 있다. 또는 trusted domain에서 운영하는 것으로 간주될 수도 있다. V2X Function은 ITS 서버와 연결될 뿐만 아니라 EPC의 다양한 네트워크 펑션 또는 노드와 연결될 수 있다. 또한, E-UTRAN과도 연결될 수 있다. 또한, 다른 MNO의 V2X Function과 연결될 수도 있다.
E-UTRAN eNodeB와 같은 기지국을 포함한다. 이는 RSU(Road Side Unit) 기능을 포함할 수도 있고 아닐 수도 있다. 또한, V2X 서비스를 제공하기 위해 다수의 eNodeB를 관리하는 네트워트 펑션 또는 노드가 존재할 수 있다. 본 발명에서는 이를 V2X Multi-eNodeB Coordination Entity 또는 V2X Multi-eNodeB Control Entity라고 칭하기로 하며, 줄여서 V2X-MeCE라 하자. 상기 V2X-MeCE는 EPC에 포함되는 것으로 간주될 수도 있다. 이처럼 V2X-MeCE가 존재하는 경우는 V2X Function이 V2X-MeCE와 연결될 수 있으며, 그렇지 않은 경우 V2X Function은 eNodeB와 연결될 수 있다. 기존의 MCE(Multi-cell/multicast Coordination Entity)에 상기 V2X-MeCE 기능을 구현할 수도 있겠다. RSU는 eNodeB에 co-locate 되어 있을 수도 있으나, 네트워크 내에 별도의 노드로 구현될 수도 있다. 이러한 경우 RSU는 하나 이상의 다른 네트워크 노드 (예, V2X Function, MME, eNodeB 등)와 인터페이스를 통해 연결될 수 있다. 또한, RSU는 상기한 V2X-MeCE이거나 이와 유사한 역할을 수행할 수도 있다.
UE 차량, pedestrian이 휴대하는 UE 등도 모두 아키텍처 모델에 포함될 수 있다. Vehicle A-1, A-2, B-1, B-2는 특정 지역이나 국가에서, 또는 어떤 지역에서든 V2X 서비스를 받기 위해 (또는 V2X 메시지를 직접 전송하기 위해) V2X 서비스를 위해 할당된 스펙트럼을 사용할 수 있다. 반면, 상기 V2X 메시지 전송 특성은 자신이 가입한 MNO 망 또는 현재 서빙되는 MNO 망을 통해 제어 받을 수 있다.
RSU V2X application을 지원하는 다른 entity들과 V2X 메시지를 주고받을 수 있는 V2X application을 지원하는 stationary infrastructure이다. UE에 V2X application을 추가함으로써 UE 형태로 구현한 UE-type RSU와 eNB의 기능을 포함하여 V2X application logic을 결합한 형태로 구현한 eNB-type RSU가 있을 수 있다. 본 발명에서 eNodeB-type RSU로 기술한 사항들은 RSU가 UE type인 경우 및 별도의 네트워크 노드인 경우에도 동일하게 적용될 수 있다. 또한, UE-type RSU로 기술한 사항들은 RSU가 eNodeB type인 경우에도 동일하게 적용될 수 있다.
실시예 1
첫 번째 실시예에서는 도 11에 예시된 것과 같은 상황에 적용 가능한 V2X 메시지 전송 제어 방법이다. 다만, 실시예 1의 내용이 반드시 도 11에 예시된 상황에 한정되는 것은 아니며, 도 11은 어디까지나 이해를 돕기 위한 가상 상황을 가정한 예시임을 밝혀둔다. 도 11에는 MNO A, MNO B, MNO C가 V2X 서비스를 위한 스펙트럼을 공유하는 상황에서 이들 MNO가 UE-type RSU를 포설한 교차로 상황을 전제한다. RSU (A-x)는 MNO A가, RSU (B-x)는 MNO B가, RSU (C-x)는 MNO C가 포설한 RSU를 의미한다. RSU들은 서로 PC5로 통신이 가능한 거리로 포설됨을 가정한다. 이들 UE-type RSU는 stationary UE인 바, 도 11에는 도시하지 않았으나 일반적인 UE와 마찬가지로, V2X Function 및 ITS 서버와 통신할 수 있다 ITS 서버는 MNO A, MNO B, MNO C 망의 EPC와 연결되어 있으며 각 MNO 망의 V2X Function에 연결되어 있음을 가정한다. 또한, 이하의 설명에서는 이해를 돕기 위해 도 12를 참조하여 설명한다.
RSU는 PC5 인터페이스 혼잡 관련 정보를 ITS 서버로 전송한다(S1201). 즉, 교통혼잡 내지는 PC5 리소스 혼잡을 경험한 RSU는 ITS 서버로 이를 보고한다. 예를 들어 도 11의 RSU (C-1), RSU (C-2), RSU (A-3), RSU (A-4)가 상기 혼잡상황을 ITS 서버에게 보고할 수 있다. 이러한 보고 메시지는 RSU가 EPS 망을 통해 형성한 PDN connection을 통해 유니캐스트 형태로 ITS 서버로 전송될 수 있다.
PC5 인터페이스 혼잡 관련 정보를 전송한 후, 제1 V2X 메시지(V2X 메시지 전송 제어 정보)를 수신할 수 있다. 이는 제1 RSU는 V2X 메시지 전송 제어를 수행하기로 결정(S1202)한 ITS 서버에 의해 제2 V2X 메시지 전송에 사용될 RSU로 선택(S1203)된 것임을 의미한다. 보다 상세히, PC5 인터페이스 혼잡 관련 정보를 전송한 RSU는 V2X 메시지 전송 제어를 수행하기로 결정한 ITS 서버에 의해 제2 V2X 메시지 전송에 사용될 RSU로 선택되지 않을 수도 있고, 이러한 경우 ITS 서버로부터 PC5 인터페이스 혼잡 관련 정보를 전송한 후에도 제1 V2X 메시지는 수신하지 않을 수 있다. 또 다른 경우로써 PC5 인터페이스 혼잡 관련 정보를 전송한 RSU가 V2X 메시지 전송 제어를 수행하기로 결정한 ITS 서버에 의해 제2 V2X 메시지 전송에 사용될 RSU로 선택될 수 있고, 이러한 경우 ITS 서버로부터 PC5 인터페이스 혼잡 관련 정보를 전송한 후 제1 V2X 메시지를 수신할 수 있다. 물론, 혼잡 관련 정보를 전송하지 않은 RSU도 제2 V2X 메시지 전송에 사용될 RSU로 ITS 서버에 의해 선택된 경우, 제1 V2X 메시지를 수신(S1204)할 수 있다. 실시예 1에서 제1 RSU는 후자의, 혼잡 정보를 전송하고 제2 V2X 메시지 전송에 사용될 RSU로 선택되어, PC5 인터페이스 혼잡 관련 정보를 전송한 후 제1 V2X 메시지를 수신하는 RSU이다. ITS 서버에 괸련된 보다 상세한 내용에 관해서는 후술한다.
계속해서, 제 1 RSU(예를 들어, 도 11의 RSU (C-2) 및 RSU (B-6))는 제1 V2X 메시지에 기초하여 제2 V2X 메시지를 (D2D를 이용하여) 브로드캐스트한다. 이 때 PC5-U 채널을 사용하여 전송하면서 D2D로 브로드캐스트하는 정보가 단순히 V2X 메시지, 즉 사용자 트래픽이 아닌 제어용 정보임을 명시적으로 또는 암시적으로 나타낼 수 있다. 즉, 제2 V2X 메시지는, PDCP(Packet Data Convergence Protocol) SDU(Service Data Unit)를 통해 제2 V2X 메시지가 제어 정보임을 지시할 수 있다. 보다 구체적으로, 제2 V2X 메시지는 PDCP SDU type으로 'V2X control' 사용함으로써 제어 정보임을 지시하거나 또는, PDCP SDU type으로 'V2X-non-IP' 사용하되, source Layer-2 ID 또는 destination Layer-2 ID 중 하나 이상을 미리 설정된 값으로 사용(또는 V2X 메시지 전송 제어 정보를 보내기 위해 정의된 특정 값으로 채워서 전송)함으로써 제어 정보임을 지시할 수 있다. 이와 같은 경우, PDCP SDU type이 'V2X control' 정보를 수신한 UE에 의해 재전송/확산되지 않는다. 즉, PC5를 통해 수신한 메시지가 V2X 메시지, 즉 사용자 트래픽이 아닌 제어용 정보임을 인지한 UE는 이를 다른 UE/RSU에게 확산할 필요가 없음을 결정한다. V2X 메시지 전송 제어 정보를 PC5를 통해 수신한 UE는 제공받은 정보에 기반하여 V2X 메시지 전송을 수행한다(S1206). 예를 들어, 종래에 1초에 10회 V2X 메시지를 전송하다가 상기 정보가 1초에 2회 V2X 메시지를 전송하도록 지시하는 바, 이에 따라 V2X 메시지 전송을 수행할 수 있다.
PDCP SDU type이 'V2X control', 미리 설정된 조건에 해당하는 경우 제2 V2X 메시지는 제2 V2X 메시지를 수신한 제2 RSU에 의해 재전송/확산될 수 있다. V2X 메시지 전송 제어 정보를 PC5를 통해 수신한 RSU는 이를 다른 UE/RSU에게 확산할 필요가 있는지 체크한다. 이 때, 미리 설정된 조건은, V2X 메시지 전송 제어 위치 정보 및 V2X 메시지 전송 제어 시간 정보일 수 있으며, 제2 RSU는 제1 V2X 메시지에 포함된 V2X 메시지 전송 제어 위치 정보 및 V2X 메시지 전송 제어 시간 정보를 사용하여 확산 필요 여부를 결정한다(S1207). 여기서, V2X 메시지 전송 제어 위치 정보는, 지리학적 위치 정보, 행정구역 정보, PLMN, Tracking Area, Tracking Area List, Cell 단위 위치 정보, eNode 단위 위치 정보, eNodeB의 service area 단위 위치 정보, V2X-MeCE 단위 위치 정보, MME 단위 위치 정보, MME의 service area 단위 위치 정보 중 하나일 수 있다.
계속해서, 제2 RSU가 상기 수신한 전송 제어 정보를 확산해야 함을 결정하면 이를 D2D를 이용하여 브로드캐스트(S1208)할 수 있다. 예를 들어, V2X 메시지 전송 제어 위치 정보에 기반하여 RSU 자신이 V2X 메시지 전송 제어가 수행되어야 하는 지역/범위에 속하고 V2X 메시지 전송 제어 시간 정보에 기반하여 현재 V2X 메시지 전송 제어가 수행되어야 하는 시간이면 상기 정보를 확산해야 함을 결정할 수 있다. 구체적으로 예를 들어 도 11에서 RSU (C-2) 및 RSU (B-6)가 브로드캐스트한 V2X 메시지 전송 제어 정보를 RSU (B-2), RSU (B-3), RSU (A-3), RSU (A-4), RSU (C-5), RSU (C-6)이 수신한다고 가정할 때, 이들은 V2X 메시지 전송 제어 정보에 포함된 V2X 메시지 전송 제어 위치 정보, 추가적으로는 V2X 메시지 전송 제어 시간 정보에 기반하여 상기 정보를 확산해야 함을 결정한다. 이후 예를 들어, RSU (B-3)으로부터 상기 V2X 메시지 전송 제어 정보를 수신한 RSU (A-2)는 V2X 메시지 전송 제어 정보에 포함된 V2X 메시지 전송 제어 위치 정보, 추가적으로는 V2X 메시지 전송 제어 시간 정보에 기반하여 상기 정보를 확산하지 않음을 결정하고 수신한 메시지를 삭제한다.
제2 RSU는 자신이 이미 브로드캐스트한 V2X 메시지 전송 제어 정보를 근접한 제3 RSU가 확산시킬 수 있는 바, 이를 수신할 수 있다. 이 때 제2 RSU는 상기 V2X 메시지 전송 제어 정보를 이전에 수신하여 이미 처리한 바, 추가 프로세싱 없이 이를 삭제할 수 있다. 이러한 V2X 메시지 전송 제어 정보의 중복 수신여부 체크를 가능토록 하기 위해 ITS 서버는 상기 정보를 전송 시 일련번호 또는 정보를 생성한/제공하는 시간 (예, YY년, MM월 DD일 HH시 XX분 SS초)를 추가하여 전송할 수 있다. 이에, 제 1 스펙트럼 (또는/및 제 1 네트워크)를 통해 서비스되는 V2X 관련 메시지 전송 제어가 제 1 스펙트럼이 아닌 스펙트럼 (또는/및 제 1 네트워크가 아닌 네트워크/MNO 망)을 통해 수행될 수 있다.
한편, ITS 서버는 제1 RSU가 전송한 혼잡 정보에 기초하여 혼잡이 발생했음을 인지한다. 이에 상기 지역에 대해 V2X 메시지 전송 제어를 수행해야 함을 결정한다. ITS 서버는 V2X 메시지 전송 제어를 수행해야 하는 범위를 결정한다 (도 11에는 점선으로 표시된 원으로 표현됨). 특히, 전송 제어가 수행되어야 하는 지역의 중심 좌표 (위도, 경도)를 결정한다. ITS 서버는 수집한 교통혼잡 내지는 PC5 리소스 혼잡 정보에 기반하여 V2X 메시지 전송 제어 정보를 결정하고 이를 전송할 하나 이상의 RSU를 선정한다. 상기 RSU는 결정된 중심 좌표에 가장 근접한 RSU일 수 있다. 도 11을 참조하면, 상기 선정된 RSU는 교차로 중심에 가장 인접한 4개의 RSU (즉, RSU (C-2), RSU (A-3), RSU (A-4), RSU (B-6)) 중 하나일 수 있다. 또는 이 4개 RSU 중 2개 이상을 선택할 수도 있다. RSU (C-2)와 RSU (B-6)을 선택한 것으로 가정한다. ITS 서버는 선정한 RSU에게 V2X 메시지 전송 제어 정보를 제공한다. 상기 V2X 메시지 전송 제어 정보는 V2X 메시지 전송에 대한 제어가 일어나야 하는 지역/위치에 대한 정보를 포함하는데, 이는 상술한 V2X 메시지 전송 제어 위치 정보와 같이 다양한 형태의 정보일 수 있다. 예를 들어 중심 좌표 및 반경, 또는 사각형 형태의 범위를 나타내는 각 꼭지점의 좌표 정보 등 다양한 형태일 수 있다. ITS 서버가 선정한 RSU에게 V2X 메시지 전송 제어 정보를 제공 시, 다음 중 하나의 방법이 사용될 수 있다.
A) ITS 서버는 RSU에게 유니캐스트로 직접 상기 정보를 제공한다.
B) ITS 서버는 해당 RSU가 가입한 HPLMN의 V2X Function에게 상기 정보를 제공한다. 이 때 해당 RSU의 식별 정보도 함께 제공한다. 이를 수신한 V2X Function은 해당 RSU에게 유니캐스트로 또는 MME를 통해 상기 정보를 제공한다.
ITS 서버는 RSU들이 포설되어 있는 map 정보를 저장/관리할 수 있다. 여기서, map 정보는 RSU가 포설될 때 ITS 서버로 전송된 RSU가 설치된 위치 정보(예, 좌표 정보)를 사용하여 만들어진 것일 수 있다. 또는, MNO 망의 V2X Function이 RSU들의 위치 정보를 한꺼번에 ITS 서버로 제공한 것일 수도 있다. V2X Function은 RSU로부터 또는 RSU의 가입자 정보로부터 RSU의 위치 정보를 획득할 수 있다.
실시예 2
실시예 2는 다음과 같은 가정에 기초한다. 현재 사당 사거리를 지나는 차량들이 1초에 10번씩 자신의 존재를 알리기 위한 V2X 메시지를 PC5 인터페이스를 사용하여 전송한다. ITS 서버가 사당 사거리에 차량의 density가 높다는 정보를 수집한다. ITS 서버는 사당 사거리를 포함하는 지역에서 제 1 스펙트럼(세 개의 MNO가 V2X 서비스를 제공하기 위해 공유하는 스펙트럼)으로 V2X 서비스를 제공하고 있는 MNO A, MNO B, MNO C에게 V2X 메시지 전송 제어를 요청하기 위한 정보를 제공한다. 상기 제공하는 정보는 사당 사거리를 나타내는 좌표 정보, V2X 메시지를 전송하는 frequency 정보로 1초에 5번일 수 있다.
MNO A에 속한 V2X Function (이를 V2X Function-A라 지칭), MNO B에 속한 V2X Function (이를 V2X Function-B라 지칭), MNO C에 속한 V2X Function (이를 V2X Function-C라 지칭)이 상기 정보를 ITS 서버로부터 수신한다. V2X Function-A, V2X Function-B, V2X Function-C는 각각 수신한 좌표 정보에 기반하여 V2X 메시지 전송 제어를 요청/수행해야 하는 eNodeB에 대한 정보/리스트를 추출한다. V2X Function-A, V2X Function-B, V2X Function-C는 각각 추출한 eNode(s)에게 V2X 메시지 전송 제어를 요청한다.
상기 요청을 수신한 MNO A에 속하는 eNodeB는 자신의/자신이 관리하는 스펙트럼 (제 2 스펙트럼)을 통해 SIB으로 V2X 메시지 전송 특성 정보를 브로드캐스트할 수 있다. 또는, 상기 요청을 수신한 MNO B에 속하는 eNodeB는 자신의/자신이 관리하는 스펙트럼 (제 3 스펙트럼)을 통해 SIB으로 V2X 메시지 전송 특성 정보를 브로드캐스트할 수 있다. 또는, 상기 요청을 수신한 MNO C에 속하는 eNodeB는 자신의/자신이 관리하는 스펙트럼 (제 4 스펙트럼)을 통해 SIB으로 V2X 메시지 전송 특성 정보를 브로드캐스트할 수 있다.
MNO A에 가입한 차량 A는 eNodeB로부터 상기 정보를 수신함으로써 1초에 5번씩 자신의 존재를 알리기 위한 V2X 메시지를 전송할 수 있다. 차량 A는 현재 로밍이 아닌 것으로 가정하며, MNO D에 가입한 차량 D는 현재 MNO A 망으로 로밍된 상태이며 이에 MNO A에 속한 eNodeB로부터 상기 정보를 수신한다. 이에 1초에 5번씩 자신의 존재를 알리기 위한 V2X 메시지를 전송할 수 있다.
MNO B에 가입한 차량 B는 eNodeB로부터 상기 정보를 수신함으로써 1초에 5번씩 자신의 존재를 알리기 위한 V2X 메시지를 전송할 수 있다. 상기 차량 B는 현재 로밍이 아닌 것으로 가정함. MNO E에 가입한 차량 E는 현재 MNO B 망으로 로밍된 상태이며 이에 MNO B에 속한 eNodeB로부터 상기 정보를 수신한다. 이에 1초에 5번씩 자신의 존재를 알리기 위한 V2X 메시지를 전송할 수 있다.
MNO C에 가입한 차량 C는 eNodeB로부터 상기 정보를 수신함으로써 1초에 5번씩 자신의 존재를 알리기 위한 V2X 메시지를 전송 할 수 있다. 상기 차량 C는 현재 로밍이 아닌 것으로 가정한다. MNO F에 가입한 차량 F는 현재 MNO C 망으로 로밍된 상태이며 이에 MNO C에 속한 eNodeB로부터 상기 정보를 수신한다. 이에 1초에 5번씩 자신의 존재를 알리기 위한 V2X 메시지를 전송할 수 있다.
제 1 스펙트럼 (또는/및 제 1 네트워크)를 통해 서비스되는 V2X 관련 메시지 전송 제어가 제 1 스펙트럼이 아닌 스펙트럼 (또는/및 제 1 네트워크가 아닌 네트워크/MNO 망)을 통해 수행될 수 있다.
실시예 3
또 다른 실시예는 다음과 같다. 현재 사당 사거리를 지나는 차량들이 1초에 10번씩 자신의 존재를 알리기 위한 V2X 메시지를 PC5 인터페이스를 사용하여 전송한다. ITS 서버가 사당 사거리에 차량의 density 및/또는 PC5 리소스의 혼잡도/전송실패율이 높다는 정보를 수집한다. ITS 서버는 사당 사거리를 포함하는 지역에서 제 1 스펙트럼(세 개의 MNO가 V2X 서비스를 제공하기 위해 공유하는 스펙트럼)으로 V2X 서비스를 제공하고 있는 MNO A, MNO B, MNO C에게 상기 V2X 메시지 전송 제어를 요청하기 위한 정보를 제공한다. 상기 제공하는 정보는, 사당 사거리를 나타내는 좌표 정보, Periodic V2X 메시지를 전송하는 인터페이스는 PC5, Event-triggered V2X 메시지를 전송하는 인터페이스는 Uu일 수 있다. 이는, 통상적으로 사고 발생 시 생성되는 event-triggered V2X 메시지의 경우 반드시 주위의 다른 UE들에게 전달되어야 하는 바, collision 발생 가능성이 있는 PC5 인터페이스 대신 신뢰성이 있는 Uu 인터페이스를 사용하도록 함이다.
MNO A에 속한 V2X Function (이를 V2X Function-A라 지칭), MNO B에 속한 V2X Function (이를 V2X Function-B라 지칭), MNO C에 속한 V2X Function (이를 V2X Function-C라 지칭)이 상기 정보를 ITS 서버로부터 수신할 수 있다. V2X Function-A, V2X Function-B, V2X Function-C는 각각 수신한 좌표 정보에 기반하여 V2X 메시지 전송 제어를 요청/수행해야 하는 eNodeB에 대한 정보/리스트를 추출 할 수 있다. V2X Function-A, V2X Function-B, V2X Function-C는 각각 추출한 eNode(s)에게 V2X 메시지 전송 제어를 요청 할 수 있다.
상기 요청을 수신한 MNO A에 속하는 eNodeB는 자신의/자신이 관리하는 스펙트럼 (제 2 스펙트럼)을 통해 SIB으로 V2X 메시지 전송 특성 정보를 브로드캐스트 할 수 있다. 상기 요청을 수신한 MNO B에 속하는 eNodeB는 자신의/자신이 관리하는 스펙트럼 (제 3 스펙트럼)을 통해 SIB으로 V2X 메시지 전송 특성 정보를 브로드캐스트 할 수 있다. 상기 요청을 수신한 MNO C에 속하는 eNodeB는 자신의/자신이 관리하는 스펙트럼 (제 4 스펙트럼)을 통해 SIB으로 V2X 메시지 전송 특성 정보를 브로드캐스트 할 수 있다.
MNO A에 가입한 차량 A는 eNodeB로부터 상기 정보를 수신함으로써 periodic V2X 메시지는 계속 PC5 인터페이스를 통해 전송 할 수 있다. 상기 차량 A는 현재 로밍이 아닌 것으로 가정 할 수 있다. MNO D에 가입한 차량 D는 현재 MNO A 망으로 로밍된 상태이며 이에 MNO A에 속한 eNodeB로부터 상기 정보를 수신 할 수 있다. 이에 periodic V2X 메시지는 계속 PC5 인터페이스를 통해 전송. 차량 A 또는 차량 D에 event-triggered V2X 메시지가 발생시 이를 Uu 인터페이스를 통해 전송 할 수 있다.
MNO B에 가입한 차량 B는 eNodeB로부터 상기 정보를 수신함으로써 periodic V2X 메시지는 계속 PC5 인터페이스를 통해 전송. 상기 차량 B는 현재 로밍이 아닌 것으로 가정함 할 수 있다. MNO E에 가입한 차량 E는 현재 MNO B 망으로 로밍된 상태이며 이에 MNO B에 속한 eNodeB로부터 상기 정보를 수신 할 수 있다. 이에 periodic V2X 메시지는 계속 PC5 인터페이스를 통해 전송. 차량 B 또는 차량 E에 event-triggered V2X 메시지가 발생시 이를 Uu 인터페이스를 통해 전송 할 수 있다.
MNO C에 가입한 차량 C는 eNodeB로부터 상기 정보를 수신함으로써 periodic V2X 메시지는 계속 PC5 인터페이스를 통해 전송 할 수 있다. 상기 차량 C는 현재 로밍이 아닌 것으로 가정 할 수 있다. MNO F에 가입한 차량 F는 현재 MNO C 망으로 로밍된 상태이며 이에 MNO C에 속한 eNodeB로부터 상기 정보를 수신 할 수 있다. 이에 periodic V2X 메시지는 계속 PC5 인터페이스를 통해 전송. 차량 C 또는 차량 F에 event-triggered V2X 메시지가 발생시 이를 Uu 인터페이스를 통해 전송 할 수 있다.
제 1 스펙트럼 (또는/및 제 1 네트워크)를 통해 서비스되는 V2X 관련 메시지 전송 제어가 제 1 스펙트럼이 아닌 스펙트럼 (또는/및 제 1 네트워크가 아닌 네트워크/MNO 망)을 통해 수행될 수 있다.
이하에서 설명되는 내용들은 V2X 전송 제어에 관련된 것으로써, 앞선 실시예와 함께 또는 독립적으로 사용될 수 있다. 이하의 설명은 도 13에 예시된 architecture model에 적용될 수 있다.
ITS 서버의 교통정보 수집
ITS 서버는 교통정보를 수집한다. 이러한 교통정보는 가령 특정지역에 사고 발생, 교통혼잡 발생, 기후정보, 악천후에 따른 교통흐름 영향, 대규모 행사 정보, PC5 인터페이스에 대한 혼잡도/충돌 발생율 등 교통 제어에 필요한 다양한 정보일 수 있다. 즉, 상기 교통정보는 실제 차량의 운행에 따른 교통정보뿐만 아니라 차량이 V2X 메시지 전송에 사용하는 PC5의 radio resource 관련 정보를 포함할 수 있다. 이러한 교통정보는 다양한 방법으로 다양한 노드로부터 수집할 수 있다. 예를 들면 차량이나 개인이 휴대하는 디바이스, 즉 UE로부터 수집할 수도 있고, RSU로부터 수집할 수도 있고 그외의 다양한 네트워크 노드로부터 수집할 수 있다. eNodeB-type RSU인 경우 UE로부터 수신한 정보, 자신이 생성한 정보를 ITS 서버로 보낼 수 있다. 이 때, eNodeB-type RSU는 V2X Function으로 상기 정보를 전송하고, 이를 수신한 V2X Function이 이를 ITS 서버로 전송할 수 있다. 만약 V2X-MeCE가 존재하는 경우 eNodeB-type RSU가 V2X-MeCE에게 상기 정보를 전송하고, V2X-MeCE -> V2X Function -> ITS 서버와 같이 상기 정보가 전송될 수 있다.
V2X 메시지 전송 제어 (또는 V2X 메시지 전송 특성 제어)
ITS 서버는 수집한 교통정보에 기반하여 특정 지역에 대해 V2X 메시지 전송을 제어하는 것을 결정할 수 있다. 이에 상기 특정 지역에서 V2X 서비스를 제공하는 MNO(s)에게 V2X 메시지 전송 제어를 요청하기 위한 정보를 제공할 수 있다. 이러한 정보는 다음 중 하나 이상일 수 있다. 또한, 이러한 정보를 제공 시 제공받는 모든 MNO들에게 동일한 정보를 제공할 수 있다. 또한, UE의 종류나 특성에 따라 서로 다른 정보가 제공될 수도 있다 (예, 차량 UE와 사람이 휴대하는 UE에게 서로 다른 세트의 정보를 제공).
a) V2X 메시지 전송 제어 위치 정보 ( V2X 메시지 전송에 대한 제어가 일어나야 하는 지역/위치에 대한 정보)
지역/위치 정보는 다양한 형태일 수 있다. 예를 들면, 지리학적 위치 정보, 행정구역 정보(지역/구역 등, 예를 들면, 한국의 경우 서울시, 서울시 서초구 등), 특정 장소 (예를 들면, 인천공항, xx쇼핑몰 등), PLMN, Tracking Area, Tracking Area List, Cell 단위 위치 정보, eNode 단위 위치 정보, eNodeB의 service area 단위 위치 정보, V2X-MeCE 단위 위치 정보, MME 단위 위치 정보, MME의 service area 단위 위치 정보일 수 있다. 이 지역에서 벗어나면 UE는 V2X 메시지 전송 제어를 받기 전의 방식으로 돌아가서 V2X 메시지 전송을 수행하거나, default로 사용해야 하는 방식을 적용하여 V2X 메시지 전송을 수행하거나, 아래 i)에서 기술한 정보를 수신한 경우 이 방식대로 V2X 메시지 전송을 수행한다.
b) V2X 메시지 전송 제어를 받아야 하는 차량에 대한 정보
이는 차량의 ID 정보, 차량의 사용자 정보 등일 수 있다.
c) 교통 혼잡 관련 정보
이는 예컨대 상기 a) 지역/위치에서의 교통 혼잡 정보일 수 있다. 혼잡도를 레벨로 표현하거나 혼잡함, 혼잡하지 않음, 혼잡해제 등과 같이 표현될 수도 있다. 또는 차량이나 V2X 서비스를 받는 UE의 density 관련 정보일 수도 있다. 이는 교통 혼잡과 무관하게 또는 연관되게 V2X 메시지 전송에 따른 네트워크 리소스의 혼잡을 의미할 수도 있다.
d) V2X 메시지 전송 특성 관련 정보
이는 V2X 메시지를 전송하는 frequency, V2X 메시지 크기, V2X 메시지 전송시 사용하는 power 정보, communication range, transmission latency, transmission reliability 등의 정보일 수 있다. 이러한 다양한 정보들은 특정값 형태로 제공될 수도 있고, 범위 값 형태로 제공될 수도 있고, 상/중/하와 같은 레벨값으로 제공될 수도 있다. 상기 정보는 V2X 메시지를 전송하는 radio resource 관련 정보를 포함할 수 있으며, 이는 TS 36.331에 정의된 SL-Preconfiguration 일 수 있다.
e) V2X 메시지 전송 방법
이는 직접 통신을 통해 V2X 메시지 전송 (예, PC5 인터페이스를 통한 전송), 또는 네트워크를 통해 V2X 메시지 전송 (예, Uu 인터페이스를 통한 전송) 등일 수 있다. 또한 일부의 UE는 PC5 인터페이스를 통해 V2X 메시지를 전송하도록 하고 다른 일부의 UE는 Uu 인터페이스를 통해 V2X 메시지를 전송하도록 할 수도 있다. 이러한 경우 각 인터페이스를 사용하도록 하는 UE의 ratio를 함께 제공할 수 있다. 예를 들어, Uu 인터페이스를 50%의 UE가 사용하도록 할 수 있다. 또 다른 방법으로는 UE가 V2X 메시지 전송 시 a%의 확률로 PC5 인터페이스를 사용하고 (100-a)%의 확률로 Uu 인터페이스를 사용하도록 할 수도 있다. 이에 상기 확률 정보를 함께 제공할 수 있다. 또 다른 방법으로는 UE로 하여금 V2X 메시지의 종류/우선순위/중요도에 따라 PC5를 쓰거나 Uu를 사용하도록 할 수도 있다. 예를 들어, periodic V2X message는 Uu 인터페이스를 사용하여 전송하도록 하고 event-triggered V2X message는 PC5 인터페이스를 사용하여 전송하도록 할 수 있다. 또는 그 반대를 적용할 수도 있다. 이에 이러한 경우 V2X 메시지의 종류와 사용해야 하는 인터페이스에 대한 association을 제공할 수 있다.
f) V2X 메시지 전송 제어 방법
이는 V2X 메시지 전송을 제어 시, 이를 UE 각각에 대해 수행할 지 (예, 유니캐스트 형태) 아니면 해당 지역/위치에 브로드캐스트/multicast 형태로 할지 등에 대한 정보이다.
g) V2X 메시지 전송 제어 시간 정보(제공한 정보에 기반하여 V2X 메시지 전송 제어를 수행해야 하는 시간 관련 정보)
이는 a) 내지 f)에서 제공한 정보에 기반하여 V2X 메시지 전송 제어를 수행해야 하는 시간에 대한 정보로 상대적인 시간 (예, 1시간, 30분 등)일 수도 있고, 절대적인 시간 (예, 8:00pm 까지 등)일 수도 있다. 이 시간이 만료하면 V2X 메시지 전송 특성은 원래의 특성 (이는 default로 운영되던 특성일 수도 있고, V2X 메시지 전송 제어를 수행하기 이전에 운영되던 특성일 수도 있다)으로 변경되어 제어될 수 있다. 이러한 시간 관련 정보는 무한대로 설정될 수도 있고, 제공되지 않은 경우 다음번 V2X 메시지 전송 제어를 위한 요청이 올 때까지 현재의 제어 상태를 유지하는 것으로 간주할 수 있다.
h) UE가 사용/적용해야 하는 V2X 메시지 전송 제어 정보의 종류:
UE에 V2X 메시지 전송 제어 정보, 특히 상기 d)를 여러 세트로 provisioning한 후, 이 중에서 어떤 세트를 사용/적용해야 할지를 알리는 정보를 제공할 수 있다. 예를 들어, 특정한 지역/위치에서 사용 가능한 V2X 메시지 전송 특성 관련 정보로 2개의 세트가 UE에 provisioning된 상태에서 (Set#1, Set#2) 이 중에서 Set#1을 사용/적용하도록 하는 정보를 UE에게 제공할 수 있다. 상기한 세트들은 UE에 미리 provisioning되어 있는 대신 어떤 세트를 사용/적용해야 할지를 알리는 정보와 함께 제공될 수도 있다. 또한, 상기 c)의 정보를 이용하여 UE가 어떤 세트를 사용/적용해야 할지를 결정할 수도 있다.
또는 상기 d)와 같은 정보가 세트 단위로 어떤 시점에 어떤 세트가 사용/적용되는지가 결정되기 보다는 각 파라미터별로 (예를 들면, V2X 메시지 전송 시 사용하는 power, communication range 등 각각에 대해) 어떤 값이 사용/적용되어야 하는지에 대해 그 종류를 제공할 수도 있다.
UE는 어떤 세트를 사용해야 하는지를 결정하기 위해 네트워크로부터 수신한 정보 and/or 자신이 수집한 정보 (예, 교통 혼잡도, V2X 메시지 전송에 따른 리소스의 혼잡도 등)를 사용할 수도 있다.
i) UE가 V2X 메시지 전송 제어 지역을 벗어난 경우 적용해야 하는 V2X 메시지 전송 방식
상기 d), e), h) 중 하나 이상의 정보로 제공될 수 있다. 예를 들어, h)와 같은 경우 UE에 provisioning된 세트 중 사용해야 하는 세트에 대한 정보일 수 있다.
ITS 서버는 상기 정보들을 대표적으로는 V2X Function에게 제공할 수 있다. V2X Function이 ITS 서버로부터 V2X 메시지 전송 제어 요청을 받을 수 있다. 그러나 이에 국한하지 않고 다양한 네트워크 노드가 또한 서로 다른 종류의 네트워크 노드가 동일한 요청을 ITS 서버로부터 수신할 수도 있다. 이러한 예로는 BM-SC를 통해 MBMS를 이용하여 V2X 메시지 전송 제어를 수행할 수 있다. 또는 상기 정보가 BM-SC, MBMS GW, MME를 거친 후, eNB로 전송되면, 이를 수신한 eNB가 상기 정보를 MBMS 채널이 아닌 SIB과 같은 형태로 변환하여 UE에게 전송할 수도 있다. 또는 상기 정보가 BM-SC, MBMS GW를 거친 후, eNB로 전송되면, 이를 수신한 eNB가 상기 정보를 MBMS 채널이 아닌 SIB과 같은 형태로 변환하여 UE에게 전송할 수도 있다.
MBMS를 이용하여 V2X 메시지 전송 제어를 수행하는 경우, UE로 하여금 상기 정보가 전송되는 MBMS 채널로부터 traffic을 수신하도록 하기 위해서는 MBMS 서비스 수신 관련 정보 (예, TMGI 등)가 UE에 제공될 필요가 있다. 이에 다음 I) 내지 IV) 중 하나 이상의 방법을 통해 상기 MBMS 서비스 수신 관련 정보를 UE에 제공할 수 있다.
I) UE에 MBMS 서비스 수신 관련 정보를 구성. 이 때 상기 정보는 지역별, 국가별, PLMN 별, cell list 별, MBMS Service Area 별 등 다양한 지역 단위로 구성 될 수 있다.
II) eNB가 SIB을 이용하여 MBMS 서비스 수신 관련 정보를 UE에게 알리기.
III) RSU가 MBMS 서비스 수신 관련 정보를 UE에게 브로드캐스트.
IV) ITS 서버가 UE의 위치 정보에 기반하여 그 위치에서 유효한/적절한 MBMS 서비스 수신 관련 정보를 전송.
또한, ITS 서버는 UE에게 유니캐스트 방식으로 상기한 V2X 메시지 전송 제어 정보를 제공할 수도 있다. 이러한 경우, ITS 서버는 UE 또는 네트워크로부터 수집한 UE의 위치 정보에 기반하여 상기한 V2X 메시지 전송 제어 정보를 제공할 필요가 있는 UE(예를 들면, V2X 메시지 전송에 대한 제어가 일어나야 하는 지역/위치에 있는 UE들. 또는 추가적으로는 V2X 메시지 전송에 대한 제어가 일어나야 하는 지역/위치로 접근하는/접근할 가능성이 있는 UE들)에게 유니캐스트 방식으로 제공한다.
V2X Function의 V2X 메시지 전송 제어 동작
상술한 바와 같이, V2X 메시지 전송 제어 요청을 ITS 서버로부터 수신한 V2X Function은 V2X 메시지 전송 제어 동작을 수행한다. 이는 상기 ITS 서버로부터 수신한 정보에 기반하여 MNO 망의 다른 네트워크 노드로 V2X 메시지 전송 제어 요청을 전송하는 것을 의미할 수 있다. V2X 메시지 전송 제어와 관련하여 기술한 정보들의 일부가 ITS 서버로부터 제공되고 다른 일부의 정보는 제공받은 정보, 사업자 정책, local configuration, 가입자 정보 등에 기반하여 V2X Function이 생성하거나 다른 네트워크 노드로부터 획득할 수도 있다. 예를 들면, V2X Function은 V2X 메시지 전송 제어가 일어나야 하는 지역/위치를 관장하는 eNodeB(s)로 하여금 V2X 메시지 전송 특성 관련한 정보들을 브로드캐스트 하도록 할 수 있다. 이 경우, 해당 eNodeB는 SIB(System Information Block)과 같은 것을 이용하여 상기 정보를 브로드캐스트 할 수 있다. 상기에서 V2X Function은 MME에 연결됨으로써 V2X 메시지 전송 제어가 일어나야 하는 지역/위치를 관장하는 eNodeB(s)로 하여금 V2X 메시지 전송 특성 관련한 정보들을 브로드캐스트 하도록 할 수 있다.
또 다른 예로는 V2X Function이 V2X 메시지 전송 제어가 일어나야 하는 지역/위치를 관장하는 RSU(s)로 하여금 V2X 메시지 전송 특성 관련한 정보들을 브로드캐스트 하도록 할 수 있다. 만약 RSU가 UE type이라면 RSU는 상기 정보를 direct communication과 같은 D2D 동작을 통해 브로드캐스트할 수 있다. 만약 RSU가 eNodeB type 이거나 eNodeB를 제어 또는 eNodeB와 연결 가능하다면 eNodeB가 상기 정보를 브로드캐스트하도록 할 수 있다.
또 다른 예로는 V2X Function이 UE에게 유니캐스트 방식으로 상기한 V2X 메시지 전송 제어 정보를 제공할 수도 있다. 이러한 경우, V2X Function은 UE 또는 네트워크로부터 수집한 UE의 위치 정보에 기반하여 상기한 V2X 메시지 전송 제어 정보를 제공할 필요가 있는 UE(예를 들면, V2X 메시지 전송에 대한 제어가 일어나야 하는 지역/위치에 있는 UE들. 추가적으로는 V2X 메시지 전송에 대한 제어가 일어나야 하는 지역/위치로 접근하는/접근할 가능성이 있는 UE들)에게만 유니캐스트 방식으로 제공할 수도 있다.
상기에서는 V2X 서비스를 위한 스펙트럼을 다수의 MNO가 공유하는 시나리오 위주로 설명하였으나, 본 발명은 그외의 시나리오, 예를 들어 MNO 각각 V2X 서비스를 위한 스펙트럼을 가지고 있거나 non-V2X 서비스를 위한 스펙트럼과 V2X 서비스를 위한 스펙트럼이 동일한 시나리오 등에도 모두 적용 가능하다. 상기에서는 V2X 서비스를 위한 스펙트럼이라고 기술하였으나, 이는 D2D 동작을 위한 스펙트럼 (또는 PC5 interface를 위한 스펙트럼 또는 sidelink를 위한 스펙트럼)일 수 있다.
상기에서는 V2X 메시지 전송에 대한 제어 위주로 설명하였으나, 그외에도 UE의 다양한 V2X 관련 동작을 제어하는 것에도 적용 가능하다.
한편, 도 13에서는 하나의 ITS 서버가 V2X 서비스를 위한 스펙트럼을 공유하는 모든 MNO 망에 연결된 구조를 보여주고 있으나, 이와는 달리 다수의 ITS 서버가 V2X 서비스를 위한 스펙트럼을 공유하는 MNO 망들에 연결되어 있을 수도 있다. 예를 들어, MNO A, MNO B, MNO C가 V2X 서비스를 위한 스펙트럼을 공유하는 경우 ITS 서버-A가 MNO A에, ITS 서버-B가 MNO B에, ITS 서버-C가 MNO C에 연결되어 있을 수도 있고, ITS 서버-1이 MNO A와 MNO B에 그리고 ITS 서버-2가 MNO C에 연결되어 있을 수도 있다. 이처럼 V2X 서비스를 위한 스펙트럼을 공유하는 MNO 망을 관리하는 또는 연결된 ITS 서버가 다수개인 경우, 본 발명에서 제안하는 V2X 서비스를 효율적으로 제공하기 위한 방안을 위해 이러한 ITS 서버 간에 coordination이 필요하다. 이를 위해 다수의 ITS 서버를 관리하는 상위의 ITS 서버가 존재함으로써 coordination 역할을 수행할 수도 있고 (즉, MNO 망에 직접 연결된 ITS 서버들로부터 정보를 수집하여 V2X 메시지 전송 제어를 수행해야 함을 결정하고 이를 위한 정보를 각 ITS 서버로 내려줌), 각 ITS 서버들이 V2X 메시지 전송 제어를 수행해야 함을 같이 결정하고 통합된 형태로 V2X 메시지 전송 제어를 수행할 수도 있다.
한편 ETSI에서는 ITS 관련 다양한 use case 및 V2X 메시지 전송 관련하여 정의하고 있으며 이와 관련된 내용들은 ETSI TS 302 637-2, TS 302 637-3, TR 102 638, 3GPP S1-150140 등에 상세되어 있으며, 이는 본 발명의 내용으로 산입된다. 다음 표 3 내지 표 4는 ETSI ITS Message를 나타낸다.
ETSI ITS Message Category Message Name Message Type CAM TX Mode MIN Frequency (Hz) MAX Latency (ms) From To
Vehicle type warnings Emergency Vehicle Warning CAM Broadcast 10 100 V V
  Slow Vehicle Indication CAM Broadcast 2 100 V V
  Motorcycle Approaching Indication CAM Broadcast 2 100 V V/I
  Vulnerable road user Warning CAM Broadcast 1 100 I/P V
Dynamic vehicle warnings Overtaking vehicle warning CAM Broadcast 10 100 V V
  Lane change assistance CAM Broadcast 10 100 V V
  Co-operative glare reduction CAM Broadcast 2 100 V V
Collision Risk Warning Across traffic turn collision risk warning CAM Broadcast 10 100 V V
  Merging Traffic Turn Collision Risk Warning CAM Broadcast 10 100 V V
  Co-operative merging assistance CAM Broadcast 10 100 V V/I
  Intersection Collision Warning CAM Broadcast 10 100 V V
  Traffic light optimal speed advisory CAM Broadcast 2 100 I V
  Traffic information and recommended itinerary CAM Broadcast 1~10 500 I V
  Enhanced route guidance and navigation(RSU Capability) CAM Broadcast 1 500 I V
  Intersection management CAM Broadcast 1 500 I V
  Co-operative flexible lane change CAM Broadcast 1 500 I V
  Limited access warning, detour notification CAM Broadcast 1~10 500 I V
  In-vehicle signage CAM Broadcast 1 500 I V
  Electronic toll collect CAM Broadcast 1 200 I V
Others Point of interest notification CAM Broadcast 1 500 I V
  Automatic access control/parking access CAM Broadcast 1 500 I V
  Local electronic commerce CAM Broadcast 1 500 I V
  Car rental/sharing assignment/reporting CAM Broadcast 1 500 I V
  Media downloading CAM Broadcast 1 500 I V
  Map download and update CAM Broadcast 1 500 I V
  Ecological/economical drive CAM Broadcast 1 500 I V
  Instant messaging CAM Broadcast 1 500 I V
  Personal data synchronization CAM Broadcast 1 500 I V
  SOS service CAM Broadcast 1 500 I V
  Stolen vehicle alert CAM Broadcast 1 500 I V
  Remote diagnosis and just in time repair notification CAM Broadcast 1 500 I V
  Vehicle relation management CAM Broadcast 1 500 I V
  Vehicle data collect for product life cycle management CAM Broadcast 1 500 I V
  Insurance and financial Services CAM Broadcast 1 500 I V
  Fleet management CAM Broadcast 1 500 I V
  Vehicle software/data provisioning and update CAM Broadcast 1 500 I V
  Loading zone management CAM Broadcast 1 500 I V
  Vehicle and RSU data calibration CAM Broadcast 1 500 I V
Message Category Message Name Message Type DENM TX Mode MIN Frequency (Hz) MAX Latency (ms) From To
Vehicle status warnings Emergency electronic brake lights DENM Broadcast 10 100 V V/I
  Safety function out of normal condition warning DENM Broadcast 10 100 V V/I
Traffic hazard warnings Wrong way driving warning DENM Broadcast 10 100 V V/I
  Stationary vehicle warning DENM Broadcast 10 100 V V/I
  Signal violation warning DENM Broadcast 10 100 V V
  Roadwork warning DENM Broadcast 2 100 I V
  Collision Risk Warning from RSU DENM Broadcast 10 100 I V
도 14는 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.
도 14를 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
도 14를 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.

Claims (12)

  1. 무선통신시스템에서 제1 RSU(Road Side Unit)의 V2X(vehicle to everything) 메시지 송수신 방법에 있어서,
    PC5 인터페이스 혼잡 관련 정보를 ITS 서버로 전송하는 단계;
    상기 PC5 인터페이스 혼잡 관련 정보를 전송한 후, 제1 V2X 메시지를 수신하는 단계; 및
    상기 제1 V2X 메시지에 기초하여 제2 V2X 메시지를 브로드캐스트하는 단계;
    를 포함하며,
    상기 제2 V2X 메시지는, PDCP(Packet Data Convergence Protocol) SDU(Service Data Unit)를 통해 상기 제2 V2X 메시지가 제어 정보임을 지시하는, V2X 메시지 송수신 방법.
  2. 제1항에 있어서,
    상기 제2 V2X 메시지는 PDCP SDU type으로 'V2X control' 사용함으로써 제어 정보임을 지시하는, V2X 메시지 송수신 방법.
  3. 제1항에 있어서,
    상기 제2 V2X 메시지는 PDCP SDU type으로 'V2X-non-IP' 사용하되, source Layer-2 ID 또는 destination Layer-2 ID 중 하나 이상을 미리 설정된 값으로 사용함으로써 제어 정보임을 지시하는, V2X 메시지 송수신 방법.
  4. 제2항에 있어서,
    상기 PDCP SDU type이 'V2X control' 정보를 수신한 UE에 의해 재전송되지 않는, V2X 메시지 송수신 방법.
  5. 제2항에 있어서,
    상기 PDCP SDU type이 'V2X control', 미리 설정된 조건에 해당하는 경우 상기 제2 V2X 메시지는 상기 제2 V2X 메시지를 수신한 제2 RSU에 의해 재전송되는, V2X 메시지 송수신 방법.
  6. 제5항에 있어서,
    상기 미리 설정된 조건은, V2X 메시지 전송 제어 위치 정보 및 V2X 메시지 전송 제어 시간 정보인, V2X 메시지 송수신 방법.
  7. 제6항에 있어서,
    상기 V2X 메시지 전송 제어 위치 정보는, 지리학적 위치 정보, 행정구역 정보, PLMN, Tracking Area, Tracking Area List, Cell 단위 위치 정보, eNode 단위 위치 정보, eNodeB의 service area 단위 위치 정보, V2X-MeCE 단위 위치 정보, MME 단위 위치 정보, MME의 service area 단위 위치 정보 중 하나인, V2X 메시지 송수신 방법.
  8. 제1항에 있어서,
    상기 제1 RSU는 제2 V2X 메시지 전송에 사용될 RSU로 선택된 것인, V2X 메시지 송수신 방법.
  9. 제1항에 있어서,
    상기 제1 V2X 메시지는 유니캐스트로 전송되는 것인, V2X 메시지 송수신 방법.
  10. 제1항에 있어서,
    상기 제2 V2X 메시지는 PC5 인터페이스 채널 상에서 전송되는, V2X 메시지 송수신 방법.
  11. 제1항에 있어서,
    상기 PC5 혼잡 관련 정보는 PDN 연결을 통해 유니캐스트로 전송되는 것인, V2X 메시지 송수신 방법.
  12. 제1항에 있어서,
    무선 통신 시스템에서 V2X(vehicle to everything) 메시지를 송수신하는 제1 RSU(Road Side Unit) 장치에 있어서,
    송수신 장치; 및
    프로세서를 포함하고,
    상기 프로세서는, PC5 인터페이스 혼잡 관련 정보를 ITS 서버로 전송하고, 상기 PC5 인터페이스 혼잡 관련 정보를 전송한 후, 제1 V2X 메시지를 수신하며, 상기 제1 V2X 메시지에 기초하여 제2 V2X 메시지를 브로드캐스트하고,
    상기 제2 V2X 메시지는, PDCP(Packet Data Convergence Protocol) SDU(Service Data Unit)를 통해 상기 제2 V2X 메시지가 제어 정보임을 지시하는, 제1 RSU 장치.
PCT/KR2016/008992 2015-08-14 2016-08-16 무선 통신 시스템에서 v2x 메시지 송수신 방법 및 이를 위한 장치 WO2017030348A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/752,876 US10687175B2 (en) 2015-08-14 2016-08-16 Method for transmitting and receiving V2X message in wireless communication system, and an apparatus for same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562205004P 2015-08-14 2015-08-14
US62/205,004 2015-08-14
US201562249864P 2015-11-02 2015-11-02
US62/249,864 2015-11-02
US201562252564P 2015-11-08 2015-11-08
US62/252,564 2015-11-08

Publications (1)

Publication Number Publication Date
WO2017030348A1 true WO2017030348A1 (ko) 2017-02-23

Family

ID=58052244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008992 WO2017030348A1 (ko) 2015-08-14 2016-08-16 무선 통신 시스템에서 v2x 메시지 송수신 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10687175B2 (ko)
WO (1) WO2017030348A1 (ko)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182732A1 (en) * 2017-03-31 2018-10-04 Intel Corporation Vehicle communication
WO2018230866A1 (ko) * 2017-06-13 2018-12-20 엘지전자 주식회사 이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법
WO2018230928A1 (ko) * 2017-06-13 2018-12-20 엘지전자 주식회사 무선 통신 시스템에서 사용자 기기의 위치 정보를 리포팅하는 방법 및 장치
WO2019034130A1 (zh) * 2017-08-18 2019-02-21 华为技术有限公司 传输方法、发送端和接收端
CN109429373A (zh) * 2017-06-23 2019-03-05 华为技术有限公司 通信模式切换方法及网络侧设备与终端设备
WO2019083340A1 (ko) * 2017-10-27 2019-05-02 엘지전자 주식회사 무선 통신 시스템에서의 메시지를 전송하는 방법 및 이를 위한 장치
CN110139323A (zh) * 2018-02-09 2019-08-16 现代自动车株式会社 在支持车辆对万物通信的通信系统中利用异构无线接入技术进行负载分配的方法和装置
CN110169160A (zh) * 2017-09-14 2019-08-23 Lg电子株式会社 用于在无线通信系统中执行v2x通信的方法及其设备
WO2019236755A1 (en) * 2018-06-06 2019-12-12 Intel Corporation Vehicle-to-everything session and service continuity in automotive edge computing systems
WO2020082899A1 (zh) * 2018-10-26 2020-04-30 华为技术有限公司 一种配置参数更新方法及装置
WO2020251314A1 (ko) * 2019-06-12 2020-12-17 엘지전자 주식회사 무선 통신 시스템에서 rsu 간의 신호 송수신 방법
CN112106440A (zh) * 2018-05-08 2020-12-18 Lg电子株式会社 用于在无线通信系统中传输v2x数据的方法及其设备
US11017664B2 (en) 2018-09-28 2021-05-25 At&T Mobility Ii Llc Integrated telecommunications roadside unit
CN115362694A (zh) * 2020-07-01 2022-11-18 Lg电子株式会社 用于v2x服务的服务器、方法和装置
CN115699815A (zh) * 2020-08-27 2023-02-03 Lg电子株式会社 用于v2x服务的服务器和路侧单元

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017011039A1 (en) * 2015-07-13 2017-01-19 Intel Corporation Techniques to configure vehicle to anything communications
US10595157B2 (en) * 2015-09-18 2020-03-17 Nec Corporation RSU apparatus, base station apparatus, control node, and methods therein
CN106559877B (zh) * 2015-09-24 2019-02-26 中兴通讯股份有限公司 车联网业务的发送方法及装置、资源配置方法及装置
CN106658352B (zh) * 2015-11-02 2019-03-22 中兴通讯股份有限公司 车联网v2x业务的转发方法及装置
EP3360351B1 (en) * 2015-11-12 2019-11-13 Sony Corporation Telecommunications apparatuses and methods
WO2017171806A1 (en) * 2016-03-31 2017-10-05 Nokia Technologies Oy V2x server discovery
US10687185B2 (en) * 2016-04-01 2020-06-16 Intel Corporation V2X communication configuration based on geographical location
CN107733955B (zh) * 2016-08-12 2021-07-30 中兴通讯股份有限公司 车联网业务配置方法及装置,业务获取方法、装置及系统
WO2018058594A1 (zh) * 2016-09-30 2018-04-05 华为技术有限公司 一种v2x通信的方法、设备及系统
US10237874B2 (en) * 2016-11-03 2019-03-19 Samsung Electronics Co., Ltd. Method and apparatus for supporting vehicle to everything service
KR102304709B1 (ko) 2017-03-03 2021-09-23 현대자동차주식회사 V2x 통신 메시지에 대하여 적응적 보안 레벨을 적용하는 방법 및 장치
US11284376B2 (en) 2018-08-17 2022-03-22 At&T Intellectual Property I, L.P. Distributed control information for multiple party communications for 5G or other next generation network
DE102018121059A1 (de) * 2018-08-29 2020-03-05 Wabco Gmbh V2X-Kommunikationseinheit und Eigenfahrzeug mit einer derartigen V2X-Kommunikationseinheit
WO2020061768A1 (zh) * 2018-09-25 2020-04-02 富士通株式会社 一种数据发送方法、装置和通信系统
US20210212138A1 (en) * 2018-09-27 2021-07-08 Intel Corporation SERVICE ANNOUNCEMENT AND DISCOVERY CONSIDERATIONS FOR SIDELINK UNICAST CONNECTION ESTABLISHMENT FOR eV2X
TWI690440B (zh) * 2018-10-17 2020-04-11 財團法人車輛研究測試中心 基於支持向量機之路口智慧駕駛方法及其系統
JP7082034B2 (ja) * 2018-11-26 2022-06-07 本田技研工業株式会社 情報出力装置、出力制御方法、およびプログラム
CN113316945B (zh) * 2019-01-21 2023-04-11 华为技术有限公司 用于过渡区域重新配置的网络设备和移动设备
US11026069B2 (en) 2019-02-18 2021-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus, and computer-readable media for discovery of application server and/or services for V2X communications
US11178219B2 (en) * 2019-03-08 2021-11-16 Toyota Jidosha Kabushiki Kaisha Resource assurance for vehicle cloudification
WO2020198216A1 (en) * 2019-03-26 2020-10-01 Idac Holdings, Inc. Methods, apparatus and systems for secured radio resource control (rrc) signaling over a pc5 interface for unicast communication
KR102631108B1 (ko) * 2019-04-26 2024-01-30 삼성전자 주식회사 무선 통신 시스템에서 QoS Flow 기반으로 브로드캐스트와 그룹캐스트를 통한 단말 대 단말 직접 통신을 지원하는 방법
CN112235870B (zh) * 2019-07-15 2022-07-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
TWI703882B (zh) 2019-07-23 2020-09-01 財團法人工業技術研究院 應用於mbms廣播服務管理之廣播多播服務中心及其方法
US10873840B1 (en) * 2019-07-30 2020-12-22 Continental Teves Ag & Co. Ohg Communication apparatus for vehicle-to-X communication, method and use
EP3787368B1 (en) * 2019-08-23 2022-04-13 ASUSTek Computer Inc. Method and apparatus for header compression configuration for sidelink radio bearer in a wireless communication system
CN110995750B (zh) * 2019-12-18 2021-09-28 展讯通信(上海)有限公司 终端设备
WO2021143406A1 (zh) * 2020-01-14 2021-07-22 华为技术有限公司 一种消息发送方法、消息接收方法、装置和设备
KR20220103169A (ko) * 2020-02-17 2022-07-21 삼성전자주식회사 V2x 통신 시스템에서 보안 정책들을 처리하기 위한 방법 및 장치
US20230080095A1 (en) * 2020-03-13 2023-03-16 Lg Electronics Inc. Method and device for generating vru path map related to moving path of vru by softv2x server in wireless communication system supporting sidelink
US12071148B2 (en) * 2020-03-23 2024-08-27 Toyota Motor Engineering & Manufacturing North America, Inc. Switching decision for vehicle computational offloading to roadside edge server
CN113498037B (zh) * 2020-04-01 2023-11-10 华为技术有限公司 V2x通信方法和装置
US11622286B2 (en) 2020-06-17 2023-04-04 Ford Global Technologies, Llc Vehicle-to-infrastructure communication control
US11588236B2 (en) 2020-06-17 2023-02-21 Ford Global Technologies, Llc Vehicle-to-infrastructure communication control including node deficiency determination
CN114079884A (zh) * 2020-08-14 2022-02-22 大唐高鸿智联科技(重庆)有限公司 一种地图数据的传输控制方法、装置、设备及终端
CN116235520B (zh) * 2020-10-12 2024-06-07 华为技术有限公司 广播侧行链路通信中的非ip报头压缩
US11500392B2 (en) * 2020-10-21 2022-11-15 Toyota Motor Engineering & Manufacturing North America, Inc. Selective digital key
US11757559B2 (en) 2021-08-20 2023-09-12 Ford Global Technologies, Llc Collaborative signal jamming detection
KR20230030850A (ko) * 2021-08-26 2023-03-07 현대자동차주식회사 머신러닝 기반 방송 정보를 제공하는 방법 및 그 장치
CN114866620B (zh) * 2022-01-26 2024-04-19 招商智行(重庆)科技有限公司 面向车路协同的i2x hub协议转换器
US20230306849A1 (en) * 2022-03-28 2023-09-28 Qualcomm Incorporated Network based sensor sharing for communications systems
CN114579657B (zh) * 2022-05-09 2022-08-02 浙江九州云信息科技有限公司 一种基于车路协同的v2x边缘云控方法及系统
CN117173896B (zh) * 2023-11-02 2024-01-16 深圳市地铁集团有限公司 基于arm技术体系的视觉通行控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100250346A1 (en) * 2009-03-31 2010-09-30 Gm Global Technology Operations, Inc. Using v2x in-network message distribution and processing protocols to enable geo-service advertisement applications
US20130304279A1 (en) * 2012-05-10 2013-11-14 Carnegie Mellon University Efficient intersection autonomous driving protocol
US20140358416A1 (en) * 2013-06-01 2014-12-04 Faroog Ibrahim System and method for node adaptive filtering and congestion control for safety and mobility applications toward automated vehicles system
WO2015115870A1 (en) * 2014-02-02 2015-08-06 Lg Electronics Inc. Method and apparatus for transmitting information for d2d operation in wireless communication system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028747A (ja) * 2008-07-24 2010-02-04 Fujitsu Ltd 秘匿処理を行う送信装置及び受信装置
CA2839866C (en) * 2011-05-18 2021-04-13 Triangle Software Llc System for providing traffic data and driving efficiency data
US10554708B2 (en) * 2015-03-27 2020-02-04 Qualcomm Incorporated Point-to-multipoint broadcast assisted vehicle-to-X broadcast
CN107683613B (zh) * 2015-06-24 2021-01-01 苹果公司 增强型支持车辆到万物(v2x)通信
US10506394B2 (en) * 2015-07-07 2019-12-10 Lg Electronics Inc. Communication method of terminal in V2X communication system, and terminal
WO2017011039A1 (en) * 2015-07-13 2017-01-19 Intel Corporation Techniques to configure vehicle to anything communications
US10735993B2 (en) * 2016-05-05 2020-08-04 Telefonaktiebolaget Lm Ericsson (Publ) System and method for congestion control in a communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100250346A1 (en) * 2009-03-31 2010-09-30 Gm Global Technology Operations, Inc. Using v2x in-network message distribution and processing protocols to enable geo-service advertisement applications
US20130304279A1 (en) * 2012-05-10 2013-11-14 Carnegie Mellon University Efficient intersection autonomous driving protocol
US20140358416A1 (en) * 2013-06-01 2014-12-04 Faroog Ibrahim System and method for node adaptive filtering and congestion control for safety and mobility applications toward automated vehicles system
WO2015115870A1 (en) * 2014-02-02 2015-08-06 Lg Electronics Inc. Method and apparatus for transmitting information for d2d operation in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS ET AL.: "New SI Proposal: Feasibility Study on LTE-based V2X Services", RP-151109, 3GPP TSG RAN MEETING #68, 18 June 2015 (2015-06-18), Malmo, Sweden, XP055342367, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_68/Docs> *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182732A1 (en) * 2017-03-31 2018-10-04 Intel Corporation Vehicle communication
US11172343B2 (en) 2017-03-31 2021-11-09 Intel Corporation Vehicle communication
US11019520B2 (en) 2017-06-13 2021-05-25 Lg Electronics Inc. Mobile ITS station and method for operating mobile ITS station
WO2018230866A1 (ko) * 2017-06-13 2018-12-20 엘지전자 주식회사 이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법
WO2018230928A1 (ko) * 2017-06-13 2018-12-20 엘지전자 주식회사 무선 통신 시스템에서 사용자 기기의 위치 정보를 리포팅하는 방법 및 장치
CN110741658A (zh) * 2017-06-13 2020-01-31 Lg 电子株式会社 在无线通信系统中报告用户设备的位置信息的方法和装置
US11140649B2 (en) 2017-06-13 2021-10-05 Lg Electronics Inc. Method and apparatus for reporting location information of user equipment in wireless communication system
CN109429373A (zh) * 2017-06-23 2019-03-05 华为技术有限公司 通信模式切换方法及网络侧设备与终端设备
US11218852B2 (en) 2017-06-23 2022-01-04 Huawei Technologies Co., Ltd. Communication mode switching method, network side device, and terminal device
CN109429373B (zh) * 2017-06-23 2021-12-10 华为技术有限公司 通信模式切换方法及网络侧设备与终端设备
WO2019034130A1 (zh) * 2017-08-18 2019-02-21 华为技术有限公司 传输方法、发送端和接收端
CN110169160A (zh) * 2017-09-14 2019-08-23 Lg电子株式会社 用于在无线通信系统中执行v2x通信的方法及其设备
CN110169160B (zh) * 2017-09-14 2022-07-29 Lg电子株式会社 用于在无线通信系统中执行v2x通信的方法及其设备
WO2019083340A1 (ko) * 2017-10-27 2019-05-02 엘지전자 주식회사 무선 통신 시스템에서의 메시지를 전송하는 방법 및 이를 위한 장치
CN110139323B (zh) * 2018-02-09 2023-10-24 现代自动车株式会社 在支持v2x的通信系统中进行负载分配的方法和装置
CN110139323A (zh) * 2018-02-09 2019-08-16 现代自动车株式会社 在支持车辆对万物通信的通信系统中利用异构无线接入技术进行负载分配的方法和装置
CN112106440B (zh) * 2018-05-08 2023-09-19 Lg电子株式会社 用于在无线通信系统中传输v2x数据的方法及其设备
CN112106440A (zh) * 2018-05-08 2020-12-18 Lg电子株式会社 用于在无线通信系统中传输v2x数据的方法及其设备
WO2019236755A1 (en) * 2018-06-06 2019-12-12 Intel Corporation Vehicle-to-everything session and service continuity in automotive edge computing systems
US11627444B2 (en) 2018-06-06 2023-04-11 Intel Corporation Vehicle-to-everything session and service continuity in automotive edge computing systems
US11657705B2 (en) 2018-09-28 2023-05-23 At&T Mobility Ii Llc Integrated telecommunications roadside unit
US11017664B2 (en) 2018-09-28 2021-05-25 At&T Mobility Ii Llc Integrated telecommunications roadside unit
WO2020082899A1 (zh) * 2018-10-26 2020-04-30 华为技术有限公司 一种配置参数更新方法及装置
US11877261B2 (en) 2018-10-26 2024-01-16 Huawei Cloud Computing Technologies Co., Ltd. Configuration parameter update method and apparatus
WO2020251314A1 (ko) * 2019-06-12 2020-12-17 엘지전자 주식회사 무선 통신 시스템에서 rsu 간의 신호 송수신 방법
US12057014B2 (en) 2019-06-12 2024-08-06 Lg Electronics Inc. Method by which rsus transmit and receive signals in wireless communication system
CN115362694A (zh) * 2020-07-01 2022-11-18 Lg电子株式会社 用于v2x服务的服务器、方法和装置
CN115699815A (zh) * 2020-08-27 2023-02-03 Lg电子株式会社 用于v2x服务的服务器和路侧单元

Also Published As

Publication number Publication date
US10687175B2 (en) 2020-06-16
US20180242115A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2017030348A1 (ko) 무선 통신 시스템에서 v2x 메시지 송수신 방법 및 이를 위한 장치
WO2016200184A1 (ko) V2x 통신 시스템에서 단말의 통신 방법 및 단말
WO2016144147A1 (ko) V2x 통신 시스템에서 차량에 설치된 단말의 통신 방법 및 단말
WO2017171514A1 (ko) 무선 통신 시스템에서 v2x 메시지를 송수신하는 ue의 연결 관리 방법 및 이를 위한 장치
WO2016024773A1 (ko) 무선 통신 시스템에서 릴레이 선택 방법 및 이를 위한 장치
WO2017164641A2 (ko) 데이터 유닛을 전송하는 방법 및 사용자기기와, 데이터 유닛을 수신하는 방법 및 사용자기기
WO2016190672A1 (ko) 무선 통신 시스템에서 후원 연결을 위한 접속 절차를 수행하는 방법 및 단말
WO2017126948A1 (ko) 무선 통신 시스템에서 로컬 네트워크에서 v2x 메시지 송수신 방법 및 이를 위한 장치
WO2016039579A1 (ko) 무선 통신 시스템에서 mcptt 그룹 콜 설정 방법 및 이를 위한 장치
WO2017007104A1 (ko) V2x 통신 시스템에서 단말의 통신 방법 및 단말
WO2017052335A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 수행하는 방법 및 이를 위한 장치
WO2017003230A1 (ko) V2x 통신 시스템에서 단말의 v2x 통신 방법 및 단말
WO2016108551A1 (en) Method and apparatus for transmitting buffer status report for bi-directional transmission in wireless communication system
WO2016186415A1 (ko) 무선 통신 시스템에서 브로드캐스트 서비스를 제공하는 방법 및 이를 위한 장치
WO2016148399A1 (ko) V2x 통신 시스템에서 단말의 통신 방법 및 단말
WO2015174702A1 (ko) 무선 통신 시스템에서 hss/mme의 신호 송수신 방법 및 장치
WO2016111528A1 (ko) 무선 통신 시스템에서 mcptt에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2019022442A9 (ko) 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치
WO2017026872A1 (ko) 무선 통신 시스템에서 리모트 ue의 신호 송수신 방법 및 이를 위한 장치
WO2016153327A2 (ko) 무선 통신 시스템에서 tau-less psm 관련 신호 송수신 방법 및 이를 위한 장치
WO2016111603A1 (ko) 무선 통신 시스템에서 pdn 연결 복구에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2016126092A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치
WO2016144009A1 (ko) 무선 통신 시스템에서 네트워크 트래픽을 제어하는 방법 및 단말
WO2017023129A1 (ko) 무선 통신 시스템에서 단말의 컨텍스트 정보를 이용한 통신 방법 및 기지국
WO2016163635A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15752876

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837290

Country of ref document: EP

Kind code of ref document: A1