[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017029720A1 - Magnetic sensor and method for manufacturing same - Google Patents

Magnetic sensor and method for manufacturing same Download PDF

Info

Publication number
WO2017029720A1
WO2017029720A1 PCT/JP2015/073210 JP2015073210W WO2017029720A1 WO 2017029720 A1 WO2017029720 A1 WO 2017029720A1 JP 2015073210 W JP2015073210 W JP 2015073210W WO 2017029720 A1 WO2017029720 A1 WO 2017029720A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic sensor
hydrogen
magnetic
region
Prior art date
Application number
PCT/JP2015/073210
Other languages
French (fr)
Japanese (ja)
Inventor
勝哉 三浦
晋 小川
高橋 宏昌
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/073210 priority Critical patent/WO2017029720A1/en
Publication of WO2017029720A1 publication Critical patent/WO2017029720A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic sensor and a manufacturing method thereof.
  • a magnetic sensor for detecting a magnetic field or a current sensor for detecting a magnetic field generated by a current there are types such as a Hall element, a magnetoresistive (MR) sensor, a SQUID (Superconducting Quantum Interference Device), and an optical pumping.
  • the MR sensor is attracting attention because it has features such as being able to operate at room temperature and expecting high sensitivity.
  • a magnetic sensor using a barrier layer is called a TMR sensor because it detects a magnetic field using a tunnel magnetoresistance (TMR) effect.
  • TMR tunnel magnetoresistance
  • the basic structure of the TMR sensor is a three-layer structure in which a first ferromagnetic layer, a first barrier layer, and a second ferromagnetic layer are stacked.
  • the characteristic is that the resistance of the TMR sensor measured along the stacking direction changes according to the relative angle of magnetization of the first ferromagnetic layer and the second ferromagnetic layer. For example, if the magnetization direction of the first ferromagnetic layer is fixed (fixed layer) and the magnetization direction of the second ferromagnetic layer is variable (detection layer), the direction and strength of the external magnetic field Accordingly, the magnetization direction of the second ferromagnetic layer changes. It is possible to detect an external magnetic field by measuring the resistance at this time.
  • the TMR effect can also be applied to a magnetic memory (MRAM) or spin wave device.
  • MRAM magnetic memory
  • Patent Documents 1 and 2 and Non-Patent Document 1 disclose TMR sensors.
  • a magnetic anisotropy field is the magnitude of a magnetic field that attempts to keep magnetization in a certain direction.
  • the magnetization of the detection layer reacts with a minute external magnetic field and the magnetization direction changes. Therefore, it is necessary to design the magnetic anisotropic magnetic field to be small. is there.
  • the magnetic anisotropy magnetic field is designed to be large.
  • the thermal stability constant generally needs to be set to 70 or more in order to realize a sufficient recording retention time, which is a feature of the MRAM, and a magnetic anisotropic magnetic field is set so that this value can be realized.
  • Patent Documents 1 and 2 do not describe the problem of magnetic anisotropy magnetic field during processing using RIE.
  • the spin wave device is designed so that the magnetic anisotropy magnetic field in a part of the waveguide is larger than the other part in order to improve calculation accuracy.
  • the magnetic anisotropy magnetic field is a value peculiar to the material, so that it was necessary to develop a material corresponding to the product and device performance.
  • the magnetic anisotropy magnetic field can be controlled by changing the CoFeB film thickness. This technique has a problem in controllability of magnetic anisotropy because it is necessary to control the film thickness at the atomic layer level.
  • An object of the present invention is to provide a technique capable of easily controlling the magnetic anisotropic magnetic field of a device using the TMR effect.
  • the magnetization direction including at least one of Fe or Co is variable.
  • the spin wave device is characterized in that an anisotropic magnetic field in the spin wave waveguide in which the hydrogen stopper layer is formed is more than 0 and 10 mT or less.
  • the substrate On the substrate, at least the first layer in which the magnetization direction including at least one of Fe or Co is fixed, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable.
  • a fourth step of oxidizing or nitriding deposits adhering to the side wall of the first region of the magnetic sensor unit by the third step;
  • a sixth step of filling the electrode into the opening On the substrate, at least the first layer in which the magnetization direction including at least one of
  • the substrate On the substrate, at least the first layer in which the magnetization direction including at least one of Fe or Co is fixed, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable.
  • a fourth step of oxidizing or nitriding deposits adhering to the side wall of the first region of the magnetic sensor unit by the third step;
  • the spin wave device On the substrate, at least the first layer in which the magnetization direction including at least one of Fe or Co is fixed, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable.
  • a method of manufacturing a spin wave device characterized by comprising:
  • a magnetic layer in which a first layer including a magnetization direction including at least one of Fe or Co is fixed, a MgO layer, and a second layer including a variable magnetization direction including at least one of Fe or Co are stacked.
  • the present invention it is possible to provide a technique capable of easily controlling the magnetic anisotropy magnetic field of a device using the TMR effect. Specifically, it is possible to provide a high-sensitivity TMR sensor, a wide-sensitivity region TMR sensor, an MRAM, and a spin wave device capable of high-accuracy calculation in which the magnetic anisotropic magnetic field is controlled with high accuracy. Further, it is possible to provide a method for manufacturing a TMR sensor structure capable of controlling the magnetic anisotropic magnetic field with high accuracy.
  • FIG. 1 is a schematic cross-sectional view of a TMR sensor according to a first embodiment of the present invention. It is a graph for demonstrating the external magnetic field dependence of resistance in the TMR sensor shown in FIG. It is sectional drawing for demonstrating the manufacturing process of the TMR sensor shown in FIG. 2, and shows the state by which various laminated films were formed on the board
  • FIG. 3 is a cross-sectional view for explaining a manufacturing process of the TMR sensor shown in FIG.
  • FIG. 3 is a cross-sectional view for explaining a manufacturing process of the TMR sensor shown in FIG. 2 and shows a state in which an interlayer insulating film 213 is formed on an oxidized substrate.
  • FIG. 3 is a cross-sectional view for explaining a manufacturing process of the TMR sensor shown in FIG. 2 and shows a state where a lower electrode 206 is processed.
  • FIG. 5 is a cross-sectional view for explaining a manufacturing process of the TMR sensor shown in FIG.
  • FIG. 5 is a cross-sectional view for explaining a manufacturing process of the TMR sensor shown in FIG.
  • FIG. 2 shows a state in which a contact hole 220 to the upper electrode 207 is formed.
  • FIG. It is a flowchart of the manufacturing process of the TMR sensor shown in FIG. It is a cross-sectional schematic diagram of the TMR sensor which concerns on the 2nd Example of this invention. It is a flowchart of the manufacturing process of the TMR sensor shown in FIG. It is a flowchart which shows an example of the manufacturing process of the TMR sensor which concerns on the 3rd Example of this invention. It is a flowchart which shows the other example of the manufacturing process of the TMR sensor which concerns on the 3rd Example of this invention. It is a schematic diagram of the memory cell in MRAM based on the 5th Example of this invention.
  • FIG. 13 is a cross-sectional view for explaining a manufacturing process of the spin wave device shown in FIG. 12 and shows a state in which the upper electrode 207 is processed halfway using a mask 209.
  • FIG. 12 is a cross-sectional view for explaining a manufacturing process of the spin wave device shown in FIG. 12 and shows a state in which a contact hole 220 to the upper electrode 207 is formed.
  • Embodiments of the present invention will be described below by taking as an example the case where CoFeB is applied to the first and second ferromagnetic layers and MgO is applied to the first barrier layer.
  • the structure in which Fe and O are bonded one-to-one is stable.
  • a bond orbit of iron (Fe) and oxygen (O) is formed at the laminated interface, and as a result, the magnetic anisotropy field increases. Therefore, as shown in FIG. 1, the magnetic anisotropy field becomes maximum when the ratio of Fe to O is 1: 1, and the magnetic anisotropy field decreases as O increases with respect to Fe.
  • the magnetic anisotropy magnetic field is kept in the region 1 in FIG. 1, and the magnetic anisotropy magnetic field is gently applied by hydrogen reduction after the etching. It was decided to control. For example, in the case of a high-sensitivity magnetic sensor, hydrogen reduction processing is performed with the region 2 as a target value.
  • a hydrogen stopper layer stacked above the magnetic sensor unit plays a role of preventing hydrogen from entering the magnetic sensor unit from above the magnetic sensor unit during etching.
  • the hydrogen stopper layer is preferably a metal oxide from the viewpoint of preventing hydrogen from entering.
  • the metal oxide is an insulator, it is necessary to process a contact hole that penetrates the metal oxide to form an electrode that is electrically connected to the upper part of the magnetic sensor portion after etching.
  • the metal oxide is a conductor, it is not necessary to penetrate the metal oxide.
  • the hydrogen stopper layer it is also conceivable to use the hydrogen stopper layer as a hard mask for etching. If the hydrogen stopper layer is not used as a hard mask, a separate hard mask is prepared. The hydrogen stopper layer after the contact hole is formed becomes the first sidewall layer remaining on the sidewall of the upper electrode.
  • Another structure for suppressing the reduction reaction during etching is a second side wall layer provided on the side wall of the magnetic sensor unit.
  • the magnetic sensor portion is processed by RIE.
  • the removed first ferromagnetic layer, first barrier layer, and second ferromagnetic layer (which may include a part of the upper electrode and the lower electrode) are the side walls of the magnetic sensor section after processing.
  • Laminate as a re-attachment on the processing surface.
  • the side wall re-adhered material is oxidized to form side wall oxide. This sidewall oxide layer is the second sidewall layer.
  • a method of repeating the RIE process and the redeposition oxidation process is desirable.
  • the RIE process and the redeposition material oxidation process are performed in one processing chamber, exhaust of the gas used for RIE after the RIE process and exhaust of oxygen after the oxidation process are essential.
  • the oxidation chamber is prepared separately from the processing chamber, RIE and oxidation can be repeated without considering the exhaust time if there is a transfer system for transferring the wafer.
  • the TMR sensor that has undergone the above steps includes a hydrogen stopper layer on the top and a first side wall layer and a second side wall layer on the side surface, and the reduction reaction due to hydrogen is suppressed, so that the magnetic anisotropy is high. 1 remains in region 1.
  • a contact hole is opened in the upper hydrogen stopper layer, or the hydrogen stopper layer is removed by CMP or the like. This allows hydrogen to enter from the top surface. Thereafter, it is possible to gradually adjust the magnetic anisotropy (region 2 in FIG. 1) by slowly applying a hydrogen reduction treatment.
  • FIG. 2 is a schematic sectional view of the TMR sensor according to the first embodiment of the present invention.
  • This TMR sensor was produced for the purpose of increasing the sensitivity (region 2 in FIG. 1).
  • the first ferromagnetic layer 201, the barrier layer 202, and the second ferromagnetic layer 203 are laminated in this order to form the magnetic sensor unit 204.
  • the magnetic sensor unit 204 has a pillar shape and is disposed on the lower electrode 206 stacked on the substrate 205.
  • An upper electrode 207 is stacked above the magnetic sensor unit, and a hydrogen stopper layer 208 and a hard mask layer 209 are stacked above the upper electrode 207.
  • the upper electrode 207, the hydrogen stopper layer 208, and the hard mask layer 209 have a pillar shape similar to the magnetic sensor unit 204. Contact holes are formed in the hydrogen stopper layer 208 and the hard mask layer 209, and the wiring layer 210 is connected to the upper electrode 207 through the contact holes. For this reason, the hydrogen stopper layer 208 and the hard mask layer 209 are the side walls of the wiring layer 210, and this is the first side wall layer 211. A magnetic sensor portion 204 processed into a pillar shape and an oxidized second sidewall layer 212 are formed. Further, the TMR sensor is covered with the interlayer insulating film 213, and the upper electrode 207 and the lower electrode 206 are connected via the magnetic sensor unit 204. The stacking order of the hydrogen stopper layer 208 and the hard mask layer 209 may be reversed.
  • CoFeB was adopted as the material of the first ferromagnetic layer 201, and the film thickness was 0.9 nm.
  • MgO was used as the barrier layer 202, and the film thickness was 1.0 nm.
  • CoFeB was adopted as the second ferromagnetic layer 203, and the film thickness was 1.6 nm.
  • the difference in film thickness between the first ferromagnetic layer 201 and the second ferromagnetic layer 203 is to make a difference in the coercive force of the respective layers.
  • the ferromagnetic layer 203 operates as a detection layer.
  • a Co / Pt multilayer film or the like may be added instead of using two CoFeB layers as single ferromagnetic layers.
  • the hydrogen stopper layer 208 is made of MgO and has a thickness of 20 nm.
  • the hard mask layer 209 is made of Ta and has a thickness of 100 nm.
  • FIG. 3 shows the external magnetic field dependence of the resistance in this TMR sensor.
  • the magnetic anisotropy magnetic field of the second ferromagnetic layer 203 as the detection layer is controlled to 2 mT.
  • This TMR sensor was manufactured through the following steps.
  • ⁇ Third Step> Using the hydrogen stopper layer 208 and the Ta hard mask layer 209 as a mask, the upper electrode 207 and the magnetic sensor unit are etched for 2 minutes by RIE using a mixed gas of CO and NH 3 (FIG. 4C).
  • ⁇ Fifth Step> The interlayer insulating film 213 is stacked (FIG.
  • the substrate on which the TMR sensor was manufactured was subjected to ashing with a H 2 / He mixed gas containing 10% H 2 for 180 seconds, and the magnetic anisotropy was adjusted so as to be a region 2 in FIG. .
  • S501 corresponds to the first step
  • S502 corresponds to the second step
  • S503 corresponds to the third step
  • S504 corresponds to the fourth step
  • S505 corresponds to the fifth step and the sixth step
  • S506 corresponds to the seventh step.
  • the magnetic sensor unit 204 is processed in the third step (S503)
  • the processed material is reattached to the pillar side wall and the surface to be etched.
  • these redeposits are oxidized.
  • the hydrogen stopper layer 208 and the oxidized second sidewall layer 212 can prevent hydrogen from entering the magnetic sensor portion.
  • the composition ratio of Fe and O at the interface is considered to be a ratio close to 1: 1.
  • the TMR sensor on the substrate was subjected to hydrogen reduction treatment (S507).
  • ashing with a H 2 / He mixed gas containing 10% H 2 was performed for 180 seconds.
  • hydrogen enters the magnetic sensor portion through the contact hole, and the oxygen concentration at the interface gradually decreases.
  • the magnetic anisotropy field was about 10 mT before ashing with the H 2 / He mixed gas, but decreased to 2 mT as shown in FIG. At this time, it is considered that the composition ratio of Fe and O is reduced to about 1/5 of that before ashing with the H 2 / He mixed gas.
  • the composition ratio of Fe and O in the vicinity of the interface can be examined by a composition analysis using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the magnetic anisotropy magnetic field can be controlled to exceed 0 and not more than 10 mT.
  • the interface between the MgO barrier layer and the second ferromagnetic layer is preferably more Fe than O, and more preferably Fe is 1/10 or more and 1/2 or less than O.
  • the present embodiment it is possible to provide a technique capable of easily controlling the magnetic anisotropic magnetic field of a device using the TMR effect.
  • a highly sensitive TMR sensor can be provided.
  • Example 1 the example using the hard mask layer 209 has been described.
  • the hydrogen stopper layer 208 can be used as a mask.
  • Example 2 the hard mask layer 209 was not used, MgO was used for the hydrogen stopper layer 208, and the film thickness was 100 nm.
  • FIG. 6 is a schematic cross-sectional view of a TMR sensor according to the second embodiment.
  • the structure is simple. However, since the selection ratio at the time of etching by RIE is small, the processing is somewhat difficult as compared with Example 1.
  • the hydrogen stopper layer 208 is removed using chemical mechanical polishing (CMP) to expose the upper electrode 207.
  • CMP chemical mechanical polishing
  • the wiring layer 210 was produced. Further, after passing through the seventh step, it was divided for each TMR sensor produced on the substrate, and thereafter ashing with a H 2 / He mixed gas was performed. By dividing for each TMR sensor, the ashing time can be changed for each TMR sensor, so that different characteristics can be produced.
  • This TMR sensor when the ashing time was 180 seconds had a magnetic anisotropic magnetic field of about 2 mT, and showed the same performance as the TMR sensor described in Example 1.
  • the manufacturing steps of this TMR sensor are summarized in the flowchart of FIG.
  • the same effects as those of the first embodiment can be obtained.
  • the structure can be simplified.
  • step S502 the hydrogen stopper layer and the hard mask are processed in step S502, but the corresponding step S802 includes only the hydrogen stopper layer.
  • step S504 the oxidation is performed in step S504, but the corresponding S804 includes not only the oxidation but also the nitridation.
  • step S902 includes processing of the hydrogen stopper layer and the hard mask layer. It is out.
  • step S704 oxidation is performed in step S704, but the corresponding S804 includes not only oxidation but also nitridation. The same performance as in Examples 1 and 2 was obtained for the TMR elements manufactured by these methods.
  • the same effects as those of the first embodiment can be obtained.
  • the structure can be simplified.
  • the TMR sensors of Examples 1 to 3 were intended for high sensitivity, and the magnetic anisotropy magnetic field was a small value of about 2 mT.
  • the magnetic anisotropy magnetic field was small, the magnetization of the detection layer is saturated by a minute magnetic field, so that the TMR sensor cannot react even when a magnetic field higher than that is applied. For this reason, when it is assumed that the TMR resistance change rate is the same, the high sensitivity and the wide sensitivity region have a trade-off relationship. Therefore, it is necessary to increase the magnetic anisotropy in order to expand the sensitivity region of the TMR sensor.
  • the cross-sectional schematic diagram of the TMR sensor described in this example is basically the same as the TMR element described in Example 1 (FIG. 2), and includes a hydrogen stopper layer 208, a first sidewall layer 211, and a second sidewall.
  • the change is that the film thickness of the second ferromagnetic layer 203 is set to 1.4 nm (1.6 nm in Example 1).
  • the purpose of this change is to increase the magnetic anisotropy magnetic field of the second ferromagnetic layer 203 at the time immediately after the first step (step S501).
  • the TMR sensor manufacturing method described in Example 4 is different from the TMR sensor manufacturing method described in Example 1 except that the film thickness of the second ferromagnetic layer 203 is different from that of H 2 / He.
  • the ashing time by mixed gas is different. Ashing with a H 2 / He mixed gas was performed for 30 seconds (180 seconds in Example 1).
  • the magnetic anisotropic magnetic field of the TMR sensor was 150 mT, and the TMR sensor had a sensitivity region 75 times that of the TMR sensor described in Example 1. Further, by adjusting the ashing time with the H 2 / He mixed gas, the magnitude of the magnetic anisotropic magnetic field can be controlled, so that a TMR sensor having a desired sensitivity region can be manufactured.
  • the TMR sensor manufacturing method described in Example 2 and Example 3 can be applied to the TMR sensor described in Example 4. Also in this case, the film thickness of the second ferromagnetic layer 103 and the ashing time by the H 2 / He mixed gas are different.
  • a fifth embodiment of the present invention will be described. Note that the matters described in any one of the first to fourth embodiments but not described in the present embodiment can be applied to the present embodiment unless there are special circumstances.
  • MRAM which is a non-volatile memory
  • the recording retention time depends on the thermal stability constant of the TMR element which is an MRAM recording element.
  • a thermal stability constant of 40 or more is required for one recording element.
  • a thermal stability constant of about 70 is generally required, although it depends on the capacity of the MRAM.
  • the thermal stability constant depends on the magnetic anisotropy field, and the recording retention time becomes longer if the magnetic anisotropy field is larger.
  • the writing of information in the MRAM uses magnetization reversal by spin-transfer “torque” that occurs when a current flows through the TMR element.
  • the condition for operating the MRAM is that the write current is equal to or less than the drive current of the selection transistor.
  • the write current depends on the magnetic anisotropy magnetic field, the MRAM cannot operate if the magnetic anisotropy is too high from the viewpoint of the write current. Therefore, the magnetic anisotropic magnetic field needs to be controlled to a constant value even in the MRAM.
  • FIG. 10 is a schematic diagram of a memory cell of a magnetic memory (MRAM) using a TMR element having the same structure as that of the magnetic sensor described in the first embodiment (the same structure as FIG. 2) as a recording element.
  • the MRAM includes a plurality of memory cells, and each memory cell includes a combination of a TMR element 1001 and a select transistor 1002.
  • the drain electrode of the selection transistor 1002 fabricated on the substrate and the lower electrode 206 of the TMR element are electrically connected.
  • the source electrode of the selection transistor 1002 is connected to the source line 1003, and the gate electrode is connected to the word line 1004.
  • a plurality of source lines are arranged in parallel to each other, and a plurality of word lines are arranged in parallel to each other in a direction intersecting the source lines.
  • Each bit line connected to the wiring layer 210 of each TMR element is arranged in parallel with the source line and in parallel with each other.
  • the names of the source, the drain, and the like are for convenience, and when one is a source, the other can be called a drain.
  • a process of manufacturing a TMR element is continued on a substrate that has undergone a CMOS process of manufacturing a transistor.
  • the process for manufacturing the TMR element is the first to seventh steps described in the first embodiment.
  • the magnetic anisotropic magnetic field is adjusted to an optimum value for the MRAM by ashing with a H 2 / He mixed gas.
  • the thermal stability constant ⁇ was 70
  • the write current I c was 130 ⁇ A
  • the thermal stability constant ⁇ was 34
  • the write current I c was 63 ⁇ A when ashing with a H 2 / He mixed gas was performed for 300 seconds.
  • the ashing with the H 2 / He mixed gas is preferably 30 seconds. These conditions also need to be adjusted depending on the size of the TMR element that differs for each MRAM technology generation.
  • a spin wave is a collective motion of a magnetic moment in a ferromagnetic layer and propagates as a wave in the ferromagnetic layer.
  • the phase 0 and ⁇ of the spin wave can be applied to the bit information.
  • This bit information propagates through the ferromagnetic layer and can be detected at a location separated from the space.
  • FIG. 11 is a schematic plan view of a two-input spin wave device according to the present embodiment. The two spin waves input by the excitation unit 1101 in FIG.
  • the phase detection accuracy in the detection unit affects the calculation accuracy.
  • the spin wave is reflected at the spin wave waveguide end 1105 ahead of the detection unit 1104, the calculation accuracy may be lowered. This is because when the reflected wave reaches the detection unit 1104 again, it interferes with the calculated output wave again, and erroneous detection occurs in the detection unit 1104. In order to suppress the influence of the reflected wave, the motion of the magnetic moment may be suppressed at the spin wave waveguide end 1105. For this reason, it is desirable that the magnetic anisotropy of the spin wave waveguide end 1105 be relatively large. On the other hand, when the magnetic anisotropy magnetic field is small, the amplitude of the spin wave becomes large.
  • the spin wave device needs to be designed so that only the magnetic anisotropic magnetic field of the spin wave waveguide end 1105 is larger than the other parts.
  • FIG. 13A A schematic cross-sectional view of the spin wave device described in Example 6 is shown in FIG.
  • a feature of the spin wave device described in the sixth embodiment is that the stopper layer 208 is formed only at the end portion 1105 of the spin wave waveguide.
  • the manufacturing method of the spin wave device will be described with reference to FIGS. 13A to 13L.
  • a lower electrode 206, a first ferromagnetic layer 201, a barrier layer 202, a second ferromagnetic layer 203, an upper electrode layer 207, and a hydrogen stopper layer 208 are stacked in this order from the substrate surface.
  • the hydrogen stopper layer 208 is removed leaving only the portion directly above the waveguide end 1105.
  • a Ta hard mask layer 209 is stacked (FIG. 13A).
  • RIE reactive etching
  • the substrate is returned to the processing chamber again, and the third and fourth steps are repeated, and the etching by RIE is advanced to the vicinity of the surface of the lower electrode 206 (FIGS. 13E to 13H).
  • ⁇ Fifth Step> The interlayer insulating film 213 is stacked (FIG. 13I), and the lower electrode 206 is manufactured (FIG. 13J).
  • the wiring layer 210 is produced (FIG. 12). In the wiring layer, a portion formed in the contact hole may be referred to as an electrode.
  • the substrate on which the TMR sensor was manufactured was subjected to ashing with a H 2 / He mixed gas for 180 seconds to adjust the magnetic anisotropic magnetic field.
  • the magnetic anisotropy magnetic field of the spin wave waveguide end 1105 was increased about five times as compared with other portions. Thereby, the influence of the reflected wave can be suppressed and good characteristics can be obtained.
  • the contact hole opening process is adopted in the sixth step, CMP can also be used. Further, the waveguide 1102 other than the detection unit 1104 can operate even if the second ferromagnetic layer 203 is removed by etching.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • the present invention includes the following embodiments.
  • a first layer having a fixed magnetization direction including at least one of Fe or Co, an MgO layer, and a second layer having a variable magnetization direction including at least one of Fe or Co are stacked.
  • a magnetic sensor comprising: (2) In the method for manufacturing the magnetic sensor, On the substrate, at least the first layer in which the magnetization direction including at least one of Fe or Co is fixed, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable.
  • SYMBOLS 201 ... 1st ferromagnetic layer, 202 ... Barrier layer, 203 ... 2nd ferromagnetic layer, 204 ... Magnetic sensor part, 205 ... Substrate, 206 ... Lower electrode, 207 ... Upper electrode, 208 ... Hydrogen stopper layer, 209 DESCRIPTION OF SYMBOLS ... Hard mask layer, 210 ... Wiring layer, 211 ... First sidewall layer, 212 ... Second sidewall layer, 213 ... Interlayer insulating film, 220 ... Contact hole, 1001 ... TMR element, 1002 ... Selection transistor, 1003 ... Source Line 1004 ... Word line 1101 ... Excitation part 1102 ... Waveguide 1103 ... Operation part 1104 ... Detection part 1105 ... Spin wave waveguide end part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)

Abstract

For the purpose of providing a technique that enables easy control of the magnetic anisotropy magnetic field of a device that utilizes a TMR effect, a magnetic sensor according to the present invention comprises: a magnetic sensor unit 204 which comprises a first ferromagnetic layer 201 having a fixed magnetization direction, a second ferromagnetic layer 203 having a variable magnetization direction, and a barrier layer 202 arranged between the ferromagnetic layers, and wherein the anisotropy field is more than 0 mT but 10 mT or less; an electrode 210 which fills a contact hole and is connected to the second ferromagnetic layer 203; a hydrogen stopper layer 208 which is formed on a side wall of the electrode 210; and a side wall film 212 which is formed on a side wall of the magnetic sensor unit 204 and is formed of a metal oxide or a metal nitride.

Description

磁気センサ及びその製造方法Magnetic sensor and manufacturing method thereof
 本発明は、磁気センサ及びその製造方法に関する。 The present invention relates to a magnetic sensor and a manufacturing method thereof.
 磁界を検知する磁気センサ若しくは電流が作り出す磁界を検知する電流センサには、ホール素子、磁気抵抗(Magnetoresistance;MR)センサ、SQUID(Superconducting Quantum Interference Device)、光ポンピングなどの種類がある。この中で、MRセンサは室温で動作が可能、高感度化が期待できる、などの特徴があり注目を集めている。MRセンサの中でも障壁層を用いた磁気センサは、トンネル磁気抵抗(Tunnel magnetoresistance;TMR)効果を利用して磁界を検出するためTMRセンサと呼ばれる。
TMRセンサの基本構造は、第1の強磁性層、第1の障壁層、第2の強磁性層を積層した3層構造である。第1の強磁性層と第2の強磁性層の磁化の相対角に応じて、積層方向に沿って測定したTMRセンサの抵抗が変化することが特徴である。例えば、第1の強磁性層の磁化方向を固定(固定層)しておき、第2の強磁性層の磁化方向を可変(検出層)にしておいた場合、外部磁界の方向や強さに応じて第2の強磁性層の磁化方向が変化する。このときの抵抗を測定することで外部磁界を検出することが可能である。TMR効果は磁気メモリ(Magnetic rondom access memory;MRAM)やスピン波デバイスへの適用も可能である。TMRセンサについては、例えば特許文献1、2及び非特許文献1に開示されている。
As a magnetic sensor for detecting a magnetic field or a current sensor for detecting a magnetic field generated by a current, there are types such as a Hall element, a magnetoresistive (MR) sensor, a SQUID (Superconducting Quantum Interference Device), and an optical pumping. Among them, the MR sensor is attracting attention because it has features such as being able to operate at room temperature and expecting high sensitivity. Among MR sensors, a magnetic sensor using a barrier layer is called a TMR sensor because it detects a magnetic field using a tunnel magnetoresistance (TMR) effect.
The basic structure of the TMR sensor is a three-layer structure in which a first ferromagnetic layer, a first barrier layer, and a second ferromagnetic layer are stacked. The characteristic is that the resistance of the TMR sensor measured along the stacking direction changes according to the relative angle of magnetization of the first ferromagnetic layer and the second ferromagnetic layer. For example, if the magnetization direction of the first ferromagnetic layer is fixed (fixed layer) and the magnetization direction of the second ferromagnetic layer is variable (detection layer), the direction and strength of the external magnetic field Accordingly, the magnetization direction of the second ferromagnetic layer changes. It is possible to detect an external magnetic field by measuring the resistance at this time. The TMR effect can also be applied to a magnetic memory (MRAM) or spin wave device. For example, Patent Documents 1 and 2 and Non-Patent Document 1 disclose TMR sensors.
特開2013-201343号公報JP 2013-201343 A 特開2012-119684号公報JP 2012-119684 A
 TMRセンサの性能を決める要因の1つは、検出層の磁気異方性磁界である。磁気異方性磁界は磁化をある方向に留めようとする磁界の大きさである。高感度なTMRセンサを実現するためには微小な外部磁界に検出層の磁化が反応し、磁化方向が変化することが要求されるため、磁気異方性磁界は小さくなるように設計する必要がある。一方で、TMRセンサの感度領域を広げる場合は磁気異方性磁界が大きくなるよう設計する。 One factor that determines the performance of the TMR sensor is the magnetic anisotropy field of the detection layer. A magnetic anisotropy field is the magnitude of a magnetic field that attempts to keep magnetization in a certain direction. In order to realize a high-sensitivity TMR sensor, it is required that the magnetization of the detection layer reacts with a minute external magnetic field and the magnetization direction changes. Therefore, it is necessary to design the magnetic anisotropic magnetic field to be small. is there. On the other hand, when expanding the sensitivity region of the TMR sensor, the magnetic anisotropy magnetic field is designed to be large.
 しかしながら、TMRセンサを製造する際、CoFeB層やMgO層を微細なサイズ(例えば、数十nm)に加工する必要がある。このような材料を微細加工するには、例えばCOとNHとの混合ガスによる反応性イオンエッチング(Reactive Ion Etching;RIE)が用いられる。しかしながら、RIEを用いて加工を行うと磁気異方性磁界の制御が困難となる。 However, when manufacturing a TMR sensor, it is necessary to process the CoFeB layer and the MgO layer into a fine size (for example, several tens of nm). In order to finely process such a material, for example, reactive ion etching (RIE) using a mixed gas of CO and NH 3 is used. However, when processing is performed using RIE, it becomes difficult to control the magnetic anisotropic magnetic field.
 MRAMでは、その特徴である十分な記録保持時間を実現するため熱安定定数を一般的に70以上にする必要があり、この値を実現できるように磁気異方性磁界を設定する。しかしながら、特許文献1や2には、RIEを用いた加工時の磁気異方性磁界の課題について記載されていない。 In MRAM, the thermal stability constant generally needs to be set to 70 or more in order to realize a sufficient recording retention time, which is a feature of the MRAM, and a magnetic anisotropic magnetic field is set so that this value can be realized. However, Patent Documents 1 and 2 do not describe the problem of magnetic anisotropy magnetic field during processing using RIE.
 また、スピン波デバイスでは、演算の精度向上のため、導波路中の一部分の磁気異方性磁界が他の部分と比べて大きくなるように設計されることが望ましい。本来、磁気異方性磁界は材料特有の値であるため、製品やデバイス性能に応じた材料開発の必要があった。しかし、非特許文献1にあるようにCoFeBとMgOを用いた積層膜においては、CoFeB膜厚を変えることによって磁気異方性磁界が制御可能であることが明らかになった。この技術では、膜厚を原子層レベルで制御する必要があるため、磁気異方性の制御性に問題があった。 Also, it is desirable that the spin wave device is designed so that the magnetic anisotropy magnetic field in a part of the waveguide is larger than the other part in order to improve calculation accuracy. Originally, the magnetic anisotropy magnetic field is a value peculiar to the material, so that it was necessary to develop a material corresponding to the product and device performance. However, as described in Non-Patent Document 1, in a laminated film using CoFeB and MgO, it has become clear that the magnetic anisotropy magnetic field can be controlled by changing the CoFeB film thickness. This technique has a problem in controllability of magnetic anisotropy because it is necessary to control the film thickness at the atomic layer level.
 本発明の目的は、TMR効果を利用するデバイスの磁気異方性磁界を容易に制御可能な技術を提供することにある。 An object of the present invention is to provide a technique capable of easily controlling the magnetic anisotropic magnetic field of a device using the TMR effect.
 上記目的を達成するための一実施形態として、Fe又はCoの少なくとも一方を含む磁化方向が固定された第1の層と、MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である第2の層とが積層され、異方性磁界が0を超え10mT以下の磁気センサ部と、
  前記磁気センサ部と電気的に接続され、前記磁気センサ部の上部に設けられたコンタクトホール内に充填された電極と、
  前記電極の側壁に形成された、金属酸化物又は金属窒化物の少なくとも一方からなる第1の側壁膜と、
  前記磁気センサ部の側壁に形成された、金属酸化物又は金属窒化物の少なくとも一方からなる第2の側壁膜と、
を有することを特徴とする磁気センサとする。
As an embodiment for achieving the above object, the magnetization direction including at least one of Fe or Co, the first layer having a fixed magnetization direction including at least one of Fe or Co, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable. A magnetic sensor unit laminated with a second layer and having an anisotropic magnetic field of more than 0 and 10 mT or less;
An electrode that is electrically connected to the magnetic sensor unit and filled in a contact hole provided in an upper portion of the magnetic sensor unit;
A first sidewall film made of at least one of metal oxide or metal nitride formed on the sidewall of the electrode;
A second side wall film made of at least one of metal oxide or metal nitride formed on the side wall of the magnetic sensor unit;
It is set as a magnetic sensor characterized by having.
 また、互いに平行に配置された複数のビット線と、
  前記ビット線に平行方向であり且つ互いに平行に配置された複数のソース線と、
  前記ビット線に交差する方向であり且つ互いに平行に配置された複数のワード線と、
  前記ビット線と前記ワード線の各交点に配置された前記磁気センサと同じ構造を持つ磁気記録素子と、
  前記磁気記録素子に接続された選択トランジスタとを有し、
  前記ビット線と前記磁気記録素子の上部電極とが電気的に接続され、
  前記磁気記録素子の下部電極と前記選択トランジスタのドレイン電極が電気的に接続され、
  前記ソース線と前記選択トランジスタのソース電極が電気的に接続され、
  前記ワード線と前記選択トランジスタのゲート電極が電気的に接続されているメモリセルを有することを特徴とする磁気メモリとする。
A plurality of bit lines arranged in parallel to each other;
A plurality of source lines arranged in parallel to each other and parallel to the bit lines;
A plurality of word lines arranged in parallel to each other in a direction intersecting the bit lines;
A magnetic recording element having the same structure as the magnetic sensor disposed at each intersection of the bit line and the word line;
A selection transistor connected to the magnetic recording element,
The bit line and the upper electrode of the magnetic recording element are electrically connected;
A lower electrode of the magnetic recording element and a drain electrode of the selection transistor are electrically connected;
The source line and the source electrode of the selection transistor are electrically connected;
The magnetic memory includes a memory cell in which the word line and the gate electrode of the selection transistor are electrically connected.
 また、Fe又はCoの少なくとも一方を含む磁化方向が固定された第1の強磁性層と、第1の障壁層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である第2の強磁性層とが積層されたスピン波導波路と、
  前記スピン波導波路の端部上方に積層された水素ストッパ層と、
  前記スピン波導波路の端部から空間的に隔てられた、前記スピン波導波路の一部に電気的に接続され、前記スピン波導波路の上部に設けられたコンタクトホール内に充填された上部電極と、
  前記スピン波導波路の側壁に形成された、金属酸化物又は金属窒化物の少なくとも一方からなる側壁層と、を有し、
  前記水素ストッパ層が形成されている前記スピン波導波路における異方性磁界が0を超え10mT以下であることを特徴とするスピン波デバイスとする。
In addition, a first ferromagnetic layer having a fixed magnetization direction including at least one of Fe or Co, a first barrier layer, and a second ferromagnetic layer having a variable magnetization direction including at least one of Fe or Co. A spin wave waveguide in which layers are stacked;
A hydrogen stopper layer stacked above the end of the spin wave waveguide;
An upper electrode electrically connected to a part of the spin wave waveguide, spatially separated from an end of the spin wave waveguide, and filled in a contact hole provided at an upper portion of the spin wave waveguide;
A sidewall layer made of at least one of metal oxide or metal nitride formed on the sidewall of the spin wave waveguide;
The spin wave device is characterized in that an anisotropic magnetic field in the spin wave waveguide in which the hydrogen stopper layer is formed is more than 0 and 10 mT or less.
 また、前記磁気センサの製造方法において、
  基板上に、少なくとも、Fe又はCoの少なくとも一方を含む磁化方向が固定された前記第1の層と、前記MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である前記第2の層とが積層された前記磁気センサ部と、金属酸化物又は金属窒化物の少なくとも一方からなる水素ストッパ層とを順次積層する第1のステップと、
  前記水素ストッパ層の第1の領域を残存させて、第2の領域をエッチング除去する第2のステップと、
  少なくとも水素を含むガス雰囲気中で、前記磁気センサ部の第1の領域を残存させて、第2の領域を反応性エッチングにより除去する第3のステップと、
  前記第3のステップにより、前記磁気センサ部の第1の領域の側壁に付着した付着物を酸化または窒化させる第4のステップと、
  前記第1の領域の水素ストッパ層に開口部を形成すると共に、前記第1の側壁膜を形成する第5のステップと、
  前記開口部内に、電極を充填する第6のステップと
を有することを特徴とする磁気センサの製造方法とする。
In the method for manufacturing the magnetic sensor,
On the substrate, at least the first layer in which the magnetization direction including at least one of Fe or Co is fixed, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable. A first step of sequentially laminating the magnetic sensor unit laminated with a layer and a hydrogen stopper layer made of at least one of metal oxide or metal nitride;
A second step of leaving a first region of the hydrogen stopper layer and etching away a second region;
A third step of leaving the first region of the magnetic sensor unit in a gas atmosphere containing at least hydrogen and removing the second region by reactive etching;
A fourth step of oxidizing or nitriding deposits adhering to the side wall of the first region of the magnetic sensor unit by the third step;
A fifth step of forming an opening in the hydrogen stopper layer of the first region and forming the first sidewall film;
And a sixth step of filling the electrode into the opening.
 また、前記磁気メモリの製造方法において、
  基板上に、少なくとも、Fe又はCoの少なくとも一方を含む磁化方向が固定された前記第1の層と、前記MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である前記第2の層とが積層された前記磁気センサ部と、金属酸化物又は金属窒化物の少なくとも一方からなる水素ストッパ層とを順次積層する第1のステップと、
  前記水素ストッパ層の第1の領域を残存させて、第2の領域をエッチング除去する第2のステップと、
  少なくとも水素を含むガス雰囲気中で、前記磁気センサ部の第1の領域を残存させて、第2の領域を反応性エッチングにより除去する第3のステップと、
  前記第3のステップにより、前記磁気センサ部の第1の領域の側壁に付着した付着物を酸化または窒化させる第4のステップと、
  前記第1の領域の水素ストッパ層に、開口部を形成すると共に、前記第1の側壁膜を形成する第5のステップと、
  前記開口部内に、電極を充填する第6のステップと、
  その後、水素を含む雰囲気中で、アッシング処理する第7のステップと、
を有することを特徴とする磁気メモリの製造方法とする。
In the method for manufacturing the magnetic memory,
On the substrate, at least the first layer in which the magnetization direction including at least one of Fe or Co is fixed, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable. A first step of sequentially laminating the magnetic sensor unit laminated with a layer and a hydrogen stopper layer made of at least one of metal oxide or metal nitride;
A second step of leaving a first region of the hydrogen stopper layer and etching away a second region;
A third step of leaving the first region of the magnetic sensor unit in a gas atmosphere containing at least hydrogen and removing the second region by reactive etching;
A fourth step of oxidizing or nitriding deposits adhering to the side wall of the first region of the magnetic sensor unit by the third step;
A fifth step of forming an opening in the hydrogen stopper layer of the first region and forming the first sidewall film;
A sixth step of filling the opening with an electrode;
Thereafter, a seventh step of ashing in an atmosphere containing hydrogen;
A method for manufacturing a magnetic memory, comprising:
 また、前記スピン波デバイスの製造方法において、
  基板上に、少なくとも、Fe又はCoの少なくとも一方を含む磁化方向が固定された前記第1の層と、前記MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である前記第2の層とが積層された前記スピン導波路となる積層膜と、前記水素ストッパ層とを順次積層する第1のステップと、
  前記スピン導波路の端部上の前記水素ストッパ層を残存させ、他の領域の前記水素ストッパ層をエッチング除去する第2のステップと、
  少なくとも水素を含むガス雰囲気中で、前記スピン導波路となる領域を残存させるように前記積層膜を反応性エッチングにより除去する第3のステップと、
  前記第3のステップにより、前記スピン導波路の側壁に付着した付着物を酸化または窒化させる第4のステップと、
  その後、水素を含む雰囲気中で、アッシング処理する第5のステップと、
を有することを特徴とするスピン波デバイスの製造方法とする。
In the method for manufacturing the spin wave device,
On the substrate, at least the first layer in which the magnetization direction including at least one of Fe or Co is fixed, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable. A first step of sequentially laminating a laminated film to be the spin waveguide laminated with a layer, and the hydrogen stopper layer;
A second step of leaving the hydrogen stopper layer on the end of the spin waveguide and etching away the hydrogen stopper layer in another region;
A third step of removing the laminated film by reactive etching so as to leave a region to be the spin waveguide in a gas atmosphere containing at least hydrogen;
A fourth step of oxidizing or nitriding deposits attached to the side wall of the spin waveguide by the third step;
Thereafter, a fifth step of ashing in an atmosphere containing hydrogen;
A method of manufacturing a spin wave device characterized by comprising:
 また、Fe又はCoの少なくとも一方を含む磁化方向が固定された第1の層と、MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である第2の層とが積層された磁気センサ部と、
  前記磁気センサ部と電気的に接続され、前記磁気センサ部の上部に設けられたコンタクトホール内に充填された電極と、
  前記電極の側壁に形成された、金属酸化物又は金属窒化物の少なくとも一方からなる第1の側壁膜と、
  前記磁気センサ部の側壁に形成され、金属酸化物又は金属窒化物の少なくとも一方からなり、上部よりも下部において膜厚が厚い第2の側壁膜と、
を有することを特徴とする磁気センサとする。
In addition, a magnetic layer in which a first layer including a magnetization direction including at least one of Fe or Co is fixed, a MgO layer, and a second layer including a variable magnetization direction including at least one of Fe or Co are stacked. A sensor unit;
An electrode that is electrically connected to the magnetic sensor unit and filled in a contact hole provided in an upper portion of the magnetic sensor unit;
A first sidewall film made of at least one of metal oxide or metal nitride formed on the sidewall of the electrode;
A second side wall film formed on the side wall of the magnetic sensor portion, made of at least one of a metal oxide or a metal nitride and having a thicker film in the lower part than in the upper part;
It is set as a magnetic sensor characterized by having.
 本発明によれば、TMR効果を利用するデバイスの磁気異方性磁界を容易に制御可能な技術を提供することができる。具体的には、磁気異方性磁界が高精度に制御された高感度TMRセンサ、広感度領域TMRセンサ、MRAM、高精度演算が可能なスピン波デバイスを提供することができる。また、磁気異方性磁界を高精度に制御することが可能なTMRセンサ構造の作製方法を提供することができる。 According to the present invention, it is possible to provide a technique capable of easily controlling the magnetic anisotropy magnetic field of a device using the TMR effect. Specifically, it is possible to provide a high-sensitivity TMR sensor, a wide-sensitivity region TMR sensor, an MRAM, and a spin wave device capable of high-accuracy calculation in which the magnetic anisotropic magnetic field is controlled with high accuracy. Further, it is possible to provide a method for manufacturing a TMR sensor structure capable of controlling the magnetic anisotropic magnetic field with high accuracy.
磁気異方性と界面酸素濃度の関係を説明するためのグラフである。It is a graph for demonstrating the relationship between magnetic anisotropy and interface oxygen concentration. 本発明の第1の実施例に係るTMRセンサの断面模式図である。1 is a schematic cross-sectional view of a TMR sensor according to a first embodiment of the present invention. 図2に示すTMRセンサにおける抵抗の外部磁界依存性を説明するためのグラフである。It is a graph for demonstrating the external magnetic field dependence of resistance in the TMR sensor shown in FIG. 図2に示すTMRセンサの製造工程を説明するための断面図であり、各種積層膜が基板上に形成された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the TMR sensor shown in FIG. 2, and shows the state by which various laminated films were formed on the board | substrate. 図2に示すTMRセンサの製造工程を説明するための断面図であり、マスク209及び水素ストッパ層208が加工された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the TMR sensor shown in FIG. 2, and the state in which the mask 209 and the hydrogen stopper layer 208 were processed is shown. 図2に示すTMRセンサの製造工程を説明するための断面図であり、マスク209を用いて上部電極207が途中まで加工された状態を示す。FIG. 3 is a cross-sectional view for explaining a manufacturing process of the TMR sensor shown in FIG. 2 and shows a state in which an upper electrode 207 is processed halfway using a mask 209. 図2に示すTMRセンサの製造工程を説明するための断面図であり、上部電極が途中まで加工された後、酸化された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the TMR sensor shown in FIG. 2, and shows the state oxidized after the upper electrode was processed halfway. 図2に示すTMRセンサの製造工程を説明するための断面図であり、マスクを用いて第2の強磁性層203が途中まで加工された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the TMR sensor shown in FIG. 2, and shows the state by which the 2nd ferromagnetic layer 203 was processed halfway using the mask. 図2に示すTMRセンサの製造工程を説明するための断面図であり、第2の強磁性層を途中まで加工された後、酸化された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the TMR sensor shown in FIG. 2, and shows the state oxidized after processing the 2nd ferromagnetic layer to the middle. 図2に示すTMRセンサの製造工程を説明するための断面図であり、マスクを用いて下部電極206が途中まで加工された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the TMR sensor shown in FIG. 2, and shows the state by which the lower electrode 206 was processed halfway using the mask. 図2に示すTMRセンサの製造工程を説明するための断面図であり、下部電極が途中まで加工された後、酸化された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the TMR sensor shown in FIG. 2, and shows the state oxidized after the lower electrode was processed halfway. 図2に示すTMRセンサの製造工程を説明するための断面図であり、酸化された基板上に層間絶縁膜213が形成された状態を示す。FIG. 3 is a cross-sectional view for explaining a manufacturing process of the TMR sensor shown in FIG. 2 and shows a state in which an interlayer insulating film 213 is formed on an oxidized substrate. 図2に示すTMRセンサの製造工程を説明するための断面図であり、下部電極206が加工された状態を示す。FIG. 3 is a cross-sectional view for explaining a manufacturing process of the TMR sensor shown in FIG. 2 and shows a state where a lower electrode 206 is processed. 図2に示すTMRセンサの製造工程を説明するための断面図であり、下部電極が加工された基板上に層間絶縁膜213が形成された状態を示す。FIG. 5 is a cross-sectional view for explaining a manufacturing process of the TMR sensor shown in FIG. 図2に示すTMRセンサの製造工程を説明するための断面図であり、上部電極207へのコンタクトホール220が形成された状態を示す。FIG. 5 is a cross-sectional view for explaining a manufacturing process of the TMR sensor shown in FIG. 2 and shows a state in which a contact hole 220 to the upper electrode 207 is formed. 図2に示すTMRセンサの製造工程のフローチャートである。It is a flowchart of the manufacturing process of the TMR sensor shown in FIG. 本発明の第2の実施例に係るTMRセンサの断面模式図である。It is a cross-sectional schematic diagram of the TMR sensor which concerns on the 2nd Example of this invention. 図6に示すTMRセンサの製造工程のフローチャートである。It is a flowchart of the manufacturing process of the TMR sensor shown in FIG. 本発明の第3の実施例に係るTMRセンサの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the TMR sensor which concerns on the 3rd Example of this invention. 本発明の第3の実施例に係るTMRセンサの製造工程の他の例を示すフローチャートである。It is a flowchart which shows the other example of the manufacturing process of the TMR sensor which concerns on the 3rd Example of this invention. 本発明の第5の実施例に係るMRAMにおけるメモリセルの模式図である。It is a schematic diagram of the memory cell in MRAM based on the 5th Example of this invention. 本発明の第6の実施例に係るスピン波デバイス(2入力)の平面模式図である。It is a plane schematic diagram of the spin wave device (2 inputs) which concerns on the 6th Example of this invention. 図11に示すスピン波デバイスの断面模式図である。It is a cross-sectional schematic diagram of the spin wave device shown in FIG. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、加工された水素ストッパ層208を含む各種積層膜が基板上に形成された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the spin wave device shown in FIG. 12, and shows the state by which the various laminated films containing the processed hydrogen stopper layer 208 were formed on the board | substrate. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、加工された水素ストッパ層を含むマスク209が加工された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the spin wave device shown in FIG. 12, and shows the state by which the mask 209 containing the processed hydrogen stopper layer was processed. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、マスク209を用いて上部電極207が途中まで加工された状態を示す。FIG. 13 is a cross-sectional view for explaining a manufacturing process of the spin wave device shown in FIG. 12 and shows a state in which the upper electrode 207 is processed halfway using a mask 209. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、上部電極が途中まで加工された後、酸化された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the spin wave device shown in FIG. 12, and shows the state oxidized after the upper electrode was processed halfway. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、マスクを用いて第2の強磁性層203が途中まで加工された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the spin wave device shown in FIG. 12, and shows the state by which the 2nd ferromagnetic layer 203 was processed halfway using the mask. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、第2の強磁性層を途中まで加工された後、酸化された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the spin wave device shown in FIG. 12, and shows the state oxidized after processing the 2nd ferromagnetic layer to the middle. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、マスクを用いて下部電極206が途中まで加工された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the spin wave device shown in FIG. 12, and shows the state by which the lower electrode 206 was processed halfway using the mask. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、下部電極が途中まで加工された後、酸化された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the spin wave device shown in FIG. 12, and shows the state oxidized after the lower electrode was processed halfway. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、酸化された基板上に層間絶縁膜213が形成された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the spin wave device shown in FIG. 12, and shows the state by which the interlayer insulation film 213 was formed on the oxidized board | substrate. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、下部電極206が加工された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the spin wave device shown in FIG. 12, and shows the state by which the lower electrode 206 was processed. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、下部電極が加工された基板上に層間絶縁膜213が形成された状態を示す。It is sectional drawing for demonstrating the manufacturing process of the spin wave device shown in FIG. 12, and shows the state by which the interlayer insulation film 213 was formed on the board | substrate with which the lower electrode was processed. 図12に示すスピン波デバイスの製造工程を説明するための断面図であり、上部電極207へのコンタクトホール220が形成された状態を示す。FIG. 13 is a cross-sectional view for explaining a manufacturing process of the spin wave device shown in FIG. 12 and shows a state in which a contact hole 220 to the upper electrode 207 is formed.
 第1の強磁性層及び第2の強磁性層にCoFeB、第1の障壁層にMgOを適用した場合を例として、以下に本発明の実施形態について説明する。 Embodiments of the present invention will be described below by taking as an example the case where CoFeB is applied to the first and second ferromagnetic layers and MgO is applied to the first barrier layer.
 CoFeB層とMgO層の積層界面では、FeとOが1対1に結合する構造が安定である。このとき積層界面には鉄(Fe)と酸素(O)の結合軌道が形成され、その結果磁気異方性磁界が増大する。従って、図1に示したように、FeとOの割合が1対1のとき磁気異方性磁界は最大になり、Feに対してOが増加すると磁気異方性磁界は減少する。 At the laminated interface between the CoFeB layer and the MgO layer, the structure in which Fe and O are bonded one-to-one is stable. At this time, a bond orbit of iron (Fe) and oxygen (O) is formed at the laminated interface, and as a result, the magnetic anisotropy field increases. Therefore, as shown in FIG. 1, the magnetic anisotropy field becomes maximum when the ratio of Fe to O is 1: 1, and the magnetic anisotropy field decreases as O increases with respect to Fe.
 一方、磁性体の加工にCOとNHの混合ガスなどを用いた反応性イオンエッチング(RIE)を用いる場合、エッチング中の加工室は水素(水素ラジカル、水素イオン)が発生し還元雰囲気になる。このため、CoFeBとMgOの積層界面においてはRIE加工中に還元反応が進行し、界面の酸素濃度が低下するため磁気異方性磁界は減少する(図1の右方向へ反応が進む)。この還元反応はエッチング時に付随的に起こるため、制御が困難である。一方、RIE加工後に酸化処理を施すことで磁気異方性磁界を再び増加させることは、水素と比べて効率が低い。この理由は、水素より原子半径が大きい酸素が界面まで到達することが、水素と比べて難しいからである。そこで、ここではエッチング中の還元反応を抑制するための構造を適用することにより磁気異方性磁界を図1の領域1に留め、エッチング後に緩やかに水素還元処理を施すことによって磁気異方性磁界を制御することとした。例えば、高感度磁気センサの場合は、領域2を目標値として水素還元処理を施す。 On the other hand, when reactive ion etching (RIE) using a mixed gas of CO and NH 3 or the like is used for processing a magnetic material, hydrogen (hydrogen radicals, hydrogen ions) is generated in the processing chamber during etching and a reducing atmosphere is formed. . For this reason, the reduction reaction proceeds during the RIE process at the CoFeB / MgO laminated interface, and the magnetic anisotropy field decreases because the oxygen concentration at the interface decreases (the reaction proceeds to the right in FIG. 1). Since this reduction reaction occurs incidentally during etching, it is difficult to control. On the other hand, increasing the magnetic anisotropy magnetic field again by applying an oxidation treatment after RIE processing is less efficient than hydrogen. This is because it is difficult for oxygen having an atomic radius larger than hydrogen to reach the interface as compared with hydrogen. Therefore, here, by applying a structure for suppressing the reduction reaction during etching, the magnetic anisotropy magnetic field is kept in the region 1 in FIG. 1, and the magnetic anisotropy magnetic field is gently applied by hydrogen reduction after the etching. It was decided to control. For example, in the case of a high-sensitivity magnetic sensor, hydrogen reduction processing is performed with the region 2 as a target value.
 エッチング中の還元反応を抑制するための構造として、磁気センサ部上方に積層された水素ストッパ層を適用する。水素ストッパ層は、エッチング中に水素が磁気センサ部上方から磁気センサ部に侵入すること妨げる役割を担う。水素ストッパ層は、水素の侵入防止の観点から金属酸化物が望ましい。金属酸化物が絶縁体である場合、エッチング後に磁気センサ部上部と電気的に接続する電極を形成するための金属酸化物を貫通したコンタクトホールの加工が必要である。金属酸化物が導電体である場合は、金属酸化物を貫通する必要はない。また、水素ストッパ層はエッチングのためのハードマスクとして利用することも考えられる。水素ストッパ層をハードマスクとして利用しない場合は、別にハードマスクを用意する。コンタクトホール形成後の水素ストッパ層は、上部電極の側壁に残った第1の側壁層となる。 As a structure for suppressing the reduction reaction during etching, a hydrogen stopper layer stacked above the magnetic sensor unit is applied. The hydrogen stopper layer plays a role of preventing hydrogen from entering the magnetic sensor unit from above the magnetic sensor unit during etching. The hydrogen stopper layer is preferably a metal oxide from the viewpoint of preventing hydrogen from entering. When the metal oxide is an insulator, it is necessary to process a contact hole that penetrates the metal oxide to form an electrode that is electrically connected to the upper part of the magnetic sensor portion after etching. When the metal oxide is a conductor, it is not necessary to penetrate the metal oxide. It is also conceivable to use the hydrogen stopper layer as a hard mask for etching. If the hydrogen stopper layer is not used as a hard mask, a separate hard mask is prepared. The hydrogen stopper layer after the contact hole is formed becomes the first sidewall layer remaining on the sidewall of the upper electrode.
 エッチング中の還元反応を抑制するための構造のもう1つは、磁気センサ部側壁に設けられた第2の側壁層である。水素ストッパ層(及びハードマスク層)をパターニングしてマスクを形成後、磁気センサ部をRIEによって加工する。この際、除去された第1の強磁性層、第1の障壁層、及び第2の強磁性層(上部電極、下部電極の一部も含む場合もある)は、加工後の磁気センサ部側壁や加工表面に再付着物として積層する。磁気センサ部に側面から水素が侵入し還元反応が進行することを抑制するために、この側壁再付着物を酸化し側壁酸化物を形成する。この側壁酸化層が第2の側壁層である。水素の侵入を効率良く抑制するために、RIE工程と再付着物酸化工程を繰り返す方法が望ましい。RIE工程と再付着物酸化工程を1つの加工室で行う場合は、RIE加工後にRIEに用いたガスの排気、酸化工程後に酸素の排気が必須である。酸化室を加工室と別に用意する場合は、ウェハを搬送する搬送系があれば排気の時間を考慮せずにRIEと酸化を繰り返すことが可能である。 Another structure for suppressing the reduction reaction during etching is a second side wall layer provided on the side wall of the magnetic sensor unit. After patterning the hydrogen stopper layer (and hard mask layer) to form a mask, the magnetic sensor portion is processed by RIE. At this time, the removed first ferromagnetic layer, first barrier layer, and second ferromagnetic layer (which may include a part of the upper electrode and the lower electrode) are the side walls of the magnetic sensor section after processing. Laminate as a re-attachment on the processing surface. In order to prevent hydrogen from entering the magnetic sensor portion from the side and the reduction reaction proceeding, the side wall re-adhered material is oxidized to form side wall oxide. This sidewall oxide layer is the second sidewall layer. In order to efficiently suppress the entry of hydrogen, a method of repeating the RIE process and the redeposition oxidation process is desirable. In the case where the RIE process and the redeposition material oxidation process are performed in one processing chamber, exhaust of the gas used for RIE after the RIE process and exhaust of oxygen after the oxidation process are essential. When the oxidation chamber is prepared separately from the processing chamber, RIE and oxidation can be repeated without considering the exhaust time if there is a transfer system for transferring the wafer.
 以上の工程を経たTMRセンサは、上部に水素ストッパ層、側面に第1の側壁層及び第2の側壁層を備えており、水素による還元反応が抑制されているため、磁気異方性が図1の領域1に留まっている。ここで、上部水素ストッパ層にコンタクトホールを開口する、若しくはCMPなどにより水素ストッパ層を除去する。これにより上面から水素が侵入できるようになる。この後、水素還元処理を緩やかに施すことによって徐々に磁気異方性を調整する(図1の領域2)ことが可能である。 The TMR sensor that has undergone the above steps includes a hydrogen stopper layer on the top and a first side wall layer and a second side wall layer on the side surface, and the reduction reaction due to hydrogen is suppressed, so that the magnetic anisotropy is high. 1 remains in region 1. Here, a contact hole is opened in the upper hydrogen stopper layer, or the hydrogen stopper layer is removed by CMP or the like. This allows hydrogen to enter from the top surface. Thereafter, it is possible to gradually adjust the magnetic anisotropy (region 2 in FIG. 1) by slowly applying a hydrogen reduction treatment.
 以下、図面を参照して本発明を実施例により説明する。本実施例は、本発明を限定するものではない。なお、同一符号は同一構成要素を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. This example does not limit the present invention. In addition, the same code | symbol shows the same component.
 図2は、本発明の第1の実施例に係るTMRセンサの断面模式図である。本TMRセンサは、高感度化(図1の領域2)を目的として作製した。図2の断面模式図にあるように、第1の強磁性層201、障壁層202、第2の強磁性層203がこの順に積層されており、磁気センサ部204を形成する。磁気センサ部204は、ピラー型の形状であり、基板205上に積層した下部電極206の上に配置されている。磁気センサ部上方には上部電極207が積層されており、更に上部電極207の上方には水素ストッパ層208及びハードマスク層209が積層されている。上部電極207、水素ストッパ層208、及びハードマスク層209は、磁気センサ部204と同様にピラー型の形状である。水素ストッパ層208及びハードマスク層209にはコンタクトホールが形成されており、配線層210がコンタクトホールを通して上部電極207に接続されている。このため、水素ストッパ層208及びハードマスク層209は配線層210の側壁となっており、これが第1の側壁層211である。ピラー型に加工された磁気センサ部204、酸化された第2の側壁層212が形成されている。また層間絶縁膜213でTMRセンサは覆われており、上部電極207と下部電極206は、磁気センサ部204を介して接続された構成となる。水素ストッパ層208とハードマスク層209の積層順は逆でも構わない。 FIG. 2 is a schematic sectional view of the TMR sensor according to the first embodiment of the present invention. This TMR sensor was produced for the purpose of increasing the sensitivity (region 2 in FIG. 1). As shown in the schematic cross-sectional view of FIG. 2, the first ferromagnetic layer 201, the barrier layer 202, and the second ferromagnetic layer 203 are laminated in this order to form the magnetic sensor unit 204. The magnetic sensor unit 204 has a pillar shape and is disposed on the lower electrode 206 stacked on the substrate 205. An upper electrode 207 is stacked above the magnetic sensor unit, and a hydrogen stopper layer 208 and a hard mask layer 209 are stacked above the upper electrode 207. The upper electrode 207, the hydrogen stopper layer 208, and the hard mask layer 209 have a pillar shape similar to the magnetic sensor unit 204. Contact holes are formed in the hydrogen stopper layer 208 and the hard mask layer 209, and the wiring layer 210 is connected to the upper electrode 207 through the contact holes. For this reason, the hydrogen stopper layer 208 and the hard mask layer 209 are the side walls of the wiring layer 210, and this is the first side wall layer 211. A magnetic sensor portion 204 processed into a pillar shape and an oxidized second sidewall layer 212 are formed. Further, the TMR sensor is covered with the interlayer insulating film 213, and the upper electrode 207 and the lower electrode 206 are connected via the magnetic sensor unit 204. The stacking order of the hydrogen stopper layer 208 and the hard mask layer 209 may be reversed.
 本TMRセンサでは、第1の強磁性層201の材料としてCoFeBを採用し、膜厚は0.9nmとした。障壁層202としてMgOを採用し、膜厚は1.0nmとした。第2の強磁性層203としてCoFeBを採用し、膜厚は1.6nmとした。第1の強磁性層201と第2の強磁性層203の膜厚の違いは、それぞれの層の保磁力に差をつけるためであり、第1の強磁性層201を固定層として、第2の強磁性層203を検出層と動作する。保磁力差をより大きくするためには、2つの強磁性層を単層のCoFeBとするのではなく、Co/Pt多層膜などを追加してもよい。水素ストッパ層208にはMgOを用い膜厚20nmとした。また、ハードマスク層209にはTaを用いて膜厚は100nmとした。 In this TMR sensor, CoFeB was adopted as the material of the first ferromagnetic layer 201, and the film thickness was 0.9 nm. MgO was used as the barrier layer 202, and the film thickness was 1.0 nm. CoFeB was adopted as the second ferromagnetic layer 203, and the film thickness was 1.6 nm. The difference in film thickness between the first ferromagnetic layer 201 and the second ferromagnetic layer 203 is to make a difference in the coercive force of the respective layers. The ferromagnetic layer 203 operates as a detection layer. In order to increase the coercive force difference, a Co / Pt multilayer film or the like may be added instead of using two CoFeB layers as single ferromagnetic layers. The hydrogen stopper layer 208 is made of MgO and has a thickness of 20 nm. The hard mask layer 209 is made of Ta and has a thickness of 100 nm.
 図3は、本TMRセンサにおける抵抗の外部磁界依存性である。検出層である第2の強磁性層203の磁気異方性磁界は2mTに制御されている。 FIG. 3 shows the external magnetic field dependence of the resistance in this TMR sensor. The magnetic anisotropy magnetic field of the second ferromagnetic layer 203 as the detection layer is controlled to 2 mT.
 次に、本TMRセンサの製造方法について図4A乃至図4Lを用いて説明する。本TMRセンサは、以下の工程を経て作製された。
<第1のステップ>:基板面から、下部電極206、第1の強磁性層201、障壁層202、第2の強磁性層203、上部電極層207、水素ストッパ層208、Taハードマスク層209をこの順に積層する(図4A)。
<第2のステップ>:ピラー型のレジストマスクをTaハードマスク層209上に作製し、水素ストッパ層208及びTaハードマスク層209をピラー型に加工する(図4B)。
<第3のステップ>:水素ストッパ層208及びTaハードマスク層209をマスクとして、COとNHの混合ガスを用いたRIEにより上部電極207と磁気センサ部を2分間エッチングする(図4C)。
<第4のステップ>:基板を、RIEを行う加工室から酸化室に移し酸化する(図4D)。
基板を再び加工室に戻し、第3のステップと第4のステップを繰り返し、RIEによるエッチングを下部電極206の表面付近まで進める(図4Eから図4H)。
<第5のステップ>:層関絶縁膜213を積層し(図4I)、下部電極206を作製する(図4J)。
<第6のステップ>:下部電極206を再び層間絶縁膜213で保護し(図4K)、水素ストッパ層208及びTaハードマスク209にコンタクトホール220を開口する(図4L)。
<第7のステップ>:配線層210を作製する(図2)。なお、配線層のうち、コンタクトホール内に形成された部分を電極と呼ぶことがある。
Next, the manufacturing method of this TMR sensor is demonstrated using FIG. 4A thru | or FIG. 4L. This TMR sensor was manufactured through the following steps.
<First Step>: From the substrate surface, the lower electrode 206, the first ferromagnetic layer 201, the barrier layer 202, the second ferromagnetic layer 203, the upper electrode layer 207, the hydrogen stopper layer 208, and the Ta hard mask layer 209 Are stacked in this order (FIG. 4A).
<Second Step>: A pillar type resist mask is formed on the Ta hard mask layer 209, and the hydrogen stopper layer 208 and the Ta hard mask layer 209 are processed into a pillar type (FIG. 4B).
<Third Step>: Using the hydrogen stopper layer 208 and the Ta hard mask layer 209 as a mask, the upper electrode 207 and the magnetic sensor unit are etched for 2 minutes by RIE using a mixed gas of CO and NH 3 (FIG. 4C).
<Fourth Step>: The substrate is transferred from the processing chamber for performing RIE to the oxidation chamber and oxidized (FIG. 4D).
The substrate is returned to the processing chamber again, and the third and fourth steps are repeated, and etching by RIE is advanced to the vicinity of the surface of the lower electrode 206 (FIGS. 4E to 4H).
<Fifth Step>: The interlayer insulating film 213 is stacked (FIG. 4I), and the lower electrode 206 is manufactured (FIG. 4J).
<Sixth Step>: The lower electrode 206 is again protected by the interlayer insulating film 213 (FIG. 4K), and a contact hole 220 is opened in the hydrogen stopper layer 208 and the Ta hard mask 209 (FIG. 4L).
<Seventh Step>: The wiring layer 210 is produced (FIG. 2). In the wiring layer, a portion formed in the contact hole may be referred to as an electrode.
 第7ステップを経た後、TMRセンサを作製した基板に10%のHを含むH/He混合ガスによるアッシングを180秒間施し、図1の領域2となるように磁気異方性を調整した。 After passing through the seventh step, the substrate on which the TMR sensor was manufactured was subjected to ashing with a H 2 / He mixed gas containing 10% H 2 for 180 seconds, and the magnetic anisotropy was adjusted so as to be a region 2 in FIG. .
 これらのステップは、図5のフローチャートにまとめた。S501が第1ステップ、S502が第2ステップ、S503が第3ステップ、S504が第4ステップ、S505が第5ステップ及び第6ステップ、S506が第7ステップに対応する。第3のステップ(S503)において磁気センサ部204を加工する際、加工された材料がピラー側壁及びエッチングされる表面に再付着する。第4のステップ(S504)では、これらの再付着物を酸化する。水素ストッパ層208及び酸化された第2の側壁層212のため、水素の磁気センサ部への侵入を防ぐことが可能である。この結果、界面におけるFeとOの組成比は1対1に近い割合になっていると考えられる。 These steps are summarized in the flowchart of FIG. S501 corresponds to the first step, S502 corresponds to the second step, S503 corresponds to the third step, S504 corresponds to the fourth step, S505 corresponds to the fifth step and the sixth step, and S506 corresponds to the seventh step. When the magnetic sensor unit 204 is processed in the third step (S503), the processed material is reattached to the pillar side wall and the surface to be etched. In the fourth step (S504), these redeposits are oxidized. The hydrogen stopper layer 208 and the oxidized second sidewall layer 212 can prevent hydrogen from entering the magnetic sensor portion. As a result, the composition ratio of Fe and O at the interface is considered to be a ratio close to 1: 1.
 その後、基板上のTMRセンサに水素還元処理を施した(S507)。本TMRセンサでは、10%のHを含むH/He混合ガスによるアッシングを180秒間施した。その結果、水素がコンタクトホールを通して磁気センサ部に侵入し、緩やかに界面の酸素濃度が低下する。本TMRセンサの場合、H/He混合ガスによるアッシングを施す前は磁気異方性磁界が10mT程度であったが、図3にあるように2mTまで減少した。このとき、FeとOの組成比は、H/He混合ガスによるアッシング前と比べて1/5程度に減少していると考えられる。界面近傍のFe及びOの組成比は、透過型電子顕微鏡(Transimission electron microscopy;TEM)の組成分析などで調べることができる。なお、本実施例によれば、磁気異方性磁界は0を超え10mT以下で制御可能である。また、MgO障壁層と第2の強磁性層との界面は、FeがOよりも多いことが望ましく、FeがOより1/10以上1/2以下だけ多い場合が好適である。 Thereafter, the TMR sensor on the substrate was subjected to hydrogen reduction treatment (S507). In this TMR sensor, ashing with a H 2 / He mixed gas containing 10% H 2 was performed for 180 seconds. As a result, hydrogen enters the magnetic sensor portion through the contact hole, and the oxygen concentration at the interface gradually decreases. In the case of the present TMR sensor, the magnetic anisotropy field was about 10 mT before ashing with the H 2 / He mixed gas, but decreased to 2 mT as shown in FIG. At this time, it is considered that the composition ratio of Fe and O is reduced to about 1/5 of that before ashing with the H 2 / He mixed gas. The composition ratio of Fe and O in the vicinity of the interface can be examined by a composition analysis using a transmission electron microscope (TEM). According to the present embodiment, the magnetic anisotropy magnetic field can be controlled to exceed 0 and not more than 10 mT. Further, the interface between the MgO barrier layer and the second ferromagnetic layer is preferably more Fe than O, and more preferably Fe is 1/10 or more and 1/2 or less than O.
 以上、本実施例によれば、TMR効果を利用するデバイスの磁気異方性磁界を容易に制御可能な技術を提供することができる。また、高感度なTMRセンサを提供することができる。 As described above, according to the present embodiment, it is possible to provide a technique capable of easily controlling the magnetic anisotropic magnetic field of a device using the TMR effect. In addition, a highly sensitive TMR sensor can be provided.
 本発明の第2の実施例について説明する。なお、実施例1に記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。 A second embodiment of the present invention will be described. Note that the matters described in the first embodiment but not described in the present embodiment can be applied to the present embodiment as long as there is no particular circumstance.
 実施例1ではハードマスク層209を用いた例について説明した。ハードマスク層209を使わない場合は、水素ストッパ層208をマスクとして用いることができる。実施例2ではハードマスク層209を用いずに、水素ストッパ層208にMgOを用いその膜厚は100nmとした。図6は第2の実施例に係るTMRセンサ断面模式図である。実施例2ではハードマスク層209を用いないので構造は簡単になるが、RIEでのエッチング時の選択比が小さくなるため、実施例1と比較して加工はやや難しくなる。 In Example 1, the example using the hard mask layer 209 has been described. When the hard mask layer 209 is not used, the hydrogen stopper layer 208 can be used as a mask. In Example 2, the hard mask layer 209 was not used, MgO was used for the hydrogen stopper layer 208, and the film thickness was 100 nm. FIG. 6 is a schematic cross-sectional view of a TMR sensor according to the second embodiment. In Example 2, since the hard mask layer 209 is not used, the structure is simple. However, since the selection ratio at the time of etching by RIE is small, the processing is somewhat difficult as compared with Example 1.
 本TMRセンサでは、第6のステップにおいて上部電極207と配線層210を電気的に接続するため、水素ストッパ層208を化学機械研磨(Chemical mechanical polishing;CMP)を用いて除去し上部電極207を露出させた後、配線層210を作製した。また、第7ステップを経た後、基板上に作製したTMRセンサ毎に分割し、その後H/He混合ガスによるアッシングを施した。TMRセンサ毎に分割したことにより、アッシングの時間をTMRセンサ毎に変えて、特性の異なるものを作製することができる。アッシング時間を180秒としたときの本TMRセンサは、磁気異方性磁界が2mT程度であり実施例1記載のTMRセンサと同様の性能を示した。本TMRセンサの作製ステップは、図7のフローチャートにまとめた。 In the present TMR sensor, in order to electrically connect the upper electrode 207 and the wiring layer 210 in the sixth step, the hydrogen stopper layer 208 is removed using chemical mechanical polishing (CMP) to expose the upper electrode 207. Then, the wiring layer 210 was produced. Further, after passing through the seventh step, it was divided for each TMR sensor produced on the substrate, and thereafter ashing with a H 2 / He mixed gas was performed. By dividing for each TMR sensor, the ashing time can be changed for each TMR sensor, so that different characteristics can be produced. This TMR sensor when the ashing time was 180 seconds had a magnetic anisotropic magnetic field of about 2 mT, and showed the same performance as the TMR sensor described in Example 1. The manufacturing steps of this TMR sensor are summarized in the flowchart of FIG.
 以上、本実施例によれば、実施例1と同様の効果を得ることができる。また、実施例1に比し、簡単な構造とすることができる。 As described above, according to the present embodiment, the same effects as those of the first embodiment can be obtained. Compared to the first embodiment, the structure can be simplified.
 本発明の第3の実施例について説明する。なお、実施例1又は2に記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。 A third embodiment of the present invention will be described. Note that matters described in the first or second embodiment but not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances.
 実施例1に記載の図5及び実施例2に記載の図7に示すTMRセンサの作製ステップと異なる作製ステップの例を図8及び図9のフローチャートにまとめた。 Examples of production steps different from the production steps of the TMR sensor shown in FIG. 5 described in Example 1 and FIG. 7 described in Example 2 are summarized in the flowcharts of FIGS.
 図8と図5との違いは、(1)図5においてはステップS502において水素ストッパ層及びハードマスクの加工を行ったが、対応するステップS802では水素ストッパ層のみの場合を含んでいる。また、(2)図5においてはステップS504において酸化を行ったが、対応するS804では酸化だけでなく、窒化を行う場合も含んでいる。 8 and 5 are different from each other. (1) In FIG. 5, the hydrogen stopper layer and the hard mask are processed in step S502, but the corresponding step S802 includes only the hydrogen stopper layer. Further, (2) in FIG. 5, the oxidation is performed in step S504, but the corresponding S804 includes not only the oxidation but also the nitridation.
 また、図9と図7との違いは、(1)図7においてはステップS702において水素ストッパ層の加工を行ったが、対応するステップS902では水素ストッパ層及びハードマスク層の加工の場合を含んでいる。また、(2)図7においてはステップS704において酸化を行ったが、対応するS804では酸化だけでなく、窒化を行う場合も含んでいる。これらの方法により作製したTMR素子についても実施例1及び2と同様の性能が得られた。 9 differs from FIG. 7 in that (1) in FIG. 7, the hydrogen stopper layer is processed in step S702, but the corresponding step S902 includes processing of the hydrogen stopper layer and the hard mask layer. It is out. (2) In FIG. 7, oxidation is performed in step S704, but the corresponding S804 includes not only oxidation but also nitridation. The same performance as in Examples 1 and 2 was obtained for the TMR elements manufactured by these methods.
 以上、本実施例によれば、実施例1と同様の効果を得ることができる。また、実施例1に比し、簡単な構造とすることができる。 As described above, according to the present embodiment, the same effects as those of the first embodiment can be obtained. Compared to the first embodiment, the structure can be simplified.
 本発明の第4の実施例について説明する。なお、実施例1乃至3の何れかに記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。 A fourth embodiment of the present invention will be described. Note that matters described in any of the first to third embodiments but not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances.
 実施例1から3のTMRセンサは高感度化を目的としたものであり、磁気異方性磁界は2mT程度と小さな値であった。一方、磁気異方性磁界が小さいと、微小磁界で検出層の磁化が飽和してしまうためそれ以上の磁界が印加されてもTMRセンサは反応できない。このため、TMR抵抗変化率が同じだと仮定した場合、高感度と広い感度領域はトレードオフの関係になる。従って、TMRセンサの感度領域を広げるためには磁気異方性を増大する必要がある。 The TMR sensors of Examples 1 to 3 were intended for high sensitivity, and the magnetic anisotropy magnetic field was a small value of about 2 mT. On the other hand, if the magnetic anisotropy magnetic field is small, the magnetization of the detection layer is saturated by a minute magnetic field, so that the TMR sensor cannot react even when a magnetic field higher than that is applied. For this reason, when it is assumed that the TMR resistance change rate is the same, the high sensitivity and the wide sensitivity region have a trade-off relationship. Therefore, it is necessary to increase the magnetic anisotropy in order to expand the sensitivity region of the TMR sensor.
 本実施例記載のTMRセンサの断面模式図は、実施例1記載のTMR素子(図2)と基本的には同じであり、水素ストッパ層208、第1の側壁層211、及び第2の側壁層212を備えることを特徴としたTMRセンサ構造である。変更点は第2の強磁性層203の膜厚を、1.4 nmとした点である(実施例1では1.6nm)。この変更は、第1のステップ(ステップS501)直後の時点における、第2の強磁性層203の磁気異方性磁界を増大することが目的である。 The cross-sectional schematic diagram of the TMR sensor described in this example is basically the same as the TMR element described in Example 1 (FIG. 2), and includes a hydrogen stopper layer 208, a first sidewall layer 211, and a second sidewall. A TMR sensor structure including a layer 212. The change is that the film thickness of the second ferromagnetic layer 203 is set to 1.4 nm (1.6 nm in Example 1). The purpose of this change is to increase the magnetic anisotropy magnetic field of the second ferromagnetic layer 203 at the time immediately after the first step (step S501).
 実施例4記載のTMRセンサの作製方法において、実施例1記載のTMRセンサ作製方法と異なっている点は、第2の強磁性層203の膜厚が異なっていること以外に、H/He混合ガスによるアッシング時間が異なっている点が挙げられる。H/He混合ガスによるアッシングは30秒間行った(実施例1では180秒間)。TMRセンサの磁気異方性磁界は150 mTであり、実施例1記載のTMRセンサと比較して75倍の感度領域を持つTMRセンサとなった。また、H/He混合ガスによるアッシング時間を調整することで、磁気異方性磁界の大きさを制御することができるので所望の感度領域を持つTMRセンサが作製可能である。 The TMR sensor manufacturing method described in Example 4 is different from the TMR sensor manufacturing method described in Example 1 except that the film thickness of the second ferromagnetic layer 203 is different from that of H 2 / He. The ashing time by mixed gas is different. Ashing with a H 2 / He mixed gas was performed for 30 seconds (180 seconds in Example 1). The magnetic anisotropic magnetic field of the TMR sensor was 150 mT, and the TMR sensor had a sensitivity region 75 times that of the TMR sensor described in Example 1. Further, by adjusting the ashing time with the H 2 / He mixed gas, the magnitude of the magnetic anisotropic magnetic field can be controlled, so that a TMR sensor having a desired sensitivity region can be manufactured.
 実施例4記載のTMRセンサは、実施例2及び実施例3に記載したTMRセンサ作製方法が適用可能である。この場合も、第2の強磁性層103の膜厚及びH/He混合ガスによるアッシング時間が異なる。 The TMR sensor manufacturing method described in Example 2 and Example 3 can be applied to the TMR sensor described in Example 4. Also in this case, the film thickness of the second ferromagnetic layer 103 and the ashing time by the H 2 / He mixed gas are different.
 以上、本実施例によれば、TMR効果を利用するデバイスの磁気異方性磁界を制御可能な技術を提供することができる。また、感度領域の広いTMRセンサを提供することができる。 As described above, according to this embodiment, it is possible to provide a technique capable of controlling the magnetic anisotropy magnetic field of a device using the TMR effect. In addition, a TMR sensor having a wide sensitivity region can be provided.
 本発明の第5の実施例について説明する。なお、実施例1乃至4の何れかに記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。 A fifth embodiment of the present invention will be described. Note that the matters described in any one of the first to fourth embodiments but not described in the present embodiment can be applied to the present embodiment unless there are special circumstances.
 本実施例では、TMR効果を利用したMRAMについて説明する。実施例1から4記載のTMRセンサの作製ステップは、TMRセンサだけでなく、MRAMの作製工程の一部にも適用可能である。不揮発メモリであるMRAMは、電源が遮断された状態でも記録を保持し続ける特徴がある。記録保持時間はMRAMの記録素子であるTMR素子の熱安定性定数に依存している。10年間の記録保持時間を実現するためには、1つの記録素子の場合は熱安定性定数が40以上の値が必要である。MRAM全体として考えた場合は、MRAMの容量に依存するが、一般的に70程度の熱安定性定数が必要とされている。 In this embodiment, an MRAM using the TMR effect will be described. The manufacturing steps of the TMR sensor described in the first to fourth embodiments can be applied not only to the TMR sensor but also to a part of the manufacturing process of the MRAM. MRAM, which is a non-volatile memory, has a feature that keeps recording even when power is cut off. The recording retention time depends on the thermal stability constant of the TMR element which is an MRAM recording element. In order to realize a recording retention time of 10 years, a thermal stability constant of 40 or more is required for one recording element. When considering the entire MRAM, a thermal stability constant of about 70 is generally required, although it depends on the capacity of the MRAM.
 熱安定性定数は磁気異方性磁界に依存し、磁気異方性磁界が大きければ記録保持時間が長くなる。一方、MRAMにおける情報の書込みは、TMR素子に電流を流すことで起こる、Spin-transfer  torque による磁化反転を利用する。書込み電流は、選択トランジスタの駆動電流以下であることが、MRAMが動作する条件である。書込み電流も同様に磁気異方性磁界に依存するため、書込み電流の観点では磁気異方性は高すぎるとMRAMは動作できない。従って、MRAMにおいても磁気異方性磁界は一定の値に制御される必要がある。 熱 The thermal stability constant depends on the magnetic anisotropy field, and the recording retention time becomes longer if the magnetic anisotropy field is larger. On the other hand, the writing of information in the MRAM uses magnetization reversal by spin-transfer “torque” that occurs when a current flows through the TMR element. The condition for operating the MRAM is that the write current is equal to or less than the drive current of the selection transistor. Similarly, since the write current depends on the magnetic anisotropy magnetic field, the MRAM cannot operate if the magnetic anisotropy is too high from the viewpoint of the write current. Therefore, the magnetic anisotropic magnetic field needs to be controlled to a constant value even in the MRAM.
 図10は、実施例1記載の磁気センサと同じ構造のTMR素子(図2と同じ構造)を記録素子とした磁気メモリ(MRAM)のメモリセルの模式図である。MRAMは複数のメモリセルを含み、各メモリセルはTMR素子1001と選択トランジスタ1002の組合せで構成されている。基板上に作製された選択トランジスタ1002のドレイン電極とTMR素子の下部電極206が電気的に接続されている。選択トランジスタ1002のソース電極はソース線1003と、ゲート電極はワード線1004と接続されている。本MRAMにおいて、複数のソース線が互いに平行に配置され、複数のワード線がソース線と交差する方向に互いに平行に配置されている。また、各々のTMR素子の配線層210に接続された各々のビット線は、ソース線と平行であり且つ互いに平行に複数配置されている。なお、なお、ソース、ドレイン等の呼称は便宜的なものであり、一方をソースとした場合、他方をドレインと呼ぶことができる。本実施例5記載のメモリセルでは、トランジスタを作製するCMOS工程を経た基板にTMR素子を作製する工程が続く。TMR素子を作製する工程は実施例1記載の第1のステップから第7のステップである。第7のステップの配線層を作製した後、H/He混合ガスによるアッシングによって磁気異方性磁界をMRAMに最適な値に調整する。H/He混合ガスによるアッシングを30秒施したときの、熱安定性定数Δは70、書込み電流Iは130μAであった。H/He混合ガスによるアッシングを300秒施したときの熱安定性定数Δは34、書込み電流Iは63μAであった。この2つの条件を比較した場合では、H/He混合ガスによるアッシングは30秒のほうが望ましい。これらの条件はMRAMの技術世代毎に異なるTMR素子のサイズなどによっても調整が必要である。 FIG. 10 is a schematic diagram of a memory cell of a magnetic memory (MRAM) using a TMR element having the same structure as that of the magnetic sensor described in the first embodiment (the same structure as FIG. 2) as a recording element. The MRAM includes a plurality of memory cells, and each memory cell includes a combination of a TMR element 1001 and a select transistor 1002. The drain electrode of the selection transistor 1002 fabricated on the substrate and the lower electrode 206 of the TMR element are electrically connected. The source electrode of the selection transistor 1002 is connected to the source line 1003, and the gate electrode is connected to the word line 1004. In this MRAM, a plurality of source lines are arranged in parallel to each other, and a plurality of word lines are arranged in parallel to each other in a direction intersecting the source lines. Each bit line connected to the wiring layer 210 of each TMR element is arranged in parallel with the source line and in parallel with each other. Note that the names of the source, the drain, and the like are for convenience, and when one is a source, the other can be called a drain. In the memory cell described in the fifth embodiment, a process of manufacturing a TMR element is continued on a substrate that has undergone a CMOS process of manufacturing a transistor. The process for manufacturing the TMR element is the first to seventh steps described in the first embodiment. After producing the wiring layer of the seventh step, the magnetic anisotropic magnetic field is adjusted to an optimum value for the MRAM by ashing with a H 2 / He mixed gas. When ashing with a H 2 / He mixed gas was performed for 30 seconds, the thermal stability constant Δ was 70, and the write current I c was 130 μA. The thermal stability constant Δ was 34 and the write current I c was 63 μA when ashing with a H 2 / He mixed gas was performed for 300 seconds. When these two conditions are compared, the ashing with the H 2 / He mixed gas is preferably 30 seconds. These conditions also need to be adjusted depending on the size of the TMR element that differs for each MRAM technology generation.
 以上、本実施例によれば、TMR効果を利用するデバイスの磁気異方性磁界を容易に制御可能な技術を提供することができる。また、熱安定性定数の高いMRAMを提供することができる。 As described above, according to the present embodiment, it is possible to provide a technique capable of easily controlling the magnetic anisotropic magnetic field of a device using the TMR effect. In addition, an MRAM having a high thermal stability constant can be provided.
本発明は、公知のスピン波デバイスにも適用可能である。スピン波とは強磁性層中における磁気モーメントの集団運動であり、強磁性層中を波として伝播する。スピン波の伝播では、例えばスピン波の位相0とπをビット情報に当てはめることができる。このビット情報は強磁性層中を伝播し、空間を隔てた場所で検出することが可能である。また、スピン波の干渉現象を利用して論理演算することが可能である。図11は、本実施例に係る2入力のスピン波デバイスの平面模式図である。図11の励起部1101で入力された2つのスピン波は、それぞれ導波路1102を伝播し、演算部1103にて干渉して1つのスピン波として検出部1104に到達し検出される。干渉現象を論理演算として利用する場合、検出部における位相検出精度が計算精度に影響を与える。 The present invention is also applicable to known spin wave devices. A spin wave is a collective motion of a magnetic moment in a ferromagnetic layer and propagates as a wave in the ferromagnetic layer. In the propagation of the spin wave, for example, the phase 0 and π of the spin wave can be applied to the bit information. This bit information propagates through the ferromagnetic layer and can be detected at a location separated from the space. In addition, it is possible to perform a logical operation using the spin wave interference phenomenon. FIG. 11 is a schematic plan view of a two-input spin wave device according to the present embodiment. The two spin waves input by the excitation unit 1101 in FIG. 11 propagate through the waveguide 1102 and interfere with each other by the arithmetic unit 1103 to reach the detection unit 1104 and be detected as one spin wave. When the interference phenomenon is used as a logical operation, the phase detection accuracy in the detection unit affects the calculation accuracy.
 しかし、検出部1104より先のスピン波導波路端部1105にてスピン波が反射するため計算精度が下がる場合がある。反射波が検出部1104に再び到達すると、計算後の出力波と再び干渉するため、検出部1104での誤検出の起こるためである。反射波の影響を抑えるためには、スピン波導波路端部1105において磁気モーメントの運動を抑制すればよい。このため、スピン波導波路端部1105の磁気異方性は比較的大きいほうが望ましい。一方、磁気異方性磁界が小さい場合スピン波の振幅は大きくなるため、スピン波導波路端部1105以外の部分では磁気異方性磁界は小さいほうが望ましい。このため、スピン波デバイスでは、スピン波導波路端部1105の磁気異方性磁界のみ他の部分に比べて大きくなるよう設計する必要がある。 However, since the spin wave is reflected at the spin wave waveguide end 1105 ahead of the detection unit 1104, the calculation accuracy may be lowered. This is because when the reflected wave reaches the detection unit 1104 again, it interferes with the calculated output wave again, and erroneous detection occurs in the detection unit 1104. In order to suppress the influence of the reflected wave, the motion of the magnetic moment may be suppressed at the spin wave waveguide end 1105. For this reason, it is desirable that the magnetic anisotropy of the spin wave waveguide end 1105 be relatively large. On the other hand, when the magnetic anisotropy magnetic field is small, the amplitude of the spin wave becomes large. Therefore, it is desirable that the magnetic anisotropy magnetic field is small in the portion other than the spin wave waveguide end 1105. For this reason, the spin wave device needs to be designed so that only the magnetic anisotropic magnetic field of the spin wave waveguide end 1105 is larger than the other parts.
 本実施例6記載のスピン波デバイスの断面模式図を図12に示す。本実施例6記載のスピン波デバイスの特徴は、スピン波導波路端部1105にのみストッパ層208が形成されていることである。以下、図13A乃至図13Lを用いて本スピン波デバイスの製造方法について説明する。
<第1のステップ>:基板面から、下部電極206、第1の強磁性層201、障壁層202、第2の強磁性層203、上部電極層207、水素ストッパ層208をこの順に積層する。次いで、水素ストッパ層208を導波路端部1105の直上のみを残して除去する。その後、Taハードマスク層209を積層する(図13A)。
<第2のステップ>:導波路型のレジストマスクをTaハードマスクマスク層209上に作製し、Taハードマスク層209を導波路型に加工する(図13B)。
<第3のステップ>:Taハードマスク層209をマスクとして、COとNHの混合ガスを用いたRIEにより磁気センサ部を2分間エッチングする(図13C)。
<第4のステップ>:基板を、RIEを行う加工室から酸化室に移し酸化する(図13D)。
基板を再び加工室に戻し、第3のステップと第4のステップを繰り返し、RIEによるエッチングを下部電極206の表面付近まで進める(図13Eから図13H)。
<第5のステップ>:層関絶縁膜213を積層し(図13I)、下部電極206を作製する(図13J)。
<第6のステップ>:下部電極206を再び層間絶縁膜213で保護し(図13K)、Taハードマスク209にコンタクトホール220を開口する(図13L)。
<第7のステップ>:配線層210を作製する(図12)。なお、配線層のうち、コンタクトホール内に形成された部分を電極と呼ぶことがある。
第7のステップを経た後、TMRセンサを作製した基板にH/He混合ガスによるアッシングを180秒間施し、磁気異方性磁界を調整した。
A schematic cross-sectional view of the spin wave device described in Example 6 is shown in FIG. A feature of the spin wave device described in the sixth embodiment is that the stopper layer 208 is formed only at the end portion 1105 of the spin wave waveguide. Hereinafter, the manufacturing method of the spin wave device will be described with reference to FIGS. 13A to 13L.
<First Step>: A lower electrode 206, a first ferromagnetic layer 201, a barrier layer 202, a second ferromagnetic layer 203, an upper electrode layer 207, and a hydrogen stopper layer 208 are stacked in this order from the substrate surface. Next, the hydrogen stopper layer 208 is removed leaving only the portion directly above the waveguide end 1105. Thereafter, a Ta hard mask layer 209 is stacked (FIG. 13A).
<Second Step>: A waveguide type resist mask is formed on the Ta hard mask mask layer 209, and the Ta hard mask layer 209 is processed into a waveguide type (FIG. 13B).
<Third Step>: Using the Ta hard mask layer 209 as a mask, the magnetic sensor part is etched by RIE using a mixed gas of CO and NH 3 for 2 minutes (FIG. 13C).
<Fourth Step>: The substrate is transferred from the processing chamber in which RIE is performed to the oxidation chamber and is oxidized (FIG. 13D).
The substrate is returned to the processing chamber again, and the third and fourth steps are repeated, and the etching by RIE is advanced to the vicinity of the surface of the lower electrode 206 (FIGS. 13E to 13H).
<Fifth Step>: The interlayer insulating film 213 is stacked (FIG. 13I), and the lower electrode 206 is manufactured (FIG. 13J).
<Sixth Step>: The lower electrode 206 is protected again by the interlayer insulating film 213 (FIG. 13K), and a contact hole 220 is opened in the Ta hard mask 209 (FIG. 13L).
<Seventh Step>: The wiring layer 210 is produced (FIG. 12). In the wiring layer, a portion formed in the contact hole may be referred to as an electrode.
After the seventh step, the substrate on which the TMR sensor was manufactured was subjected to ashing with a H 2 / He mixed gas for 180 seconds to adjust the magnetic anisotropic magnetic field.
 上記の工程を経ることによって、スピン波導波路端部1105の磁気異方性磁界は他の部分と比べて5倍程度大きくなった。これにより、反射波の影響を抑えることができ良好な特性を得ることができた。 Through the above steps, the magnetic anisotropy magnetic field of the spin wave waveguide end 1105 was increased about five times as compared with other portions. Thereby, the influence of the reflected wave can be suppressed and good characteristics can be obtained.
 なお、第6のステップではコンタクトホール開口工程を採用したが、CMPを用いることも可能である。また、検出部1104以外の導波路1102では第2の強磁性層203がエッチング除去されていても動作は可能である。 Although the contact hole opening process is adopted in the sixth step, CMP can also be used. Further, the waveguide 1102 other than the detection unit 1104 can operate even if the second ferromagnetic layer 203 is removed by etching.
 以上、本実施例によれば、TMR効果を利用するデバイスの磁気異方性磁界を容易に制御可能な技術を提供することができる。また、計算精度の高いスピン波デバイスを提供することができる。 As described above, according to the present embodiment, it is possible to provide a technique capable of easily controlling the magnetic anisotropic magnetic field of a device using the TMR effect. In addition, a spin wave device with high calculation accuracy can be provided.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、本発明は下記実施の形態を含む。
(1)Fe又はCoの少なくとも一方を含む磁化方向が固定された第1の層と、MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である第2の層とが積層され、異方性磁界が0を超え10mT以下の磁気センサ部と、
  前記磁気センサ部と電気的に接続された配線と、
  前記磁気センサ部の側壁に形成された、金属酸化物又は金属窒化物の少なくとも一方からなる側壁膜と、
を有することを特徴とする磁気センサ。
(2)前記磁気センサの製造方法において、
  基板上に、少なくとも、Fe又はCoの少なくとも一方を含む磁化方向が固定された前記第1の層と、前記MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である前記第2の層とが積層された前記磁気センサ部と、金属酸化物又は金属窒化物の少なくとも一方からなる水素ストッパ層とを順次積層する第1のステップと、
  前記水素ストッパ層の第1の領域を残存させて、第2の領域をエッチング除去する第2のステップと、
  少なくとも水素を含むガス雰囲気中で、前記磁気センサ部の第1の領域を残存させて、第2の領域を反応性エッチングにより除去する第3のステップと、
  前記第3のステップにより、前記磁気センサ部の第1の領域の側壁に付着した付着物を酸化または窒化させる第4のステップと、
  前記第1の領域の水素ストッパ層をCMPにより除去する第5のステップと、
  前記第5のステップにより露出した前記磁気センサ部に前記配線を形成する第6のステップと、
を有することを特徴とする磁気センサの製造方法。
The present invention includes the following embodiments.
(1) A first layer having a fixed magnetization direction including at least one of Fe or Co, an MgO layer, and a second layer having a variable magnetization direction including at least one of Fe or Co are stacked. A magnetic sensor unit having an anisotropic magnetic field of more than 0 and 10 mT or less;
Wiring electrically connected to the magnetic sensor unit;
A sidewall film formed of at least one of metal oxide or metal nitride formed on the sidewall of the magnetic sensor unit;
A magnetic sensor comprising:
(2) In the method for manufacturing the magnetic sensor,
On the substrate, at least the first layer in which the magnetization direction including at least one of Fe or Co is fixed, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable. A first step of sequentially laminating the magnetic sensor unit laminated with a layer and a hydrogen stopper layer made of at least one of metal oxide or metal nitride;
A second step of leaving a first region of the hydrogen stopper layer and etching away a second region;
A third step of leaving the first region of the magnetic sensor unit in a gas atmosphere containing at least hydrogen and removing the second region by reactive etching;
A fourth step of oxidizing or nitriding deposits adhering to the side wall of the first region of the magnetic sensor unit by the third step;
A fifth step of removing the hydrogen stopper layer in the first region by CMP;
A sixth step of forming the wiring in the magnetic sensor portion exposed in the fifth step;
A method of manufacturing a magnetic sensor, comprising:
201…第1の強磁性層、202…障壁層、203…第2の強磁性層、204…磁気センサ部、205…基板、206…下部電極、207…上部電極、208…水素ストッパ層、209…ハードマスク層、210…配線層、211…第1の側壁層、212…第2の側壁層、213…層間絶縁膜、220…コンタクトホール、1001…TMR素子、1002…選択トランジスタ、1003…ソース線、1004…ワード線、1101…励起部、1102…導波路、1103…演算部、1104…検出部、1105…スピン波導波路端部。 DESCRIPTION OF SYMBOLS 201 ... 1st ferromagnetic layer, 202 ... Barrier layer, 203 ... 2nd ferromagnetic layer, 204 ... Magnetic sensor part, 205 ... Substrate, 206 ... Lower electrode, 207 ... Upper electrode, 208 ... Hydrogen stopper layer, 209 DESCRIPTION OF SYMBOLS ... Hard mask layer, 210 ... Wiring layer, 211 ... First sidewall layer, 212 ... Second sidewall layer, 213 ... Interlayer insulating film, 220 ... Contact hole, 1001 ... TMR element, 1002 ... Selection transistor, 1003 ... Source Line 1004 ... Word line 1101 ... Excitation part 1102 ... Waveguide 1103 ... Operation part 1104 ... Detection part 1105 ... Spin wave waveguide end part.

Claims (15)

  1.  Fe又はCoの少なくとも一方を含む磁化方向が固定された第1の層と、MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である第2の層とが積層され、異方性磁界が0を超え10mT以下の磁気センサ部と、
      前記磁気センサ部と電気的に接続され、前記磁気センサ部の上部に設けられたコンタクトホール内に充填された電極と、
      前記電極の側壁に形成された、金属酸化物又は金属窒化物の少なくとも一方からなる第1の側壁膜と、
      前記磁気センサ部の側壁に形成された、金属酸化物又は金属窒化物の少なくとも一方からなる第2の側壁膜と、
    を有することを特徴とする磁気センサ。
    A first layer having a fixed magnetization direction including at least one of Fe or Co, an MgO layer, and a second layer having a variable magnetization direction including at least one of Fe or Co are laminated, and anisotropy A magnetic sensor having a magnetic field exceeding 0 and 10 mT or less;
    An electrode that is electrically connected to the magnetic sensor unit and filled in a contact hole provided in an upper portion of the magnetic sensor unit;
    A first sidewall film made of at least one of metal oxide or metal nitride formed on the sidewall of the electrode;
    A second side wall film made of at least one of metal oxide or metal nitride formed on the side wall of the magnetic sensor unit;
    A magnetic sensor comprising:
  2.  請求項1記載の磁気センサにおいて、
      前記第1の側壁膜の高さ方向の膜厚は、前記第2の側壁膜の横方向の膜厚よりも厚いことを特徴とする磁気センサ。
    The magnetic sensor according to claim 1,
    The magnetic sensor according to claim 1, wherein a film thickness in the height direction of the first side wall film is larger than a film thickness in the lateral direction of the second side wall film.
  3.  請求項1記載の磁気センサにおいて、
      前記第1の側壁膜の高さ方向の膜厚は10nm以上であることを特徴とする磁気センサ。
    The magnetic sensor according to claim 1,
    The magnetic sensor according to claim 1, wherein the first sidewall film has a thickness in the height direction of 10 nm or more.
  4.  請求項1記載の磁気センサにおいて、
      前記第2の側壁膜は、前記磁気センサ部を構成する金属材料の酸化物及び/又は窒化物であることを特徴とする磁気センサ。
    The magnetic sensor according to claim 1,
    The magnetic sensor according to claim 1, wherein the second sidewall film is an oxide and / or a nitride of a metal material constituting the magnetic sensor unit.
  5.  請求項1記載の磁気センサにおいて、
      前記MgO層と前記第2の層の界面は、FeがOよりも多いことを特徴とする磁気センサ。
    The magnetic sensor according to claim 1,
    The magnetic sensor, wherein the interface between the MgO layer and the second layer has more Fe than O.
  6.  請求項5記載の磁気センサにおいて、
      前記MgO層と前記第2の層の界面は、FeがOよりも1/10以上1/2以下だけ多いことを特徴とする磁気センサ。
    The magnetic sensor according to claim 5, wherein
    The interface of the MgO layer and the second layer is characterized in that Fe is more than 1/10 and 1/2 or less than O.
  7.  互いに平行に配置された複数のビット線と、
      前記ビット線に平行方向であり且つ互いに平行に配置された複数のソース線と、
      前記ビット線に交差する方向であり且つ互いに平行に配置された複数のワード線と、
      前記ビット線と前記ワード線の各交点に配置された請求項1に記載の磁気センサと同じ構造を持つ磁気記録素子と、
      前記磁気記録素子に接続された選択トランジスタとを有し、
      前記ビット線と前記磁気記録素子の上部電極とが電気的に接続され、
      前記磁気記録素子の下部電極と前記選択トランジスタのドレイン電極が電気的に接続され、
      前記ソース線と前記選択トランジスタのソース電極が電気的に接続され、
      前記ワード線と前記選択トランジスタのゲート電極が電気的に接続されているメモリセルを有することを特徴とする磁気メモリ。
    A plurality of bit lines arranged in parallel to each other;
    A plurality of source lines arranged in parallel to each other and parallel to the bit lines;
    A plurality of word lines arranged in parallel to each other in a direction intersecting the bit lines;
    A magnetic recording element having the same structure as the magnetic sensor according to claim 1 disposed at each intersection of the bit line and the word line;
    A selection transistor connected to the magnetic recording element,
    The bit line and the upper electrode of the magnetic recording element are electrically connected;
    A lower electrode of the magnetic recording element and a drain electrode of the selection transistor are electrically connected;
    The source line and the source electrode of the selection transistor are electrically connected;
    A magnetic memory comprising a memory cell in which the word line and the gate electrode of the selection transistor are electrically connected.
  8.  Fe又はCoの少なくとも一方を含む磁化方向が固定された第1の強磁性層と、第1の障壁層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である第2の強磁性層とが積層されたスピン波導波路と、
      前記スピン波導波路の端部上方に積層された水素ストッパ層と、
      前記スピン波導波路の端部から空間的に隔てられた、前記スピン波導波路の一部に電気的に接続され、前記スピン波導波路の上部に設けられたコンタクトホール内に充填された上部電極と、
      前記スピン波導波路の側壁に形成された、金属酸化物又は金属窒化物の少なくとも一方からなる側壁層と、を有し、
     前記水素ストッパ層が形成されている前記スピン波導波路における異方性磁界が0を超え10mT以下であることを特徴とするスピン波デバイス。
    A first ferromagnetic layer having a fixed magnetization direction including at least one of Fe or Co, a first barrier layer, and a second ferromagnetic layer having a variable magnetization direction including at least one of Fe or Co; A spin wave waveguide laminated with
    A hydrogen stopper layer stacked above the end of the spin wave waveguide;
    An upper electrode electrically connected to a part of the spin wave waveguide, spatially separated from an end of the spin wave waveguide, and filled in a contact hole provided at an upper portion of the spin wave waveguide;
    A sidewall layer made of at least one of metal oxide or metal nitride formed on the sidewall of the spin wave waveguide;
    The spin wave device, wherein an anisotropic magnetic field in the spin wave waveguide in which the hydrogen stopper layer is formed is more than 0 and 10 mT or less.
  9.  Fe又はCoの少なくとも一方を含む磁化方向が固定された第1の層と、MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である第2の層とが積層された磁気センサ部と、
      前記磁気センサ部と電気的に接続され、前記磁気センサ部の上部に設けられたコンタクトホール内に充填された電極と、
      前記電極の側壁に形成された、金属酸化物又は金属窒化物の少なくとも一方からなる第1の側壁膜と、
      前記磁気センサ部の側壁に形成され、金属酸化物又は金属窒化物の少なくとも一方からなり、上部よりも下部において膜厚が厚い第2の側壁膜と、
    を有することを特徴とする磁気センサ。
    A magnetic sensor unit in which a first layer including a magnetization direction including at least one of Fe or Co is fixed, a MgO layer, and a second layer including a variable magnetization direction including at least one of Fe or Co. When,
    An electrode that is electrically connected to the magnetic sensor unit and filled in a contact hole provided in an upper portion of the magnetic sensor unit;
    A first sidewall film made of at least one of metal oxide or metal nitride formed on the sidewall of the electrode;
    A second side wall film formed on the side wall of the magnetic sensor portion, made of at least one of a metal oxide or a metal nitride and having a thicker film in the lower part than in the upper part;
    A magnetic sensor comprising:
  10.  請求項1記載の磁気センサの製造方法において、
      基板上に、少なくとも、Fe又はCoの少なくとも一方を含む磁化方向が固定された前記第1の層と、前記MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である前記第2の層とが積層された前記磁気センサ部と、金属酸化物又は金属窒化物の少なくとも一方からなる水素ストッパ層とを順次積層する第1のステップと、
      前記水素ストッパ層の第1の領域を残存させて、第2の領域をエッチング除去する第2のステップと、
      少なくとも水素を含むガス雰囲気中で、前記磁気センサ部の第1の領域を残存させて、第2の領域を反応性エッチングにより除去する第3のステップと、
      前記第3のステップにより、前記磁気センサ部の第1の領域の側壁に付着した付着物を酸化または窒化させる第4のステップと、
      前記第1の領域の水素ストッパ層に、開口部を形成すると共に、前記第1の側壁膜を形成する第5のステップと、
      前記開口部内に、電極を充填する第6のステップと
    を有することを特徴とする磁気センサの製造方法。
    In the manufacturing method of the magnetic sensor of Claim 1,
    On the substrate, at least the first layer in which the magnetization direction including at least one of Fe or Co is fixed, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable. A first step of sequentially laminating the magnetic sensor unit laminated with a layer and a hydrogen stopper layer made of at least one of metal oxide or metal nitride;
    A second step of leaving a first region of the hydrogen stopper layer and etching away a second region;
    A third step of leaving the first region of the magnetic sensor unit in a gas atmosphere containing at least hydrogen and removing the second region by reactive etching;
    A fourth step of oxidizing or nitriding deposits adhering to the side wall of the first region of the magnetic sensor unit by the third step;
    A fifth step of forming an opening in the hydrogen stopper layer of the first region and forming the first sidewall film;
    And a sixth step of filling the opening with an electrode.
  11.  請求項10記載の磁気センサの製造方法において、
      前記第3のステップと前記第4のステップを、繰り返し行なうことを特徴とする磁気センサの製造方法。
    In the manufacturing method of the magnetic sensor according to claim 10,
    The method of manufacturing a magnetic sensor, wherein the third step and the fourth step are repeated.
  12.  請求項10記載の磁気センサの製造方法において、
      前記第5のステップの後に、水素を含む雰囲気中で、アッシング処理することを特徴とする磁気センサの製造方法。
    In the manufacturing method of the magnetic sensor according to claim 10,
    An ashing process is performed in an atmosphere containing hydrogen after the fifth step.
  13.  請求項10記載の磁気センサの製造方法において、
      前記第1のステップにおいて、前記磁気センサ部と前記水素ストッパ層との間に更にハードマスク層を形成するステップを含み、
      前記第2のステップと前記第3のステップとの間で、前記水素ストッパ層の前記第1の領域をマスクとして、前記ハードマスク層をエッチング除去することを特徴とする磁気センサの製造方法。
    In the manufacturing method of the magnetic sensor according to claim 10,
    Forming a hard mask layer between the magnetic sensor portion and the hydrogen stopper layer in the first step;
    A method of manufacturing a magnetic sensor, wherein the hard mask layer is etched away between the second step and the third step using the first region of the hydrogen stopper layer as a mask.
  14.  請求項7記載の磁気メモリの製造方法において、
      基板上に、少なくとも、Fe又はCoの少なくとも一方を含む磁化方向が固定された前記第1の層と、前記MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である前記第2の層とが積層された前記磁気センサ部と、金属酸化物又は金属窒化物の少なくとも一方からなる水素ストッパ層とを順次積層する第1のステップと、
      前記水素ストッパ層の第1の領域を残存させて、第2の領域をエッチング除去する第2のステップと、
      少なくとも水素を含むガス雰囲気中で、前記磁気センサ部の第1の領域を残存させて、第2の領域を反応性エッチングにより除去する第3のステップと、
      前記第3のステップにより、前記磁気センサ部の第1の領域の側壁に付着した付着物を酸化または窒化させる第4のステップと、
      前記第1の領域の水素ストッパ層に開口部を形成すると共に、前記第1の側壁膜を形成する第5のステップと、
      前記開口部内に、電極を充填する第6のステップと、
      その後、水素を含む雰囲気中で、アッシング処理する第7のステップと、
    を有することを特徴とする磁気メモリの製造方法。
    The method of manufacturing a magnetic memory according to claim 7.
    On the substrate, at least the first layer in which the magnetization direction including at least one of Fe or Co is fixed, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable. A first step of sequentially laminating the magnetic sensor unit laminated with a layer and a hydrogen stopper layer made of at least one of metal oxide or metal nitride;
    A second step of leaving a first region of the hydrogen stopper layer and etching away a second region;
    A third step of leaving the first region of the magnetic sensor unit in a gas atmosphere containing at least hydrogen and removing the second region by reactive etching;
    A fourth step of oxidizing or nitriding deposits adhering to the side wall of the first region of the magnetic sensor unit by the third step;
    A fifth step of forming an opening in the hydrogen stopper layer of the first region and forming the first sidewall film;
    A sixth step of filling the opening with an electrode;
    Thereafter, a seventh step of ashing in an atmosphere containing hydrogen;
    A method of manufacturing a magnetic memory, comprising:
  15.  請求項8記載のスピン波デバイスの製造方法において、
      基板上に、少なくとも、Fe又はCoの少なくとも一方を含む磁化方向が固定された前記第1の層と、前記MgO層と、Fe又はCoの少なくとも一方を含む磁化方向が可変である前記第2の層とが積層された前記スピン導波路となる積層膜と、前記水素ストッパ層とを順次積層する第1のステップと、
      前記スピン導波路の端部上の前記水素ストッパ層を残存させ、他の領域の前記水素ストッパ層をエッチング除去する第2のステップと、
      少なくとも水素を含むガス雰囲気中で、前記スピン導波路となる領域を残存させるように前記積層膜を反応性エッチングにより除去する第3のステップと、
      前記第3のステップにより、前記スピン導波路の側壁に付着した付着物を酸化または窒化させる第4のステップと、
      その後、水素を含む雰囲気中で、アッシング処理する第5のステップと、
    を有することを特徴とするスピン波デバイスの製造方法。
    In the manufacturing method of the spin wave device according to claim 8,
    On the substrate, at least the first layer in which the magnetization direction including at least one of Fe or Co is fixed, the MgO layer, and the magnetization direction including at least one of Fe or Co is variable. A first step of sequentially laminating a laminated film to be the spin waveguide laminated with a layer, and the hydrogen stopper layer;
    A second step of leaving the hydrogen stopper layer on the end of the spin waveguide and etching away the hydrogen stopper layer in another region;
    A third step of removing the laminated film by reactive etching so as to leave a region to be the spin waveguide in a gas atmosphere containing at least hydrogen;
    A fourth step of oxidizing or nitriding deposits attached to the side wall of the spin waveguide by the third step;
    Thereafter, a fifth step of ashing in an atmosphere containing hydrogen;
    A method of manufacturing a spin wave device, comprising:
PCT/JP2015/073210 2015-08-19 2015-08-19 Magnetic sensor and method for manufacturing same WO2017029720A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073210 WO2017029720A1 (en) 2015-08-19 2015-08-19 Magnetic sensor and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073210 WO2017029720A1 (en) 2015-08-19 2015-08-19 Magnetic sensor and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2017029720A1 true WO2017029720A1 (en) 2017-02-23

Family

ID=58051178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073210 WO2017029720A1 (en) 2015-08-19 2015-08-19 Magnetic sensor and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017029720A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087697A (en) * 2017-11-09 2019-06-06 株式会社日立製作所 Thermoelectric converter and heat transport system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269955A (en) * 2005-03-25 2006-10-05 Mitsubishi Electric Corp Magnetic field detecting device
JP2010229477A (en) * 2009-03-26 2010-10-14 Tohoku Univ Heusler alloy material, magnetoresistive element and magnetic device
JP2010278074A (en) * 2009-05-26 2010-12-09 Fujitsu Semiconductor Ltd Electronic device and method of manufacturing the same
JP2012253344A (en) * 2011-05-31 2012-12-20 Hgst Netherlands B V Three-terminal spin torque oscillator (sto)
JP2013021108A (en) * 2011-07-11 2013-01-31 Toshiba Corp Semiconductor memory device and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269955A (en) * 2005-03-25 2006-10-05 Mitsubishi Electric Corp Magnetic field detecting device
JP2010229477A (en) * 2009-03-26 2010-10-14 Tohoku Univ Heusler alloy material, magnetoresistive element and magnetic device
JP2010278074A (en) * 2009-05-26 2010-12-09 Fujitsu Semiconductor Ltd Electronic device and method of manufacturing the same
JP2012253344A (en) * 2011-05-31 2012-12-20 Hgst Netherlands B V Three-terminal spin torque oscillator (sto)
JP2013021108A (en) * 2011-07-11 2013-01-31 Toshiba Corp Semiconductor memory device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087697A (en) * 2017-11-09 2019-06-06 株式会社日立製作所 Thermoelectric converter and heat transport system

Similar Documents

Publication Publication Date Title
JP6200471B2 (en) Magnetic memory
JP5397902B2 (en) Spin relaxation variation method, spin current detection method, and spintronic device using spin relaxation
CN104425706B (en) The MTJ stack of reversion
CN104241286B (en) Memory element, storage device, the method and magnetic head for manufacturing memory element
KR102551980B1 (en) Approaches to Strain Engineering of Perpendicular Magnetic Tunnel Junctions (PMTJS) and resulting structures
KR102130054B1 (en) MAGNETIC TUNNELING JUNCTION SEED, CAPPING, and SPACER LAYER MATERIALS
TWI538050B (en) Magnetic devices and methods of manufacturing the same
KR20080070597A (en) Magnetoresistive element and magnetic memory
JP2013008868A (en) Semiconductor memory device
JP2005079258A (en) Method for etching processing of magnetic material, magnetoresistive effect film, and magnetic random access memory
JP6985220B2 (en) Manufacturing method of magnetic tunnel junction element, magnetic memory using it, and magnetic tunnel junction element
US7061034B2 (en) Magnetic random access memory including middle oxide layer and method of manufacturing the same
JP2006270103A (en) Conduction controlling device
JP2007103471A (en) Storage element and memory
JP2008218829A (en) Magnetoresistance element and manufacturing method thereof
KR20110002706A (en) Method for manufacturing magnetic tunnel junction device
US20180190902A1 (en) Magnetic tunnel junction device
JP2010028042A (en) Spin mosfet, and reconfigurable logic circuit using the spin mosfet
WO2019077661A1 (en) Tunnel magnetoresistance effect element, magnetic memory, built-in memory, and method for manufacturing tunnel magnetoresistance effect element
JP2008181971A (en) Nonvolatile memory device, magnetoresistance element, and manufacturing method thereof
KR102353133B1 (en) capped magnetic memory
WO2017029720A1 (en) Magnetic sensor and method for manufacturing same
TW201222546A (en) Memory element and memory device
KR20190016420A (en) Magnetic tunnel junction device, magnetic memory using the same and method of manufacturing magnetic tunnel junction device
CN114068613A (en) Semiconductor structure and forming method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP