[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017029179A1 - Triazole derivatives, intermediates thereof and their use as fungicides - Google Patents

Triazole derivatives, intermediates thereof and their use as fungicides Download PDF

Info

Publication number
WO2017029179A1
WO2017029179A1 PCT/EP2016/069097 EP2016069097W WO2017029179A1 WO 2017029179 A1 WO2017029179 A1 WO 2017029179A1 EP 2016069097 W EP2016069097 W EP 2016069097W WO 2017029179 A1 WO2017029179 A1 WO 2017029179A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
phenyl
halogen
halogenalkoxy
halogenalkyl
Prior art date
Application number
PCT/EP2016/069097
Other languages
French (fr)
Inventor
Sebastian Hoffmann
Alexander Sudau
Peter Dahmen
Ulrike Wachendorff-Neumann
Ruth Meissner
Julie GEIST
David Bernier
Jean-Pierre Vors
Pierre-Yves Coqueron
Sven WITTROCK
Ricarda MILLER
Sebastien Naud
Stephane Brunet
Pierre Genix
Philippe Kennel
Original Assignee
Bayer Cropscience Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP16750176.6A priority Critical patent/EP3334718A1/en
Priority to CA2995304A priority patent/CA2995304A1/en
Priority to US15/751,232 priority patent/US10485236B2/en
Priority to EA201890490A priority patent/EA201890490A1/en
Priority to AU2016310123A priority patent/AU2016310123A1/en
Priority to KR1020187006986A priority patent/KR20180037267A/en
Priority to MX2018001885A priority patent/MX2018001885A/en
Priority to CR20180102A priority patent/CR20180102A/en
Application filed by Bayer Cropscience Aktiengesellschaft filed Critical Bayer Cropscience Aktiengesellschaft
Priority to TNP/2018/000054A priority patent/TN2018000054A1/en
Priority to JP2018507514A priority patent/JP6867370B2/en
Priority to CN201680060340.0A priority patent/CN108137538B/en
Priority to BR112018002890-8A priority patent/BR112018002890A2/en
Publication of WO2017029179A1 publication Critical patent/WO2017029179A1/en
Priority to IL257262A priority patent/IL257262A/en
Priority to CONC2018/0001456A priority patent/CO2018001456A2/en
Priority to ZA2018/01710A priority patent/ZA201801710B/en
Priority to US16/574,084 priority patent/US20200008427A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/65One oxygen atom attached in position 3 or 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to novel triazole derivatives, to processes for preparing these compounds, to compositions comprising these compounds, and to the use thereof as biologically active compounds, especially for control of harmful microorganisms in crop protection and in the protection of materials and as plant growth regulators.
  • phenoxy-phenyl-substituted triazolinethione derivatives e.g. WO-A 2010/146114
  • phenoxy-hetaryl- substituted triazolinethione derivatives e.g. WO-A 2010/1461 16
  • the compounds according to the present invention differ from those described in the abovementioned publications inter alia by the replacement of the abovementioned phenoxy-phenyl group by a hetaryloxy-phenyl group as defined herein and/or by the absence of sulphur-based substituents.
  • Ci-C i-alkyl phenyl, phenyl-Ci-C i-alkyl, phenyl-C2-C i-alkenyl or phenyl-C2-C 4 -alkynyl;
  • R' 2 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Cs-Cs-cycloalkyl, C3-C8- Ci-C i-alkyl, phenyl, phenyl-Ci-C i-alkyl, phenyl-C2-C i-alkenyl or phenyl-C2-C 4 -alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R 1 and/or R 2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R a which independently of one another are selected from - -
  • R b halogen, CN, nitro, Ci-C 4 -alkyl, Ci-C 4 -alkoxy, Ci-C 4 -halogenalkyl and Ci-C 4 -halogenalkoxy;
  • R 4 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci-C 4 -alkylcarbonyl, hydroxy-substituted Ci-C 4 -alkyl or pentafluoro- ⁇ 6 -sulfanyl; preferably halogen, CN, nitro, Ci-C 4 -alkyl, Ci-C 4 -halogenalkyl, Ci-C 4 -alkoxy, Ci-C 4 -halogenalkoxy or pentafluoro- ⁇ 6 - sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
  • Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
  • R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen; preferably hydrogen, Ci-C2-halogenalkyl or halogen;
  • R 3 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C4-alkoxy or C1-C4- halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
  • the salts or N-oxides of the triazole derivatives of formula (I) also have fungicidal properties.
  • R 1 preferably represents hydrogen, Ci-C i-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, cyclopropyl, phenyl, benzyl, phenylethenyl or phenylethinyl, wherein the aliphatic moieties, excluding the cycloalkyl moieties, of R 1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R a which independently of one another are selected from
  • R b halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-alkoxy, Ci-C i-halogenalkyl and Ci-C i-halogenalkoxy.
  • R 1 more preferably represents hydrogen, methyl, ethyl, propyl, isopropyl, butyl, cyclopropyl, CF3, allyl, CH 2 C ⁇ C-CH 3 or CH 2 C ⁇ CH, wherein the aliphatic groups R 1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R a which independently of one another are selected from
  • R a halogen, CN, nitro, phenyl, Ci-C i-alkoxy and Ci-C i-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C i-alkyl; Ci-C i-alkoxy; Ci-C i-halogenalkyl; C1-C4- halogenalkoxy.
  • R 1 more preferably represents hydrogen or non-substituted methyl, ethyl, propyl, isopropyl, butyl, cyclopropyl, CF 3 , allyl, CH 2 C ⁇ C-CH 3 or CH 2 C ⁇ CH.
  • R 1 more preferably represents hydrogen, methyl or ethyl.
  • R 1 most preferably represents methyl
  • R 2 preferably represents hydrogen, Ci-C i-alkyl, allyl, propargyl or benzyl, wherein the aliphatic groups R 2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R a which independently of one another are selected from
  • R b halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-alkoxy, Ci-C i-halogenalkyl and Ci-C i-halogenalkoxy.
  • R 2 more preferably represents hydrogen, methyl, ethyl, isopropyl or allyl, wherein the aliphatic groups R 2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R a which independently of one another are selected from
  • R a halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C 4 -halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; G-C4-alkyl; Ci-C4-alkoxy; Ci-C 4 -halogenalkyl; Ci-C 4 -halogenalkoxy.
  • R 2 more preferably represents hydrogen or non-susbsti ted methyl, ethyl, isopropyl or allyl.
  • R 2 more preferably represents hydrogen or methyl.
  • R 2 most preferably represents hydrogen.
  • R 4 preferably represents CF3, OCF3, Br, CI or pentafluoro ⁇ 6 -sulfanyl.
  • R 4 more preferably represents CF3, OCF3, Br, CI or pentafluoro ⁇ 6 -sulfanyl in the 4-position of the phenyl moiety of formula (I).
  • R 4 also more preferably represents CI, OCF3 or pentafluoro ⁇ 6 -sulfanyl, even more preferably CI, OCF 3 or pentafluoro- ⁇ 6 -sulfanyl in the 2- and/or 4-position of the phenyl moiety of formula (I).
  • m preferably is 1, 2 or 3.
  • m more preferably is 1 or 2.
  • Y preferably represents
  • R, R 1 and n are defined as mentioned above for formula (I).
  • R preferably represents hydrogen, Ci-halogenalkyl, F or CI.
  • n preferably is 0. - -
  • radical definitions and explanations given above in general terms or stated within preferred ranges can, however, also be combined with one another as desired, i.e. including between the particular ranges and preferred ranges. They apply both to the end products and correspondingly to precursors and intermediates. In addition, individual definitions may not apply. Preference is given to those compounds of the formula (I) in which each of the radicals have the abovementioned preferred definitions.
  • R represents hydrogen
  • R 4 represents CF3, OCF3, Br, CI or pentafluoro ⁇ 6 -sulfanyl; m is 1;
  • R represents Ci-halogenalkyl
  • R 1 represents methyl
  • R represents hydrogen
  • R represents CI in the 4-position of the phenyl moiety of formula (I); m is 1 ;
  • R represents CF3; and n is 0.
  • Ci-C6-alkyl comprises the largest range defined here for an alkyl radical. Specifically, this definition comprises the meanings methyl, ethyl, n-, isopropyl, n-, iso-, sec-, tert-butyl, and also in each case all isomeric pentyls and hexyls, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2- methylpropyl, 1, 1-dimethylethyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1 -methylpentyl, 2-methylpentyl, 3- methylpentyl, 4-methylpentyl, 1,2-dimethylbutyl, 1,3-
  • Ci-C i-alkyl such as methyl, ethyl, n-, isopropyl, n-, iso-, sec-, tert-butyl.
  • Ci-C2-alkyl comprises methyl and ethyl.
  • halogen comprises fluorine, chlorine, bromine and iodine.
  • Halogen-substituted alkyl - e.g. referred to as halogenalkyl, halogenoalkyl or haloalkyl, e.g. Ci-C i-halogenalkyl or Ci-C2-halogenalkyl - represents, for example, Ci-C i-alkyl or Ci-C2-alkyl as defined above substituted by one or more halogen substituents which can be the same or different.
  • Ci-C i-halogenalkyl represents chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2- trichloroethyl, 1,1-difluoroethyl, pentafluoroethyl, 1-fluoro-l -methyl ethyl, 2-fluoro- 1,1 -dimethyl ethyl, 2-fluoro- 1 -fluoromethyl- 1-methylethyl, 2-fluoro
  • C1-C2- halogenalkyl represents chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2- fluoroethyl, 2,2,2-trichloroethyl, 1,1-difluoroethyl, pentafluoroethyl.
  • Ci-C4-alkyl represents, for example, Ci-C i-alkyl as defined above substituted by one or more fluorine substituent(s).
  • Preferably mono- or multiple fluorinated Ci-C i-alkyl represents fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2- trifluoroethyl, pentafluoroethyl, 1-fluoro- 1-methylethyl, 2-fluoro- 1,1 -dimethyl ethyl, 2-fluoro- 1 -fluoromethyl- 1- methyl ethyl, 2-fluoro- l,l-di(fluoromethyl)-ethyl, l-methyl-3-trifluoromethylbutyl, 3 -methyl- 1- trifluoromethylbutyl .
  • C2-C6-alkenyl comprises the largest range defined here for an alkenyl radical. Specifically, this definition comprises the meanings ethenyl, n-, isopropenyl, n-, iso-, sec-, tert-butenyl, and also in each case all isomeric pentenyls, hexenyls, 1 -methyl- 1-propenyl, 1 -ethyl- 1-butenyl.
  • Halogen-substituted alkenyl - referred to as C2-C6-haloalkenyl - represents, for example, C2-C6-alkenyl as defined above substituted by one or more halogen substituents which can be the same or different.
  • C2-C6-alkynyl comprises the largest range defined here for an alkynyl radical. Specifically, this definition comprises the meanings ethynyl, n-, isopropynyl, n-, iso-, sec-, tert-butynyl, and also in each case all isomeric pentynyls, hexynyls.
  • Halogen-substituted alkynyl - referred to as C2-C6-haloalkynyl - represents, for example, C2-C6-alkynyl as defined above substituted by one or more halogen substituents which can be the same or different.
  • Cs-Cs-cycloalkyl comprises monocyclic saturated hydrocarbyl groups having 3 to 8 carbon ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
  • halogen-substituted cycloalkyl, halogenocycloalkyl, halocycloalkyl and halogencycloalkyl comprises monocyclic saturated hydrocarbyl groups having 3 to 8 carbon ring members, such as 1-fluoro- cyclopropyl and 1-chloro-cyclopropyl.
  • aryl comprises aromatic, mono-, bi- or tricyclic ring, for example phenyl, naphthyl, anthracenyl (anthryl), phenanthracenyl (phenanthryl).
  • Optionally substituted radicals may be mono- or polysubstituted, where in the case of polysubstitution, the substituents may be identical or different.
  • a group or a substituent which is substituted according to the invention preferably can be substituted by one or more group(s) selected from the list consisting of halogen; SH; nitro; hydroxyl; cyano; amino; sulfanyl; pentafluoro ⁇ 6 -sulfanyl; formyl; formyloxy; formylamino; carbamoyl; N- hydroxycarbamoyl; carbamate; (hydroxyimino)-Ci-C6-alkyl; Ci-Cs-alkyl; Ci-Cs-halogenalkyl; Ci-Cs-alkyloxy; Ci-C8-halogenalkyloxy; Ci-Cs-alkylthio; Ci-Cs-halogenalkylthio; tri(Ci-C8-alkyl)silyl; tri(Ci-C8-alkyl)silyl-Ci- C8-alkyl; C3-C7-cycloalky
  • 5-, 6- or 7-membered hetaryl or heteroaryl comprises unsaturated heterocyclic 5- to 7-membered ring containing up to 4 heteroatoms selected from N, O and S: for example 2- furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 1-pyrrolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 1- pyrazolyl, lH-imidazol-2-yl, lH-imidazol-4-yl, lH-imidazol-5-yl, lH-imidazol-l-yl, 2-oxazolyl, 4-oxazolyl, 5- oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 4- _ _ is
  • the compounds according to the invention can be present as mixtures of different possible isomeric forms, in particular of stereoisomers, such as, for example, E and Z, threo and erythro, and also optical isomers, and, if appropriate, also of tautomers.
  • stereoisomers such as, for example, E and Z, threo and erythro, and also optical isomers, and, if appropriate, also of tautomers.
  • the compounds of the present invention can exist in one or more optical or chiral isomer forms depending on the number of asymmetric centres in the compound.
  • the invention thus relates equally to all the optical isomers and to their racemic or scalemic mixtures (the term “scalemic” denotes a mixture of enantiomers in different proportions) and to the mixtures of all the possible stereoisomers, in all proportions.
  • the diastereoisomers and/or the optical isomers can be separated according to the methods which are known per se by the man ordinary skilled in the art.
  • the compounds of the present invention can also exist in one or more geometric isomer forms depending on the number of double bonds in the compound.
  • the invention thus relates equally to all geometric isomers and to all possible mixtures, in all proportions.
  • the geometric isomers can be separated according to general methods, which are known per se by the man ordinary skilled in the art.
  • the compounds of the present invention can also exist in one or more geometric isomer forms depending on the relative position (syn/anti or cis/trans) of the substituents of ring B.
  • the invention thus relates equally to all syn/anti (or cis/trans) isomers and to all possible syn/anti (or cis/trans) mixtures, in all proportions.
  • the syn/anti (or cis/trans) isomers can be separated according to general methods, which are known per se by the man ordinary skilled in the art.
  • the present invention is furthermore related to processes for preparing compounds of formula (I).
  • the present invention furthermore relates to intermediates such as compounds of formulae (IV), (V), (V a), (VI), (VII), (IX), (X), (XI) and (XXI) and the preparation thereof.
  • the compounds (I) can be obtained by various routes in analogy to prior art processes known (see e.g. J. Agric. Food Chem. (2009) 57, 4854-4860; EP-A 0 275 955; DE-A 40 03 180; EP-A 0 113 640; EP-A 0 126 430; WO- A 2013/007767 and references therein) and by synthesis routes shown schematically below and in the experimental part of this application.
  • the radicals Y, R, R 1 , R 2 , R 3 , R 4 , m and n have the meanings given above for the compounds of formula (I). These definitions apply not only to the end products of the formula (I) but likewise to all intermediates.
  • X halogen, preferably F or CI
  • Z halogen, preferably Br or I
  • Hal F, CI, Br or I, preferably CI or Br
  • LG1 halogen, -OS0 2 -Ci-C 6 -alkyl, -OSCh-aryl, -OS0 2 -0-Ci-C 6 -alkyl, -OSCh-O-aryl, -OS0 2 -NR A R A wherein the "alkyl” and/or “aryl” may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R B .
  • LG2 is preferably CI, Br, I, -OS0 2 -Ci-C 6 -alkyl or -OS0 2 -p-tolyl.
  • R B halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy or Ci-C i-halogenalkoxy - -
  • R A hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C i-alkenyl or phenyl-C2-C4-alkynyl, which may carry substituents mentioned above for the substituents given for R 1 .
  • the compounds (II) and (III) can be converted by means of methods described in the literature to the corresponding compounds (IV) and subsequently to compounds (Va), (VI), (VII), (I-H) and (I) (see WO-A 2013/007767).
  • Phenols (II) are reacted with aryls (III), wherein X stands for F or CI and Z stands for Br or I. Z is in particular Br and the reaction is optionally performed in the presence of a base to obtain compounds (IV).
  • the reactions are preferably carried out in an organic solvent such as diethyl ether, methyl tert.-butyl ether, methanol or acetic acid.
  • the halogen in a-position preferably CI or Br, can be subsequently replaced by a 1,2,4-triazole.
  • this transformation is being conducted in the presence of a base, such as Na2C03, K2CO3, CS2CO3, NaOH, KOtBu, NaH or mixtures thereof, preferably in the presence of an organic solvent, such as tetrahydrofuran, dimethylformamide or toluene.
  • Ketones (VII) are subsequently reacted with nucleophilic substrates, such as Grignard reagents R'MgBr or organolithium compounds R'Li or a hydride donor such as sodium borohydride to obtain alcohols (I-H).
  • nucleophilic substrates such as Grignard reagents R'MgBr or organolithium compounds R'Li or a hydride donor such as sodium borohydride
  • R'MgBr organolithium compounds
  • a hydride donor such as sodium borohydride
  • LG is a replaceable group such as halogen, alkylsulfonyl, alkylsulfonyloxy and arylsulfonyloxy, preferably Br, I and methylsulfonyloxy.
  • derivatizations are optionally performed in the presence of a base such as NaH and in the presence of an organic solvent such as tetrahydrofuran.
  • X halogen, preferably F, CI or Br, more preferably F or CI
  • Z halogen, preferably Br or I
  • ketones (VIII) Compounds of the general structure (III), in particular with Z being Br, are being transformed into Grignard reagents by the reaction with magnesium or by transmetallation reactions with reagents such as isopropylmagnesium halides and subsequently reacted with acyl chlorides to yield ketones (VIII). Those reactions are preferably performed under anhydrous conditions and in the presence of a catalyst such as CuCh, AlC , LiCl and mixtures thereof. Ketones (VIII) are subsequently reacted with Phenols (II), optionally in the presence of a base such as K2CO3 or CS2CO3 and a solvent such as DMF (dimethylformamide), to obtain compounds (V).
  • a catalyst such as CuCh, AlC , LiCl and mixtures thereof.
  • Ketones (VIII) are subsequently reacted with Phenols (II), optionally in the presence of a base such as K2CO3 or CS2CO3 and
  • compounds (V) can be produced by the reaction of (IV) with magnesium or transmetallation reagents and subsequent reaction with acyl chlorides R'COCl. Those reactions are preferably performed under anhydrous conditions and in the presence of a catalyst such as Q1CI2, AICI3, LiCl and mixtures thereof, Z being preferably Br. Thereafter, intermediates (V) can be converted by means of methods described in the literature to the corresponding epoxides (IX) (see e.g. EP-A 461 502, DE-A 33 15 681, EP-A 291 797, WO-A 2013/007767).
  • Intermediates (V) are preferably reacted with trimethylsulfoxonium- or trimethylsulfonium-salts, which might be prepared in situ, preferably trimethylsulfoxonium halides, trimethylsulfonium halides, trimethylsulfoxonium methylsulfates or trimethylsulfonium methylsulfates, preferably in the presence of a base such as sodium hydroxide.
  • Epoxides (IX) can be subsequently reacted with a 1,2,4-triazole in order to obtain compounds (I-H).
  • this transformation is being conducted in the presence of a base, such as Na2C03, K2CO3, CS2CO3, NaOH, KOtBu, NaH or mixtures thereof, preferably in the presence of an organic solvent, such as tetrahydrofuran, dimethylformamide or toluene.
  • a base such as Na2C03, K2CO3, CS2CO3, NaOH, KOtBu, NaH or mixtures thereof
  • an organic solvent such as tetrahydrofuran, dimethylformamide or toluene.
  • LG halogen, -OS0 2 -Ci-C 6 -alkyl, -OS0 2 -aryl, -OS0 2 -0-Ci-C 6 -alkyl, -OS0 2 -0-aryl, -OS0 2 -NR A R A wherein the "alkyl” and/or “aryl” may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R D , preferably CI, Br, I, -OS0 2 -Ci-C6-alkyl or -OS0 2 -p-tolyl, more preferably CI, Br, I or - OS0 2 -Ci-C 2 -alkyl.
  • R D halogen, CN, nitro, Ci-C i-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C i-halogenalkoxy
  • R A hydrogen, Ci-C6-alkyl, C 2 -C6-alkenyl, C 2 -C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C 2 -C4-alkenyl or phenyl-C 2 -C4-alkynyl, which may carry substituents mentioned above for the substituents given for R 1 .
  • Epoxides of the general structure (IX) can be reacted with alcohols R OH to yield alcohol (X). Preferentially, this transformation is being performed in the presence of an acid. Thereafter, alcohol (X) is being prepared for a nucleophilic substitution reaction. Along those lines, the alcohol functionality in compound (X) is being reacted with halogenating agents or sulfonating agents such as PBr3, PC , MeS0 2 Cl, tosyl chloride or thionyl chloride to obtain compounds (XI). Subsequently, Intermediates (XI) can be reacted with a 1,2,4-triazole in order to obtain compounds (I).
  • halogenating agents or sulfonating agents such as PBr3, PC , MeS0 2 Cl, tosyl chloride or thionyl chloride
  • this transformation is being conducted in the presence of a base, such as Na 2 C03, K 2 C03, Cs 2 C03, NaOH, KOtBu, NaH or mixtures thereof, preferably in the presence of an organic solvent, such as tetrahydrofuran, dimethylformamide or toluene.
  • a base such as Na 2 C03, K 2 C03, Cs 2 C03, NaOH, KOtBu, NaH or mixtures thereof
  • an organic solvent such as tetrahydrofuran, dimethylformamide or toluene.
  • X halogen, preferably F or CI
  • Z halogen, preferably CI, Br or I, more preferably Br or I
  • R 5 Ci-C6-alkyl, C3-C8-cycloalkyl or aryl
  • R 6 , R 7 independently Ci-C6-alkyl or C3-C8-cycloalkyl
  • compound (III) is reacted in a hydroxycarbonylation reaction with carbon monoxide or a formate salt, preferentially in the presence of a catalyst such as Pd(OAc)2 and Co(OAc)2 (e.g. Dalton Transactions, 40(29), 7632-7638; 2011; Synlett, (11), 1663-1666; 2006 and references cited therein).
  • a catalyst such as Pd(OAc)2 and Co(OAc)2 (e.g. Dalton Transactions, 40(29), 7632-7638; 2011; Synlett, (11), 1663-1666; 2006 and references cited therein).
  • the reactions are preferentially performed in the presence of a coupling reagent such as CDI or DEAD and/or a base such as tnethylamine or DMAP.
  • the corresponding acid chlorides are being formed before the reaction with alcohols HO-R 5 takes place (e.g. WO-A 2007/059265).
  • Ester (XIII) are subsequently reacted with Phenols (II), optionally in the presence of a base such as K2CO3, CS2CO3, NEt3 or DABCO and a solvent such as DMF, to obtain compounds (XIV).
  • a base such as K2CO3, CS2CO3, NEt3 or DABCO and a solvent such as DMF.
  • the following hydrolysis can be carried out in the presence of an acid such as H2SO4, HNO3 or p-toluenesulfonic acid or in the presence of a base such as KOH to yield acid (XV).
  • acid (XV) can be reacted with alkoxyalkylamine, preferentially methoxymethylamine.
  • the corresponding reaction can be carried out in the presence of reagents such as carbodiimides (e.g.
  • WO-A 2011/076744 diimidazolyl ketone CDI, N-alkoxy-N-alkylcarbamoyl chlorides (e.g. Bulletin of the Korean Chemical Society 2002, 23, 521-524), S,S-di-2-pyridyl dithiocarbonates (e.g. Bulletin of the Korean Chemical Society 2001, 22, 421-423), trichloromethyl chloroformate (e.g. Synthetic communications 2003, 33, 4013-4018) or peptide coupling reagent HATU.
  • Intermediates (V) can be obtained after reaction of Weinreb amides (XVI) with magnesium halides RiMgZ such as methylmagnesium bromide, methylmagnesium chloride or ethylmagnesiumbromide, preferentially in a solvent such as THF.
  • magnesium halides RiMgZ such as methylmagnesium bromide, methylmagnesium chloride or ethylmagnesiumbromide
  • halogen preferably CI, Br or I, more preferably Br or I
  • R 9 Ci-C6-alkyl, Cs-Cs-cycloalkyl
  • Amines (XVII) (Scheme 5) can be converted to the corresponding alcohols (XVIII) by means of methods described in the literature (e.g. Journal of Medicinal Chemistry 1999, 42, 95-108; WO-A 2007/017754; WO-A 2007/016525; Tetrahedron let. 2003, 44, 725-728), preferentially in the presence of sulfuric acid or hydrochloric acid as well as NaN02. Subsequently, alcohols (XVIII) can be converted to compounds of the general structure (IV) by literature know methods (e.g. Chemistry - A European Journal 2012, 18, 1414014149; Organic Letters 2011, 13, 1552-1555; Synlett 2012, 23, 101-106; WO-A 2005/040112; Organic Letters 2007, 9, 643-646; WO- - - -
  • Compounds (XIX) could be for instance aryliodides which are optionally converted to diaryliodonium salts prior to the reaction, arylbromides or -iodides which are preferably reacted in the presence of a catalyst such as Cu or Cul or arylboronic acids or -esters which are preferentially reacted in the presence of a catalyst such as Cu(OAc)2.
  • a catalyst such as Cu or Cul or arylboronic acids or -esters which are preferentially reacted in the presence of a catalyst such as Cu(OAc)2.
  • Compounds (IV) can be reacted with a stannane such as (XX) in the presence of a transition metal catalyst such as Pd(PPli3)4, PdCb(PPh3)2, PdCb or Cul (e.g.
  • Compounds (XXI) can be subsequently hydrolyzed to yield compounds (V), wherein R 1 is representd by C1-C6- alkyl, preferentially in the presence of an acid such as HC1 or H2SO4 (e.g. Journal of Organic Chemistry 1990, 55, 3114-3118).
  • Compounds (V) can be alternatively produced by the reaction of (IV) with magnesium or transmetallation reagents and subsequent reaction with acyl chlorides R'COCl. Those reactions are preferably performed under anhydrous conditions and in the presence of a catalyst such as Q1CI2, AICI3, LiCl and mixtures thereof, Z being preferably Br.
  • Useful reaction auxiliaries are, as appropriate, inorganic or organic bases or acid acceptors. These preferably include alkali metal or alkaline earth metal acetates, amides, carbonates, hydrogencarbonates, hydrides, hydroxides or alkoxides, for example sodium acetate, potassium acetate or calcium acetate, lithium amide, sodium amide, potassium amide or calcium amide, sodium carbonate, potassium carbonate or calcium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate or calcium hydrogencarbonate, lithium hydride, sodium hydride, potassium hydride or calcium hydride, lithium hydroxide, sodium hydroxide, potassium hydroxide or calcium hydroxide, n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, sodium methoxide, ethoxide, n- or i-propoxide, n-, i-, s- or t-butoxid
  • Useful reaction auxiliaries are, as appropriate, inorganic or organic acids. These preferably include inorganic acids, for example hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide, sulphuric acid, phosphoric acid and nitric acid, and acidic salts such as NaHS04 and KHSO4, or organic acids, for example, formic acid, carbonic acid and alkanoic acids such as acetic acid, trifluoroacetic acid, trichloroacetic acid and propionic acid, and also glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid, benzoic acid, cinnamic acid, oxalic acid, saturated or mono- or diunsaturated C6-C20 fatty acids, alkylsulphuric monoesters, alkylsulphonic acids (sulphonic acids having straight- chain or branched alkyl radicals having 1 to _ _
  • alkylphosphonic acids phosphonic acids having straight- chain or branched alkyl radicals having 1 to 20 carbon atoms
  • arylphosphonic acids or aryldiphosphonic acids aromatic radicals, such as phenyl and naphthyl, which bear one or two phosphonic acid radicals
  • alkyl and aryl radicals may bear further substituents, for example p-toluenesulphonic acid, salicylic acid, p-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, etc.
  • the processes A to E according to the invention are optionally performed using one or more diluents.
  • Useful diluents are virtually all inert organic solvents. Unless otherwise indicated for the above described processes A to E, these preferably include aliphatic and aromatic, optionally halogenated hydrocarbons, such as pentane, hexane, heptane, cyclohexane, petroleum ether, benzine, ligroin, benzene, toluene, xylene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride, chlorobenzene and o-dichlorobenzene, ethers such as diethyl ether, dibutyl ether and methyl tert-butyl ether, glycol dimethyl ether and diglycol dimethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl ket
  • the reaction temperatures can be varied within a relatively wide range.
  • the temperatures employed are between -78°C and 250°C, preferably temperatures between - 78°C and 150°C.
  • the reaction time varies as a function of the scale of the reaction and of the reaction temperature, but is generally between a few minutes and 48 hours.
  • the processes according to the invention are generally performed under standard pressure. However, it is also possible to work under elevated or reduced pressure.
  • the starting materials required in each case are generally used in approximately equimolar amounts. However, it is also possible to use one of the components used in each case in a relatively large excess.
  • the compounds are optionally separated from the reaction mixture by one of the customary separation techniques. If necessary, the compounds are purified by recrystallization or chromatography. If appropriate, in the processes A to E according to the invention also salts and/or N-oxides of the starting compounds can be used.
  • the invention further relates to novel intermediates of the compounds of formula (I), which form part of the invention.
  • Novel intermediates according to the present invention are novel compounds of formula (V)
  • R 1 represents hydrogen, Ci-C6-alkyl, C 2 -C6-alkenyl, C 2 -C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C 2 -C4-alkenyl or phenyl-C 2 -C4-alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R 1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R a which independently of one another are selected from
  • R b halogen, CN, nitro, Ci-C 4 -alkyl, Ci-C 4 -alkoxy, Ci-C 4 -halogenalkyl and Ci-C 4 -halogenalkoxy;
  • R 4 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci- C 4 -alkylcarbonyl, hydroxy-substituted Ci-C 4 -alkyl or pentafluoro- ⁇ 6 -sulfanyl; preferably halogen, CN, nitro, Ci-C 4 -alkyl, Ci-C 4 -halogenalkyl, Ci-C 4 -alkoxy, Ci-C 4 -halogenalkoxy or pentafluoro- ⁇ 6 -sulfanyl; with the proviso, that R 4 is not represented by CF3 when R 1 is represented by methyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
  • Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
  • R 3 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy or Ci-C t-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
  • novel intermediates of formula (V) according to the present invention are novel compounds of formula (Va)
  • R represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy, Ci-C i-halogenalkoxy pentafluoro ⁇ 6 -sulfanyl, except for CF3;
  • m is an integer and is 0, 1, 2, 3, 4 or 5;
  • Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
  • Y is connected to the O of formula (I) via the bonds identified with "u” and Y is connected to the CR ⁇ OR 2 ) moiety of formula (I) via the bonds identified with "v” and wherein R represents hydrogen, Ci-C 2 -halogenalkyl, Ci-C 2 -halogenalkoxy, Ci-C 2 -alkylcarbonyl or halogen; preferably hydrogen, Ci-C 2 -halogenalkyl or halogen;
  • R 3 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
  • Hal represents F, CI, Br or I; preferably CI or Br;
  • R represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci- C 4 -alkylcarbonyl, hydroxy-substituted Ci-C 4 -alkyl or pentafluoro- ⁇ 6 -sulfanyl; preferably halogen, CN, nitro, Ci-C 4 -alkyl, Ci-C 4 -halogenalkyl, Ci-C 4 -alkoxy, Ci-C 4 -halogenalkoxy or pentafluoro- ⁇ 6 -sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
  • Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
  • R represents Ci-C 2 -halogenalkyl or halogen
  • R 3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; - n is an integer and is 0, 1 or 2; and its salts or N-oxides.
  • R represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy, Ci-C i-halogenalkoxy, Ci- C 4 -alkylcarbonyl, hydroxy-substituted Ci-C 4 -alkyl or pentafluoro- ⁇ 6 -sulfanyl; preferably halogen, CN, nitro, Ci-C 4 -alkyl, Ci-C 4 -halogenalkyl, Ci-C 4 -alkoxy, Ci-C 4 -halogenalkoxy or pentafluoro- ⁇ 6 -sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
  • Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
  • R represents hydrogen, Ci-C 2 -halogenalkyl, Ci-C 2 -halogenalkoxy, Ci-C 2 -alkylcarbonyl or halogen; preferably hydrogen, Ci-C 2 -halogenalkyl or halogen;
  • R 3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides. - -
  • Compounds of formula (VII) are not only useful intermediates to produce the triazole derivatives of formula (I), but may also have fungicidal properties themselves.
  • the invention further relates to compositions comprising these compounds, and to the use thereof as biologically active compounds, especially for control of harmful microorganisms in crop protection and in the protection of materials and as plant growth regulators.
  • R 1 represents hydrogen, Ci-C6-alkyl, C 2 -C6-alkenyl, C 2 -C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C i-alkyl, phenyl, phenyl-Ci-C i-alkyl, phenyl-C 2 -C i-alkenyl or phenyl-C 2 -C 4 -alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R 1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R a which independently of one another are selected from
  • R b halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-alkoxy, Ci-C i-halogenalkyl and Ci-C i-halogenalkoxy;
  • R 4 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy Ci-C i-halogenalkoxy, Ci- C i-alkylcarbonyl, hydroxy-substituted Ci-C i-alkyl or pentafluoro ⁇ 6 -sulfanyl; preferably halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C 4 -alkoxy, Ci-C i-halogenalkoxy or pentafluoro- ⁇ 6 -sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
  • Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
  • Y is connected to the O of formula (I) via the bonds identified with "u” and Y is connected to the CR ⁇ OR 2 ) moiety of formula (I) via the bonds identified with "v” and wherein R represents hydrogen, Ci-C 2 -halogenalkyl, Ci-C 2 -halogenalkoxy, Ci-C 2 -alkylcarbonyl or halogen; preferably hydrogen, Ci-C 2 -halogenalkyl or halogen;
  • R 3 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C t-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
  • R 1 represents hydrogen, Ci-C6-alkyl, C 2 -C6-alkenyl, C 2 -C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C i-alkyl, phenyl, phenyl-Ci-C i-alkyl, phenyl-C 2 -C4-alkenyl or phenyl-C 2 -C4-alkynyl;
  • R 2 represents hydrogen, Ci-C6-alkyl, C 2 -C6-alkenyl, C 2 -C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C 2 -C4-alkenyl or phenyl-C 2 -C4-
  • R b halogen, CN, nitro, Ci-C i-alkyl, Ci-C 4 -alkoxy, Ci-C 4 -halogenalkyl and Ci-C 4 -halogenalkoxy;
  • R represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy Ci-C4-halogenalkoxy, Ci- C 4 -alkylcarbonyl, hydroxy-substituted Ci-C 4 -alkyl or pentafluoro ⁇ 6 -sulfanyl; preferably halogen, CN, nitro, Ci-C 4 -alkyl, Ci-C 4 -halogenalkyl, Ci-C 4 -alkoxy, Ci-C 4 -halogenalkoxy or pentafluoro ⁇ 6 -sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
  • Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
  • R represents hydrogen, Ci-C 2 -halogenalkyl, Ci-C 2 -halogenalkoxy, Ci-C 2 -alkylcarbonyl or halogen; preferably hydrogen, Ci-C 2 -halogenalkyl or halogen;
  • R 3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy;
  • n is an integer and is 0, 1 or 2; and its salts or N-oxides.
  • LG represents halogen, -OS0 2 -Ci-C 6 -alkyl, -OS0 2 -aryl, -OS0 2 -0-Ci-C 6 -alkyl, -OS0 2 -0-aryl, -OS0 2 - NR A R A wherein the "alkyl” and/or “aryl” may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R D ; wherein R D represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy or Ci-C4-halogenalkoxy;
  • R A represents hydrogen, Ci-C6-alkyl, C 2 -C6-alkenyl, C 2 -C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl- Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C 2 -C4-alkenyl or phenyl-C 2 -C4-alkynyl, wherein the aliphatic moieties, excluding cycloalkyl moieties, of R A may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R c which independently of one another are selected from R c halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN;
  • R 1 represents hydrogen, Ci-C6-alkyl, C 2 -C6-alkenyl, C 2 -C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C 4 -alkyl, phenyl, phenyl-Ci-C 4 -alkyl, phenyl-C 2 -C 4 -alkenyl or phenyl-C 2 -C 4 -alkynyl;
  • R 2 represents hydrogen, Ci-C6-alkyl, C 2 -C6-alkenyl, C 2 -C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C 4 -alkyl, phenyl, phenyl-Ci-C 4 -alkyl, phenyl-C 2 -C 4 -alkenyl or phenyl-C 2 -C 4 -alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R 1 and/or R 2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R a which independently of one another are selected from
  • R represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci- C 4 -alkylcarbonyl, hydroxy-substituted Ci-C 4 -alkyl or pentafluoro ⁇ 6 -sulfanyl; preferably halogen, CN, nitro, Ci-C 4 -alkyl, Ci-C 4 -halogenalkyl, Ci-C 4 -alkoxy, Ci-C 4 -halogenalkoxy or pentafluoro ⁇ 6 -sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
  • Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
  • R represents hydrogen, Ci-C 2 -halogenalkyl, Ci-C 2 -halogenalkoxy, Ci-C 2 -alkylcarbonyl or halogen; preferably hydrogen, Ci-C 2 -halogenalkyl or halogen;
  • R 3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
  • LG preferably represents CI, Br, I, -OSCh-Ci-Ce-alkyl or -OSCh-p-tolyl, more preferably CI, Br, I or -OSO2-C1- C 2 -alkyl.
  • R represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci- C 4 -alkylcarbonyl, hydroxy-substituted Ci-C 4 -alkyl or pentafluoro ⁇ 6 -sulfanyl, except for Br; preferably halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy or pentafluoro- ⁇ 6 -8 ⁇ 1, except for Br; m is an integer and is 0, 1, 2, 3, 4 or 5;
  • Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
  • R represents hydrogen, Ci-C 2 -halogenalkyl, Ci-C 2 -halogenalkoxy, Ci-C 2 -alkylcarbonyl or halogen; preferably hydrogen, Ci-C 2 -halogenalkyl or halogen;
  • R 3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; n is an integer and is 0, 1 or 2;
  • R 6 , R 7 independent from each other represent Ci-C6-alkyl or C3-C8-cycloalkyl; and its salts or N-oxides.
  • R 1 represents hydrogen, Ci-C6-alkyl, C 2 -C6-alkenyl, C 2 -C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C 2 -C i-alkenyl or phenyl-C 2 -C4-alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R 1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R a which independently of one another are selected from
  • R b halogen, CN, nitro, Ci-C 4 -alkyl, Ci-C 4 -alkoxy, Ci-C 4 -halogenalkyl and Ci-C 4 -halogenalkoxy;
  • R 4 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci- C 4 -alkylcarbonyl, hydroxy-substituted Ci-C 4 -alkyl or pentafluoro- ⁇ 6 -sulfanyl, except for Br; preferably halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy or pentafluoro- ⁇ 6 -sulfanyl, except for Br; m is an integer and is 0, 1, 2, 3, 4 or 5;
  • R 9 represents Ci-C6-alkyl or C3-C8-cycloalkyl
  • R 10 represents C 2 -C6-alkyl
  • Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
  • R represents hydrogen, Ci-C 2 -halogenalkyl, Ci-C 2 -halogenalkoxy, Ci-C 2 -alkylcarbonyl or halogen; preferably hydrogen, Ci-C 2 -halogenalkyl or halogen;
  • R 3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C i-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
  • R 1 and R 2 , R 4 , m, Y, R, R 3 , n have already been given above for the compounds of fomula (I).
  • Such preferred radical definitions shall also apply for compounds of formula (V), (Va), (VI), (VII), (IX), (X), (XI), (XVI) and (XXI).
  • the compounds of the formulae (I), (V), (Va), (VI), (VII), (IX), (X), (XI), (XVI) and (XXI) according to the invention can be converted into physiologically acceptable salts, e.g. as acid addition salts or metal salt complexes.
  • the compounds of the formula (I) have acidic or basic properties and can form salts, if appropriate also inner salts, or adducts with inorganic or organic acids or with bases or with metal ions. If the compounds of the formula (I) carry amino, alkylamino or other groups which induce basic properties, these compounds can be reacted with acids to give salts, or they are directly obtained as salts in the synthesis. If the compounds of the formula (I) carries hydroxyl, carboxyl or other groups which induce acidic properties, these compounds can be reacted with bases to give salts.
  • Suitable bases are, for example, hydroxides, carbonates, bicarbonates of the alkali metals and alkaline earth metals, in particular those of sodium, potassium, magnesium and calcium, furthermore ammonia, primary, secondary and tertiary amines having (Ci-C4)-alkyl groups, mono-, di- and trialkanolamines of (Ci-C4)-alkanols, choline and also chlorocholine.
  • the salts obtainable in this manner also have fungicidal properties.
  • inorganic acids examples include hydrohalic acids, such as hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide, sulphuric acid, phosphoric acid and nitric acid, and acidic salts, such as NaHS04 and KHSO4.
  • Suitable organic acids are, for example, formic acid, carbonic acid and alkanoic acids, such as acetic acid, trifluoroacetic acid, trichloroacetic acid and propionic acid, and also glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid, benzoic acid, cinnamic acid, maleic acid, fumaric acid, tartaric acid, sorbic acid oxalic acid, alkylsulphonic acids (sulphonic acids having straight- chain or branched alkyl radicals of 1 to 20 carbon atoms), arylsulphonic acids or aryldisulphonic acids (aromatic radicals, such as phenyl and naphthyl, which carry one or two sulphonic acid groups), alkylphosphonic acids (phosphonic acids having straight- chain or branched alkyl radicals of 1 to 20 carbon atoms), arylphosphonic acids or aryldiphosphonic acids (aromatic radicals, such as
  • Suitable metal ions are in particular the ions of the elements of the second main group, in particular calcium and magnesium, of the third and fourth main group, in particular aluminium, tin and lead, and also of the first to eighth transition group, in particular chromium, manganese, iron, cobalt, nickel, copper, zinc and others. Particular preference is given to the metal ions of the elements of the fourth period.
  • the metals can be present in various valencies that they can assume.
  • the acid addition salts of the compounds of the formula (I) can be obtained in a simple manner by customary methods for forming salts, for example by dissolving a compound of the formula (I) in a suitable inert solvent and adding the acid, for example hydrochloric acid, and be isolated in a known manner, for example by filtration, and, if required, be purified by washing with an inert organic solvent.
  • Suitable anions of the salts are those which are preferably derived from the following acids: hydrohalic acids, such as, for example, hydrochloric acid and hydrobromic acid, furthermore phosphoric acid, nitric acid and sulphuric acid.
  • the metal salt complexes of compounds of the formula (I) can be obtained in a simple manner by customary processes, for example by dissolving the metal salt in alcohol, for example ethanol, and adding the solution to the compound of the formula (I).
  • Metal salt complexes can be isolated in a known manner, for example by filtration, and, if required, be purified by recrystallization.
  • Salts of the intermediates can also be prepared according to the processes mentioned above for the salts of compounds of formula (I).
  • N-oxides of compounds of the formula (I) or intermediates thereof can be obtained in a simple manner by customary processes, for example by N-oxidation with hydrogen peroxide (H2O2), peracids, for example peroxy sulfuric acid or peroxy carboxylic acids, such as meta-chloroperoxybenzoic acid or peroxymonosulfuric acid (Caro's acid).
  • H2O2 hydrogen peroxide
  • peracids for example peroxy sulfuric acid or peroxy carboxylic acids, such as meta-chloroperoxybenzoic acid or peroxymonosulfuric acid (Caro's acid).
  • the corresponding N-oxides may be prepared starting from compounds (I) using conventional oxidation methods, e.g. by treating compounds (I) with an organic peracid such as metachloroperbenzoic acid (e.g. WO-A 2003/64572 or J. Med. Chem. 38 (11), 1892-1903, 1995); or with inorganic oxidizing agents such as hydrogen peroxide (e.g. J. Heterocyc. Chem. 18 (7), 1305-1308, 1981) or oxone (e.g. J. Am. Chem. Soc. 123 (25), 5962- 5973, 2001).
  • the oxidation may lead to pure mono-N-oxides or to a mixture of different N-oxides, which can be separated by conventional methods such as chromatography.
  • composition / Formulation The present invention further relates to a crop protection composition for controlling harmful microorganisms, especially unwanted fungi and bacteria, comprising an effective and non-phytotoxic amount of the inventive active ingredients.
  • fungicidal compositions which comprise agriculturally suitable auxiliaries, like solvents, carriers, surfactants or extenders. _ .
  • control of harmful microorganisms means a reduction in infestation by harmful microorganisms, compared with the untreated plant measured as fungicidal efficacy, preferably a reduction by 25-50 %, compared with the untreated plant (100 %), more preferably a reduction by 40-79 %, compared with the untreated plant (100 %); even more preferably, the infection by harmful microorganisms is entirely suppressed (by 70-100 %).
  • the control may be curative, i.e. for treatment of already infected plants, or protective, for protection of plants which have not yet been infected.
  • an "effective but non-phytotoxic amount” means an amount of the inventive composition which is sufficient to control the fungal disease of the plant in a satisfactory manner or to eradicate the fungal disease completely, and which, at the same time, does not cause any significant symptoms of phytotoxicity.
  • this application rate may vary within a relatively wide range. It depends on several factors, for example on the fungus to be controlled, the plant, the climatic conditions and the ingredients of the inventive compositions.
  • Suitable organic solvents include all polar and non-polar organic solvents usually employed for formulation purposes.
  • the solvents are selected from ketones, e.g. methyl-isobutyl-ketone and cyclohexanone, amides, e.g. dimethyl formamide and alkanecarboxylic acid amides, e.g. ⁇ , ⁇ -dimethyl decaneamide and N,N- dimethyl octanamide, furthermore cyclic solvents, e.g.
  • propyleneglycol-monomethylether acetate adipic acid dibutylester, acetic acid hexylester, acetic acid heptylester, citric acid tri-w-butylester and phthalic acid di-w-butylester, and also alkohols, e.g. benzyl alcohol and l-methoxy-2-propanol.
  • a carrier is a natural or synthetic, organic or inorganic substance with which the active ingredients are mixed or combined for better applicability, in particular for application to plants or plant parts or seed.
  • the carrier which may be solid or liquid, is generally inert and should be suitable for use in agriculture.
  • Useful solid or liquid carriers include: for example ammonium salts and natural rock dusts, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and synthetic rock dusts, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils, and derivatives thereof. Mixtures of such carriers can likewise be used.
  • Suitable solid filler and carrier include inorganic particles, e.g. carbonates, silikates, sulphates and oxides with an average particle size of between 0.005 and 20 ⁇ , preferably of between 0.02 to 10 ⁇ , for example ammonium sulphate, ammonium phosphate, urea, calcium carbonate, calcium sulphate, magnesium sulphate, magnesium oxide, aluminium oxide, silicium dioxide, so-called fine-particle silica, silica gels, natural or synthetic silicates, and alumosilicates and plant products like cereal flour, wood powder/sawdust and cellulose powder.
  • inorganic particles e.g. carbonates, silikates, sulphates and oxides with an average particle size of between 0.005 and 20 ⁇ , preferably of between 0.02 to 10 ⁇ , for example ammonium sulphate, ammonium phosphate, urea, calcium carbonate, calcium sulphate, magnesium sulphate, magnesium oxide, aluminium oxide, silicium
  • Useful solid carriers for granules include: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite, and synthetic granules of inorganic and organic meals, and also granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks.
  • crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite, and synthetic granules of inorganic and organic meals
  • organic material such as sawdust, coconut shells, maize cobs and tobacco stalks.
  • Useful liquefied gaseous extenders or carriers are those liquids which are gaseous at standard temperature and under standard pressure, for example aerosol propellants such as halohydrocarbons, and also butane, propane, nitrogen and carbon dioxide.
  • tackifiers such as carboxymethylcellulose, and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, or else natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids.
  • Further additives may be mineral and vegetable oils.
  • Useful liquid solvents are essentially: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, for example mineral oil fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, and also water.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or dichloromethane
  • Suitable surfactants include all common ionic and non-ionic substances, for example ethoxylated nonylphenols, polyalkylene glycolether of linear or branched alcohols, reaction products of alkyl phenols with ethylene oxide and/or propylene oxide, reaction products of fatty acid amines with ethylene oxide and/or propylene oxide, furthermore fattic acid esters, alkyl sulfonates, alkyl sulphates, alkyl ethersulphates, alkyl etherphosphates, arylsulphate, ethoxylated arylalkylphenols, e.g.
  • tristyryl-phenol-ethoxylates furthermore ethoxylated and propoxylated arylalkylphenols like sulphated or phosphated arylalkylphenol-ethoxylates and -ethoxy- and -propoxylates.
  • arylalkylphenols like sulphated or phosphated arylalkylphenol-ethoxylates and -ethoxy- and -propoxylates.
  • Further examples are natural and synthetic, water soluble polymers, e.g.
  • lignosulphonates gelatine, gum arabic, phospholipides, starch, hydrophobic modified starch and cellulose derivatives, in particular cellulose ester and cellulose ether, further polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, polyacrylic acid, polymethacrylic acid and co-polymerisates of (meth)acrylic acid and (meth)acrylic acid esters, and further co-polymerisates of methacrylic acid and methacrylic acid esters which are neutralized with alkalimetal hydroxide and also condensation products of optionally substituted naphthalene sulfonic acid salts with formaldehyde.
  • a surfactant is necessary if one of the active ingredients and/or one of the inert carriers is insoluble in water and when application is effected in water.
  • the proportion of surfactants is between 5 and 40 per cent by weight of the inventive composition.
  • dyes such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • Antifoams which may be present in the formulations include e.g. silicone emulsions, longchain alcohols, fattiy acids and their salts as well as fluoroorganic substances and mixtures therof.
  • thickeners are polysaccharides, e.g. xanthan gum or veegum, silicates, e.g. attapulgite, bentonite as well as fine-particle silica.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • inventive active ingredients or compositions can be used as such or, depending on their particular physical and/or chemical properties, in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold-fogging concentrates, warm-fogging concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seed, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, gas (under pressure), gas generating product, foams, pastes, pesticide coated seed, suspension concentrates, suspoemulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble and water-dispersible granules
  • inventive compositions include not only formulations which are already ready for use and can be applied with a suitable apparatus to the plant or the seed, but also commercial concentrates which have to be diluted with water prior to use.
  • Customary applications are for example dilution in water and subsequent spraying of the resulting spray liquor, application after dilution in oil, direct application without dilution, seed treatment or soil application of granules.
  • inventive compositions and formulations generally contain between 0.05 and 99 % by weight, 0.01 and 98 % by weight, preferably between 0.1 and 95 % by weight, more preferably between 0.5 and 90 % of active ingredient, most preferably between 10 and 70 % by weight.
  • inventive compositions and formulations generally contain between 0.0001 and 95 % by weight, preferably 0.001 to 60 % by weight of active ingredient.
  • the contents of active ingredient in the application forms prepared from the commercial formulations may vary in a broad range.
  • the concentration of the active ingredients in the application forms is generally between 0.000001 to 95 % by weight, preferably between 0.0001 and 2 % by weight.
  • the formulations mentioned can be prepared in a manner known per se, for example by mixing the active ingredients with at least one customary extender, solvent or diluent, adjuvant, emulsifier, dispersant, and/or binder or fixative, wetting agent, water repellent, if appropriate desiccants and UV stabilizers and, if appropriate, dyes and pigments, antifoams, preservatives, inorganic and organic thickeners, adhesives, gibberellins and also further processing auxiliaries and also water.
  • further processing steps are necessary, e.g. wet grinding, dry grinding and granulation.
  • inventive active ingredients may be present as such or in their (commercial) formulations and in the use forms prepared from these formulations as a mixture with other (known) active ingredients, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers, safeners and/or semiochemicals.
  • active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers, safeners and/or semiochemicals.
  • the inventive treatment of the plants and plant parts with the active ingredients or compositions is effected directly or by action on their surroundings, habitat or storage space by the customary treatment methods, for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading- - - on, watering (drenching), drip irrigating and, in the case of propagation material, especially in the case of seeds, also by dry seed treatment, wet seed treatment, slurry treatment, incrustation, coating with one or more coats, etc. It is also possible to deploy the active ingredients by the ultra-low volume method or to inject the active ingredient preparation or the active ingredient itself into the soil. Plant/Crop Protection
  • the inventive active ingredients or compositions have potent microbicidal activity and can be used for control of unwanted microorganisms, such as fungi and bacteria, in crop protection and in the protection of materials.
  • the invention also relates to a method for controlling unwanted microorganisms, characterized in that the inventive active ingredients are applied to the phytopathogenic fungi, phytopathogenic bacteria and/or their habitat.
  • Fungicides can be used in crop protection for control of phytopathogenic fungi. They are characterized by an outstanding efficacy against a broad spectrum of phytopathogenic fungi, including soilborne pathogens, which are in particular members of the classes Plasmodiophoromycetes, Peronosporomycetes (Syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes (Syn. Fungi imperfecti). Some fungicides are systemically active and ca be used in plant protection as foliar, seed dressing or soil fungicide. Furthermore, they are suitable for combating fungi, which inter alia infest wood or roots of plant. Bactericides can be used in crop protection for control of Pseudomonadaceae, Rhizobiaceae, Enter obacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • Non-limiting examples of pathogens of fungal diseases which can be treated in accordance with the invention include:
  • Blumeria species for example Blumeria graminis
  • Podosphaera species for example Podosphaera leucotricha
  • Sphaerotheca species for example Sphaerotheca fuliginea
  • Uncinula species for example Uncinula necator
  • Gymnosporangium species for example Gymnosporangium sabinae
  • Hemileia species for example Hemileia vastatrix
  • Phakopsora species for example Phakopsora pachyrhizi and Phakopsora meibomiae
  • Puccinia species for example Puccinia recondite
  • Uromyces species for example Uromyces appendiculatus
  • Bremia species for example Bremia lactucae
  • Peronospora species for example Peronospora pisi or P. brassicae
  • Phytophthora species for example Phytophthora infestans
  • Plasmopara species for example Plasmopara viticola
  • Pseudoperonospora species for example Pseudoperonospora humuli or
  • Pseudoperonospora cubensis Pythium species, for example Pythium ultimum;
  • Phaeosphaeria species for example Phaeosphaeria nodorum
  • Pyrenophora species for example Pyrenophora teres, Pyrenophora tritici repentis
  • Ramularia species for example Ramularia collo-cygni, Ramularia areola
  • Rhynchosporium species for example Rhynchosporium secalis
  • Septoria species for example Septoria apii, Septoria lycopersii
  • Typhula species for example Typhula incarnata
  • Venturia species for example Venturia inaequalis
  • Corticium species for example Corticium graminearum
  • Fusarium species for example Fusarium oxysporum
  • Gaeumannomyces species for example Gaeumannomyces graminis
  • Rhizoctonia species such as, for example Rhizoctonia solani
  • Sarocladium diseases caused for example by Sarocladium oryzae Sclerotium diseases caused for example by Sclerotium oryzae
  • Tapesia species for example Tapesia acuformis
  • Thielaviopsis species for example Thielaviopsis basicola
  • Thielaviopsis species for example Thielaviopsis basicola
  • ear and panicle diseases caused, for example, by Alternaria species, for example Alternaria spp.; Aspergillus species, for example Aspergillus flavus; Cladosporium species, for example Cladosporium cladosporioides; Claviceps species, for example Claviceps purpurea; Fusarium species, for example Fusarium culmorum; Gibberella species, for example Gibberella zeae; Monographella species, for example Monographella nivalis; Septoria species, for example Septoria nodorum;
  • Sphacelotheca species for example Sphacelotheca reiliana
  • Tilletia species for example Tilletia caries, T. controversa
  • Urocystis species for example Urocystis occulta
  • Ustilago species for example Ustilago nuda, U. nuda tritici
  • Pythium species caused for example by Pythium ultimum; Rhizoctonia species, caused for example by Rhizoctonia solani; Rhizopus species, caused for example by Rhizopus oryzae; Sclerotium species, caused for example by Sclerotium rolfsii; Septoria species, caused for example by Septoria nodorum; Typhula species, caused for example by Typhula incarnata; Verticillium species, caused for example by Verticillium dahliae; cancers, galls and witches' broom caused, for example, by Nectria species, for example Nectria galligena; wilt diseases caused, for example, by Monilinia species, for example Monilinia laxa;
  • leaf blister or leaf curl diseases caused, for example, by Exobasidium species, for example Exobasidium vexans; Taphrina species, for example Taphrina deformans;
  • Botrytis species for example Botrytis cinerea
  • Rhizoctonia species for example Rhizoctonia solani
  • Helminthosporium species for example Helminthosporium solani
  • Xanthomonas species for example Xanthomonas campestris pv. oryzae
  • Pseudomonas species for example Pseudomonas syringae pv. lachrymans
  • Erwinia species for example Erwinia amylovora.
  • phytophthora rot (Phytophthora megasperma), brown stem rot (Phialophora gregata), pythium rot (Pythium aphanidermatum, Pythium irregulare, Pythium debaryanum, Pythium myriotylum, Pythium ultimum), rhizoctonia root rot, stem decay, and damping-off (Rhizoctonia solani), sclerotinia stem decay (Sclerotinia sclerotiorum), sclerotinia southern blight (Sclerotinia rolfsii), thielaviopsis root rot (Thielaviopsis basicola).
  • inventive fungicidal compositions can be used for curative or protective/preventive control of phytopathogenic fungi.
  • the invention therefore also relates to curative and protective methods for controlling phytopathogenic fungi by the use of the inventive active ingredients or compositions, which are applied to the seed, the plant or plant parts, the fruit or the soil in which the plants grow.
  • plants and plant parts can be treated.
  • plants are meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder's rights).
  • Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods.
  • plant parts are meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, corms and rhizomes are listed.
  • Crops and vegetative and generative propagating material for example cuttings, corms, rhizomes, runners and seeds also belong to plant parts.
  • inventive active ingredients when they are well tolerated by plants, have favourable homeotherm toxicity and are well tolerated by the environment, are suitable for protecting plants and plant organs, for enhancing harvest yields, for improving the quality of the harvested material. They can preferably be used as crop protection compositions. They are active against normally sensitive and resistant species and against all or some stages of development.
  • Plants which can be treated in accordance with the invention include the following main crop plants: maize, soya bean, alfalfa, cotton, sunflower, Brassica oil seeds such as Brassica napus (e.g. canola, rapeseed), Brassica rapa, B.juncea (e.g. (field) mustard) and Brassica carinata, Arecaceae sp. (e.g. oilpalm, coconut), rice, wheat, sugar beet, sugar cane, oats, rye, barley, millet and sorghum, triticale, flax, nuts, grapes and vine and various fruit and vegetables from various botanic taxa, e.g. Rosaceae sp. (e.g.
  • pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds, plums and peaches, and berry fruits such as strawberries, raspberries, red and black currant and gooseberry), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp. (e.g. olive tree), Actinidaceae sp., Lauraceae sp. (e.g. avocado, cinnamon, camphor), Musaceae sp. (e.g.
  • Rubiaceae sp. e.g. coffee
  • Theaceae sp. e.g. tea
  • Sterculiceae sp. e.g. lemons, oranges, mandarins and grapefruit
  • Solanaceae sp. e.g. tomatoes, potatoes, peppers, capsicum, aubergines, tobacco
  • Liliaceae sp. Compositae sp. (e.g. lettuce, artichokes and chicory - including root chicory, endive or common chicory), Umbelliferae sp. (e.g.
  • Cucurbitaceae sp. e.g. cucumbers - including gherkins, pumpkins, watermelons, calabashes and melons
  • Alliaceae sp. e.g. leeks and onions
  • Cruciferae sp. e.g. white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, horseradish, cress and Chinese cabbage
  • Leguminosae sp. e.g. peanuts, peas, lentils and beans - e.g. common beans and broad beans
  • Chenopodiaceae sp. e.g.
  • inventive compounds can, at particular concentrations or application rates, also be used as herbicides, safeners, growth regulators or agents to improve plant properties, or as microbicides, for example as fungicides, antimycotics, bactericides, viricides (including compositions against viroids) or as compositions against MLO (Mycoplasma-like organisms) and RLO (Rickettsia-like organisms). If appropriate, they can also be used as intermediates or precursors for the synthesis of other active ingredients.
  • the inventive active ingredients intervene in the metabolism of the plants and can therefore also be used as growth regulators.
  • Plant growth regulators may exert various effects on plants. The effect of the substances depends essentially on the time of application in relation to the developmental stage of the plant, and also on the amounts of active ingredient applied to the plants or their environment and on the type of application. In each case, growth regulators should have a particular desired effect on the crop plants.
  • Plant growth-regulating compounds can be used, for example, to inhibit the vegetative growth of the plants.
  • Such inhibition of growth is of economic interest, for example, in the case of grasses, since it is thus possible to reduce the frequency of grass cutting in ornamental gardens, parks and sport facilities, on roadsides, at airports or in fruit crops.
  • Also of significance is the inhibition of the growth of herbaceous and woody plants on roadsides and in the vicinity of pipelines or overhead cables, or quite generally in areas where vigorous plant growth is unwanted.
  • growth regulators for inhibition of the longitudinal growth of cereal. This reduces or completely eliminates the risk of lodging of the plants prior to harvest.
  • growth regulators in the case of cereals can strengthen the culm, which also counteracts lodging.
  • the employment of growth regulators for shortening and strengthening culms allows the deployment of higher fertilizer volumes to increase the yield, without any risk of lodging of the cereal crop.
  • Inhibition of the vegetative plant growth may also lead to enhanced yields because the nutrients and assimilates are of more benefit to flower and fruit formation than to the vegetative parts of the plants.
  • growth regulators can also be used to promote vegetative growth. This is of great benefit when harvesting the vegetative plant parts. However, promoting vegetative growth may also promote generative growth in that more assimilates are formed, resulting in more or larger fruits.
  • yield increases may be achieved by manipulating the metabolism of the plant, without any detectable changes in vegetative growth.
  • growth regulators can be used to alter the composition of the plants, which in turn may result in an improvement in quality of the harvested products. For example, it is possible to increase the sugar content in sugar beet, sugar cane, pineapples and in citrus fruit, or to increase the _ _ protein content in soya or cereals. It is also possible, for example, to use growth regulators to inhibit the degradation of desirable ingredients, for example sugar in sugar beet or sugar cane, before or after harvest. It is also possible to positively influence the production or the elimination of secondary plant ingredients.
  • One example is the stimulation of the flow of latex in rubber trees.
  • parthenocarpic fruits may be formed.
  • growth regulators can control the branching of the plants.
  • by breaking apical dominance it is possible to promote the development of side shoots, which may be highly desirable particularly in the cultivation of ornamental plants, also in combination with an inhibition of growth.
  • side shoots which may be highly desirable particularly in the cultivation of ornamental plants, also in combination with an inhibition of growth.
  • the amount of leaves on the plants can be controlled such that defoliation of the plants is achieved at a desired time.
  • defoliation plays a major role in the mechanical harvesting of cotton, but is also of interest for facilitating harvesting in other crops, for example in viticulture.
  • Defoliation of the plants can also be undertaken to lower the transpiration of the plants before they are transplanted.
  • Growth regulators can likewise be used to regulate fruit dehiscence. On the one hand, it is possible to prevent premature fruit dehiscence. On the other hand, it is also possible to promote fruit dehiscence or even flower abortion to achieve a desired mass ("thinning"), in order to eliminate alternation. Alternation is understood to mean the characteristic of some fruit species, for endogenous reasons, to deliver very different yields from year to year. Finally, it is possible to use growth regulators at the time of harvest to reduce the forces required to detach the fruits, in order to allow mechanical harvesting or to facilitate manual harvesting.
  • Growth regulators can also be used to achieve faster or else delayed ripening of the harvested material before or after harvest. This is particularly advantageous as it allows optimal adjustment to the requirements of the market. Moreover, growth regulators in some cases can improve the fruit colour. In addition, growth regulators can also be used to concentrate maturation within a certain period of time. This establishes the prerequisites for complete mechanical or manual harvesting in a single operation, for example in the case of tobacco, tomatoes or coffee.
  • growth regulators By using growth regulators, it is additionally possible to influence the resting of seed or buds of the plants, such that plants such as pineapple or ornamental plants in nurseries, for example, germinate, sprout or flower at a time when they are normally not inclined to do so. In areas where there is a risk of frost, it may be desirable to delay budding or germination of seeds with the aid of growth regulators, in order to avoid damage resulting from late frosts.
  • growth regulators can induce resistance of the plants to frost, drought or high salinity of the soil. This allows the cultivation of plants in regions which are normally unsuitable for this purpose.
  • the active compounds according to the invention also exhibit a potent strengthening effect in plants. Accordingly, they can be used for mobilizing the defences of the plant against attack by undesirable microorganisms.
  • Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances which are capable of stimulating the defence system of plants in such a way that the treated plants, when subsequently inoculated with undesirable microorganisms, develop a high degree of resistance to these microorganisms.
  • the active compounds according to the invention are also suitable for increasing the yield of crops. In addition, they show reduced toxicity and are well tolerated by plants.
  • plant physiology effects comprise the following:
  • Abiotic stress tolerance comprising temperature tolerance, drought tolerance and recovery after drought stress, water use efficiency (correlating to reduced water consumption), flood tolerance, ozone stress and UV tolerance, tolerance towards chemicals like heavy metals, salts, pesticides (safener) etc.
  • Biotic stress tolerance comprising increased fungal resistance and increased resistance against nematodes, viruses and bacteria.
  • biotic stress tolerance preferably comprises increased fungal resistance and increased resistance against nematodes
  • Increased plant vigor comprising plant health / plant quality and seed vigor, reduced stand failure, improved appearance, increased recovery, improved greening effect and improved photosynthetic efficiency.
  • growth regulators comprising earlier germination, better emergence, more developed root system and/or improved root growth, increased ability of tillering, more productive tillers, earlier flowering, increased plant height and/or biomass, shorting of stems, improvements in shoot growth, number of kernels/ear, number of ears/m 2 , number of stolons and/or number of flowers, enhanced harvest index, bigger leaves, less dead basal leaves, improved phyllotaxy, earlier maturation / earlier fruit finish, homogenous riping, increased duration of grain filling, better fruit finish, bigger fruit/vegetable size, sprouting resistance and reduced lodging.
  • Increased yield referring to total biomass per hectare, yield per hectare, kernel/fruit weight, seed size and/or hectolitre weight as well as to increased product quality, comprising:
  • improved marketability relating to improved fruit/grain quality, size distribution (kernel, fruit, etc.), increased storage / shelf-life, firmness / softness, taste (aroma, texture, etc.), grade (size, shape, number of berries, etc.), number of berries/fruits per bunch, crispness, freshness, coverage with wax, frequency of physiological disorders, colour, etc.;
  • Delayed senescence comprising improvement of plant physiology which is manifested, for example, in a longer grain filling phase, leading to higher yield, a longer duration of green leaf colouration of the plant and thus comprising colour (greening), water content, dryness etc..
  • the specific inventive application of the active compound combination makes it possible to prolong the green leaf area duration, which delays the maturation (senescence) of the plant.
  • the main advantage to the farmer is a longer grain filling phase leading to higher yield.
  • sedimentation value is a measure for protein quality and describes according to Zeleny (Zeleny value) the degree of sedimentation of flour suspended in a lactic acid solution during a standard time interval. This is taken as a measure of the baking quality. Swelling of the gluten fraction of flour in lactic acid solution affects the rate of sedimentation of a flour suspension. Both a higher gluten content and a better gluten quality give rise to slower sedimentation and higher Zeleny test values.
  • the sedimentation value of flour depends on the wheat protein composition and is mostly correlated to the protein content, the wheat hardness, and the volume of pan and hearth loaves. A stronger correlation between loaf volume and Zeleny sedimentation volume compared to SDS sedimentation volume could be due to the protein content influencing both the volume and Zeleny value ( Czech J. FoodSci. Vol. 21, No. 3: 91-96, 2000).
  • the falling number is a measure for the baking quality of cereals, especially of wheat.
  • the falling number test indicates that sprout damage may have occurred. It means that changes to the physical properties of the starch portion of the wheat kernel has already happened.
  • the falling number instrument analyzes viscosity by measuring the resistance of a flour and water paste to a falling plunger. The time (in seconds) for this to happen is known as the falling number.
  • the falling number results are recorded as an index of enzyme activity in a wheat or flour sample and results are expressed in time as seconds.
  • a high falling number for example, above 300 seconds
  • a low falling number indicates substantial enzyme activity and sprout- damaged wheat or flour.
  • more developed root system / “improved root growth” refers to longer root system, deeper root growth, faster root growth, higher root dry/fresh weight, higher root volume, larger root surface area, bigger root diameter, higher root stability, more root branching, higher number of root hairs, and/or more root tips and can be measured by analyzing the root architecture with suitable methodologies and Image analysis programmes (e.g. WinRhizo).
  • crop water use efficiency refers technically to the mass of agriculture produce per unit water consumed and economically to the value of product(s) produced per unit water volume consumed and can e.g. be measured in terms of yield per ha, biomass of the plants, thousand-kernel mass, and the number of ears per m2. - -
  • nitrogen-use efficiency refers technically to the mass of agriculture produce per unit nitrogen consumed and economically to the value of product(s) produced per unit nitrogen consumed, reflecting uptake and utilization efficiency.
  • Fv/Fm is a parameter widely used to indicate the maximum quantum efficiency of photosystem II (PSII). This parameter is widely considered to be a selective indication of plant photosynthenc performance with healthy samples typically achieving a maximum Fv/Fm value of approx. 0.85. Values lower than this will be observed if a sample has been exposed to some type of biotic or abiotic stress factor which has reduced the capacity for photochemical quenching of energy within PSII.
  • Fv/Fm is presented as a ratio of variable fluorescence (Fv) over the maximum fluorescence value (Fm).
  • the Performance Index is essentially an indicator of sample vitality.
  • the improvement in greening / improved colour and improved photosynthetic efficiency as well as the delay of senescence can also be assessed by measurement of the net photosynthetic rate (Pn), measurement of the chlorophyll content, e.g. by the pigment extraction method of Ziegler and Ehle, measurement of the photochemical efficiency (Fv/Fm ratio), determination of shoot growth and final root and/or canopy biomass, determination of tiller density as well as of root mortality.
  • Pn net photosynthetic rate
  • Fv/Fm ratio photochemical efficiency
  • plant physiology effects which are selected from the group comprising: enhanced root growth / more developed root system, improved greening, improved water use efficiency (correlating to reduced water consumption), improved nutrient use efficiency, comprising especially improved nitrogen (N)-use efficiency, delayed senescence and enhanced yield.
  • the novel use of the fungicidal compositions of the present invention relates to a combined use of a) preventively and/or curatively controlling pathogenic fungi and/or nematodes, with or without resistance management, and b) at least one of enhanced root growth, improved greening, improved water use efficiency, delayed senescence and enhanced yield. From group b) enhancement of root system, water use efficiency and N-use efficiency is particularly preferred.
  • the invention further comprises a method for treating seed.
  • the invention further relates to seed which has been treated by one of the methods described in the previous paragraph.
  • inventive seeds are employed in methods for the protection of seed from harmful microorganisms. In these methods, seed treated with at least one inventive active ingredient is used.
  • inventive active ingredients or compositions are also suitable for treating seed.
  • a large part of the damage to crop plants caused by harmful organisms is triggered by the infection of the seed during storage or after sowing, and also during and after germination of the plant. This phase is particularly critical since the roots and shoots of _ _ the growing plant are particularly sensitive, and even minor damage may result in the death of the plant. There is therefore a great interest in protecting the seed and the germinating plant by using appropriate compositions.
  • the present invention therefore also relates to a method for protection of seed and germinating plants from attack by phytopathogenic fungi, by treating the seed with an inventive composition.
  • the invention likewise relates to the use of the inventive compositions for treatment of seed to protect the seed and the germinating plant from phytopathogenic fungi.
  • the invention further relates to seed which has been treated with an inventive composition for protection from phytopathogenic fungi.
  • One of the advantages of the present invention is that the particular systemic properties of the inventive active ingredients and compositions mean that treatment of the seed with these active ingredients and compositions not only protects the seed itself, but also the resulting plants after emergence, from phytopathogenic fungi. In this way, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.
  • inventive active ingredients or compositions can especially also be used with transgenic seed, in which case the plant growing from this seed is capable of expressing a protein which acts against pests.
  • the inventive active ingredients or compositions By virtue of the treatment of such seed with the inventive active ingredients or compositions, merely the expression of the protein, for example an insecticidal protein, can control certain pests. Surprisingly, a further synergistic effect can be observed in this case, which additionally increases the effectiveness for protection against attack by pests.
  • the inventive compositions are suitable for protecting seed of any plant variety which is used in agriculture, in greenhouses, in forests or in horticulture and viticulture.
  • this is the seed of cereals (such as wheat, barley, rye, triticale, sorghum/millet and oats), maize, cotton, soya beans, rice, potatoes, sunflower, bean, coffee, beet (for example sugar beet and fodder beet), peanut, oilseed rape, poppy, olive, coconut, cocoa, sugar cane, tobacco, vegetables (such as tomato, cucumbers, onions and lettuce), turf and ornamentals (see also below).
  • the treatment of the seed of cereals (such as wheat, barley, rye, triticale and oats), maize and rice is of particular significance.
  • transgenic seed As also described below, the treatment of transgenic seed with the inventive active ingredients or compositions is of particular significance.
  • This relates to the seed of plants containing at least one heterologous gene. Definition and examples of suitable heterologous genes are given below.
  • the inventive composition is applied to the seed alone or in a suitable formulation.
  • the seed is treated in a state in which it is sufficiently stable for no damage to occur in the course of treatment.
  • the seed can be treated at any time between harvest and sowing. It is customary to use seed which has been separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. For example, it is possible to use seed which has been harvested, cleaned and dried down to a moisture content of less than 15 % by weight. Alternatively, it is also possible to use seed which, after drying, for example, has been treated with water and then dried again.
  • the amount of the inventive composition applied to the seed and/or the amount of further additives is selected such that the germination of the seed is not impaired, or that the resulting plant is not damaged.
  • compositions can be applied directly, i.e. without containing any other components and without having been diluted.
  • suitable formulations and methods for seed treatment are known to those skilled in the art and are described, for example, in the following documents: US 4,272,417, US 4,245,432, US 4,808,430, US 5,876,739, US 2003/0176428 Al, WO 2002/080675, WO 2002/028186.
  • the active ingredients usable in accordance with the invention can be converted to the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.
  • formulations are prepared in a known manner, by mixing the active ingredients with customary additives, for example customary extenders and also solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, adhesives, gibberellins and also water.
  • customary additives for example customary extenders and also solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, adhesives, gibberellins and also water.
  • Useful dyes which may be present in the seed dressing formulations usable in accordance with the invention are all dyes which are customary for such purposes. It is possible to use either pigments, which are sparingly soluble in water, or dyes, which are soluble in water. Examples include the dyes known by the names Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1.
  • Useful wetting agents which may be present in the seed dressing formulations usable in accordance with the invention are all substances which promote wetting and which are conventionally used for the formulation of active agrochemical ingredients. Preference is given to using alkyl naphthalenesulphonates, such as diisopropyl or diisobutyl naphthalenesulphonates.
  • Useful dispersants and/or emulsifiers which may be present in the seed dressing formulations usable in accordance with the invention are all nonionic, anionic and canonic dispersants conventionally used for the formulation of active agrochemical ingredients. Usable with preference are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Suitable nonionic dispersants include especially ethylene oxide/propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ether, and the phosphated or _ _ sulphated derivatives thereof. Suitable anionic dispersants are especially lignosulphonates, polyacrylic acid salts and arylsulphonate/formaldehyde condensates.
  • Antifoams which may be present in the seed dressing formulations usable in accordance with the invention are all foam-inhibiting substances conventionally used for the formulation of active agrochemical ingredients. Silicone antifoams and magnesium stearate can be used with preference.
  • Preservatives which may be present in the seed dressing formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions. Examples include dichlorophene and benzyl alcohol hemiformal.
  • Secondary thickeners which may be present in the seed dressing formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions.
  • Preferred examples include cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica.
  • Adhesives which may be present in the seed dressing formulations usable in accordance with the invention are all customary binders usable in seed dressing products.
  • Preferred examples include polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose.
  • the gibberellins are known (cf. R. Wegler "Chemie der convinced für Schweizer- und Schadlingsbekampfungsstoff" [Chemistry of the Crop Protection Compositions and Pesticides], vol. 2, Springer Verlag, 1970, p. 401-412).
  • the seed dressing formulations usable in accordance with the invention can be used, either directly or after previously having been diluted with water, for the treatment of a wide range of different seed, including the seed of transgenic plants. In this case, additional synergistic effects may also occur in interaction with the substances formed by expression.
  • the procedure in the seed dressing is to place the seed into a mixer, to add the particular desired amount of seed dressing formulations, either as such or after prior dilution with water, and to mix everything until the formulation is distributed homogeneously on the seed. If appropriate, this is followed by a drying process.
  • the inventive treatment can reduce the mycotoxin content in the harvested material and the foods and feeds prepared therefrom.
  • Mycotoxins include particularly, but not exclusively, the following: deoxynivalenol (DON), nival enol, 15-Ac-DON, 3-Ac-DON, T2- and HT2-toxin, furnonisins, zearalenon, moniliformin, fusarin, diaceotoxyscirpenol (DAS), beauvericin, enniatin, fusaroproliferin, fusarenol, ochratoxins, patulin, ergot alkaloids and aflatoxins which can be produced, for example, by the following fungi: Fusarium spec, such as F.
  • F. langsethiae, F. subglutinans, F. tricinctum, F. verticillioides etc. and also by Aspergillus spec, such as A. flavus, A. parasiticus, A. nomius, A. ochraceus, A. clavatus, A. terreus, A. versicolor, Penicillium spec, such as P. verrucosum, P. viridicatum, P. citrinum, P. expansum, P. claviforme, P. roqueforti, Claviceps spec, such as C. purpurea, C. fusiformis, C. paspali, C. africana, Stachybotrys spec, and others. Material Protection
  • inventive active ingredients or compositions can also be used in the protection of materials, for protection of industrial materials against attack and destruction by harmful microorganisms, for example fungi and insects.
  • inventive compounds can be used as antifouling compositions, alone or in combinations with other active ingredients.
  • Industrial materials in the present context are understood to mean inanimate materials which have been prepared for use in industry.
  • industrial materials which are to be protected by inventive active ingredients from microbial alteration or destruction may be adhesives, glues, paper, wallpaper and board/cardboard, textiles, carpets, leather, wood, fibers and tissues, paints and plastic articles, cooling lubricants and other materials which can be infected with or destroyed by microorganisms.
  • Parts of production plants and buildings, for example cooling-water circuits, cooling and heating systems and ventilation and air-conditioning units, which may be impaired by the proliferation of microorganisms may also be mentioned within the scope of the materials to be protected.
  • Industrial materials within the scope of the present invention preferably include adhesives, sizes, paper and card, leather, wood, paints, cooling lubricants and heat transfer fluids, more preferably wood.
  • inventive active ingredients or compositions may prevent adverse effects, such as rotting, decay, discoloration, decoloration or formation of mould.
  • the compounds/compositions according to the invention may also be used against fungal diseases liable to grow on or inside timber.
  • the term "timber" means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood.
  • the method for treating timber according to the invention mainly consists in contacting one or more compounds according to the invention or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.
  • inventive compounds can be used to protect objects which come into contact with saltwater or brackish water, especially hulls, screens, nets, buildings, moorings and signalling systems, from fouling.
  • Storage goods are understood to mean natural substances of vegetable or animal origin or processed products thereof which are of natural origin, and for which long-term protection is desired.
  • Storage goods of vegetable origin for example plants or plant parts, such as stems, leaves, tubers, seeds, fruits, grains, can be protected freshly harvested or after processing by (pre)drying, moistening, comminuting, grinding, pressing or roasting.
  • Storage goods also include timber, both unprocessed, such as construction timber, electricity poles and barriers, or in the form of finished products, such as furniture.
  • Storage goods of animal origin are, for example, hides, leather, furs and hairs.
  • the inventive active ingredients may prevent adverse effects, such as rotting, decay, discoloration, decoloration or formation of mould.
  • Microorganisms capable of degrading or altering the industrial materials include, for example, bacteria, fungi, yeasts, algae and slime organisms.
  • the inventive active ingredients preferably act against fungi, especially moulds, wood-discoloring and wood-destroying fungi (Ascomycetes, Basidiomycetes, Deuteromycetes and Zygomycetes), and against slime organisms and algae.
  • microorganisms of the following genera Alternaria, such as Alternaria tenuis; Aspergillus, such as Aspergillus niger; Chaetomium, such as Chaetomium globosum; Coniophora, such as Coniophora puetana; Lentinus, such as Lentinus tigrinus; Penicillium, such as Penicillium glaucum; Polyporus, such as Polyporus versicolor, Aureobasidium, such as Aureobasidium pullulans; Sclerophoma, such as Sclerophoma pityophila; Trichoderma, such as Trichoderma viride; Ophiostoma spp., Ceratocystis spp., Humicola spp., Petriella spp., Trichurus spp., Coriolus spp., Gloeophyllum spp., Pleurotus spp., Poria
  • inventive active ingredients also have very good antimycotic activity. They have a very broad antimycotic activity spectrum, especially against dermatophytes and yeasts, moulds and diphasic fungi (for example against Candida species, such as C. albicans, C. glabrata), and Epidermophyton floccosum, Aspergillus species, such as A. niger and A. fumigatus, Trichophyton species, such as T. mentagrophytes, Microsporon species such as M. canis and M. audouinii. The list of these fungi by no means constitutes a restriction of the mycotic spectrum covered, and is merely of illustrative character.
  • inventive active ingredients can therefore be used both in medical and in non-medical applications.
  • plants and their parts are treated.
  • wild plant species and plant cultivars or those obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and also parts thereof, are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering methods if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated.
  • the terms "parts” or “parts of plants” or “plant parts” have been explained above. More preferably, plants of the plant cultivars which are commercially available or are in use are treated in accordance with the invention.
  • Plant cultivars are understood to mean plants which have new properties ("traits") and have been obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. They can be cultivars, varieties, bio- or genotypes.
  • the method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds.
  • GMOs genetically modified organisms
  • Genetically modified plants are plants of which a heterologous gene has been stably integrated into genome.
  • the expression "heterologous gene” essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for _ _ example, antisense technology, cosuppression technology, RNA interference - RNAi - technology or microRNA - miRNA - technology).
  • a heterologous gene that is located in the genome is also called a transgene.
  • a transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.
  • the treatment according to the invention may also result in superadditive (“synergistic") effects.
  • superadditive for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.
  • Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).
  • Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.
  • nematode or insect resistant plants are described in e.g. U.S. Patent Applications 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947, 12/252,453, 12/209,354, 12/491,396, 12/497,221, 12/644,632, 12/646,004, 12/701,058, 12/718,059, 12/721,595, 12/638,591.
  • Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses.
  • Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.
  • Plants and plant cultivars which may also be treated according to the invention are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation.
  • Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance.
  • Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.
  • Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stresses). Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome.
  • Male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering.
  • a particularly useful means of obtaining male-sterile plants is described in WO 89/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar (e.g. WO 91/02069).
  • Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.
  • Herbicide-resistant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means.
  • glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enol- pyruvylshikimate-3 -phosphate synthase (EPSPS).
  • EPSPS 5-enol- pyruvylshikimate-3 -phosphate synthase
  • Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Science 1983, 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Curr. Topics Plant Physiol.
  • Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme as described in US 5,776,760 and US 5,463,175.
  • Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described in for example WO 02/036782, WO 03/092360, WO 2005/012515 and WO 2007/024782.
  • Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described in for example WO 01/024615 or WO 03/013226. Plants expressing EPSPS genes that confer glyphosate tolerance are described in e.g. U.S.
  • Plants comprising other genes that confer glyphosate tolerance, _ _ such as decarboxylase genes, are described in e.g. U.S. Patent Applications 11/588,811, 11/185,342, 12/364,724, 11/185,560 or 12/423,926.
  • herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate.
  • Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition, e.g. described in U.S. Patent Application 11/760,602.
  • One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in U.S.
  • HPPD hydroxyphenylpyruvatedioxygenase
  • Plants tolerant to HPPD-inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD enzyme, or a gene encoding a mutated or chimeric HPPD enzyme as described in WO 96/38567, WO 99/24585, WO 99/24586, WO 09/144079, WO 02/046387, or US 6,768,044.
  • Tolerance to HPPD-inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 99/34008 and WO 02/36787.
  • Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme having prephenate deshydrogenase (PDH) activity in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 04/024928.
  • plants can be made more tolerant to HPPD- inhibitor herbicides by adding into their genome a gene encoding an enzyme capable of metabolizing or degrading HPPD inhibitors, such as the CYP450 enzymes shown in WO 2007/103567 and WO 2008/150473.
  • Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors.
  • ALS acetolactate synthase
  • ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pryimidinyoxy- (thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicides.
  • Different mutations in the ALS enzyme also known as acetohydroxyacid synthase, AHAS
  • AHAS acetohydroxyacid synthase
  • plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in US 5,084,082, for rice in WO 97/41218, for sugar beet in US 5,773,702 and WO 99/057965, for lettuce in US 5,198,599, or for sunflower in WO 01/065922. _ .
  • Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.
  • An "insect-resistant transgenic plant”, as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:
  • an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof such as the insecticidal crystal proteins listed by Crickmore et al. (1998, Microbiology and Molecular Biology Reviews, 62: 807-813), updated by Crickmore et al.
  • insecticidal portions thereof e.g., proteins of the Cry protein classes CrylAb, CrylAc, CrylB, CrylC, CrylD, CrylF, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof (e.g. EP-A 1 999 141 and WO 2007/107302), or such proteins encoded by synthetic genes as e.g. described in and U.S. Patent Application 12/249,016 ; or
  • a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second other crystal protein from Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins ⁇ Nat. Biotechnol. 2001, 19, 668-72; Applied Environm. Microbiol. 2006, 71, 1765-1774) or the binary toxin made up of the CrylA or CrylF proteins and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. Patent Application 12/214,022 and EP-A 2 300 618); or
  • a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g., the
  • CrylA.105 protein produced by corn event MON89034 (WO 2007/027777); or
  • VIP vegetative insecticidal
  • a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis orB. cereus, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 94/21795); or
  • a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1) above or a hybrid of the proteins in 2) above; or
  • 8) a protein of any one of 5) to 7) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or _ _ transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT 102; or
  • a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a crystal protein from Bacillus thuringiensis, such as the binary toxin made up of VIP3 and CrylA or CrylF (U.S. Patent Applications 61/126083 and 61/195019), or the binary toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. Patent Application 12/214,022 and EP-A 2 300 618).
  • a crystal protein from Bacillus thuringiensis such as the binary toxin made up of VIP3 and CrylA or CrylF (U.S. Patent Applications 61/126083 and 61/195019), or the binary toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. Patent Application 12/214,022 and EP-A 2 300 618).
  • an insect-resistant transgenic plant also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 10.
  • an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 10, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.
  • An "insect-resistant transgenic plant”, as used herein, further includes any plant containing at least one transgene comprising a sequence producing upon expression a double-stranded R A which upon ingestion by a plant insect pest inhibits the growth of this insect pest, as described e.g. in WO 2007/080126, WO 2006/129204, WO 2007/074405, WO 2007/080127 and WO 2007/035650.
  • Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include:
  • plants which contain a stress tolerance enhancing transgene coding for a plant- functional enzyme of the nicotineamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphorybosyltransferase as described e.g. in EP-A 1 794 306, WO 2006/133827, WO 2007/107326, EP-A 1 999 263, or WO 2007/107326.
  • Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as:
  • transgenic plants which synthesize a modified starch, which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain _ _ length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications.
  • a modified starch which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain _ _ length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications.
  • Said transgenic plants synthesizing a modified starch are disclosed, for example, in EP-A 0 571 427, WO 95/04826, EP-A 0 719 338, WO 96/15248, WO 96/19581, WO 96/27674, WO 97/11188, WO 97/26362, WO 97/32985, WO 97/42328, WO 97/44472, WO 97/45545, WO 98/27212, WO 98/40503, WO 99/58688, WO 99/58690, WO 99/58654, WO 00/08184, WO 00/08185, WO 00/08175, WO 00/28052, WO 00/77229, WO 01/12782, WO 01/12826, WO 02/101059, WO 03/071860, WO 04/056999, WO 05/030942, WO 2005/030941, WO 2005/095632,
  • transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification.
  • Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP-A 0 663 956, WO 96/01904, WO 96/21023, WO 98/39460, and WO 99/24593, plants producing alpha-1,4- glucans as disclosed in WO 95/31553, US 2002031826, US 6,284,479, US 5,712,107, WO 97/47806, WO 97/47807, WO 97/47808 and WO 00/14249, plants producing alpha- 1,6 branched alpha- 1,4-glucans, as disclosed in WO 00/73422, plants producing alternan, as disclosed in e.g. WO 00/47727, WO 00/73422, US 5,908,975 and EP-A 0
  • transgenic plants which produce hyaluronan, as for example disclosed in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP-A 2006-304779, and WO 2005/012529.
  • transgenic plants or hybrid plants such as onions with characteristics such as 'high soluble solids content', 'low pungency' (LP) and/or 'long storage' (LS), as described in U.S. Patent Applications 12/020,360.
  • Plants or plant cultivars that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include:
  • Plants such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N- acetylglucosaminetransferase gene including nodC and chitin synthase genes as described in WO 2006/136351.
  • Plants or plant cultivars which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics.
  • plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered oil profile characteristics and include:
  • Plants or plant cultivars which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered seed shattering characteristics.
  • Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered seed shattering characteristics and include plants such as oilseed rape plants with delayed or reduced seed shattering as described in U.S. Patent Application 61/135,230, WO 2009/068313 and WO 2010/006732.
  • Plants or plant cultivars which may also be treated according to the invention are plants, such as Tobacco plants, with altered post- translational protein modification patterns, for example as described in WO 2010/121818 and WO 2010/145846.
  • Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are the subject of petitions for non- regulated status, in the United States of America, to the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) whether such petitions are granted or are still pending.
  • APHIS Animal and Plant Health Inspection Service
  • USA United States Department of Agriculture
  • Petition the identification number of the petition.
  • Technical descriptions of the transformation events can be found in the individual petition documents which are obtainable from APHIS, for example on the APHIS website, by reference to this petition number. These descriptions are herein incorporated by reference.
  • Transgenic phenotype the trait conferred to the plants by the transformation event.
  • Transformation event or line the name of the event or events (sometimes also designated as lines or lines) for which nonregulated status is requested.
  • APHIS documents various documents published by APHIS in relation to the Petition and which can be requested with APHIS.
  • the application rate of the inventive active ingredients is in the case of treatment of plant parts, for example leaves: from 0.1 to 10 000 g/ha, preferably from 10 to 1000 g/ha, more preferably from 10 to 800 g/ha, even more preferably from 50 to 300 g/ha (in the case of application by watering or dripping, it is even possible to reduce the application rate, especially when inert substrates such as rockwool or perlite are used); in the case of seed treatment: from 2 to 200 g per 100 kg of seed, preferably from 3 to 150 g per 100 kg of seed, more preferably from 2.5 to 25 g per 100 kg of seed, even more preferably from 2.5 to 12.5 g per 100 kg of seed; in the case of soil treatment: from 0.1 to 10 000 g/ha, preferably from 1 to 5000 g/ha.
  • inventive active ingredients or compositions comprising a compound according to formula (I) can thus be used to protect plants from attack by the pathogens mentioned for a certain period of time after treatment.
  • the period for which protection is provided extends generally for 1 to 28 days, preferably for 1 to 14 days, more preferably for 1 to 10 days, most preferably for 1 to 7 days, after the treatment of the plants with the active ingredients, or for up to 200 days after a seed treatment.
  • the plants listed can particularly advantageously be treated in accordance with the invention with the compounds of the general formula (I) and the inventive compositions.
  • the preferred ranges stated above for the active ingredients or compositions also apply to the treatment of these plants. Particular emphasis is given to the treatment of plants with the compounds or compositions specifically mentioned in the present text.
  • methylmagnesium bromide (3.1 mL, 9.4 mmol, 3M solution in ethyl ether) was added, the cooling bath was removed, and the mixture was stirred for 1.5 hours (h) at 21°C (room temperature, rt), before the mixture was quenched with water, NH4CI (saturated aqueous solution), extracted with dichloromethane, dried (over MgSO i), and concentrated.
  • the concentrated material (roughly 2 g of a thick colourless oil containing both ketone and alcohol) was dissolved in pyridine (15.0 mL), and treated with methoxylamine hydrochloride (313 mg, 3.75 mmol) at rt for 20 h (to convert the ketone into the corresponding methyl oxime, which has a significantly different retention time).
  • the mixture was then diluted with dichloromethane, filtered over ChemElut, and concentrated.
  • Preparative HPLC gave 319 mg (17% yield over two steps, 99% pure) of the target compound as colourless oil, which solidified upon standing.
  • Epoxide IX.07 (1.0 g, 2.81 mmol), lH-l,2,4-triazole (194 mg, 2.81 mmol), sodium hydroxide (40 mg, 0.984 mmol), 0.013 mL water in DMF (10 mL) was heated at 120 °C for 22 h, before water, NH4CI (saturated aqueous solution) and CH2CI2 were added. Phases were separated, the aqueous phase was extracted twice with CH2CI2, the combined organic extracts were dried over Na2S04 and concentrated to give, after purification via preparative HPLC, the desired alcohol 1.91 (362 mg, 30%o) as a colorless oil. MS (ESI): 425.09 ([M+H]+)
  • Concentration c is expressed in g/ 100 mL
  • LogP value is determined by measurement of LC-UV, in an acidic range, with 0.1% formic acid in water and acetonitrile as eluent (linear gradient from 10% acetonitrile to 95%> acetonitrile).
  • LogP value is determined by measurement of LC-UV, in a neutral range, with 0.001 molar ammonium acetate solution in water and acetonitrile as eluent (linear gradient from 10%> acetonitrile to 95% acetonitrile).
  • LcJ LogP value is determined by measurement of LC-UV, in an acidic range, with 0.1% phosphoric acid in water and acetonitrile as eluent (linear gradient from 10% acetonitrile to 95% acetonitrile).
  • IH-NMR data of selected examples are written in form of lH-NMR-peak lists. To each signal peak are listed the ⁇ -value in ppm and the signal intensity in round brackets. Between the ⁇ -value - signal intensity pairs are semicolons as delimiters.
  • the peak list of an example has therefore the form: ⁇ (intensityi); 82 (intensitV2); ; ⁇ ; (intensity); ; ⁇ ⁇ (intensity n )
  • Intensity of sharp signals correlates with the height of the signals in a printed example of a NMR spectrum in cm and shows the real relations of signal intensities. From broad signals several peaks or the middle of the signal and their relative intensity in comparison to the most intensive signal in the spectrum can be shown.
  • tetramethylsilane For calibrating chemical shift for 1H spectra, we use tetramethylsilane and/or the chemical shift of the solvent used, especially in the case of spectra measured in DMSO. Therefore in NMR peak lists, tetramethylsilane peak can occur but not necessarily.
  • the IH-NMR peak lists are similar to classical IH-NMR prints and contains therefore usually all peaks, which are listed at classical NMR-interpretation.
  • the peaks of stereoisomers of the target compounds and/or peaks of impurities have usually on average a lower intensity than the peaks of target compounds (for example with a purity >90%).
  • Such stereoisomers and/or impurities can be typical for the specific preparation process. Therefore their peaks can help to recognize the reproduction of our preparation process via "side-products-fingerprints". - -
  • Example 1.17: 'H-NMR (300.2 MHz, CDCI3): ⁇ 8.152 (0.3); 8.143 (0.3); 8.083 (6.0); 7.950 (6.7); 7.877 (3.1); 7.875 (3.0); 7.849 (3.3); 7.847 (3.2); 7.264 (11.5); 7.130 (0.5); 7.125 (0.7); 7.114 (16.0); 7.102 (3.1); 7.096 (7.1); 7.090 (6.9); 7.081 (1.9); 7.070 (0.6); 7.060 (0.5); 7.055 (0.4); 6.939 (0.3); 6.911 (0.3); 6.831 (3.6); 6.803 (3.4); 5.369 (0.9); 5.343 (1.0); 5.301 (0.6); 4.602 (1.5); 4.594 (1.5); 4.555 (1.9); 4.547 (1.9); 4.389 (1.3); 4.375 (1.4); 4.363 (0.5); 4.255 (1.9);
  • Example 1.66 3 ⁇ 4-NMR (300.2 MHz, CDC1 3 ):
  • 8.258 (3.0); 8.229 (3.2); 8.043 (6.3); 7.951 (7.2); 7.302 (7.9); 7.269 (2.0); 7.261 (3.2); 7.231 (5.6); 7.208 (7.4); 7.203 (3.5); 7.179 (0.8); 7.172 (0.7); 7.136 (3.6); 7.107 (3.4); 4.733 (2.6); 4.702 (4.8); 4.686 (4.4);
  • Example VI.05 'H-NMR (299.9 MHz, CDC1 3 ):
  • 8.504 (5.4); 7.484 (0.4); 7.476 (1.7); 7.470 (0.8); 7.451 (3.5); 7.430 (1.2); 7.424 (2.9); 7.416 (0.5); 7.313 (1.4); 7.309 (0.9); 7.288 (2.1); 7.259 (5.4); 7.162 (2.9); 7.158 (3.8); 7.152 (1.1); 7.133 (2.9); 7.003 (5.7);
  • 8.111 (0.7); 8.092 (3.8); 8.083 (0.8); 8.064 (4.0); 7.512 (3.5); 7.483 (4.0); 7.323 (3.2); 7.315 (3.5); 7.265 (2.2); 7.084 (2.3); 7.075 (2.1); 7.054 (2.0); 7.045 (1.9); 6.983 (0.8); 6.976 (4.1); 6.955 (0.8); 6.948 (3.9);

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Pyridine Compounds (AREA)

Abstract

The present invention relates to novel triazole derivatives, to processes for preparing these compounds, to compositions comprising these compounds, and to the use thereof as biologically active compounds, especially for control of harmful microorganisms in crop protection and in the protection of materials and as plant growth regulators.

Description

TRIAZOLE DERIVATIVES, INTERMEDIATES THEREOF AND THEIR USE AS FUNGICIDES
The present invention relates to novel triazole derivatives, to processes for preparing these compounds, to compositions comprising these compounds, and to the use thereof as biologically active compounds, especially for control of harmful microorganisms in crop protection and in the protection of materials and as plant growth regulators.
It is already known that particular phenoxy-phenyl-substituted triazole derivatives can be used in crop protection as fungicides (e.g. EP-A 0 275 955; J. Agric. Food Chem. 2009, 57, 4854-4860; CN-A 101225074, DE-A 40 03 180; EP-A 0 113 640; EP-A 0 470 466; US 4,949,720; EP-A 0 126 430, DE-A 38 01 233; WO-A 2013/007767; WO-A 2013/010862; WO-A 2013/010885; WO-A 2013/010894; WO-A 2013/024075; WO-A 2013/024076; WO-A 2013/024077; WO-A 2013/024080; WO-A 2013/024081; WO-A 2013/024082; WO-A 2013/024083 and WO-A 2014/082872). It is also known that particular phenoxy-phenyl-substituted triazolinethione derivatives (e.g. WO-A 2010/146114) and particular phenoxy-hetaryl- substituted triazolinethione derivatives (e.g. WO-A 2010/1461 16) can be used in crop protection as fungicides.
Since the ecological and economic demands made on modern active ingredients, for example fungicides, are increasing constantly, for example with respect to activity spectrum, toxicity, selectivity, application rate, formation of residues and favourable manufacture, and there can also be problems, for example, with resistances, there is a constant need to develop novel fungicidal compositions which have advantages over the known compositions at least in some areas.
The compounds according to the present invention differ from those described in the abovementioned publications inter alia by the replacement of the abovementioned phenoxy-phenyl group by a hetaryloxy-phenyl group as defined herein and/or by the absence of sulphur-based substituents.
Accordingly, the present formula (I)
Figure imgf000002_0001
(I),
wherein represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Cs-Cs-cycloalkyl, Cs-Cs-cycloalkyl-
Ci-C i-alkyl, phenyl, phenyl-Ci-C i-alkyl, phenyl-C2-C i-alkenyl or phenyl-C2-C4-alkynyl;
R' 2 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Cs-Cs-cycloalkyl, C3-C8- Ci-C i-alkyl, phenyl, phenyl-Ci-C i-alkyl, phenyl-C2-C i-alkenyl or phenyl-C2-C4-alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 and/or R2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from - -
Ra halogen, CN, nitro, phenyl, Ci-C i-alkoxy and Ci-C i-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C i-alkyl; Ci-C i-alkoxy; Ci-C i-halogenalkyl; C1-C4- halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 and/or R2 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and Ci-C4-halogenalkoxy;
R4 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci-C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl; preferably halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy or pentafluoro-λ6- sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000003_0001
preferably from -
Figure imgf000004_0001
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen; preferably hydrogen, Ci-C2-halogenalkyl or halogen;
R3 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C4-alkoxy or C1-C4- halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
The salts or N-oxides of the triazole derivatives of formula (I) also have fungicidal properties.
The formula (I) provides a general definition of the triazole derivatives according to the invention. Preferred radical definitions for the formulae shown above and below are given below. These definitions apply to the end products of the formula (I) and likewise to all intermediates. R1 preferably represents hydrogen, Ci-C i-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, cyclopropyl, phenyl, benzyl, phenylethenyl or phenylethinyl, wherein the aliphatic moieties, excluding the cycloalkyl moieties, of R1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C i-alkoxy and Ci-C i-halogenalkoxy; _ _ wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C i-alkyl; Ci-C i-alkoxy; Ci-C i-halogenalkyl; C1-C4- halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-alkoxy, Ci-C i-halogenalkyl and Ci-C i-halogenalkoxy.
R1 more preferably represents hydrogen, methyl, ethyl, propyl, isopropyl, butyl, cyclopropyl, CF3, allyl, CH2C≡C-CH3 or CH2C≡CH, wherein the aliphatic groups R1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C i-alkoxy and Ci-C i-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C i-alkyl; Ci-C i-alkoxy; Ci-C i-halogenalkyl; C1-C4- halogenalkoxy.
R1 more preferably represents hydrogen or non-substituted methyl, ethyl, propyl, isopropyl, butyl, cyclopropyl, CF3, allyl, CH2C≡C-CH3 or CH2C≡CH.
R1 more preferably represents hydrogen, methyl or ethyl.
R1 most preferably represents methyl.
R2 preferably represents hydrogen, Ci-C i-alkyl, allyl, propargyl or benzyl, wherein the aliphatic groups R2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C i-alkoxy and Ci-C i-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C i-alkyl; Ci-C i-alkoxy; Ci-C i-halogenalkyl; Ci-C i-halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R2 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-alkoxy, Ci-C i-halogenalkyl and Ci-C i-halogenalkoxy.
R2 more preferably represents hydrogen, methyl, ethyl, isopropyl or allyl, wherein the aliphatic groups R2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; G-C4-alkyl; Ci-C4-alkoxy; Ci-C4-halogenalkyl; Ci-C4-halogenalkoxy.
R2 more preferably represents hydrogen or non-susbsti ted methyl, ethyl, isopropyl or allyl.
R2 more preferably represents hydrogen or methyl.
R2 most preferably represents hydrogen.
R4 preferably represents CF3, OCF3, Br, CI or pentafluoro^6-sulfanyl.
R4 more preferably represents CF3, OCF3, Br, CI or pentafluoro^6-sulfanyl in the 4-position of the phenyl moiety of formula (I).
R4 also more preferably represents CI, OCF3 or pentafluoro^6-sulfanyl, even more preferably CI, OCF3 or pentafluoro-λ6-sulfanyl in the 2- and/or 4-position of the phenyl moiety of formula (I). m preferably is 1, 2 or 3. m more preferably is 1 or 2.
Y preferably represents
wherein
R, R1 and n are defined as mentioned above for formula (I). R preferably represents hydrogen, Ci-halogenalkyl, F or CI. R more preferably represents Ci-halogenalkyl, F or CI. R most preferably represents CF3 or CI. n preferably is 0. - -
The radical definitions and explanations given above in general terms or stated within preferred ranges can, however, also be combined with one another as desired, i.e. including between the particular ranges and preferred ranges. They apply both to the end products and correspondingly to precursors and intermediates. In addition, individual definitions may not apply. Preference is given to those compounds of the formula (I) in which each of the radicals have the abovementioned preferred definitions.
Particular preference is given to those compounds of the formula (I) in which each of the radicals have the abovementioned more and/or most preferred definitions.
In preferred embodiments of the present invention represents hydrogen or Cl-C4-alkyl;
R represents hydrogen;
R4 represents CF3, OCF3, Br, CI or pentafluoro^6-sulfanyl; m is 1;
Y represents
Figure imgf000007_0001
, preferably
Figure imgf000007_0002
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and
R represents Ci-halogenalkyl; and n is 0.
In more preferred embodiments of the present invention
R1 represents methyl; - -
R represents hydrogen;
R represents CI in the 4-position of the phenyl moiety of formula (I); m is 1 ;
Y represents
Figure imgf000008_0001
, preferably
Figure imgf000008_0002
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and
R represents CF3; and n is 0.
In the definitions of the symbols given in the above formulae, collective terms were used which are generally representative of the following substituents:
The definition Ci-C6-alkyl comprises the largest range defined here for an alkyl radical. Specifically, this definition comprises the meanings methyl, ethyl, n-, isopropyl, n-, iso-, sec-, tert-butyl, and also in each case all isomeric pentyls and hexyls, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2- methylpropyl, 1, 1-dimethylethyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1 -methylpentyl, 2-methylpentyl, 3- methylpentyl, 4-methylpentyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 1 , 1-dimethylbutyl, 2,2- dimethylbutyl, 3,3-dimethylbutyl, 1, 1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethylbutyl, 2-ethylbutyl, 1- ethyl-3-methylpropyl, in particular propyl, 1-methylethyl, butyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylethyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, n-pentyl, 1-methylbutyl, 1-ethylpropyl, hexyl, 3- methylpentyl. A preferred range is Ci-C i-alkyl, such as methyl, ethyl, n-, isopropyl, n-, iso-, sec-, tert-butyl. The definition Ci-C2-alkyl comprises methyl and ethyl. The definition halogen comprises fluorine, chlorine, bromine and iodine. - -
Halogen-substituted alkyl - e.g. referred to as halogenalkyl, halogenoalkyl or haloalkyl, e.g. Ci-C i-halogenalkyl or Ci-C2-halogenalkyl - represents, for example, Ci-C i-alkyl or Ci-C2-alkyl as defined above substituted by one or more halogen substituents which can be the same or different. Preferably Ci-C i-halogenalkyl represents chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2- trichloroethyl, 1,1-difluoroethyl, pentafluoroethyl, 1-fluoro-l -methyl ethyl, 2-fluoro- 1,1 -dimethyl ethyl, 2-fluoro- 1 -fluoromethyl- 1-methylethyl, 2-fluoro- l,l-di(fluoromethyl)-ethyl, 1-chlorobutyl. Preferably C1-C2- halogenalkyl represents chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2- fluoroethyl, 2,2,2-trichloroethyl, 1,1-difluoroethyl, pentafluoroethyl.
Mono- or multiple fluorinated Ci-C4-alkyl represents, for example, Ci-C i-alkyl as defined above substituted by one or more fluorine substituent(s). Preferably mono- or multiple fluorinated Ci-C i-alkyl represents fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2- trifluoroethyl, pentafluoroethyl, 1-fluoro- 1-methylethyl, 2-fluoro- 1,1 -dimethyl ethyl, 2-fluoro- 1 -fluoromethyl- 1- methyl ethyl, 2-fluoro- l,l-di(fluoromethyl)-ethyl, l-methyl-3-trifluoromethylbutyl, 3 -methyl- 1- trifluoromethylbutyl .
The definition C2-C6-alkenyl comprises the largest range defined here for an alkenyl radical. Specifically, this definition comprises the meanings ethenyl, n-, isopropenyl, n-, iso-, sec-, tert-butenyl, and also in each case all isomeric pentenyls, hexenyls, 1 -methyl- 1-propenyl, 1 -ethyl- 1-butenyl. Halogen-substituted alkenyl - referred to as C2-C6-haloalkenyl - represents, for example, C2-C6-alkenyl as defined above substituted by one or more halogen substituents which can be the same or different.
The definition C2-C6-alkynyl comprises the largest range defined here for an alkynyl radical. Specifically, this definition comprises the meanings ethynyl, n-, isopropynyl, n-, iso-, sec-, tert-butynyl, and also in each case all isomeric pentynyls, hexynyls. Halogen-substituted alkynyl - referred to as C2-C6-haloalkynyl - represents, for example, C2-C6-alkynyl as defined above substituted by one or more halogen substituents which can be the same or different.
The definition Cs-Cs-cycloalkyl comprises monocyclic saturated hydrocarbyl groups having 3 to 8 carbon ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
The definition halogen-substituted cycloalkyl, halogenocycloalkyl, halocycloalkyl and halogencycloalkyl comprises monocyclic saturated hydrocarbyl groups having 3 to 8 carbon ring members, such as 1-fluoro- cyclopropyl and 1-chloro-cyclopropyl.
The definition aryl comprises aromatic, mono-, bi- or tricyclic ring, for example phenyl, naphthyl, anthracenyl (anthryl), phenanthracenyl (phenanthryl). - -
Optionally substituted radicals may be mono- or polysubstituted, where in the case of polysubstitution, the substituents may be identical or different.
Unless indicated otherwise, a group or a substituent which is substituted according to the invention preferably can be substituted by one or more group(s) selected from the list consisting of halogen; SH; nitro; hydroxyl; cyano; amino; sulfanyl; pentafluoro^6-sulfanyl; formyl; formyloxy; formylamino; carbamoyl; N- hydroxycarbamoyl; carbamate; (hydroxyimino)-Ci-C6-alkyl; Ci-Cs-alkyl; Ci-Cs-halogenalkyl; Ci-Cs-alkyloxy; Ci-C8-halogenalkyloxy; Ci-Cs-alkylthio; Ci-Cs-halogenalkylthio; tri(Ci-C8-alkyl)silyl; tri(Ci-C8-alkyl)silyl-Ci- C8-alkyl; C3-C7-cycloalkyl; C3-C7-halocycloalkyl; C3-C7-cycloalkenyl; C3-C7-halocycloalkenyl; C4-C10- cycloalkylalkyl; C4-Cio-halocycloalkylalkyl; C6-Ci2-cycloalkylcycloalkyl; tri(Ci-C8-alkyl)silyl-C3-C7- cycloalkyl; C2-C8-alkenyl; C2-C8-alkynyl; C2-C8-alkenyloxy; C2-C8-halogenalkenyloxy; C2-C8-alkynyloxy; Ci-C8-alkylamino; di-Ci-Cs-alkylamino; Ci-Cs-halogenalkylamino; di-Ci-Cs-halogenalkylamino; Ci-Cs- alkylaminoalkyl; di-Ci-Cs-alkylaminoalkyl; Ci-Cs-alkoxy; Ci-Cs-halogenoalkoxy; Ci-Cs-cyanoalkoxy; C4-C8- cycloalkylalkoxy; C3-C6-cycloalkoxy; C2-C8-alkoxyalkoxy; Ci-Cs-alkylcarbonylalkoxy; Ci-Cs-alkylsulfanyl; Ci-C8-halogenoalkylsulfanyl; C2-C8-alkenyloxy; C2-C8-halogenoalkenyloxy; C3-C8-alkynyloxy; C3-C8- halogenoalkynyloxy; Ci-Cs-alkylcarbonyl; Ci-Cs-halogenoalkylcarbonyl; C3-C8-cycloalkylcarbonyl; C3-C8- halogenocycloalkylcarbonyl; Ci-Cs-alkylcarbamoyl; di-Ci-Cs-alkylcarbamoyl; N-Ci-Cs-alkyloxycarbamoyl; Ci-C8-alkoxycarbamoyl; N-Ci-Cs-alkyl-Ci-Cs-alkoxycarbamoyl; Ci-Cs-alkoxycarbonyl; Ci-Cs- halogenoalkoxycarbonyl; C3-C8-cycloalkoxycarbonyl; C2-C8-alkoxyalkylcarbonyl; C2-C8- halogenoalkoxyalkylcarbonyl; C3-Cio-cycloalkoxyalkylcarbonyl; Ci-Cs-alkylaminocarbonyl; di-Ci-Cs- alkylaminocarbonyl; C3-C8-cycloalkylaminocarbonyl; Ci-Cs-alkylcarbonyloxy; Ci-Cs- halogenoalkylcarbonyloxy; C3-C8-cycloalkylcarbonyloxy; Ci-Cs-alkylcarbonylamino; Ci-Cs- halogenoalkylcarbonylamino; Ci-Cs-alkylaminocarbonyloxy; di-Ci-Cs-alkylaminocarbonyloxy; Ci-Cs- alkyloxycarbonyloxy; Ci-Cs-alkylsulfinyl; Ci-Cs-halogenoalkylsulfinyl; Ci-Cs-alkylsulfonyl; Ci-Cs- halogenoalkylsulfonyl; Ci-Cs-alkylaminosulfamoyl; di-Ci-Cs-alkylaminosulfamoyl; (Ci-Cg-alkoxyimino)-Ci- Ce-alkyl; (C3-C7-cycloalkoxyimino)-Ci-C8-alkyl; hydroxyimino-Ci-Cs-alkyl; (Ci-C8-alkoxyimino)-C3-C7- cycloalkyl; hydroxyimino-C3-C7-cycloalkyl; (Ci-Cg-alkylimino)-oxy; (Ci-C8-alkylimino)-oxy-Ci-C8-alkyl; (C3- C7-cycloalkylimino)-oxy-Ci-C8-alkyl; (Ci-C6-alkylimino)-oxy-C3-C7-cycloalkyl; (Ci-C8-alkenyloxyimino)-Ci- Cs-alkyl; (Ci-C8-alkynyloxyimino)-Ci-C8-alkyl; 2-oxopyrrolidin-l-yl, (benzyloxyimino)-Ci-C8-alkyl; Ci-Cs- alkoxyalkyl; Ci-Cs-alkylthioalkyl; Ci-Cs-alkoxyalkoxyalkyl; Ci-Cs-halogenoalkoxyalkyl; benzyl; phenyl; 5- membered heteroaryl; 6-membered heteroaryl; benzyloxy; phenyloxy; benzylsulfanyl; benzylamino; phenoxy; phenylsulfanyl; or phenylamino; wherein the benzyl, phenyl, 5-membered heteroaryl, 6-membered heteroaryl, 7-membered heteroaryl, benzyloxy or phenyloxy may be optionally substituted by one or more group(s) selected from the aforementioned list.
As not otherwise indicated - the definition 5-, 6- or 7-membered hetaryl or heteroaryl comprises unsaturated heterocyclic 5- to 7-membered ring containing up to 4 heteroatoms selected from N, O and S: for example 2- furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 1-pyrrolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 1- pyrazolyl, lH-imidazol-2-yl, lH-imidazol-4-yl, lH-imidazol-5-yl, lH-imidazol-l-yl, 2-oxazolyl, 4-oxazolyl, 5- oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 4- _ _ isothiazolyl, 5-isothiazolyl, lH-l,2,3-triazol-l-yl, lH-l,2,3-triazol-4-yl, lH-l,2,3-triazol-5-yl, 2H-l,2,3-triazol-
2- yl, 2H-l,2,3-triazol-4-yl, lH-l,2,4-triazol-3-yl, lH-l,2,4-triazol-5-yl, lH-l,2,4-triazol-l-yl, 4H-l,2,4-triazol-
3- yl, 4H-l,2,4-triazol-4-yl, lH-tetrazol-l-yl, lH-tetrazol-5-yl, 2H-tetrazol-2-yl, 2H-tetrazol-5-yl, 1,2,4- oxadiazol-3-yl, l,2,4-oxadiazol-5-yl, l,2,4-thiadiazol-3-yl, l,2,4-thiadiazol-5-yl, l,3,4-oxadiazol-2-yl, 1,3,4- thiadiazol-2-yl, l,2,3-oxadiazol-4-yl, l,2,3-oxadiazol-5-yl, l,2,3-thiadiazol-4-yl, l,2,3-thiadiazol-5-yl, 1,2,5- oxadiazol-3-yl, l,2,5-thiadiazol-3-yl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2- pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2-pyrazinyl, l,3,5-triazin-2-yl, l,2,4-triazin-3-yl, l,2,4-triazin-5-yl, l,2,4-triazin-6-yl.
If appropriate, the compounds according to the invention can be present as mixtures of different possible isomeric forms, in particular of stereoisomers, such as, for example, E and Z, threo and erythro, and also optical isomers, and, if appropriate, also of tautomers. What is claimed are both the E and the Z isomers, and also the threo and erythro, and the optical isomers, any mixtures of these isomers, and the possible tautomeric forms.
If appropriate, the compounds of the present invention can exist in one or more optical or chiral isomer forms depending on the number of asymmetric centres in the compound. The invention thus relates equally to all the optical isomers and to their racemic or scalemic mixtures (the term "scalemic" denotes a mixture of enantiomers in different proportions) and to the mixtures of all the possible stereoisomers, in all proportions. The diastereoisomers and/or the optical isomers can be separated according to the methods which are known per se by the man ordinary skilled in the art.
If appropriate, the compounds of the present invention can also exist in one or more geometric isomer forms depending on the number of double bonds in the compound. The invention thus relates equally to all geometric isomers and to all possible mixtures, in all proportions. The geometric isomers can be separated according to general methods, which are known per se by the man ordinary skilled in the art.
If appropriate, the compounds of the present invention can also exist in one or more geometric isomer forms depending on the relative position (syn/anti or cis/trans) of the substituents of ring B. The invention thus relates equally to all syn/anti (or cis/trans) isomers and to all possible syn/anti (or cis/trans) mixtures, in all proportions. The syn/anti (or cis/trans) isomers can be separated according to general methods, which are known per se by the man ordinary skilled in the art.
Illustration of the processes and intermediates
The present invention is furthermore related to processes for preparing compounds of formula (I). The present invention furthermore relates to intermediates such as compounds of formulae (IV), (V), (V a), (VI), (VII), (IX), (X), (XI) and (XXI) and the preparation thereof.
The compounds (I) can be obtained by various routes in analogy to prior art processes known (see e.g. J. Agric. Food Chem. (2009) 57, 4854-4860; EP-A 0 275 955; DE-A 40 03 180; EP-A 0 113 640; EP-A 0 126 430; WO- A 2013/007767 and references therein) and by synthesis routes shown schematically below and in the experimental part of this application. Unless indicated otherwise, the radicals Y, R, R1, R2, R3, R4, m and n have the meanings given above for the compounds of formula (I). These definitions apply not only to the end products of the formula (I) but likewise to all intermediates.
If individual compounds (I) cannot be obtained by those routes, they can be prepared by derivatization of other compounds (I).
Only for better understanding of the following Schemes the alcohols of formula (I) have been named as alcohols (I-H), although such alcohols (I-H) are encompassed by general formula (I) as defined above.
Process A (Scheme 1):
Scheme 1: Process A - Preparation of Compounds (I).
yst lyst
Figure imgf000012_0001
(VII) (I-H)
R2-LG1
Figure imgf000012_0002
(I)
X = halogen, preferably F or CI
Z = halogen, preferably Br or I
Hal = F, CI, Br or I, preferably CI or Br
LG1 = halogen, -OS02-Ci-C6-alkyl, -OSCh-aryl, -OS02-0-Ci-C6-alkyl, -OSCh-O-aryl, -OS02-NRARA wherein the "alkyl" and/or "aryl" may carry 1, 2, 3 or up to the maximum possible number of identical or different groups RB. LG2 is preferably CI, Br, I, -OS02-Ci-C6-alkyl or -OS02-p-tolyl.
RB = halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy or Ci-C i-halogenalkoxy - -
RA = hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C i-alkenyl or phenyl-C2-C4-alkynyl, which may carry substituents mentioned above for the substituents given for R1. The compounds (II) and (III) (Scheme 1) can be converted by means of methods described in the literature to the corresponding compounds (IV) and subsequently to compounds (Va), (VI), (VII), (I-H) and (I) (see WO-A 2013/007767). Phenols (II) are reacted with aryls (III), wherein X stands for F or CI and Z stands for Br or I. Z is in particular Br and the reaction is optionally performed in the presence of a base to obtain compounds (IV). These intermediates, in particular with Z being Br, are then transformed into Grignard reagents by the reaction with magnesium or by transmetallation reactions with reagents such as isopropylmagnesium halides and subsequently reacted with acetyl chloride to yield acetophenones (Va). Those reactions are preferably performed under anhydrous conditions and in the presence of a catalyst such as CuCl, CuCh, AlC , LiCl and mixtures thereof. Compounds (Va) can be halogenated in a next step, for instance with Cb or Br2 in order to obtain a-haloketones (VI). The reactions are preferably carried out in an organic solvent such as diethyl ether, methyl tert.-butyl ether, methanol or acetic acid. The halogen in a-position, preferably CI or Br, can be subsequently replaced by a 1,2,4-triazole. Preferably, this transformation is being conducted in the presence of a base, such as Na2C03, K2CO3, CS2CO3, NaOH, KOtBu, NaH or mixtures thereof, preferably in the presence of an organic solvent, such as tetrahydrofuran, dimethylformamide or toluene. Ketones (VII) are subsequently reacted with nucleophilic substrates, such as Grignard reagents R'MgBr or organolithium compounds R'Li or a hydride donor such as sodium borohydride to obtain alcohols (I-H). These transformations are preferably conducted under anhydrous conditions, optionally in the presence of a Lewis acid such as LaCl3x2LiCl or MgBr2xOEt2. After further derivatization of alcohol (I-H) with an alkylating agent R2-LG compounds of the general formula (I) can be obtained. LG is a replaceable group such as halogen, alkylsulfonyl, alkylsulfonyloxy and arylsulfonyloxy, preferably Br, I and methylsulfonyloxy. These derivatizations are optionally performed in the presence of a base such as NaH and in the presence of an organic solvent such as tetrahydrofuran.
- - Process B (Scheme 2):
Scheme 2: Process B - Preparation of Alcohols (I-H).
Figure imgf000014_0001
(l-H) (IX)
X = halogen, preferably F, CI or Br, more preferably F or CI
Z = halogen, preferably Br or I
Compounds of the general structure (III), in particular with Z being Br, are being transformed into Grignard reagents by the reaction with magnesium or by transmetallation reactions with reagents such as isopropylmagnesium halides and subsequently reacted with acyl chlorides to yield ketones (VIII). Those reactions are preferably performed under anhydrous conditions and in the presence of a catalyst such as CuCh, AlC , LiCl and mixtures thereof. Ketones (VIII) are subsequently reacted with Phenols (II), optionally in the presence of a base such as K2CO3 or CS2CO3 and a solvent such as DMF (dimethylformamide), to obtain compounds (V). Alternatively, compounds (V) can be produced by the reaction of (IV) with magnesium or transmetallation reagents and subsequent reaction with acyl chlorides R'COCl. Those reactions are preferably performed under anhydrous conditions and in the presence of a catalyst such as Q1CI2, AICI3, LiCl and mixtures thereof, Z being preferably Br. Thereafter, intermediates (V) can be converted by means of methods described in the literature to the corresponding epoxides (IX) (see e.g. EP-A 461 502, DE-A 33 15 681, EP-A 291 797, WO-A 2013/007767). Intermediates (V) are preferably reacted with trimethylsulfoxonium- or trimethylsulfonium-salts, which might be prepared in situ, preferably trimethylsulfoxonium halides, trimethylsulfonium halides, trimethylsulfoxonium methylsulfates or trimethylsulfonium methylsulfates, preferably in the presence of a base such as sodium hydroxide. Epoxides (IX) can be subsequently reacted with a 1,2,4-triazole in order to obtain compounds (I-H). Preferably, this transformation is being conducted in the presence of a base, such as Na2C03, K2CO3, CS2CO3, NaOH, KOtBu, NaH or mixtures thereof, preferably in the presence of an organic solvent, such as tetrahydrofuran, dimethylformamide or toluene. - - Process C (Scheme 3):
Scheme 3: Process C - Preparation of Compounds (I).
Figure imgf000015_0001
(I)
LG = halogen, -OS02-Ci-C6-alkyl, -OS02-aryl, -OS02-0-Ci-C6-alkyl, -OS02-0-aryl, -OS02-NRARA wherein the "alkyl" and/or "aryl" may carry 1, 2, 3 or up to the maximum possible number of identical or different groups RD, preferably CI, Br, I, -OS02-Ci-C6-alkyl or -OS02-p-tolyl, more preferably CI, Br, I or - OS02-Ci-C2-alkyl.
RD = halogen, CN, nitro, Ci-C i-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C i-halogenalkoxy
RA = hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4-alkynyl, which may carry substituents mentioned above for the substituents given for R1.
Epoxides of the general structure (IX) can be reacted with alcohols R OH to yield alcohol (X). Preferentially, this transformation is being performed in the presence of an acid. Thereafter, alcohol (X) is being prepared for a nucleophilic substitution reaction. Along those lines, the alcohol functionality in compound (X) is being reacted with halogenating agents or sulfonating agents such as PBr3, PC , MeS02Cl, tosyl chloride or thionyl chloride to obtain compounds (XI). Subsequently, Intermediates (XI) can be reacted with a 1,2,4-triazole in order to obtain compounds (I). Optionally, this transformation is being conducted in the presence of a base, such as Na2C03, K2C03, Cs2C03, NaOH, KOtBu, NaH or mixtures thereof, preferably in the presence of an organic solvent, such as tetrahydrofuran, dimethylformamide or toluene.
_ _
Process D (Scheme 4):
Scheme 4: Process D - Preparation of Intermediates (V).
R50-C(=0)-OR5
or
HO-R5
Figure imgf000016_0001
X = halogen, preferably F or CI
Z = halogen, preferably CI, Br or I, more preferably Br or I
R5 = Ci-C6-alkyl, C3-C8-cycloalkyl or aryl
R6, R7 = independently Ci-C6-alkyl or C3-C8-cycloalkyl
Compounds (III) (Scheme 4) can be converted by means of methods described in the literature to the corresponding compounds (XII) and subsequently to compounds (XIII), (XIV), (XV), (XVI) and (V). Alternatively, one or several reaction steps might be skipped. This is particularly true if certain protecting groups are not essential and thus process D might be shortened (e.g. (XII)→ (XV)).
Compounds (III), wherein X stands for F or CI and Z stands for CI, Br or I, are optionally reacted with carbon dioxide or formate salts to obtain compounds (XII). This transformation is performed in the presence of reagents or catalysts such as lithium, magnesium, n-butyllithium, methyllithium or nickel (e.g. Organic & Biomolecular Chemistry, 8(7), 1688-1694; 2010; WO-A 2003/033504; Organometallics, 13(11), 4645-7; 1994 and references cited therein). Alternatively, compound (III) is reacted in a hydroxycarbonylation reaction with carbon monoxide or a formate salt, preferentially in the presence of a catalyst such as Pd(OAc)2 and Co(OAc)2 (e.g. Dalton Transactions, 40(29), 7632-7638; 2011; Synlett, (11), 1663-1666; 2006 and references cited therein).
Subsequently, acids (XII) are reacted with anhydrides R50-C(=0)-OR5, alcohols HO-R5 or alkyl halides Z-R5 in order to obtain ester of the general structure (XIII) (e.g. Russian Journal of General Chemistry, 70 (9), 1371- 1377, 2000; Bulletin of the Chemical Society of Japan 76 (8), 1645-1667, 2003). The reactions are preferentially performed in the presence of a coupling reagent such as CDI or DEAD and/or a base such as tnethylamine or DMAP. Optionally, the corresponding acid chlorides are being formed before the reaction with alcohols HO-R5 takes place (e.g. WO-A 2007/059265). Ester (XIII) are subsequently reacted with Phenols (II), optionally in the presence of a base such as K2CO3, CS2CO3, NEt3 or DABCO and a solvent such as DMF, to obtain compounds (XIV). The following hydrolysis can be carried out in the presence of an acid such as H2SO4, HNO3 or p-toluenesulfonic acid or in the presence of a base such as KOH to yield acid (XV). Thereafter, acid (XV) can be reacted with alkoxyalkylamine, preferentially methoxymethylamine. The corresponding reaction can be carried out in the presence of reagents such as carbodiimides (e.g. WO-A 2011/076744), diimidazolyl ketone CDI, N-alkoxy-N-alkylcarbamoyl chlorides (e.g. Bulletin of the Korean Chemical Society 2002, 23, 521-524), S,S-di-2-pyridyl dithiocarbonates (e.g. Bulletin of the Korean Chemical Society 2001, 22, 421-423), trichloromethyl chloroformate (e.g. Synthetic communications 2003, 33, 4013-4018) or peptide coupling reagent HATU. Intermediates (V) can be obtained after reaction of Weinreb amides (XVI) with magnesium halides RiMgZ such as methylmagnesium bromide, methylmagnesium chloride or ethylmagnesiumbromide, preferentially in a solvent such as THF.
Process E (Scheme 5):
Scheme 5: Process E - Preparation of Intermediates (V).
Figure imgf000017_0001
z : halogen, preferably CI, Br or I, more preferably Br or I
R8 -B(OH)2, Br, I, -I+-aryl,
R9 : Ci-C6-alkyl, Cs-Cs-cycloalkyl
Rio C2-C6-alkyl
Amines (XVII) (Scheme 5) can be converted to the corresponding alcohols (XVIII) by means of methods described in the literature (e.g. Journal of Medicinal Chemistry 1999, 42, 95-108; WO-A 2007/017754; WO-A 2007/016525; Tetrahedron let. 2003, 44, 725-728), preferentially in the presence of sulfuric acid or hydrochloric acid as well as NaN02. Subsequently, alcohols (XVIII) can be converted to compounds of the general structure (IV) by literature know methods (e.g. Chemistry - A European Journal 2012, 18, 1414014149; Organic Letters 2011, 13, 1552-1555; Synlett 2012, 23, 101-106; WO-A 2005/040112; Organic Letters 2007, 9, 643-646; WO- - -
A 2009/044160 and references cited therein). Compounds (XIX) could be for instance aryliodides which are optionally converted to diaryliodonium salts prior to the reaction, arylbromides or -iodides which are preferably reacted in the presence of a catalyst such as Cu or Cul or arylboronic acids or -esters which are preferentially reacted in the presence of a catalyst such as Cu(OAc)2. Compounds (IV) can be reacted with a stannane such as (XX) in the presence of a transition metal catalyst such as Pd(PPli3)4, PdCb(PPh3)2, PdCb or Cul (e.g. WO-A 2011/126960; WO-A 2011/088025; Journal of Organic Chemistry 1997, 62, 2774-2781; WO-A 2005/019212). Compounds (XXI) can be subsequently hydrolyzed to yield compounds (V), wherein R1 is representd by C1-C6- alkyl, preferentially in the presence of an acid such as HC1 or H2SO4 (e.g. Journal of Organic Chemistry 1990, 55, 3114-3118). Compounds (V) can be alternatively produced by the reaction of (IV) with magnesium or transmetallation reagents and subsequent reaction with acyl chlorides R'COCl. Those reactions are preferably performed under anhydrous conditions and in the presence of a catalyst such as Q1CI2, AICI3, LiCl and mixtures thereof, Z being preferably Br.
General
The processes A to E according to the invention for preparing compounds of the formula (I) are optionally performed using one or more reaction auxiliaries.
Useful reaction auxiliaries are, as appropriate, inorganic or organic bases or acid acceptors. These preferably include alkali metal or alkaline earth metal acetates, amides, carbonates, hydrogencarbonates, hydrides, hydroxides or alkoxides, for example sodium acetate, potassium acetate or calcium acetate, lithium amide, sodium amide, potassium amide or calcium amide, sodium carbonate, potassium carbonate or calcium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate or calcium hydrogencarbonate, lithium hydride, sodium hydride, potassium hydride or calcium hydride, lithium hydroxide, sodium hydroxide, potassium hydroxide or calcium hydroxide, n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, sodium methoxide, ethoxide, n- or i-propoxide, n-, i-, s- or t-butoxide or potassium methoxide, ethoxide, n- or i-propoxide, n-, i-, s- or t-butoxide; and also basic organic nitrogen compounds, for example trimethylamine, triethylamine, tripropylamine, tributylamine, ethyldiisopropylamine, Ν,Ν-dimethylcyclohexylamine, dicyclohexylamine, ethyldicyclohexylamine, N,N- dimethylaniline, Ν,Ν-dimethylbenzylamine, pyridine, 2-methyl-, 3-methyl-, 4-methyl-, 2,4-dimethyl-, 2,6- dimethyl-, 3,4-dimethyl- and 3,5-dimethylpyridine, 5-ethyl-2-methylpyridine, 4-dimethylaminopyridine, N- methylpiperidine, l,4-diazabicyclo[2.2.2]-octane (DABCO), l,5-diazabicyclo[4.3.0]-non-5-ene (DBN) or 1,8- diazabicyclo[5.4.0]-undec-7-ene (DBU).
Useful reaction auxiliaries are, as appropriate, inorganic or organic acids. These preferably include inorganic acids, for example hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide, sulphuric acid, phosphoric acid and nitric acid, and acidic salts such as NaHS04 and KHSO4, or organic acids, for example, formic acid, carbonic acid and alkanoic acids such as acetic acid, trifluoroacetic acid, trichloroacetic acid and propionic acid, and also glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid, benzoic acid, cinnamic acid, oxalic acid, saturated or mono- or diunsaturated C6-C20 fatty acids, alkylsulphuric monoesters, alkylsulphonic acids (sulphonic acids having straight- chain or branched alkyl radicals having 1 to _ _
20 carbon atoms), arylsulphonic acids or aryldisulphonic acids (aromatic radicals, such as phenyl and naphthyl, which bear one or two sulphonic acid groups), alkylphosphonic acids (phosphonic acids having straight- chain or branched alkyl radicals having 1 to 20 carbon atoms), arylphosphonic acids or aryldiphosphonic acids (aromatic radicals, such as phenyl and naphthyl, which bear one or two phosphonic acid radicals), where the alkyl and aryl radicals may bear further substituents, for example p-toluenesulphonic acid, salicylic acid, p-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, etc.
The processes A to E according to the invention are optionally performed using one or more diluents. Useful diluents are virtually all inert organic solvents. Unless otherwise indicated for the above described processes A to E, these preferably include aliphatic and aromatic, optionally halogenated hydrocarbons, such as pentane, hexane, heptane, cyclohexane, petroleum ether, benzine, ligroin, benzene, toluene, xylene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride, chlorobenzene and o-dichlorobenzene, ethers such as diethyl ether, dibutyl ether and methyl tert-butyl ether, glycol dimethyl ether and diglycol dimethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl ketone, methyl isopropyl ketone and methyl isobutyl ketone, esters, such as methyl acetate and ethyl acetate, nitriles, for example acetonitrile and propionitrile, amides, for example dimethylformamide, dimethylacetamide and N-methylpyrrolidone, and also dimethyl sulphoxide, tetramethylenesulphone and hexamethylphosphoramide and DMPU.
In the processes according to the invention, the reaction temperatures can be varied within a relatively wide range. In general, the temperatures employed are between -78°C and 250°C, preferably temperatures between - 78°C and 150°C. The reaction time varies as a function of the scale of the reaction and of the reaction temperature, but is generally between a few minutes and 48 hours.
The processes according to the invention are generally performed under standard pressure. However, it is also possible to work under elevated or reduced pressure.
For performance of the processes according to the invention, the starting materials required in each case are generally used in approximately equimolar amounts. However, it is also possible to use one of the components used in each case in a relatively large excess.
After a reaction has ended, the compounds are optionally separated from the reaction mixture by one of the customary separation techniques. If necessary, the compounds are purified by recrystallization or chromatography. If appropriate, in the processes A to E according to the invention also salts and/or N-oxides of the starting compounds can be used.
The invention further relates to novel intermediates of the compounds of formula (I), which form part of the invention. _ _
Novel intermediates according to the present invention are novel compounds of formula (V)
Figure imgf000020_0001
wherein
R1 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4-alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C4-alkyl; Ci-C4-alkoxy; Ci-C4-halogenalkyl; Ci-C4-halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and Ci-C4-halogenalkoxy;
R4 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci- C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl; preferably halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy or pentafluoro-λ6-sulfanyl; with the proviso, that R4 is not represented by CF3 when R1 is represented by methyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000020_0002
, preferably from -
Figure imgf000021_0001
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein R represents CI or CF3;
R3 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy or Ci-C t-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
Particular novel intermediates of formula (V) according to the present invention are novel compounds of formula (Va)
Figure imgf000021_0002
wherein
R represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy, Ci-C i-halogenalkoxy pentafluoro^6-sulfanyl, except for CF3; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000021_0003
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen; preferably hydrogen, Ci-C2-halogenalkyl or halogen;
R3 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
Further novel intermediates according ounds of formula (VI)
Figure imgf000022_0001
wherein
Hal represents F, CI, Br or I; preferably CI or Br;
R represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci- C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl; preferably halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy or pentafluoro-λ6-sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000022_0002
, preferably from
Figure imgf000022_0003
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents Ci-C2-halogenalkyl or halogen;
R3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; - n is an integer and is 0, 1 or 2; and its salts or N-oxides.
Further novel intermediates according to the present invention are novel compounds of formula (VII)
Figure imgf000023_0001
wherein
R represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy, Ci-C i-halogenalkoxy, Ci- C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl; preferably halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy or pentafluoro-λ6-sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000023_0002
, preferably from
Figure imgf000023_0003
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen; preferably hydrogen, Ci-C2-halogenalkyl or halogen;
R3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides. - -
Compounds of formula (VII) are not only useful intermediates to produce the triazole derivatives of formula (I), but may also have fungicidal properties themselves. Hence, the invention further relates to compositions comprising these compounds, and to the use thereof as biologically active compounds, especially for control of harmful microorganisms in crop protection and in the protection of materials and as plant growth regulators.
Further novel intermediates according to the present invention are novel compounds of formula (IX)
Figure imgf000024_0001
wherein
R1 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C i-alkyl, phenyl, phenyl-Ci-C i-alkyl, phenyl-C2-C i-alkenyl or phenyl-C2-C4-alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C i-alkoxy and Ci-C i-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C i-alkyl; Ci-C i-alkoxy; Ci-C i-halogenalkyl; Ci-C i-halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-alkoxy, Ci-C i-halogenalkyl and Ci-C i-halogenalkoxy;
R4 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy Ci-C i-halogenalkoxy, Ci- C i-alkylcarbonyl, hydroxy-substituted Ci-C i-alkyl or pentafluoro^6-sulfanyl; preferably halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C4-alkoxy, Ci-C i-halogenalkoxy or pentafluoro-λ6-sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000024_0002
, preferably from - -
Figure imgf000025_0001
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen; preferably hydrogen, Ci-C2-halogenalkyl or halogen;
R3 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C t-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides. Further novel intermediates according to the present invention are novel compounds of formula (X)
Figure imgf000025_0002
wherein
R1 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C i-alkyl, phenyl, phenyl-Ci-C i-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4-alkynyl; R2 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4-alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 and/or R2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from Ra halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C4-alkyl; Ci-C4-alkoxy; Ci-C4-halogenalkyl; Ci-C4-halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 and/or R2 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from -
Rb halogen, CN, nitro, Ci-C i-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and Ci-C4-halogenalkoxy;
R represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy Ci-C4-halogenalkoxy, Ci- C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro^6-sulfanyl; preferably halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy or pentafluoro^6-sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000026_0001
, preferably from
Figure imgf000026_0002
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen; preferably hydrogen, Ci-C2-halogenalkyl or halogen; R3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
Further novel intermediates according to the present invention are novel compounds of formula (XI)
Figure imgf000026_0003
wherein - -
LG represents halogen, -OS02-Ci-C6-alkyl, -OS02-aryl, -OS02-0-Ci-C6-alkyl, -OS02-0-aryl, -OS02- NRARA wherein the "alkyl" and/or "aryl" may carry 1, 2, 3 or up to the maximum possible number of identical or different groups RD; wherein RD represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy or Ci-C4-halogenalkoxy;
RA represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl- Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4-alkynyl, wherein the aliphatic moieties, excluding cycloalkyl moieties, of RA may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Rc which independently of one another are selected from Rc halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C4-alkyl; Ci-C4-alkoxy; Ci-C4-halogenalkyl; Ci-C4-halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of RA may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rd which independently of one another are selected from Rd halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and Ci-C4-halogenalkoxy;
R1 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4-alkynyl;
R2 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4-alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 and/or R2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C4-alkyl; Ci-C4-alkoxy; Ci-C4-halogenalkyl; Ci-C4-halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 and/or R2 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and Ci-C4-halogenalkoxy; -
R represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci- C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro^6-sulfanyl; preferably halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy or pentafluoro^6-sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000028_0001
, preferably from
Figure imgf000028_0002
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen; preferably hydrogen, Ci-C2-halogenalkyl or halogen;
R3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
LG preferably represents CI, Br, I, -OSCh-Ci-Ce-alkyl or -OSCh-p-tolyl, more preferably CI, Br, I or -OSO2-C1- C2-alkyl.
Further intermediates according to the present invention are compounds of formula (XVI)
Figure imgf000028_0003
wherein -
R represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci- C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro^6-sulfanyl, except for Br; preferably halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy or pentafluoro- λ6-8ΐι^^1, except for Br; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000029_0001
, preferably from
Figure imgf000029_0002
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen; preferably hydrogen, Ci-C2-halogenalkyl or halogen;
R3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; n is an integer and is 0, 1 or 2;
R6, R7 independent from each other represent Ci-C6-alkyl or C3-C8-cycloalkyl; and its salts or N-oxides.
Further novel intermediates according to the present invention are novel compounds of formula (XXI)
Figure imgf000029_0003
wherein -
R1 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-Ci- C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C i-alkenyl or phenyl-C2-C4-alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C4-alkyl; Ci-C4-alkoxy; Ci-C4-halogenalkyl; Ci-C4-halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and Ci-C4-halogenalkoxy;
R4 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy, Ci- C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl, except for Br; preferably halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4-halogenalkoxy or pentafluoro- λ6-sulfanyl, except for Br; m is an integer and is 0, 1, 2, 3, 4 or 5;
R9 represents Ci-C6-alkyl or C3-C8-cycloalkyl;
R10 represents C2-C6-alkyl;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000030_0001
, preferably from
Figure imgf000030_0002
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein _ _
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen; preferably hydrogen, Ci-C2-halogenalkyl or halogen;
R3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C i-halogenalkyl, Ci-C4-alkoxy or Ci-C4-halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
Preferred radical definitions for R1 and R2, R4, m, Y, R, R3, n have already been given above for the compounds of fomula (I). Such preferred radical definitions shall also apply for compounds of formula (V), (Va), (VI), (VII), (IX), (X), (XI), (XVI) and (XXI).
The compounds of the formulae (I), (V), (Va), (VI), (VII), (IX), (X), (XI), (XVI) and (XXI) according to the invention can be converted into physiologically acceptable salts, e.g. as acid addition salts or metal salt complexes.
Depending on the nature of the substituents defined above, the compounds of the formula (I) have acidic or basic properties and can form salts, if appropriate also inner salts, or adducts with inorganic or organic acids or with bases or with metal ions. If the compounds of the formula (I) carry amino, alkylamino or other groups which induce basic properties, these compounds can be reacted with acids to give salts, or they are directly obtained as salts in the synthesis. If the compounds of the formula (I) carries hydroxyl, carboxyl or other groups which induce acidic properties, these compounds can be reacted with bases to give salts. Suitable bases are, for example, hydroxides, carbonates, bicarbonates of the alkali metals and alkaline earth metals, in particular those of sodium, potassium, magnesium and calcium, furthermore ammonia, primary, secondary and tertiary amines having (Ci-C4)-alkyl groups, mono-, di- and trialkanolamines of (Ci-C4)-alkanols, choline and also chlorocholine.
The salts obtainable in this manner also have fungicidal properties.
Examples of inorganic acids are hydrohalic acids, such as hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide, sulphuric acid, phosphoric acid and nitric acid, and acidic salts, such as NaHS04 and KHSO4. Suitable organic acids are, for example, formic acid, carbonic acid and alkanoic acids, such as acetic acid, trifluoroacetic acid, trichloroacetic acid and propionic acid, and also glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid, benzoic acid, cinnamic acid, maleic acid, fumaric acid, tartaric acid, sorbic acid oxalic acid, alkylsulphonic acids (sulphonic acids having straight- chain or branched alkyl radicals of 1 to 20 carbon atoms), arylsulphonic acids or aryldisulphonic acids (aromatic radicals, such as phenyl and naphthyl, which carry one or two sulphonic acid groups), alkylphosphonic acids (phosphonic acids having straight- chain or branched alkyl radicals of 1 to 20 carbon atoms), arylphosphonic acids or aryldiphosphonic acids (aromatic radicals, such as phenyl and naphthyl, which carry one or two phosphonic acid radicals), where the alkyl and aryl radicals may carry further substituents, for example p-toluenesulphonic acid, 1,5-naphthalenedisulphonic acid, salicylic acid, p-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, etc. _
Suitable metal ions are in particular the ions of the elements of the second main group, in particular calcium and magnesium, of the third and fourth main group, in particular aluminium, tin and lead, and also of the first to eighth transition group, in particular chromium, manganese, iron, cobalt, nickel, copper, zinc and others. Particular preference is given to the metal ions of the elements of the fourth period. Here, the metals can be present in various valencies that they can assume.
The acid addition salts of the compounds of the formula (I) can be obtained in a simple manner by customary methods for forming salts, for example by dissolving a compound of the formula (I) in a suitable inert solvent and adding the acid, for example hydrochloric acid, and be isolated in a known manner, for example by filtration, and, if required, be purified by washing with an inert organic solvent. Suitable anions of the salts are those which are preferably derived from the following acids: hydrohalic acids, such as, for example, hydrochloric acid and hydrobromic acid, furthermore phosphoric acid, nitric acid and sulphuric acid.
The metal salt complexes of compounds of the formula (I) can be obtained in a simple manner by customary processes, for example by dissolving the metal salt in alcohol, for example ethanol, and adding the solution to the compound of the formula (I). Metal salt complexes can be isolated in a known manner, for example by filtration, and, if required, be purified by recrystallization.
Salts of the intermediates can also be prepared according to the processes mentioned above for the salts of compounds of formula (I).
N-oxides of compounds of the formula (I) or intermediates thereof can be obtained in a simple manner by customary processes, for example by N-oxidation with hydrogen peroxide (H2O2), peracids, for example peroxy sulfuric acid or peroxy carboxylic acids, such as meta-chloroperoxybenzoic acid or peroxymonosulfuric acid (Caro's acid).
E.g. the corresponding N-oxides may be prepared starting from compounds (I) using conventional oxidation methods, e.g. by treating compounds (I) with an organic peracid such as metachloroperbenzoic acid (e.g. WO-A 2003/64572 or J. Med. Chem. 38 (11), 1892-1903, 1995); or with inorganic oxidizing agents such as hydrogen peroxide (e.g. J. Heterocyc. Chem. 18 (7), 1305-1308, 1981) or oxone (e.g. J. Am. Chem. Soc. 123 (25), 5962- 5973, 2001). The oxidation may lead to pure mono-N-oxides or to a mixture of different N-oxides, which can be separated by conventional methods such as chromatography.
Composition / Formulation The present invention further relates to a crop protection composition for controlling harmful microorganisms, especially unwanted fungi and bacteria, comprising an effective and non-phytotoxic amount of the inventive active ingredients. These are preferably fungicidal compositions which comprise agriculturally suitable auxiliaries, like solvents, carriers, surfactants or extenders. _ .
In the context of the present invention, "control of harmful microorganisms" means a reduction in infestation by harmful microorganisms, compared with the untreated plant measured as fungicidal efficacy, preferably a reduction by 25-50 %, compared with the untreated plant (100 %), more preferably a reduction by 40-79 %, compared with the untreated plant (100 %); even more preferably, the infection by harmful microorganisms is entirely suppressed (by 70-100 %). The control may be curative, i.e. for treatment of already infected plants, or protective, for protection of plants which have not yet been infected.
An "effective but non-phytotoxic amount" means an amount of the inventive composition which is sufficient to control the fungal disease of the plant in a satisfactory manner or to eradicate the fungal disease completely, and which, at the same time, does not cause any significant symptoms of phytotoxicity. In general, this application rate may vary within a relatively wide range. It depends on several factors, for example on the fungus to be controlled, the plant, the climatic conditions and the ingredients of the inventive compositions.
Suitable organic solvents include all polar and non-polar organic solvents usually employed for formulation purposes. Preferable the solvents are selected from ketones, e.g. methyl-isobutyl-ketone and cyclohexanone, amides, e.g. dimethyl formamide and alkanecarboxylic acid amides, e.g. Ν,Ν-dimethyl decaneamide and N,N- dimethyl octanamide, furthermore cyclic solvents, e.g. N-methyl-pyrrolidone, N-octyl-pyrrolidone, N-dodecyl- pyrrolidone, N-octyl-caprolactame, N-dodecyl-caprolactame and butyrolactone, furthermore strong polar solvents, e.g. dimethylsulfoxide, and aromatic hydrocarbons, e.g. xylol, Solvesso™, mineral oils, e.g. white spirit, petroleum, alkyl benzenes and spindle oil, also esters, e.g. propyleneglycol-monomethylether acetate, adipic acid dibutylester, acetic acid hexylester, acetic acid heptylester, citric acid tri-w-butylester and phthalic acid di-w-butylester, and also alkohols, e.g. benzyl alcohol and l-methoxy-2-propanol.
According to the invention, a carrier is a natural or synthetic, organic or inorganic substance with which the active ingredients are mixed or combined for better applicability, in particular for application to plants or plant parts or seed. The carrier, which may be solid or liquid, is generally inert and should be suitable for use in agriculture. Useful solid or liquid carriers include: for example ammonium salts and natural rock dusts, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and synthetic rock dusts, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils, and derivatives thereof. Mixtures of such carriers can likewise be used.
Suitable solid filler and carrier include inorganic particles, e.g. carbonates, silikates, sulphates and oxides with an average particle size of between 0.005 and 20 μπι, preferably of between 0.02 to 10 μπι, for example ammonium sulphate, ammonium phosphate, urea, calcium carbonate, calcium sulphate, magnesium sulphate, magnesium oxide, aluminium oxide, silicium dioxide, so-called fine-particle silica, silica gels, natural or synthetic silicates, and alumosilicates and plant products like cereal flour, wood powder/sawdust and cellulose powder.
Useful solid carriers for granules include: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite, and synthetic granules of inorganic and organic meals, and also granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks. _ _
Useful liquefied gaseous extenders or carriers are those liquids which are gaseous at standard temperature and under standard pressure, for example aerosol propellants such as halohydrocarbons, and also butane, propane, nitrogen and carbon dioxide.
In the formulations, it is possible to use tackifiers such as carboxymethylcellulose, and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, or else natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids. Further additives may be mineral and vegetable oils.
If the extender used is water, it is also possible to employ, for example, organic solvents as auxiliary solvents. Useful liquid solvents are essentially: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, for example mineral oil fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, and also water.
Suitable surfactants (adjuvants, emulsifiers, dispersants, protective colloids, wetting agent and adhesive) include all common ionic and non-ionic substances, for example ethoxylated nonylphenols, polyalkylene glycolether of linear or branched alcohols, reaction products of alkyl phenols with ethylene oxide and/or propylene oxide, reaction products of fatty acid amines with ethylene oxide and/or propylene oxide, furthermore fattic acid esters, alkyl sulfonates, alkyl sulphates, alkyl ethersulphates, alkyl etherphosphates, arylsulphate, ethoxylated arylalkylphenols, e.g. tristyryl-phenol-ethoxylates, furthermore ethoxylated and propoxylated arylalkylphenols like sulphated or phosphated arylalkylphenol-ethoxylates and -ethoxy- and -propoxylates. Further examples are natural and synthetic, water soluble polymers, e.g. lignosulphonates, gelatine, gum arabic, phospholipides, starch, hydrophobic modified starch and cellulose derivatives, in particular cellulose ester and cellulose ether, further polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, polyacrylic acid, polymethacrylic acid and co-polymerisates of (meth)acrylic acid and (meth)acrylic acid esters, and further co-polymerisates of methacrylic acid and methacrylic acid esters which are neutralized with alkalimetal hydroxide and also condensation products of optionally substituted naphthalene sulfonic acid salts with formaldehyde. The presence of a surfactant is necessary if one of the active ingredients and/or one of the inert carriers is insoluble in water and when application is effected in water. The proportion of surfactants is between 5 and 40 per cent by weight of the inventive composition.
It is possible to use dyes such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
Antifoams which may be present in the formulations include e.g. silicone emulsions, longchain alcohols, fattiy acids and their salts as well as fluoroorganic substances and mixtures therof.
Examples of thickeners are polysaccharides, e.g. xanthan gum or veegum, silicates, e.g. attapulgite, bentonite as well as fine-particle silica.
If appropriate, it is also possible for other additional components to be present, for example protective colloids, binders, adhesives, thickeners, thixotropic substances, penetrants, stabilizers, sequestrants, complexing agents. _ _
In general, the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
The inventive active ingredients or compositions can be used as such or, depending on their particular physical and/or chemical properties, in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold-fogging concentrates, warm-fogging concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seed, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, gas (under pressure), gas generating product, foams, pastes, pesticide coated seed, suspension concentrates, suspoemulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble and water-dispersible granules or tablets, water-soluble and water-dispersible powders for the treatment of seed, wettable powders, natural products and synthetic substances impregnated with active ingredient, and also microencapsulations in polymeric substances and in coating materials for seed, and also ULV cold- fogging and warm- fogging formulations.
The inventive compositions include not only formulations which are already ready for use and can be applied with a suitable apparatus to the plant or the seed, but also commercial concentrates which have to be diluted with water prior to use. Customary applications are for example dilution in water and subsequent spraying of the resulting spray liquor, application after dilution in oil, direct application without dilution, seed treatment or soil application of granules.
The inventive compositions and formulations generally contain between 0.05 and 99 % by weight, 0.01 and 98 % by weight, preferably between 0.1 and 95 % by weight, more preferably between 0.5 and 90 % of active ingredient, most preferably between 10 and 70 % by weight. For special applications, e.g. for protection of wood and derived timber products the inventive compositions and formulations generally contain between 0.0001 and 95 % by weight, preferably 0.001 to 60 % by weight of active ingredient.
The contents of active ingredient in the application forms prepared from the commercial formulations may vary in a broad range. The concentration of the active ingredients in the application forms is generally between 0.000001 to 95 % by weight, preferably between 0.0001 and 2 % by weight.
The formulations mentioned can be prepared in a manner known per se, for example by mixing the active ingredients with at least one customary extender, solvent or diluent, adjuvant, emulsifier, dispersant, and/or binder or fixative, wetting agent, water repellent, if appropriate desiccants and UV stabilizers and, if appropriate, dyes and pigments, antifoams, preservatives, inorganic and organic thickeners, adhesives, gibberellins and also further processing auxiliaries and also water. Depending on the formulation type to be prepared further processing steps are necessary, e.g. wet grinding, dry grinding and granulation.
The inventive active ingredients may be present as such or in their (commercial) formulations and in the use forms prepared from these formulations as a mixture with other (known) active ingredients, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers, safeners and/or semiochemicals.
The inventive treatment of the plants and plant parts with the active ingredients or compositions is effected directly or by action on their surroundings, habitat or storage space by the customary treatment methods, for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading- - - on, watering (drenching), drip irrigating and, in the case of propagation material, especially in the case of seeds, also by dry seed treatment, wet seed treatment, slurry treatment, incrustation, coating with one or more coats, etc. It is also possible to deploy the active ingredients by the ultra-low volume method or to inject the active ingredient preparation or the active ingredient itself into the soil. Plant/Crop Protection
The inventive active ingredients or compositions have potent microbicidal activity and can be used for control of unwanted microorganisms, such as fungi and bacteria, in crop protection and in the protection of materials. The invention also relates to a method for controlling unwanted microorganisms, characterized in that the inventive active ingredients are applied to the phytopathogenic fungi, phytopathogenic bacteria and/or their habitat.
Fungicides can be used in crop protection for control of phytopathogenic fungi. They are characterized by an outstanding efficacy against a broad spectrum of phytopathogenic fungi, including soilborne pathogens, which are in particular members of the classes Plasmodiophoromycetes, Peronosporomycetes (Syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes (Syn. Fungi imperfecti). Some fungicides are systemically active and ca be used in plant protection as foliar, seed dressing or soil fungicide. Furthermore, they are suitable for combating fungi, which inter alia infest wood or roots of plant. Bactericides can be used in crop protection for control of Pseudomonadaceae, Rhizobiaceae, Enter obacteriaceae, Corynebacteriaceae and Streptomycetaceae.
Non-limiting examples of pathogens of fungal diseases which can be treated in accordance with the invention include:
diseases caused by powdery mildew pathogens, for example Blumeria species, for example Blumeria graminis; Podosphaera species, for example Podosphaera leucotricha; Sphaerotheca species, for example Sphaerotheca fuliginea; Uncinula species, for example Uncinula necator;
diseases caused by rust disease pathogens, for example Gymnosporangium species, for example Gymnosporangium sabinae; Hemileia species, for example Hemileia vastatrix; Phakopsora species, for example Phakopsora pachyrhizi and Phakopsora meibomiae; Puccinia species, for example Puccinia recondite,
P. triticina, P. graminis or P. striiformis; Uromyces species, for example Uromyces appendiculatus;
diseases caused by pathogens from the group of the Oomycetes, for example Albugo species, for example
Algubo Candida; Bremia species, for example Bremia lactucae; Peronospora species, for example Peronospora pisi or P. brassicae; Phytophthora species, for example Phytophthora infestans; Plasmopara species, for example Plasmopara viticola; Pseudoperonospora species, for example Pseudoperonospora humuli or
Pseudoperonospora cubensis; Pythium species, for example Pythium ultimum;
leaf blotch diseases and leaf wilt diseases caused, for example, by Alternaria species, for example Alternaria solani; Cercospora species, for example Cercospora beticola; Cladiosporium species, for example Cladiosporium cucumerinum; Cochliobolus species, for example Cochliobolus sativus (conidia form: Drechslera, Syn: Helminthosporium), Cochliobolus miyabeanus; Colletotrichum species, for example Colletotrichum lindemuthanium; Cycloconium species, for example Cycloconium oleaginum; Diaporthe species, for example Diaporthe citri; Elsinoe species, for example Elsinoe fawcettii; Gloeosporium species, for - - example Gloeosporium laeticolor; Glomerella species, for example Glomerella cingulata; Guignardia species, for example Guignardia bidwelli; Leptosphaeria species, for example Leptosphaeria maculans, Leptosphaeria nodorum; Magnaporthe species, for example Magnaporthe grisea; Microdochium species, for example Microdochium nivale; Mycosphaerella species, for example Mycosphaerella graminicola, M. arachidicola and M. fljiensis; Phaeosphaeria species, for example Phaeosphaeria nodorum; Pyrenophora species, for example Pyrenophora teres, Pyrenophora tritici repentis; Ramularia species, for example Ramularia collo-cygni, Ramularia areola; Rhynchosporium species, for example Rhynchosporium secalis; Septoria species, for example Septoria apii, Septoria lycopersii; Typhula species, for example Typhula incarnata; Venturia species, for example Venturia inaequalis;
root and stem diseases caused, for example, by Corticium species, for example Corticium graminearum; Fusarium species, for example Fusarium oxysporum; Gaeumannomyces species, for example Gaeumannomyces graminis; Rhizoctonia species, such as, for example Rhizoctonia solani; Sarocladium diseases caused for example by Sarocladium oryzae; Sclerotium diseases caused for example by Sclerotium oryzae; Tapesia species, for example Tapesia acuformis; Thielaviopsis species, for example Thielaviopsis basicola;
ear and panicle diseases (including corn cobs) caused, for example, by Alternaria species, for example Alternaria spp.; Aspergillus species, for example Aspergillus flavus; Cladosporium species, for example Cladosporium cladosporioides; Claviceps species, for example Claviceps purpurea; Fusarium species, for example Fusarium culmorum; Gibberella species, for example Gibberella zeae; Monographella species, for example Monographella nivalis; Septoria species, for example Septoria nodorum;
diseases caused by smut fungi, for example Sphacelotheca species, for example Sphacelotheca reiliana; Tilletia species, for example Tilletia caries, T. controversa; Urocystis species, for example Urocystis occulta; Ustilago species, for example Ustilago nuda, U. nuda tritici;
fruit rot caused, for example, by Aspergillus species, for example Aspergillus flavus; Botrytis species, for example Botrytis cinerea; Penicillium species, for example Penicillium expansum and P. purpurogenum; Sclerotinia species, for example Sclerotinia sclerotiorum; Verticilium species, for example Verticilium alboatrum;
seed and soilborne decay, mould, wilt, rot and damping-off diseases caused, for example, by Alternaria species, caused for example by Alternaria brassicicola; Aphanomyces species, caused for example by Aphanomyces euteiches; Ascochyta species, caused for example by Ascochyta lentis; Aspergillus species, caused for example by Aspergillus flavus; Cladosporium species, caused for example by Cladosporium herbarum; Cochliobolus species, caused for example by Cochliobolus sativus; (Conidiaform: Drechslera, Bipolaris Syn: Helminthosporium); Colletotrichum species, caused for example by Colletotrichum coccodes; Fusarium species, caused for example by Fusarium culmorum; Gibberella species, caused for example by Gibberella zeae; Macrophomina species, caused for example by Macrophomina phaseolina; Monographella species, caused for example by Monographella nivalis; Penicillium species, caused for example by Penicillium expansum; Phoma species, caused for example by Phoma lingam; Phomopsis species, caused for example by Phomopsis sojae; Phytophthora species, caused for example by Phytophthora cactorum; Pyrenophora species, caused for example by Pyrenophora graminea; Pyricularia species, caused for example by Pyricularia oryzae; - -
Pythium species, caused for example by Pythium ultimum; Rhizoctonia species, caused for example by Rhizoctonia solani; Rhizopus species, caused for example by Rhizopus oryzae; Sclerotium species, caused for example by Sclerotium rolfsii; Septoria species, caused for example by Septoria nodorum; Typhula species, caused for example by Typhula incarnata; Verticillium species, caused for example by Verticillium dahliae; cancers, galls and witches' broom caused, for example, by Nectria species, for example Nectria galligena; wilt diseases caused, for example, by Monilinia species, for example Monilinia laxa;
leaf blister or leaf curl diseases caused, for example, by Exobasidium species, for example Exobasidium vexans; Taphrina species, for example Taphrina deformans;
decline diseases of wooden plants caused, for example, by Esca disease, caused for example by Phaemoniella clamydospora, Phaeoacremonium aleophilum and Fomitiporia mediterranea; Eutypa dyeback, caused for example by Eutypa lata ; Ganoderma diseases caused for example by Ganoderma boninense; Rigidoporus diseases caused for example by Rigidoporus lignosus;
diseases of flowers and seeds caused, for example, by Botrytis species, for example Botrytis cinerea;
diseases of plant tubers caused, for example, by Rhizoctonia species, for example Rhizoctonia solani; Helminthosporium species, for example Helminthosporium solani;
Club root caused, for example, by Plasmodiophora species, for example Plamodiophora brassicae;
diseases caused by bacterial pathogens, for example Xanthomonas species, for example Xanthomonas campestris pv. oryzae; Pseudomonas species, for example Pseudomonas syringae pv. lachrymans; Erwinia species, for example Erwinia amylovora.
The following diseases of soya beans can be controlled with preference:
Fungal diseases on leaves, stems, pods and seeds caused, for example, by Alternaria leaf spot (Alternaria spec, atrans tenuissima), Anthracnose (Colletotrichum gloeosporoides dematium var. truncatum), brown spot (Septoria glycines), cercospora leaf spot and blight (Cercospora kikuchii), choanephora leaf blight (Choanephora infundibulifera trispora (Syn.)), dactuliophora leaf spot (Dactuliophora glycines), downy mildew (Peronospora manshurica), drechslera blight (Drechslera glycini), frogeye leaf spot (Cercospora sojina), leptosphaerulina leaf spot (Leptosphaerulina trifolii), phyllostica leaf spot (Phyllosticta sojaecola), pod and stem blight (Phomopsis sojae), powdery mildew (Microsphaera diffusa), pyrenochaeta leaf spot (Pyrenochaeta glycines), rhizoctonia aerial, foliage, and web blight (Rhizoctonia solani), rust (Phakopsora pachyrhizi, Phakopsora meibomiae), scab (Sphaceloma glycines), stemphylium leaf blight (Stemphylium botryosum), target spot (Corynespora cassiicola).
Fungal diseases on roots and the stem base caused, for example, by black root rot (Calonectria crotalariae), charcoal rot (Macrophomina phaseolina), fusarium blight or wilt, root rot, and pod and collar rot (Fusarium oxysporum, Fusarium orthoceras, Fusarium semitectum, Fusarium equiseti), mycoleptodiscus root rot (Mycoleptodiscus terrestris), neocosmospora (Neocosmospora vasinfecta), pod and stem blight (Diaporthe phaseolorum), stem canker (Diaporthe phaseolorum var. caulivora), phytophthora rot (Phytophthora megasperma), brown stem rot (Phialophora gregata), pythium rot (Pythium aphanidermatum, Pythium irregulare, Pythium debaryanum, Pythium myriotylum, Pythium ultimum), rhizoctonia root rot, stem decay, and damping-off (Rhizoctonia solani), sclerotinia stem decay (Sclerotinia sclerotiorum), sclerotinia southern blight (Sclerotinia rolfsii), thielaviopsis root rot (Thielaviopsis basicola). _ _
The inventive fungicidal compositions can be used for curative or protective/preventive control of phytopathogenic fungi. The invention therefore also relates to curative and protective methods for controlling phytopathogenic fungi by the use of the inventive active ingredients or compositions, which are applied to the seed, the plant or plant parts, the fruit or the soil in which the plants grow.
The fact that the active ingredients are well tolerated by plants at the concentrations required for controlling plant diseases allows the treatment of above-ground parts of plants, of propagation stock and seeds, and of the soil.
According to the invention all plants and plant parts can be treated. By plants is meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder's rights). Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods. By plant parts is meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, corms and rhizomes are listed. Crops and vegetative and generative propagating material, for example cuttings, corms, rhizomes, runners and seeds also belong to plant parts.
The inventive active ingredients, when they are well tolerated by plants, have favourable homeotherm toxicity and are well tolerated by the environment, are suitable for protecting plants and plant organs, for enhancing harvest yields, for improving the quality of the harvested material. They can preferably be used as crop protection compositions. They are active against normally sensitive and resistant species and against all or some stages of development.
Plants which can be treated in accordance with the invention include the following main crop plants: maize, soya bean, alfalfa, cotton, sunflower, Brassica oil seeds such as Brassica napus (e.g. canola, rapeseed), Brassica rapa, B.juncea (e.g. (field) mustard) and Brassica carinata, Arecaceae sp. (e.g. oilpalm, coconut), rice, wheat, sugar beet, sugar cane, oats, rye, barley, millet and sorghum, triticale, flax, nuts, grapes and vine and various fruit and vegetables from various botanic taxa, e.g. Rosaceae sp. (e.g. pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds, plums and peaches, and berry fruits such as strawberries, raspberries, red and black currant and gooseberry), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp. (e.g. olive tree), Actinidaceae sp., Lauraceae sp. (e.g. avocado, cinnamon, camphor), Musaceae sp. (e.g. banana trees and plantations), Rubiaceae sp. (e.g. coffee), Theaceae sp. (e.g. tea), Sterculiceae sp., Rutaceae sp. (e.g. lemons, oranges, mandarins and grapefruit); Solanaceae sp. (e.g. tomatoes, potatoes, peppers, capsicum, aubergines, tobacco), Liliaceae sp., Compositae sp. (e.g. lettuce, artichokes and chicory - including root chicory, endive or common chicory), Umbelliferae sp. (e.g. carrots, parsley, celery and celeriac), Cucurbitaceae sp. (e.g. cucumbers - including gherkins, pumpkins, watermelons, calabashes and melons), Alliaceae sp. (e.g. leeks and onions), Cruciferae sp. (e.g. white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, horseradish, cress and Chinese cabbage), Leguminosae sp. (e.g. peanuts, peas, lentils and beans - e.g. common beans and broad beans), Chenopodiaceae sp. (e.g. Swiss chard, fodder beet, spinach, beetroot), Linaceae sp. (e.g. hemp), Cannabeacea - - sp. (e.g. cannabis), Malvaceae sp. (e.g. okra, cocoa), Papaveraceae (e.g. poppy), Asparagaceae (e.g. asparagus); useful plants and ornamental plants in the garden and woods including turf, lawn, grass and Stevia rebaudiana; and in each case genetically modified types of these plants.
Plant Growth Regulation In some cases, the inventive compounds can, at particular concentrations or application rates, also be used as herbicides, safeners, growth regulators or agents to improve plant properties, or as microbicides, for example as fungicides, antimycotics, bactericides, viricides (including compositions against viroids) or as compositions against MLO (Mycoplasma-like organisms) and RLO (Rickettsia-like organisms). If appropriate, they can also be used as intermediates or precursors for the synthesis of other active ingredients.
The inventive active ingredients intervene in the metabolism of the plants and can therefore also be used as growth regulators.
Plant growth regulators may exert various effects on plants. The effect of the substances depends essentially on the time of application in relation to the developmental stage of the plant, and also on the amounts of active ingredient applied to the plants or their environment and on the type of application. In each case, growth regulators should have a particular desired effect on the crop plants.
Plant growth-regulating compounds can be used, for example, to inhibit the vegetative growth of the plants. Such inhibition of growth is of economic interest, for example, in the case of grasses, since it is thus possible to reduce the frequency of grass cutting in ornamental gardens, parks and sport facilities, on roadsides, at airports or in fruit crops. Also of significance is the inhibition of the growth of herbaceous and woody plants on roadsides and in the vicinity of pipelines or overhead cables, or quite generally in areas where vigorous plant growth is unwanted.
Also important is the use of growth regulators for inhibition of the longitudinal growth of cereal. This reduces or completely eliminates the risk of lodging of the plants prior to harvest. In addition, growth regulators in the case of cereals can strengthen the culm, which also counteracts lodging. The employment of growth regulators for shortening and strengthening culms allows the deployment of higher fertilizer volumes to increase the yield, without any risk of lodging of the cereal crop.
In many crop plants, inhibition of vegetative growth allows denser planting, and it is thus possible to achieve higher yields based on the soil surface. Another advantage of the smaller plants obtained in this way is that the crop is easier to cultivate and harvest.
Inhibition of the vegetative plant growth may also lead to enhanced yields because the nutrients and assimilates are of more benefit to flower and fruit formation than to the vegetative parts of the plants.
Frequently, growth regulators can also be used to promote vegetative growth. This is of great benefit when harvesting the vegetative plant parts. However, promoting vegetative growth may also promote generative growth in that more assimilates are formed, resulting in more or larger fruits.
In some cases, yield increases may be achieved by manipulating the metabolism of the plant, without any detectable changes in vegetative growth. In addition, growth regulators can be used to alter the composition of the plants, which in turn may result in an improvement in quality of the harvested products. For example, it is possible to increase the sugar content in sugar beet, sugar cane, pineapples and in citrus fruit, or to increase the _ _ protein content in soya or cereals. It is also possible, for example, to use growth regulators to inhibit the degradation of desirable ingredients, for example sugar in sugar beet or sugar cane, before or after harvest. It is also possible to positively influence the production or the elimination of secondary plant ingredients. One example is the stimulation of the flow of latex in rubber trees.
Under the influence of growth regulators, parthenocarpic fruits may be formed. In addition, it is possible to influence the sex of the flowers. It is also possible to produce sterile pollen, which is of great importance in the breeding and production of hybrid seed.
Use of growth regulators can control the branching of the plants. On the one hand, by breaking apical dominance, it is possible to promote the development of side shoots, which may be highly desirable particularly in the cultivation of ornamental plants, also in combination with an inhibition of growth. On the other hand, however, it is also possible to inhibit the growth of the side shoots. This effect is of particular interest, for example, in the cultivation of tobacco or in the cultivation of tomatoes.
Under the influence of growth regulators, the amount of leaves on the plants can be controlled such that defoliation of the plants is achieved at a desired time. Such defoliation plays a major role in the mechanical harvesting of cotton, but is also of interest for facilitating harvesting in other crops, for example in viticulture. Defoliation of the plants can also be undertaken to lower the transpiration of the plants before they are transplanted.
Growth regulators can likewise be used to regulate fruit dehiscence. On the one hand, it is possible to prevent premature fruit dehiscence. On the other hand, it is also possible to promote fruit dehiscence or even flower abortion to achieve a desired mass ("thinning"), in order to eliminate alternation. Alternation is understood to mean the characteristic of some fruit species, for endogenous reasons, to deliver very different yields from year to year. Finally, it is possible to use growth regulators at the time of harvest to reduce the forces required to detach the fruits, in order to allow mechanical harvesting or to facilitate manual harvesting.
Growth regulators can also be used to achieve faster or else delayed ripening of the harvested material before or after harvest. This is particularly advantageous as it allows optimal adjustment to the requirements of the market. Moreover, growth regulators in some cases can improve the fruit colour. In addition, growth regulators can also be used to concentrate maturation within a certain period of time. This establishes the prerequisites for complete mechanical or manual harvesting in a single operation, for example in the case of tobacco, tomatoes or coffee.
By using growth regulators, it is additionally possible to influence the resting of seed or buds of the plants, such that plants such as pineapple or ornamental plants in nurseries, for example, germinate, sprout or flower at a time when they are normally not inclined to do so. In areas where there is a risk of frost, it may be desirable to delay budding or germination of seeds with the aid of growth regulators, in order to avoid damage resulting from late frosts.
Finally, growth regulators can induce resistance of the plants to frost, drought or high salinity of the soil. This allows the cultivation of plants in regions which are normally unsuitable for this purpose.
Resistance Induction / Plant Health and other effects _ _
The active compounds according to the invention also exhibit a potent strengthening effect in plants. Accordingly, they can be used for mobilizing the defences of the plant against attack by undesirable microorganisms.
Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances which are capable of stimulating the defence system of plants in such a way that the treated plants, when subsequently inoculated with undesirable microorganisms, develop a high degree of resistance to these microorganisms.
The active compounds according to the invention are also suitable for increasing the yield of crops. In addition, they show reduced toxicity and are well tolerated by plants.
Further, in context with the present invention plant physiology effects comprise the following:
Abiotic stress tolerance, comprising temperature tolerance, drought tolerance and recovery after drought stress, water use efficiency (correlating to reduced water consumption), flood tolerance, ozone stress and UV tolerance, tolerance towards chemicals like heavy metals, salts, pesticides (safener) etc..
Biotic stress tolerance, comprising increased fungal resistance and increased resistance against nematodes, viruses and bacteria. In context with the present invention, biotic stress tolerance preferably comprises increased fungal resistance and increased resistance against nematodes
Increased plant vigor, comprising plant health / plant quality and seed vigor, reduced stand failure, improved appearance, increased recovery, improved greening effect and improved photosynthetic efficiency.
Effects on plant hormones and/or functional enzymes.
Effects on growth regulators (promoters), comprising earlier germination, better emergence, more developed root system and/or improved root growth, increased ability of tillering, more productive tillers, earlier flowering, increased plant height and/or biomass, shorting of stems, improvements in shoot growth, number of kernels/ear, number of ears/m2, number of stolons and/or number of flowers, enhanced harvest index, bigger leaves, less dead basal leaves, improved phyllotaxy, earlier maturation / earlier fruit finish, homogenous riping, increased duration of grain filling, better fruit finish, bigger fruit/vegetable size, sprouting resistance and reduced lodging. Increased yield, referring to total biomass per hectare, yield per hectare, kernel/fruit weight, seed size and/or hectolitre weight as well as to increased product quality, comprising:
improved processability relating to size distribution (kernel, fruit, etc.), homogenous riping, grain moisture, better milling, better vinification, better brewing, increased juice yield, harve stability, digestibility, sedimentation value, falling number, pod stability, storage stability, improved fiber length/strength/uniformity, increase of milk and/or meet quality of silage fed animals, adaption to cooking and frying;
further comprising improved marketability relating to improved fruit/grain quality, size distribution (kernel, fruit, etc.), increased storage / shelf-life, firmness / softness, taste (aroma, texture, etc.), grade (size, shape, number of berries, etc.), number of berries/fruits per bunch, crispness, freshness, coverage with wax, frequency of physiological disorders, colour, etc.;
further comprising increased desired ingredients such as e.g. protein content, fatty acids, oil content, oil quality, aminoacid composition, sugar content, acid content (pH), sugar/acid ratio (Brix), polyphenols, starch content, nutritional quality, gluten content/index, energy content, taste, etc.; _ . and further comprising decreased undesired ingredients such as e.g. less mycotoxines, less aflatoxines, geosmin level, phenolic aromas, lacchase, polyphenol oxidases and peroxidases, nitrate content etc.
Sustainable agriculture, comprising nutrient use efficiency, especially nitrogen (N)-use efficiency, phosphours (P)-use efficiency, water use efficiency, improved transpiration, respiration and/or CO2 assimilation rate, better nodulation, improved Ca-metabolism etc..
Delayed senescence, comprising improvement of plant physiology which is manifested, for example, in a longer grain filling phase, leading to higher yield, a longer duration of green leaf colouration of the plant and thus comprising colour (greening), water content, dryness etc.. Accordingly, in the context of the present invention, it has been found that the specific inventive application of the active compound combination makes it possible to prolong the green leaf area duration, which delays the maturation (senescence) of the plant. The main advantage to the farmer is a longer grain filling phase leading to higher yield. There is also an advantage to the farmer on the basis of greater flexibility in the harvesting time.
Therein "sedimentation value" is a measure for protein quality and describes according to Zeleny (Zeleny value) the degree of sedimentation of flour suspended in a lactic acid solution during a standard time interval. This is taken as a measure of the baking quality. Swelling of the gluten fraction of flour in lactic acid solution affects the rate of sedimentation of a flour suspension. Both a higher gluten content and a better gluten quality give rise to slower sedimentation and higher Zeleny test values. The sedimentation value of flour depends on the wheat protein composition and is mostly correlated to the protein content, the wheat hardness, and the volume of pan and hearth loaves. A stronger correlation between loaf volume and Zeleny sedimentation volume compared to SDS sedimentation volume could be due to the protein content influencing both the volume and Zeleny value ( Czech J. FoodSci. Vol. 21, No. 3: 91-96, 2000).
Further the "falling number" as mentioned herein is a measure for the baking quality of cereals, especially of wheat. The falling number test indicates that sprout damage may have occurred. It means that changes to the physical properties of the starch portion of the wheat kernel has already happened. Therein, the falling number instrument analyzes viscosity by measuring the resistance of a flour and water paste to a falling plunger. The time (in seconds) for this to happen is known as the falling number. The falling number results are recorded as an index of enzyme activity in a wheat or flour sample and results are expressed in time as seconds. A high falling number (for example, above 300 seconds) indicates minimal enzyme activity and sound quality wheat or flour. A low falling number (for example, below 250 seconds) indicates substantial enzyme activity and sprout- damaged wheat or flour.
The term "more developed root system" / "improved root growth" refers to longer root system, deeper root growth, faster root growth, higher root dry/fresh weight, higher root volume, larger root surface area, bigger root diameter, higher root stability, more root branching, higher number of root hairs, and/or more root tips and can be measured by analyzing the root architecture with suitable methodologies and Image analysis programmes (e.g. WinRhizo).
The term "crop water use efficiency" refers technically to the mass of agriculture produce per unit water consumed and economically to the value of product(s) produced per unit water volume consumed and can e.g. be measured in terms of yield per ha, biomass of the plants, thousand-kernel mass, and the number of ears per m2. - -
The term "nitrogen-use efficiency" refers technically to the mass of agriculture produce per unit nitrogen consumed and economically to the value of product(s) produced per unit nitrogen consumed, reflecting uptake and utilization efficiency.
Improvement in greening / improved colour and improved photosynthenc efficiency as well as the delay of senescence can be measured with well-known techniques such as a HandyPea system (Hansatech). Fv/Fm is a parameter widely used to indicate the maximum quantum efficiency of photosystem II (PSII). This parameter is widely considered to be a selective indication of plant photosynthenc performance with healthy samples typically achieving a maximum Fv/Fm value of approx. 0.85. Values lower than this will be observed if a sample has been exposed to some type of biotic or abiotic stress factor which has reduced the capacity for photochemical quenching of energy within PSII. Fv/Fm is presented as a ratio of variable fluorescence (Fv) over the maximum fluorescence value (Fm). The Performance Index is essentially an indicator of sample vitality. (See e.g. Advanced Techniques in Soil Microbiology, 2007, 11, 319-341; Applied Soil Ecology, 2000, 15, 169-182.)
The improvement in greening / improved colour and improved photosynthetic efficiency as well as the delay of senescence can also be assessed by measurement of the net photosynthetic rate (Pn), measurement of the chlorophyll content, e.g. by the pigment extraction method of Ziegler and Ehle, measurement of the photochemical efficiency (Fv/Fm ratio), determination of shoot growth and final root and/or canopy biomass, determination of tiller density as well as of root mortality.
Within the context of the present invention preference is given to improving plant physiology effects which are selected from the group comprising: enhanced root growth / more developed root system, improved greening, improved water use efficiency (correlating to reduced water consumption), improved nutrient use efficiency, comprising especially improved nitrogen (N)-use efficiency, delayed senescence and enhanced yield.
Within the enhancement of yield preference is given as to an improvement in the sedimentation value and the falling number as well as to the improvement of the protein and sugar content - especially with plants selected from the group of cereals (preferably wheat).
Preferably the novel use of the fungicidal compositions of the present invention relates to a combined use of a) preventively and/or curatively controlling pathogenic fungi and/or nematodes, with or without resistance management, and b) at least one of enhanced root growth, improved greening, improved water use efficiency, delayed senescence and enhanced yield. From group b) enhancement of root system, water use efficiency and N-use efficiency is particularly preferred.
Seed Treatment
The invention further comprises a method for treating seed.
The invention further relates to seed which has been treated by one of the methods described in the previous paragraph. The inventive seeds are employed in methods for the protection of seed from harmful microorganisms. In these methods, seed treated with at least one inventive active ingredient is used.
The inventive active ingredients or compositions are also suitable for treating seed. A large part of the damage to crop plants caused by harmful organisms is triggered by the infection of the seed during storage or after sowing, and also during and after germination of the plant. This phase is particularly critical since the roots and shoots of _ _ the growing plant are particularly sensitive, and even minor damage may result in the death of the plant. There is therefore a great interest in protecting the seed and the germinating plant by using appropriate compositions.
The control of phytopathogenic fungi by treating the seed of plants has been known for a long time and is the subject of constant improvements. However, the treatment of seed entails a series of problems which cannot always be solved in a satisfactory manner. For instance, it is desirable to develop methods for protecting the seed and the germinating plant, which dispense with, or at least significantly reduce, the additional deployment of crop protection compositions after planting or after emergence of the plants. It is also desirable to optimize the amount of the active ingredient used so as to provide the best possible protection for the seed and the germinating plant from attack by phytopathogenic fungi, but without damaging the plant itself by the active ingredient employed. In particular, methods for the treatment of seed should also take account of the intrinsic fungicidal properties of transgenic plants in order to achieve optimal protection of the seed and the germinating plant with a minimum expenditure of crop protection compositions.
The present invention therefore also relates to a method for protection of seed and germinating plants from attack by phytopathogenic fungi, by treating the seed with an inventive composition. The invention likewise relates to the use of the inventive compositions for treatment of seed to protect the seed and the germinating plant from phytopathogenic fungi. The invention further relates to seed which has been treated with an inventive composition for protection from phytopathogenic fungi.
The control of phytopathogenic fungi which damage plants post-emergence is effected primarily by treating the soil and the above-ground parts of plants with crop protection compositions. Owing to the concerns regarding a possible influence of the crop protection compositions on the environment and the health of humans and animals, there are efforts to reduce the amount of active ingredients deployed.
One of the advantages of the present invention is that the particular systemic properties of the inventive active ingredients and compositions mean that treatment of the seed with these active ingredients and compositions not only protects the seed itself, but also the resulting plants after emergence, from phytopathogenic fungi. In this way, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.
It is likewise considered to be advantageous that the inventive active ingredients or compositions can especially also be used with transgenic seed, in which case the plant growing from this seed is capable of expressing a protein which acts against pests. By virtue of the treatment of such seed with the inventive active ingredients or compositions, merely the expression of the protein, for example an insecticidal protein, can control certain pests. Surprisingly, a further synergistic effect can be observed in this case, which additionally increases the effectiveness for protection against attack by pests.
The inventive compositions are suitable for protecting seed of any plant variety which is used in agriculture, in greenhouses, in forests or in horticulture and viticulture. In particular, this is the seed of cereals (such as wheat, barley, rye, triticale, sorghum/millet and oats), maize, cotton, soya beans, rice, potatoes, sunflower, bean, coffee, beet (for example sugar beet and fodder beet), peanut, oilseed rape, poppy, olive, coconut, cocoa, sugar cane, tobacco, vegetables (such as tomato, cucumbers, onions and lettuce), turf and ornamentals (see also below). The treatment of the seed of cereals (such as wheat, barley, rye, triticale and oats), maize and rice is of particular significance. _ _
As also described below, the treatment of transgenic seed with the inventive active ingredients or compositions is of particular significance. This relates to the seed of plants containing at least one heterologous gene. Definition and examples of suitable heterologous genes are given below.
In the context of the present invention, the inventive composition is applied to the seed alone or in a suitable formulation. Preferably, the seed is treated in a state in which it is sufficiently stable for no damage to occur in the course of treatment. In general, the seed can be treated at any time between harvest and sowing. It is customary to use seed which has been separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. For example, it is possible to use seed which has been harvested, cleaned and dried down to a moisture content of less than 15 % by weight. Alternatively, it is also possible to use seed which, after drying, for example, has been treated with water and then dried again.
When treating the seed, care must generally be taken that the amount of the inventive composition applied to the seed and/or the amount of further additives is selected such that the germination of the seed is not impaired, or that the resulting plant is not damaged. This has to be borne in mind in particular in the case of active ingredients which can have phytotoxic effects at certain application rates.
The inventive compositions can be applied directly, i.e. without containing any other components and without having been diluted. In general, it is preferable to apply the compositions to the seed in the form of a suitable formulation. Suitable formulations and methods for seed treatment are known to those skilled in the art and are described, for example, in the following documents: US 4,272,417, US 4,245,432, US 4,808,430, US 5,876,739, US 2003/0176428 Al, WO 2002/080675, WO 2002/028186.
The active ingredients usable in accordance with the invention can be converted to the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.
These formulations are prepared in a known manner, by mixing the active ingredients with customary additives, for example customary extenders and also solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, adhesives, gibberellins and also water.
Useful dyes which may be present in the seed dressing formulations usable in accordance with the invention are all dyes which are customary for such purposes. It is possible to use either pigments, which are sparingly soluble in water, or dyes, which are soluble in water. Examples include the dyes known by the names Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1.
Useful wetting agents which may be present in the seed dressing formulations usable in accordance with the invention are all substances which promote wetting and which are conventionally used for the formulation of active agrochemical ingredients. Preference is given to using alkyl naphthalenesulphonates, such as diisopropyl or diisobutyl naphthalenesulphonates.
Useful dispersants and/or emulsifiers which may be present in the seed dressing formulations usable in accordance with the invention are all nonionic, anionic and canonic dispersants conventionally used for the formulation of active agrochemical ingredients. Usable with preference are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Suitable nonionic dispersants include especially ethylene oxide/propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ether, and the phosphated or _ _ sulphated derivatives thereof. Suitable anionic dispersants are especially lignosulphonates, polyacrylic acid salts and arylsulphonate/formaldehyde condensates.
Antifoams which may be present in the seed dressing formulations usable in accordance with the invention are all foam-inhibiting substances conventionally used for the formulation of active agrochemical ingredients. Silicone antifoams and magnesium stearate can be used with preference.
Preservatives which may be present in the seed dressing formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions. Examples include dichlorophene and benzyl alcohol hemiformal.
Secondary thickeners which may be present in the seed dressing formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions. Preferred examples include cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica.
Adhesives which may be present in the seed dressing formulations usable in accordance with the invention are all customary binders usable in seed dressing products. Preferred examples include polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose.
The gibberellins which may be present in the seed dressing formulations usable in accordance with the invention may preferably be gibberellins Al, A3 (= gibberellic acid), A4 and A7; particular preference is given to using gibberellic acid. The gibberellins are known (cf. R. Wegler "Chemie der Pflanzenschutz- und Schadlingsbekampfungsmittel" [Chemistry of the Crop Protection Compositions and Pesticides], vol. 2, Springer Verlag, 1970, p. 401-412).
The seed dressing formulations usable in accordance with the invention can be used, either directly or after previously having been diluted with water, for the treatment of a wide range of different seed, including the seed of transgenic plants. In this case, additional synergistic effects may also occur in interaction with the substances formed by expression.
For treatment of seed with the seed dressing formulations usable in accordance with the invention, or the preparations prepared therefrom by adding water, all mixing units usable customarily for the seed dressing are useful. Specifically, the procedure in the seed dressing is to place the seed into a mixer, to add the particular desired amount of seed dressing formulations, either as such or after prior dilution with water, and to mix everything until the formulation is distributed homogeneously on the seed. If appropriate, this is followed by a drying process. Mycotoxins
In addition, the inventive treatment can reduce the mycotoxin content in the harvested material and the foods and feeds prepared therefrom. Mycotoxins include particularly, but not exclusively, the following: deoxynivalenol (DON), nival enol, 15-Ac-DON, 3-Ac-DON, T2- and HT2-toxin, furnonisins, zearalenon, moniliformin, fusarin, diaceotoxyscirpenol (DAS), beauvericin, enniatin, fusaroproliferin, fusarenol, ochratoxins, patulin, ergot alkaloids and aflatoxins which can be produced, for example, by the following fungi: Fusarium spec, such as F. acuminatum, F. asiaticum, F. avenaceum, F. crookwellense, F. culmorum, F. graminearum (Gibberella zeae), F. equiseti, F.fujikoroi, F. musarum, F. oxysporum, F. proliferatum, F. poae, F. pseudograminearum, F. sambucinum, F. scirpi, F. semitectum, F. solani, F. sporotrichoides, _ _
F. langsethiae, F. subglutinans, F. tricinctum, F. verticillioides etc., and also by Aspergillus spec, such as A. flavus, A. parasiticus, A. nomius, A. ochraceus, A. clavatus, A. terreus, A. versicolor, Penicillium spec, such as P. verrucosum, P. viridicatum, P. citrinum, P. expansum, P. claviforme, P. roqueforti, Claviceps spec, such as C. purpurea, C. fusiformis, C. paspali, C. africana, Stachybotrys spec, and others. Material Protection
The inventive active ingredients or compositions can also be used in the protection of materials, for protection of industrial materials against attack and destruction by harmful microorganisms, for example fungi and insects. In addition, the inventive compounds can be used as antifouling compositions, alone or in combinations with other active ingredients.
Industrial materials in the present context are understood to mean inanimate materials which have been prepared for use in industry. For example, industrial materials which are to be protected by inventive active ingredients from microbial alteration or destruction may be adhesives, glues, paper, wallpaper and board/cardboard, textiles, carpets, leather, wood, fibers and tissues, paints and plastic articles, cooling lubricants and other materials which can be infected with or destroyed by microorganisms. Parts of production plants and buildings, for example cooling-water circuits, cooling and heating systems and ventilation and air-conditioning units, which may be impaired by the proliferation of microorganisms may also be mentioned within the scope of the materials to be protected. Industrial materials within the scope of the present invention preferably include adhesives, sizes, paper and card, leather, wood, paints, cooling lubricants and heat transfer fluids, more preferably wood.
The inventive active ingredients or compositions may prevent adverse effects, such as rotting, decay, discoloration, decoloration or formation of mould.
In the case of treatment of wood the compounds/compositions according to the invention may also be used against fungal diseases liable to grow on or inside timber. The term "timber" means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood. The method for treating timber according to the invention mainly consists in contacting one or more compounds according to the invention or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.
In addition, the inventive compounds can be used to protect objects which come into contact with saltwater or brackish water, especially hulls, screens, nets, buildings, moorings and signalling systems, from fouling.
The inventive method for controlling unwanted fungi can also be employed for protecting storage goods. Storage goods are understood to mean natural substances of vegetable or animal origin or processed products thereof which are of natural origin, and for which long-term protection is desired. Storage goods of vegetable origin, for example plants or plant parts, such as stems, leaves, tubers, seeds, fruits, grains, can be protected freshly harvested or after processing by (pre)drying, moistening, comminuting, grinding, pressing or roasting. Storage goods also include timber, both unprocessed, such as construction timber, electricity poles and barriers, or in the form of finished products, such as furniture. Storage goods of animal origin are, for example, hides, leather, furs and hairs. The inventive active ingredients may prevent adverse effects, such as rotting, decay, discoloration, decoloration or formation of mould. _ _
Microorganisms capable of degrading or altering the industrial materials include, for example, bacteria, fungi, yeasts, algae and slime organisms. The inventive active ingredients preferably act against fungi, especially moulds, wood-discoloring and wood-destroying fungi (Ascomycetes, Basidiomycetes, Deuteromycetes and Zygomycetes), and against slime organisms and algae. Examples include microorganisms of the following genera: Alternaria, such as Alternaria tenuis; Aspergillus, such as Aspergillus niger; Chaetomium, such as Chaetomium globosum; Coniophora, such as Coniophora puetana; Lentinus, such as Lentinus tigrinus; Penicillium, such as Penicillium glaucum; Polyporus, such as Polyporus versicolor, Aureobasidium, such as Aureobasidium pullulans; Sclerophoma, such as Sclerophoma pityophila; Trichoderma, such as Trichoderma viride; Ophiostoma spp., Ceratocystis spp., Humicola spp., Petriella spp., Trichurus spp., Coriolus spp., Gloeophyllum spp., Pleurotus spp., Poria spp., Serpula spp. and Tyromyces spp., Cladosporium spp., Paecilomyces spp. Mucor spp., Escherichia, such as Escherichia coli; Pseudomonas, such as Pseudomonas aeruginosa; Staphylococcus, such as Staphylococcus aureus, Candida spp. and Saccharomyces spp., such as Saccharomyces cerevisae.
Antimycotic Activity
In addition, the inventive active ingredients also have very good antimycotic activity. They have a very broad antimycotic activity spectrum, especially against dermatophytes and yeasts, moulds and diphasic fungi (for example against Candida species, such as C. albicans, C. glabrata), and Epidermophyton floccosum, Aspergillus species, such as A. niger and A. fumigatus, Trichophyton species, such as T. mentagrophytes, Microsporon species such as M. canis and M. audouinii. The list of these fungi by no means constitutes a restriction of the mycotic spectrum covered, and is merely of illustrative character.
The inventive active ingredients can therefore be used both in medical and in non-medical applications.
GMO
As already mentioned above, it is possible to treat all plants and their parts in accordance with the invention. In a preferred embodiment, wild plant species and plant cultivars, or those obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and also parts thereof, are treated. In a further preferred embodiment, transgenic plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated. The terms "parts" or "parts of plants" or "plant parts" have been explained above. More preferably, plants of the plant cultivars which are commercially available or are in use are treated in accordance with the invention. Plant cultivars are understood to mean plants which have new properties ("traits") and have been obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. They can be cultivars, varieties, bio- or genotypes.
The method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds. Genetically modified plants (or transgenic plants) are plants of which a heterologous gene has been stably integrated into genome. The expression "heterologous gene" essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for _ _ example, antisense technology, cosuppression technology, RNA interference - RNAi - technology or microRNA - miRNA - technology). A heterologous gene that is located in the genome is also called a transgene. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.
Depending on the plant species or plant cultivars, their location and growth conditions (soils, climate, vegetation period, diet), the treatment according to the invention may also result in superadditive ("synergistic") effects. Thus, for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.
Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).
Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.
Examples of nematode or insect resistant plants are described in e.g. U.S. Patent Applications 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947, 12/252,453, 12/209,354, 12/491,396, 12/497,221, 12/644,632, 12/646,004, 12/701,058, 12/718,059, 12/721,595, 12/638,591.
Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses. Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.
Plants and plant cultivars which may also be treated according to the invention, are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability. _ _
Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stresses). Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome. In that case, and especially when seed is the desired product to be harvested from the hybrid plants it is typically useful to ensure that male fertility in the hybrid plants is fully restored. This can be accomplished by ensuring that the male parents have appropriate fertility restorer genes which are capable of restoring the male fertility in hybrid plants that contain the genetic determinants responsible for male-sterility. Genetic determinants for male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) were for instance described in Brassica species (WO 92/05251, WO 95/09910, WO 98/27806, WO 05/002324, WO 06/021972 and US 6,229,072). However, genetic determinants for male sterility can also be located in the nuclear genome. Male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering. A particularly useful means of obtaining male-sterile plants is described in WO 89/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar (e.g. WO 91/02069).
Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.
Herbicide-resistant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enol- pyruvylshikimate-3 -phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Science 1983, 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Curr. Topics Plant Physiol. 1992, 7, 139-145), the genes encoding a Petunia EPSPS (Science 1986, 233, 478-481), a Tomato EPSPS (J. Biol. Chem. 1988, 263, 4280-4289), or an Eleusine EPSPS (WO 01/66704). It can also be amutated EPSPS as described in for example EP 0837944, WO 00/66746, WO 00/66747 or WO 02/26995. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme as described in US 5,776,760 and US 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described in for example WO 02/036782, WO 03/092360, WO 2005/012515 and WO 2007/024782. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described in for example WO 01/024615 or WO 03/013226. Plants expressing EPSPS genes that confer glyphosate tolerance are described in e.g. U.S. Patent Applications 11/517,991, 10/739,610, 12/139,408, 12/352,532, 11/312,866, 11/315,678, 12/421,292, 11/400,598, 11/651,752, 11/681,285, 11/605,824, 12/468,205, 11/760,570, 11/762,526, 11/769,327, 11/769,255, 11/943801 or 12/362,774. Plants comprising other genes that confer glyphosate tolerance, _ _ such as decarboxylase genes, are described in e.g. U.S. Patent Applications 11/588,811, 11/185,342, 12/364,724, 11/185,560 or 12/423,926.
Other herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate. Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition, e.g. described in U.S. Patent Application 11/760,602. One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in U.S. Patents 5,561,236; 5,648,477; 5,646,024; 5,273,894; 5,637,489; 5,276,268; 5,739,082; 5,908,810 and 7,112,665. Further herbicide-tolerant plants are also plants that are made tolerant to the herbicides inhibiting the enzyme hydroxyphenylpyruvatedioxygenase (HPPD). HPPD is an enzyme that catalyze the reaction in which para- hydroxyphenylpyruvate (HPP) is transformed into homogentisate. Plants tolerant to HPPD-inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD enzyme, or a gene encoding a mutated or chimeric HPPD enzyme as described in WO 96/38567, WO 99/24585, WO 99/24586, WO 09/144079, WO 02/046387, or US 6,768,044. Tolerance to HPPD-inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 99/34008 and WO 02/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme having prephenate deshydrogenase (PDH) activity in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 04/024928. Further, plants can be made more tolerant to HPPD- inhibitor herbicides by adding into their genome a gene encoding an enzyme capable of metabolizing or degrading HPPD inhibitors, such as the CYP450 enzymes shown in WO 2007/103567 and WO 2008/150473. Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pryimidinyoxy- (thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicides. Different mutations in the ALS enzyme (also known as acetohydroxyacid synthase, AHAS) are known to confer tolerance to different herbicides and groups of herbicides, as described for example in Tranel and Wright (Weed Science 2002, 50, 700-712), but also, in U.S. Patents 5,605,011, 5,378,824, 5,141,870, and 5,013,659. The production of sulfonylurea-tolerant plants and imidazolinone-tolerant plants is described in U.S. Patents 5,605,011; 5,013,659; 5,141,870; 5,767,361; 5,731,180; 5,304,732; 4,761,373; 5,331,107; 5,928,937; and 5,378,824; and WO 96/33270. Other imidazolinone-tolerant plants are also described in for example WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351, and WO 2006/060634. Further sulfonylurea- and imidazolinone-tolerant plants are also described in for example WO 2007/024782 and U.S. Patent Application 61/288958.
Other plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in US 5,084,082, for rice in WO 97/41218, for sugar beet in US 5,773,702 and WO 99/057965, for lettuce in US 5,198,599, or for sunflower in WO 01/065922. _ .
Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.
An "insect-resistant transgenic plant", as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:
1) an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof, such as the insecticidal crystal proteins listed by Crickmore et al. (1998, Microbiology and Molecular Biology Reviews, 62: 807-813), updated by Crickmore et al. (2005) at the Bacillus thuringiensis toxin nomenclature, online at: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal portions thereof, e.g., proteins of the Cry protein classes CrylAb, CrylAc, CrylB, CrylC, CrylD, CrylF, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof (e.g. EP-A 1 999 141 and WO 2007/107302), or such proteins encoded by synthetic genes as e.g. described in and U.S. Patent Application 12/249,016 ; or
2) a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second other crystal protein from Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins {Nat. Biotechnol. 2001, 19, 668-72; Applied Environm. Microbiol. 2006, 71, 1765-1774) or the binary toxin made up of the CrylA or CrylF proteins and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. Patent Application 12/214,022 and EP-A 2 300 618); or
3) a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g., the
CrylA.105 protein produced by corn event MON89034 (WO 2007/027777); or
4) a protein of any one of 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation, such as the Cry3Bbl protein in corn events MON863 or MON88017, or the Cry3A protein in corn event MIR604; or
5) an insecticidal secreted protein from Bacillus thuringiensis or Bacillus cereus, or an insecticidal portion thereof, such as the vegetative insecticidal (VIP) proteins listed at:
http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html, e.g., proteins from the VIP3Aa protein class; or
6) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis orB. cereus, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 94/21795); or
7) a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1) above or a hybrid of the proteins in 2) above; or
8) a protein of any one of 5) to 7) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or _ _ transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT 102; or
9) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a crystal protein from Bacillus thuringiensis, such as the binary toxin made up of VIP3 and CrylA or CrylF (U.S. Patent Applications 61/126083 and 61/195019), or the binary toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. Patent Application 12/214,022 and EP-A 2 300 618).
10) a protein of 9) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein)
Of course, an insect-resistant transgenic plant, as used herein, also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 10. In one embodiment, an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 10, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.
An "insect-resistant transgenic plant", as used herein, further includes any plant containing at least one transgene comprising a sequence producing upon expression a double-stranded R A which upon ingestion by a plant insect pest inhibits the growth of this insect pest, as described e.g. in WO 2007/080126, WO 2006/129204, WO 2007/074405, WO 2007/080127 and WO 2007/035650.
Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include:
1) plants which contain a transgene capable of reducing the expression and/or the activity of poly(ADP- ribose) polymerase (PARP) gene in the plant cells or plants as described in WO 00/04173, WO 2006/045633, EP-A 1 807 519, or EP-A 2 018 431.
2) plants which contain a stress tolerance enhancing transgene capable of reducing the expression and/or the activity of the PARG encoding genes of the plants or plants cells, as described e.g. in WO 2004/090140.
3) plants which contain a stress tolerance enhancing transgene coding for a plant- functional enzyme of the nicotineamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphorybosyltransferase as described e.g. in EP-A 1 794 306, WO 2006/133827, WO 2007/107326, EP-A 1 999 263, or WO 2007/107326.
Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as:
1) transgenic plants which synthesize a modified starch, which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain _ _ length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications. Said transgenic plants synthesizing a modified starch are disclosed, for example, in EP-A 0 571 427, WO 95/04826, EP-A 0 719 338, WO 96/15248, WO 96/19581, WO 96/27674, WO 97/11188, WO 97/26362, WO 97/32985, WO 97/42328, WO 97/44472, WO 97/45545, WO 98/27212, WO 98/40503, WO 99/58688, WO 99/58690, WO 99/58654, WO 00/08184, WO 00/08185, WO 00/08175, WO 00/28052, WO 00/77229, WO 01/12782, WO 01/12826, WO 02/101059, WO 03/071860, WO 04/056999, WO 05/030942, WO 2005/030941, WO 2005/095632, WO 2005/095617, WO 2005/095619, WO 2005/095618, WO 2005/123927, WO 2006/018319, WO 2006/103107, WO 2006/108702, WO 2007/009823, WO 00/22140, WO 2006/063862, WO 2006/072603, WO 02/034923, WO 2008/017518, WO 2008/080630, WO 2008/080631, WO 2008/090008, WO 01/14569, WO 02/79410, WO 03/33540, WO 2004/078983, WO 01/19975, WO 95/26407, WO 96/34968, WO 98/20145, WO 99/12950, WO 99/66050, WO 99/53072, US 6,734,341, WO 00/11192, WO 98/22604, WO 98/32326, WO 01/98509, WO 01/98509, WO 2005/002359, US 5,824,790, US 6,013,861, WO 94/04693, WO 94/09144, WO 94/11520, WO 95/35026, WO 97/20936, WO 2010/012796, WO 2010/003701,
2) transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification. Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP-A 0 663 956, WO 96/01904, WO 96/21023, WO 98/39460, and WO 99/24593, plants producing alpha-1,4- glucans as disclosed in WO 95/31553, US 2002031826, US 6,284,479, US 5,712,107, WO 97/47806, WO 97/47807, WO 97/47808 and WO 00/14249, plants producing alpha- 1,6 branched alpha- 1,4-glucans, as disclosed in WO 00/73422, plants producing alternan, as disclosed in e.g. WO 00/47727, WO 00/73422, US 5,908,975 and EP-A 0 728 213,
3) transgenic plants which produce hyaluronan, as for example disclosed in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP-A 2006-304779, and WO 2005/012529.
4) transgenic plants or hybrid plants, such as onions with characteristics such as 'high soluble solids content', 'low pungency' (LP) and/or 'long storage' (LS), as described in U.S. Patent Applications 12/020,360. Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include:
a) Plants, such as cotton plants, containing an altered form of cellulose synthase genes as described in WO 98/00549.
b) Plants, such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in WO 2004/053219.
c) Plants, such as cotton plants, with increased expression of sucrose phosphate synthase as described in WO 01/17333.
d) Plants, such as cotton plants, with increased expression of sucrose synthase as described in WO 02/45485. _ _ e) Plants, such as cotton plants, wherein the timing of the plasmodesmatal gating at the basis of the fiber cell is altered, e.g. through downregulation of fiber-selective P-l,3-glucanase as described in WO 2005/017157, or as described in WO 2009/143995.
f) Plants, such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N- acetylglucosaminetransferase gene including nodC and chitin synthase genes as described in WO 2006/136351.
Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered oil profile characteristics and include:
a) Plants, such as oilseed rape plants, producing oil having a high oleic acid content as described e.g. in US 5,969,169, US 5,840,946 or US 6,323,392 or US 6,063,947
b) Plants such as oilseed rape plants, producing oil having a low linolenic acid content as described in US 6,270,828, US 6,169,190, or US 5,965,755
c) Plant such as oilseed rape plants, producing oil having a low level of saturated fatty acids as described e.g. in US 5,434,283 or U.S. Patent Application 12/668303
Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered seed shattering characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered seed shattering characteristics and include plants such as oilseed rape plants with delayed or reduced seed shattering as described in U.S. Patent Application 61/135,230, WO 2009/068313 and WO 2010/006732.
Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as Tobacco plants, with altered post- translational protein modification patterns, for example as described in WO 2010/121818 and WO 2010/145846.
Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are the subject of petitions for non- regulated status, in the United States of America, to the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) whether such petitions are granted or are still pending. At any time this information is readily available from APHIS (4700 River Road, Riverdale, MD 20737, USA), for instance on its internet site (URL http://www.aphis.usda.gov/brs/not_reg.html). On the filing date of this application the petitions for nonregulated status that were pending with APHIS or granted by APHIS were those which contains the following information:
Petition: the identification number of the petition. Technical descriptions of the transformation events can be found in the individual petition documents which are obtainable from APHIS, for example on the APHIS website, by reference to this petition number. These descriptions are herein incorporated by reference.
Extension of Petition: reference to a previous petition for which an extension is requested.
Institution: the name of the entity submitting the petition.
Regulated article: the plant species concerned. _ _
Transgenic phenotype: the trait conferred to the plants by the transformation event.
Transformation event or line: the name of the event or events (sometimes also designated as lines or lines) for which nonregulated status is requested.
APHIS documents: various documents published by APHIS in relation to the Petition and which can be requested with APHIS.
Additional particularly useful plants containing single transformation events or combinations of transformation events are listed for example in the databases from various national or regional regulatory agencies (see for example http://gmoinfo.jrc.it/gmp_browse.aspx and http://www.agbios.com/dbase.php).
Application Rates and Timing When using the inventive active ingredients as fungicides, the application rates can be varied within a relatively wide range, depending on the kind of application. The application rate of the inventive active ingredients is in the case of treatment of plant parts, for example leaves: from 0.1 to 10 000 g/ha, preferably from 10 to 1000 g/ha, more preferably from 10 to 800 g/ha, even more preferably from 50 to 300 g/ha (in the case of application by watering or dripping, it is even possible to reduce the application rate, especially when inert substrates such as rockwool or perlite are used); in the case of seed treatment: from 2 to 200 g per 100 kg of seed, preferably from 3 to 150 g per 100 kg of seed, more preferably from 2.5 to 25 g per 100 kg of seed, even more preferably from 2.5 to 12.5 g per 100 kg of seed; in the case of soil treatment: from 0.1 to 10 000 g/ha, preferably from 1 to 5000 g/ha.
These application rates are merely by way of example and are not limiting for the purposes of the invention. The inventive active ingredients or compositions comprising a compound according to formula (I) can thus be used to protect plants from attack by the pathogens mentioned for a certain period of time after treatment. The period for which protection is provided extends generally for 1 to 28 days, preferably for 1 to 14 days, more preferably for 1 to 10 days, most preferably for 1 to 7 days, after the treatment of the plants with the active ingredients, or for up to 200 days after a seed treatment. The plants listed can particularly advantageously be treated in accordance with the invention with the compounds of the general formula (I) and the inventive compositions. The preferred ranges stated above for the active ingredients or compositions also apply to the treatment of these plants. Particular emphasis is given to the treatment of plants with the compounds or compositions specifically mentioned in the present text.
The invention is illustrated by the examples below. However, the invention is not limited to the examples. _ _
Preparation examples
Preparation of compounds of the formula (I) according to process A:
Preparation of 2- [6-(4-chlorophenoxy -2-(trifluoromethyl -3 -pyridyl] - 1 -( 1 ,2,4-triazol- 1 -yl)propan-2-ol (1.01 )
Figure imgf000058_0001
A solution of magnesium bromide diethyl etherate (4.8 g, 18.8 mmol) in dichloromethane (20 mL) and diethyl ether (10 mL) was cooled to 0 °C, before a solution of l-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]-2- (l,2,4-triazol-l-yl)ethanone (1.80 g, 4.70 mmol) in dichloromethane (10 mL) was added and stirred for 30 min at 0 °C. Then methylmagnesium bromide (3.1 mL, 9.4 mmol, 3M solution in ethyl ether) was added, the cooling bath was removed, and the mixture was stirred for 1.5 hours (h) at 21°C (room temperature, rt), before the mixture was quenched with water, NH4CI (saturated aqueous solution), extracted with dichloromethane, dried (over MgSO i), and concentrated. As the starting ketone and the target alcohol overlap in terms of retention time, the concentrated material (roughly 2 g of a thick colourless oil containing both ketone and alcohol) was dissolved in pyridine (15.0 mL), and treated with methoxylamine hydrochloride (313 mg, 3.75 mmol) at rt for 20 h (to convert the ketone into the corresponding methyl oxime, which has a significantly different retention time). The mixture was then diluted with dichloromethane, filtered over ChemElut, and concentrated. Preparative HPLC gave 319 mg (17% yield over two steps, 99% pure) of the target compound as colourless oil, which solidified upon standing.
MS (ESI): 398.08 ([M+H]+) Preparation of 2-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyll-l-(l,2,4-triazol-l-yl)propan-2-ol (1.02)
Figure imgf000058_0002
A solution of magnesium bromide diethyl etherate (1.2 g, 4.63 mmol) in dichloromethane (10 mL) was cooled to 0 °C, before a solution of l-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyl]-2-(l,2,4-triazol-l- yl)ethanone (443 mg, 1.16 mmol) in dichloromethane (2 mL) was added and stirred for 30 min at 0 °C. Then methylmagnesium bromide (0.78 mL, 2.3 mmol, 3M solution in ethyl ether) was added, the cooling bath was removed, and the mixture was stirred for 1 h at rt, before the mixture was quenched with water, extracted with dichloromethane, dried (over MgSO i), and concentrated. Preparative HPLC gave 126.6 mg (27%o yield, 100%o pure) of the target compound as a colourless solid. _ _
MS (ESI): 398.08 ([M+H]+)
Preparation of l-[6-(4-chlorophenoxy -2-(trifluoromethyl -3-pyridyll-2-(l,2,4-triazol-l-yl ethanol (1.03)
Figure imgf000059_0001
To a solution of l-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyl]-2-(l,2,4-triazol-l-yl)ethanone (800 mg, 1.67 mmol) in dry methanol (25.0 mL) at 5 °C was added sodium borohydride (127 mg, 3.3 mmol), the cooling bath was removed, mixture warmed to rt and stirred for 1 h. The mixture was then quenched with water, diluted with dichloromethane, filtered over ChemElut, and concentrated. Preparative HPLC gave 286 mg (60% yield, 100% pure) of the target compound as a colourless solid. MS (ESI): 384.06 ([M+H]+)
Preparation of l-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyll-2-(l,2,4-triazol-l-yl)ethanol (1.04)
Figure imgf000059_0002
To a solution of l-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyl]-2-(l,2,4-triazol-l-yl)ethanone (518 mg, 1.35 mmol) in dry methanol (5.0 mL) at 5 °C was added sodium borohydride (102 mg, 2.7 mmol), the cooling bath was removed, mixture warmed to rt and stirred for 1 h. The mixture was then quenched with water, diluted with dichloromethane, filtered over ChemElut, and concentrated. Preparative HPLC gave 252 mg (48% yield, 100%o pure) of the target compound as a colourless oil, which crystallized upon standing.
MS (ESI): 384.06 ([M+H]+) Preparation of compounds of the formula (VII) according to process A:
Preparation of l-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyll-2-(l,2,4-triazol-l-yl)ethanone (VII.Ol)
Figure imgf000059_0003
_ _
A mixture of 2-chloro-l-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]ethanone (8.3 g, 23.7 mmol) and lH-l,2,4-triazole (1.8 g, 26.0 mmol) in acetonitrile (80 mL) was heated to 75 °C, before potassium carbonate (3.9 g, 28.5 mmol) was added. The heating was continued for 20 minutes (min) before the mixture was rapidly cooled to room temperature by addition of ice water, extracted with dichloromethane, dried (over MgSO i), and concentrated. Flash column chromatography (gradient, up to DCM/10%MeOH in DCM=60/40, 254 nm) gave 4.30 g (43% yield, 91%> pure) of the target compound as a yellow glass, which was used as such for the next reaction steps. A small quantity was further purified by HPLC to give the target product (100%o pure) as a yellow solid.
MS (ESI): 382.04 ([M+H]+)
Preparation of l-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyll-2-(l,2,4-triazol-l-yl)ethanone (VII.02)
Figure imgf000060_0001
A mixture of 2-chloro-l-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyl]ethanone (3.4 g, 9.71 mmol) and lH-l,2,4-triazole (0.74 g, 10.6 mmol) in acetonitrile (50 mL) was heated to 75 °C, before potassium carbonate (1.6 g, 11.6 mmol) was added. The heating was continued for 20 min before the mixture was rapidly cooled to room temperature by addition of ice water, extracted with dichloromethane, dried (over MgSO4), and concentrated. Flash column chromatography (gradient, up to DCM/10%MeOH in DCM=70/30, 254 nm) followed by preparative HPLC gave 1.50 g (40%o yield, 100%o pure) of the target compound as a yellow solid.
MS (ESI): 382.04 ([M+H]+) Preparation of compounds of the formula (VI) according to process A:
Preparation of 2-chloro-l-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyllethanone (VI.Ol)
Figure imgf000060_0002
A mixture of l-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]ethanone (8.6 g, 27.2 mmol) and benzyltrimethylammonium dichloroiodate (18.9 g, 54.4 mmol) in 1,2-dichloroethane (60 mL) and methanol (20 mL) was heated to 75 °C for 4 h, before the mixture was concentrated, then diluted with ethyl acetate, washed with Na2S203 (10%o w/w aqueous solution), washed with brine, dried (over MgSO i), concentrated, and passed - - over a plug of silica (heptane/ethyl acetate=l/l, 254 nm) to give 8.3 g (83% yield, 96% pure) of the target compound as a pale yellow solid.
MS (ESI): 348.99 ([M+H]+)
Preparation of 2-chloro-l-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyllethanone (VI.02)
Figure imgf000061_0001
A mixture of l-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyl]ethanone (3.6 g, 1 1.4 mmol) and benzyltrimethylammonium dichloroiodate (7.93 g, 22.8 mmol) in 1,2-dichloroethane (30 mL) and methanol (10 mL) was heated to 75 °C for 4 h, before the mixture was concentrated, then diluted with ethyl acetate, washed with Na2S203 (10% w/w aqueous solution), washed with brine, dried (over MgSO i), concentrated, and passed over a plug of silica (heptane/ethyl acetate=85/15, 254 nm) to give 3.4 g (58%o yield, 69%o pure) of the target compound as a colourless oil, which was used without further purification.
MS (ESI): 348.99 ([M+H]+)
Preparation of compounds of the formula (V) according to process D:
Preparation of l-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyllethanone (V.Ol)
Figure imgf000061_0002
A solution of 6-(4-chlorophenoxy)-N-methoxy-N-methyl-2-(trifluoromethyl)pyridine-3-carboxamide (11.5 g, 31.9 mmol) in THF (150 mL) at 5 °C was treated with methylmagnesium bromide (21.2 mL, 63.7 mmol, 3M solution in diethyl ether). The mixture was then warmed to rt and stirring continued for 4 h at rt, before the reaction was quenched with water, NH4CI (saturated aqueous solution), extracted with dichloromethane, dried (over Na2S04), and concentrated to give 8.60 g (82%> yield, 96%o pure) of the target compound as a pale yellow solid, which was used without further purification.
MS (ESI): 315.03 ([M+H]+) _ _
Preparation of l-[6-(4-chlorophenoxy -4-(trifluoromethyl -3-pyridyllethanone (V.02)
Figure imgf000062_0001
A solution of 6-(4-chlorophenoxy)-N-methoxy-N-methyl-4-(trifluoromethyl)pyridine-3-carboxamide (6.9 g, 17.4 mmol) in THF (100 mL) at 5 °C was treated with methylmagnesium bromide (11.6 mL, 34.8 mmol, 3M solution in diethyl ether). The mixture was then warmed to rt and stirring continued for 4 h at rt, before the reaction was quenched with water, NH4CI (saturated aqueous solution), extracted with dichloromethane, dried (over Na2SO i), and concentrated. Flash column chromatography (gradient, up to heptane/ethyl acetate=80/20, 254 nm) gave 3.60 g (61% yield, 94% pure) of the target compound as a colourless oil. MS (ESI): 315.03 ([M+H]+)
Preparation of compounds of the formula (XVI) according to process D:
Preparation of 6-(4-chlorophenoxy)-N-methoxy-N-methyl-2-(trifluoromethyl)pyridine-3-carboxamide (XVI.01)
Figure imgf000062_0002
A mixture of 6-chloro-N-methoxy-N-methyl-2-(trifluoromethyl)pyridine-3-carboxamide (9.0 g, 33.5 mmol), 4- chlorophenol (4.3 g, 33.5 mmol), potassium carbonate (11.5 g, 83.7 mmol), copper(I) iodide (638 mg, 3.35 mmol), and NNN'N'-tetramethylethylenediamine (TMEDA; 1.0 mL, 6.7 mmol) in dimethyl sulfoxide (DMSO; 150 mL) was heated for 3 h at 100 °C. The reaction mixture was then cooled to rt, water added, extracted with ethyl acetate, dried (over Na2SO i), concentrated and passed over a plug of silica (heptane/ethyl acetate=l/l, 254 nm) to give 7.7 g (58%o yield, 91%o pure) of the target compound as a yellow oil.
MS (ESI): 360.05 ([M+H]+)
Preparation of 6-(4-chlorophenoxy)-N-methoxy-N-methyl-4-(trifluoromethyl)pyridine-3-carboxamide (XVT.02) - -
Figure imgf000063_0001
A mixture of 6-chloro-N-methoxy-N-methyl-4-(trifluoromethyl)pyridine-3-carboxamide (5.7 g, 21.3 mmol), 4- chlorophenol (2.7 g, 21.3 mmol), potassium carbonate (7.4 g, 53.3 mmol), copper(I) iodide (406 mg, 2.13 mmol), and TMEDA (0.64 mL, 4.26 mmol) in DMSO (100 mL) was heated for 3 h at 100 °C. The reaction mixture was then cooled to rt, water added, extracted with ethyl acetate, dried (over Na2SO i), concentrated and passed over a plug of silica (heptane/ethyl acetate=l/l, 254 nm) to give 6.59 g (85% yield, 100% pure) of the target compound as a colourless oil.
MS (ESI): 360.05 ([M+H]+) Preparation of compounds of the formula (I) according to process B:
Preparation of l-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyll-l-cvclopropyl-2-(l,2,4-triazol-l- ypethanol (1.91) according to Process B
Figure imgf000063_0002
Epoxide IX.07 (1.0 g, 2.81 mmol), lH-l,2,4-triazole (194 mg, 2.81 mmol), sodium hydroxide (40 mg, 0.984 mmol), 0.013 mL water in DMF (10 mL) was heated at 120 °C for 22 h, before water, NH4CI (saturated aqueous solution) and CH2CI2 were added. Phases were separated, the aqueous phase was extracted twice with CH2CI2, the combined organic extracts were dried over Na2S04 and concentrated to give, after purification via preparative HPLC, the desired alcohol 1.91 (362 mg, 30%o) as a colorless oil. MS (ESI): 425.09 ([M+H]+)
Preparation of 6-(4-chlorophenoxy)-3-(2-cvclopropyloxiran-2-yl)-2-(trifluoromethyl)pyridine (IX.07) according to Process B - -
Figure imgf000064_0001
To a suspension of trimethylsulfonium iodide (3.1 g, 15.2 mmol) in THF (100 mL) at 0 °C was added potassium tert-butoxide (1.7 g, 15.2 mmol) in one portion, and the mixture was stirred for 5 min. Then, ketone V.41 (4.0 g, 11.7 mmol) in THF (10 mL) was added, the mixture was warmed to room temperature and stirred for 1.5 h. Then water and CH2CI2 were added, the aqueous phase was extracted with CH2CI2, the combined organic extracts were dried over Na2S04 and concentrated, to give, after flash column chromatography, the desired epoxide IX.07 (138 mg, 3%) as a colorless oil.
MS (ESI): 356.06 ([M+H]+)
Preparation of [6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyll-cvclopropyl-methanone (V.41) according to Process B
Figure imgf000064_0002
A mixture of [6-chloro-2-(trifluoromethyl)pyridin-3-yl](cyclopropyl)methanone (6.0 g, 24.0 mmol), 4- chlorophenol (3.1 g, 24.0 mmol), potassium carbonate (8.3 g, 60.1 mmol), copper(I) iodide (458 mg, 2.40 mmol), and Ν,Ν,Ν',Ν'-tetramethylethylenediamine (TMEDA; 0.7 mL, 4.8 mmol) in dimethyl sulfoxide (DMSO; 100 mL) was heated for 2 h at 100 °C. The reaction mixture was then cooled to rt, water added, extracted with ethyl acetate, dried (over Na2SO i), concentrated and passed over a plug of silica (heptane/ethyl acetate=l/l, 254 nm), and recrystalhzed from CH2CI2 and diisopropyl ether to give 4.2 g (48% yield, 95%> pure) of the target compound V.41 as a colorless solid.
MS (ESI): 342.04 ([M+H]+) Preparation of [6-chloro-2-(trifluoromethyl)-3-pyridyll-cvclopropyl-methanone
Figure imgf000064_0003
_ _
A solution of 6-chloro-2-(trifluoromethyl)pyridine-3-carboxylic acid (6.0 g, 26.6 mmol), thionyl chloride (3.9 mL, 53.2 mmol) and few drops of dimethylformamide in dichloroethane (100 mL) was heated at 85 °C for 4 h, before the mixture was cooled to rt and concentrated. Then dry THF (150 mL) and Fe(acac (470 mg, 1.33 mmol) were added and the solution was cooled to -78 °C, before a solution of cyclopropylmagnesium bromide (69 mL, 0.5 M, 34.6 mmol) was added dropwise, keeping the internal temperature below -70 °C. After complete addition, the cooling bath was removed and the reaction was allowed to warm to room temperature. The reaction was then quenched with NH4CI (saturated aqueous solution) and extracted with CH2CI2, dried over Na2S04 and concentrated. The target compound [6-chloro-2-(trifluoromethyl)pyridin-3- yl](cyclopropyl)methanone (6.0 g, 87%yield) was used in the following step without further purification.
MS (ESI): 250.02 ([M+H]+)
The following tables illustrate in a non -limiting manner examples of compounds according to the invention. Table 1 : Compounds according to formula (I)
Figure imgf000065_0001
Figure imgf000065_0002
- -
Figure imgf000066_0001
- -
Figure imgf000067_0001
- -
Figure imgf000068_0001
- -
Figure imgf000069_0001
- -
Figure imgf000070_0001
- -
Figure imgf000071_0001
- -
Figure imgf000072_0001
- -
Figure imgf000073_0001
- -
Figure imgf000074_0001
Figure imgf000075_0001
Optical rotation
Concentration c is expressed in g/ 100 mL
(*) Ex 1.45 and 1.46 are the 2 enantiomers of Ex 1.02 - -
(*) Ex 1.53 and 1.54 are the 2 enantiomers of Ex 1.08 Ex 1.53 : Optical rotation: -35° (c=0.52, DCM, 20°C) Ex 1.54: Optical rotation: +52° (c=0.50, DCM, 20°C) (*) Ex 1.51 and 1.52 are the 2 enantiomers of Ex 1.09 Ex 1.51 : Optical rotation: - 128.2° (c=0.52, DCM, 20°C) Ex 1.52: Optical rotation: +133.3° (c=0.51, DCM, 20°C)
(*) Ex 1.83 and 1.86 are the 2 enantiomers of Ex 1.36 Ex 1.83 : Optical rotation: +10.0°(c=0.50, CDC13, 25°C) Ex 1.86: Optical rotation: -11.0°(c=0.73, CDCI3, 25°C)
(*) Ex 1.72 and 1.92 are the 2 enantiomers of Ex 1.47 Ex 1.72: Optical rotation: +11.7°(c=0.52, CDCI3, 25°C) Ex 1.92: Optical rotation: -10.4°(c=0.58, CDCI3, 25°C)
(*) Ex 1.101 and 1.102 are the 2 enantiomers of Ex 1.59 Ex 1.101 : Optical rotation: +27.5° (c=0.88; MeOH; 20°C) Ex 1.102: Optical rotation: -31.5° (c=1.02; MeOH; 20°C)
(*) Ex 1.84 and 1.99 are the 2 enantiomers of Ex 1.81 Ex 1.84: Optical rotation: -8°(c=1.00, MeOH, 25°C) Ex 1.99: Optical rotation: +7.3°(c=1.10, MeOH, 25°C)
Table 2: Compounds according to formula (V)
Figure imgf000076_0001
- -
Figure imgf000077_0001
- -
Figure imgf000078_0001
- -
V.23 0 CI CH3 1 4-Cl 3,51[a]
V.24 0 F CH3 1 4-Cl 3,51[a]
Figure imgf000079_0001
V.25 0 CF3 CH3 1 4-CF3 4,04[a]
V.26 0 CI CH3 1 4-Cl 3,45[a]
Figure imgf000079_0002
V.27 0 CF3 CH3 1 4-Br 3,99[a]
V.28 0 CI CH3 1 4-OCF3 3,89[a]
V.29 0 CI CH3 2 2-Cl, 4-OCH3 3,44[a]
V.30 0 CI CH3 1 4-SFs 3,99[a]
V.3 1 0 CF3 CH3 3 2-F, 4-Cl, 6-F 4,06[a]
Figure imgf000079_0003
V.32 0 CF3 CH3 1 4-CHF2 3,26[a]
-H- - -
V.33 0 4-chloro- CH3 1 4-Cl 4,36[a] phenoxy
V.34 0 CHF2 CH3 1 4-Br 3,46[a]
V.35 0 CF3 CH3 1 4-OCF3 4,04[a]
Figure imgf000080_0001
V.36 0 CHF2 CH3 1 4-Br 3,74[a]
V.37 0 CHF2 CH3 1 4-Cl 3,57[a]
V.38 0 CF3 CH3 2 2-F, 4-Cl 3,87[a]
V.39 0 CF3 cyclo- 1 4-CF3 4,37[a] propyl
V.40 0 CF3 cyclo- 1 4-Br 4,49[a] propyl
V.41 0 CF3 cyclo- 1 4-Cl 4,17[a] propyl
V.42 0 CF3 cyclo- 1 4-formyl 3,21[a] propyl
Figure imgf000080_0002
- -
Figure imgf000081_0003
Table 3: Compounds according to formula (VI)
Figure imgf000081_0001
Ex N° Y n R3 R Hal m R4 LogP
VI.Ol 0 - CF3 CI 1 4-Cl 4,01[a]
Figure imgf000081_0002
VI.02 0 - CF3 CI 1 4-Cl - -
Figure imgf000082_0001
- -
Ex N° Y n R3 R Hal m R4 LogP
VI.13 0 - CI CI 2 2-Cl, 4-OCH3 3,71[a]
Figure imgf000083_0001
VI.14 0 - CF3 Br 1 4-Cl 4,29[a]
VI.15 0 - CF3 Br 1 4-Br 4,34[a]
VI.16 0 - CI CI 1 4-CHF2 3,42[a]
VI.17 0 - CI Br 1 4-CHF2 3,57[a]
VI.18 0 - CF3 Br 1 4-Br 4,23 [a]
VI.19 0 - CF3 CI 1 4-Br 4,l l[a]
VI.20 0 - F CI 1 4-Cl 3,69[a]
Figure imgf000083_0002
VI.21 0 - CF3 CI 1 4-OCF3 4,37[a]
VI.22 0 - CF3 CI 1 4-CF3 4,21[a] - -
Ex N° Y n R3 R Hal m R4 LogP
VI.23 0 - CF3 CI 1 4-Br 4,16[a]
VI.24 0 - CF3 Br 2 2-F, 4-Cl 4,34[a]
VI.25 0 - CF3 CI 2 2-F, 4-Cl 4,15[a]
VI.26 0 - CF3 CI 1 4-CHF2 3,76[a]
VI.27 0 - CF3 Br 1 4-CHF2 3,99[a]
VI.28 0 - CF3 CI 1 4-CF3 4,19[a]
VI.29 0 - CF3 CI 1 4-SF5 4,29[a]
VI.30 0 - CI CI 1 4-SF5 4,21[a]
VI.31 0 - CF3 CI 3 2-F, 4-Cl, 6-F 4,26[a]
VI.32 0 - CF3 Br 3 2-F, 4-Cl, 6-F 4,18[a]
Figure imgf000084_0001
- -
Figure imgf000085_0003
Table 4: Compounds according to formula (VII)
Figure imgf000085_0001
Figure imgf000085_0002
- -
Figure imgf000086_0001
- -
Figure imgf000087_0001
- -
Ex N° Y n R3 R m R4 LogP
VII.21 0 - CF3 1 4-SFs 3,35[a]
VII.22 0 - CI 1 4-CHF2 2,39[a]
VII.23 0 - CI 1 4-Cl 2,54[a]
VII.24 0 - CF3 1 4-Br 2,99[a]
VII.25 0 - F 1 4-Cl 2,50[a]
Figure imgf000088_0001
VII.26 0 - CF3 1 4-OCF3 3,27[a]
VII.27 0 - CF3 1 4-Br 3,02[a]
VII.28 0 - CF3 1 4-CF3 3,17[a]
VII.29 0 - CF3 1 4-CHF2 2,80[a]
VII.30 0 - CF3 2 2-F, 4-Cl 3,06[a] - -
Figure imgf000089_0001
Figure imgf000090_0001
Table 5: Compounds according to formula (ΓΧ)
Figure imgf000090_0002
Ex N° Y n R3 R R1 m R4 LogP
ΓΧ.01 0 - CF3 CH3 1 4-Cl 4,41[a]
R
U.
ΓΧ.02 0 - CI CH3 0 - 3,40[a]; 3,38[b]
R
ΓΧ.03 0 - CI CH3 1 4-Cl 4,06[a]; 4,00[b]
ΓΧ.04 0 - CI CH3 0 - 3,42[a]; 3,39[b]
Figure imgf000090_0003
- -
Figure imgf000091_0001
LogP values:
Measurement of LogP values was performed according to EEC directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on reversed phase columns with the following methods:
[a] LogP value is determined by measurement of LC-UV, in an acidic range, with 0.1% formic acid in water and acetonitrile as eluent (linear gradient from 10% acetonitrile to 95%> acetonitrile).
[b] LogP value is determined by measurement of LC-UV, in a neutral range, with 0.001 molar ammonium acetate solution in water and acetonitrile as eluent (linear gradient from 10%> acetonitrile to 95% acetonitrile). - -
LcJ LogP value is determined by measurement of LC-UV, in an acidic range, with 0.1% phosphoric acid in water and acetonitrile as eluent (linear gradient from 10% acetonitrile to 95% acetonitrile).
If more than one LogP value is available within the same method, all the values are given and separated by "+".
Calibration was done with straight-chain alkan2-ones (with 3 to 16 carbon atoms) with known LogP values (measurement of LogP values using retention times with linear interpolation between successive alkanones). Lambda-max-values were determined using UV-spectra from 200 nm to 400 nm and the peak values of the chromatographic signals.
NMR-Peak lists
IH-NMR data of selected examples are written in form of lH-NMR-peak lists. To each signal peak are listed the δ-value in ppm and the signal intensity in round brackets. Between the δ-value - signal intensity pairs are semicolons as delimiters.
The peak list of an example has therefore the form: δι (intensityi); 82 (intensitV2); ; δ; (intensity); ; δη (intensityn)
Intensity of sharp signals correlates with the height of the signals in a printed example of a NMR spectrum in cm and shows the real relations of signal intensities. From broad signals several peaks or the middle of the signal and their relative intensity in comparison to the most intensive signal in the spectrum can be shown.
For calibrating chemical shift for 1H spectra, we use tetramethylsilane and/or the chemical shift of the solvent used, especially in the case of spectra measured in DMSO. Therefore in NMR peak lists, tetramethylsilane peak can occur but not necessarily.
The IH-NMR peak lists are similar to classical IH-NMR prints and contains therefore usually all peaks, which are listed at classical NMR-interpretation.
Additionally they can show like classical IH-NMR prints signals of solvents, stereoisomers of the target compounds, which are also object of the invention, and/or peaks of impurities.
To show compound signals in the delta-range of solvents and/or water the usual peaks of solvents, for example peaks of DMSO in DMSO-D6 and the peak of water are shown in our IH-NMR peak lists and have usually on average a high intensity .
The peaks of stereoisomers of the target compounds and/or peaks of impurities have usually on average a lower intensity than the peaks of target compounds (for example with a purity >90%).
Such stereoisomers and/or impurities can be typical for the specific preparation process. Therefore their peaks can help to recognize the reproduction of our preparation process via "side-products-fingerprints". - -
An expert, who calculates the peaks of the target compounds with known methods (MestreC, ACD-simulation, but also with empirically evaluated expectation values) can isolate the peaks of the target compounds as needed optionally using additional intensity filters. This isolation would be similar to relevant peak picking at classical 1H-NMR interpretation. Further details of NMR-data description with peak lists you find in the publication "Citation of NMR Peaklist Data within Patent Applications" of the Research Disclosure Database Number 564025.
Example 1.01 : 'H-NMR (300.2 MHz, CDC13):
|δ= 8.232 (2.4); 8.203 (2.5); 8.041 (5.3); 8.022 (0.4); 7.955 (5.9); 7.645 (0.5); 7.424 (0.8); 7.414 (5.5); 7.406 (1.8); 7.391 (2.1); 7.384 (6.6); 7.373 (0.8); 7.368 (0.4); 7.299 (88.2); 7.188 (0.9); 7.177 (6.9); 7.170 (1.8); 7.155 (1.8); 7.147 (5.0); 7.136 (0.4); 7.031 (3.0); 7.002 (2.7); 6.948 (0.5); 5.424 (0.4); 4.764 (2.2); 4.716 (3.6); 4.702 (5.8); 4.554 (3.5); 4.507 (2.4); 4.197 (1.1); 4.173 (3.5); 4.150 (3.5); 4.126 (1.1); 2.085 (16.0); 1.679 (12.3); 1.579 (44.1); 1.323 (4.5); 1.299 (9.1); 1.275 (4.2); 0.917 (0.3); 0.235 (0.6); 0.108 (9.3); 0.050 (4.1); 0.039 (119.3); 0.028 (4.6); -0.027 (0.3); -0.159 (0.5)
Example 1.02: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.470 (5.6); 8.063 (6.3); 7.956 (6.4); 7.450 (0.6); 7.439 (5.5); 7.432 (2.0); 7.416 (2.1); 7.409 (7.0); 7.398 (0.8); 7.316 (6.6); 7.300 (30.3); 7.138 (0.8); 7.127 (6.8); 7.120 (2.3); 7.105 (1.9); 7.097 (5.7); 7.087 (0.6); 5.340 (0.7); 4.727 (2.5); 4.679 (3.6); 4.480 (3.9); 4.440 (7.0); 1.675 (16.0); 1.587 (17.3); 1.294 (0.7); 0.109 (1.8); 0.051 (1.7); 0.040 (41.5); 0.029 (1.8)
Example 1.03 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.134 (3.3); 8.113 (1.4); 8.084 (1.4); 8.045 (3.4); 7.430 (3.0); 7.423 (1.0); 7.408 (1.1); 7.400 (3.8); 7.390 (0.5); 7.299 (12.4); 7.202 (0.5); 7.192 (3.8); 7.184 (1.2); 7.169 (1.0); 7.162 (3.0); 7.151 (1.7); 7.121 (1.4); 5.551 (0.5); 5.524 (0.5); 4.528 (0.7); 4.520 (0.7); 4.481 (1.0); 4.473 (1.0); 4.312 (1.0); 4.285 (1.0); 4.265 (0.7); 4.238 (0.7); 4.032 (0.9); 1.600 (16.0); 0.108 (1.3); 0.049 (0.6); 0.038 (14.7); 0.027 (0.6)
Example 1.04: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.582 (3.2); 8.159 (4.0); 8.055 (3.9); 7.646 (0.5); 7.452 (3.3); 7.430 (1.2); 7.422 (4.4); 7.412 (0.6); 7.367 (0.6); 7.300 (81.3); 7.259 (3.7); 7.234 (0.4); 7.160 (0.5); 7.149 (4.3); 7.126 (1.2); 7.119 (3.5); 6.949 (0.5); 5.470 (0.8); 5.452 (0.9); 5.340 (16.0); 4.515 (0.8); 4.508 (0.8); 4.469 (1.4); 4.461 (1.4); 4.343 (1.2); 4.315 (1.2); 4.297 (0.8); 4.269 (0.7); 3.835 (2.3); 3.824 (2.3); 1.647 (0.6); 1.607 (0.4); 1.581 (79.0); 1.515 (0.4); 1.351 (0.7); 1.293 (1.5); 0.920 (0.6); 0.900 (0.3); 0.235 (0.6); 0.109 (6.3); 0.051 (3.5); 0.040 (105.0); 0.029| (5.2); 0.006 (0.4); -0.026 (0.4); -0.159 (0.5)
Example 1.05: ¾-NMR (400.0 MHz, de-DMSO):
|δ= 8.339 (3.2); 8.187 (3.4); 7.953 (2.1); 7.790 (3.1); 7.443 (1.0); 7.438 (0.4); 7.424 (1.8); 7.422 (1.7); 7.407 (0.5); 7.403 (1.5); 7.248 (0.7); 7.246 (0.4); 7.230 (1.1); 7.211 (0.5); 7.147 (3.6); 7.120 (1.6); 7.117 (1.9); 7.112 (0.5); 7.098 (1.6); 7.096 (1.4); 6.002 (2.8); 4.747 (0.9); 4.711 (1.4); 4.597 (1.4); 4.561 (0.9); 3.328 (18.0); 2.891 (16.0); 2.732 (13.3); 2.511 (6.5); 2.507 (13.1); 2.502 (17.3); 2.498 (12.5); 2.493 (5.9); 1.989| (1.1); 1.615 (7.6); 1.175 (0.6); 0.000 (4.4)
Example 1.06: ¾-NMR (400.0 MHz, de-DMSO):
|δ= 8.367 (6.6); 8.224 (4.5); 8.218 (4.6); 7.808 (6.2); 7.619 (4.5); 7.613 (4.4); 7.491 (0.3); 7.486 (2.3); 7.480 (0.9); 7.473 (0.5); 7.467 (3.6); 7.464 (3.4); 7.459 (0.5); 7.451 (1.1); 7.446 (3.1); 7.440 (0.4); 7.268 (0.8); 7.265 (1.5); 7.263 (0.9); 7.247 (2.4); 7.231 (0.6); 7.228 (1.1); 7.226 (0.6); 7.133 (3.3); 7.130 (4.2); 7.125 (1.1); 7.114 (1.9); 7.111 (3.5); 7.109 (3.0); 7.102 (0.3); 5.809 (7.5); 5.757 (4.9); 4.764 (1.4); 4.729 (3.5); 4.690 (3.7); 4.655 (1.5); 4.038 (0.4); 4.020 (0.4); 3.327 (20.9); 2.525 (0.4); 2.512 (8.5); 2.507 (17.1); 2.503 (22.5); 2.498 (16.1); 2.493 (7.6); 1.989 (1.8); 1.551 (16.0); 1.397 (0.9); 1.193 (0.5); 1.175 (1.0); 1.157 (0.5);| 0.000 (6.5)
Example 1.07: ¾-NMR (400.0 MHz, de-DMSO):]
|δ= 8.327 (6.5); 7.985 (3.8); 7.963 (4.1); 7.953 (1.2); 7.785 (6.2); 7.477 (0.3); 7.472 (2.2); 7.467 (0.9); 7.453 (3.6); 7.451 (3.5); 7.437 (1.1); 7.432 (3.0); 7.426 (0.4); 7.275 (1.4); 7.256 (2.3); 7.238 (1.0); 7.162 (3.2); 7.160 (4.0); 7.155 (1.1); 7.141 (3.3); 7.139 (2.9); 7.132 (0.3); 6.917 (4.0); 6.896 (4.0); 6.009 (5.5); 4.776 (2.0); 4.740 (2.7); 4.595 (2.8); 4.560 (2.0); 4.056 (0.6); 4.038 (1.9); 4.020 (1.9); 4.002 (0.6); 3.328 (25.8); 2.891 (9.0); 2.732 (7.3); 2.525 (0.6); 2.511 (11.8); 2.507 (23.5); 2.502 (30.8); 2.498 (22.2); 2.493 (10.6); 1.989 (8.2); 1.612 (16.0); 1.397 (1.9); 1.193 (2.2); 1.175 (4.4); 1.157 (2.2); 0.000 (8.0) - -
Example 1.08: 'H-NMR (499.9 MHz, de-DMSO):
|δ= 8.369 (6.3); 8.251 (6.6); 7.785 (5.9); 7.614 (4.8); 7.597 (5.6); 7.400 (5.7); 7.382 (4.8); 6.581 (6.6); 6.047 (5.9); 4.777 (2.3); 4.749 (2.9); 4.542 (2.9); 4.514 (2.3); 3.319 (6.7); 2.892 (0.5); 2.733 (0.5); 2.504 (2.7); 1.629 (16.0); 0.000 (0.7)
Example 1.09: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.077 (3.7); 8.049 (3.9); 8.006 (4.7); 7.860 (4.4); 7.378 (0.4); 7.367 (4.5); 7.360 (1.5); 7.345 (1.7); 7.337 (5.5); 7.326 (0.7); 7.269 (2.2); 7.084 (0.6); 7.074 (5.6); 7.066 (1.7); 7.051 (1.5); 7.044 (4.5); 7.033 (0.5); 6.718 (3.9); 6.690 (3.8); 5.300 (0.7); 5.260 (2.0); 5.213 (2.3); 4.991 (1.5); 4.536 (2.4); 4.489 (2.1); 1.744 (0.5); 1.697 (16.0); 0.000 (2.5)
Example 1.10: ¾-NMR (400.1 MHz, CDCI3):
|δ= 8.092 (12.5); 7.992 (0.9); 7.963 (15.1); 7.913 (11.8); 7.892 (12.2); 7.861 (0.4); 7.839 (0.4); 7.520 (0.3); 7.476 (14.5); 7.454 (16.0); 7.311 (0.4); 7.288 (15.7); 7.281 (16.1); 7.261 (38.0); 7.045 (9.1); 7.039 (8.5); 7.023 (8.2); 7.017 (7.6); 6.997 (0.4); 6.919 (0.6); 6.900 (13.5); 6.879 (12.9); 5.378 (5.7); 5.372 (6.0); 5.358 (6.3); 5.353 (5.8); 4.603 (5.8); 4.597 (5.8); 4.568 (7.1); 4.562 (6.9); 4.260 (6.5); 4.241 (6.4); 4.225 (5.6); 4.206 (5.3); 4.145 (1.0); 4.127 (2.4); 4.109 (2.4); 4.092 (0.9); 2.952 (3.0); 2.872 (2.7); 2.040 (9.7); 1.331 (0.5); 1.324 (0.5); 1.309 (0.5); 1.284 (0.8); 1.275 (3.2); 1.257 (7.5); 1.239 (2.8); 0.880 (0.6); 0.862 (0.3);| 0.070 (5.2); 0.008 (1.3); 0.000 (27.0)
Example 1.11 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.116 (0.6); 8.097 (14.9); 7.990 (16.0); 7.955 (0.5); 7.931 (7.3); 7.930 (7.3); 7.904 (7.8); 7.902 (7.7); 7.608 (0.5); 7.372 (3.9); 7.368 (4.0); 7.342 (5.1); 7.338 (5.1); 7.308 (9.9); 7.299 (10.9); 7.262 (69.8); 7.125 (6.8); 7.116 (6.2); 7.095 (5.4); 7.086 (5.1); 6.946 (0.4); 6.927 (8.4); 6.911 (0.8); 6.900 (8.0); 5.390 (2.4); 5.365 (2.5); 5.302 (14.5); 4.623 (3.7); 4.615 (3.7); 4.576 (4.7); 4.568 (4.7); 4.286 (4.5); 4.260 (4.3); 4.239 (3.6); 4.214 (3.7); 4.185 (2.8); 2.716 (1.6); 2.046 (0.6); 1.584 (3.2); 1.267 (1.0); 1.260 (0.9); 1.253 (1.0); 1.244 (1.8); 1.236 (0.4); 1.221 (0.9); 0.011 (1.7); 0.000 (56.1); -0.011 (2.6)
Example 1.12: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.087 (14.9); 7.953 (16.0); 7.928 (0.3); 7.909 (7.3); 7.908 (7.1); 7.881 (7.7); 7.880 (7.4); 7.276 (5.2); 7.270 (3.8); 7.264 (27.5); 7.248 (10.2); 7.245 (9.9); 7.201 (2.6); 7.191 (19.5); 7.183 (4.9); 7.168 (4.0); 7.160 (8.9); 7.150 (1.1); 7.139 (0.5); 6.883 (8.4); 6.855 (8.1); 5.380 (2.1); 5.354 (2.3); 4.610 (3.5); 4.603 (3.5); 4.564 (4.5); 4.556 (4.4); 4.419 (2.9); 4.407 (2.8); 4.373 (0.3); 4.262 (4.4); 4.236 (4.1); 4.216 (3.4); 4.189 (3.3); 4.155 (0.5); 4.131 (1.3); 4.107 (1.3); 4.083 (0.5); 2.045 (6.0); 1.644 (4.8); 1.283 (1.7); 1.259 (3.5); 1.235 (1.6); 0.071 (1.7); 0.011 (0.6); 0.000 (19.0); -0.011 (0.8)
Example 1.13 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.115 (4.1); 8.089 (14.8); 7.985 (4.0); 7.958 (15.1); 7.889 (2.2); 7.863 (9.8); 7.835 (8.2); 7.442 (9.1); 7.417 (16.0); 7.393 (9.0); 7.291 (5.7); 7.277 (12.3); 7.267 (22.4); 7.264 (25.4); 7.240 (7.6); 7.217 (3.0); 7.156 (17.9); 7.130 (11.9); 6.834 (2.2); 6.807 (10.1); 6.792 (4.5); 6.779 (7.8); 5.381 (6.6); 5.358 (5.6); 4.609 (5.8); 4.562 (7.4); 4.332 (6.4); 4.288 (1.8); 4.261 (6.0); 4.235 (5.4); 4.215 (4.6); 4.188 (3.6); 4.158 (1.4); 4.131 (2.8); 4.107 (2.6); 4.087 (0.9); 2.072 (2.4); 2.058 (5.2); 2.048 (8.8); 2.045 (9.9); 1.718 (0.4); 1.711 (0.4); 1.639 (7.3); 1.352 (0.4); 1.283 (4.6); 1.272 (4.2); 1.262 (7.0); 1.259 (7.6); 1.238 (2.8); 1.235 (3.0); 0.904 (0.4); 0.879 (0.5); 0.859 (0.5); 0.097 (0.6); 0.071 (1.8); 0.027 (3.3); 0.013 (7.3); 0.003 (12.0); 0.000 (13.6)
Example 1.14: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.148 (0.4); 8.140 (0.4); 8.083 (12.1); 7.916 (14.3); 7.903 (7.1); 7.902 (7.0); 7.876 (7.1); 7.874 (7.0); 7.394 (1.2); 7.383 (12.6); 7.376 (4.3); 7.370 (1.7); 7.361 (5.0); 7.353 (16.0); 7.342 (2.3); 7.330 (0.3); 7.266 (13.6); 7.117 (1.7); 7.106 (15.8); 7.099 (4.8); 7.084 (4.7); 7.076 (12.9); 7.065 (1.5); 7.056 (1.0); 6.954 (0.4); 6.926 (0.4); 6.861 (7.7); 6.833 (7.3); 5.365 (1.9); 5.338 (2.0); 4.676 (2.8); 4.663 (2.7); 4.596 (3.2); 4.588 (3.2); 4.550 (4.0); 4.542 (4.0); 4.320 (0.4); 4.234 (3.8); 4.208 (3.7); 4.188 (3.1); 4.161 (3.0); 4.152 (0.6); |4.128 (1.2); 4.104 (1.2); 4.080 (0.4); 2.042 (5.5); 1.729 (1.5); 1.281 (1.6); 1.257 (3.3); 1.234 (1.6); 0.072 (0.6); 0.000 (9.1); -0.011 (0.4)
Example 1.15: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.085 (6.3); 7.972 (6.5); 7.868 (3.0); 7.867 (3.1); 7.840 (3.1); 7.839 (3.3); 7.263 (20.3); 7.219 (1.5); 7.217 (1.5); 7.210 (1.2); 7.208 (1.1); 7.189 (1.9); 7.182 (1.6); 7.180 (1.5); 7.002 (3.7); 6.973 (2.9); 6.789 (3.5); 6.761 (3.4); 5.367 (0.9); 5.356 (0.9); 5.341 (0.9); 4.606 (1.5); 4.599 (1.5); 4.560 (1.9); 4.552 (1.9); 4.265 (1.9); 4.239 (1.8); 4.218 (1.8); 4.210 (2.0); 4.193 (2.4); 2.153 (16.0); 2.046 (0.4); 1.600 (4.1); 1.259 (0.4); 1.254 (0.4); 0.070 (11.1); 0.011 (0.5); 0.000 (13.3); -0.011 (0.6) - -
Example 1.16: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.089 (6.2); 7.951 (6.5); 7.886 (2.9); 7.885 (3.0); 7.859 (3.0); 7.857 (3.1); 7.264 (12.1); 7.236 (2.6); 7.163 (3.0); 7.155 (3.4); 6.977 (2.0); 6.969 (1.9); 6.949 (1.7); 6.941 (1.6); 6.839 (3.4); 6.811 (3.3); 5.373 (0.9);| 5.358 (0.8); 5.346 (0.9); 5.301 (0.6); 4.607 (1.4); 4.599 (1.5); 4.560 (1.8); 4.552 (1.8); 4.405 (1.5); 4.391 (1.5); 4.251 (1.8); 4.224 (1.7); 4.204 (1.4); 4.178 (1.3); 2.379 (16.0); 2.044 (0.4); 1.645 (1.7); 1.259 (0.4);| 0.071 (11.6); 0.000 (7.2); -0.011 (0.3)
Example 1.17: 'H-NMR (300.2 MHz, CDCI3): δ= 8.152 (0.3); 8.143 (0.3); 8.083 (6.0); 7.950 (6.7); 7.877 (3.1); 7.875 (3.0); 7.849 (3.3); 7.847 (3.2); 7.264 (11.5); 7.130 (0.5); 7.125 (0.7); 7.114 (16.0); 7.102 (3.1); 7.096 (7.1); 7.090 (6.9); 7.081 (1.9); 7.070 (0.6); 7.060 (0.5); 7.055 (0.4); 6.939 (0.3); 6.911 (0.3); 6.831 (3.6); 6.803 (3.4); 5.369 (0.9); 5.343 (1.0); 5.301 (0.6); 4.602 (1.5); 4.594 (1.5); 4.555 (1.9); 4.547 (1.9); 4.389 (1.3); 4.375 (1.4); 4.363 (0.5); 4.255 (1.9);| 4.228 (1.8); 4.208 (1.5); 4.182 (1.4); 1.643 (1.4); 0.071 (10.5); 0.000 (7.9); -0.011 (0.4)
Example 1.18: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.118 (0.9); 8.109 (1.0); 8.087 (14.8); 7.994 (16.0); 7.902 (8.0); 7.901 (7.6); 7.874 (8.4); 7.873 (8.0); 7.748 (0.5); 7.740 (0.5); 7.719 (0.5); 7.712 (0.5); 7.608 (0.7); 7.292 (0.4); 7.262 (110.9); 7.252 (1.9); 7.244 (1.0); 7.233 (2.8); 7.215 (2.5); 7.203 (4.4); 7.185 (4.3); 7.175 (2.5); 7.157 (2.1); 7.033 (0.9); 7.005 (0.8); 6.996 (2.4); 6.986 (3.0); 6.968 (2.6); 6.958 (3.8); 6.953 (4.3); 6.944 (11.6); 6.934 (3.3); 6.926 (4.3); 6.922 (6.0); 6.917 (12.2); 6.893 (2.2); 6.888 (1.9); 6.883 (1.4); 6.878 (1.4); 5.365 (2.6); 5.346 (2.8); 5.302 (2.2); 5.143 (0.4); 4.600 (3.8); 4.592 (3.9); 4.554 (5.0); 4.546 (5.0); 4.377 (0.6); 4.365 (0.6); 4.340 (0.6); 4.313 (0.7); 4.268 (5.0); 4.242 (4.6); 4.221 (3.8); 4.195 (3.6); 4.098 (0.3); 4.086 (0.4); 4.034 (1.5); 3.735 (0.4); 3.712 (0.5); 2.047 (0.9); 2.011 (0.5); 1.574 (8.0); 1.482 (0.3); 1.284 (0.5); 1.268 (1.2); 1.260 (1.2); 1.254 (1.6); 1.245 (1.9); 1.221 (0.9); 1.151 (0.3); 1.000 (0.3); 0.978 (0.3); 0.070 (43.6); 0.011 (2.7); 0.000 (78.1); 0.011 (3.3); -0.199 (0.3)
Example 1.19: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.588 (0.4); 8.134 (3.1); 8.088 (16.0); 7.974 (15.3); 7.900 (7.7); 7.872 (7.4); 7.746 (1.8); 7.716 (1.6); 7.284 (8.3); 7.274 (19.9); 7.266 (31.0); 7.263 (37.2); 7.228 (21.4); 7.217 (21.2); 7.207 (23.6); 7.027 (2.1); 6.999 (1.8); 6.924 (8.0); 6.896 (7.1); 5.367 (5.2); 5.348 (4.8); 5.301 (2.5); 5.155 (1.4); 5.140 (1.4); 5.130 (1.4); 4.599 (5.1); 4.553 (6.6); 4.417 (0.8); 4.371 (2.3); 4.332 (1.7); 4.307 (1.6); 4.256 (4.9); 4.229 (4.9); 4.208 (4.5); 4.181 (9.4); 3.716 (1.8); 2.045 (0.4); 1.603 (15.3); 1.544 (0.4); 1.258 (1.8); 1.003 (0.3); 0.865 (0.4); 0.074 (37.2); 0.022 (5.6); 0.011 (13.2); 0.003 (19.8); 0.000 (23.5); -0.036 (0.4)
Example 1.20: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.182 (0.5); 8.173 (0.6); 8.096 (14.1); 7.991 (16.0); 7.951 (0.4); 7.934 (7.8); 7.932 (7.6); 7.906 (8.3); 7.904 (8.0); 7.608 (0.4); 7.279 (0.4); 7.263 (80.1); 7.000 (0.5); 6.972 (0.5); 6.927 (9.2); 6.912 (0.8); 6.900 (8.8); 6.878 (1.4); 6.865 (6.7); 6.859 (2.0); 6.845 (7.2); 6.838 (6.9); 6.824 (2.5); 6.818 (6.6); 6.805 (1.4); 6.796 (0.7); 6.792 (0.8); 5.394 (1.5); 5.387 (2.1); 5.382 (2.0); 5.372 (2.5); 5.356 (2.2); 5.348 (1.8); 5.302 (2.4); 4.619 (4.0); 4.611 (3.9); 4.573 (5.1); 4.565 (5.0); 4.396 (0.4); 4.385 (0.4); 4.349 (0.4); 4.282 (4.9); 4.256 (4.6); 4.236 (3.8); 4.210 (3.7); 4.177 (6.6); 4.163 (6.5); 4.133 (0.4); 4.109 (0.4); 3.719 (0.4); 2.046 (1.3); 2.011 (0.4); 1.579 (32.0); 1.284 (0.5); 1.260 (1.3); 1.253 (1.7); 1.236 (0.6); 0.070 (20.4); 0.011 (1.8); 0.000 (54.2); -0.011 (2.3)
Example 1.21 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.328 (11.3); 8.120 (10.1); 8.059 (0.4); 7.965 (11.4); 7.458 (0.8); 7.450 (4.0); 7.443 (1.9); 7.425 (8.2); 7.423 (7.5); 7.415 (1.7); 7.404 (3.2); 7.398 (7.2); 7.390 (1.4); 7.373 (0.4); 7.273 (2.4); 7.269 (4.7); 7.262 (54.0); 7.253 (1.7); 7.250 (2.7); 7.245 (5.6); 7.239 (2.1); 7.224 (1.7); 7.220 (2.4); 7.216 (1.5); 7.205 (0.4); 7.140 (8.0); 7.136 (10.0); 7.129 (2.9); 7.115 (4.9); 7.112 (8.0); 7.108 (6.8); 7.099 (1.1); 6.940 (16.0); 6.911 (0.4); 5.428 (2.3); 5.421 (2.4); 5.401 (2.6); 5.394 (2.5); 4.568 (3.1); 4.560 (3.1); 4.522 (4.3); 4.514 (4.2); 4.307 (4.0); 4.279 (3.8); 4.260 (2.9); 4.233 (2.8); 4.132 (0.8); 4.109 (0.8); 4.085 (0.4); 4.025 (0.7); 3.915 (0.8); 2.046 (3.1); 1.605 (2.2); 1.283 (1.0); 1.260 (2.0); 1.236 (0.9); 0.011 (1.4); 0.000 (38.0); -0.011 (1.2)
Example 1.22: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.179 (15.5); 8.164 (9.7); 8.156 (9.8); 7.834 (14.8); 7.609 (0.3); 7.462 (1.0); 7.454 (4.7); 7.448 (2.4); 7.438 (1.6); 7.430 (9.4); 7.427 (8.6); 7.419 (1.9); 7.408 (3.5); 7.402 (8.1); 7.394 (1.4); 7.339 (12.1); 7.331 (12.0); 7.268 (8.1); 7.263 (59.3); 7.252 (1.7); 7.248 (3.0); 7.243 (6.5); 7.238 (2.4); 7.222 (1.8); 7.219 (2.8); 7.215 (1.7); 7.076 (2.3); 7.071 (8.8); 7.067 (11.3); 7.060 (3.2); 7.046 (5.4); 7.042 (8.9); 7.039 (8.0); 7.030 (1.2); 6.912 (0.4); 5.382 (2.0); 5.371 (2.3); 5.362 (2.8); 5.358 (2.7); 5.352 (2.8); 5.347 (2.8); 5.339 (2.7); 5.328 (2.3); 4.644 (2.8); 4.633 (2.9); 4.597 (6.5); 4.585 (16.0); 4.561 (11.5); 4.532 (6.3); 4.513 (6.0); 4.485 (2.8); 4.466 (2.7); 2.047 (0.8); 1.596 (48.3); 1.260 (0.6); 0.011 (1.7); 0.000 (43.8); -0.011 (1.6) - -
Example 1.23 : 'H-NMR (300.2 MHz, CDC13):
|δ= 8.088 (15.2); 8.032 (0.6); 8.001 (16.0); 7.950 (0.4); 7.908 (7.7); 7.906 (7.9); 7.880 (8.1); 7.878 (8.5); 7.844 (0.6); 7.763 (0.4); 7.608 (1.1); 7.490 (10.6); 7.482 (1 1.6); 7.433 (0.4); 7.405 (0.4); 7.334 (0.7); 7.319 (6.0); 7.31 1 (5.6); 7.290 (9.1); 7.282 (8.8); 7.262 (212.9); 7.215 (0.9); 7.202 (0.8); 7.175 (13.6); 7.147 (9.3); 7.1 15 (0.5); 7.087 (0.5); 6.969 (0.5); 6.934 (9.1); 6.906 (8.4); 6.879 (0.3); 6.818 (0.4); 5.370 (2.5); 5.346 (2.7); 5.302 (9.4); 4.606 (3.9); 4.599 (3.9); 4.560 (5.1); 4.552 (4.8); 4.281 (4.8); 4.255 (4.5); 4.235 (3.9); 4.209 (3.5); 4.158 (0.9); 4.134 (2.8); 4.1 10 (3.0); 4.086 (1.1); 3.980 (2.3); 2.174 (0.3); 2.047 (13.9); 1.569 (38.7); 1.473 (0.4); 1.284 (3.8); 1.260 (8.2); 1.237 (3.9); 0.195 (0.5); 0.069 (33.5); 0.057 (1.8); 0.035 (0.6); 0.011 (4.7); 0.000 (141.0); -0.011 (5.6); -0.060 (0.4); -0.200 (0.4)
Example 1.24: 'H-NMR (300.2 MHz, CDCI3):
|δ= 8.073 (2.1); 7.905 (2.3); 7.854 (1.0); 7.826 (1.1); 7.416 (1.5); 7.410 (0.6); 7.394 (0.7); 7.388 (1.8); 7.379 (0.3); 7.271 (3.2); 7.1 17 (2.1); 7.1 10 (0.7); 7.095 (0.7); 7.088 (1.8); 6.808 (1.2); 6.780 (1.2); 5.352 (0.4); 5.331 (0.4); 5.326 (0.4); 4.931 (0.6); 4.909 (0.6); 4.577 (0.5); 4.569 (0.5); 4.531 (0.6); 4.523 (0.6); 4.239 (0.5); 4.213 (0.5); 4.192 (0.4); 4.166 (0.4); 4.152 (1.1); 4.128 (3.4); 4.104 (3.5); 4.081 (1.2); 2.042 (16.0); 2.031 (0.4); 1.523 (3.9); 1.502 (3.9); 1.281 (4.4); 1.258 (8.9); 1.234 (4.6); 0.072 (5.8); 0.060 (0.3); 0.000 (1.7)
Example 1.25: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.089 (9.2); 8.022 (7.1); 7.994 (7.6); 7.947 (1 1.2); 7.397 (1.3); 7.386 (12.9); 7.379 (4.6); 7.364 (5.3); 7.357 (16.0); 7.346 (2.2); 7.265 (9.5); 7.113 (1.9); 7.102 (15.8); 7.095 (5.3); 7.080 (4.7); 7.073 (13.0); 7.062 (1.8); 7.042 (5.8); 7.013 (5.5); 6.678 (3.7); 6.496 (7.5); 6.314 (3.8); 5.645 (2.4); 5.619 (2.6); 4.524 (3.1); |4.516 (3.2); 4.477 (4.5); 4.470 (4.5); 4.327 (2.6); 4.287 (4.4); 4.260 (4.1); 4.240 (3.1); 4.213 (2.9); 4.129 (0.7); 4.105 (0.7); 3.953 (1.1); 2.042 (2.9); 1.694 (4.8); 1.281 (1.2); 1.257 (3.9); 1.234 (1.1); 0.879 (0.5); 0.855 (0.4); 0.071 (5.7); 0.000 (9.7)
Example 1.26: ¾-NMR (300.2 MHz, CDCI3):
|δ= 18.304 (0.4); 16.267 (0.4); 15.166 (0.4); 12.449 (0.4); 8.100 (0.5); 8.057 (13.2); 7.993 (14.6); 7.886 (6.8); 7.858 (7.1); 7.607 (1.0); 7.531 (0.4); 7.382 (1.8); 7.371 (12.6); 7.364 (4.5); 7.349 (4.9); 7.342 (16.0); 7.331 (1.9); 7.300 (0.7); 7.262 (159.5); 7.127 (2.5); 7.116 (15.0); 7.109 (4.3); 7.093 (4.3); 7.086 (1 1.8); 7.075 (1.3); 7.065 (0.5); 6.910 (0.7); 6.820 (0.5); 6.793 (8.0); 6.766 (7.4); 5.343 (0.5); 5.329 (0.5); 5.313 (1.7); 5.302 (5.4); 5.289 (3.3); 5.279 (2.3); 4.528 (3.4); 4.519 (3.0); 4.481 (4.9); 4.473 (4.6); 4.317 (4.5); 4.292 (4.2); |4.270 (3.0); 4.246 (2.9); 3.929 (6.7); 3.914 (6.2); 2.516 (0.5); 2.221 (0.5); 2.174 (0.7); 1.617 (0.4); 1.553 (141.0); 1.524 (1.1); 1.508 (0.8); 1.477 (0.5); 1.308 (1.2); 1.255 (3.7); 0.896 (0.6); 0.881 (1.1); 0.853 (0.6);| 0.196 (0.8); 0.069 (18.0); 0.01 1 (6.2); 0.000 (185.3); -0.011 (8.4); -0.065 (0.6); -0.199 (0.9); -1.451 (0.4); 3.269 (0.5)
Example 1.27: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.062 (3.3); 8.034 (3.5); 8.007 (4.0); 7.860 (4.2); 7.269 (1.8); 7.088 (13.5); 7.067 (12.6); 6.686 (3.5); 6.658 (3.4); 5.300 (1.5); 5.261 (2.2); 5.214 (2.4); 4.978 (1.7); 4.535 (2.5); 4.488 (2.2); 1.696 (16.0); 1.255 (0.6); 0.000 (0.9)
Example 1.28: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.054 (3.3); 8.026 (3.4); 8.000 (4.4); 7.859 (4.1); 7.317 (0.3); 7.298 (0.4); 7.291 (0.4); 7.266 (3.8); 7.245 (1.5); 7.238 (1.9); 7.199 (1.0); 7.197 (1.0); 7.190 (0.8); 7.189 (0.7); 7.170 (1.2); 7.169 (1.2); 7.162 (1.0); 7.160 (1.0); 6.973 (2.6); 6.945 (2.0); 6.642 (3.4); 6.613 (3.3); 5.713 (0.4); 5.301 (0.7); 5.253 (1.9); 5.206 (2.1); 4.950 (0.5); 4.535 (2.2); 4.488 (2.0); 2.150 (0.5); 2.115 (11.2); 1.697 (16.0); 0.000 (3.9)
Example 1.29: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.067 (3.6); 8.052 (0.6); 8.039 (3.8); 8.023 (0.5); 8.013 (4.3); 7.863 (4.4); 7.268 (2.6); 7.247 (1.6); 7.219 (1.9); 7.141 (2.4); 7.133 (2.5); 6.943 (1.6); 6.935 (1.5); 6.916 (1.3); 6.907 (1.2); 6.702 (0.4); 6.695 (3.8); 6.673 (0.4); 6.667 (3.7); 5.300 (0.4); 5.250 (1.9); 5.203 (2.2); 4.968 (0.9); 4.544 (2.3); 4.497 (2.1); 2.368 (12.5); 1.735 (1.3); 1.697 (16.0); 0.000 (2.4)
Example 1.30: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.089 (4.3); 8.005 (4.2); 7.861 (2.4); 7.833 (2.6); 7.608 (0.4); 7.313 (0.4); 7.262 (51.7); 7.141 (2.3); 7.1 1 1 (2.9); 7.012 (3.0); 7.002 (2.6); 6.872 (2.1); 6.863 (1.6); 6.842 (2.9); 6.837 (3.3); 6.809 (2.3); 5.375 (1.3); 5.361 (1.3); 5.350 (1.2); 4.606 (1.4); 4.559 (1.9); 4.280 (1.4); 4.254 (1.4); 4.234 (1.1); 4.209 (1.1); 3.904 (2.9); 3.890 (2.3); 3.828 (16.0); 1.664 (0.4); 1.570 (143.6); 1.293 (0.9); 1.257 (1.8); 0.887 (0.6); 0.856 (0.4); 0.069 (7.1); 0.000 (47.4); -0.032 (0.4) - -
Example 1.31 : 'H-NMR (300.2 MHz, CDC13):|
|δ= 8.055 (2.8); 8.027 (2.8); 7.989 (3.8); 7.866 (3.5); 7.263 (46.0); 7.115 (2.3); 7.086 (2.8); 6.993 (2.2); 6.983 (2.6); 6.854 (1.6); 6.844 (1.4); 6.824 (1.3); 6.814 (1.1); 6.687 (2.8); 6.658 (2.7); 5.302 (9.2); 5.246 (1.6); 5.199 (1.9); 4.874 (2.9); 4.532 (2.0); 4.486 (1.7); 3.819 (16.0); 1.692 (10.3); 1.571 (113.0); 1.254 (1.0); 0.069 (8.2); 0.011 (1.2); 0.000 (38.4); -0.011 (1.7)
Example 1.32: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.141 (1.5); 8.116 (3.9); 8.088 (3.3); 8.047 (2.6); 8.024 (4.8); 7.878 (2.7); 7.859 (5.6); 7.489 (1.4); 7.480 (1.4); 7.466 (3.7); 7.452 (1.7); 7.437 (3.3); 7.273 (4.3); 7.269 (4.2); 7.035 (1.5); 7.019 (3.0); 7.015 (3.0); 6.990 (2.2); 6.795 (1.5); 6.770 (3.9); 6.758 (1.7); 6.742 (2.8); 5.358 (0.3); 5.324 (0.9); 5.316 (0.8); 5.301 (2.0); 5.238 (2.6); 5.192 (2.9); 5.053 (1.0); 4.581 (1.4); 4.555 (2.9); 4.534 (1.5); 4.523 (1.2); 4.509 (2.6);| 2.194 (0.5); 2.187 (0.5); 2.172 (1.2); 1.761 (0.9); 1.724 (7.3); 1.715 (6.9); 1.702 (16.0); 0.000 (0.8)
Example 1.33 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.447 (0.4); 8.418 (0.4); 8.193 (0.5); 8.024 (10.1); 8.011 (0.8); 7.996 (10.5); 7.915 (13.4); 7.865 (13.2); 7.418 (0.5); 7.388 (0.6); 7.365 (1.3); 7.354 (12.7); 7.347 (4.4); 7.332 (4.8); 7.324 (16.3); 7.314 (1.8); 7.268 (5.6); 7.142 (0.6); 7.112 (0.6); 7.097 (1.8); 7.087 (16.0); 7.079 (4.8); 7.064 (4.4); 7.057 (12.9); 7.046 (1.3); 6.954 (0.3); 6.926 (0.3); 6.684 (9.4); 6.656 (9.1); 5.571 (1.1); 4.939 (8.6); 4.819 (5.6); 4.773 (7.0); 4.454| (7.6); 4.407 (6.0); 1.750 (3.6); 1.579 (41.0); 0.000 (4.9)
Example 1.34: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.099 (2.6); 7.999 (2.7); 7.942 (1.3); 7.914 (1.3); 7.817 (2.3); 7.810 (0.7); 7.794 (0.8); 7.786 (2.5); 7.262 (13.8); 7.254 (1.6); 7.223 (1.3); 6.956 (1.5); 6.928 (1.5); 5.396 (0.4); 5.385 (0.3); 5.372 (0.4); 5.302 (0.4); 4.628 (0.6); 4.621 (0.6); 4.582 (0.8); 4.574 (0.8); 4.299 (0.8); 4.274 (0.8); 4.253 (0.6); 4.227 (0.6); 4.157 (1.1); 4.133 (3.6); 4.110 (3.9); 4.086 (1.2); 2.046 (16.0); 1.575 (3.4); 1.284 (4.3); 1.260 (8.6); 1.236 (4.2); 0.069 (1.6); 0.011 (0.5); 0.000 (16.0); -0.011 (0.7)
Example 1.35: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.234 (1.6); 8.231 (1.7); 8.203 (1.2); 8.143 (4.1); 8.115 (4.3); 8.006 (5.8); 7.872 (5.1); 7.866 (1.8); 7.859 (0.5); 7.842 (0.5); 7.835 (1.5); 7.810 (0.5); 7.799 (4.5); 7.792 (1.5); 7.776 (1.5); 7.769 (5.0); 7.758 (0.5); 7.307 (0.8); 7.277 (0.9); 7.262 (35.5); 7.215 (2.8); 7.185 (2.5); 7.053 (1.2); 7.025 (1.2); 6.818 (4.3); 6.789| (4.1); 5.717 (3.4); 5.302 (15.9); 5.249 (2.5); 4.994 (2.7); 4.537 (2.7); 4.490 (2.4); 2.010 (0.3); 1.713 (16.0); 1.559 (3.1); 1.269 (0.4); 1.254 (0.5); 1.246 (0.5); 0.069 (9.3); 0.057 (0.4); 0.011 (1.2); 0.000 (40.7); -0.011 (1.7)
Example 1.36: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.603 (7.8); 8.160 (9.7); 8.044 (3.2); 8.038 (2.8); 8.024 (2.6); 7.882 (9.0); 7.875 (3.1); 7.858 (3.6); 7.852 (9.8); 7.841 (1.1); 7.327 (9.7); 7.300 (34.9); 7.271 (5.5); 5.496 (1.9); 5.468 (2.0); 5.339 (16.0); 4.526 (2.0); 4.520 (1.9); 4.479 (3.2); 4.473 (3.1); 4.347 (2.3); 4.319 (2.1); 4.300 (1.5); 4.272 (1.4); 4.180 (0.4); 4.157 (0.5); 4.093 (0.4); 4.086 (0.4); 4.079 (0.4); 4.061 (0.4); 4.021 (0.9); 1.596 (11.1); 1.334 (0.4); 1.304 (0.9); 1.292 (1.9); 1.259 (0.4); 0.108 (3.2); 0.039 (35.5); 0.028 (1.8)
Example 1.37: ¾-NMR (300.2 MHz, CDCI3): δ= 8.500 (5.7); 8.071 (5.5); 7.959 (6.6); 7.881 (0.6); 7.870 (5.8); 7.863 (1.9); 7.847 (1.9); 7.840 (6.5); 7.829 (0.7); 7.378 (6.6); 7.300 (51.6); 7.277 (3.7); 7.247 (3.2); 5.339 (13.2); 4.742 (2.7); 4.694 (3.7); 4.503 (5.4); 4.499 (5.5); 4.451 (2.8); 1.693 (16.0); 1.588 (17.9); 0.108 (0.6); 0.050 (1.8); 0.039 (52.9); 0.028 (2.0)
Example 1.38: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.136 (0.4); 8.047 (0.5); 7.587 (0.3); 7.300 (6.7); 7.285 (0.4); 7.255 (0.3); 6.905 (0.3); 1.603 (16.0); 0.108 (0.7); 0.038 (7.0); 0.028 (0.3)
Example 1.39: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.138 (3.4); 8.109 (4.7); 8.083 (1.3); 8.041 (5.3); 8.014 (2.1); 7.909 (4.9); 7.882 (2.0); 7.598 (3.4); 7.569
(5.2) ; 7.543 (2.0); 7.307 (9.3); 7.300 (23.3); 7.273 (7.8); 7.250 (4.7); 7.222 (5.3); 7.197 (1.8); 6.892 (1.4); 6.864 (0.6); 6.794 (3.6); 6.766 (4.5); 6.740 (1.2); 6.703 (2.7); 6.677 (1.1); 6.515 (1.4); 6.488 (0.6); 5.339
(4.3) ; 5.323 (2.9); 5.313 (1.8); 5.297 (1.4); 5.276 (2.9); 5.250 (1.3); 4.990 (4.1); 4.963 (1.9); 4.573 (2.9); |4.545 (1.3); 4.526 (2.7); 4.500 (1.0); 1.745 (16.0); 1.718 (6.5); 1.598 (16.5); 1.571 (7.7); 1.294 (0.7); 1.266 (0.5); 0.108 (3.2); 0.082 (1.2); 0.046 (9.2); 0.039 (22.4); 0.012 (7.1)
Example 1.40: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.131 (4.9); 8.117 (2.0); 8.088 (2.0); 8.033 (5.1); 7.589 (0.4); 7.578 (4.6); 7.571 (1.5); 7.555 (1.5); 7.548
(5.3) ; 7.538 (0.5); 7.300 (15.7); 7.153 (2.5); 7.141 (5.4); 7.134 (1.7); 7.125 (2.2); 7.119 (1.7); 7.112 (4.6);| 7.101 (0.5); 5.549 (0.7); 5.524 (0.7); 4.525 (0.9); 4.517 (1.0); 4.478 (1.4); 4.471 (1.4); 4.308 (1.4); 4.281
(1.4) ; 4.261 (1.0); 4.234 (1.0); 4.116 (2.3); 4.104 (2.3); 1.609 (16.0); 1.293 (0.5); 0.108 (1.4); 0.049 (0.5);| 0.039 (15.0); 0.028 (0.5) - -
Example 1.41 : 'H-NMR (300.2 MHz, CDC13):
|δ= 8.115 (14.5); 8.025 (14.6); 7.948 (3.6); 7.919 (4.4); 7.889 (3.7); 7.646 (0.6); 7.438 (1.2); 7.427 (12.9); 7.420 (4.2); 7.405 (4.6); 7.397 (15.8); 7.386 (1.7); 7.367 (0.6); 7.300 (121.1); 7.270 (0.4); 7.233 (0.5); 7.144 (1.6); 7.133 (16.0); 7.126 (4.7); 7.111 (4.1); 7.103 (12.7); 7.093 (1.2); 6.949 (0.7); 6.828 (5.9); 6.801 (5.5); 5.364 (1.4); 5.350 (1.8); 5.339 (2.9); 5.330 (2.1); 5.315 (1.6); 4.590 (3.1); 4.581 (3.2); 4.543 (4.8); 4.534
(4.8) ; 4.393 (4.7); 4.368 (4.5); 4.346 (3.1); 4.321 (2.9); 4.000 (8.1); 3.985 (8.0); 1.660 (0.5); 1.594 (134.6); 1.527 (0.7); 1.380 (0.4); 1.342 (0.5); 1.292 (1.1); 0.920 (0.4); 0.234 (0.5); 0.120 (1.1); 0.108 (33.8); 0.049
(3.9) ; 0.038 (128.9); 0.027 (5.1); -0.008 (0.3); -0.029 (0.6); -0.160 (0.6)
Example 1.42: 'H-NMR (300.2 MHz, CDCI3):
|δ= 8.045 (1.5); 8.017 (1.8); 8.011 (1.8); 8.001 (4.0); 7.983 (1.7); 7.921 (3.9); 7.424 (0.5); 7.413 (4.0); 7.406 (1.4); 7.391 (1.5); 7.383 (4.9); 7.372 (0.6); 7.300 (17.2); 7.118 (0.6); 7.107 (4.9); 7.100 (1.5); 7.085 (1.3); 7.078 (4.0); 7.067 (0.4); 6.722 (1.7); 6.717 (1.7); 6.695 (1.6); 6.690 (1.7); 4.855 (2.7); 4.811 (1.4); 4.765 (1.8); 4.496 (2.0); 4.449 (1.5); 2.047 (2.0); 1.607 (16.0); 0.107 (2.0); 0.049 (0.8); 0.038 (18.3); 0.027 (0.8)
Example 1.43 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.591 (11.5); 8.161 (14.7); 8.045 (16.0); 7.646 (0.6); 7.367 (0.5); 7.339 (6.0); 7.308 (11.8); 7.300 (110.2); 7.279 (13.8); 7.242 (2.4); 7.232 (19.4); 7.224 (4.8); 7.209 (3.8); 7.201 (10.4); 7.190 (0.9); 6.949 (0.6); 5.480 (2.5); 5.453 (2.5); 4.518 (2.8); 4.510 (2.9); 4.471 (4.6); 4.463 (4.7); 4.342 (4.6); 4.314 (4.2); 4.295 (2.8); |4.267 (2.8); 3.948 (4.5); 3.938 (4.5); 2.048 (8.9); 1.664 (0.4); 1.597 (53.9); 1.533 (0.3); 1.290 (1.1); 0.234 (0.4); 0.108 (2.3); 0.049 (4.1); 0.038 (119.4); 0.027 (4.2); -0.160 (0.4)
Example 1.44: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.477 (5.7); 8.070 (6.8); 7.958 (7.2); 7.335 (7.2); 7.328 (3.3); 7.325 (3.3); 7.318 (1.7); 7.300 (48.0); 7.220 (1.2); 7.209 (8.8); 7.201 (2.3); 7.186 (1.9); 7.179 (5.0); 7.167 (0.5); 5.340 (4.8); 4.732 (2.5); 4.685 (3.7); 4.484 (4.1); 4.461 (6.6); 4.437 (2.8); 1.680 (16.0); 1.655 (0.6); 1.598 (17.9); 1.307 (0.4); 1.292 (0.4); 1.284 (0.4); 0.108 (1.4); 0.049 (2.3); 0.038 (48.0); 0.027 (1.7)
Example 1.45: ¾-NMR (300.2 MHz, CDCI3):
|δ= 15.116 (0.4); 15.105 (0.4); 8.468 (5.5); 8.066 (6.4); 7.957 (6.7); 7.646 (1.0); 7.439 (6.4); 7.431 (2.1); 7.416 (2.3); 7.409 (7.4); 7.398 (1.0); 7.366 (1.1); 7.316 (8.1); 7.300 (198.5); 7.233 (0.5); 7.137 (0.9); 7.126 (7.5); 7.119 (2.0); 7.104 (1.9); 7.097 (6.0); 6.949 (1.1); 5.340 (12.4); 4.727 (2.5); 4.680 (3.7); 4.480 (3.9); |4.433 (9.2); 1.721 (0.4); 1.675 (16.0); 1.593 (225.5); 1.526 (1.0); 1.500 (0.5); 1.466 (0.4); 1.306 (0.9); 1.293 (1.4); 1.260 (0.5); 0.918 (0.5); 0.897 (0.5); 0.234 (0.7); 0.172 (0.4); 0.119 (0.9); 0.108 (28.9); 0.069 (0.5);| 0.049 (5.8); 0.038 (187.8); 0.027 (7.4); -0.028 (0.6); -0.159 (0.8)
Example 1.46: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.468 (5.6); 8.067 (6.3); 7.957 (6.9); 7.646 (0.6); 7.449 (0.7); 7.438 (6.5); 7.431 (2.2); 7.416 (2.5); 7.409 (7.8); 7.398 (0.9); 7.366 (0.5); 7.348 (0.3); 7.316 (7.3); 7.300 (94.3); 7.137 (1.0); 7.126 (7.9); 7.119 (2.3); 7.104 (2.3); 7.097 (6.2); 7.086 (0.6); 6.949 (0.4); 5.340 (12.1); 4.726 (2.6); 4.679 (3.6); 4.480 (4.1); 4.434 (7.8); 1.675 (16.0); 1.598 (49.3); 1.307 (0.8); 1.293 (1.2); 1.284 (0.7); 1.261 (0.6); 1.240 (0.4); 0.107 (14.9); 0.096 (0.7); 0.049 (3.9); 0.038 (89.4); 0.027 (3.4); -0.160 (0.3)
Example 1.47: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.600 (7.4); 8.161 (10.0); 8.036 (6.8); 7.756 (5.5); 7.727 (6.4); 7.322 (6.6); 7.314 (10.8); 7.300 (44.3); 5.489 (1.6); 5.462 (1.6); 4.523 (1.8); 4.516 (1.9); 4.476 (3.0); 4.469 (3.0); 4.345 (2.9); 4.317 (2.7); 4.298 (1.8); 4.270 (1.7); 4.059 (1.2); 1.604 (16.0); 1.291 (0.4); 0.108 (2.6); 0.049 (1.5); 0.039 (45.1); 0.028 (1.6)
Example 1.48: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.585 (10.3); 8.154 (13.4); 8.011 (12.8); 7.608 (1.2); 7.598 (12.2); 7.591 (3.8); 7.575 (4.0); 7.569 (13.3); 7.558 (1.4); 7.300 (26.5); 7.256 (11.7); 7.105 (1.4); 7.094 (13.6); 7.088 (4.0); 7.072 (3.8); 7.065 (11.9); 7.055 (1.2); 5.467 (2.2); 5.439 (2.2); 4.504 (2.5); 4.497 (2.6); 4.457 (4.2); 4.450 (4.1); 4.328 (4.0); 4.300 (3.7); |4.281 (2.5); 4.253 (2.4); 4.153 (2.2); 2.045 (8.3); 1.632 (16.0); 1.291 (0.4); 0.107 (1.9); 0.048 (1.0); 0.038 (28.3); 0.027 (1.1)
Example 1.49: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.469 (5.6); 8.359 (0.4); 8.327 (0.4); 8.216 (0.9); 8.065 (6.5); 8.024 (1.1); 7.958 (6.8); 7.657 (0.5); 7.646 (0.8); 7.637 (0.8); 7.598 (0.9); 7.588 (6.5); 7.580 (2.2); 7.565 (2.1); 7.558 (7.3); 7.547 (0.8); 7.428 (0.4); 7.389 (0.4); 7.358 (0.6); 7.317 (7.5); 7.300 (122.9); 7.085 (0.8); 7.074 (7.2); 7.067 (2.2); 7.052 (2.1); 7.045 (6.4); 7.034 (0.8); 6.949 (0.6); 5.299 (1.0); 5.281 (1.1); 4.728 (2.5); 4.680 (3.6); 4.480 (3.8); 4.442 (6.4); |4.433 (3.1); 2.944 (0.3); 2.888 (0.4); 2.638 (0.3); 2.579 (0.4); 2.049 (0.5); 1.675 (16.0); 1.655 (3.0); 1.590| (46.1); 1.293 (1.5); 0.918 (0.4); 0.235 (0.5); 0.108 (7.9); 0.050 (5.5); 0.039 (133.6); 0.028 (5.0); -0.160 (0.5) - -
Example 1.50: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.490 (5.7); 8.071 (6.6); 7.959 (7.1); 7.743 (3.8); 7.715 (4.4); 7.369 (6.6); 7.300 (49.1); 7.271 (3.8); 5.340 (11.7); 4.738 (2.6); 4.690 (3.7); 4.493 (4.7); 4.486 (6.7); 4.445 (2.9); 1.688 (16.0); 1.596 (17.8); 1.293 (1.0); 0.108 (3.1); 0.049 (1.7); 0.038 (47.7); 0.027 (1.9)
Example 1.51 : 'H-NMR (300.2 MHz, CDC13):|
|δ= 8.112 (4.7); 8.084 (5.0); 8.036 (5.7); 7.905 (5.5); 7.646 (0.6); 7.417 (0.7); 7.407 (5.8); 7.400 (1.9); 7.385 (2.2); 7.377 (7.2); 7.366 (1.5); 7.300 (116.3); 7.289 (2.0); 7.234 (0.5); 7.122 (0.9); 7.112 (7.1); 7.104 (2.1);| 7.089 (1.9); 7.082 (5.7); 7.071 (0.6); 6.949 (0.5); 6.755 (5.0); 6.727 (4.8); 5.340 (1.2); 5.320 (2.6); 5.273 (2.9); 4.977 (4.3); 4.564 (3.2); 4.516 (2.8); 1.737 (16.0); 1.735 (15.7); 1.709 (0.4); 1.656 (1.0); 1.589 (156.0); 1.523 (0.7); 1.323 (0.4); 1.293 (2.8); 0.234 (0.4); 0.120 (0.5); 0.108 (7.1); 0.049 (4.7); 0.039 (114.3); 0.028 (4.5); -0.028 (0.6); -0.160 (0.3)
Example 1.52: ¾-NMR (300.2 MHz, CDCI3):
|δ= 17.800 (0.4); 17.078 (0.4); 12.484 (0.4); 11.639 (0.4); 10.368 (0.4); 8.112 (4.3); 8.084 (4.5); 8.036 (5.6); 7.906 (5.5); 7.646 (1.1); 7.435 (0.4); 7.407 (5.3); 7.400 (1.9); 7.385 (1.9); 7.378 (6.6); 7.367 (1.7); 7.327 (0.6); 7.300 (179.7); 7.233 (0.6); 7.122 (0.7); 7.112 (6.4); 7.105 (2.0); 7.089 (1.6); 7.082 (5.2); 6.949 (0.9); 6.755 (4.5); 6.727 (4.3); 5.811 (0.4); 5.340 (0.7); 5.320 (2.7); 5.274 (2.9); 4.976 (4.2); 4.563 (3.1); 4.517 (2.8); 1.736 (16.0); 1.700 (0.4); 1.671 (0.5); 1.654 (1.4); 1.587 (240.3); 1.521 (1.1); 1.340 (0.4); 1.293 (3.9); 0.893 (0.4); 0.234 (0.8); 0.108 (10.8); 0.050 (5.5); 0.039 (174.0); 0.028 (6.1); -0.028 (0.9); -0.160 (0.7); 1.485 (0.4); -3.388 (0.4)
Example 1.53 : ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.472 (4.8); 8.023 (3.8); 7.898 (3.5); 7.416 (0.4); 7.405 (3.6); 7.398 (1.2); 7.383 (1.3); 7.375 (4.3); 7.365 (0.5); 7.300 (13.9); 7.097 (0.5); 7.086 (4.3); 7.079 (1.3); 7.064 (1.1); 7.057 (3.5); 7.046 (0.4); 6.913 (4.9);| 5.339 (0.5); 5.215 (1.7); 5.168 (1.9); 4.834 (2.2); 4.557 (2.1); 4.510 (1.8); 2.211 (16.0); 1.736 (11.9); 1.613 (3.4); 0.107 (0.8); 0.049 (0.5); 0.038 (13.4); 0.027 (0.5)
Example 1.54: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.472 (4.0); 8.023 (3.1); 7.899 (2.9); 7.405 (3.0); 7.398 (1.0); 7.383 (1.1); 7.376 (3.6); 7.365 (0.4); 7.300 (19.7); 7.097 (0.4); 7.087 (3.6); 7.079 (1.1); 7.064 (1.0); 7.057 (2.9); 6.913 (4.1); 5.339 (0.5); 5.218 (1.4); 5.171 (1.6); 4.830 (2.0); 4.557 (1.7); 4.510 (1.5); 2.220 (0.4); 2.211 (16.0); 1.737 (9.1); 1.602 (8.9); 1.294| (0.5); 0.108 (1.2); 0.049 (0.8); 0.038 (19.1); 0.027 (0.7)
Example 1.55: ¾-NMR (300.2 MHz, de-DMSO):
|δ= 8.537 (11.6); 8.485 (16.0); 7.988 (14.8); 7.706 (8.1); 7.678 (9.3); 7.491 (13.1); 7.426 (0.4); 7.373 (10.4); 7.345 (8.7); 7.287 (3.3); 7.101 (7.2); 6.915 (3.5); 6.216 (6.8); 6.200 (7.0); 5.781 (12.7); 5.229 (2.2); 5.216 (2.6); 5.204 (2.3); 4.494 (1.9); 4.466 (1.8); 4.447 (3.8); 4.420 (3.6); 4.372 (3.8); 4.360 (3.8); 4.325 (1.8); |4.313 (1.6); 3.954 (0.6); 3.351 (40.4); 3.201 (0.4); 3.184 (0.4); 2.531 (6.3); 2.525 (8.2); 2.519 (6.1); 2.012 (0.7); 1.258 (0.4); 1.198 (0.4); 1.079 (0.4); 0.023 (7.0)
Example 1.56: ¾-NMR (400.1 MHz, CDCI3):
|δ= 8.441 (5.7); 8.072 (2.9); 7.900 (3.8); 7.581 (3.9); 7.560 (4.3); 7.310 (6.8); 7.264 (3.5); 7.227 (4.8); 7.206 (4.3); 6.808 (1.7); 6.666 (3.5); 6.525 (1.7); 4.666 (2.5); 4.630 (3.4); 4.451 (3.6); 4.416 (2.6); 1.641 (16.0); 0.000 (2.4)
Example 1.57: ¾-NMR (400.1 MHz, de-DMSO):
|δ= 8.476 (11.7); 8.441 (16.0); 7.946 (16.0); 7.681 (4.1); 7.676 (4.3); 7.655 (4.2); 7.650 (4.2); 7.547 (13.2); 7.472 (2.9); 7.450 (7.0); 7.429 (5.3); 7.395 (4.6); 7.391 (4.4); 7.373 (2.6); 7.370 (2.3); 6.165 (6.6); 6.153 (6.8); 5.197 (2.1); 5.187 (2.4); 5.178 (2.1); 4.455 (2.0); 4.434 (1.9); 4.420 (3.6); 4.399 (3.5); 4.348 (3.5); |4.339 (3.5); 4.313 (1.9); 4.304 (1.8); 3.304 (25.8); 2.505 (9.5); 2.500 (12.7); 2.496 (9.4); 0.000 (11.0); -0.008 (0.6)
Example 1.58: ¾-NMR (300.2 MHz, de-DMSO):
|δ= 8.539 (0.4); 8.336 (10.3); 8.315 (7.2); 8.057 (0.4); 7.859 (10.1); 7.702 (2.7); 7.694 (2.7); 7.667 (2.5); 7.660 (2.6); 7.547 (8.9); 7.490 (1.7); 7.461 (4.2); 7.434 (3.8); 7.412 (3.4); 7.410 (3.3); 7.405 (3.0); 7.381 (1.4); 7.373 (1.3); 5.949 (0.7); 5.865 (9.5); 4.565 (0.9); 4.517 (5.2); 4.502 (5.2); 4.455 (1.0); 3.348 (18.9); 2.537 (3.9); 2.531 (7.7); 2.525 (10.3); 2.519 (7.5); 2.513 (3.6); 1.583 (16.0); 0.034 (0.5); 0.023 (11.3); 0.012| (0.5)
Example 1.59: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.231 (3.2); 8.202 (3.3); 8.043 (7.2); 8.005 (0.3); 7.952 (8.0); 7.572 (0.8); 7.561 (7.5); 7.554 (2.3); 7.538 (2.4); 7.531 (8.4); 7.521 (0.9); 7.300 (36.8); 7.137 (0.9); 7.126 (8.6); 7.119 (2.5); 7.104 (2.3); 7.097 (7.4); 7.086 (0.7); 7.033 (3.8); 7.004 (3.6); 5.339 (8.7); 4.761 (2.9); 4.714 (8.4); 4.554 (4.7); 4.506 (3.0); 2.996 (0.6); 2.923 (0.5); 1.678 (16.0); 1.604 (13.6); 1.306 (0.5); 1.292 (1.0); 1.283 (0.6); 0.108 (5.8); 0.049 (1.1); 0.038 (37.9); 0.027 (1.4) - -
Example 1.60: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.172 (3.7); 8.147 (10.6); 8.063 (8.6); 7.875 (0.9); 7.864 (7.6); 7.857 (2.5); 7.841 (2.6); 7.833 (8.6); 7.823 (1.1); 7.646 (0.8); 7.365 (4.8); 7.334 (4.4); 7.300 (127.8); 7.241 (3.9); 7.213 (3.6); 6.949 (0.8); 5.573 (1.4); 5.547 (1.4); 5.340 (16.0); 4.547 (1.7); 4.539 (1.7); 4.500 (2.7); 4.492 (2.6); 4.330 (2.7); 4.304 (2.6); 4.284 (1.7); 4.257 (1.8); 4.025 (2.6); 1.663 (0.5); 1.596 (86.9); 1.410 (0.3); 1.349 (0.6); 1.321 (0.8); 1.307 (1.2); 1.292 (1.8); 1.284 (1.3); 1.260 (0.6); 0.919 (0.6); 0.892 (0.5); 0.866 (0.4); 0.854 (0.4); 0.233 (0.5); 0.119 (1.1); 0.107 (26.2); 0.095 (1.0); 0.049 (4.5); 0.038 (124.6); 0.027 (4.6); 0.009 (0.4); -0.029 (0.5); -0.160 (0.5)
Example 1.61 : 'H-NMR (300.2 MHz, CDCI3):
|δ= 9.881 (0.4); 8.157 (6.4); 8.144 (15.5); 8.128 (6.6); 8.060 (16.0); 7.736 (8.7); 7.707 (10.2); 7.646 (0.9); 7.373 (9.5); 7.345 (8.3); 7.300 (151.7); 7.233 (0.6); 7.220 (6.7); 7.192 (6.2); 6.949 (0.9); 5.566 (2.2); 5.543 (2.2); 5.340 (1.2); 4.543 (2.9); 4.536 (3.1); 4.497 (4.7); 4.489 (4.4); 4.327 (4.4); 4.300 (4.4); 4.280 (3.2); |4.254 (3.0); 4.024 (5.3); 4.013 (5.2); 2.260 (0.4); 1.727 (0.3); 1.593 (37.5); 1.519 (0.3); 1.441 (0.3); 1.410 (0.7); 1.372 (1.0); 1.324 (2.0); 1.293 (3.9); 1.213 (0.4); 1.207 (0.4); 1.181 (0.3); 0.942 (0.7); 0.919 (1.1); 0.894 (1.0); 0.866 (1.2); 0.234 (0.7); 0.108 (3.3); 0.049 (5.2); 0.038 (165.4); 0.028 (5.9); -0.029 (0.6); -0.159 (0.5)
Example 1.62: ¾-NMR (300.2 MHz, de-DMSO):|
|δ= 8.432 (0.5); 8.383 (6.8); 8.339 (0.5); 8.333 (0.4); 8.314 (0.4); 8.264 (0.3); 8.184 (3.3); 8.155 (3.6); 8.045 (6.1); 8.015 (6.8); 7.890 (6.5); 7.537 (0.4); 7.452 (6.0); 7.423 (6.2); 7.381 (3.6); 5.944 (6.6); 5.793 (8.8); 5.756 (0.4); 4.637 (0.3); 4.608 (1.1); 4.558 (5.8); 4.545 (6.1); 4.497 (1.1); 3.363 (10.9); 2.648 (0.4); 2.627 (0.6); 2.535 (23.4); 2.388 (0.4); 1.699 (0.3); 1.599 (16.0); 1.273 (0.6); 0.094 (0.4); 0.032 (10.8)
Example 1.63 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.386 (8.8); 8.163 (0.4); 8.141 (12.3); 8.045 (12.9); 7.646 (0.5); 7.601 (1.4); 7.591 (12.3); 7.584 (4.1); 7.568 (4.1); 7.561 (14.1); 7.550 (1.6); 7.300 (117.8); 7.233 (3.1); 7.201 (9.0); 7.103 (1.4); 7.092 (14.0); 7.085 (4.3); 7.069 (3.9); 7.062 (12.6); 7.051 (6.7); 6.949 (0.6); 6.868 (3.2); 5.410 (2.0); 5.396 (1.8); 5.383 (2.1); 5.340 (16.0); 4.500 (0.9); 4.488 (1.4); 4.453 (5.6); 4.441 (5.7); 4.437 (6.3); 4.409 (4.7); 4.390 (1.0); 4.362 (1.3); 3.956 (8.5); 3.945 (8.5); 2.438 (0.4); 1.592 (49.0); 1.293 (1.3); 0.920 (0.3); 0.234 (0.6); 0.108 (3.4); 0.050 (4.1); 0.039 (124.2); 0.028 (4.4); -0.160 (0.5)
Example 1.64: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.160 (3.6); 8.105 (5.2); 8.006 (5.6); 7.840 (1.4); 7.659 (1.6); 7.654 (1.6); 7.473 (1.5); 7.446 (0.5); 7.435 (4.9); 7.427 (1.6); 7.412 (1.7); 7.405 (6.0); 7.394 (0.6); 7.356 (3.6); 7.300 (14.9); 7.145 (0.7); 7.134 (6.1); 7.126 (1.8); 7.111 (1.6); 7.104 (4.8); 7.093 (0.4); 4.655 (1.8); 4.607 (2.7); 4.592 (2.8); 4.385 (3.2); 4.338 (2.4); 2.047 (1.9); 1.632 (6.3); 1.613 (16.0); 1.291 (0.7); 0.107 (3.4); 0.037 (9.5); 0.026 (0.4)
Example 1.65: ¾-NMR (300.2 MHz, de-DMSO):
|δ= 8.381 (9.7); 8.172 (3.2); 8.143 (3.5); 7.889 (10.0); 7.872 (5.0); 7.843 (5.6); 7.452 (5.3); 7.424 (4.8); 7.376 (4.2); 7.347 (4.0); 5.933 (6.7); 5.902 (0.5); 4.603 (0.9); 4.556 (5.1); 4.541 (5.1); 4.494 (0.9); 3.361 (24.8); 2.547 (3.8); 2.541 (7.9); 2.535 (10.8); 2.529 (7.9); 2.523 (3.7); 2.108 (4.3); 1.598 (16.0); 0.032 (4.5)
Example 1.66: ¾-NMR (300.2 MHz, CDC13):| δ= 8.258 (3.0); 8.229 (3.2); 8.043 (6.3); 7.951 (7.2); 7.302 (7.9); 7.269 (2.0); 7.261 (3.2); 7.231 (5.6); 7.208 (7.4); 7.203 (3.5); 7.179 (0.8); 7.172 (0.7); 7.136 (3.6); 7.107 (3.4); 4.733 (2.6); 4.702 (4.8); 4.686 (4.4);| 4.550 (4.4); 4.503 (2.7); 1.668 (16.0); 1.648 (3.7); 0.109 (0.9); 0.049 (0.4); 0.038 (8.0); 0.028 (0.3)
Example 1.67: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.227 (3.1); 8.198 (3.2); 8.047 (7.0); 7.944 (7.5); 7.423 (0.7); 7.412 (6.6); 7.405 (2.2); 7.390 (2.5); 7.383 (8.3); 7.372 (0.9); 7.301 (7.7); 7.188 (1.0); 7.177 (8.5); 7.169 (2.4); 7.154 (2.2); 7.147 (6.4); 7.136 (0.6); 7.030 (3.7); 7.001 (3.5); 5.338 (1.7); 4.759 (7.7); 4.706 (4.2); 4.554 (4.5); 4.506 (2.9); 1.677 (16.0); 1.660 (2.0); 1.292 (1.8); 0.108 (0.4); 0.038 (7.7)
Example 1.68: ¾-NMR (300.2 MHz, de-DMSO):
|δ= 8.478 (14.2); 8.223 (12.7); 7.975 (14.2); 7.539 (1.1); 7.527 (11.7); 7.520 (3.9); 7.505 (4.6); 7.498 (14.1); 7.486 (1.6); 7.307 (15.3); 7.241 (1.6); 7.230 (14.5); 7.223 (4.3); 7.208 (4.2); 7.200 (11.3); 7.189 (1.2); 6.100 (7.2); 6.084 (7.4); 5.786 (16.0); 5.274 (1.3); 5.256 (3.1); 5.236 (3.3); 5.219 (1.4); 4.445 (0.4); 4.416 (9.4); |4.398 (6.8); 3.353 (42.4); 2.754 (0.3); 2.534 (33.1); 2.528 (43.2); 2.522 (30.5); 1.261 (0.8); 0.037 (1.6); 0.026 (43.6); 0.015 (1.5)
Example 1.69: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.538 (13.2); 8.208 (0.4); 8.143 (0.3); 8.113 (14.6); 8.057 (0.5); 8.026 (0.5); 8.020 (0.3); 8.016 (0.3); 7.934 (16.0); 7.744 (9.4); 7.716 (10.5); 7.670 (0.4); 7.373 (15.2); 7.352 (0.6); 7.302 (20.9); 7.278 (9.0); 6.321 (2.7); 6.286 (3.0); 6.264 (3.1); 6.229 (3.3); 5.507 (0.5); 5.427 (8.8); 5.372 (12.5); 5.338 (8.3); 5.223 (0.5); 5.201 (0.4); 4.816 (10.5); 4.775 (5.7); 4.728 (9.9); 4.619 (9.7); 4.571 (5.4); 1.690 (1.9); 1.294 (1.0); 0.110| (1.3); 0.039 (8.0); 0.028 (0.5) - -
Example 1.70: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.193 (6.1); 8.164 (6.7); 8.139 (15.6); 8.059 (16.0); 7.646 (0.7); 7.350 (7.0); 7.321 (6.9); 7.300 (146.0); 7.135 (1.4); 7.124 (2.8); 7.113 (14.4); 7.089 (14.0); 7.078 (2.7); 7.067 (1.3); 6.949 (0.8); 5.539 (2.3); 5.514 (2.3); 5.385 (0.4); 4.521 (2.9); 4.513 (3.2); 4.474 (4.6); 4.466 (4.5); 4.306 (4.7); 4.279 (4.4); 4.259 (3.2); |4.232 (2.9); 4.001 (9.0); 3.989 (8.9); 2.282 (0.3); 2.260 (0.3); 2.047 (0.3); 1.590 (65.8); 1.538 (0.3); 1.346 (0.9); 1.305 (1.5); 1.293 (2.2); 0.919 (0.7); 0.896 (0.5); 0.234 (0.7); 0.108 (26.4); 0.049 (5.0); 0.039 (156.4); 0.028 (6.1); -0.160 (0.7)
Example 1.71 : 'H-NMR (300.2 MHz, de-DMSO):
|δ= 15.167 (0.3); 13.267 (0.3); 12.426 (0.3); 8.396 (0.5); 8.361 (15.7); 8.236 (0.4); 8.229 (0.6); 8.206 (5.2); 8.177 (5.3); 7.892 (0.3); 7.832 (15.6); 7.548 (1.8); 7.537 (12.2); 7.530 (4.2); 7.515 (4.8); 7.508 (14.8); 7.497 (1.3); 7.315 (0.5); 7.289 (2.2); 7.278 (15.6); 7.270 (5.8); 7.264 (7.6); 7.255 (4.8); 7.248 (12.3); 7.235 (7.0); 6.331 (0.3); 5.297 (14.6); 4.785 (4.0); 4.737 (6.0); 4.580 (5.7); 4.532 (3.9); 4.380 (0.5); 4.152 (1.4); 4.134 (3.9); 4.117 (4.3); 4.099 (1.3); 3.491 (0.4); 3.445 (0.5); 3.419 (0.6); 3.353 (79.3); 3.202 (16.7); 3.185 (16.0); 2.761 (0.4); 2.755 (0.4); 2.534 (37.5); 2.528 (50.5); 2.522 (36.5); 2.297 (0.5); 1.621 (0.7); 1.607 (1.4); 1.597 (1.5); 1.579 (2.6); 1.560 (1.7); 1.534 (0.8); 1.325 (0.4); 1.312 (0.4); 1.263 (1.1); 1.104 (0.6); 1.081 (1.4); 1.057 (0.5); 0.881 (0.4); 0.620 (0.6); 0.607 (1.3); 0.588 (2.1); 0.572 (2.5); 0.557 (2.0); 0.539 (0.8); 0.467 (0.6); 0.436 (1.6); 0.415 (1.8); 0.376 (1.0); 0.352 (1.0); 0.341 (1.4); 0.323 (2.2); 0.312 (2.1); 0.297 (2.5); 0.280 (2.6); 0.266 (2.7); 0.248 (2.2); 0.037 (2.0); 0.026 (51.2); 0.015 (2.4); -0.173 (0.4); -3.527 (0.4)
Example 1.72: ¾-NMR (499.9 MHz, CDC13):|
|δ= 8.565 (0.3); 8.115 (0.4); 7.977 (0.4); 7.274 (0.5); 7.261 (1.1); 5.298 (16.0); 1.561 (0.7); 0.000 (0.8)
Example 1.73 : ¾-NMR (300.2 MHz, de-DMSO):
|δ= 8.471 (16.0); 8.108 (5.9); 8.079 (6.5); 7.975 (15.7); 7.677 (1.4); 7.666 (13.7); 7.659 (4.1); 7.644 (4.6); 7.637 (14.5); 7.626 (1.5); 7.296 (5.6); 7.267 (5.2); 7.217 (1.7); 7.206 (15.6); 7.199 (4.4); 7.184 (4.4); 7.177 (12.9); 7.165 (1.2); 7.147 (3.0); 6.969 (6.4); 6.790 (3.2); 6.114 (7.2); 6.099 (7.4); 5.785 (1.5); 5.377 (2.2); 5.367 (2.3); 5.355 (2.3); 4.445 (1.4); 4.420 (1.2); 4.400 (4.1); 4.373 (4.3); 4.361 (4.2); 4.347 (4.1); 4.314 (1.4); 4.300 (1.1); 3.349 (65.1); 2.762 (0.4); 2.541 (19.3); 2.535 (40.9); 2.529 (55.5); 2.523 (39.2); 2.517 (17.8); 2.305 (0.3); 1.275 (0.6); 1.264 (0.7); 0.223 (0.4); 0.038 (2.1); 0.027 (63.3); 0.016 (2.0)
Example 1.74: ¾-NMR (300.2 MHz, de-DMSO): δ= 8.488 (16.0); 8.298 (5.9); 8.269 (6.4); 7.992 (15.3); 7.710 (8.2); 7.682 (9.6); 7.496 (6.7); 7.467 (6.3); 7.393 (10.8); 7.365 (9.0); 7.291 (3.4); 7.105 (7.4); 6.919 (3.6); 6.209 (7.0); 6.193 (7.3); 5.786 (1.0); 5.286 (2.3); 5.274 (2.5); 4.464 (1.9); 4.437 (1.8); 4.418 (3.9); 4.390 (3.8); 4.343 (3.8); 4.331 (3.9); 4.296 (1.9); 4.284 (1.7); 3.358 (44.1); 3.046 (0.5); 2.534 (9.3); 2.528 (12.2); 2.523 (9.0); 1.262 (0.7); 0.026 (5.7)
Example 1.75: ¾-NMR (499.9 MHz, CDCI3):
|δ= 8.113 (1.8); 8.095 (1.9); 8.027 (3.6); 7.890 (3.9); 7.264 (1.9); 7.259 (0.5); 7.254 (3.2); 7.237 (4.0); 7.094 (0.6); 7.088 (4.2); 7.085 (1.7); 7.075 (1.3); 7.071 (3.5); 6.886 (2.2); 6.868 (2.1); 4.684 (1.7); 4.655 (2.3); 4.509 (2.5); 4.481 (1.8); 2.961 (0.3); 2.947 (0.9); 2.933 (1.2); 2.919 (0.9); 2.906 (0.4); 1.634 (9.6); 1.274) (15.8); 1.260 (16.0); 0.000 (1.7)
Example 1.76: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.411 (9.1); 7.994 (11.0); 7.980 (0.5); 7.912 (11.4); 7.742 (6.3); 7.713 (7.2); 7.354 (10.9); 7.302 (12.7); 7.276 (6.1); 4.732 (4.0); 4.684 (13.3); 4.524 (6.3); 4.476 (4.1); 2.196 (0.4); 2.172 (1.4); 2.147 (1.9); 2.123 (2.3); 2.099 (2.0); 2.074 (0.6); 2.042 (2.4); 1.904 (0.5); 1.879 (1.9); 1.855 (2.4); 1.831 (2.0); 1.807 (1.5);| 1.783 (0.6); 1.737 (0.9); 1.292 (0.3); 0.924 (7.5); 0.900 (16.0); 0.875 (6.9); 0.109 (0.5); 0.037 (4.4)
Example 1.77: ¾-NMR (499.9 MHz, de-DMSO):|
|δ= 8.502 (1.5); 8.378 (1.0); 8.361 (1.0); 8.339 (6.0); 8.009 (1.4); 7.827 (3.4); 7.811 (3.7); 7.799 (5.4); 7.261 (0.6); 7.251 (0.7); 7.242 (0.9); 7.233 (0.9); 7.199 (0.8); 7.188 (1.9); 7.181 (6.8); 7.176 (7.1); 7.171 (5.5);| 7.160 (5.0); 7.148 (1.3); 7.140 (2.2); 7.133 (1.6); 7.123 (2.6); 7.115 (2.4); 7.097 (4.9); 7.080 (3.4); 7.073 (0.5); 7.041 (3.6); 7.031 (3.8); 7.023 (2.3); 7.018 (1.2); 7.013 (2.0); 6.835 (1.0); 6.819 (1.0); 6.523 (3.6); 6.506 (3.6); 5.897 (2.7); 5.844 (4.9); 5.754 (3.5); 4.745 (2.2); 4.717 (2.8); 4.564 (2.9); 4.536 (2.2); 3.324 (9.8); 2.502 (4.9); 1.590 (16.0); 1.235 (1.0); 0.000 (1.0)
Example 1.78: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.488 (5.3); 8.039 (2.3); 7.895 (2.8); 7.702 (2.5); 7.674 (2.8); 7.298 (3.4); 7.247 (2.7); 7.219 (2.4); 6.977 (5.9); 5.333 (11.1); 5.205 (1.9); 5.158 (2.2); 4.573 (2.3); 4.526 (2.0); 1.743 (16.0); 1.290 (0.4); 0.034 (3.5) - -
Example 1.79: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.133 (5.0); 8.099 (1.7); 8.033 (3.9); 8.012 (0.5); 7.325 (1.0); 7.316 (0.7); 7.313 (0.7); 7.300 (15.8); 7.295
(5.1) ; 7.294 (5.0); 7.285 (2.5); 7.277 (7.1); 7.268 (1.2); 7.256 (0.9); 7.248 (1.3); 7.171 (2.0); 7.142 (1.9); 5.552 (0.8); 5.527 (0.8); 5.339 (16.0); 4.530 (0.8); 4.522 (0.9); 4.483 (1.3); 4.476 (1.3); 4.312 (1.2); 4.285
(1.2) ; 4.265 (0.8); 4.238 (0.8); 4.156 (0.7); 1.627 (0.9); 1.304 (0.4); 1.293 (0.4); 1.280 (0.4); 0.108 (1.9); 0.049 (0.7); 0.038 (15.8); 0.027 (0.6)
Example 1.80: 'H-NMR (300.2 MHz, de-DMSO):
|δ= 8.362 (11.2); 8.206 (3.8); 8.177 (4.0); 7.832 (11.0); 7.537 (8.6); 7.530 (3.0); 7.515 (3.7); 7.508 (10.5); 7.496 (1.1); 7.288 (1.5); 7.278 (10.9); 7.270 (4.5); 7.265 (5.6); 7.255 (3.7); 7.248 (8.7); 7.236 (5.4); 5.297 (10.6); 4.785 (3.0); 4.738 (4.4); 4.581 (4.4); 4.533 (2.9); 4.396 (0.4); 4.380 (0.8); 4.362 (0.4); 4.152 (1.3); |4.135 (4.1); 4.117 (4.2); 4.100 (1.6); 3.485 (0.7); 3.469 (0.6); 3.462 (0.5); 3.445 (0.6); 3.354 (53.8); 3.202 (16.6); 3.185 (16.0); 2.534 (23.6); 2.528 (30.7); 2.522 (22.1); 1.624 (0.5); 1.595 (1.1); 1.578 (1.9); 1.562 (1.3); 1.534 (0.5); 1.266 (0.5); 1.104 (1.1); 1.081 (2.0); 1.058 (1.0); 0.603 (1.0); 0.589 (1.7); 0.573 (1.8); 0.557 (1.4); 0.468 (0.4); 0.437 (1.2); 0.417 (1.6); 0.376 (0.8); 0.339 (1.1); 0.324 (1.5); 0.312 (1.7); 0.295 (1.9); 0.280 (1.9); 0.266 (2.0); 0.247 (1.5); 0.237 (1.0); 0.026 (30.3)
Example 1.81 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.268 (5.9); 8.239 (6.2); 8.064 (14.1); 7.948 (16.0); 7.560 (1.3); 7.550 (13.2); 7.543 (4.3); 7.527 (4.4); 7.520 (15.2); 7.509 (1.6); 7.302 (2.9); 7.146 (1.7); 7.135 (15.3); 7.128 (4.6); 7.113 (4.2); 7.106 (13.1); 7.095 (1.3); 7.040 (7.2); 7.011 (6.8); 4.833 (5.6); 4.785 (8.3); 4.740 (7.2); 4.609 (8.1); 4.577 (0.4); 4.561 (5.4); 2.028 (0.7); 1.620 (3.7); 1.493 (0.6); 1.469 (1.6); 1.449 (2.6); 1.439 (1.3); 1.427 (1.9); 1.403 (0.8); 0.502 (0.6); 0.495 (0.7); 0.488 (1.0); 0.477 (1.6); 0.466 (1.7); 0.458 (2.8); 0.448 (1.6); 0.441 (1.5); 0.421 (0.6); 0.413 (0.4); 0.403 (0.7); 0.392 (0.8); 0.373 (4.2); 0.359 (10.7); 0.349 (6.0); 0.330 (7.5); 0.320 (2.6); 0.288 (0.4); 0.029 (1.5)
Example 1.82: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.160 (2.5); 8.104 (3.6); 8.011 (3.7); 7.840 (0.9); 7.660 (1.1); 7.654 (1.0); 7.594 (0.3); 7.583 (3.3); 7.576 (1.0); 7.561 (1.1); 7.554 (3.6); 7.543 (0.4); 7.473 (1.0); 7.358 (2.4); 7.300 (13.6); 7.093 (0.4); 7.082 (3.7); 7.075 (1.1); 7.060 (1.0); 7.053 (3.2); 5.339 (4.3); 4.657 (1.2); 4.610 (1.7); 4.571 (2.1); 4.385 (2.1); 4.337| (1.6); 1.613 (16.0); 1.292 (0.4); 0.107 (1.3); 0.038 (9.4); 0.027 (0.4)
Example 1.83 : ¾-NMR (499.9 MHz, CDC13):|
|δ= 8.567 (0.8); 8.116 (0.9); 7.984 (0.9); 7.836 (0.7); 7.818 (0.8); 7.286 (0.9); 7.260 (2.4); 7.239 (0.6); 5.298 (16.0); 4.110 (0.5); 4.103 (0.6); 2.004 (0.3); 1.556 (2.1); 0.000 (1.8)
Example 1.84: ¾-NMR (499.9 MHz, CDCI3):
|δ= 8.238 (6.8); 8.221 (7.0); 8.021 (14.6); 7.923 (15.1); 7.522 (1.4); 7.516 (13.0); 7.512 (5.0); 7.502 (4.8); 7.498 (14.1); 7.492 (1.8); 7.262 (10.7); 7.107 (1.6); 7.101 (14.2); 7.097 (5.2); 7.087 (4.7); 7.083 (13.0); 7.077 (1.6); 7.006 (7.6); 6.988 (7.4); 5.297 (8.4); 4.794 (6.6); 4.765 (8.5); 4.679 (13.5); 4.574 (8.4); 4.545 (6.6); 1.608 (16.0); 1.443 (0.8); 1.429 (2.0); 1.416 (3.2); 1.403 (2.2); 1.389 (0.9); 1.256 (0.5); 0.460 (1.3); 0.449 (2.5); 0.445 (2.6); 0.438 (3.4); 0.427 (2.1); 0.416 (0.3); 0.357 (0.5); 0.344 (2.3); 0.341 (3.5); 0.330 (7.2); 0.328 (7.2); 0.317 (8.1); 0.305 (4.4); 0.302 (4.0); 0.291 (1.9); 0.278 (0.7); 0.000 (9.6)
Example 1.85: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.139 (10.5); 8.067 (3.3); 8.037 (3.5); 7.996 (13.1); 7.583 (1.5); 7.572 (14.3); 7.565 (4.4); 7.550 (4.8); 7.543 (16.0); 7.532 (1.7); 7.300 (15.1); 7.156 (2.0); 7.145 (18.0); 7.140 (11.0); 7.122 (4.9); 7.115 (15.7); 7.111 (8.9); 6.001 (1.1); 5.337 (3.6); 4.954 (1.9); 4.905 (6.2); 4.863 (7.8); 4.815 (2.6); 2.216 (0.4); 2.211 (0.8); 1.723 (0.6); 1.666 (0.8); 1.409 (0.5); 1.372 (0.7); 1.346 (0.7); 1.339 (0.7); 1.321 (1.4); 1.293 (7.8); 1.258 (0.8); 1.216 (0.4); 1.201 (0.4); 1.074 (0.5); 0.966 (0.3); 0.937 (0.8); 0.917 (1.5); 0.892 (1.6); 0.865 (1.6); 0.108 (3.6); 0.048 (0.4); 0.037 (13.4); 0.026 (0.6)
Example 1.86: ¾-NMR (499.9 MHz, CDC13):|
|δ= 8.115 (0.4); 7.972 (0.4); 7.817 (0.3); 7.286 (0.3); 7.261 (0.8); 5.299 (16.0); 1.567 (0.5); 0.000 (0.6)
Example 1.87: ¾-NMR (300.2 MHz, de-DMSO):
|δ= 8.371 (10.5); 8.344 (0.6); 8.259 (3.5); 8.230 (3.8); 7.936 (0.4); 7.862 (6.1); 7.836 (16.0); 7.490 (0.7); 7.446 (6.4); 7.418 (5.5); 7.364 (4.7); 7.335 (4.4); 5.326 (10.2); 5.166 (0.6); 4.804 (2.8); 4.756 (4.0); 4.593 (4.0); 4.568 (0.4); 4.545 (2.7); 3.353 (24.0); 2.641 (0.4); 2.618 (0.4); 2.535 (4.9); 2.529 (6.5); 2.523 (4.8); 2.101 (0.3); 1.643 (0.4); 1.624 (1.0); 1.616 (1.2); 1.593 (3.1); 1.573 (5.3); 1.553 (0.7); 1.450 (2.0); 0.640 (0.3); 0.624 (0.9); 0.610 (1.5); 0.593 (1.7); 0.579 (1.3); 0.563 (0.6); 0.482 (0.4); 0.454 (1.1); 0.433 (1.4); 0.420 (1.3); 0.405 (0.9); 0.392 (0.7); 0.368 (0.7); 0.355 (1.1); 0.339 (1.5); 0.327 (1.6); 0.310 (1.7); 0.297 (2.0); 0.284 (2.0); 0.265 (1.6); 0.252 (1.0); 0.025 (4.3) - -
Example 1.88: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.362 (11.7); 8.154 (10.1); 7.999 (12.2); 7.977 (0.4); 7.728 (7.6); 7.700 (8.7); 7.298 (34.0); 7.289 (8.6); 7.261 (7.2); 7.077 (16.0); 5.483 (2.1); 5.457 (2.2); 5.337 (8.0); 4.623 (3.2); 4.615 (3.1); 4.576 (4.2); 4.568 (4.2); 4.351 (4.0); 4.324 (3.8); 4.305 (2.9); 4.278 (2.9); 4.161 (2.1); 3.992 (0.4); 1.633 (4.5); 1.320 (0.4); 1.292 (1.2); 1.278 (0.5); 0.916 (0.4); 0.889 (0.3); 0.866 (0.4); 0.107 (0.6); 0.047 (1.1); 0.036 (34.2); 0.025 (1.4)
Example 1.89: 'H-NMR (300.2 MHz, CDCI3):
|δ= 8.297 (2.9); 8.268 (3.1); 8.053 (7.1); 7.963 (5.5); 7.300 (21.3); 7.237 (3.7); 7.208 (3.5); 7.118 (0.7); 7.107 (1.3); 7.096 (6.9); 7.072 (6.7); 7.061 (1.2); 7.050 (0.6); 4.715 (2.1); 4.667 (3.9); 4.650 (1.7); 4.631 (0.9); |4.552 (4.9); 4.504 (2.8); 1.657 (16.0); 1.612 (2.8); 1.598 (3.3); 1.292 (0.5); 0.107 (5.8); 0.048 (0.5); 0.037 (14.7); 0.026 (0.5)
Example 1.90: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.149 (6.4); 8.131 (15.9); 8.120 (6.6); 8.048 (16.0); 7.646 (0.4); 7.300 (87.7); 7.284 (4.7); 7.277 (5.6); 7.252 (8.6); 7.243 (11.8); 7.223 (22.1); 7.197 (1.5); 7.189 (1.4); 6.949 (0.5); 5.541 (2.3); 5.515 (2.5); 5.339 (1.8); 4.521 (3.1); 4.513 (3.1); 4.474 (4.7); 4.467 (4.5); 4.308 (4.7); 4.281 (4.4); 4.261 (3.1); 4.234 (3.1); 4.034 (5.3); 4.024 (5.2); 1.599 (21.4); 1.350 (0.5); 1.324 (0.7); 1.292 (1.6); 0.922 (0.4); 0.234 (0.4); 0.108 (22.6); 0.096 (0.8); 0.049 (3.4); 0.039 (97.6); 0.028 (3.5); 0.014 (0.4)
Example 1.91 : ¾-NMR (300.2 MHz, de-DMSO):
|δ= 8.362 (14.8); 8.344 (1.3); 8.206 (4.9); 8.177 (5.2); 7.964 (0.4); 7.934 (0.4); 7.832 (16.0); 7.548 (1.3); 7.537 (11.7); 7.529 (4.0); 7.514 (4.4); 7.507 (14.2); 7.496 (1.4); 7.288 (1.9); 7.277 (14.8); 7.270 (5.4); 7.264 (7.4); 7.255 (4.5); 7.248 (11.7); 7.235 (6.9); 6.890 (0.4); 6.861 (0.4); 5.297 (14.1); 5.169 (1.0); 4.786 (3.8); |4.738 (5.8); 4.690 (0.5); 4.581 (5.6); 4.533 (3.8); 3.357 (45.4); 2.534 (7.8); 2.528 (10.3); 2.522 (7.4); 2.101 (4.0); 1.623 (0.7); 1.602 (2.5); 1.572 (9.0); 1.553 (1.5); 1.534 (0.8); 1.261 (0.6); 0.621 (0.5); 0.604 (1.3); 0.589 (2.1); 0.572 (2.3); 0.558 (1.7); 0.541 (0.8); 0.465 (0.5); 0.436 (1.5); 0.416 (1.9); 0.404 (1.8); 0.388 (1.3); 0.376 (1.0); 0.353 (1.0); 0.341 (1.4); 0.323 (2.0); 0.312 (2.3); 0.295 (2.4); 0.280 (2.6); 0.267 (2.8); 0.248 (2.1); 0.236 (1.2); 0.036 (0.5); 0.025 (8.6); 0.014 (0.3)
Example 1.92: ¾-NMR (499.9 MHz, CDCI3):
|δ= 8.565 (0.8); 8.114 (1.0); 7.975 (1.0); 7.709 (0.7); 7.692 (0.8); 7.274 (1.3); 7.260 (2.9); 5.298 (16.0); 4.440| (0.3); 4.436 (0.3); 4.139 (0.5); 4.132 (0.6); 1.563 (1.7); 0.000 (2.0)
Example 1.93 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.307 (6.4); 8.278 (6.7); 8.167 (0.5); 8.071 (14.1); 8.054 (1.1); 7.969 (16.0); 7.606 (7.5); 7.578 (9.2); 7.342 (10.5); 7.313 (8.5); 7.301 (16.3); 7.272 (0.6); 7.225 (0.8); 7.200 (0.4); 7.084 (7.7); 7.055 (7.4); 6.902 (3.9); 6.714 (7.9); 6.526 (4.0); 5.338 (1.9); 4.852 (6.2); 4.805 (9.2); 4.747 (14.0); 4.627 (9.0); 4.579 (6.0); 2.995 (6.6); 2.922 (5.7); 2.394 (2.3); 1.660 (13.4); 1.505 (0.7); 1.483 (1.8); 1.461 (2.8); 1.440 (2.0); 1.416 (0.8); 0.513 (1.0); 0.497 (2.0); 0.484 (2.1); 0.476 (2.6); 0.467 (1.7); 0.461 (1.9); 0.437 (0.7); 0.429 (0.4); 0.416 (0.9); 0.407 (0.9); 0.399 (2.6); 0.392 (3.3); 0.371 (8.5); 0.361 (3.5); 0.353 (6.5); 0.343 (6.4); 0.330 (1.9); 0.302 (0.4); 0.110 (1.3); 0.049 (0.5); 0.038 (13.4); 0.027 (0.5)
Example 1.94: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.385 (6.4); 8.140 (8.7); 8.036 (9.1); 7.453 (1.0); 7.442 (8.1); 7.435 (3.0); 7.420 (3.1); 7.412 (10.0); 7.402 (1.3); 7.337 (0.4); 7.328 (0.4); 7.300 (55.7); 7.235 (2.3); 7.199 (6.5); 7.155 (1.3); 7.144 (9.8); 7.137 (3.2); 7.122 (2.9); 7.114 (8.0); 7.103 (1.0); 7.053 (4.1); 6.949 (0.3); 6.871 (2.3); 5.409 (1.4); 5.394 (1.3); 5.381 (1.6); 5.340 (11.4); 4.499 (0.7); 4.487 (1.0); 4.452 (4.0); 4.440 (4.2); 4.434 (4.4); 4.407 (3.3); 4.388 (0.8); 4.360 (1.0); 4.019 (4.2); 4.008 (4.2); 1.607 (16.0); 1.326 (0.4); 1.292 (1.3); 0.108 (4.5); 0.050 (2.7); 0.039 (60.0); 0.028 (2.3)
Example 1.95: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.246 (3.1); 8.217 (3.2); 8.049 (4.1); 7.958 (5.0); 7.647 (0.4); 7.301 (80.0); 7.279 (7.6); 7.271 (3.8); 7.264 (11.9); 7.254 (1.6); 7.242 (1.1); 7.234 (1.8); 7.053 (3.7); 7.023 (3.5); 6.950 (0.5); 5.341 (0.5); 4.770 (2.4); |4.723 (5.7); 4.559 (3.6); 4.512 (2.4); 1.685 (16.0); 1.594 (22.2); 1.294 (1.1); 0.921 (0.4); 0.235 (0.3); 0.109 (9.9); 0.051 (2.6); 0.040 (81.7); 0.029 (2.9); -0.158 (0.4)
Example 1.96: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.220 (2.8); 8.191 (2.9); 8.052 (6.8); 7.941 (6.1); 7.422 (0.6); 7.411 (6.2); 7.404 (2.0); 7.388 (2.2); 7.381 (7.7); 7.370 (0.8); 7.301 (10.0); 7.186 (0.9); 7.176 (8.2); 7.168 (2.3); 7.153 (2.0); 7.146 (6.0); 7.135 (0.6); 7.027 (3.4); 6.998 (3.3); 5.337 (0.7); 4.777 (3.4); 4.770 (1.7); 4.748 (2.2); 4.701 (3.5); 4.553 (4.3); 4.505 (2.7); 1.676 (16.0); 1.290 (1.5); 0.106 (0.7); 0.036 (9.8); 0.025 (0.4) - -
Example 1.97: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.338 (6.4); 8.309 (6.8); 8.076 (14.5); 7.958 (16.0); 7.848 (1.4); 7.837 (12.2); 7.831 (4.0); 7.813 (4.8); 7.807 (13.6); 7.796 (1.5); 7.364 (8.7); 7.334 (7.7); 7.301 (3.1); 7.138 (7.6); 7.108 (7.2); 4.852 (5.8); 4.804 (9.6); 4.792 (8.1); 4.626 (8.4); 4.579 (5.7); 2.030 (2.1); 1.506 (0.7); 1.483 (1.9); 1.462 (2.9); 1.452 (1.4); 1.441 (2.1); 1.417 (0.8); 0.523 (0.7); 0.516 (0.9); 0.512 (0.9); 0.498 (1.9); 0.489 (2.2); 0.478 (2.8); 0.466 (1.6); 0.456 (1.1); 0.441 (0.6); 0.434 (0.4); 0.423 (0.8); 0.411 (0.9); 0.392 (4.0); 0.378 (9.6); 0.367 (5.8); 0.354 (7.2); 0.348 (6.8); 0.335 (3.0); 0.305 (0.4); 0.031 (1.8)
Example 1.98: 'H-NMR (300.2 MHz, CDCI3):
|δ= 9.258 (0.4); 8.164 (3.3); 8.134 (3.3); 7.992 (6.9); 7.915 (8.0); 7.419 (0.7); 7.409 (6.7); 7.401 (2.2); 7.386 (2.5); 7.379 (8.4); 7.368 (0.9); 7.301 (5.7); 7.194 (1.1); 7.184 (8.8); 7.176 (2.4); 7.161 (2.3); 7.154 (6.4); 7.143 (0.6); 7.010 (3.8); 6.981 (3.6); 5.337 (16.0); 4.782 (2.9); 4.734 (4.1); 4.560 (4.1); 4.513 (2.8); 3.445 (1.2); 2.182 (0.5); 2.168 (0.7); 2.135 (0.9); 2.127 (1.0); 2.122 (1.0); 2.097 (0.8); 2.081 (0.8); 1.803 (0.7); 1.791 (0.8); 1.763 (1.0); 1.749 (1.1); 1.717 (0.7); 1.703 (0.7); 1.425 (0.5); 1.417 (0.4); 1.403 (0.6); 1.396 (0.7); 1.378 (0.9); 1.363 (0.8); 1.354 (0.8); 1.335 (2.0); 1.311 (3.1); 1.288 (2.7); 1.265 (1.4); 1.240 (0.5); 1.078 (0.5); 1.056 (0.6); 1.034 (1.1); 1.018 (0.7); 1.010 (1.1); 1.001 (0.5); 0.993 (0.6); 0.985 (0.5); 0.978 (0.4); 0.898 (5.8); 0.875 (11.4); 0.850 (4.4); 0.108 (0.5); 0.037 (5.4)
Example 1.99: ¾-NMR (499.9 MHz, CDCI3):
|δ= 8.239 (5.8); 8.221 (6.0); 8.021 (12.6); 7.923 (13.1); 7.523 (1.2); 7.516 (11.5); 7.512 (4.0); 7.499 (12.2); 7.492 (1.4); 7.262 (10.7); 7.107 (1.3); 7.101 (12.5); 7.097 (4.1); 7.087 (4.2); 7.083 (11.2); 7.077 (1.3); 7.006 (6.5); 6.988 (6.4); 5.297 (9.6); 4.794 (5.7); 4.765 (7.3); 4.679 (11.7); 4.574 (7.2); 4.545 (5.6); 1.601 (16.0); 1.443 (0.7); 1.429 (1.7); 1.416 (2.7); 1.403 (1.8); 1.389 (0.7); 0.460 (1.1); 0.449 (2.1); 0.445 (2.2); 0.438 (2.9); 0.427 (1.8); 0.357 (0.4); 0.347 (1.8); 0.344 (2.0); 0.341 (2.9); 0.330 (6.1); 0.328 (6.1); 0.317 (7.0); 0.305 (3.7); 0.302 (3.3); 0.291 (1.5); 0.278 (0.6); 0.006 (0.4); 0.000 (9.7)
Example 1.100: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.217 (0.6); 8.157 (5.0); 8.128 (5.0); 8.040 (1.7); 8.017 (10.9); 7.906 (12.1); 7.413 (1.0); 7.402 (9.8); 7.395 (3.3); 7.380 (3.6); 7.372 (12.8); 7.362 (1.4); 7.305 (4.2); 7.198 (0.3); 7.185 (1.4); 7.175 (12.9); 7.167| (3.9); 7.152 (3.2); 7.145 (9.8); 7.134 (0.9); 7.005 (5.8); 6.976 (5.5); 4.760 (4.1); 4.713 (6.5); 4.565 (6.6); |4.518 (4.2); 4.164 (0.6); 4.141 (0.6); 3.446 (0.4); 2.994 (11.4); 2.977 (0.5); 2.916 (10.2); 2.745 (0.4); 2.158 (0.7); 2.144 (0.9); 2.112 (1.4); 2.098 (1.5); 2.077 (2.5); 2.071 (1.5); 2.056 (1.3); 1.778 (0.9); 1.763 (1.2); 1.738 (1.3); 1.732 (1.2); 1.723 (1.6); 1.691 (1.0); 1.676 (1.1); 1.497 (0.3); 1.480 (0.5); 1.473 (0.5); 1.455 (1.1); 1.438 (1.0); 1.431 (1.1); 1.414 (1.3); 1.389 (0.9); 1.373 (0.5); 1.314 (0.7); 1.290 (1.5); 1.267 (0.7); 1.138 (0.4); 1.123 (0.6); 1.114 (0.6); 1.098 (1.1); 1.091 (0.8); 1.074 (1.0); 1.056 (1.0); 1.035 (0.7); 1.031 (0.7); 1.016 (0.5); 1.009 (0.4); 0.995 (0.4); 0.919 (8.2); 0.895 (16.0); 0.870 (6.1); 0.106 (1.1); 0.032 (3.3)
Example 1.101 : ¾-NMR (499.9 MHz, CDCI3):
|δ= 8.187 (3.1); 8.169 (3.2); 8.001 (6.6); 7.910 (6.8); 7.521 (0.6); 7.514 (6.3); 7.510 (2.1); 7.501 (2.2); 7.497 (6.7); 7.490 (0.8); 7.260 (16.3); 7.088 (0.7); 7.082 (6.8); 7.078 (2.2); 7.068 (2.1); 7.064 (6.2); 7.058 (0.7); 6.989 (3.5); 6.971 (3.4); 5.298 (1.1); 4.707 (2.9); 4.678 (3.8); 4.662 (5.5); 4.508 (4.0); 4.479 (3.0); 1.639| (16.0); 1.559 (8.7); 1.255 (1.5); 0.006 (0.6); 0.000 (16.6)
Example 1.102: ¾-NMR (499.9 MHz, CDCI3):
|δ= 8.187 (3.1); 8.169 (3.2); 8.001 (6.6); 7.908 (6.8); 7.521 (0.6); 7.514 (6.2); 7.510 (2.2); 7.501 (2.2); 7.496 (6.7); 7.490 (0.9); 7.260 (13.2); 7.088 (0.7); 7.082 (6.7); 7.078 (2.3); 7.068 (2.2); 7.064 (6.2); 7.058 (0.8); 6.989 (3.5); 6.971 (3.4); 5.298 (1.1); 4.705 (2.9); 4.677 (3.9); 4.667 (7.0); 4.508 (4.0); 4.479 (3.0); 1.639| (16.0); 1.562 (10.2); 1.255 (0.4); 0.006 (0.5); 0.000 (13.3)
Example 1.103: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.163 (4.6); 8.133 (4.8); 7.994 (10.3); 7.909 (11.2); 7.419 (0.9); 7.408 (9.5); 7.401 (3.1); 7.386 (3.6); 7.379 (11.9); 7.368 (1.3); 7.304 (5.2); 7.192 (1.4); 7.181 (12.3); 7.174 (3.4); 7.159 (3.2); 7.152 (9.1); 7.141 (0.9); 7.016 (5.5); 6.987 (5.2); 4.821 (2.3); 4.783 (4.3); 4.736 (6.2); 4.568 (6.3); 4.520 (4.1); 4.169 (0.7);| |4.146 (0.7); 2.238 (0.4); 2.213 (1.4); 2.188 (2.0); 2.165 (2.3); 2.140 (1.9); 2.116 (0.6); 2.082 (3.1); 1.883 (0.6); 1.859 (1.8); 1.834 (2.4); 1.811 (2.3); 1.786 (2.1); 1.762 (1.1); 1.319 (0.9); 1.295 (1.7); 1.272 (0.8);| 0.885 (7.7); 0.861 (16.0); 0.836 (7.1); 0.110 (0.9); 0.037 (2.8)
Example V.01 : ¾-NMR (300.2 MHz, CDCI3): δ= 7.881 (2.8); 7.852 (3.0); 7.449 (0.6); 7.438 (5.9); 7.431 (1.9); 7.415 (2.3); 7.408 (7.3); 7.397 (0.8); 7.299 (5.2); 7.241 (0.5); 7.211 (0.6); 7.201 (0.9); 7.191 (7.6); 7.183 (2.2); 7.168 (2.5); 7.161 (8.8); 7.150 (0.7); 7.133 (3.0); 6.818 (0.5); 6.789 (0.4); 5.338 (0.5); 2.614 (16.0); 2.612 (14.4); 1.606 (0.5); 1.470 (0.9); 0.108 (0.4); 0.038 (6.2) - -
Example V.02: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.519 (3.7); 7.478 (0.4); 7.467 (4.5); 7.460 (1.5); 7.445 (1.6); 7.438 (5.4); 7.427 (0.7); 7.330 (4.0); 7.300 (5.5); 7.172 (0.6); 7.161 (5.6); 7.154 (1.7); 7.139 (1.5); 7.131 (4.4); 7.120 (0.5); 2.635 (16.0); 1.595 (6.3); 0.921 (0.3); 0.109 (1.7); 0.039 (6.2)
Example V.03: 'H-NMR (300.2 MHz, CDC13):|
|δ= 8.518 (3.8); 7.912 (0.4); 7.901 (4.0); 7.894 (1.3); 7.878 (1.3); 7.871 (4.5); 7.860 (0.5); 7.695 (0.6); 7.665 (0.6); 7.391 (4.1); 7.323 (2.5); 7.299 (5.3); 7.293 (2.3); 6.908 (0.4); 6.878 (0.3); 5.504 (0.3); 2.651 (16.0);| 1.608 (7.9); 1.306 (1.4); 0.942 (0.5); 0.921 (1.6); 0.897 (0.6); 0.109 (1.6); 0.038 (4.8)
Example V.04: ¾-NMR (300.2 MHz, de-DMSO):|
|δ= 8.845 (3.1); 7.724 (1.9); 7.695 (2.3); 7.651 (3.3); 7.435 (2.6); 7.407 (2.1); 7.293 (0.9); 7.107 (1.9); 6.921 (0.9); 3.350 (2.0); 2.640 (16.0); 2.531 (0.5); 2.525 (0.7); 2.519 (0.5); 0.020 (0.8)
Example V.05: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.098 (1.9); 8.069 (2.0); 7.411 (0.4); 7.400 (4.0); 7.393 (1.6); 7.378 (1.6); 7.371 (5.2); 7.361 (0.8); 7.262 (12.2); 7.225 (1.5); 7.181 (0.6); 7.170 (5.1); 7.162 (1.6); 7.155 (0.6); 7.147 (1.5); 7.140 (3.9); 7.129 (0.5); 7.053 (2.1); 7.044 (3.3); 7.024 (1.9); 6.862 (1.5); 4.158 (0.4); 4.134 (1.1); 4.110 (1.1); 4.087 (0.4); 2.620 (16.0); 2.047 (5.0); 1.562 (9.9); 1.432 (1.4); 1.284 (1.4); 1.260 (2.8); 1.236 (1.4); 0.070 (9.2); 0.057 (0.5); 0.011 (0.5); 0.000 (15.9); -0.011 (0.9)
Example V.06: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.350 (2.4); 8.322 (2.5); 7.394 (3.2); 7.387 (1.3); 7.372 (1.4); 7.365 (4.3); 7.352 (0.7); 7.263 (7.4); 7.141 (0.8); 7.132 (4.0); 7.125 (1.3); 7.110 (1.4); 7.102 (3.4); 7.092 (0.4); 6.868 (2.5); 6.840 (2.3); 2.682 (0.4);| 2.665 (0.6); 2.659 (0.5); 2.617 (16.0); 1.584 (27.0); 1.432 (1.1); 0.070 (4.5); 0.000 (8.6); -0.011 (0.4)
Example V.07: ¾-NMR (300.2 MHz, de-DMSO):|
|δ= 8.832 (3.2); 7.763 (3.4); 7.743 (1.3); 7.735 (1.3); 7.708 (1.2); 7.700 (1.2); 7.550 (0.9); 7.521 (2.1); 7.493 (1.6); 7.448 (1.2); 7.444 (1.2); 7.440 (1.2); 7.436 (1.0); 7.419 (0.6); 7.415 (0.7); 7.411 (0.6); 7.407 (0.6);| 3.344 (1.7); 2.641 (16.0); 2.537 (0.5); 2.531 (1.0); 2.525 (1.4); 2.519 (1.0); 2.513 (0.5); 0.021 (2.2)
Example V.08: ¾-NMR (400.0 MHz, de-DMSO):
|δ= 8.634 (5.1); 7.482 (1.7); 7.477 (0.7); 7.463 (3.0); 7.446 (1.0); 7.442 (2.4); 7.437 (0.4); 7.307 (5.0); 7.302 (1.4); 7.283 (1.8); 7.264 (0.8); 7.215 (2.6); 7.212 (3.2); 7.193 (2.7); 3.331 (4.3); 2.642 (0.5); 2.595 (16.0); 2.508 (4.1); 2.504 (5.4); 2.499 (4.1); 0.000 (1.0)
Example V.09: ¾-NMR (400.0 MHz, de-DMSO):|
|δ= 8.628 (5.2); 7.529 (0.4); 7.520 (4.0); 7.515 (1.4); 7.504 (1.5); 7.498 (4.8); 7.490 (0.6); 7.368 (5.1); 7.275 (0.6); 7.267 (4.8); 7.261 (1.6); 7.250 (1.3); 7.244 (4.0); 7.236 (0.4); 3.333 (3.7); 2.598 (16.0); 2.514 (1.8);| 2.510 (3.5); 2.505 (4.6); 2.501 (3.5); 2.496 (1.7); 1.186 (0.4); 0.000 (1.2)
Example V.10: ¾-NMR (400.0 MHz, de-DMSO):
|δ= 8.299 (2.8); 8.278 (2.9); 7.549 (0.4); 7.540 (3.6); 7.535 (1.3); 7.524 (1.4); 7.518 (4.3); 7.510 (0.5); 7.297 (0.5); 7.289 (4.3); 7.284 (1.4); 7.272 (1.2); 7.267 (3.6); 7.258 (0.4); 7.178 (2.9); 7.157 (2.8); 3.329 (6.4); 2.599 (16.0); 2.508 (7.2); 2.504 (9.2); 2.499 (6.8); 0.000 (1.5)
Example V.11 : ¾-NMR (400.1 MHz, CDC13):|
|δ= 8.081 (2.5); 8.060 (2.6); 7.498 (2.1); 7.476 (2.3); 7.312 (2.1); 7.305 (2.2); 7.260 (6.5); 7.067 (1.4); 7.061 (1.3); 7.046 (1.3); 7.039 (1.2); 6.924 (2.7); 6.903 (2.6); 2.695 (16.0); 1.544 (0.4); 1.432 (0.6); 0.070 (1.2);| 0.000 (5.1)
Example V.12: ¾-NMR (300.2 MHz, de-DMSO):|
|δ= 8.382 (4.0); 8.369 (0.5); 8.354 (4.2); 8.342 (0.6); 7.808 (0.4); 7.781 (0.3); 7.563 (0.5); 7.552 (5.5); 7.545 (2.3); 7.530 (2.2); 7.523 (7.1); 7.512 (1.0); 7.313 (0.7); 7.302 (6.9); 7.294 (2.6); 7.279 (2.0); 7.272 (5.6); 7.235 (4.5); 7.206 (4.3); 7.184 (0.4); 7.155 (0.4); 5.107 (1.4); 5.081 (16.0); 3.326 (9.1); 2.598 (1.3); 2.508 (5.1); 2.502 (6.9); 2.496 (5.2); 1.247 (1.0); 0.858 (0.8); 0.000 (5.2)
Example V.13 : ¾-NMR (300.2 MHz, CDCI3): δ= 8.195 (2.5); 8.165 (2.7); 7.438 (3.2); 7.431 (1.1); 7.415 (1.2); 7.409 (4.2); 7.398 (0.5); 7.315 (2.8); 7.284 (2.6); 7.262 (15.9); 7.216 (0.5); 7.205 (4.1); 7.198 (1.3); 7.183 (1.1); 7.176 (3.3); 7.165 (0.4); 7.081 (0.4); 4.240 (1.9); 2.826 (1.9); 2.801 (16.0); 1.549 (14.2); 0.069 (3.3); 0.010 (0.5); 0.000 (18.0); -0.011 (0.9)
Example V.14: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.127 (2.5); 8.099 (2.7); 7.637 (2.1); 7.608 (2.4); 7.313 (3.1); 7.300 (19.5); 7.284 (2.5); 6.961 (2.7); 6.933 (2.6); 6.911 (1.0); 6.723 (1.9); 6.535 (1.0); 2.740 (16.0); 1.585 (19.8); 1.307 (0.7); 0.921 (0.6); 0.108 (1.3);| 0.049 (1.0); 0.039 (17.8); 0.028 (0.9) - -
Figure imgf000106_0001
- -
Example V.29: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.068 (2.6); 8.040 (2.7); 7.263 (12.9); 7.148 (1.9); 7.118 (2.4); 7.020 (1.9); 7.010 (2.1); 6.882 (1.4); 6.875 (2.9); 6.872 (1.6); 6.852 (1.3); 6.847 (2.8); 6.843 (1.2); 5.302 (5.1); 3.833 (13.6); 2.796 (0.5); 2.709 (0.4); 2.691 (16.0); 2.681 (0.5); 2.048 (0.8); 1.565 (16.4); 1.432 (0.5); 1.261 (0.5); 0.070 (2.6); 0.011 (0.4); 0.000 (11.7); -0.011 (0.5)
Example V.30: 1H-NMR (300.2 MHz, CDC13):
|δ= 8.115 (2.5); 8.087 (2.6); 7.839 (2.5); 7.832 (0.8); 7.816 (0.8); 7.809 (2.8); 7.798 (0.4); 7.290 (1.5); 7.263 (3.6); 6.982 (2.7); 6.954 (2.5); 2.720 (1.2); 2.716 (0.4); 2.708 (16.0); 2.698 (0.5); 1.432 (0.5); 0.072 (0.5);| 0.000 (2.9)
Example V.31 : 1H-NMR (300.2 MHz, CDC13):
|δ= 7.931 (2.8); 7.902 (3.0); 7.355 (3.3); 7.327 (3.0); 7.300 (15.7); 7.142 (0.8); 7.131 (1.4); 7.125 (2.2); 7.121 (6.6); 7.097 (6.5); 7.093 (2.1); 7.086 (1.3); 7.076 (0.7); 2.620 (15.4); 2.618 (16.0); 1.585 (4.9); 0.109 (2.3);| 0.050 (0.7); 0.039 (17.2); 0.028 (0.8)
Example V.32: 1H-NMR (300.2 MHz, CDCI3):
|δ= 7.899 (2.8); 7.898 (2.8); 7.871 (3.0); 7.870 (3.0); 7.626 (3.3); 7.597 (4.1); 7.337 (4.6); 7.308 (3.7); 7.300 (3.0); 7.193 (3.2); 7.192 (3.2); 7.165 (3.0); 7.164 (3.0); 6.908 (1.7); 6.720 (3.5); 6.532 (1.8); 3.200 (0.8); 2.617 (15.6); 2.615 (16.0); 1.630 (0.3); 1.469 (0.9); 1.381 (0.4); 1.268 (0.5); 1.247 (0.5); 0.036 (2.4)
Example V.33 : 1H-NMR (499.9 MHz, CDCI3):
|δ= 8.094 (5.1); 7.263 (2.3); 7.251 (0.5); 7.245 (3.7); 7.241 (1.5); 7.231 (1.7); 7.227 (6.9); 7.222 (1.9); 7.212 (1.3); 7.208 (4.2); 7.202 (0.5); 6.940 (0.5); 6.934 (4.1); 6.930 (1.6); 6.920 (1.7); 6.916 (4.7); 6.914 (5.3); 6.910 (2.0); 6.900 (1.3); 6.896 (3.7); 6.890 (0.4); 2.729 (0.4); 2.716 (16.0); 1.594 (6.2); 0.000 (2.4)
Example V.34: 1H-NMR (300.2 MHz, CDCI3):
|δ= 8.138 (1.9); 8.110 (2.0); 7.599 (0.5); 7.588 (4.5); 7.581 (1.5); 7.566 (1.8); 7.559 (5.0); 7.548 (0.7); 7.358 (0.3); 7.302 (11.2); 7.264 (1.6); 7.169 (0.7); 7.159 (5.1); 7.151 (1.6); 7.136 (1.7); 7.129 (4.4); 7.118 (0.6); 7.095 (2.2); 7.083 (3.4); 7.067 (2.0); 6.902 (1.6); 3.789 (0.4); 3.558 (0.4); 3.450 (0.4); 2.694 (0.5); 2.685 (0.6); 2.661 (16.0); 1.895 (0.5); 1.595 (1.1); 1.473 (0.4); 1.293 (0.6); 0.110 (1.0); 0.051 (0.6); 0.040 (11.7); 0.029 (0.6)
Example V.35: 1H-NMR (300.2 MHz, CDCI3):
|δ= 7.895 (2.8); 7.893 (2.8); 7.866 (3.0); 7.865 (3.0); 7.328 (1.6); 7.321 (0.9); 7.318 (0.8); 7.299 (7.0); 7.297 (6.5); 7.284 (2.4); 7.276 (10.4); 7.267 (1.8); 7.255 (1.3); 7.245 (2.1); 7.238 (0.4); 7.180 (3.3); 7.179 (3.3); 7.152 (3.0); 7.151 (3.0); 2.615 (15.9); 2.612 (16.0); 1.627 (0.4); 1.468 (1.2); 0.111 (0.4); 0.036 (1.7)
Example V.36: 1H-NMR (300.2 MHz, CDC13):|
|δ= 8.768 (2.5); 7.690 (1.0); 7.628 (0.4); 7.617 (3.5); 7.610 (1.1); 7.595 (1.2); 7.587 (3.8); 7.577 (0.4); 7.508 (2.0); 7.407 (2.6); 7.326 (1.0); 7.298 (4.7); 7.126 (0.4); 7.115 (4.0); 7.108 (1.1); 7.093 (1.1); 7.086 (3.4);| 7.075 (0.3); 2.648 (16.0); 1.594 (3.9); 0.107 (0.3); 0.037 (4.5)
Example V.37: 1H-NMR (300.2 MHz, CDC13):|
|δ= 8.769 (2.6); 7.692 (1.0); 7.510 (2.1); 7.479 (0.3); 7.469 (3.3); 7.462 (1.1); 7.446 (1.2); 7.439 (4.0); 7.428 (0.4); 7.407 (2.7); 7.328 (1.1); 7.298 (23.0); 7.179 (0.4); 7.168 (4.1); 7.161 (1.2); 7.146 (1.0); 7.139 (3.3);| 2.648 (16.0); 1.581 (20.7); 0.107 (2.5); 0.048 (0.7); 0.037 (22.4); 0.027 (0.9)
Example V.38: 1H-NMR (300.2 MHz, CDC13):|
|δ= 7.904 (2.8); 7.903 (2.8); 7.876 (3.1); 7.300 (2.5); 7.288 (1.7); 7.287 (1.7); 7.281 (2.1); 7.265 (1.1); 7.258 (3.8); 7.252 (2.6); 7.247 (2.2); 7.238 (3.6); 7.231 (3.7); 7.230 (3.7); 7.226 (3.7); 7.221 (7.3); 7.217 (4.6);| 7.197 (0.6); 7.190 (0.5); 2.610 (16.0); 2.608 (15.9); 1.715 (0.7); 1.469 (1.2); 0.036 (2.4)
Example V.40: 1H-NMR (300.2 MHz, d6-DMSO):
|δ= 9.719 (2.7); 8.342 (5.8); 8.314 (6.2); 7.712 (1.3); 7.701 (13.7); 7.694 (4.4); 7.678 (4.6); 7.671 (15.5); 7.660 (1.6); 7.492 (6.7); 7.463 (6.3); 7.350 (2.1); 7.342 (0.7); 7.327 (0.7); 7.320 (2.3); 7.309 (0.5); 7.302 (1.7); 7.291 (16.0); 7.284 (4.7); 7.269 (4.3); 7.261 (13.5); 7.250 (1.3); 6.762 (2.5); 6.754 (0.7); 6.739 (0.7); 6.732 (2.2); 3.356 (19.8); 2.541 (3.5); 2.535 (7.6); 2.529 (10.5); 2.523 (7.7); 2.516 (4.1); 2.499 (1.9); 2.489 (2.2); 2.485 (1.5); 2.474 (3.6); 2.467 (1.7); 2.458 (2.1); 2.449 (2.1); 2.433 (1.0); 1.361 (0.3); 1.240 (0.4); 1.233 (1.0); 1.216 (3.2); 1.205 (7.7); 1.198 (4.3); 1.190 (3.1); 1.179 (8.5); 1.172 (5.1); 1.169 (5.1); 1.161 (7.4); 1.146 (9.3); 1.135 (3.5); 1.117 (0.9); 0.035 (0.3); 0.025 (9.6); 0.014 (0.4) - -
Example V.41 : 1H-NMR (300.2 MHz, CDC13):
|δ= 7.931 (5.8); 7.903 (6.2); 7.453 (1.2); 7.442 (12.6); 7.434 (4.2); 7.419 (4.6); 7.412 (16.0); 7.401 (1.7); 7.301 (28.1); 7.246 (1.1); 7.239 (0.4); 7.224 (0.5); 7.217 (1.5); 7.212 (1.9); 7.202 (16.3); 7.194 (4.7); 7.179 (4.2); 7.172 (12.8); 7.166 (7.5); 7.138 (6.2); 6.820 (1.3); 6.812 (0.4); 6.797 (0.3); 6.790 (1.1); 4.825 (1.3); 2.366 (0.8); 2.351 (1.8); 2.340 (2.0); 2.325 (3.7); 2.311 (2.1); 2.300 (2.0); 2.285 (1.0); 1.592 (13.5); 1.471 (0.5); 1.407 (1.7); 1.393 (5.8); 1.381 (9.6); 1.367 (7.2); 1.356 (2.4); 1.320 (0.5); 1.306 (0.6); 1.294 (0.5); 1.277 (0.5); 1.251 (0.4); 1.228 (2.5); 1.216 (7.5); 1.205 (5.4); 1.202 (5.7); 1.190 (8.3); 1.183 (3.7); 1.179 (4.6); 1.163 (3.2); 0.110 (3.1); 0.051 (1.0); 0.040 (30.8); 0.029 (1.1)
Example V.44: 1H-NMR (300.2 MHz, d6-DMSO):
|δ= 8.362 (9.6); 8.333 (10.2); 7.726 (11.4); 7.698 (14.0); 7.525 (11.0); 7.497 (10.4); 7.444 (16.0); 7.415 (13.0); 7.298 (5.7); 7.111 (12.3); 6.925 (6.0); 5.785 (0.9); 3.360 (11.1); 3.146 (1.1); 2.541 (2.8); 2.535 (6.1); 2.529 (8.7); 2.523 (7.6); 2.517 (3.3); 2.507 (3.1); 2.498 (3.6); 2.493 (2.5); 2.482 (6.0); 2.475 (2.6); 2.466 (3.4); 2.457 (3.5); 2.441 (1.6); 1.246 (0.6); 1.238 (1.6); 1.220 (5.1); 1.210 (12.9); 1.202 (7.0); 1.194 (4.8); 1.184 (14.4); 1.176 (10.9); 1.168 (12.6); 1.158 (10.7); 1.152 (15.7); 1.141 (5.6); 1.124 (1.4); 1.109 (0.4); 0.023 (10.1); 0.012 (0.4)
Example V.45: 1H-NMR (300.2 MHz, CDCI3):
|δ= 7.806 (3.4); 7.778 (3.7); 7.432 (0.9); 7.422 (7.3); 7.414 (2.4); 7.399 (2.7); 7.392 (9.2); 7.381 (1.0); 7.297 (1.4); 7.213 (0.6); 7.191 (1.3); 7.181 (9.6); 7.173 (2.8); 7.158 (2.5); 7.151 (7.3); 7.143 (4.5); 7.115 (3.7); 6.805 (0.7); 6.775 (0.6); 2.902 (1.7); 2.878 (5.3); 2.854 (5.5); 2.830 (1.9); 1.388 (0.5); 1.363 (0.8); 1.337 (0.4); 1.297 (0.4); 1.259 (8.1); 1.235 (16.0); 1.211 (7.6); 0.911 (0.4); 0.031 (1.3)
Example V.46: 1H-NMR (300.2 MHz, CDCI3):
|δ= 7.814 (3.5); 7.785 (3.8); 7.433 (0.7); 7.423 (7.5); 7.415 (2.6); 7.400 (2.8); 7.393 (9.2); 7.382 (1.0); 7.302 (1.1); 7.210 (0.4); 7.194 (1.1); 7.184 (9.7); 7.176 (2.8); 7.161 (2.6); 7.154 (7.3); 7.144 (4.7); 7.116 (3.8); 6.806 (0.4); 6.776 (0.3); 2.855 (3.5); 2.831 (7.0); 2.807 (3.9); 1.827 (0.8); 1.802 (2.9); 1.778 (5.4); 1.753 (5.3); 1.729 (2.8); 1.705 (0.7); 1.689 (0.8); 1.044 (8.2); 1.019 (16.0); 0.994 (7.3); 0.034 (1.0)
Example V.47: 1H-NMR (300.2 MHz, CDCI3):
|δ= 7.816 (1.8); 7.788 (2.0); 7.441 (0.4); 7.431 (3.7); 7.423 (1.2); 7.408 (1.4); 7.401 (4.6); 7.390 (0.5); 7.302 (1.0); 7.199 (0.6); 7.188 (4.7); 7.181 (1.4); 7.166 (1.3); 7.159 (3.6); 7.148 (2.4); 7.119 (1.9); 2.760 (3.6); 2.737 (3.9); 2.337 (0.4); 2.314 (0.9); 2.292 (1.1); 2.270 (0.9); 2.247 (0.5); 1.625 (1.5); 1.039 (16.0); 1.017 (15.5); 0.989 (0.5); 0.967 (0.4); 0.038 (0.9)
Example V.48: 1H-NMR (300.2 MHz, CDC13):|
|δ= 7.812 (3.3); 7.784 (3.6); 7.678 (0.4); 7.652 (0.4); 7.449 (0.7); 7.438 (7.2); 7.431 (2.4); 7.416 (3.0); 7.408 (8.9); 7.398 (1.1); 7.391 (0.6); 7.301 (24.8); 7.248 (1.2); 7.240 (0.4); 7.225 (0.5); 7.218 (1.4); 7.203 (1.1); 7.192 (9.2); 7.184 (2.6); 7.169 (2.5); 7.162 (7.0); 7.152 (4.4); 7.124 (3.6); 6.821 (1.5); 6.814 (0.4); 6.799 (0.4); 6.791 (1.2); 4.802 (0.7); 2.948 (0.4); 2.922 (0.5); 2.895 (0.5); 2.878 (3.3); 2.854 (6.1); 2.829 (3.6); 1.771 (1.2); 1.747 (3.0); 1.722 (3.7); 1.697 (2.7); 1.672 (1.2); 1.592 (17.5); 1.488 (0.7); 1.464 (2.2); 1.439 (3.2); 1.413 (3.3); 1.389 (2.2); 1.365 (0.8); 1.307 (1.2); 1.013 (1.0); 1.001 (8.2); 0.989 (2.2); 0.976 (16.0); 0.965 (1.2); 0.952 (6.6); 0.922 (1.3); 0.899 (0.5); 0.110 (2.8); 0.051 (0.9); 0.040 (26.0); 0.029 (1.0)
Example VI.01 : ¾-NMR (300.2 MHz, CDCI3): δ= 7.879 (3.4); 7.851 (3.7); 7.460 (0.8); 7.449 (7.5); 7.442 (2.6); 7.427 (2.9); 7.419 (9.5); 7.409 (1.2); 7.300 (21.9); 7.246 (0.6); 7.216 (1.1); 7.210 (5.0); 7.199 (9.8); 7.192 (3.2); 7.180 (4.3); 7.177 (3.8); 7.169 (7.6); 7.158 (0.8); 6.819 (0.7); 6.790 (0.6); 4.798 (0.8); 4.509 (16.0); 2.616 (0.5); 1.587 (40.4); 1.347 (0.5); 1.306
(2.2); 0.942 (0.8); 0.921 (2.5); 0.897 (0.9); 0.108 (1.6); 0.049 (0.8); 0.039 (26.1); 0.028 (1.1)
Example VI.03 : ¾-NMR (299.9 MHz, de-DMSO): δ= 8.367 (4.1); 8.338 (4.3); 7.511 (1.7); 7.505 (0.8); 7.486 (3.3); 7.465 (1.2); 7.459 (2.8); 7.451 (0.5); 7.336 (0.7); 7.332 (1.4); 7.328 (0.9); 7.307 (2.0); 7.302 (0.7); 7.286 (0.5); 7.283 (0.8); 7.279 (0.5); 7.244 (2.9); 7.240 (3.8); 7.233 (1.1); 7.218 (1.7); 7.215 (2.9); 7.212 (2.5); 7.171 (4.2); 7.142 (4.1); 5.077 (16.0); 3.318
(33.7); 2.513 (4.2); 2.507 (9.0); 2.501 (12.4); 2.495 (9.1); 2.489 (4.4); 0.000 (4.6)
Example VI.04: ¾-NMR (399.8 MHz, CDCI3): δ= 8.091 (3.3); 8.090 (3.9); 8.069 (4.0); 7.417 (0.7); 7.409 (5.3); 7.404 (1.9); 7.392 (2.8); 7.387 (5.6); 7.381 (0.9); 7.379 (0.9); 7.262 (6.3); 7.260 (7.5); 7.135 (0.9); 7.128 (6.2); 7.122 (2.2); 7.110 (2.6); 7.106 (4.9); 7.100 (0.8); 6.937 (4.0); 6.918 (3.4); 6.916 (3.9); 4.761 (13.8); 4.759 (16.0); 2.693 (0.7); 1.575 (1.1); 0.001 (6.9); 0.000 (7.6) - -
Example VI.05: 'H-NMR (299.9 MHz, CDC13):| δ= 8.504 (5.4); 7.484 (0.4); 7.476 (1.7); 7.470 (0.8); 7.451 (3.5); 7.430 (1.2); 7.424 (2.9); 7.416 (0.5); 7.313 (1.4); 7.309 (0.9); 7.288 (2.1); 7.259 (5.4); 7.162 (2.9); 7.158 (3.8); 7.152 (1.1); 7.133 (2.9); 7.003 (5.7);| 4.662 (0.3); 4.650 (16.0); 1.546 (2.7); 0.000 (5.4)
Example VI.06: 'H-NMR (299.9 MHz, CDC13):
|δ= 8.473 (6.4); 7.428 (0.6); 7.417 (4.5); 7.411 (1.7); 7.395 (1.8); 7.388 (5.9); 7.377 (0.6); 7.260 (12.9); 7.120 (0.7); 7.109 (5.6); 7.102 (1.9); 7.086 (1.6); 7.079 (4.9); 7.069 (0.5); 7.037 (6.7); 4.646 (16.0); 1.543 (12.4); 1.254 (0.4); 0.010 (0.7); 0.009 (0.7); 0.000 (12.0); -0.011 (0.4)
Example VI.07: ¾-NMR (300.2 MHz, CDC13):| δ= 8.111 (0.7); 8.092 (3.8); 8.083 (0.8); 8.064 (4.0); 7.512 (3.5); 7.483 (4.0); 7.323 (3.2); 7.315 (3.5); 7.265 (2.2); 7.084 (2.3); 7.075 (2.1); 7.054 (2.0); 7.045 (1.9); 6.983 (0.8); 6.976 (4.1); 6.955 (0.8); 6.948 (3.9);| 4.760 (2.6); 4.569 (16.0); 4.559 (0.3); 4.542 (0.5); 2.045 (0.9); 1.259 (0.7); 0.074 (1.1); 0.000 (1.1)
Example VI.08: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.110 (3.7); 8.081 (3.9); 7.608 (0.5); 7.305 (1.9); 7.274 (4.5); 7.263 (78.5); 7.232 (1.2); 7.221 (6.8); 7.213 (1.8); 7.198 (1.4); 7.191 (3.1); 6.963 (4.0); 6.935 (3.9); 6.911 (0.4); 4.767 (16.0); 4.723 (0.6); 3.678 (0.3); 1.569 (243.3); 1.456 (0.4); 1.336 (0.4); 1.300 (0.5); 1.253 (1.6); 0.882 (0.6); 0.195 (0.4); 0.081 (0.9); 0.069 (26.9); 0.057 (1.4); 0.011 (2.6); 0.000 (76.2); -0.011 (3.7)
Example VI.09: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.409 (0.5); 8.381 (0.6); 8.094 (3.8); 8.065 (4.2); 8.039 (0.5); 7.263 (21.4); 7.139 (14.5); 7.133 (2.7); 7.120 (7.1); 7.117 (7.4); 7.087 (0.4); 6.975 (1.3); 6.954 (2.1); 6.921 (4.9); 6.897 (2.5); 6.893 (4.2); 6.864 (0.5); 6.836 (0.4); 6.665 (0.6); 6.638 (0.5); 4.852 (2.1); 4.767 (16.0); 2.694 (2.6); 1.571 (75.5); 1.306 (0.9); 1.266 (5.7); 0.904 (2.0); 0.882 (6.1); 0.859 (2.4); 0.070 (1.8); 0.011 (0.7); 0.000 (20.9); -0.011 (1.1)
Example VI.10: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.381 (7.3); 7.494 (0.5); 7.483 (4.7); 7.476 (1.5); 7.461 (1.7); 7.454 (5.8); 7.443 (0.6); 7.300 (15.7); 7.209 (0.7); 7.198 (5.8); 7.191 (1.8); 7.176 (1.5); 7.169 (4.6); 7.158 (0.4); 5.339 (0.6); 4.954 (16.0); 3.371 (0.4); 1.580 (7.4); 0.108 (5.5); 0.049 (0.6); 0.039 (16.3); 0.028 (0.6)
Example VI.11 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.035 (2.7); 8.007 (2.9); 7.420 (0.6); 7.409 (5.8); 7.402 (2.0); 7.387 (2.4); 7.379 (7.3); 7.369 (1.0); 7.262 (14.2); 7.173 (1.4); 7.162 (7.0); 7.155 (2.2); 7.140 (2.1); 7.132 (5.4); 7.121 (0.7); 7.093 (2.7); 7.065 (2.6); 7.049 (2.2); 6.903 (0.4); 6.868 (4.1); 6.687 (2.1); 4.569 (16.0); 4.322 (1.6); 3.500 (0.6); 1.558 (39.3); 1.260| (0.8); 0.882 (0.7); 0.070 (7.3); 0.058 (0.4); 0.011 (0.7); 0.000 (17.8); -0.011 (0.9)
Example VI.12: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.421 (3.7); 8.393 (3.8); 7.413 (0.5); 7.403 (4.8); 7.396 (1.9); 7.380 (2.0); 7.373 (6.4); 7.363 (0.9); 7.342 (0.5); 7.262 (9.5); 7.153 (0.5); 7.142 (0.9); 7.132 (6.0); 7.125 (2.2); 7.109 (1.9); 7.102 (4.9); 7.091 (0.6); 6.925 (3.5); 6.897 (3.3); 6.807 (0.4); 4.722 (0.3); 4.713 (0.3); 4.668 (16.0); 3.916 (0.5); 3.896 (0.9); 3.214 (2.9); 2.617 (0.8); 1.550 (6.0); 1.306 (0.5); 1.266 (3.1); 0.903 (1.1); 0.882 (3.4); 0.858 (1.3); 0.070 (2.1); 0.011 (0.4); 0.000 (10.9); -0.011 (0.5)
Example VI.13 : ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.100 (2.8); 8.072 (3.0); 7.262 (6.1); 7.149 (2.2); 7.120 (2.7); 7.023 (2.2); 7.013 (2.5); 6.936 (3.1); 6.908 (3.0); 6.886 (1.6); 6.876 (1.5); 6.856 (1.3); 6.847 (1.3); 4.775 (11.9); 3.835 (16.0); 2.690 (0.6); 1.563 (11.7);| 1.266 (0.7); 1.260 (0.7); 0.882 (0.8); 0.000 (6.6)
Example VI.14: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.540 (4.2); 8.518 (0.5); 7.489 (0.5); 7.478 (5.3); 7.470 (1.9); 7.455 (2.0); 7.448 (6.5); 7.438 (1.2); 7.376 (4.6); 7.329 (0.5); 7.300 (25.9); 7.186 (0.7); 7.176 (6.5); 7.168 (2.0); 7.161 (0.9); 7.153 (2.0); 7.146 (5.1); 7.135 (0.7); 7.131 (0.6); 5.504 (0.4); 4.365 (16.0); 2.636 (1.6); 1.584 (37.7); 1.294 (0.4); 0.109 (2.6); 0.050| (1.0); 0.039 (28.1); 0.028 (1.2)
Example VI.15: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.759 (0.6); 8.540 (4.4); 8.517 (0.7); 7.638 (0.7); 7.633 (1.2); 7.627 (5.8); 7.620 (2.1); 7.617 (1.4); 7.610 (0.9); 7.604 (2.5); 7.597 (6.3); 7.587 (1.6); 7.398 (0.7); 7.377 (4.8); 7.330 (0.7); 7.300 (7.5); 7.133 (0.9); 7.130 (1.2); 7.123 (6.5); 7.115 (2.0); 7.108 (1.5); 7.100 (2.6); 7.093 (5.6); 7.082 (0.8); 7.079 (1.0); 6.454 (1.2); 4.366 (16.0); 2.636 (2.7); 1.587 (4.6); 1.306 (1.6); 0.943 (0.6); 0.921 (1.8); 0.898 (0.7); 0.110 (0.7); 0.039 (6.9) - -
Example VI.16: 'H-NMR (300.2 MHz, CDC13):
|δ= 8.150 (3.8); 8.122 (4.0); 7.646 (2.9); 7.618 (3.3); 7.320 (3.7); 7.300 (17.0); 7.292 (3.4); 7.014 (4.0); 6.986 (3.8); 6.916 (1.4); 6.728 (2.9); 6.540 (1.5); 4.803 (16.0); 4.197 (0.4); 4.173 (1.3); 4.149 (1.3); 4.126 (0.5); 2.739 (1.2); 2.085 (5.9); 1.581 (7.3); 1.322 (1.6); 1.299 (3.2); 1.275 (1.5); 0.108 (1.3); 0.049 (0.5); 0.039 (16.8); 0.028 (0.6)
Example VI.17: 'H-NMR (300.2 MHz, CDCI3):
|δ= 8.131 (1.1); 8.103 (1.2); 7.646 (1.0); 7.618 (1.2); 7.324 (1.3); 7.300 (8.7); 7.007 (1.2); 6.979 (1.1); 6.917 (0.5); 6.728 (0.9); 6.540 (0.5); 4.615 (4.6); 4.588 (0.4); 2.740 (0.8); 2.085 (0.9); 1.580 (3.7); 1.370 (1.2); 1.346 (2.7); 1.306 (15.9); 0.943 (5.6); 0.922 (16.0); 0.898 (6.3); 0.109 (0.6); 0.050 (0.4); 0.039 (8.0); 0.029| (0.4)
Example VI.18: ¾-NMR (300.2 MHz, CDCI3):
|δ= 7.599 (0.5); 7.570 (0.6); 7.300 (5.0); 7.151 (0.6); 7.121 (0.5); 4.337 (1.2); 2.086 (0.5); 1.579 (2.4); 1.370 (0.9); 1.347 (2.1); 1.307 (13.6); 0.944 (5.0); 0.922 (16.0); 0.899 (5.9); 0.040 (5.0)
Example VI.19 : ¾-NMR (300.2 MHz, CDCI3) :
|δ= 7.972 (0.4); 7.944 (0.4); 7.881 (3.4); 7.852 (3.7); 7.609 (0.9); 7.599 (8.7); 7.591 (2.7); 7.576 (3.1); 7.569 (9.6); 7.558 (1.2); 7.358 (0.3); 7.300 (29.3); 7.212 (3.9); 7.183 (4.1); 7.158 (1.4); 7.153 (2.2); 7.147 (9.3); 7.140 (2.8); 7.125 (3.3); 7.118 (7.6); 7.107 (0.8); 6.777 (0.3); 4.511 (16.0); 4.301 (2.0); 3.948 (0.4); 3.303 (1.5); 2.617 (0.4); 1.588 (24.4); 1.367 (0.4); 1.344 (0.9); 1.305 (5.0); 0.942 (1.8); 0.920 (5.8); 0.897 (2.1);| 0.108 (2.5); 0.049 (1.0); 0.038 (29.1); 0.027 (1.1)
Example VI.20: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.521 (3.8); 8.493 (4.8); 8.490 (4.6); 8.462 (3.9); 8.453 (0.7); 8.425 (0.7); 7.477 (1.1); 7.466 (10.0); 7.458 (3.3); 7.443 (3.7); 7.436 (12.2); 7.425 (1.6); 7.300 (40.9); 7.284 (0.5); 7.276 (1.0); 7.251 (0.8); 7.229 (0.3); 7.221 (1.0); 7.178 (1.5); 7.167 (12.2); 7.160 (3.8); 7.144 (3.3); 7.137 (9.6); 7.126 (1.0); 6.984 (4.3); 6.978 (4.9); 6.956 (4.4); 6.950 (4.9); 6.922 (1.0); 6.914 (0.4); 6.892 (0.8); 6.729 (0.7); 6.700 (0.6); 4.876 (3.1); |4.729 (16.0); 4.719 (16.0); 4.416 (0.4); 4.410 (0.4); 2.665 (0.5); 2.649 (0.6); 1.581 (19.3); 1.369 (0.5); 1.347 (0.9); 1.306 (5.0); 0.943 (1.8); 0.921 (5.7); 0.898 (2.1); 0.120 (0.5); 0.108 (12.2); 0.096 (0.5); 0.050 (1.7); 0.039 (44.7); 0.028 (1.7)
Example VI.21 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.573 (0.5); 8.490 (4.7); 7.397 (5.0); 7.363 (2.3); 7.334 (4.1); 7.300 (5.5); 7.269 (1.0); 7.258 (7.4); 7.250 (1.9); 7.235 (1.5); 7.228 (3.9); 7.217 (0.4); 7.159 (0.6); 6.870 (0.5); 6.839 (0.4); 4.586 (1.8); 4.554 (16.0); |4.091 (2.8); 3.898 (0.7); 3.309 (2.1); 2.640 (0.6); 1.605 (3.4); 1.305 (0.9); 0.920 (1.0); 0.897 (0.4); 0.110| (0.9); 0.038 (5.4)
Example VI.22: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.484 (3.0); 7.785 (2.2); 7.756 (2.6); 7.427 (3.3); 7.354 (2.4); 7.326 (2.2); 7.300 (8.2); 5.339 (0.4); 4.586 (0.9); 4.556 (10.7); 4.090 (1.5); 3.314 (0.7); 2.646 (1.0); 1.600 (16.0); 1.346 (0.4); 1.305 (2.1); 0.942 (0.8); 0.920 (2.4); 0.897 (0.9); 0.108 (1.6); 0.038 (7.6)
Example VI.23 : ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.573 (0.4); 8.482 (3.4); 7.637 (0.4); 7.626 (4.2); 7.619 (1.4); 7.604 (1.4); 7.597 (4.6); 7.587 (0.6); 7.378 (3.8); 7.356 (0.5); 7.300 (8.1); 7.159 (0.4); 7.128 (0.5); 7.117 (4.7); 7.110 (1.4); 7.095 (1.3); 7.088 (4.0); 7.078 (0.5); 6.775 (0.5); 6.745 (0.5); 4.921 (0.4); 4.586 (1.4); 4.552 (12.1); 4.090 (2.1); 2.636 (0.6); 1.602 (16.0); 1.304 (0.9); 0.942 (0.3); 0.920 (1.0); 0.897 (0.4); 0.108 (1.5); 0.038 (7.5)
Example VI.24: ¾-NMR (300.2 MHz, de-DMSO):]
|δ= 8.911 (0.8); 8.894 (5.3); 8.866 (0.4); 8.833 (1.0); 7.913 (0.4); 7.898 (0.7); 7.834 (5.6); 7.813 (1.2); 7.758 (1.3); 7.746 (2.3); 7.738 (2.5); 7.729 (0.7); 7.719 (0.7); 7.712 (2.3); 7.704 (2.4); 7.695 (0.5); 7.564 (1.6); 7.555 (0.6); 7.548 (0.5); 7.535 (3.5); 7.526 (0.6); 7.519 (0.9); 7.507 (2.7); 7.491 (0.6); 7.454 (2.2); 7.450 (2.3); 7.446 (2.4); 7.442 (2.0); 7.434 (0.6); 7.425 (1.2); 7.421 (1.4); 7.417 (1.3); 7.413 (1.2); 5.815 (0.7); 5.777 (3.6); 4.986 (16.0); 2.641 (5.2); 2.537 (0.6); 2.531 (1.1); 2.525 (1.5); 2.519 (1.1); 2.513 (0.5); 1.265 (0.5); 0.876 (0.5); 0.019 (1.9)
Example VI.25: ¾-NMR (300.2 MHz, de-DMSO):]
|δ= 8.858 (5.1); 8.833 (2.8); 7.843 (5.4); 7.760 (3.0); 7.747 (2.1); 7.740 (3.1); 7.732 (1.3); 7.713 (2.0); 7.705 (3.0); 7.697 (1.2); 7.558 (1.5); 7.549 (0.9); 7.529 (3.4); 7.520 (2.0); 7.511 (0.4); 7.501 (2.6); 7.492 (1.5);| 7.454 (2.0); 7.449 (2.2); 7.446 (2.7); 7.442 (2.5); 7.435 (1.0); 7.425 (1.1); 7.420 (1.3); 7.417 (1.5); 7.413 (1.5); 7.406 (0.6); 5.778 (3.2); 5.188 (0.5); 5.171 (16.0); 4.031 (0.4); 4.025 (0.4); 3.348 (3.6); 3.203 (1.5); 2.641 (13.6); 2.537 (0.8); 2.531 (1.6); 2.525 (2.2); 2.519 (1.6); 2.513 (0.8); 2.011 (0.4); 1.266 (1.1); 0.900 (0.3); 0.878 (1.1); 0.855 (0.4); 0.020 (2.5) - -
Example VI.26: 'H-NMR (300.2 MHz, de-DMSO):|
|δ= 9.951 (0.5); 8.972 (0.6); 8.870 (4.9); 7.732 (8.2); 7.704 (3.7); 7.445 (4.1); 7.416 (3.5); 7.388 (0.9); 7.298 (1.4); 7.111 (3.1); 6.926 (1.5); 5.190 (2.3); 5.166 (16.0); 4.031 (3.2); 3.351 (2.7); 3.213 (0.3); 2.641 (1.0);| 2.537 (0.5); 2.531 (1.0); 2.525 (1.4); 2.519 (1.0); 2.513 (0.5); 0.021 (1.7)
Example VI.27: 'H-NMR (300.2 MHz, de-DMSO):
|δ= 8.906 (5.4); 8.845 (1.1); 7.829 (0.8); 7.781 (0.5); 7.733 (3.8); 7.721 (7.0); 7.705 (4.4); 7.650 (1.2); 7.470 (0.5); 7.451 (4.6); 7.423 (3.8); 7.408 (0.9); 7.298 (1.6); 7.112 (3.5); 6.926 (1.7); 5.777 (0.8); 4.976 (16.0); 3.375 (0.8); 2.641 (5.2); 2.537 (0.4); 2.531 (0.9); 2.525 (1.2); 2.519 (0.9); 2.513 (0.4); 0.021 (1.4)
Example VI.28: ¾-NMR (300.2 MHz, CDC13):|
|δ= 7.917 (3.4); 7.889 (3.8); 7.810 (0.4); 7.757 (4.7); 7.728 (5.6); 7.688 (0.4); 7.661 (0.4); 7.386 (5.0); 7.358 (4.4); 7.300 (36.4); 7.276 (4.0); 7.248 (3.9); 7.233 (0.4); 7.219 (0.4); 4.516 (16.0); 4.506 (1.7); 4.308 (1.3); 3.312 (0.4); 2.628 (1.0); 1.585 (41.2); 1.345 (0.4); 1.307 (1.9); 0.943 (0.6); 0.921 (2.0); 0.898 (0.8); 0.108 (8.4); 0.096 (0.3); 0.049 (1.2); 0.039 (37.1); 0.028 (1.3)
Example VI.29: ¾-NMR (300.2 MHz, CDC13):
|δ= 7.931 (3.5); 7.902 (4.0); 7.886 (7.3); 7.879 (2.3); 7.863 (2.4); 7.856 (8.1); 7.845 (1.3); 7.837 (0.9); 7.810 (1.0); 7.688 (1.1); 7.661 (0.9); 7.646 (0.3); 7.378 (4.5); 7.348 (4.0); 7.300 (41.0); 7.269 (3.9); 7.239 (0.4); |4.517 (16.0); 4.506 (4.3); 4.309 (1.2); 4.301 (0.4); 3.314 (0.5); 2.631 (1.4); 1.585 (43.2); 1.346 (1.3); 1.306| (7.3); 0.943 (2.6); 0.921 (8.6); 0.898 (3.1); 0.108 (8.3); 0.050 (1.3); 0.039 (39.4); 0.028 (1.4)
Example VI.30: 1H-NMR (300.2 MHz, CDC13)
|δ= 8.148 (0.4); 8.135 (3.7); 8.120 (0.4); 8.106 (4.0); 7.862 (0.4); 7.851 (3.8); 7.844 (1.2); 7.827 (1.5); 7.820 (4.1); 7.810 (0.6); 7.300 (2.3); 7.269 (2.2); 7.263 (5.6); 7.051 (0.5); 7.031 (3.9); 7.022 (0.4); 7.003 (3.7); 6.865 (0.7); 4.803 (0.9); 4.787 (0.4); 4.765 (16.0); 4.724 (0.7); 2.708 (0.6); 1.572 (8.0); 1.266 (0.9); 1.260 (0.9); 0.903 (0.3); 0.882 (1.1); 0.858 (0.4); 0.000 (4.8)
Example VI.31 : 1H-NMR (300.2 MHz, CDC13):
|δ= 7.939 (3.3); 7.911 (3.6); 7.816 (0.3); 7.702 (0.8); 7.697 (0.9); 7.690 (0.8); 7.677 (1.1); 7.671 (1.1); 7.573 (0.4); 7.548 (1.6); 7.524 (1.1); 7.400 (3.9); 7.372 (3.7); 7.355 (0.5); 7.343 (0.3); 7.327 (0.5); 7.312 (0.5); 7.300 (44.0); 7.149 (0.8); 7.139 (1.6); 7.133 (2.6); 7.129 (8.1); 7.120 (1.3); 7.105 (7.9); 7.100 (2.7); 7.095 (2.1); 7.084 (0.9); 5.340 (2.0); 5.028 (3.2); 4.517 (16.0); 4.302 (1.2); 3.772 (3.2); 3.433 (15.9); 3.300 (0.8); 2.619 (1.8); 2.617 (1.9); 1.594 (22.3); 1.293 (0.6); 0.108 (5.0); 0.049 (1.6); 0.038 (48.2); 0.027 (1.9)
Example VI.32: 1H-NMR (300.2 MHz, CDC13):
|δ= 7.982 (3.1); 7.954 (3.4); 7.406 (0.4); 7.394 (3.7); 7.379 (0.4); 7.365 (3.4); 7.300 (30.6); 7.149 (0.7); 7.139 (1.5); 7.133 (2.7); 7.129 (7.1); 7.121 (0.9); 7.105 (7.0); 7.100 (2.3); 7.096 (1.6); 7.085 (0.7); 6.379 (0.7); 6.368 (0.3); 4.341 (16.0); 2.619 (1.3); 1.583 (29.3); 1.296 (0.4); 0.108 (6.3); 0.049 (1.1); 0.039 (32.1); 0.027 (1.2)
Example VI.33 : 1H-NMR (300.2 MHz, CDC13):
|δ= 7.893 (3.3); 7.865 (3.6); 7.342 (1.9); 7.311 (7.1); 7.300 (23.1); 7.288 (12.0); 7.279 (2.3); 7.266 (1.5); 7.257 (2.8); 7.230 (3.9); 7.202 (3.6); 4.513 (16.0); 4.305 (0.5); 3.306 (0.7); 2.619 (0.3); 1.580 (9.3); 1.479| (0.7); 1.306 (0.8); 0.921 (0.7); 0.109 (1.1); 0.050 (0.7); 0.039 (24.0); 0.028 (0.9)
Example VI.34: 1H-NMR (300.2 MHz, CDC13): δ= 7.925 (3.2); 7.924 (3.1); 7.897 (3.4); 7.895 (3.4); 7.460 (0.8); 7.450 (7.2); 7.442 (2.5); 7.427 (2.8); 7.420 (9.1); 7.409 (1.1); 7.300 (24.4); 7.213 (1.4); 7.202 (12.8); 7.194 (3.0); 7.179 (3.3); 7.172 (9.2); 7.161 (0.8); 4.338 (16.0); 1.582 (18.1); 0.050 (1.2); 0.039 (26.1); 0.028 (1.0)
Example VI.35: 1H-NMR (300.2 MHz, CDCI3):
|δ= 7.906 (3.3); 7.905 (3.4); 7.878 (3.6); 7.877 (3.7); 7.309 (4.4); 7.300 (16.0); 7.294 (3.2); 7.293 (3.2); 7.282 (4.1); 7.281 (4.1); 7.269 (1.6); 7.264 (3.3); 7.259 (2.8); 7.247 (4.1); 7.245 (3.9); 7.238 (4.0); 7.232 (8.9); 7.227 (5.7); 7.210 (0.7); 7.203 (0.7); 7.187 (0.4); 4.512 (16.0); 4.299 (1.0); 3.300 (0.6); 2.615 (0.4); 1.720 (1.1); 1.583 (3.9); 1.479 (0.8); 1.322 (0.3); 1.294 (0.5); 0.109 (3.4); 0.050 (0.7); 0.039 (15.4); 0.028 (0.4)
Example VI.36: 1H-NMR (300.2 MHz, CDCI3):
|δ= 7.903 (3.4); 7.902 (3.4); 7.875 (3.7); 7.873 (3.6); 7.638 (4.0); 7.609 (4.9); 7.348 (5.5); 7.319 (4.4); 7.302 (2.5); 7.240 (3.9); 7.239 (3.9); 7.212 (3.6); 6.915 (2.1); 6.727 (4.2); 6.539 (2.1); 4.520 (16.0); 3.271 (0.5); 3.220 (0.3); 2.621 (0.5); 2.619 (0.5); 0.039 (2.5) - -
Example VII.01 : ¾-NMR (300.2 MHz, CDC ):
|δ= 8.222 (4.3); 8.019 (4.5); 7.927 (2.0); 7.898 (2.1); 7.462 (0.4); 7.452 (4.1); 7.444 (1.5); 7.429 (1.5); 7.422 (5.4); 7.411 (0.6); 7.300 (12.6); 7.206 (2.3); 7.196 (0.7); 7.185 (5.3); 7.178 (3.7); 7.163 (1.5); 7.155 (4.3); 7.145 (0.5); 5.424 (8.1); 1.608 (16.0); 0.108 (1.3); 0.049 (0.5); 0.038 (14.8); 0.028 (0.6)
Example VII.02: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.578 (5.9); 8.245 (6.7); 8.032 (6.7); 7.496 (0.8); 7.485 (6.2); 7.478 (2.3); 7.463 (2.4); 7.455 (7.7); 7.445 (1.0); 7.397 (6.3); 7.300 (39.6); 7.178 (0.9); 7.168 (7.5); 7.160 (2.6); 7.145 (2.1); 7.138 (6.2); 7.127 (0.7);| 5.499 (16.0); 5.340 (7.4); 1.587 (19.7); 0.109 (1.6); 0.050 (2.3); 0.039 (51.8); 0.029 (2.6)
Example VII.03 : ¾-NMR (400.1 MHz, CDC13):|
|δ= 8.235 (2.1); 8.195 (5.7); 8.174 (5.8); 8.004 (3.3); 7.927 (0.5); 7.906 (0.6); 7.523 (5.1); 7.518 (0.6); 7.501 (5.6); 7.374 (0.6); 7.354 (0.6); 7.328 (5.1); 7.321 (5.4); 7.309 (0.4); 7.297 (0.8); 7.259 (70.7); 7.209 (0.4); 7.078 (3.3); 7.072 (3.1); 7.057 (3.0); 7.050 (2.9); 6.999 (6.0); 6.978 (5.9); 5.704 (16.0); 5.686 (0.5); 5.298 (0.3); 4.555 (0.4); 2.804 (1.2); 2.704 (3.5); 2.003 (2.4); 1.640 (0.3); 1.561 (0.7); 1.505 (0.4); 1.333 (0.4); 1.314 (0.5); 1.284 (0.8); 1.256 (1.7); 0.881 (0.6); 0.069 (1.9); 0.008 (1.6); 0.000 (46.8); -0.008 (1.6)
Example VII.04: ¾-NMR (499.9 MHz, de-DMSO)
|δ= 8.534 (8.6); 8.494 (5.1); 8.477 (5.3); 8.033 (8.1); 7.758 (4.7); 7.752 (4.9); 7.712 (2.1); 7.710 (2.2); 7.694 (2.4); 7.692 (2.5); 7.425 (2.9); 7.419 (2.9); 7.407 (2.6); 7.401 (2.6); 7.327 (5.4); 7.311 (5.3); 5.883 (16.0); 3.319 (14.6); 2.892 (0.5); 2.742 (0.8); 2.733 (0.5); 2.511 (1.1); 2.507 (2.4); 2.504 (3.3); 2.500 (2.5); 2.497 (1.3); 1.989 (0.5); 0.000 (1.3)
Example VII.05: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.615 (8.1); 8.232 (6.5); 8.005 (6.6); 7.497 (0.4); 7.489 (2.0); 7.483 (1.0); 7.464 (4.1); 7.463 (3.8); 7.443 (1.5); 7.437 (3.6); 7.429 (0.8); 7.333 (1.0); 7.329 (2.0); 7.326 (1.3); 7.310 (0.9); 7.305 (2.6); 7.299 (0.9); 7.284 (0.8); 7.280 (1.3); 7.276 (0.9); 7.273 (0.5); 7.271 (0.6); 7.270 (0.7); 7.262 (34.2); 7.252 (0.7); 7.247 (0.5); 7.244 (0.4); 7.171 (1.0); 7.167 (3.8); 7.162 (5.1); 7.155 (1.4); 7.141 (2.2); 7.138 (3.8); 7.134 (3.5); 7.125 (0.6); 7.039 (8.7); 5.629 (16.0); 5.302 (5.5); 1.583 (4.9); 1.253 (0.5); 0.011 (0.8); 0.008 (0.4); 0.000 (25.6); -0.009 (0.7); -0.011 (1.1)
Example VII.06: ¾-NMR (400.1 MHz, de-DMSO):
|δ= 8.530 (8.6); 8.461 (5.5); 8.440 (5.8); 8.032 (8.3); 7.526 (0.5); 7.520 (2.8); 7.515 (1.3); 7.501 (5.0); 7.499 (5.0); 7.485 (1.7); 7.480 (4.2); 7.475 (0.6); 7.344 (1.1); 7.341 (2.0); 7.339 (1.4); 7.323 (3.2); 7.307 (0.8); 7.304 (1.4); 7.302 (0.9); 7.259 (4.6); 7.256 (5.8); 7.251 (1.7); 7.239 (2.8); 7.237 (4.7); 7.235 (4.1); 7.228 (0.6); 7.200 (5.9); 7.179 (5.9); 5.878 (16.0); 3.314 (5.3); 2.897 (0.5); 2.738 (0.4); 2.517 (6.1); 2.512 (12.3); 2.508 (16.5); 2.503 (11.7); 2.499 (5.6)
Example VII.07: ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.352 (5.4); 8.344 (5.5); 8.219 (6.7); 8.016 (6.8); 7.608 (0.5); 7.518 (2.0); 7.511 (1.0); 7.493 (4.2); 7.471 (1.5); 7.465 (3.5); 7.457 (0.7); 7.357 (1.0); 7.353 (2.0); 7.350 (1.2); 7.334 (1.0); 7.329 (2.6); 7.323 (0.8);| 7.308 (0.7); 7.304 (1.2); 7.300 (0.7); 7.285 (5.7); 7.277 (5.8); 7.271 (1.1); 7.262 (77.9); 7.147 (3.9); 7.143 (5.1); 7.136 (1.4); 7.122 (2.3); 7.118 (3.9); 7.115 (3.5); 7.106 (0.6); 6.911 (0.4); 5.845 (16.0); 1.562 (52.8);| 1.253 (0.5); 0.011 (1.9); 0.000 (56.2); -0.011 (2.2)
Example VII.08 : ¾-NMR (499.9 MHz, de-DMSO)
|δ= 8.527 (8.3); 8.478 (4.7); 8.461 (4.8); 8.029 (7.7); 7.506 (4.1); 7.488 (5.8); 7.414 (1.0); 7.407 (8.4); 7.402 (2.8); 7.393 (2.2); 7.389 (6.0); 7.382 (0.7); 7.277 (4.9); 7.260 (4.8); 5.877 (16.0); 3.315 (10.4); 2.505 (3.5); 2.502 (4.8); 2.499 (3.8); 0.000 (1.7)
Example VII.09: ¾-NMR (400.1 MHz, de-DMSO):
|δ= 8.530 (8.8); 8.472 (5.7); 8.451 (5.9); 8.032 (8.6); 7.569 (0.7); 7.561 (7.5); 7.555 (2.5); 7.544 (2.7); 7.538 (9.0); 7.530 (0.9); 7.322 (1.0); 7.314 (9.1); 7.308 (2.8); 7.297 (2.4); 7.291 (7.5); 7.283 (0.7); 7.260 (6.1); 7.239 (6.1); 5.878 (16.0); 5.859 (0.3); 3.312 (7.1); 2.897 (1.1); 2.739 (0.9); 2.517 (7.1); 2.512 (14.4); 2.508 (19.4); 2.503 (13.6); 2.499 (6.3)
Example VII.10: ¾-NMR (400.1 MHz, de-DMSO):
|δ= 8.522 (7.4); 8.470 (4.9); 8.449 (5.2); 8.028 (7.2); 7.489 (2.5); 7.488 (2.5); 7.483 (2.8); 7.482 (2.8); 7.379 (1.4); 7.378 (1.4); 7.372 (1.3); 7.371 (1.3); 7.357 (1.9); 7.356 (1.9); 7.351 (1.8); 7.350 (1.8); 7.242 (5.4); 7.230 (4.5); 7.221 (5.5); 7.209 (3.4); 5.877 (13.2); 5.859 (0.5); 3.312 (6.2); 2.897 (0.4); 2.739 (0.4); 2.738 (0.4); 2.530 (0.4); 2.517 (6.2); 2.513 (12.6); 2.508 (17.3); 2.504 (12.5); 2.499 (6.3); 2.108 (16.0)
Example VII.11 : ¾-NMR (400.1 MHz, de-DMSO):
|δ= 8.530 (7.2); 8.463 (4.5); 8.442 (4.7); 8.032 (7.0); 7.474 (2.4); 7.452 (2.8); 7.406 (3.4); 7.400 (3.6); 7.240 (4.9); 7.219 (4.9); 7.172 (2.1); 7.166 (2.1); 7.151 (1.9); 7.145 (1.8); 5.877 (12.9); 3.313 (5.3); 2.897 (0.4); 2.738 (0.3); 2.517 (5.5); 2.512 (11.1); 2.508 (14.9); 2.503 (10.6); 2.499 (5.0); 2.366 (16.0) - -
Example VII.12: ¾-NMR (400.1 MHz, de-DMSO):
|δ= 8.529 (8.8); 8.461 (5.7); 8.440 (5.9); 8.031 (8.6); 7.352 (0.8); 7.345 (0.6); 7.337 (1.0); 7.329 (6.9); 7.325 (3.2); 7.320 (7.1); 7.309 (11.1); 7.307 (11.1); 7.297 (1.1); 7.285 (0.4); 7.222 (6.1); 7.201 (6.0); 5.876 (16.0);| 5.856 (0.4); 3.313 (5.9); 2.517 (6.5); 2.512 (13.1); 2.508 (17.7); 2.503 (12.4); 2.499 (5.8)
Example VII.13 : ¾-NMR (400.1 MHz, de-DMSO):
|δ= 8.524 (8.8); 8.506 (5.6); 8.485 (5.8); 8.030 (8.5); 7.562 (1.2); 7.555 (1.3); 7.550 (1.2); 7.540 (1.5); 7.535 (2.5); 7.527 (3.4); 7.513 (3.4); 7.505 (2.3); 7.491 (1.2); 7.379 (6.0); 7.358 (5.8); 7.242 (0.8); 7.238 (0.9); 7.235 (0.8); 7.231 (0.8); 7.218 (1.4); 7.215 (1.4); 7.212 (1.3); 7.199 (0.7); 7.195 (0.8); 7.192 (0.7); 7.188 (0.6); 5.887 (16.0); 3.313 (9.6); 2.530 (0.3); 2.517 (7.3); 2.512 (14.7); 2.508 (19.7); 2.503 (13.9); 2.499 (6.5)
Example VII.14: ¾-NMR (400.1 MHz, de-DMSO):
|δ= 8.525 (8.8); 8.505 (6.2); 8.484 (6.4); 8.031 (8.5); 7.472 (1.0); 7.468 (1.1); 7.460 (1.2); 7.456 (1.4); 7.452 (1.9); 7.448 (2.1); 7.441 (3.4); 7.436 (2.9); 7.425 (1.9); 7.421 (3.2); 7.416 (2.1); 7.409 (1.0); 7.404 (1.0); 7.396 (1.0); 7.390 (1.8); 7.385 (1.4); 7.378 (1.8); 7.373 (1.4); 7.370 (1.3); 7.362 (7.0); 7.358 (1.3); 7.353 (1.0); 7.341 (7.3); 7.335 (2.2); 7.320 (2.1); 7.316 (2.1); 7.301 (0.8); 7.300 (0.8); 7.297 (0.8); 5.889 (16.0);| 5.872 (0.4); 3.315 (6.3); 2.897 (0.5); 2.739 (0.4); 2.738 (0.4); 2.530 (0.4); 2.526 (0.6); 2.517 (6.0); 2.513 (12.1); 2.508 (16.7); 2.504 (12.0); 2.499 (6.0); 2.463 (0.3)
Example VII.15: ¾-NMR (400.1 MHz, de-DMSO)
|δ= 8.537 (8.8); 8.494 (6.0); 8.472 (6.3); 8.035 (8.7); 7.500 (0.6); 7.491 (2.9); 7.485 (1.0); 7.475 (3.0); 7.469 (3.0); 7.460 (1.1); 7.454 (2.8); 7.445 (0.8); 7.436 (0.4); 7.317 (6.5); 7.295 (6.5); 5.882 (16.0); 5.862 (0.5); 3.311 (8.5); 2.531 (0.3); 2.517 (7.6); 2.513 (16.0); 2.508 (22.1); 2.504 (16.3); 2.499 (8.3); 2.463 (0.5); 2.459 (0.4)
Example VII.16: ¾-NMR (300.2 MHz, CDC13):
|δ= 8.222 (8.9); 8.194 (4.8); 8.020 (2.0); 8.004 (5.5); 7.608 (0.4); 7.520 (3.5); 7.512 (3.9); 7.358 (2.0); 7.350 (1.8); 7.329 (2.9); 7.321 (2.8); 7.279 (0.4); 7.277 (0.4); 7.276 (0.4); 7.273 (0.7); 7.262 (62.1); 7.250 (1.2); 7.247 (0.9); 7.246 (0.8); 7.244 (0.8); 7.240 (0.6); 7.234 (0.5); 7.228 (0.4); 7.200 (4.7); 7.171 (3.2); 7.054 (4.8); 7.025 (4.7); 6.911 (0.4); 5.710 (12.5); 2.959 (16.0); 2.886 (13.8); 2.885 (13.5); 1.570 (15.1); 1.252 (0.4); 0.011 (1.8); 0.009 (1.1); 0.000 (49.7); -0.010 (1.4); -0.011 (1.9); -0.018 (0.4)
Example VII.17: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.231 (3.3); 8.222 (2.9); 8.194 (2.8); 8.091 (0.4); 8.082 (3.2); 8.075 (1.2); 8.059 (1.1); 8.053 (3.4); 8.044 (0.6); 8.019 (0.4); 8.008 (3.3); 7.299 (0.5); 7.290 (3.4); 7.283 (1.2); 7.278 (0.4); 7.276 (0.4); 7.275 (0.5); 7.273 (0.6); 7.263 (33.8); 7.252 (1.0); 7.031 (2.8); 7.002 (2.8); 5.719 (7.4); 2.959 (1.3); 2.887 (1.1); 2.885 (1.1); 2.641 (16.0); 2.562 (0.3); 2.048 (0.9); 1.567 (8.5); 1.261 (0.6); 0.011 (0.8); 0.007 (0.5); 0.000 (25.4); 0.009 (0.8); -0.011 (1.1)
Example VII.18: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.450 (5.1); 8.422 (5.4); 8.193 (7.8); 8.019 (7.8); 7.608 (0.5); 7.429 (0.8); 7.418 (6.5); 7.411 (2.4); 7.396 (2.6); 7.389 (8.3); 7.378 (1.2); 7.330 (0.4); 7.300 (0.5); 7.262 (77.9); 7.230 (0.3); 7.152 (1.1); 7.141 (7.6); 7.134 (2.5); 7.119 (2.3); 7.112 (6.4); 7.101 (0.6); 6.955 (4.7); 6.927 (4.6); 6.911 (0.6); 5.568 (16.0); 5.302 (0.9); 1.554 (49.9); 1.340 (0.4); 1.252 (1.1); 0.881 (0.3); 0.195 (0.5); 0.081 (0.9); 0.069 (25.4); 0.057 (1.3); 0.026 (0.3); 0.011 (2.9); 0.000 (87.8); -0.011 (4.3); -0.031 (0.6); -0.200 (0.4)
Example VII.19: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.221 (3.0); 8.196 (2.4); 8.167 (2.5); 8.001 (3.0); 7.264 (6.6); 7.157 (1.8); 7.127 (2.3); 7.031 (1.8); 7.022 (2.1); 6.965 (2.6); 6.937 (2.4); 6.897 (1.4); 6.887 (1.2); 6.867 (1.1); 6.857 (1.0); 5.716 (6.8); 5.301 (16.0); 3.841 (13.1); 3.827 (0.7); 3.818 (0.5); 3.808 (1.2); 1.610 (5.6); 0.070 (0.4); 0.000 (6.8)
Example VII.20: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.233 (10.0); 8.205 (3.0); 8.201 (5.1); 8.005 (7.2); 7.865 (6.9); 7.857 (3.0); 7.841 (5.6); 7.834 (6.7); 7.309 (5.6); 7.278 (5.7); 7.266 (5.9); 7.053 (5.2); 7.025 (4.9); 5.718 (16.0); 5.305 (6.6); 5.301 (12.5); 1.662 (6.4); 1.258 (0.5); 0.003 (3.1); 0.000 (5.5)
Example VII.21 : ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.572 (6.1); 8.248 (6.8); 8.034 (7.0); 7.931 (0.6); 7.920 (5.9); 7.914 (2.2); 7.897 (2.0); 7.890 (6.7); 7.452 (6.4); 7.332 (4.0); 7.300 (30.7); 5.503 (16.0); 5.340 (5.5); 1.593 (10.7); 1.308 (0.5); 1.295 (0.6); 0.109 (7.2); 0.050 (1.3); 0.039 (35.7); 0.029 (1.7)
Example VII.22: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.266 (6.8); 8.246 (4.8); 8.217 (4.9); 8.044 (6.7); 7.660 (3.3); 7.631 (4.0); 7.327 (4.6); 7.300 (44.3); 7.039 (5.0); 7.010 (4.7); 6.923 (1.7); 6.735 (3.4); 6.547 (1.7); 5.753 (16.0); 5.339 (0.4); 1.591 (21.4); 1.352 (0.4); 1.293 (1.1); 0.108 (3.0); 0.050 (1.5); 0.039 (42.6); 0.028 (1.5) - -
Example VII.23 : ¾-NMR (499.9 MHz, de-DMSO):
|δ= 8.946 (1.3); 8.897 (1.3); 8.756 (9.9); 8.532 (8.7); 8.416 (1.2); 8.027 (8.2); 8.015 (0.3); 7.597 (0.7); 7.590 (7.0); 7.586 (2.5); 7.577 (2.7); 7.572 (8.6); 7.566 (1.2); 7.555 (0.6); 7.545 (1.1); 7.541 (0.5); 7.538 (0.4); 7.532 (0.5); 7.528 (1.2); 7.402 (1.0); 7.395 (8.5); 7.391 (2.8); 7.381 (2.5); 7.377 (7.2); 7.370 (1.9); 7.356 (0.6); 7.351 (1.1); 5.929 (16.0); 3.300 (185.7); 2.681 (3.9); 2.591 (0.4); 2.560 (0.4); 2.507 (8.9); 2.503 (18.2); 2.500 (25.1); 2.496 (18.7); 2.493 (9.8); 2.070 (0.8); 0.006 (0.3); 0.000 (7.5); -0.007 (0.5)
Example VII.24: ¾-NMR (300.2 MHz, CDC13):
|δ= 8.223 (8.6); 8.022 (8.8); 7.930 (3.9); 7.902 (4.2); 7.646 (0.6); 7.613 (0.8); 7.602 (8.5); 7.595 (2.8); 7.579 (2.8); 7.572 (9.5); 7.562 (1.1); 7.366 (0.6); 7.300 (100.9); 7.233 (0.5); 7.209 (4.3); 7.181 (4.0); 7.145 (1.0); 7.134 (9.5); 7.127 (3.0); 7.112 (2.6); 7.104 (8.2); 7.094 (0.9); 6.949 (0.5); 5.425 (16.0); 1.657 (0.6); 1.597 (38.8); 1.593 (86.1); 1.524 (0.5); 1.326 (0.4); 1.292 (0.9); 0.919 (0.3); 0.233 (0.4); 0.120 (0.7); 0.108 (20.9); 0.095 (0.7); 0.049 (3.4); 0.038 (102.6); 0.027 (3.3); -0.028 (0.4); -0.161 (0.4)
Example VII.25: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.518 (4.9); 8.490 (6.7); 8.487 (5.9); 8.459 (5.1); 8.265 (0.4); 8.237 (14.7); 8.057 (15.0); 7.646 (0.3); 7.492 (1.4); 7.481 (13.5); 7.473 (4.4); 7.458 (5.0); 7.451 (16.0); 7.440 (2.0); 7.412 (0.5); 7.300 (55.9); 7.191 (1.9); 7.180 (16.7); 7.173 (5.0); 7.158 (4.6); 7.150 (13.0); 7.140 (1.6); 7.016 (5.7); 7.010 (5.5); 6.988 (5.5); 6.982 (5.2); 6.949 (0.3); 5.619 (15.7); 5.607 (15.6); 5.571 (0.9); 2.692 (1.1); 2.046 (0.5); 1.610 (13.9); 1.306 (0.4); 1.292 (0.5); 0.119 (0.5); 0.107 (10.3); 0.095 (0.5); 0.048 (2.4); 0.047 (1.7); 0.038 (60.4); 0.030 (1.9); 0.028 (1.8); 0.027 (2.3); 0.018 (0.4)
Example VII.26: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.584 (5.9); 8.245 (6.9); 8.030 (6.9); 7.414 (6.1); 7.368 (2.9); 7.340 (4.7); 7.338 (4.5); 7.300 (12.6); 7.264 (1.1); 7.253 (9.0); 7.245 (2.4); 7.231 (1.9); 7.223 (5.0); 7.212 (0.5); 5.502 (16.0); 5.337 (9.8); 4.170 (0.7); |4.146 (0.7); 2.082 (3.1); 1.639 (5.4); 1.320 (0.9); 1.296 (1.8); 1.273 (0.8); 0.107 (1.4); 0.048 (0.4); 0.037 (12.6); 0.026 (0.5)
Example VII.27: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.578 (5.8); 8.244 (6.8); 8.031 (6.9); 7.645 (0.8); 7.634 (6.9); 7.627 (2.2); 7.612 (2.3); 7.605 (7.7); 7.594 (0.8); 7.398 (6.0); 7.300 (24.3); 7.124 (0.8); 7.113 (7.8); 7.106 (2.3); 7.091 (2.2); 7.084 (6.9); 7.073 (0.7); 5.500 (16.0); 5.339 (3.1); 1.609 (14.4); 0.108 (1.0); 0.049 (0.9); 0.038 (25.7); 0.027 (1.0)
Example VII.28: ¾-NMR (300.2 MHz, CDCI3):
|δ= 8.576 (4.9); 8.247 (5.7); 8.033 (5.9); 7.793 (3.5); 7.765 (4.0); 7.445 (5.3); 7.350 (3.8); 7.322 (3.6); 7.310 (1.1); 7.300 (32.4); 5.504 (13.7); 5.339 (13.6); 1.600 (16.0); 1.293 (0.4); 0.108 (1.3); 0.049 (1.6); 0.038 (34.7); 0.027 (1.3)
Example VII.29: ¾-NMR (300.2 MHz, de-DMSO):
|δ= 9.008 (6.8); 8.549 (9.5); 8.059 (9.2); 7.752 (8.8); 7.717 (5.0); 7.462 (5.7); 7.434 (4.6); 7.307 (1.8); 7.121 (4.2); 6.935 (2.0); 5.945 (15.0); 5.781 (0.8); 4.088 (1.2); 4.064 (3.6); 4.057 (0.6); 4.041 (3.6); 4.017 (1.2); 3.347 (22.1); 2.537 (1.9); 2.531 (4.0); 2.525 (5.5); 2.519 (4.0); 2.513 (1.9); 2.012 (16.0); 1.221 (4.4); 1.198 (8.8); 1.174 (4.3); 0.023 (3.8)
Example VII.30: ¾-NMR (300.2 MHz, de-DMSO)
|δ= 8.999 (7.1); 8.539 (10.0); 8.057 (10.0); 7.866 (7.7); 7.770 (2.8); 7.762 (2.9); 7.735 (2.7); 7.727 (2.8); 7.579 (2.1); 7.550 (4.6); 7.522 (3.5); 7.471 (2.7); 7.467 (2.7); 7.463 (2.5); 7.459 (2.2); 7.441 (1.4); 7.438 (1.6); 7.433 (1.4); 7.430 (1.3); 5.950 (16.0); 5.781 (15.8); 3.352 (4.1); 2.537 (2.1); 2.531 (4.4); 2.525 (6.0); 2.519 (4.4); 2.513 (2.1); 0.022 (7.5); 0.011 (0.4)
Example VII.31 : ¾-NMR (300.2 MHz, CDC13):|
|δ= 8.225 (8.9); 8.021 (9.1); 7.974 (4.0); 7.946 (4.2); 7.899 (1.0); 7.888 (7.9); 7.881 (2.8); 7.865 (2.9); 7.858 (8.7); 7.847 (1.1); 7.362 (5.1); 7.332 (4.6); 7.300 (30.4); 7.288 (5.0); 7.260 (4.3); 5.433 (16.0); 5.338 (10.9);| 1.606 (6.4); 1.293 (0.6); 0.108 (0.7); 0.049 (1.4); 0.038 (32.7); 0.027 (1.3)
Example VII.32: ¾-NMR (499.9 MHz, CDC13):|
|δ= 8.182 (8.2); 7.976 (8.1); 7.915 (3.9); 7.898 (4.1); 7.711 (5.5); 7.694 (6.0); 7.327 (5.7); 7.310 (5.3); 7.263 (5.1); 7.221 (4.3); 7.204 (4.1); 5.390 (16.0); 5.296 (0.4); 1.634 (0.7); 0.000 (5.5); -0.007 (0.4)
Example VII.33 : 1H-NMR (300.2 MHz, CDCI3)
|δ= 8.225 (8.1); 8.030 (8.4); 7.994 (3.9); 7.966 (4.1); 7.646 (0.5); 7.408 (4.5); 7.380 (4.1); 7.319 (0.6); 7.300 (86.9); 7.153 (0.9); 7.142 (1.8); 7.132 (8.7); 7.108 (8.5); 7.104 (2.6); 7.099 (1.7); 7.088 (0.8); 6.949 (0.4); 5.431 (16.0); 1.589 (31.8); 1.354 (0.5); 1.292 (1.3); 0.920 (0.4); 0.234 (0.4); 0.108 (12.4); 0.049 (3.3); 0.039 (93.5); 0.028 (3.2); 0.015 (0.4); -0.160 (0.3) - -
Example VII.34: 1H-NMR (499.9 MHz, CDC13):
|δ= 8.186 (4.0); 7.970 (4.1); 7.847 (1.8); 7.830 (1.9); 7.288 (3.1); 7.271 (3.8); 7.267 (1.9); 7.106 (0.6); 7.101 (4.1); 7.097 (1.4); 7.087 (1.3); 7.084 (3.4); 7.078 (0.4); 7.061 (2.0); 7.044 (2.0); 5.393 (7.4); 2.966 (0.8);| 2.952 (1.1); 2.938 (0.8); 2.924 (0.4); 1.286 (15.9); 1.272 (16.0); 1.259 (0.5); 0.000 (1.2)
Example VII.35: 1H-NMR (300.2 MHz, CDCI3):
|δ= 8.250 (6.6); 8.098 (3.8); 8.070 (4.2); 8.040 (7.3); 7.647 (0.5); 7.615 (1.0); 7.604 (8.3); 7.597 (2.6); 7.582 (3.1); 7.574 (9.1); 7.564 (1.3); 7.302 (68.9); 7.158 (3.9); 7.147 (1.4); 7.136 (10.1); 7.129 (6.3); 7.1 13 (3.0); 7.106 (8.0); 7.096 (1.0); 7.018 (2.7); 6.950 (0.5); 6.836 (5.1); 6.655 (2.6); 5.561 (16.0); 5.341 (1.5); 1.613 (15.8); 1.293 (1.5); 0.122 (0.4); 0.109 (8.8); 0.098 (0.4); 0.051 (1.4); 0.040 (42.7); 0.029 (1.6)
Example VII.36: 1H-NMR (300.2 MHz, CDCI3):
|δ= 8.819 (4.9); 8.252 (7.2); 8.056 (7.3); 7.644 (0.5); 7.586 (1.8); 7.502 (0.7); 7.491 (6.8); 7.483 (6.1); 7.468 (2.4); 7.461 (8.0); 7.450 (0.9); 7.405 (3.7); 7.298 (87.1); 7.223 (1.9); 7.193 (0.8); 7.182 (8.1); 7.174 (2.3); 7.159 (2.1); 7.152 (6.5); 7.141 (0.6); 6.947 (0.5); 5.624 (16.0); 5.338 (6.7); 1.583 (53.8); 1.291 (2.3); 0.107| (1.7); 0.048 (2.8); 0.038 (89.7); 0.027 (3.3); -0.161 (0.4)
Example VII.37: 1H-NMR (300.2 MHz, CDCI3)
|δ= 8.222 (7.7); 8.024 (8.6); 7.993 (0.4); 7.957 (3.9); 7.930 (4.2); 7.646 (0.4); 7.337 (0.3); 7.31 1 (5.7); 7.300 (83.2); 7.283 (5.0); 7.267 (2.9); 7.265 (3.4); 7.261 (3.9); 7.239 (7.6); 7.233 (7.7); 7.226 (6.4); 7.222 (3.9); 7.198 (0.6); 6.949 (0.4); 5.426 (16.0); 5.340 (1.1); 1.591 (25.1); 1.368 (0.4); 1.350 (0.5); 1.293 (1.0); 0.920 (0.4); 0.234 (0.4); 0.108 (10.6); 0.067 (0.4); 0.049 (3.6); 0.039 (88.4); 0.028 (3.1); 0.018 (0.4)
Example VII.38: 1H-NMR (300.2 MHz, d6-DMSO):|
|δ= 8.833 (10.2); 8.551 (9.6); 8.057 (9.4); 7.585 (0.8); 7.573 (7.8); 7.566 (2.5); 7.551 (3.0); 7.544 (9.5); 7.533 (1.1); 7.496 (10.9); 7.334 (1.1); 7.323 (9.8); 7.315 (2.8); 7.300 (2.7); 7.293 (7.4); 7.282 (0.8); 5.912 (16.0); 5.786 (1.3); 3.355 (1 1.4); 2.540 (3.3); 2.534 (6.8); 2.528 (9.2); 2.522 (6.6); 2.516 (3.1); 0.026 (8.5); 0.015 (0.3)
Example VII.39: 1H-NMR (300.2 MHz, CDCI3)
|δ= 8.225 (7.9); 8.021 (8.6); 7.940 (3.9); 7.912 (4.3); 7.342 (3.0); 7.312 (7.6); 7.300 (34.5); 7.284 (2.2); 7.275 (13.6); 7.266 (3.0); 7.252 (2.2); 7.244 (4.8); 7.227 (4.8); 7.198 (4.4); 5.428 (16.0); 5.339 (3.2); 2.084 (0.4); 1.608 (5.6); 1.298 (0.5); 1.292 (0.5); 0.108 (4.4); 0.049 (1.2); 0.038 (37.2); 0.027 (1.4)
Example VII.40: 1H-NMR (300.2 MHz, CDCI3)
|δ= 8.606 (8.2); 8.265 (6.7); 8.026 (7.0); 7.762 (4.0); 7.733 (4.6); 7.321 (4.4); 7.298 (5.9); 7.294 (4.1); 7.159| (8.6); 5.663 (16.0); 5.329 (10.2); 0.031 (3.8)
Example VII.41 : 1H-NMR (300.2 MHz, CDCI3):
|δ= 8.817 (5.5); 8.251 (7.2); 8.055 (7.1); 7.651 (0.8); 7.640 (6.4); 7.634 (2.7); 7.618 (2.3); 7.61 1 (7.3); 7.585 (1.8); 7.481 (5.6); 7.404 (3.9); 7.298 (49.1); 7.223 (1.9); 7.139 (0.9); 7.128 (7.1); 7.122 (2.9); 7.106 (2.2); 7.099 (6.5); 5.624 (16.0); 5.338 (4.5); 1.586 (30.9); 1.342 (0.5); 1.291 (2.2); 0.918 (0.4); 0.107 (2.0); 0.048 (2.4); 0.038 (51.2)
Example VII.42: 1H-NMR (300.2 MHz, CDCI3)
|δ= 8.223 (8.7); 8.017 (9.0); 7.947 (3.9); 7.918 (4.2); 7.637 (4.5); 7.609 (5.4); 7.332 (6.2); 7.301 (8.5); 7.234 (4.5); 7.206 (4.2); 6.915 (2.3); 6.727 (4.6); 6.539 (2.3); 5.432 (16.0); 5.334 (1.5); 3.292 (0.4); 1.741 (0.6); 0.034 (4.6)
Example IX.01 : ¾-NMR (300.2 MHz, CDCI3): δ= 8.496 (5.1); 7.450 (0.6); 7.439 (6.3); 7.432 (2.1); 7.417 (2.3); 7.409 (7.9); 7.399 (0.9); 7.300 (31.2); 7.183 (5.8); 7.151 (1.0); 7.140 (7.8); 7.133 (2.4); 7.1 18 (2.1); 7.1 10 (6.4); 7.099 (0.7); 5.340 (0.9); 3.053 (3.8); 3.037 (4.9); 2.917 (2.6); 2.901 (2.0); 1.682 (16.0); 1.582 (18.0); 1.304 (0.7); 0.921 (0.7); 0.109 (1.3); 0.050 (1.0); 0.049 (0.7); 0.047 (0.7); 0.039 (33.9); 0.029 (1.4) - -
Example IX.02: 'H-NMR (400.0 MHz, de-DMSO):
|δ= 8.630 (0.5); 8.170 (6.5); 7.467 (0.5); 7.462 (0.5); 7.450 (2.9); 7.445 (1.8); 7.431 (4.1); 7.429 (4.1); 7.415 (1.5); 7.410 (3.3); 7.404 (0.7); 7.281 (0.3); 7.263 (1.4); 7.260 (1.8); 7.258 (1.2); 7.242 (2.9); 7.236 (6.9); 7.226 (0.9); 7.223 (1.2); 7.220 (0.8); 7.191 (0.4); 7.188 (0.4); 7.173 (1.1); 7.170 (1.1); 7.155 (4.0); 7.152 (4.9); 7.147 (1.5); 7.135 (2.3); 7.133 (3.5); 7.131 (3.0); 7.124 (0.6); 7.105 (0.3); 6.428 (0.5); 3.327 (40.6); 3.251 (0.7); 3.077 (4.0); 3.022 (3.1); 3.009 (3.5); 2.996 (0.5); 2.825 (2.4); 2.812 (2.2); 2.711 (0.6); 2.622 (0.5); 2.592 (3.5); 2.562 (0.5); 2.542 (136.6); 2.525 (1.3); 2.511 (17.8); 2.507 (35.0); 2.502 (45.6); 2.498 (33.1); 2.493 (16.0); 2.472 (0.5); 2.432 (0.5); 2.429 (0.5); 2.368 (0.6); 2.329 (0.4); 1.989 (0.7); 1.642 (0.6); 1.582 (16.0); 1.258 (0.4); 1.235 (1.4); 1.135 (0.4); 1.119 (0.5); 1.106 (12.4); 0.853 (0.5); 0.836 (0.4); 0.000 (4.3)
Example IX.03 : 'H-NMR (400.0 MHz, de-DMSO):
|δ= 9.657 (0.4); 8.172 (5.6); 7.502 (0.6); 7.496 (0.7); 7.487 (4.7); 7.481 (2.0); 7.470 (1.9); 7.465 (5.5); 7.456 (0.9); 7.447 (0.4); 7.430 (0.5); 7.421 (0.3); 7.408 (0.3); 7.303 (5.5); 7.218 (0.8); 7.213 (0.9); 7.204 (5.5); 7.199 (2.2); 7.188 (1.8); 7.182 (4.7); 7.176 (1.0); 7.149 (0.4); 6.772 (0.5); 6.750 (0.5); 3.748 (0.4); 3.660 (0.6); 3.602 (0.4); 3.327 (26.5); 3.251 (0.7); 3.077 (5.1); 3.025 (2.6); 3.013 (2.9); 2.996 (0.6); 2.821 (2.2); 2.808 (1.9); 2.712 (0.5); 2.594 (1.8); 2.564 (0.3); 2.542 (118.0); 2.511 (17.7); 2.507 (35.6); 2.502 (47.3); 2.498 (35.2); 2.494 (17.7); 2.368 (0.6); 2.329 (0.4); 1.989 (0.7); 1.760 (0.5); 1.622 (0.4); 1.581 (14.0); 1.298 (0.5); 1.259 (0.9); 1.235 (2.8); 1.193 (0.4); 1.183 (1.1); 1.169 (0.5); 1.135 (0.5); 1.119 (0.6); 1.106 (16.0);| 1.082 (0.4); 1.046 (0.6); 0.867 (0.4); 0.854 (0.9); 0.836 (0.7); 0.813 (0.3); 0.000 (3.9)
Example IX.04: ¾-NMR (400.0 MHz, de-DMSO):|
|δ= 9.319 (0.3); 7.931 (3.5); 7.910 (3.6); 7.489 (0.4); 7.473 (2.5); 7.453 (4.3); 7.434 (3.4); 7.421 (0.9); 7.401 (0.6); 7.285 (1.6); 7.266 (2.5); 7.248 (1.3); 7.234 (0.6); 7.216 (0.8); 7.197 (0.7); 7.179 (4.3); 7.160 (3.8); 7.134 (0.8); 7.120 (0.4); 7.013 (3.7); 6.993 (3.6); 6.389 (0.3); 3.744 (0.4); 3.628 (1.6); 3.601 (0.5); 3.329 (35.2); 3.251 (0.6); 3.077 (1.6); 3.040 (2.9); 3.027 (3.3); 2.996 (0.4); 2.818 (2.6); 2.805 (2.4); 2.712 (1.2); 2.569 (1.9); 2.542 (199.7); 2.521 (2.1); 2.507 (30.0); 2.503 (40.3); 2.498 (31.6); 2.459 (1.8); 2.368 (1.3); 2.330 (0.4); 1.989 (0.6); 1.769 (0.3); 1.760 (0.7); 1.751 (0.3); 1.630 (0.3); 1.585 (0.3); 1.565 (16.0); 1.259 (0.4); 1.235 (1.1); 1.183 (0.3); 1.135 (0.4); 1.119 (0.4); 1.106 (5.1); 0.854 (0.4); 0.000 (3.4)
Example IX.05: 1H-NMR (300.2 MHz, d6-DMSO):
|δ= 8.216 (1.9); 8.188 (3.6); 8.163 (2.2); 8.115 (6.9); 8.086 (7.4); 7.721 (6.3); 7.707 (14.0); 7.678 (16.0); 7.450 (4.5); 7.417 (10.0); 7.403 (13.1); 7.389 (14.5); 7.374 (10.6); 7.362 (6.3); 7.289 (6.2); 7.103 (13.2); 6.917 (6.4); 3.358 (15.3); 3.070 (8.3); 3.054 (10.1); 2.921 (7.8); 2.905 (6.5); 2.540 (5.5); 2.534 (10.8); 2.528 (14.3); 2.522 (10.3); 1.616 (4.3); 1.592 (0.3); 1.556 (0.6); 1.399 (0.8); 1.381 (1.7); 1.371 (1.9); 1.354 (3.0); 1.337 (1.9); 1.329 (1.8); 1.311 (0.9); 1.269 (0.3); 1.218 (0.5); 1.165 (0.3); 1.140 (0.4); 1.133 (0.3); 1.125 (0.4); 1.110 (0.4); 0.519 (0.8); 0.512 (0.7); 0.500 (2.0); 0.482 (7.8); 0.468 (3.4); 0.455 (8.7); 0.449 (6.0); 0.441 (5.0); 0.427 (3.2); 0.422 (3.2); 0.410 (3.6); 0.404 (2.9); 0.392 (3.1); 0.361 (1.0); 0.356 (1.4); 0.348 (3.1); 0.331 (3.9); 0.322 (1.9); 0.309 (2.6); 0.301 (1.5); 0.293 (1.0); 0.034 (0.8); 0.024 (15.2); 0.013 (0.7)
Example IX.06: 1H-NMR (300.2 MHz, CDC13):|
|δ= 7.441 (0.4); 7.418 (0.4); 7.411 (0.7); 7.389 (0.3); 7.371 (0.5); 7.360 (4.9); 7.353 (1.8); 7.343 (0.9); 7.338
(2.0) ; 7.330 (6.3); 7.320 (0.9); 7.313 (0.9); 7.300 (5.3); 7.202 (0.3); 7.193 (0.6); 7.181 (0.4); 7.172 (0.4);| 7.163 (0.7); 7.143 (0.4); 7.135 (0.3); 7.124 (0.7); 7.114 (6.5); 7.106 (2.0); 7.091 (1.9); 7.084 (6.9); 7.071
(1.1) ; 7.064 (0.5); 7.054 (3.0); 7.042 (0.6); 5.883 (2.6); 5.851 (2.5); 4.844 (2.7); 4.809 (3.0); 4.633 (0.4); |4.198 (0.5); 4.192 (1.5); 4.186 (1.6); 4.181 (0.6); 4.162 (0.5); 4.157 (1.3); 4.151 (1.4); 4.145 (0.6); 3.827 (0.7); 3.536 (1.9); 3.171 (0.4); 2.892 (0.4); 2.654 (0.6); 2.616 (0.9); 2.614 (0.9); 2.533 (0.5); 2.081 (16.0); 1.985 (2.4); 1.725 (1.1); 1.676 (0.6); 1.596 (4.3); 1.550 (0.7); 1.263 (0.3); 0.041 (5.3)
Example IX.07: 1H-NMR (300.2 MHz, d6-DMSO):
|δ= 8.092 (6.0); 8.064 (6.4); 7.891 (0.4); 7.864 (0.4); 7.565 (1.5); 7.554 (12.8); 7.546 (5.0); 7.531 (5.1); 7.524 (16.0); 7.515 (2.3); 7.380 (6.8); 7.352 (6.4); 7.322 (2.3); 7.311 (16.0); 7.304 (4.8); 7.289 (5.7); 7.282 (12.3); 7.270 (1.4); 7.258 (1.0); 4.810 (0.5); 4.651 (0.6); 4.252 (0.7); 4.234 (0.6); 3.480 (0.5); 3.462 (0.5); 3.354 (13.8); 3.065 (7.0); 3.049 (8.4); 2.910 (6.7); 2.894 (5.6); 2.534 (9.4); 2.528 (12.6); 2.522 (9.1); 2.387 (0.4); 2.364 (0.5); 1.389 (0.6); 1.372 (1.3); 1.362 (1.5); 1.345 (2.5); 1.328 (1.5); 1.320 (1.6); 1.302 (0.8); 1.262 (0.4); 0.515 (0.6); 0.495 (1.8); 0.477 (6.5); 0.465 (3.0); 0.449 (7.1); 0.436 (3.0); 0.433 (3.1); 0.420 (2.6); 0.415 (2.4); 0.408 (1.7); 0.401 (3.0); 0.383 (2.6); 0.350 (1.0); 0.341 (2.6); 0.324 (3.3); 0.303 (2.4); 0.294 (1.1); 0.036 (0.6); 0.025 (12.4); 0.014 (0.5) - -
Example IX.08: 1H-NMR (300.2 MHz, d6-DMSO): δ= 8.193 (1.0); 8.165 (1.8); 8.140 (1.1); 8.092 (4.6); 8.064 (5.0); 7.696 (2.7); 7.689 (1.5); 7.678 (14.8); 7.671
(6.6) ; 7.656 (5.0); 7.648 (16.0); 7.637 (1.6); 7.414 (2.1); 7.383 (5.9); 7.354 (4.9); 7.262 (1.2); 7.251 (12.5); 7.243 (5.4); 7.241 (6.4); 7.233 (2.4); 7.228 (3.6); 7.221 (10.6); 7.211 (5.4); 7.200 (0.5); 3.357 (7.1); 3.064 (5.3); 3.048 (6.5); 2.910 (5.0); 2.894 (4.4); 2.540 (2.4); 2.534 (5.1); 2.528 (6.8); 2.522 (4.9); 2.516 (2.3); 2.014 (0.5); 1.604 (0.3); 1.591 (3.0); 1.391 (0.4); 1.372 (1.0); 1.361 (1.3); 1.344 (2.0); 1.328 (1.4); 1.320 (1.3); 1.302 (0.9); 1.268 (2.7); 0.902 (0.8); 0.880 (2.5); 0.857 (0.9); 0.513 (0.4); 0.493 (1.1); 0.475 (4.9); 0.462 (2.2); 0.448 (5.5); 0.434 (2.8); 0.420 (2.0); 0.415 (2.0); 0.401 (2.3); 0.384 (2.0); 0.349 (0.8); 0.341
(2.0); 0.324 (2.6); 0.311 (1.0); 0.302 (1.8); 0.294 (1.0); 0.286 (0.7); 0.022 (7.4)
Example IX.10: 1H-NMR (300.2 MHz, CDC13): δ= 8.255 (6.0); 7.429 (0.6); 7.418 (5.2); 7.410 (1.8); 7.395 (2.0); 7.388 (6.2); 7.377 (0.8); 7.300 (3.4); 7.128 (0.8); 7.117 (6.4); 7.109 (2.1); 7.094 (1.8); 7.087 (5.1); 7.076 (0.6); 6.970 (6.5); 5.337 (1.2); 3.029 (3.3);
3.012 (3.9); 2.841 (2.6); 2.839 (2.5); 2.824 (2.2); 2.822 (2.1); 1.696 (16.0); 1.612 (2.2); 0.039 (3.5)
Example IX. l l : 1H-NMR (300.2 MHz, d6-DMSO): δ= 9.802 (0.3); 8.242 (1.1); 8.215 (2.0); 8.189 (1.2); 8.140 (7.8); 8.111 (8.5); 7.960 (0.3); 7.875 (13.8); 7.847
(16.0) ; 7.813 (0.5); 7.754 (2.7); 7.729 (2.5); 7.502 (3.6); 7.489 (12.2); 7.472 (14.1); 7.461 (11.1); 7.444
(10.1) ; 7.015 (0.5); 6.986 (0.4); 3.355 (20.6); 3.075 (9.2); 3.059 (11.3); 3.035 (0.5); 3.027 (0.8); 3.010 (0.7); 2.925 (8.6); 2.908 (7.3); 2.879 (0.5); 2.540 (6.0); 2.534 (12.8); 2.528 (17.5); 2.522 (12.6); 2.516 (5.9); 1.898 (0.3); 1.605 (1.2); 1.591 (10.7); 1.543 (1.0); 1.474 (0.3); 1.405 (0.7); 1.378 (2.1); 1.358 (3.4); 1.342 (2.2); 1.333 (2.1); 1.315 (1.2); 1.269 (2.5); 0.903 (0.7); 0.881 (2.3); 0.858 (0.9); 0.503 (1.7); 0.485 (9.0); 0.472
(3.7) ; 0.458 (10.9); 0.448 (5.1); 0.430 (4.0); 0.417 (4.5); 0.397 (3.3); 0.385 (1.2); 0.354 (3.6); 0.345 (2.1); 0.336 (4.0); 0.324 (1.9); 0.315 (2.5); 0.307 (2.2); 0.298 (1.4); 0.277 (0.6); 0.034 (0.5); 0.023 (18.0); 0.012 (0.8)
Use Examples
Example A: in vivo preventive test on Botrytis cinema (grey mould) Solvent: 5% by volume of Dimethyl sulfoxide (DMSO)
10% by volume of Acetone Emulsifier: 1 μΐ of Tween® 80 per mg of active ingredient
The active ingredients are made soluble and homogenized in a mixture of Dimethyl sulfoxide/Acetone/ /Tween® 80 and then diluted in water to the desired concentration. The young plants of gherkin are treated by spraying the active ingredient prepared as described above. Control plants are treated only with an aqueous solution of Acetone/Dimethyl sulfoxide/ Tween® 80.
After 24 hours, the plants are contaminated by spraying the leaves with an aqueous suspension of Botrytis cinerea spores. The contaminated gherkin plants are incubated for 4 to 5 days at 17°C and at 90% relative humidity. The test is evaluated 4 to 5 days after the inoculation. 0% means an efficacy which corresponds to that of the control plants while an efficacy of 100% means that no disease is observed. - -
In this test the following compounds according to the invention showed efficacy between 70% and 79%> at a concentration of 500 ppm of active ingredient: 1.25; 1.58; 1.82; VII.38
In this test the following compounds according to the invention showed efficacy between 80%o and 89%o at a concentration of 500 ppm of active ingredient: 1.19; 1.31; 1.37; 1.43; 1.47; 1.57; 1.67; 1.71; VII.09 In this test the following compounds according to the invention showed efficacy between 90%o and 100%o at a concentration of 500 ppm of active ingredient: 1.01; 1.03; 1.05; 1.07; 1.08; 1.09; 1.12; 1.13; 1.14; 1.15; 1.16; 1.17; 1.21; 1.29; 1.32; 1.34; 1.38; 1.39; 1.40; 1.42; 1.45; 1.48; 1.49; 1.50; 1.51; 1.53; 1.55; 1.56; 1.59; 1.61; 1.62; 1.65; 1.68; 1.75; 1.78; 1.79; 1.86; 1.88; 1.91; 1.92; 1.93; 1.96; VII.01; VII.06; VII.08; VII. l l; VII.34; VII.40; VII.41
Example B: in vivo preventive test on Puccinia recondita (brown rust on wheat)
Solvent: 5%> by volume of Dimethyl sulfoxide
10%> by volume of Acetone Emulsifier: 1 μΐ of Tween® 80 per mg of active ingredient
The active ingredients are made soluble and homogenized in a mixture of Dimethyl sulfoxide/Acetone/ /Tween® 80 and then diluted in water to the desired concentration. The young plants of wheat are treated by spraying the active ingredient prepared as described above. Control plants are treated only with an aqueous solution of Acetone/Dimethyl sulfoxide/ Tween® 80.
After 24 hours, the plants are contaminated by spraying the leaves with an aqueous suspension of Puccinia recondita spores. The contaminated wheat plants are incubated for 24 hours at 20°C and at 100% relative humidity and then for 10 days at 20°C and at 70-80% relative humidity. The test is evaluated 11 days after the inoculation. 0% means an efficacy which corresponds to that of the control plants while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 70%o and 79%o at a concentration of 500 ppm of active ingredient: 1.07; 1.23; 1.27; 1.31; 1.42; 1.72; VII.03; VII. l l; VII.15; VII.16; VII.19; VII.25 In this test the following compounds according to the invention showed efficacy between 80%o and 89%o at a concentration of 500 ppm of active ingredient: 1.09; 1.11; 1.16; 1.17; 1.20; 1.21; 1.29; 1.41; 1.46; 1.52; 1.54; 1.58; 1.75; 1.83; 1.89; 1.90; VII.04; VII.06; VII.13; VII.26; VII.30; VII.37
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingredient: 1.01; 1.02; 1.03; 1.04; 1.05; 1.08; 1.12; 1.13; 1.14; 1.15; 1.25; 1.28; 1.32; 1.33; 1.34; 1.35; 1.36; 1.37; 1.38; 1.39; 1.40; 1.43; 1.44; 1.45; 1.47; 1.48; 1.49; 1.50; 1.51; 1.53; 1.55; 1.56; 1.57; 1.59; 1.60; 1.61; 1.62; 1.63; 1.64; 1.65; 1.66; 1.67; 1.68; 1.71; 1.74; 1.76; 1.78; 1.79; 1.80; 1.81; 1.82; 1.85; 1.86; 1.87; - -
1.88; 1.91; 1.92; 1.93; 1.95; 1.96; 1.97; 1.98; VII.Ol; VII.02; VII.05; VII.08; VII.09; VII.12; VII.20; VII.21; VII.22; VII.24; VII.27; VII.28; VII.29; VII.31; VII.32; VII.33; VII.36; VII.38; VII.39; VII.40; VII.41; VII.42
Example C: in vivo preventive test on Septoria tritici (leaf spot on wheat)
Solvent: 5% by volume of Dimethyl sulfoxide 10% by volume of Acetone
Emulsifier: 1 μΐ of Tween® 80 per mg of active ingredient
The active ingredients are made soluble and homogenized in a mixture of Dimethyl sulfoxide/Acetone/ /Tween® 80 and then diluted in water to the desired concentration.
The young plants of wheat are treated by spraying the active ingredient prepared as described above. Control plants are treated only with an aqueous solution of Acetone/Dimethyl sulfoxide/ Tween® 80.
After 24 hours, the plants are contaminated by spraying the leaves with an aqueous suspension of Septoria tritici spores. The contaminated wheat plants are incubated for 72 hours at 18°C and at 100% relative humidity and then for 21 days at 20°C and at 90% relative humidity.
The test is evaluated 24 days after the inoculation. 0% means an efficacy which corresponds to that of the control plants while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 70%o and 79%o at a concentration of 500 ppm of active ingredient: 1.22
In this test the following compounds according to the invention showed efficacy between 80%o and 89%o at a concentration of 500 ppm of active ingredient: 1.02; 1.16; 1.36; 1.57; 1.75; 1.78; VII.Ol; VII.23; VII.26; VII.34 In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingredient: 1.01; 1.03; 1.05; 1.06; 1.07; 1.08; 1.09; 1.11; 1.12; 1.13; 1.14; 1.15;
1.17; 1.18; 1.19; 1.20; 1.21; 1.23; 1.25; 1.26; 1.27; 1.28; 1.29; 1.31; 1.32; 1.33; 1.34; 1.35; 1.37; 1.38; 1.39; 1.40; 1.41;
1.42; 1.43; 1.44; 1.45; 1.46; 1.47; 1.48; 1.49; 1.50; 1.51; 1.52; 1.53; 1.54; 1.55; 1.56; 1.58; 1.59; 1.60; 1.61; 1.62; 1.63;
1.64; 1.65; 1.66; 1.67; 1.68; 1.70; 1.71; 1.72; 1.74; 1.76; 1.79; 1.80; 1.81; 1.82; 1.83; 1.85; 1.86; 1.87; 1.88; 1.89; 1.90; 1.91; 1.92; 1.93; 1.94; 1.95; 1.96; 1.97; 1.98; VII.03; VII.04; VII.05; VII.06; VII.08; VII.09; VII.10; mi l; VII.12;
VII.13; VII.14; VII.15; VII.16; VII.18; VII.19; VII.20; VII.22; VII.24; VII.25; VII.27; VII.28; VII.29; VII.30;
VII.31; VII.32; VII.33; VII.36; VII.37; VII.38; VII.39; VII.40; VII.41; VII.42
Example D: in vivo preventive test on Sphaerotheca fuliginea (powdery mildew on cucurbits)
Solvent: 5%> by volume of Dimethyl sulfoxide 10%> by volume of Acetone - -
Emulsifier: of Tween 80 per mg of active ingredient
The active ingredients are made soluble and homogenized in a mixture of Dimethyl sulfoxide/Acetone/ /Tween® 80 and then diluted in water to the desired concentration.
The young plants of gherkin are treated by spraying the active ingredient prepared as described above. Control plants are treated only with an aqueous solution of Acetone/Dimethyl sulfoxide/ Tween® 80.
After 24 hours, the plants are contaminated by spraying the leaves with an aqueous suspension of Sphaerotheca fuliginea spores. The contaminated gherkin plants are incubated for 72 hours at 18°C and at 100% relative humidity and then for 12 days at 20°C and at 70-80% relative humidity.
The test is evaluated 15 days after the inoculation. 0% means an efficacy which corresponds to that of the control plants while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 80%o and 89%o at a concentration of 500 ppm of active ingredient: 1.30
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingredient: 1.01; 1.02; 1.03; 1.04; 1.05; 1.06; 1.07; 1.08; 1.09; 1.11; 1.12; 1.13; 1.14; 1.15; 1.16; 1.17; 1.18; 1.19; 1.20; 1.21; 1.23; 1.24; 1.25; 1.26; 1.27; 1.28; 1.29; 1.31; 1.32; 1.33; 1.34; 1.35; 1.36;
1.37; 1.38; 1.39; 1.40; 1.41; 1.42; 1.43; 1.44; 1.45; 1.46; 1.47; 1.48; 1.49; 1.50; 1.51; 1.52; 1.53; 1.54; 1.55; 1.56; 1.57;
1.58; 1.59; 1.60; 1.61; 1.62; 1.63; 1.64; 1.65; 1.66; 1.67; 1.68; 1.70; 1.71; 1.72; 1.74; 1.75; 1.76; 1.78; 1.79; 1.80; 1.81;
1.82; 1.83; 1.86; 1.87; 1.88; 1.90; 1.91; 1.92; 1.93; 1.94; 1.95; 1.96; 1.97; 1.98; VII.01; VII.02; VII.03; VII.04; VII.05;
VII.06; VII.08; VII.09; VII.l l; VII.12; VII.14; VII.15; VII.16; VII.18; VII.20; VII.21; VII.22; VII.24; VII.25; VII.26; VII.27; VII.28; VII.29; VII.30; VII.31; VII.32; VII.34; VII.36; VII.37; VII.38; VII.39; VII.40; VII.41;
VII.42
Example E: in vivo preventive test on Uromyces appendiculatus (bean rust)
Solvent: by volume of Dimethyl sulfoxide
10%> by volume of Acetone
Emulsifier: 1 μΐ of Tween 80 per mg of active ingredient
The active ingredients are made soluble and homogenized in a mixture of Dimethyl sulfoxide/Acetone/ /Tween® 80 and then diluted in water to the desired concentration.
The young plants of bean are treated by spraying the active ingredient prepared as described above. Control plants are treated only with an aqueous solution of Acetone/Dimethyl sulfoxide/ Tween® 80. - -
After 24 hours, the plants are contaminated by spraying the leaves with an aqueous suspension of Uromyces appendiculatus spores. The contaminated bean plants are incubated for 24 hours at 20°C and at 100% relative humidity and then for 10 days at 20°C and at 70-80% relative humidity.
The test is evaluated 11 days after the inoculation. 0% means an efficacy which corresponds to that of the control plants while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 70%o and 79%> at a concentration of 500 ppm of active ingredient: 1.06; 1.15; 1.20; 1.52; 1.85; VII.38
In this test the following compounds according to the invention showed efficacy between 80%o and 89%o at a concentration of 500 ppm of active ingredient: 1.13; 1.27; 1.33; 1.67; 1.89; VII.02; VII.07; VII.12; VII.25 In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingredient: 1.01; 1.02; 1.03; 1.04; 1.05; 1.07; 1.08; 1.09; 1.11; 1.12; 1.14; 1.16;
1.17; 1.21; 1.25; 1.28; 1.29; 1.32; 1.34; 1.35; 1.36; 1.37; 1.38; 1.39; 1.40; 1.41; 1.42; 1.43; 1.44; 1.45; 1.47; 1.48; 1.49;
1.50; 1.51; 1.53; 1.54; 1.55; 1.56; 1.57; 1.58; 1.59; 1.60; 1.61; 1.62; 1.63; 1.64; 1.65; 1.66; 1.68; 1.71; 1.72; 1.75; 1.76;
1.78; 1.79; 1.80; 1.81; 1.82; 1.86; 1.87; 1.88; 1.90; 1.91; 1.92; 1.93; 1.94; 1.95; 1.96; 1.98; VII.01; VII.03; VII.05; VII.06; VII.08; VII.09; VII.l 1; VII.20; VII.21; VII.22; VII.24; VII.26; VII.27; VII.28; VII.29; VII.30; VII.31;
VII.32; VII.33; VII.34; VII.36; VII.37; VII.39; VII.40; VII.41; VII.42
Example F: in vivo preventive test on Alternaria test (tomatoes)
Solvent: 24.5 parts by weight of acetone
24.5 parts by weight of dimethylacetamide Emulsifier: 1 part by weight of alkylaryl polyglycol ether
To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of Alternaria solani. The plants are then placed in an incubation cabinet at approximately 20°C and a relative atmospheric humidity of 100%.
The test is evaluated 3 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 70%o and 79%o at a concentration of 100 ppm of active ingredient: 1.63; VII.32 - -
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 100 ppm of active ingredient: 1.03; 1.25; 1.60; 1.62; 1.71; 1.75; 1.96; VII.01; VII.09; VII.40
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 100 ppm of active ingredient: 1.01; 1.02; 1.05; 1.08; 1.09; 1.14; 1.16; 1.29; 1.35; 1.36; 1.37; 1.38; 1.39; 1.40; 1.42; 1.45; 1.47; 1.48; 1.49; 1.50; 1.51; 1.53; 1.55; 1.56; 1.58; 1.59; 1.61; 1.74; 1.78; 1.88; VII.24
Example G: in vivo preventive test on Phakopsora test (soybeans)
Solvent: parts by weight of acetone parts by weight of dimethylacetamide
Emulsifier: 1 part by weight of alkylaryl poly glycol ether To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of the causal agent of soybean rust (Phakopsora pachyrhizi) and stay for 24h without light in an incubation cabinet at approximately 24°C and a relative atmospheric humidity of 95 %.
The plants remain in the incubation cabinet at approximately 24°C and a relative atmospheric humidity of approximately 80 % and a day / night interval of 12h.
The test is evaluated 7 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed. In this test the following compounds according to the invention showed efficacy between 70%o and 79%o at a concentration of 100 ppm of active ingredient: 1.35; 1.75; VII.09
In this test the following compounds according to the invention showed efficacy between 80%o and 89%o at a concentration of 100 ppm of active ingredient: 1.40; VII.01; VII.27
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 100 ppm of active ingredient: 1.01; 1.02; 1.03; 1.05; 1.08; 1.09; 1.14; 1.16; 1.25; 1.36; 1.37; 1.39; 1.42; 1.45; 1.47; 1.48; 1.49; 1.50; 1.51; 1.53; 1.55; 1.56; 1.58; 1.59; 1.60; 1.61; 1.62; 1.63; 1.65; 1.71; 1.74; 1.78; 1.79; 1.88; 1.91; 1.96; VII.28; VII.32
Example H: in vivo preventive test on Venturia test (apples)
Solvent: 24.5 parts by weight of acetone
24.5 parts by weight of dimethylacetamide - -
Emulsifier: 1 part by weight of alkylaryl poly glycol ether
To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous conidia suspension of the causal agent of apple scab (Venturia inaequalis) and then remain for 1 day in an incubation cabinet at approximately 20°C and a relative atmospheric humidity of 100%.
The plants are then placed in a greenhouse at approximately 21°C and a relative atmospheric humidity of approximately 90%. The test is evaluated 10 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 80%> and 89%o at a concentration of 100 ppm of active ingredient: 1.37; 1.39; 1.40; 1.50; 1.51; 1.58; 1.60; VII.28
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 100 ppm of active ingredient: 1.01; 1.02; 1.03; 1.05; 1.08; 1.09; 1.14; 1.16; 1.25; 1.29; 1.34; 1.35; 1.36; 1.38; 1.42; 1.45; 1.47; 1.48; 1.49; 1.53; 1.55; 1.56; 1.59; 1.61; 1.62; 1.63; 1.65; 1.71; 1.74; 1.75; 1.78; 1.79; 1.88; 1.91; 1.96; VII.01; VII.09; VII.24; VII.27; VII.32; VII.40
Example I: in vivo preventive Blumeria test (barley)
Solvent: 49 parts by weight of N,N-dimethylacetamide Emulsifier: 1 part by weight of alkylaryl poly glycol ether
To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
To test for preventive activity, young plants are sprayed with the preparation of active compound or active compound combination at the stated rate of application.
After the spray coating has been dried, the plants are dusted with spores of Blumeria graminis f.sp. hordei.
The plants are placed in the greenhouse at a temperature of approximately 18°C and a relative atmospheric humidity of approximately 80%o to promote the development of mildew pustules.
The test is evaluated 7 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100%o means that no disease is observed. _ .
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 500 ppm of active ingredient: 1.33; VII.20; VII.31
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingredient: 1.01; 1.02; 1.05; 1.08; 1.09; 1.14; 1.17; 1.25; 1.27; 1.34; 1.35; 1.36; 1.37; 1.38; 1.39; 1.40; 1.42; 1.43; 1.44; 1.45; 1.46; 1.47; 1.48; 1.49; 1.50; 1.53; 1.55; 1.56; 1.58; 1.59; 1.60; 1.61; 1.62; 1.63; 1.65; 1.66; 1.78; 1.79; 1.90; 1.91; 1.94; 1.95; VII.01; VII.08; VII.09; VII.12; VII.22; VII.24; VII.25; VII.27; VII.28; VII.29; VII.32; VII.36; VII.37; VII.39; VII.40; VII.41; VII.42
Example J: in vivo preventive Leptosphaeria nodorum test (wheat)
Solvent: 49 parts by weight of N,N-dimethylacetamide Emulsifier: 1 part by weight of alkylaryl poly glycol ether
To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
To test for preventive activity, young plants are sprayed with the preparation of active compound or active compound combination at the stated rate of application.
After the spray coating has been dried, the plants are sprayed with a spore suspension of Leptosphaeria nodorum. The plants remain for 48 hours in an incubation cabinet at approximately 20°C and a relative atmospheric humidity of approximately 100%.
The plants are placed in the greenhouse at a temperature of approximately 25°C and a relative atmospheric humidity of approximately 80%.
The test is evaluated 8 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 70%o and 79%o at a concentration of 500 ppm of active ingredient: 1.09; 1.12; 1.14; 1.27; 1.37; 1.39; 1.43; 1.58; 1.60 In this test the following compounds according to the invention showed efficacy between 80%o and 89%o at a concentration of 500 ppm of active ingredient: 1.03; 1.05; 1.25; 1.33; 1.35; VII.04; VII.29
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingredient: 1.01; 1.02; 1.08; 1.36; 1.40; 1.45; 1.47; 1.48; 1.49; 1.50; 1.55; 1.56; 1.59; 1.61; VII.01; VII.09; VII.24; VII.27; VII.28; VII.32; VII.41 - -
Example K: in vivo preventive Puccinia triticina test (wheat)
Solvent: 49 parts by weight of N,N-dimethylacetamide
Emulsifier: 1 part by weight of alkylaryl poly glycol ether
To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
To test for preventive activity, young plants are sprayed with the preparation of active compound or active compound combination at the stated rate of application.
After the spray coating has been dried, the plants are sprayed with a spore suspension of Puccinia triticina. The plants remain for 48 hours in an incubation cabinet at approximately 20°C and a relative atmospheric humidity of approximately 100%.
The plants are placed in the greenhouse at a temperature of approximately 20°C and a relative atmospheric humidity of approximately 80%.
The test is evaluated 8 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 70%o and 79%o at a concentration of 500 ppm of active ingredient: 1.27
In this test the following compounds according to the invention showed efficacy between 80%o and 89%o at a concentration of 500 ppm of active ingredient: 1.09; 1.66; VII.29
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingredient: 1.01; 1.02; 1.03; 1.05; 1.08; 1.12; 1.14; 1.25; 1.32; 1.34; 1.35; 1.36; 1.37; 1.38; 1.39; 1.40; 1.43; 1.44; 1.45; 1.46; 1.47; 1.48; 1.49; 1.50; 1.53; 1.55; 1.56; 1.58; 1.59; 1.60; 1.61; 1.62; 1.63; 1.64; 1.65; 1.78; 1.79; 1.82; 1.90; 1.91; 1.94; 1.95; VII.01; VII.08; VII.09; VII.20; VII.22; VII.24; VII.27; VII.28; VII.31; VII.32; VII.36; VII.37; VII.39; VII.40; VII.41; VII.42
Example L: in vivo preventive Septoria tritici test (wheat)
Solvent: 49 parts by weight of N,N-dimethylacetamide Emulsifier: 1 part by weight of alkylaryl poly glycol ether
To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration. - -
To test for preventive activity, young plants are sprayed with the preparation of active compound or active compound combination at the stated rate of application.
After the spray coating has been dried, the plants are sprayed with a spore suspension of Septoria tritici. The plants remain for 48 hours in an incubation cabinet at approximately 20°C and a relative atmospheric humidity of approximately 100% and afterwards for 60 hours at approximately 15°C in a translucent incubation cabinet at a relative atmospheric humidity of approximately 100%.
The plants are placed in the greenhouse at a temperature of approximately 15°C and a relative atmospheric humidity of approximately 80%.
The test is evaluated 21 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 70%o and 79%> at a concentration of 500 ppm of active ingredient: 1.38; 1.39; 1.82; VII.36
In this test the following compounds according to the invention showed efficacy between 80%o and 89%o at a concentration of 500 ppm of active ingredient: 1.63; 1.90; 1.91; VII.12; VII.22 In this test the following compounds according to the invention showed efficacy between 90%o and 100%o at a concentration of 500 ppm of active ingredient: 1.01; 1.02; 1.03; 1.05; 1.08; 1.09; 1.17; 1.25; 1.27; 1.35; 1.36; 1.37; 1.40; 1.43; 1.44; 1.45; 1.46; 1.47; 1.48; 1.49; 1.50; 1.53; 1.55; 1.56; 1.58; 1.59; 1.60; 1.61; 1.62; 1.65; 1.66; 1.78; 1.79; 1.95; VII.01; VII.04; VII.08; VII.09; VII.24; VII.27; VII.28; VII.29; VII.31; VII.32; VII.37; VII.39; VII.41; VII.42 Example M: in vivo preventive test on Sphaerotheca (cucumbers); comparison of phenoxy-pyridyl compounds according to the invention vs. known phenoxy-phenyl compounds
Solvent: 24.5 parts by weight of acetone
24.5 parts by weight of dimethylacetamide
Emulsifier: 1 part by weight of alkylaryl polyglycol ether To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the above stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
To test for preventive activity, young plants are sprayed with the preparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of Sphaerotheca fuliginea. The plants are then placed in a greenhouse at approximately 23 °C and a relative atmospheric humidity of approximately 70%. The test is evaluated 7 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.
Table: results of the in vivo preventive test on Sphaerotheca (cucumbers)
Figure imgf000127_0001
Figure imgf000128_0001
Figure imgf000129_0001

Claims

Claims
1. Triazole derivatives of the formula (I)
Figure imgf000130_0001
wherein
R1 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8- cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C i-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4- alkynyl;
R represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8- cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4- alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 and/or R2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected from halogen; CN; nitro; Ci-C4-alkyl; Ci-C4-alkoxy; Ci-C4-halogenalkyl; Ci-C4-halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 and/or R2 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and C1-C4- halogenalkoxy;
R4 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, C1-C4- halogenalkoxy, Ci-C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000131_0001
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen;
R3 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or C1-C4- halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
2. Triazole derivatives of formula (I) according to claim 1, wherein
R represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, C1-C4- halogenalkoxy or pentafluoro^6-sulfanyl; and/or
R represents hydrogen, Ci-C2-halogenalkyl or halogen.
3. Triazole derivatives of formula (I) according to at least one of claims 1 and 2, wherein
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000132_0001
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein R, R3 and n are defined according to claim 1.
4. Triazole derivatives of formula (I) according to at least one of claims 1 to 3, wherein
R1 represents hydrogen, Ci-C i-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, cyclopropyl, phenyl, benzyl, phenylethenyl or phenylethinyl;
R2 represents hydrogen, Ci-C i-alkyl, allyl, propargyl or benzyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 and/or R2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C i-alkoxy and Ci-C i-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C i-alkyl; Ci-C i-alkoxy; Ci-C i-halogenalkyl; C1-C4- halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 and/or R2 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-alkoxy, Ci-C i-halogenalkyl and C1-C4- halogenalkoxy;
R4 represents CF3, OCF3, Br, CI or pentafluoro^6-sulfanyl; m is 1, 2 or 3; Y represents
Figure imgf000133_0001
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein R, R3 and n are defined according to claim 1 ; and its salts or N-oxides.
5. Triazole derivatives of formula (I) according to at least one of claims 1 to 4, wherein
R represents hydrogen, Ci-halogenalkyl, F or CI; n is 0; and its salts or N-oxides.
6. Triazole derivatives of formula (I) according to at least one of claims 1 to 5, wherein
R1 represents hydrogen or Ci-C i-alkyl;
R represents hydrogen; represents CF3, OCF3, Br, CI or pentafluoro^6-sulfanyl; is 1; represents
Figure imgf000133_0002
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and R represents Ci-halogenalkyl; n is 0; and its salts or N-oxides.
Method for controlling harmful microorganisms in crop protection and in the protection of materials, characterized in that compounds of the formula (I) according to Claim 1, 2, 3, 4, 5 or 6 and/or compounds of the formula (VII) according to Claim 15 are applied to the harmful microorganisms and/or their habitat.
8. Method for controlling phytopathogenic harmful fungi in crop protection and in the protection of materials, characterized in that compounds of the formula (I) according to Claim 1, 2, 3, 4, 5 or 6 and/or compounds of the formula (VII) according to Claim 15 are applied to the phytopathogenic harmful fungi and/or their habitat.
9. Composition for controlling harmful microorganisms, preferably for controlling phytopathogenic harmful fungi, characterized by a content of at least one compound of the formula (I) according to Claim 1, 2, 3, 4, 5 or 6 and/or at least one compound of the formula (VII) according to Claim 15, in addition to extenders and/or surfactants.
10. Composition according to Claim 9 comprising at least one further active ingredient selected from the group of the insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers, safeners and semiochemicals.
11. Use of compounds of the formula (I) according to Claim 1, 2, 3, 4, 5 or 6 and/or compounds of the formula (VII) according to Claim 15 for control of harmful microorganisms in crop protection and in the protection of materials, preferably phytopathogenic harmful fungi.
12. Use of compounds of the formula (I) according to Claim 1, 2, 3, 4, 5 or 6 and/or compounds of the formula (VII) according to Claim 15 for treatment of plants or transgenic plants or for treatment of seed or of seed of transgenic plants.
Compounds of formula (V)
Figure imgf000134_0001
wherein
R1 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8- cycloalkyl-Ci-C i-alkyl, phenyl, phenyl-Ci-C i-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C i- alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C i-alkoxy and Ci-C i-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C i-alkyl; Ci-C i-alkoxy; Ci-C i-halogenalkyl; C1-C4- halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-alkoxy, Ci-C i-halogenalkyl and C1-C4- halogenalkoxy;
R4 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C4-alkoxy, C1-C4- halogenalkoxy, Ci-C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl; with the proviso, that R4 is not represented by CF3 when R1 is represented by methyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000135_0001
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents CI or CF3;
R3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or C1-C4- halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
14. Compounds of formula (VI)
Figure imgf000136_0001
wherein
Hal represents F, CI, Br or I;
R represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy, C1-C4- halogenalkoxy, Ci-C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000136_0002
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents Ci-C2-halogenalkyl or halogen;
R represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or C1-C4- halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
15. Compounds of formula (VII)
Figure imgf000136_0003
wherein
R4 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, C1-C4- halogenalkoxy, Ci-C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000137_0001
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen;
R3 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy or C1-C4- halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
Compounds of formula (IX)
Figure imgf000137_0002
wherein
R represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8- cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4- alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C i-alkyl; Ci-C i-alkoxy; Ci-C i-halogenalkyl; C1-C4- halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and C1-C4- halogenalkoxy; represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy C1-C4- halogenalkoxy, Ci-C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl; is an integer and is 0, 1, 2, 3, 4 or 5; represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000138_0001
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen;
R3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or C1-C4- halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
Compounds of formula (X)
Figure imgf000138_0002
(X) wherein
R1 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8- cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4- alkynyl;
R2 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8- cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4- alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 and/or R2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C4-alkyl; Ci-C4-alkoxy; Ci-C4-halogenalkyl; C 1 - C4-halogenalkoxy ; wherein the cycloalkyl and/or phenyl moieties of R1 and/or R2 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and C1-C4- halogenalkoxy;
R4 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy C1-C4- halogenalkoxy, Ci-C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000139_0001
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen;
R represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C4-alkoxy or C1-C4- halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
18. Compounds of formula (XI)
Figure imgf000140_0001
wherein represents halogen, -OS02-Ci-C6-alkyl, -OS02-aryl, -OS02-0-Ci-C6-alkyl, -OS02-0-aryl, -OSO2- NRARA wherein the "alkyl" and/or "aryl" may carry 1, 2, 3 or up to the maximum possible number of identical or different groups RD; wherein
RD represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy
halogenalkoxy;
RA represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Cs-Cs-cycloalkyl, C3-C8- cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4- alkynyl, wherein the aliphatic moieties, excluding cycloalkyl moieties, of RA may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Rc which independently of one another are selected from
Rc halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C4-alkyl; Ci-C4-alkoxy; Ci-C4-halogenalkyl; C 1 - C4-halogenalkoxy ; wherein the cycloalkyl and/or phenyl moieties of RA may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rd which independently of one another are selected from
Rd halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-alkoxy, Ci-C i-halogenalkyl and C1-C4- halogenalkoxy;
R1 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8- cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C i-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4- alkynyl;
R2 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8- cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4- alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 and/or R2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C4-alkyl; Ci-C4-alkoxy; Ci-C4-halogenalkyl; C1-C4- halogenalkoxy; wherein the cycloalkyl and/or phenyl moieties of R1 and/or R2 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and Ci-C4-halogenalkoxy;
R4 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy C1-C4- halogenalkoxy, Ci-C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-λ6-sulfanyl; m is an integer and is 0, 1, 2, 3, 4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen;
R3 represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C i-halogenalkyl, Ci-C i-alkoxy or C1-C4- halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides. 19. Compounds of formula (XXI)
Figure imgf000142_0001
wherein
R1 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8- cycloalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4- alkynyl; wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups Ra which independently of one another are selected from
Ra halogen, CN, nitro, phenyl, Ci-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-C4-alkyl; Ci-C4-alkoxy; Ci-C4-halogenalkyl; C 1 - C4-halogenalkoxy ; wherein the cycloalkyl and/or phenyl moieties of R1 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and C1-C4- halogenalkoxy; R represents halogen, CN, nitro, Ci-C i-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, C1-C4- halogenalkoxy, Ci-C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro^6-sulfanyl, except for Br; m is an integer and is 0, 1, 2, 3, 4 or 5;
R9 represents Ci-C6-alkyl or Cs-Cs-cycloalkyl;
R10 represents C2-C6-alkyl;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
Figure imgf000143_0001
wherein Y is connected to the O of formula (I) via the bonds identified with "u" and Y is connected to the CR^OR2) moiety of formula (I) via the bonds identified with "v" and wherein
R represents hydrogen, Ci-C2-halogenalkyl, Ci-C2-halogenalkoxy, Ci-C2-alkylcarbonyl or halogen;
R3 represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy or C1-C4- halogenalkoxy; n is an integer and is 0, 1 or 2; and its salts or N-oxides.
PCT/EP2016/069097 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and their use as fungicides WO2017029179A1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
TNP/2018/000054A TN2018000054A1 (en) 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and their use as fungicides.
CA2995304A CA2995304A1 (en) 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and their use as fungicides
JP2018507514A JP6867370B2 (en) 2015-08-14 2016-08-11 Triazole derivatives, their intermediates and their use as fungicides
AU2016310123A AU2016310123A1 (en) 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and their use as fungicides
KR1020187006986A KR20180037267A (en) 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and uses thereof as fungicides
MX2018001885A MX2018001885A (en) 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and their use as fungicides.
CR20180102A CR20180102A (en) 2015-08-14 2016-08-11 DERIVATIVES OF TRIAZOL, ITS INTERMEDIARIES AND ITS USE AS FUNGICIDES
EP16750176.6A EP3334718A1 (en) 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and their use as fungicides
US15/751,232 US10485236B2 (en) 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and their use as fungicides
EA201890490A EA201890490A1 (en) 2015-08-14 2016-08-11 TRIAZOLE DERIVATIVES, THEIR INTERMEDIATE CONNECTIONS AND THEIR APPLICATION AS FUNGICIDES
CN201680060340.0A CN108137538B (en) 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and their use as fungicides
BR112018002890-8A BR112018002890A2 (en) 2015-08-14 2016-08-11 TRIAZOL DERIVATIVES, THEIR INTERMEDIATES AND USE AS FUNGICIDES
IL257262A IL257262A (en) 2015-08-14 2018-01-31 Triazole derivatives, intermediates thereof and their use as fungicides
CONC2018/0001456A CO2018001456A2 (en) 2015-08-14 2018-02-14 Triazole derivatives, their intermediates and their use as fungicides
ZA2018/01710A ZA201801710B (en) 2015-08-14 2018-03-13 Triazole derivatives, intermediates thereof and their use as fungicides
US16/574,084 US20200008427A1 (en) 2015-08-14 2019-09-18 Triazole derivatives, intermediates thereof and their use as fungicides

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP15181152 2015-08-14
EP15181152.8 2015-08-14
EP15200792.8 2015-12-17
EP15200792 2015-12-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/751,232 A-371-Of-International US10485236B2 (en) 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and their use as fungicides
US16/574,084 Division US20200008427A1 (en) 2015-08-14 2019-09-18 Triazole derivatives, intermediates thereof and their use as fungicides

Publications (1)

Publication Number Publication Date
WO2017029179A1 true WO2017029179A1 (en) 2017-02-23

Family

ID=56618172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/069097 WO2017029179A1 (en) 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and their use as fungicides

Country Status (23)

Country Link
US (2) US10485236B2 (en)
EP (1) EP3334718A1 (en)
JP (1) JP6867370B2 (en)
KR (1) KR20180037267A (en)
CN (1) CN108137538B (en)
AU (1) AU2016310123A1 (en)
BR (1) BR112018002890A2 (en)
CA (1) CA2995304A1 (en)
CL (1) CL2018000407A1 (en)
CO (1) CO2018001456A2 (en)
CR (1) CR20180102A (en)
EA (1) EA201890490A1 (en)
EC (1) ECSP18011083A (en)
IL (1) IL257262A (en)
MA (1) MA42599A (en)
MX (1) MX2018001885A (en)
NI (1) NI201800026A (en)
PE (1) PE20180603A1 (en)
TN (1) TN2018000054A1 (en)
TW (1) TW201718500A (en)
UY (1) UY36852A (en)
WO (1) WO2017029179A1 (en)
ZA (1) ZA201801710B (en)

Cited By (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018145933A1 (en) 2017-02-08 2018-08-16 Bayer Aktiengesellschaft Triazolethione derivatives
WO2018145921A1 (en) 2017-02-10 2018-08-16 Bayer Aktiengesellschaft Composition for controlling harmful microorganisms comprising 1 -(phenoxy-pyridinyl)-2-(1,2,4-triazol-1 -yl)-ethanol derivatives
WO2018145934A1 (en) 2017-02-08 2018-08-16 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
WO2018145932A1 (en) 2017-02-08 2018-08-16 Bayer Cropscience Aktiengesellschaft Triazole derivatives and their use as fungicides
EP3391747A1 (en) 2018-02-21 2018-10-24 Bayer AG Use of phenoxypyridinyl-substituted (1h-1,2,4-triazol-1-yl)alcohols for enhancing crop performance
WO2018202737A1 (en) 2017-05-05 2018-11-08 Basf Se Fungicidal mixtures comprising triazole compounds
EP3421460A1 (en) 2018-03-15 2019-01-02 Bayer Aktiengesellschaft 2-[(4-alkylphenoxy)-pyridinyl]-1-(1,2,4-triazol-1-yl)alkan-2-ol fungicides
WO2019012161A1 (en) 2017-10-18 2019-01-17 Bayer Aktiengesellschaft Process for the preparation of substituted (1h-1,2,4-triazol-1-yl)alcohols
WO2019048526A1 (en) 2017-09-11 2019-03-14 Bayer Aktiengesellschaft Process for the preparation of 1-[6-halogeno-3-pyridyl]ketones
WO2020020813A1 (en) 2018-07-25 2020-01-30 Bayer Aktiengesellschaft Fungicidal active compound combinations
WO2020020816A1 (en) 2018-07-26 2020-01-30 Bayer Aktiengesellschaft Novel triazole derivatives
WO2020025574A1 (en) 2018-08-03 2020-02-06 Bayer Aktiengesellschaft Process for the preparation of 6-(haloalkyl)-2-halo-5-acylpyridines and intermediates for this process
WO2020025807A1 (en) 2018-08-03 2020-02-06 Syngenta Crop Protection Ag Microbiocidal 1,2,5-oxadiazol-3(2h)-one derivatives
WO2020039094A1 (en) * 2018-08-24 2020-02-27 Xeniopro GmbH Phenoxy(hetero)aryl ethers of antiproliferative activity
EP3620052A1 (en) 2018-12-12 2020-03-11 Bayer Aktiengesellschaft Use of phenoxypyridinyl-substituted (1h-1,2,4-triazol-1-yl)alcohols for controlling fungicidal diseases in maize
EP3620053A1 (en) 2018-12-14 2020-03-11 Bayer Aktiengesellschaft Fungicidal active compound combinations
WO2020053364A1 (en) 2018-09-13 2020-03-19 Syngenta Participations Ag Pesticidally active azole-amide compounds
WO2020053365A2 (en) 2018-09-13 2020-03-19 Syngenta Participations Ag Pesticidally active azole-amide compounds
WO2020079111A1 (en) 2018-10-18 2020-04-23 Syngenta Crop Protection Ag Microbiocidal compounds
WO2020079198A1 (en) 2018-10-19 2020-04-23 Syngenta Participations Ag Pesticidally active azole-amide compounds
WO2020078942A1 (en) * 2018-10-18 2020-04-23 BASF Agro B.V. Method to control septoria tritici resistant to c14-demethylase inhibitor fungicides
WO2020094363A1 (en) 2018-11-05 2020-05-14 Syngenta Participations Ag Pesticidally active azole-amide compounds
WO2020109511A1 (en) 2018-11-30 2020-06-04 Syngenta Crop Protection Ag Microbiocidal 2-acylamino-thiazole-4-carboxamide derivatives
WO2020109509A1 (en) 2018-11-30 2020-06-04 Syngenta Participations Ag Microbiocidal thiazole derivatives
EP3666759A1 (en) 2018-12-10 2020-06-17 Bayer Aktiengesellschaft Preparation of 6-halo-2-(haloalkyl)-3-acylpyridines and intermediates therefor
EP3679790A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679792A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679789A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679791A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679793A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
WO2020165403A1 (en) 2019-02-15 2020-08-20 Syngenta Crop Protection Ag Phenyl substituted thiazole derivatives as microbiocidal compounds
WO2020169445A1 (en) 2019-02-18 2020-08-27 Syngenta Crop Protection Ag Pesticidally active azole-amide compounds
WO2020169526A1 (en) 2019-02-18 2020-08-27 Syngenta Crop Protection Ag Pesticidally-active cyanamide heterocyclic compounds
WO2020182649A1 (en) 2019-03-08 2020-09-17 Syngenta Crop Protection Ag Pesticidally active azole-amide compounds
WO2020188027A1 (en) 2019-03-20 2020-09-24 Syngenta Crop Protection Ag Pesticidally active azole amide compounds
WO2020188014A1 (en) 2019-03-20 2020-09-24 Syngenta Crop Protection Ag Pesticidally active azole amide compounds
WO2020193618A1 (en) 2019-03-27 2020-10-01 Syngenta Crop Protection Ag Microbiocidal thiazole derivatives
WO2020193341A1 (en) 2019-03-22 2020-10-01 Syngenta Crop Protection Ag N-[1-(5-bromo-2-pyrimidin-2-yl-1,2,4-triazol-3-yl)ethyl]-2-cyclopropyl-6-(trifluoromethyl)pyridine-4-carboxamide derivatives and related compounds as insecticides
WO2020193387A1 (en) 2019-03-22 2020-10-01 Syngenta Crop Protection Ag Fungicidal compounds
WO2020201079A1 (en) 2019-03-29 2020-10-08 Syngenta Crop Protection Ag Pesticidally active diazine-amide compounds
WO2020201398A1 (en) 2019-04-05 2020-10-08 Syngenta Crop Protection Ag Pesticidally active diazine-amide compounds
WO2020208096A1 (en) 2019-04-10 2020-10-15 Syngenta Crop Protection Ag Fungicidal compositions
WO2020208095A1 (en) 2019-04-10 2020-10-15 Syngenta Crop Protection Ag Microbiocidal picolinamide derivatives
WO2020208036A1 (en) 2019-04-11 2020-10-15 Syngenta Crop Protection Ag Pesticidally active diazine-amide compounds
EP3738959A1 (en) 2019-05-16 2020-11-18 Bayer AG Preparation of 6-phenoxy-2-(haloalkyl)-3-acylpyridines and intermediates therefor
WO2020239853A1 (en) 2019-05-29 2020-12-03 Syngenta Crop Protection Ag Microbiocidal derivatives
WO2020239854A1 (en) 2019-05-29 2020-12-03 Syngenta Crop Protection Ag Microbiocidal derivatives
WO2020239856A1 (en) 2019-05-29 2020-12-03 Syngenta Crop Protection Ag Microbiocidal derivatives
WO2020239855A1 (en) 2019-05-29 2020-12-03 Syngenta Crop Protection Ag Microbiocidal derivatives
EP3712135A4 (en) * 2017-11-13 2020-12-09 Kureha Corporation Azole derivative, intermediate compound, method for producing azole derivative, agent for agricultural and horticultural use, and material protection agent for industrial use
WO2020254530A1 (en) 2019-06-18 2020-12-24 Syngenta Crop Protection Ag 7-sulfonyl-n-(1,3,4-thiadiazol-2-yl)-quinoxaline-6-carboxamide derivatives and the respective -benzimidazole-5-, -imidazo[4,5-b]pyridine-5-, -3h-furo[3,2b]pyridine-5-, -quinoline-2-, and -naphthalene-2-carboxamide derivatives as pesticides
WO2021004968A1 (en) 2019-07-05 2021-01-14 Syngenta Crop Protection Ag Microbiocidal picolinamide derivatives
WO2021009026A1 (en) 2019-07-12 2021-01-21 Syngenta Crop Protection Ag Methyl 2-[(4-methoxyimino-tetralin-6-yl]prop-2-enoate derivatives, chromane, isochromane, 6,7,8,9-tetrahydrobenzo[7]annulene, 1h-isobenzofurane and indane analogues thereof, and similar compounds, as agrochemical fungicides
WO2021032634A1 (en) 2019-08-21 2021-02-25 Syngenta Participations Ag Apparatus and method for reducing dust development in precision drill sowing
WO2021032630A1 (en) 2019-08-21 2021-02-25 Syngenta Participations Ag Sowing device and method for treating seeds during planting
WO2021032632A1 (en) 2019-08-21 2021-02-25 Syngenta Participations Ag Apparatus and method for converting existing sowing equipment
WO2021032633A1 (en) 2019-08-21 2021-02-25 Syngenta Participations Ag High precision greenhouse seed and seedling treatment
WO2021032631A1 (en) 2019-08-21 2021-02-25 Syngenta Participations Ag Precision treatment and sowing or planting method and device
WO2021037614A1 (en) 2019-08-23 2021-03-04 Syngenta Crop Protection Ag Pesticidally active pyrazine-amide compounds
WO2021043616A1 (en) 2019-09-02 2021-03-11 Syngenta Crop Protection Ag Strigolactone derivatives as plant growth regulator compounds
WO2021053110A1 (en) 2019-09-20 2021-03-25 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur and sulfoximine containing substituents
WO2021053161A1 (en) 2019-09-20 2021-03-25 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2021083936A1 (en) 2019-11-01 2021-05-06 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
WO2021104910A1 (en) * 2019-11-26 2021-06-03 Basf Se Method to control septoria tritici resistant to c14-demethylase inhibitor fungicides
WO2021110891A1 (en) 2019-12-04 2021-06-10 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic amino compounds
WO2021122645A1 (en) 2019-12-20 2021-06-24 Syngenta Crop Protection Ag Pesticidally active azole-amide compounds
WO2021136722A1 (en) 2019-12-31 2021-07-08 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2021140122A1 (en) 2020-01-06 2021-07-15 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2021144354A1 (en) 2020-01-15 2021-07-22 Syngenta Crop Protection Ag Pesticidally-active bicyclic heteroaromatic compounds
WO2021148639A1 (en) 2020-01-24 2021-07-29 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
WO2021151926A1 (en) 2020-01-30 2021-08-05 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic amino compounds
WO2021160680A1 (en) 2020-02-11 2021-08-19 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2021170881A1 (en) 2020-02-27 2021-09-02 Syngenta Crop Protection Ag Pesticidally active diazine-bisamide compounds
WO2021175822A1 (en) 2020-03-02 2021-09-10 Syngenta Crop Protection Ag Pesticidally amidine-substituted benzoic acid amide compounds
WO2021176057A1 (en) 2020-03-05 2021-09-10 Syngenta Crop Protection Ag Fungicidal compositions
WO2021176007A1 (en) 2020-03-05 2021-09-10 Syngenta Crop Protection Ag Fungicidal compositions
WO2021180974A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola
WO2021180598A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola
WO2021180596A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola
WO2021180592A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola
WO2021180975A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola
WO2021180976A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola, cercospora sojina and/or cercospora kikuchii
WO2021204822A1 (en) 2020-04-08 2021-10-14 Syngenta Crop Protection Ag Microbiocidal quinoline dihydro-(thiazine)oxazine derivatives
WO2021204855A1 (en) 2020-04-08 2021-10-14 Syngenta Crop Protection Ag Microbiocidal quinoline dihydropyrrolopyrazine derivatives
WO2021204857A1 (en) 2020-04-08 2021-10-14 Syngenta Crop Protection Ag Microbiocidal quinoline dihydro-(thiazine)oxazine derivatives
WO2021213929A1 (en) 2020-04-20 2021-10-28 Syngenta Crop Protection Ag Pesticidally active substituted 1,3-dihydro-2h-imidazo[4,5-c]pyridin-2-one derivatives with sulfur containing substituents
WO2021219810A1 (en) 2020-04-30 2021-11-04 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2021219778A1 (en) 2020-04-30 2021-11-04 Syngenta Crop Protection Ag Microbiocidal compounds
WO2021219775A1 (en) 2020-04-30 2021-11-04 Syngenta Crop Protection Ag Microbiocidal compounds
WO2021219780A1 (en) 2020-05-01 2021-11-04 Syngenta Crop Protection Ag Microbiocidal compounds
WO2021224102A1 (en) 2020-05-05 2021-11-11 Syngenta Crop Protection Ag Microbiocidal compounds
WO2021224409A1 (en) 2020-05-06 2021-11-11 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2021244950A1 (en) 2020-06-03 2021-12-09 Syngenta Crop Protection Ag Fungicidal compositions
WO2021244951A1 (en) 2020-06-03 2021-12-09 Syngenta Crop Protection Ag Fungicidal compositions
WO2021244952A1 (en) 2020-06-03 2021-12-09 Syngenta Crop Protection Ag Microbiocidal derivatives
WO2022013417A1 (en) 2020-07-17 2022-01-20 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022017975A1 (en) 2020-07-18 2022-01-27 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022043576A2 (en) 2020-08-31 2022-03-03 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022049144A1 (en) 2020-09-02 2022-03-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022049141A1 (en) 2020-09-01 2022-03-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022048988A1 (en) 2020-09-02 2022-03-10 Syngenta Participations Ag Plant growth regulator compounds
WO2022049146A1 (en) 2020-09-02 2022-03-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022053567A1 (en) 2020-09-09 2022-03-17 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022058580A1 (en) 2020-09-21 2022-03-24 Syngenta Crop Protection Ag Microbiocidal compounds
WO2022073932A1 (en) 2020-10-05 2022-04-14 Syngenta Crop Protection Ag Fungicidal compositions
WO2022084346A1 (en) 2020-10-22 2022-04-28 Syngenta Crop Protection Ag Zealactone derivatives as plant growth regulators
WO2022101265A1 (en) 2020-11-13 2022-05-19 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
WO2022157334A1 (en) 2021-01-21 2022-07-28 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022157188A2 (en) 2021-01-23 2022-07-28 Syngenta Crop Protection Ag Pesticidally active heteroaromatic compounds
WO2022157122A1 (en) 2021-01-22 2022-07-28 Syngenta Crop Protection Ag Method for the control or suppression of phytopathogenic bacteria
WO2022207462A1 (en) 2021-03-30 2022-10-06 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2022207665A1 (en) 2021-03-31 2022-10-06 Syngenta Crop Protection Ag Microbiocidal quinoline/quinoxaline benzothiazine derivatives
WO2022207479A1 (en) 2021-03-27 2022-10-06 Syngenta Crop Protection Ag Microbiocidal isonicotinic amide derivatives
WO2022219146A2 (en) 2021-04-16 2022-10-20 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2022223376A1 (en) 2021-04-20 2022-10-27 Syngenta Crop Protection Ag Microbiocidal quinoline/quinoxaline isoquinoline derivatives
WO2022233869A1 (en) 2021-05-04 2022-11-10 Syngenta Crop Protection Ag Use of clethodim for insect control
WO2022253841A1 (en) 2021-06-02 2022-12-08 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfoximine containing substituents
WO2022253645A1 (en) 2021-06-01 2022-12-08 Syngenta Crop Protection Ag Microbiocidal tetrahydroisoquinoline derivatives
WO2022258481A1 (en) 2021-06-09 2022-12-15 Syngenta Crop Protection Ag Pesticidally active diazine-amide compounds
WO2022268648A1 (en) 2021-06-24 2022-12-29 Syngenta Crop Protection Ag 2-[3-[1 [(quinazolin-4-yl)amino]ethyl]pyrazin-2-yl]thiazole-5-carbonitrile derivatives and similar compounds as pesticides
WO2023275116A1 (en) 2021-07-02 2023-01-05 Syngenta Crop Protection Ag Use of fluazifop-p-butyl for insect control
WO2023006634A1 (en) 2021-07-27 2023-02-02 Syngenta Crop Protection Ag Method for controlling diamide resistant pests & compounds therefor
WO2023006789A1 (en) 2021-07-29 2023-02-02 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
WO2023012044A1 (en) 2021-08-02 2023-02-09 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2023012081A1 (en) 2021-08-05 2023-02-09 Syngenta Crop Protection Ag Method for controlling diamide resistant pests & compounds therefor
WO2023017094A1 (en) 2021-08-10 2023-02-16 Syngenta Crop Protection Ag 2,2-difluoro-5h-[1,3]dioxolo[4,5-f]isoindol-7-one derivatives as pesticides
WO2023017016A1 (en) 2021-08-10 2023-02-16 Syngenta Crop Protection Ag Fungicide mixture
WO2023021020A1 (en) 2021-08-19 2023-02-23 Syngenta Crop Protection Ag Method for controlling diamide resistant pests & compounds therefor
WO2023061838A1 (en) 2021-10-14 2023-04-20 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2023072849A1 (en) 2021-10-27 2023-05-04 Syngenta Crop Protection Ag Pesticidally active pyridazinone compounds
WO2023072945A1 (en) 2021-10-25 2023-05-04 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023072784A1 (en) 2021-10-29 2023-05-04 Syngenta Crop Protection Ag Fungicidal compositions comprising fludioxonil
WO2023072785A1 (en) 2021-10-29 2023-05-04 Syngenta Crop Protection Ag Fungicidal compositions
WO2023089049A2 (en) 2021-11-19 2023-05-25 Syngenta Crop Protection Ag Microbiocidal isonicotinic amide derivatives
WO2023094303A1 (en) 2021-11-25 2023-06-01 Syngenta Crop Protection Ag Microbiocidal heterobiaryl amide derivatives
WO2023094304A1 (en) 2021-11-25 2023-06-01 Syngenta Crop Protection Ag Microbiocidal heterobiaryl amide derivatives
WO2023099460A1 (en) 2021-12-02 2023-06-08 Syngenta Crop Protection Ag Fungicidal compositions
WO2023104714A1 (en) 2021-12-10 2023-06-15 Syngenta Crop Protection Ag Pesticidally active pyridazinone compounds
EP4197333A1 (en) 2021-12-15 2023-06-21 Syngenta Crop Protection AG Method for controlling diamide resistant pests & compounds therefor
WO2023110928A1 (en) 2021-12-17 2023-06-22 Syngenta Crop Protection Ag Fungicidal compositions
WO2023110871A1 (en) 2021-12-17 2023-06-22 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2023111215A1 (en) 2021-12-17 2023-06-22 Syngenta Crop Protection Ag Microbiocidal pyridine-substituted benzothiazine derivatives
WO2023110869A1 (en) 2021-12-15 2023-06-22 Syngenta Crop Protection Ag Microbiocidal bicycle heterocyclic derivatives
WO2023110710A1 (en) 2021-12-13 2023-06-22 Syngenta Crop Protection Ag Method for controlling diamide resistant pests & compounds therefor
WO2023118434A1 (en) 2021-12-22 2023-06-29 Globachem Nv Pesticidally active amide compounds
WO2023117625A1 (en) 2021-12-22 2023-06-29 Syngenta Crop Protection Ag Fungicidal compositions
WO2023118011A1 (en) 2021-12-22 2023-06-29 Syngenta Crop Protection Ag Microbiocidal aza-heterobiaryl derivatives
WO2023139166A1 (en) 2022-01-19 2023-07-27 Syngenta Crop Protection Ag Methods for controlling plant pathogens
WO2023148368A1 (en) 2022-02-07 2023-08-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023148369A1 (en) 2022-02-07 2023-08-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023148206A1 (en) 2022-02-02 2023-08-10 Syngenta Crop Protection Ag Microbiocidal n-amide derivatives
WO2023166067A1 (en) 2022-03-02 2023-09-07 Syngenta Crop Protection Ag Microbiocidal pyridazinone amide derivatives
WO2023187191A1 (en) 2022-04-01 2023-10-05 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023209238A1 (en) 2022-04-29 2023-11-02 Syngenta Crop Protection Ag Fungicidal compositions
WO2023217989A1 (en) 2022-05-12 2023-11-16 Syngenta Crop Protection Ag Alkoxy heteroaryl- carboxamide or thioamide compounds
WO2023247552A1 (en) 2022-06-21 2023-12-28 Syngenta Crop Protection Ag Microbiocidal bicyclic heterocyclic carboxamide derivatives
WO2023247360A1 (en) 2022-06-21 2023-12-28 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
WO2024008567A1 (en) 2022-07-07 2024-01-11 Syngenta Crop Protection Ag Precision application devices and compositions
WO2024018016A1 (en) 2022-07-21 2024-01-25 Syngenta Crop Protection Ag Crystalline forms of 1,2,4-oxadiazole fungicides
WO2024017788A1 (en) 2022-07-22 2024-01-25 Syngenta Crop Protection Ag Solid form of a heterocyclic amide derivative
WO2024022910A1 (en) 2022-07-26 2024-02-01 Syngenta Crop Protection Ag 1-[1-[2-(pyrimidin-4-yl)-1,2,4-triazol-3-yl]ethyl]-3-[2,4-dichloro-5-phenyl]urea derivatives and similar compounds as pesticides
WO2024033374A1 (en) 2022-08-11 2024-02-15 Syngenta Crop Protection Ag Novel arylcarboxamide or arylthioamide compounds
WO2024038053A1 (en) 2022-08-16 2024-02-22 Syngenta Crop Protection Ag New use of pydiflumetofen
WO2024056732A1 (en) 2022-09-16 2024-03-21 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2024068950A1 (en) 2022-09-30 2024-04-04 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2024068655A1 (en) 2022-09-28 2024-04-04 Syngenta Crop Protection Ag Fungicidal compositions
WO2024068947A1 (en) 2022-09-30 2024-04-04 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2024068656A1 (en) 2022-09-28 2024-04-04 Syngenta Crop Protection Ag Fungicidal compositions
WO2024068838A1 (en) 2022-09-28 2024-04-04 Syngenta Crop Protection Ag Fungicidal compositions
WO2024089191A1 (en) 2022-10-27 2024-05-02 Syngenta Crop Protection Ag Microbiocidal heterobicyclic dihydrooxadiazine derivatives
WO2024089216A1 (en) 2022-10-27 2024-05-02 Syngenta Crop Protection Ag Novel sulfur-containing heteroaryl carboxamide compounds
WO2024089023A1 (en) 2022-10-25 2024-05-02 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024094575A1 (en) 2022-10-31 2024-05-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024100115A1 (en) 2022-11-09 2024-05-16 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2024100069A1 (en) 2022-11-08 2024-05-16 Syngenta Crop Protection Ag Microbiocidal pyridine derivatives
WO2024105104A1 (en) 2022-11-16 2024-05-23 Syngenta Crop Protection Ag Microbiocidal tetrahydroisoquinoline derivatives
WO2024110554A1 (en) 2022-11-23 2024-05-30 Syngenta Crop Protection Ag N-[(1 -[2-[6-(pyridazin-3-yl]-1,2,4-triazol-3-yl]ethyl]-quinazolin-4-amine and n-[1-[3-(6-(pyridazin-3-yl)pyrazin-2-yl]ethyl]-8-quinazolin-4-amine derivatives as pesticides
WO2024110215A1 (en) 2022-11-24 2024-05-30 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2024115546A1 (en) 2022-11-30 2024-06-06 Syngenta Crop Protection Ag Fungicidal compositions
WO2024115512A1 (en) 2022-11-30 2024-06-06 Syngenta Crop Protection Ag Microbiocidal tetrahydroisoquinoline derivatives
WO2024115509A1 (en) 2022-11-29 2024-06-06 Syngenta Crop Protection Ag Microbiocidal tetrahydroisoquinoline derivatives
WO2024126650A1 (en) 2022-12-15 2024-06-20 Syngenta Crop Protection Ag Novel bicyclic-carboxamide compounds useful as pesticides
WO2024126404A1 (en) 2022-12-14 2024-06-20 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2024126388A1 (en) 2022-12-12 2024-06-20 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024126407A1 (en) 2022-12-16 2024-06-20 Syngenta Crop Protection Ag Benzimidazole derivatives
WO2024132901A1 (en) 2022-12-19 2024-06-27 Syngenta Crop Protection Ag Microbiocidal pyridazine dihydrooxadiazine derivatives
WO2024132895A1 (en) 2022-12-19 2024-06-27 Syngenta Crop Protection Ag Microbiocidal dihydrooxadiazinyl pyridazinone compounds
WO2024133426A1 (en) 2022-12-21 2024-06-27 Syngenta Crop Protection Ag Method for controlling diamide resistant pests and compounds therefor
WO2024133551A1 (en) 2022-12-21 2024-06-27 Syngenta Crop Protection Ag Pesticidally active pyridazine compounds
WO2024146945A1 (en) 2023-01-07 2024-07-11 Syngenta Crop Protection Ag Novel carboxamide and sulfonamide pesticidal compounds
WO2024156886A1 (en) 2023-01-27 2024-08-02 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2024156664A1 (en) 2023-01-23 2024-08-02 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024160801A1 (en) 2023-02-01 2024-08-08 Syngenta Crop Protection Ag Fungicidal compositions
WO2024170339A1 (en) 2023-02-13 2024-08-22 Syngenta Crop Protection Ag Pesticidally active bicyclic compounds
WO2024170484A1 (en) 2023-02-13 2024-08-22 Globachem Nv Pesticidally active amide compounds
WO2024170365A1 (en) 2023-02-14 2024-08-22 Syngenta Crop Protection Ag Composition comprising cyprodinil and lactose-based filler
WO2024213664A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo bicyclic derivatives
WO2024213653A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2024213662A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Pyrazolo[1,5-a]pyridine derivatives
WO2024213656A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo[1,2-a]pyrazine derivatives
WO2024213663A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Pyrazolo[1,5-a]pyridine derivatives
WO2024213650A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2024213659A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo[1,2-a]pyrazine derivatives
WO2024213720A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Fungicidal compositions
WO2024213651A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2024217995A1 (en) 2023-04-20 2024-10-24 Syngenta Crop Protection Ag Pesticidally active dihydropyridinone derivatives

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146116A1 (en) * 2009-06-18 2010-12-23 Basf Se Triazole compounds carrying a sulfur substituent
WO2013007767A1 (en) * 2011-07-13 2013-01-17 Basf Se Fungicidal substituted 2-[2-halogenalkyl-4-(phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2992089A (en) 1988-02-22 1989-08-24 Takeda Chemical Industries Ltd. Acrylic acid morpholides, their production and use
EP1993543A2 (en) 2006-03-03 2008-11-26 Merck & Co., Inc. Novel crystalline forms of antidiabetic compounds
US8871928B2 (en) 2010-09-20 2014-10-28 Glaxo Group Limited Tricyclic compounds, preparation methods, and their uses
GB201020076D0 (en) 2010-11-26 2011-01-12 Liverpool School Tropical Medicine Antimalarial compounds
RU2641291C2 (en) 2012-07-30 2018-01-17 Тайсо Фармасьютикал Ко., Лтд. Partly saturated nitrogen-containing heterocyclic compound
CN104955814A (en) 2012-11-27 2015-09-30 巴斯夫欧洲公司 Substituted [1,2,4] triazole compounds
CN105263911A (en) * 2012-12-21 2016-01-20 巴斯夫欧洲公司 Substituted [1,2,4]triazole and imidazole compounds
WO2014167010A1 (en) * 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazole derivatives
WO2015136947A1 (en) 2014-03-14 2015-09-17 Raqualia Pharma Inc. Azaspiro derivatives as trpm8 antagonists
US9944664B2 (en) * 2014-04-15 2018-04-17 Dow Agrosciences Llc Metalloenzyme inhibitor compounds as fungicides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146116A1 (en) * 2009-06-18 2010-12-23 Basf Se Triazole compounds carrying a sulfur substituent
WO2013007767A1 (en) * 2011-07-13 2013-01-17 Basf Se Fungicidal substituted 2-[2-halogenalkyl-4-(phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds

Cited By (211)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018145933A1 (en) 2017-02-08 2018-08-16 Bayer Aktiengesellschaft Triazolethione derivatives
WO2018145934A1 (en) 2017-02-08 2018-08-16 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
WO2018145932A1 (en) 2017-02-08 2018-08-16 Bayer Cropscience Aktiengesellschaft Triazole derivatives and their use as fungicides
WO2018145921A1 (en) 2017-02-10 2018-08-16 Bayer Aktiengesellschaft Composition for controlling harmful microorganisms comprising 1 -(phenoxy-pyridinyl)-2-(1,2,4-triazol-1 -yl)-ethanol derivatives
WO2018202737A1 (en) 2017-05-05 2018-11-08 Basf Se Fungicidal mixtures comprising triazole compounds
WO2019048526A1 (en) 2017-09-11 2019-03-14 Bayer Aktiengesellschaft Process for the preparation of 1-[6-halogeno-3-pyridyl]ketones
WO2019012161A1 (en) 2017-10-18 2019-01-17 Bayer Aktiengesellschaft Process for the preparation of substituted (1h-1,2,4-triazol-1-yl)alcohols
EP3712135A4 (en) * 2017-11-13 2020-12-09 Kureha Corporation Azole derivative, intermediate compound, method for producing azole derivative, agent for agricultural and horticultural use, and material protection agent for industrial use
US10945434B2 (en) 2017-11-13 2021-03-16 Kureha Corporation Azole derivative, intermediate compound, method for producing azole derivative, agricultural or horticultural chemical agent, and protective agent for industrial material
EP3391747A1 (en) 2018-02-21 2018-10-24 Bayer AG Use of phenoxypyridinyl-substituted (1h-1,2,4-triazol-1-yl)alcohols for enhancing crop performance
EP3421460A1 (en) 2018-03-15 2019-01-02 Bayer Aktiengesellschaft 2-[(4-alkylphenoxy)-pyridinyl]-1-(1,2,4-triazol-1-yl)alkan-2-ol fungicides
WO2020020813A1 (en) 2018-07-25 2020-01-30 Bayer Aktiengesellschaft Fungicidal active compound combinations
WO2020020816A1 (en) 2018-07-26 2020-01-30 Bayer Aktiengesellschaft Novel triazole derivatives
WO2020025807A1 (en) 2018-08-03 2020-02-06 Syngenta Crop Protection Ag Microbiocidal 1,2,5-oxadiazol-3(2h)-one derivatives
WO2020025574A1 (en) 2018-08-03 2020-02-06 Bayer Aktiengesellschaft Process for the preparation of 6-(haloalkyl)-2-halo-5-acylpyridines and intermediates for this process
CN112930337A (en) * 2018-08-24 2021-06-08 赛尼欧普罗有限责任公司 Antiproliferative phenoxy (hetero) aryl ethers
WO2020039094A1 (en) * 2018-08-24 2020-02-27 Xeniopro GmbH Phenoxy(hetero)aryl ethers of antiproliferative activity
IL280870B1 (en) * 2018-08-24 2023-10-01 Xeniopro GmbH Phenoxy(hetero)aryl ethers of antiproliferative activity
IL280870B2 (en) * 2018-08-24 2024-02-01 Xeniopro GmbH Phenoxy(hetero)aryl ethers of antiproliferative activity
WO2020053364A1 (en) 2018-09-13 2020-03-19 Syngenta Participations Ag Pesticidally active azole-amide compounds
WO2020053365A2 (en) 2018-09-13 2020-03-19 Syngenta Participations Ag Pesticidally active azole-amide compounds
WO2020079111A1 (en) 2018-10-18 2020-04-23 Syngenta Crop Protection Ag Microbiocidal compounds
WO2020078942A1 (en) * 2018-10-18 2020-04-23 BASF Agro B.V. Method to control septoria tritici resistant to c14-demethylase inhibitor fungicides
WO2020079198A1 (en) 2018-10-19 2020-04-23 Syngenta Participations Ag Pesticidally active azole-amide compounds
WO2020094363A1 (en) 2018-11-05 2020-05-14 Syngenta Participations Ag Pesticidally active azole-amide compounds
WO2020109509A1 (en) 2018-11-30 2020-06-04 Syngenta Participations Ag Microbiocidal thiazole derivatives
WO2020109511A1 (en) 2018-11-30 2020-06-04 Syngenta Crop Protection Ag Microbiocidal 2-acylamino-thiazole-4-carboxamide derivatives
EP3666759A1 (en) 2018-12-10 2020-06-17 Bayer Aktiengesellschaft Preparation of 6-halo-2-(haloalkyl)-3-acylpyridines and intermediates therefor
WO2020120284A1 (en) 2018-12-10 2020-06-18 Bayer Aktiengesellschaft Preparation of 6-halo-2-(haloalkyl)-3-acylpyridines and intermediates therefor
EP3620052A1 (en) 2018-12-12 2020-03-11 Bayer Aktiengesellschaft Use of phenoxypyridinyl-substituted (1h-1,2,4-triazol-1-yl)alcohols for controlling fungicidal diseases in maize
EP3620053A1 (en) 2018-12-14 2020-03-11 Bayer Aktiengesellschaft Fungicidal active compound combinations
EP3679789A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679791A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679793A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679792A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679790A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
WO2020165403A1 (en) 2019-02-15 2020-08-20 Syngenta Crop Protection Ag Phenyl substituted thiazole derivatives as microbiocidal compounds
WO2020169445A1 (en) 2019-02-18 2020-08-27 Syngenta Crop Protection Ag Pesticidally active azole-amide compounds
WO2020169526A1 (en) 2019-02-18 2020-08-27 Syngenta Crop Protection Ag Pesticidally-active cyanamide heterocyclic compounds
WO2020182649A1 (en) 2019-03-08 2020-09-17 Syngenta Crop Protection Ag Pesticidally active azole-amide compounds
WO2020188014A1 (en) 2019-03-20 2020-09-24 Syngenta Crop Protection Ag Pesticidally active azole amide compounds
WO2020188027A1 (en) 2019-03-20 2020-09-24 Syngenta Crop Protection Ag Pesticidally active azole amide compounds
WO2020193387A1 (en) 2019-03-22 2020-10-01 Syngenta Crop Protection Ag Fungicidal compounds
WO2020193341A1 (en) 2019-03-22 2020-10-01 Syngenta Crop Protection Ag N-[1-(5-bromo-2-pyrimidin-2-yl-1,2,4-triazol-3-yl)ethyl]-2-cyclopropyl-6-(trifluoromethyl)pyridine-4-carboxamide derivatives and related compounds as insecticides
WO2020193618A1 (en) 2019-03-27 2020-10-01 Syngenta Crop Protection Ag Microbiocidal thiazole derivatives
WO2020201079A1 (en) 2019-03-29 2020-10-08 Syngenta Crop Protection Ag Pesticidally active diazine-amide compounds
WO2020201398A1 (en) 2019-04-05 2020-10-08 Syngenta Crop Protection Ag Pesticidally active diazine-amide compounds
WO2020208095A1 (en) 2019-04-10 2020-10-15 Syngenta Crop Protection Ag Microbiocidal picolinamide derivatives
WO2020208096A1 (en) 2019-04-10 2020-10-15 Syngenta Crop Protection Ag Fungicidal compositions
WO2020208036A1 (en) 2019-04-11 2020-10-15 Syngenta Crop Protection Ag Pesticidally active diazine-amide compounds
EP3738959A1 (en) 2019-05-16 2020-11-18 Bayer AG Preparation of 6-phenoxy-2-(haloalkyl)-3-acylpyridines and intermediates therefor
WO2020239853A1 (en) 2019-05-29 2020-12-03 Syngenta Crop Protection Ag Microbiocidal derivatives
WO2020239854A1 (en) 2019-05-29 2020-12-03 Syngenta Crop Protection Ag Microbiocidal derivatives
WO2020239856A1 (en) 2019-05-29 2020-12-03 Syngenta Crop Protection Ag Microbiocidal derivatives
WO2020239855A1 (en) 2019-05-29 2020-12-03 Syngenta Crop Protection Ag Microbiocidal derivatives
WO2020254530A1 (en) 2019-06-18 2020-12-24 Syngenta Crop Protection Ag 7-sulfonyl-n-(1,3,4-thiadiazol-2-yl)-quinoxaline-6-carboxamide derivatives and the respective -benzimidazole-5-, -imidazo[4,5-b]pyridine-5-, -3h-furo[3,2b]pyridine-5-, -quinoline-2-, and -naphthalene-2-carboxamide derivatives as pesticides
WO2021004968A1 (en) 2019-07-05 2021-01-14 Syngenta Crop Protection Ag Microbiocidal picolinamide derivatives
WO2021009026A1 (en) 2019-07-12 2021-01-21 Syngenta Crop Protection Ag Methyl 2-[(4-methoxyimino-tetralin-6-yl]prop-2-enoate derivatives, chromane, isochromane, 6,7,8,9-tetrahydrobenzo[7]annulene, 1h-isobenzofurane and indane analogues thereof, and similar compounds, as agrochemical fungicides
WO2021032634A1 (en) 2019-08-21 2021-02-25 Syngenta Participations Ag Apparatus and method for reducing dust development in precision drill sowing
WO2021032632A1 (en) 2019-08-21 2021-02-25 Syngenta Participations Ag Apparatus and method for converting existing sowing equipment
WO2021032633A1 (en) 2019-08-21 2021-02-25 Syngenta Participations Ag High precision greenhouse seed and seedling treatment
WO2021032631A1 (en) 2019-08-21 2021-02-25 Syngenta Participations Ag Precision treatment and sowing or planting method and device
WO2021032630A1 (en) 2019-08-21 2021-02-25 Syngenta Participations Ag Sowing device and method for treating seeds during planting
WO2021037614A1 (en) 2019-08-23 2021-03-04 Syngenta Crop Protection Ag Pesticidally active pyrazine-amide compounds
WO2021043616A1 (en) 2019-09-02 2021-03-11 Syngenta Crop Protection Ag Strigolactone derivatives as plant growth regulator compounds
WO2021053110A1 (en) 2019-09-20 2021-03-25 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur and sulfoximine containing substituents
WO2021053161A1 (en) 2019-09-20 2021-03-25 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2021083936A1 (en) 2019-11-01 2021-05-06 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
WO2021104910A1 (en) * 2019-11-26 2021-06-03 Basf Se Method to control septoria tritici resistant to c14-demethylase inhibitor fungicides
WO2021110891A1 (en) 2019-12-04 2021-06-10 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic amino compounds
WO2021122645A1 (en) 2019-12-20 2021-06-24 Syngenta Crop Protection Ag Pesticidally active azole-amide compounds
WO2021136722A1 (en) 2019-12-31 2021-07-08 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2021140122A1 (en) 2020-01-06 2021-07-15 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2021144354A1 (en) 2020-01-15 2021-07-22 Syngenta Crop Protection Ag Pesticidally-active bicyclic heteroaromatic compounds
WO2021148639A1 (en) 2020-01-24 2021-07-29 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
WO2021151926A1 (en) 2020-01-30 2021-08-05 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic amino compounds
WO2021160680A1 (en) 2020-02-11 2021-08-19 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2021170881A1 (en) 2020-02-27 2021-09-02 Syngenta Crop Protection Ag Pesticidally active diazine-bisamide compounds
WO2021175822A1 (en) 2020-03-02 2021-09-10 Syngenta Crop Protection Ag Pesticidally amidine-substituted benzoic acid amide compounds
WO2021176057A1 (en) 2020-03-05 2021-09-10 Syngenta Crop Protection Ag Fungicidal compositions
WO2021176007A1 (en) 2020-03-05 2021-09-10 Syngenta Crop Protection Ag Fungicidal compositions
WO2021180598A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola
WO2021180596A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola
WO2021180975A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola
WO2021180976A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola, cercospora sojina and/or cercospora kikuchii
WO2021180592A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola
WO2021180974A1 (en) 2020-03-13 2021-09-16 Syngenta Crop Protection Ag Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola
WO2021204822A1 (en) 2020-04-08 2021-10-14 Syngenta Crop Protection Ag Microbiocidal quinoline dihydro-(thiazine)oxazine derivatives
WO2021204855A1 (en) 2020-04-08 2021-10-14 Syngenta Crop Protection Ag Microbiocidal quinoline dihydropyrrolopyrazine derivatives
WO2021204857A1 (en) 2020-04-08 2021-10-14 Syngenta Crop Protection Ag Microbiocidal quinoline dihydro-(thiazine)oxazine derivatives
WO2021213929A1 (en) 2020-04-20 2021-10-28 Syngenta Crop Protection Ag Pesticidally active substituted 1,3-dihydro-2h-imidazo[4,5-c]pyridin-2-one derivatives with sulfur containing substituents
WO2021219810A1 (en) 2020-04-30 2021-11-04 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2021219778A1 (en) 2020-04-30 2021-11-04 Syngenta Crop Protection Ag Microbiocidal compounds
WO2021219775A1 (en) 2020-04-30 2021-11-04 Syngenta Crop Protection Ag Microbiocidal compounds
WO2021219780A1 (en) 2020-05-01 2021-11-04 Syngenta Crop Protection Ag Microbiocidal compounds
WO2021224102A1 (en) 2020-05-05 2021-11-11 Syngenta Crop Protection Ag Microbiocidal compounds
WO2021224409A1 (en) 2020-05-06 2021-11-11 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2021244950A1 (en) 2020-06-03 2021-12-09 Syngenta Crop Protection Ag Fungicidal compositions
WO2021244951A1 (en) 2020-06-03 2021-12-09 Syngenta Crop Protection Ag Fungicidal compositions
WO2021244952A1 (en) 2020-06-03 2021-12-09 Syngenta Crop Protection Ag Microbiocidal derivatives
WO2022013417A1 (en) 2020-07-17 2022-01-20 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022017975A1 (en) 2020-07-18 2022-01-27 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022043576A2 (en) 2020-08-31 2022-03-03 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022049141A1 (en) 2020-09-01 2022-03-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022049146A1 (en) 2020-09-02 2022-03-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022048988A1 (en) 2020-09-02 2022-03-10 Syngenta Participations Ag Plant growth regulator compounds
WO2022049144A1 (en) 2020-09-02 2022-03-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022053567A1 (en) 2020-09-09 2022-03-17 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022058580A1 (en) 2020-09-21 2022-03-24 Syngenta Crop Protection Ag Microbiocidal compounds
WO2022073932A1 (en) 2020-10-05 2022-04-14 Syngenta Crop Protection Ag Fungicidal compositions
WO2022084346A1 (en) 2020-10-22 2022-04-28 Syngenta Crop Protection Ag Zealactone derivatives as plant growth regulators
WO2022101265A1 (en) 2020-11-13 2022-05-19 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
WO2022157334A1 (en) 2021-01-21 2022-07-28 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022157122A1 (en) 2021-01-22 2022-07-28 Syngenta Crop Protection Ag Method for the control or suppression of phytopathogenic bacteria
WO2022157188A2 (en) 2021-01-23 2022-07-28 Syngenta Crop Protection Ag Pesticidally active heteroaromatic compounds
WO2022207479A1 (en) 2021-03-27 2022-10-06 Syngenta Crop Protection Ag Microbiocidal isonicotinic amide derivatives
WO2022207462A1 (en) 2021-03-30 2022-10-06 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2022207665A1 (en) 2021-03-31 2022-10-06 Syngenta Crop Protection Ag Microbiocidal quinoline/quinoxaline benzothiazine derivatives
WO2022219146A2 (en) 2021-04-16 2022-10-20 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2022223376A1 (en) 2021-04-20 2022-10-27 Syngenta Crop Protection Ag Microbiocidal quinoline/quinoxaline isoquinoline derivatives
WO2022233869A1 (en) 2021-05-04 2022-11-10 Syngenta Crop Protection Ag Use of clethodim for insect control
WO2022253645A1 (en) 2021-06-01 2022-12-08 Syngenta Crop Protection Ag Microbiocidal tetrahydroisoquinoline derivatives
WO2022253841A1 (en) 2021-06-02 2022-12-08 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfoximine containing substituents
WO2022258481A1 (en) 2021-06-09 2022-12-15 Syngenta Crop Protection Ag Pesticidally active diazine-amide compounds
WO2022268648A1 (en) 2021-06-24 2022-12-29 Syngenta Crop Protection Ag 2-[3-[1 [(quinazolin-4-yl)amino]ethyl]pyrazin-2-yl]thiazole-5-carbonitrile derivatives and similar compounds as pesticides
WO2023275116A1 (en) 2021-07-02 2023-01-05 Syngenta Crop Protection Ag Use of fluazifop-p-butyl for insect control
WO2023006634A1 (en) 2021-07-27 2023-02-02 Syngenta Crop Protection Ag Method for controlling diamide resistant pests & compounds therefor
WO2023006789A1 (en) 2021-07-29 2023-02-02 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
WO2023012044A1 (en) 2021-08-02 2023-02-09 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2023012081A1 (en) 2021-08-05 2023-02-09 Syngenta Crop Protection Ag Method for controlling diamide resistant pests & compounds therefor
WO2023017094A1 (en) 2021-08-10 2023-02-16 Syngenta Crop Protection Ag 2,2-difluoro-5h-[1,3]dioxolo[4,5-f]isoindol-7-one derivatives as pesticides
WO2023017016A1 (en) 2021-08-10 2023-02-16 Syngenta Crop Protection Ag Fungicide mixture
WO2023021020A1 (en) 2021-08-19 2023-02-23 Syngenta Crop Protection Ag Method for controlling diamide resistant pests & compounds therefor
WO2023061838A1 (en) 2021-10-14 2023-04-20 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2023072945A1 (en) 2021-10-25 2023-05-04 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023072849A1 (en) 2021-10-27 2023-05-04 Syngenta Crop Protection Ag Pesticidally active pyridazinone compounds
WO2023072784A1 (en) 2021-10-29 2023-05-04 Syngenta Crop Protection Ag Fungicidal compositions comprising fludioxonil
WO2023072785A1 (en) 2021-10-29 2023-05-04 Syngenta Crop Protection Ag Fungicidal compositions
WO2023089049A2 (en) 2021-11-19 2023-05-25 Syngenta Crop Protection Ag Microbiocidal isonicotinic amide derivatives
WO2023094303A1 (en) 2021-11-25 2023-06-01 Syngenta Crop Protection Ag Microbiocidal heterobiaryl amide derivatives
WO2023094304A1 (en) 2021-11-25 2023-06-01 Syngenta Crop Protection Ag Microbiocidal heterobiaryl amide derivatives
WO2023099460A1 (en) 2021-12-02 2023-06-08 Syngenta Crop Protection Ag Fungicidal compositions
WO2023104714A1 (en) 2021-12-10 2023-06-15 Syngenta Crop Protection Ag Pesticidally active pyridazinone compounds
WO2023110710A1 (en) 2021-12-13 2023-06-22 Syngenta Crop Protection Ag Method for controlling diamide resistant pests & compounds therefor
WO2023110869A1 (en) 2021-12-15 2023-06-22 Syngenta Crop Protection Ag Microbiocidal bicycle heterocyclic derivatives
EP4197333A1 (en) 2021-12-15 2023-06-21 Syngenta Crop Protection AG Method for controlling diamide resistant pests & compounds therefor
WO2023110928A1 (en) 2021-12-17 2023-06-22 Syngenta Crop Protection Ag Fungicidal compositions
WO2023110871A1 (en) 2021-12-17 2023-06-22 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2023111215A1 (en) 2021-12-17 2023-06-22 Syngenta Crop Protection Ag Microbiocidal pyridine-substituted benzothiazine derivatives
WO2023118434A1 (en) 2021-12-22 2023-06-29 Globachem Nv Pesticidally active amide compounds
WO2023117625A1 (en) 2021-12-22 2023-06-29 Syngenta Crop Protection Ag Fungicidal compositions
WO2023118011A1 (en) 2021-12-22 2023-06-29 Syngenta Crop Protection Ag Microbiocidal aza-heterobiaryl derivatives
WO2023139166A1 (en) 2022-01-19 2023-07-27 Syngenta Crop Protection Ag Methods for controlling plant pathogens
WO2023148206A1 (en) 2022-02-02 2023-08-10 Syngenta Crop Protection Ag Microbiocidal n-amide derivatives
WO2023148369A1 (en) 2022-02-07 2023-08-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023148368A1 (en) 2022-02-07 2023-08-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023166067A1 (en) 2022-03-02 2023-09-07 Syngenta Crop Protection Ag Microbiocidal pyridazinone amide derivatives
WO2023187191A1 (en) 2022-04-01 2023-10-05 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023209238A1 (en) 2022-04-29 2023-11-02 Syngenta Crop Protection Ag Fungicidal compositions
WO2023217989A1 (en) 2022-05-12 2023-11-16 Syngenta Crop Protection Ag Alkoxy heteroaryl- carboxamide or thioamide compounds
WO2023247360A1 (en) 2022-06-21 2023-12-28 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
WO2023247552A1 (en) 2022-06-21 2023-12-28 Syngenta Crop Protection Ag Microbiocidal bicyclic heterocyclic carboxamide derivatives
WO2024008567A1 (en) 2022-07-07 2024-01-11 Syngenta Crop Protection Ag Precision application devices and compositions
WO2024018016A1 (en) 2022-07-21 2024-01-25 Syngenta Crop Protection Ag Crystalline forms of 1,2,4-oxadiazole fungicides
WO2024017788A1 (en) 2022-07-22 2024-01-25 Syngenta Crop Protection Ag Solid form of a heterocyclic amide derivative
WO2024022910A1 (en) 2022-07-26 2024-02-01 Syngenta Crop Protection Ag 1-[1-[2-(pyrimidin-4-yl)-1,2,4-triazol-3-yl]ethyl]-3-[2,4-dichloro-5-phenyl]urea derivatives and similar compounds as pesticides
WO2024033374A1 (en) 2022-08-11 2024-02-15 Syngenta Crop Protection Ag Novel arylcarboxamide or arylthioamide compounds
WO2024038053A1 (en) 2022-08-16 2024-02-22 Syngenta Crop Protection Ag New use of pydiflumetofen
WO2024056732A1 (en) 2022-09-16 2024-03-21 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2024068838A1 (en) 2022-09-28 2024-04-04 Syngenta Crop Protection Ag Fungicidal compositions
WO2024068655A1 (en) 2022-09-28 2024-04-04 Syngenta Crop Protection Ag Fungicidal compositions
WO2024068656A1 (en) 2022-09-28 2024-04-04 Syngenta Crop Protection Ag Fungicidal compositions
WO2024068947A1 (en) 2022-09-30 2024-04-04 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2024068950A1 (en) 2022-09-30 2024-04-04 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2024089023A1 (en) 2022-10-25 2024-05-02 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024089191A1 (en) 2022-10-27 2024-05-02 Syngenta Crop Protection Ag Microbiocidal heterobicyclic dihydrooxadiazine derivatives
WO2024089216A1 (en) 2022-10-27 2024-05-02 Syngenta Crop Protection Ag Novel sulfur-containing heteroaryl carboxamide compounds
WO2024094575A1 (en) 2022-10-31 2024-05-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024100069A1 (en) 2022-11-08 2024-05-16 Syngenta Crop Protection Ag Microbiocidal pyridine derivatives
WO2024100115A1 (en) 2022-11-09 2024-05-16 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2024105104A1 (en) 2022-11-16 2024-05-23 Syngenta Crop Protection Ag Microbiocidal tetrahydroisoquinoline derivatives
WO2024110554A1 (en) 2022-11-23 2024-05-30 Syngenta Crop Protection Ag N-[(1 -[2-[6-(pyridazin-3-yl]-1,2,4-triazol-3-yl]ethyl]-quinazolin-4-amine and n-[1-[3-(6-(pyridazin-3-yl)pyrazin-2-yl]ethyl]-8-quinazolin-4-amine derivatives as pesticides
WO2024110215A1 (en) 2022-11-24 2024-05-30 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
WO2024115509A1 (en) 2022-11-29 2024-06-06 Syngenta Crop Protection Ag Microbiocidal tetrahydroisoquinoline derivatives
WO2024115512A1 (en) 2022-11-30 2024-06-06 Syngenta Crop Protection Ag Microbiocidal tetrahydroisoquinoline derivatives
WO2024115546A1 (en) 2022-11-30 2024-06-06 Syngenta Crop Protection Ag Fungicidal compositions
WO2024126388A1 (en) 2022-12-12 2024-06-20 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024126404A1 (en) 2022-12-14 2024-06-20 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2024126650A1 (en) 2022-12-15 2024-06-20 Syngenta Crop Protection Ag Novel bicyclic-carboxamide compounds useful as pesticides
WO2024126407A1 (en) 2022-12-16 2024-06-20 Syngenta Crop Protection Ag Benzimidazole derivatives
WO2024132901A1 (en) 2022-12-19 2024-06-27 Syngenta Crop Protection Ag Microbiocidal pyridazine dihydrooxadiazine derivatives
WO2024132895A1 (en) 2022-12-19 2024-06-27 Syngenta Crop Protection Ag Microbiocidal dihydrooxadiazinyl pyridazinone compounds
WO2024133426A1 (en) 2022-12-21 2024-06-27 Syngenta Crop Protection Ag Method for controlling diamide resistant pests and compounds therefor
WO2024133551A1 (en) 2022-12-21 2024-06-27 Syngenta Crop Protection Ag Pesticidally active pyridazine compounds
WO2024146945A1 (en) 2023-01-07 2024-07-11 Syngenta Crop Protection Ag Novel carboxamide and sulfonamide pesticidal compounds
WO2024156664A1 (en) 2023-01-23 2024-08-02 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024156886A1 (en) 2023-01-27 2024-08-02 Syngenta Crop Protection Ag Microbiocidal pyrazole derivatives
WO2024160801A1 (en) 2023-02-01 2024-08-08 Syngenta Crop Protection Ag Fungicidal compositions
WO2024170339A1 (en) 2023-02-13 2024-08-22 Syngenta Crop Protection Ag Pesticidally active bicyclic compounds
WO2024170484A1 (en) 2023-02-13 2024-08-22 Globachem Nv Pesticidally active amide compounds
WO2024170365A1 (en) 2023-02-14 2024-08-22 Syngenta Crop Protection Ag Composition comprising cyprodinil and lactose-based filler
WO2024213664A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo bicyclic derivatives
WO2024213653A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2024213662A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Pyrazolo[1,5-a]pyridine derivatives
WO2024213656A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo[1,2-a]pyrazine derivatives
WO2024213663A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Pyrazolo[1,5-a]pyridine derivatives
WO2024213650A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2024213659A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo[1,2-a]pyrazine derivatives
WO2024213720A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Fungicidal compositions
WO2024213651A1 (en) 2023-04-13 2024-10-17 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2024217995A1 (en) 2023-04-20 2024-10-24 Syngenta Crop Protection Ag Pesticidally active dihydropyridinone derivatives

Also Published As

Publication number Publication date
CR20180102A (en) 2018-05-11
PE20180603A1 (en) 2018-04-09
CL2018000407A1 (en) 2019-01-11
EP3334718A1 (en) 2018-06-20
ZA201801710B (en) 2019-09-25
US20180235223A1 (en) 2018-08-23
TW201718500A (en) 2017-06-01
IL257262A (en) 2018-03-29
KR20180037267A (en) 2018-04-11
BR112018002890A2 (en) 2020-03-10
JP2018526359A (en) 2018-09-13
CO2018001456A2 (en) 2018-04-30
CN108137538A (en) 2018-06-08
TN2018000054A1 (en) 2019-07-08
AU2016310123A1 (en) 2018-03-01
CA2995304A1 (en) 2017-02-23
NI201800026A (en) 2018-08-22
MA42599A (en) 2018-06-20
EA201890490A1 (en) 2018-08-31
US10485236B2 (en) 2019-11-26
JP6867370B2 (en) 2021-04-28
CN108137538B (en) 2021-02-26
MX2018001885A (en) 2018-08-16
ECSP18011083A (en) 2018-04-30
UY36852A (en) 2017-03-31
US20200008427A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US10485236B2 (en) Triazole derivatives, intermediates thereof and their use as fungicides
WO2016156282A1 (en) Novel triazole compounds for controlling phytopathogenic harmful fungi
CA2856591A1 (en) 2-iodoimidazole derivatives
US9822099B2 (en) Triazole derivatives
EP2984082B1 (en) Novel triazole derivatives
AU2016239175A1 (en) Triazole derivatives as pesticides and plant growth regulators
US9550752B2 (en) Triazolinthione derivatives
WO2016156311A1 (en) Triazole derivatives as pesticides and plant growth regulators
EP3277674B1 (en) Triazol derivatives as fungicides
WO2016050769A1 (en) Novel triazole derivatives useful as fungicides
WO2018054832A1 (en) Novel triazole derivatives
EP3515906A1 (en) Novel triazole derivatives and their use as fungicides
OA18593A (en) Triazole derivatives, intermediates thereof and their use as fungicides
WO2016156284A1 (en) Novel pyridine compounds for controlling phytopathogenic harmful fungi

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16750176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15751232

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2995304

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018507514

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: CR2018-000102

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 000245-2018

Country of ref document: PE

Ref document number: MX/A/2018/001885

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016310123

Country of ref document: AU

Date of ref document: 20160811

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006986

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201890490

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: A201802527

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2016750176

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018002890

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018002890

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180214